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Beweis: Es geniigt, den Satz fiir » = 2 zu beweisen, da er
dann durch Induktion aligemein folgt. Nach dem (aus den Ele-
menten vorausgesetzten) binomischen Satz ist nun

p—1 y
(@ + @)’ = af + Zi‘ (7:)“{“2— + a5,
ve
w0 f die Kombinationsanzahl von p Elementen zur v-ten Klasse

bezeichnet, fiir die die Formel
(p)= p! _p—=1---(p—(r=-1)
» vi(p— »)! 1-2+--9
gilt (vgl.1, Bew, zu Satz 66 [123]). Dafiir 1 <»<p—1 das Produkt
1-2++.pzuyp prim ist (Satz 23 [22]) und wegen der Ganzzahlig-

keit der Anzahl f in dem Produkt p - [(p—1) - -+ (p— (»—1))]
aufgeht, muB es nach Satz 16 [20] in dem zweiten Faktor [...]
dieses Produktes aufgehen, so daB <p ) =0mod. pist. Aus Satz43
folgt daher ’

(a; + ax)P = af +af .

Es sei iibrigens bemerkt, daB eine entsprechende Regel auch
fir die Subtraktion gilt; denn ans (a; + a,)f — o} = af folgt ja
wegen der Unbeschriinktheit der Subtraktion allgemein b} — b3
= (b — ).

I1. Die Wurzeln algebraischer
Gleichungen.

Wir leiten in diesem Abschnitt eine Reihe von Sétzen iiber
Wurzeln « von Polynomen f (z) aus K in Erweiterungskérpern
A von K her, ohne dabei auf die erst in III zu behandelnde
Existenzirage der A und « bei gegebenem K und f(z) ein-
zugehen. Diese Sitze sind also lediglich als Folgerungen aus
der Voraussetzung anzusehen, daf ein Polynom aus K in
einem Erweiterungskorper A von K eine oder mehrere Wurzeln
hat.

Zur Vereinfachung der Ausdrucksweise treffen wir folgende
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Bezeichnungsfestsetzungen fiir Abschnitt II-IV.

GroBe griechische Buchstaben, auBer den bereits vergebenen
M (Menge), B (Bereich), | (Integrititsbereich), I' (Integritits-
bereich der ganzen Zahlen), bedeuten stets Kérper, ohne daB
dies immer ausdriicklich gesagt wird, und zwar K den Grund-
kérper, A irgendeinen Erweiterungskorper (kurz Erweiterung)
von K, weitere Buchstaben Erweiterungen von K mit speziellen,
wie bei P (Kérper der rationalen Zahlen) durch die Bezeichnung
schon angedeuteten Eigenschaften, die wir aber der Deutlichkeit
halber doch immer ausfiihrlich nennen werden. Fir das Ent-
haltensein und Enthalten bei Korpern (spater auch bei Gruppen)
verwenden wir sinngemiB die Zeichen <, =, <, >. Ist KEKZA,
so nennen wir K einen Kérper zwischen K und A.

Elemente aus dem Grundkérper K bezeichnen wir mit 4, b, ...,
solche aus Erweiterungen A von K mit o, 8, 9,... (vgl. 1, erste
Anm. zu §1[9]), ebenso Elemente aus K [z] mit f (), g(z), h(z),...,
solche aus A[z] mit ¢(z), w(z), x(),...1). Wir diirfen dann
erliuternde Zusitze iiber die Kérper, denen vorkommende Elemente
angehéren sollen, oft fortlassen.

Ebenso lassen wir auch die Zusitze ,,in K** bei ,,irreduzibel*
und ,,Primfaktorzerlegung®, sowie entsprechende Zusitze bei
einigen im weiteren Verlaufe einzufithrenden Begriffen, die sich
auf einen bestimmten Grundkoérper beziehen, gelegentlich fort,
wenn nur ein in der gerade vorliegenden Betrachtung fester
Grundkérper K in Betracht kommt. Definitionen, auf die diese
Festsetzung Anwendung finden soll, werden durch * gekennzeichnet.

§ b. Wurzeln und Linearfaktoren.

1.) Der in § 1 fiir K[2] bewiesene Fundamentalsatz er-
moglicht zunichst die Herstellung eines Zusammenhangs
zwischen den Wurzeln eines Polynoms aus K in einer LEr-
weiterung A von K und denen seiner Primfaktoren in K.
Nach 1, Satz 4 [12] und dem Einsetzungsprinzip gilt ndmlich:

Satz 45. Ist

@) =py(@) - - pr(a)?)

ein in seine Primfaktoren zerlegtes Polynom aus

1) Vorkommende gebrochene rationale Funktionen, die wir in I 8o bee
zeichneten, werden als Quotienten ganzer rationaler Funktionen dargestellt.
%) Nach der Definition von Polynom i. d. Einl,, sowle nach Def. 8 {14]
und Satz 11[14] ist dabel der in Satz 12 [14] auftretende Einheitsfaktor
a - e.



40 II. Die Wurzeln algebraischer Gleichungen.

K, so ist jede Wurzel von f(z) in A auch Wurzel
von mindestens einem der p;(z) und umgekehrt
jede Wuarzel eines der p;(z) in A auch Wurzel von
1(2).

Man beherrseht somit die Wurzeln von f(z), wenn man die der
p;(x) beherrscht, und kénnte sich demnach auf die Untersuchung

der Wurzeln irreduzibler Polynome beschrinken. Da sich diese

- Beschrankung aber fiir die in III, IV auseinanderzusetzende Theorie
als iiberfliissig erweist, wollen wir sie nicht einfiihren. Das erscheint
auch in Hinsicht auf das Nichtvorhandensein eines rationalen
Rechenverfahrens zur Herstellung der Primfaktorzerlegung er-
wiinscht.

2.) Wir beweisen ferner einige Sitze iiber den Zusammen-
hang der Wurzeln eines Polynoms aus K mit dessen Prim-
faktoren 1-ten Grades (sog. Linearfaktorem) in einer Er-
weiterung A von K.

Satz 46, Ist x Wurzel von f(z) in A, so ist f(z)
durch den Linearfaktor z —« teilbar, d.h. es be-
steht in A eine Zerlegung

() = (s—&) p(z).
Umgekehrt folgt aus einer solechen Zerlegung, dal
o Wurzel von f(x) ist.

Beweis: a.) Nach Satz 13 [16] kann

1(2) = (s—a) p(e) + (&) mit |p(z)|<|z— |
gesetzt werden. Da |z —o [ =k ist, mub |p(z)| =k'=1
sein, so da y(x)=p ein Element aus A ist. Fir z =«
folgt dann wegen f(«) = 0 auch f = 0, d. h. die behauptete
Zerlegung.

b.) Die Umkehrung ist klar.

Satz 47. Sind «,, . .., &, verschiedene Wurzeln
von f(z) in A, so besteht in A eine Zerlegung

@) = (@—0q) -+ (5 —0) 9(a).
Umgekehrt folgt aus einer solchen Zerlegung, daB
Ogy o sy 0 Wurzeln von f(z) sind.

Beweis: a.) Die Primfunktionen z-—oy, ..., 0—a,

sind nach Voraussetzung verschieden, und jede kommt nach
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Satz 46 in der Primfaktorzerlegung von f(z) im Korper A
vor. Wegen der Eindeutigkeit dieser Zerlegung muf also auch
ihr Produkt in f(z) enthalten sein, d.h. eine Zerlegung der
behaupteten Art bestehen.

b.) Die Umkehrung ist klar.
Aus Satz 47 ergibt sich durch Vergleichung der beider-
seitigen Grade unmittelbar die wichtige Tatsache:

Satz 48. Ein Polynom n-ten Grades aus K hat
in keiner Erweiterung A von K mehr als # ver-
schiedene Wurzeln.

, Aus Satz 48 148t sich der folgende, spiter anzuwendende Satz
folgern:

Satz 49, Besteht K aus unendlich vielen Elementen
und sind ¢, (2y,..., %p), ... ¢ {2y, ..., T,) VOneinander ver-
schiedene Elemente aus K{z,,...,x,], so gibt es in jeder
unendlichen Teilmenge M von K ZElementsysteme
@y,..., 8, derart, daB die Elemente g (a;,...,a,),...,
gr(a@y,...,a,) aus K ebenfalls voneinander verschieden sind.

Beweis: Durch Betrachtung des Differenzenprodukts

7
g9 =_IT (g9; — g;) reduziert sich die Behauptung ohne weiteres auf
i k=1

i<k
jede der beiden folgenden, gleichbedeutenden:

(a.) Ist g(xy, ..., @,) == 0, so gibt esay, ..., a, aus M, so daB
g(@y, ... a,) F 0 ist.

(b.) Ist g(ay, ..., a,)=0 fir alle a,,...,a, aus M, so ist
(o a) =09, o _—

Diese beweisen wir durch vollstindige Induktion: Fir n=1
ist (a.) eine Folge aus Satz 48; ist namlich g(z) == 0, so ist ent-
weder g(z)=1"b + 0 (Einheit) und also g(a) = b + O fiir alle a
aus M, oder g(z) ist bis auf einen von Null verschiedenen Faktor
aus K ein Polynom und dann g(a) = O fiir nur endlich viele a aus
K, so daB nach den Voraussetzungen iiber K und M Elemente a
in M existieren, fiir die g(a) #+ O ist. Sei nun (a.) und somit (b.)
fiir n = » — 1 schon bewiesen. Dann betrachten wir die Polynome

1) Hierdurch wird die in 1, Bew. zu Satz 12, d) {41] ausgesprochene Be-
hauptung [vgl. dazu 1, Bew. zu Satz 13, d) [44]] bestitigt. Man hat dazu unter
K den Quotientenkorper des dortigen Integritidtsbereichs | und unter M das
dortige | zu verstehen.
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glz,)=g(2;,..., 3,) tber K[z),...,x,_;],

7*(z,)=g(ay,...,a, 4, x,) iber K,
von denen die letzteren durch Einsetzung von Systemen a,,...,a,_,
aus M fiir Tyyes T, alus dem ersteren entstehen. Ist nun
glay, ...,a,) = Ofiirallea,, . . ., a, aus M, so ist nach (b.) (n=1) zu-
nichst jedes g* (z,) = 0. Folglich sind nach (b.) (n = v —1) die
Koeffizienten von g(z,), d. h. g(z,) selbst =0, was ¢(z;, ..., £,)=0
bedeutet. Also ist (b.) dann auch fiir » = », und daher allgemein
richtig.

Priziser als Satz 47, 48, insofern nicht mehr die Ver-
schiedenheit der Wurzeln vorausgesetzt wird, ist der folgende
Satz:

Satz 50. Zerfillt f(z) in A in Linearfaktoren:

, )= (&—o) -+ (5 —oum),
so sind oy, ..., 0, Wurzeln von f(z). Weitere Wur-
zeln von f(z) existieren dann weder in A noch in

irgendeiner Erweiterung A von A.

Beweis: a.) Der erste Teil des Satzes ist klar (Satz 47
[40h). _

b.) Ist « Wurzel von f(z) (in A oder einem A), so folgt
aus flo) =0, daB (x —oy) - (06 —op) =0 ist, so dafl o
einer der Wurzeln o; gleich sein muf} (1, Satz 4 [12]).

‘Wir verabreden fiir die Folge, daB bei der Voraussetzung
von Satz 50 unter den Wurzeln von f(z) in A stets die den
Linearfaktoren von f(z) entsprechende volle Reithexy, . . ., n
verstanden wird, ungeachtet ob darunter gleiche vorkommen
oder nicht.

Durch die Sitze 46, 47, 50 ist der Weg fiir die in III auszu~
fithrende Konstruktion der Wurzeln eines Polynoms f(xz) aus K
vorgezeichnet. Wir werden K schrittweise so zu erweitern haben,
daB von f(x) bei jedem Schritt mindestens ein Linearfaktor ab-
gespalten wird. Ist auf diese Weise eine Erweiterung A gefunden,
in der f(z) vollstindig in Linearfaktoren zerfallt, so diirfen wir
mit dem Erweiterungsproze8 haltmachen, da eine Fortsetzung
dann nach Satz 50 keine nenen Wurzeln mehr liefern kann.

3.) Wir beweisen schlieBlich einige Tatsachen iiber die
Wurzeln irreduzibler Polynome.
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Aus Satz 46 [40] und dem Begriff der Irreduzibilitét
folgt zundchst unmittelbar:

Satz 51. Ein irreduzibles Polynom aus K hat in
K dann und nur dann eine Wurzel, wenn es vom
Grade 1 ist.

Hierdurch wird der in der Einleitung hervorgehobene Umstand
2.) in Evidenz gesetzt, daB man i. a. den Grundkérper erweitern
muB, um zu Wurzeln eines Polynoms zu gelangen. Man muf}
allerdings die hier nicht vollstindig zu erdrternde Tatsache hin-
zunehmen, daf der Grundkérper i.a. irreduzible Polynome von
hoherem als dem 1-ten Grade enthilt. (Spezielle Sitze in dieser
Richtung siehe in § 23.)

Satz 52. Zwei relativ prime Polynome, ins-
besondere also zwei verschiedene irreduzible Poly-
nome aus K haben in keiner Erweiterung von K
cine gemeinsame Wurzel.

Beweis: Ist & eine gemeinsame Wurzel von f,(z) und
fo(2) in A, so ist £ —o nach Satz 46 [40] ein gemeinsamer
Teiler von f,(z) und f,(z) in A. Nach Satz 24 [23] ist dann
also (f4(e), f(a)) +e.

Aus Satz 52 ergibt sich der folgende sog. Fundamental-
satz iiber irreduzible Polynome:

Satz 53. Hat das in K irreduzible f(z) mit
irgendeinem h(z) aus K in ciner Erweiterung von
K eine gemeinsame Wurzel, so ist f(z)]h(z).

Beweis: Nach Satz 17 [20] wére sonst f(z) prim zu
h(z), was nach Satz 52 der Voraussetzung widerspricht.

In diesem Satz braucht k(z) nicht ein Polynom, also von 0
und Einheiten verschieden und normiert zu sein. Insbesondere
wird der Satz fiir h(z)= 0 trivial, fiir 2(2) = a inhaltlos.

Auf Satz 53 wird sich unsere in III auszufiihrende Xon-
struktion der Wurzeln von f(z) vornehmlich stiitzen.

§ 6. Mehrfache Wurzeln, Ableitung.

Definition 15. Eine Wurzel « von f(x) in A heiit
v-fach, wenn in A (und somit in jeder Erweiterung
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von A) eine Zerlegung
(@)= (z—a) p(z) mit @(x)=0
besteht; mehrfach, wenn » >1 ist.

Die Bezeichnung »-fach rechtfertigt sich durch die Tatsache:

Satz 54, Ist « eine »-fache Wurzel von f(z) in A,
so sind genau » Wurzeln von f(z) in A (und in jeder
Erweiterung von A) gleich o,

Beweis: Nach Def. 15 enthilt dann f(z) den Primfaktor
 — o mindestens »-mal, wegen @(x) & O aber nach Satz 46 [40]
nicht ofter.

Die Vielfachheit einer Wurzel von /() steht in Zusammen-
hang mit der aus der Analysis bekannten Ableitung f(x)
von f(z). Natiirlich konnen wir die Ableitung hier, fiir unsere
abstrakten Grundkérper nicht auf die in der Analysis iibliche
Weise durch einen GrenzprozeB definieren. Wir geben daher
die folgende, formale Definition:

Definition 16. Unter der Ableitung von
f@&y=a+az+ - +a2” Eké; a, k1)

verstehen wir

f(@)=a,+ 2ap2 4 - - - + na, 271 Ekgl kay o¥—1

Ekgo (k -+ l)ak+1 zF.

Fiir diesen formal mit der entsprechenden Differentiations-
regel der Analysis iibereinstimmenden Prozef} der Ableitungs-
bildung gelten wie dort die Formeln

(1) (H(z) £ 9(z)) = [ (2) £ g'(2),
@) (@) g(z))y ={(2)g(z) + {(z) g’ (2),

insbesondere also
(af(2)) = of (2),

(f(z)"y = nf(2)" " ' (2).

Bewels: Ist

1) Vgl. 1, Apm, 3 zu Satz 11 [32].
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=) _—ké; a2*,  g(z) :ké(') by %,
also

f(z) Eké; kay a¥—1 Eké; b+ 1) age 2P,

g'(:c) Ek%:l kbk gkl Eké;) (k + 1) bk+1 zk )
so folgt nach 1, §4, (2.), (3.) [33] (vgl. auch 1, SchluB von
§1 [13])

(1) + 9@ =( 2 @+t a*) = 3 bor + 1) a1
=3 kapat=1 5 Kby o1 = ['(2) +¢'(2),
(@) g(a)) E(k (2,00 #) =2k 2 ab)o

E=1" v+u=k

=3 2 (v—l—l)a,,_,_lb)ac"—i— 2( ik(ﬂﬁ)%bﬁl)zk
—f(w) g(w)+/(w)g(w)

Ferner gilt, sozusagen als Ersatz fiir die fehlende Grenz-
relation:
Satz 5. Wird fiir ein &
/ 93) (o
pla) =D~ 12)
—
gesetzt, so ist
po)=1(®).

Beweis: Da « Wurzel von f(z) — f(x) ist, ist ¢(x) nach
Satz 46 [40] wirklich eine ganze rationale Funktion. Aus
f(@)= () + (z — &) p(x)

folgt daher nach (1.), (2.)

(@)= @)+ (z —&) ¢'(2),
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also
(o) = p(a).

Aus Satz 55 ergibt sich nun der folgende Zusammenhang
zwischen der Mehrfachheit einer Wurzel o« von f(z) und dem
Ableitungswert {'(«):

Satz 56. Eine Wurzelx von f(z) ist dann und nur
dann mehrfach, wenn f(x)=0 ist.

Beweis: Ist « Wurzel von f(2), so hat in der nach
Satz 46 [40] bestehenden Zerlegung

1(5)= (s—a) g(a)
@(z) dieselbe Bedeutung wie in Satz 55. Nun ist nach Def. 15
[43] die Mehrfachheit von « mit ¢(«) = 0, also nach Satz 55
mit f'(«) = 0 gleichbedeutend.

Der hierin liegende Zusammenhang fiihrt zu einer wich-
tigen Folgerung iiber die Vielfachheit der Wurzeln eines irre-
duziblen Polynoms. Diese Folgerung beruht auf dem Ana-
logon zu dem Satz der Analysis, daB aus f(z)=0 folgt
f(z)==a,.  Wegen des Auftretens der ganzen Vielfachen
kay der a, als Koeffizienten von f'(z) findet aber hier eine Ab-
weichung gegeniiber der Analysis statt:

Satz 57. Hat Kdie Charakteristik 0,50 haben alle
und nur die Einheiten f(z)= a, aus K{z] die Ablei-
tung f'(z)= 0. Hat K die Charakteristik p, so haben
alle und nur die Elemente von der Form

G) @)= 3 a, o, also fz)=/o(e?)

aus K[z] die Ableitung f'(z)=0.
Beweis: a.) DaB fiir die genannten f(z) durchweg
f(x)=0 ist, ist nach Satz 43 [37] und Def 16 [44] Kklar.

b.) Ist f(z) = ké‘oakx" und ist f'(z) = 2 kakx"‘l— 0,

also kap, =0 (k=1,2,....), so folgt nach Satz 43 im Falle
der Charakteristik O
a=0 (k=1,2....),
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d. h. f(z)= @y, im Falle der Charakteristik p dagegen nur
ar =0 fir ¥ == 0 mod. p,
so daB f(z) von der Form (3.) ist.

Die in Satz 57 liegende Abweichung fiir den Fall der Charak-
teristik p bedingt nun, daf die angekiindigte Folgerung iiber die
Vielfachheit der Wurzeln eines irreduziblen Polynoms im Fall der
Charakteristik p auf solche irreduziblen Polynome zu beschrinken
ist, die nicht von der Form (3.) sind. Steinitz!) nennt solche
irreduziblen Polynome von erster Art, die von der Form (3.)
von zweiter Art.

Dem Vorgang v. d. Waerdens folgend, wollen wir die in
der nachstehenden Definition gegebene Bezeichnung ge-
brauchen:

Definition 17. Ein irreduzibles Polynom f(z) aus K
heijt separabel, wenn seine Ableitung f(z) == 0 ist,
also, falls K die Charakteristik O hat, stets; falls K
die Charakteristik p hat, dann und nur dann, wenn
es nicht von der Form (3.) in Satz 57 ist.

Andernfalls heiBt f(z) inseparabel.

Die Bezeichnung separabel spielt auf die folgende Tat-
sache, die bereits angekiindigte Folgerung aus Satz 56, an:

Satz 58. Ist ein irreduzibles Polynom f(z) sepa-
rabel, so hat f(z) nur einfache Wurzeln.

Beweis: Wire o eine mehrfache Wurzel von f(z), so
wire f'(oc) = 0 (Satz 56) und daher f(z) | f'(x) (Satz 53 [43]).
Wegen der vorausgesetzten Separabilitit von f(x) ist nun
f'(x) == 0 (Def. 17). {'(x) kommt also ein Grad zu, und dieser
ist kleiner als der von f(x) (Def. 16 [44]). Das steht aber im
Widerspruch zu f(z) | f'(z) (Satz 6 [13]). Also ist die An-
nahme, f(z) habe eine mehrfache Wurzel, unzutreffend.

1) Wir meinen bei Nennung des Namens Steinitz hier und im folgenden
stets dessen in 1, Lit, Verz. I zitierte Arbeit, deren Abschnitte I und II bis auf
das die Erweiterungen zweiter Art Betreffende in unseren Abschnitten 1, I und
%, I—IV verarbeitet sind, ja geradezu deren Inhalt ausmachen. In diese
grundlegende Originalarbeit zur Korpertheorie sollte jeder Algebraiker ein-
mal hineingesehen haben.
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Satz 58 laft iibrigens folgende Umkehrung zu:

Satz 59. Hat ein irreduzibles Polynom f(x) eine
nur einfache Wurzel «, so ist f(z) separabel.

Beweis: Es ist dann f'(x)==0 (Satz 56), also gewil
f(z) == 0, und daher f(x) separabel (Def.17). ’

Wir definieren ferner noch im Anschlufl an Def, 17:

*Zusatz zu Definition 171). Ein beliebiges Polynom
aus K heiBt separabel in K, wenn seine Primfaktoren
in K separabel sind, sonst inseparabel in K.

Im Falle der Charakteristik O ist also jedes Polynom separabel.
Fiir den Fall der Charakteristik p sei ansdriicklich bemerkt, dafl die
Entscheidung iiber die Separabilitit beliebiger Polynome nicht etwa,
wie gemdB Def. 17 fiir irreduzible Polynome, einfach durch Bilden
der Ableitung getroffen werden kann. Es kann sehr wohl f/(z)=0
auch fiir separables f(x) sein (z. B. wenn f(2) = f,(z)? mit sepa-~
rablem irreduziblem f,(z) ist), und f’(z) == 0 fiir inseparables
f(z) (z.B. wenn f(z)= zf,(x) mit inseparablem irreduziblem
fo(z) ist). Auch der in Satz 58, 59 gegebene Zusammenhang mit
der Wurzelvielfachheit, der die Bezeichnung separabel recht-
fertigte, tibertrigt sich nicht auf beliebige Polynome. Dennoch ist
die im Zusatz zu Def. 17 gegebene Ausdehnung dieser Bezeichnung
auf beliebige Polynome fiir die spiteren Zwecke niitzlich.

Uber ein Verfahren zur Entscheidung iiber die Separa-
bilitat beliebiger Polynome, das nicht die Zerlegung in Prim-
faktoren erfordert (was nach dem im Anschlufl an Satz 24
[23] Gesagten erwiinscht sein muB), sei des knappen Raumes
halber auf Steinitz verwiesen. Hier sei nur die folgende fiir
unsere Zwecke ausreichende Tatsache vermerkt, die sich
gemil Def, 17, Zusatz unmittelbar aus Satz 59 ergibt:

Zusatz zu Satz 9. Zerfillt ein beliebiges Poly-
nom f(z) aus K in einer Erweiterung von K in ver-
schiedene Linearfaktoren, d.h. sind die Wurzeln
Gigy e o oy Oy VO

. (5)= @—0) - (6 —ats) |
voneinander verschieden, so ist f(z) separabel (in K
und jeder Erweiterung von K).

1) Uber die Bedeutung von * vgl. die Einl. zu IT [39].
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Von Bedeutung sind diejenigen Kérper, in denen jedes Polynom
separabel ist. Sie heilen vollkommene Koérper. Wir wollen
unter Benutzung teilweise erst spiter zu gewinnender Resultate
ganz kurz einige Angaben iiber vollkommene Kérper machen.

Zunichst ist jeder Korper der Charakteristik O vollkommen, wie
wir den obigen Betrachtungen unmittelbar entnehmen kénnen. — Soll
ferner ein Korper K der Primzahlcharakteristik p vollkommen sein,
so muB insbesondere jedes Polynom xP — a aus K separabel sein.
Dann ist die Gleichung 2P = a in K lsbar. Denn aus ihrer Unlos-
barkeit in K folgte nach dem spiteren Satz 123,b.) [137] die
Irreduzibilitit des Polynoms #” — a in K und daher nach Def. 17
seine Inseparabilitit. Die Losung von 2P L a in K ist iiberdies

eindeutig. Aus af = a,af = a folgt ja 0= af —al = (a, —a,)”
(Satz 44 [37]), also a; —a,=0,a; = a,. Wir bezeichnen diese
?

eindeutige Lésung von a? = a mit J/a.

Sei umgekehrt in dem Korper K der Primzahlcharakteristik p
die Gleichung zP . a fiir jedes @ aus K losbar. Wire dann das
irreduzible Polynom f(x) aus K inseparabel, so wire f(z) nach
Def. 17 von der Form

f(z)= 2 AyI¥P = (VW>
und Satz 44 [37] lieferte

1(2)= zvm) :

im Widerspruch zur ITrreduzibilitit von f(z). — Wir haben dem-
nach gefunden:
Ein Korper K der Primzahlcharakteristik p ist dann

P
und nur dann vollkommen, wenn mit a stets auch }a
in K enthalten ist.

Hiernach und nach Satz 29 [29] sind die Primkorper Pp voll-
kommene Kérper. — DafB nicht jeder Kérper vollkommen ist,
d.h. daB es sogenannte unvollkommene Kérper gibt, zeigt
das Beispiel Pp(x); denn dieser Korper hat die Charakteristik p,
und das Element z besitzt keine p-te Wurzel in ihm. Wire nimlich

(g%)” =z, dh (/(2)P=x(g(z))P (wobei natiirlich f(z),
g(x) == 0 sein miiBten), und wiren n, m die Grade von f(z), g(z),
so folgte nach § 1, B., (3.) [12] pn =1+ pm, d.h. 0=1 mod.p,
was nicht der Fall ist.
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