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Beweis: Es genügt, den Satz für n— 2 zu beweisen, da er 
dann durch Induktion allgemein folgt. Nach dem (aus den Ele-
menten vorausgesetzten) binomischen Satz ist nun 

(fll + a2y = a\ + *£( l ) a{ a*- + af , 
V = 1 \ v I 

wo j die Kombinationsanzahl von p Elementen zur v-ten Klasse 
bezeichnet, für die die Formel 

/ V \ = P}_ = p • (p — 1) • • • (p — (v — 1)) 
W v!(p— v)\ 1-2---V ' 

gilt (vgl. 1, Bew. zu Satz66 [123]). Dafür l ^ v ^ p — 1 das Produkt 
1 • 2 • • • v zu p prim ist (Satz 23 [22]) und wegen der Ganzzahlig-
keit der Anzahl ^ j in dem Produkt p • [(p—1) • • • (p—(»>—1))] 
aufgeht, muß es nach Satz 16 [20] in dem zweiten Faktor [ . . . ] 
dieses Produktes aufgehen, so daß (j* j = 0 mod. p ist. Aus Satz 43 
folgt daher 

(a1 + a2f = a\ + c%. 
Es sei übrigens bemerkt, daß eine entsprechende Regel auch 

für die Subtraktion gilt; denn aus (a l + a2)v — a i = a ! ja 
wegen der Unbeschränktheit der Subtraktion allgemein b\ — 

II. Die Wurzeln algebraischer 
Gleichungen. 

Wir leiten in diesem Abschnitt eine Reihe von Sätzen über 
Wurzeln a. von Polynomen f(x) aus K in Erweiterungskörpern 
A von K her, ohne dabei auf die erst in III zu behandelnde 
Existenzfrage der A und oc bei gegebenem K und f(x) ein-
zugehen. Diese Sätze sind also lediglich als Folgerungen aus 
der Voraussetzung anzusehen, daß ein Polynom aus K in 
einem Erweiterungskörper A von K eine oder mehrere Wurzeln 
hat. 

Zur Vereinfachung der Ausdrucksweise treffen wir folgende 
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B e z e i c h n u n g s f e s t s e t z u n g e n f ü r A b s c h n i t t II—IV. 
Große griechische Buchstaben, außer den bereits vergebenen 

M (Menge), B (Bereich), I (Integritätsbereich), I" (Integritäts-
bereich der ganzen Zahlen), bedeuten stets K ö r p e r , ohne daß 
dies immer ausdrücklich gesagt wird, und zwar K den G r u n d -
k ö r p e r , A irgendeinen Erweiterungskörper (kurz E r w e i t e r u n g ) 
von K, weitere Buchstaben Erweiterungen von K mit speziellen, 
wie bei P (Körper der rationalen Zahlen) durch die Bezeichnung 
schon angedeuteten Eigenschaften, die wir aber der Deutlichkeit 
halber doch immer ausführlich nennen werden. Für das E n t -
h a l t e n s e i n und E n t h a l t e n bei Körpern (später auch bei Gruppen) 
verwenden wir sinngemäß die Zeichen ;>, < , > . Ist K iS K g A, 
so nennen wir K einen K ö r p e r z w i s c h e n K u n d A. 

Elemente aus dem Grundkörper K bezeichnen wir mit a, b, c,..., 
solche aus Erweiterungen A von K mit a , ß, y,... (vgl. 1, erste 
Anm. zu § 1 [9]), ebenso Elemente aus K [x] mit / ( x ) , g(a;), h(x),..., 
solche a u s A[a : ] m i t <p{x), ip{x), %{x),.. .1). W i r d ü r f e n d a n n 
erläuternde Zusätze über die Körper, denen vorkommende Elemente 
angehören sollen, oft fortlassen. 

Ebenso lassen wir auch die Zusätze „in K" bei „irreduzibel" 
und „Primfaktorzerlegung", sowie entsprechende Zusätze bei 
einigen im weiteren Verlaufe einzuführenden Begriffen, die sich 
auf einen bestimmten Grundkörper beziehen, gelegentlich fort, 
wenn nur ein in der gerade vorliegenden Betrachtung f e s t e r 
Grundkörper K in Betracht kommt. Definitionen, auf die diese 
Festsetzung Anwendung finden soll, werden durch * gekennzeichnet. 

§ 5. Wurzeln und Linearfaktoren. 
1.) Der in § 1 f ü r K[a;] bewiesene Fundamenta l sa tz er-

möglicht zunächst die Herstel lung eines Zusammenhangs 
zwischen den Wurzeln eines Polynoms aus K in einer E r -
weiterung A von K und denen seiner Pr imfaktoren in K. 
Nach 1, Satz 4 [12] und dem Einsetzungsprinzip gilt nämlich: 

Satz 45. I s t 
Kx) = Pi(x)" • ' Pt{%) 2) 

e i n i n s e i n e P r i m f a k t o r e n z e r l e g t e s P o l y n o m a u s 
1) Vorkommende g e b r o c h e n e rationale Funktionen, die wir in 1 so be-

zeichneten, werden als Quotienten ganzer rationaler Funktionen dargestellt. 
' ) Nach der Definition von P o l y n o m 1. d. Ein]., sowie nach Def. 8 [14] 

und Satz 11 [14] Ist dabei der in Satz 12 [14] auftretende Einheitsfaktor 
a — e. 
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K, so ist jede Wurze l von f(x) in A auch Wurze l 
von mindes t ens einem der pi(x) und u m g e k e h r t 
jede Wurze l eines der pi(x) in A auch Wurze l von m 

Man beherrscht somit die Wurzeln von /(x), wenn man die der 
pä(x) beherrscht, und könnte sich demnach auf die Untersuchung 
der Wurzeln irreduzibler Polynome beschränken. Da sich diese 
Beschränkung aber für die in III, IV auseinanderzusetzende Theorie 
als überflüssig erweist, wollen wir sie nicht einführen. Das erscheint 
auch in Hinsicht auf das Nichtvorhandensein eines rationalen 
Rechenverfahrens zur Herstellung der Primfaktorzerlegung er-
wünscht. 

2.) Wir beweisen ferner einige Sätze über den Zusammen-
hang der Wurzeln eines Polynoms aus K mit dessen Prim-
faktoren 1-ten Grades (sog. Linearfaktoren) in einer Er-
weiterung A von K. 

Satz 46. I s t « Wurze l von f(x) in A, so is t f(x) 
durch den L i n e a r f a k t o r x — tx t e i l b a r , d.h. es be-
s t e h t in A eine Zer legung 

i ( x ) ~ ( x — <x) <p(x). 
U m g e k e h r t fo lg t aus einer solchen Zer legung, daß 
« Wurze l von f(x) ist . 

Beweis: a.) Nach Satz 13 [16] kann 
f(x) = (x—a) cp{x) + y>{x) mit | y>(a ; ) |< | a ;—a | 

gesetzt werden. Da | x — a | = k1 ist, muß | y>(x) | = = 1 
sein, so daß tp{x) = ß ein Element aus A ist. Für x = oc 
folgt dann wegen f(oc) — 0 auch ß = 0, d. h. die behauptete 
Zerlegung. 

b.) Die Umkehrung ist klar. 
Satz 47. Sind oc1: . . . , « „ versch iedene Wurze ln 

von f(x) in A, so b e s t e h t in A eine Zer legung 
f(x) = (x — ocj) • • • (x — «„) cp{x). 

Umgekehr t fo lg t aus einer solchen Zer legung , daß 
Wurze ln von f(x) sind. 

Beweis: a.) Die Primfunktionen 
sind nach Voraussetzung verschieden, und jede kommt nach 
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Satz 46 in der Primfaktorzerlegung von f(x) im Körper A 
vor. Wegen der Eindeutigkeit dieser Zerlegung muß also auch 
ihr Produkt in f(x) enthalten sein, d.h. eine Zerlegung der 
behaupteten Art bestehen, 

b.) Die Umkehrung ist klar. 
Aus Satz 47 ergibt sich durch Vergleichung der beider-

seitigen Grade unmittelbar die wichtige Tatsache: 
Satz 4 8 . E i n P o l y n o m w-ten Grades aus K h a t 

in keiner E r w e i t e r u n g A von K m e h r als n ver-
s c h i e d e n e W u r z e l n . 

Aus Satz 48 läßt sich der folgende, später anzuwendende Satz 
folgern: 

Satz 49. B e s t e h t K aus unendlich vielen E lementen 
u n d s i n d gx{xx,..., xn),..., gr{xlt..., xn) v o n e i n a n d e r v e r -
schiedene E lemente aus K f a ^ , . . . , xn], so gibt es in jeder 
unendlichen Teilmenge M von K E lementsys teme 
alt...,an d e r a r t , daß die E lemente gi(av . . . , a „ ) , . . . , 
gT(a1,...,a„) aus K ebenfal ls voneinander verschieden sind. 

Beweis : Durch Betrachtung des Differenzenprodukts 
r 

g = JJ{gi — gk) reduziert sich die Behauptung ohne weiteres auf 
i, 1 
i<h 

jede der beiden folgenden, gleichbedeutenden: 
(a.) Ist g(xlt..., xn) ^E 0, so gibt es av . . . , an aus M, so daß 

g{aj,..., an) 4= 0 i s t . 
(b.) Ist g(av ..., an) = 0 für alle au ..., an aus M, so ist 

g{xt,..., x „ ) = 0 1 ) . 
Diese beweisen wir durch vollständige Induktion: Für « = 1 

ist (a.) eine Folge aus Satz 48; ist namüch g(x) ^ 0, so ist ent-
weder g{x)= h 4= 0 (Einheit) und also g(a)= i 4= 0 für alle a 
aus M, oder g(x) ist bis auf einen von Null verschiedenen Faktor 
aus K ein Polynom und dann g (a) = 0 für nur endlich viele a aus 
K, so daß nach den Voraussetzungen über K und M Elemente a 
in M existieren, für die g(a) 4= 0 ist. Sei nun (a.) und somit (b.) 
für n = v — 1 schon bewiesen. Dann betrachten wir die Polynome 

' ) Hierdurch wird die in 1, Bew. zu Satz 12, d) [41] ausgesprochene Be-
hauptung [vgl. dazu 1, Bew. zu Satz 13, d) [44]] bestätigt. Man hat dazu unter 
K den Quotientenkörper des dortigen Integritätsbereichs I und unter M das 
dortige I zu verstehen. 
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ff(a>)= • • über K f Z j , . . . , x ^ ] , 
</*(*,,) = 9(av ..., av_v xr) über K, 

von denen die letzteren durch Einsetzung von Systemen av..., 
aus M für xv ..., xv_1 aus dem ersteren entstehen. Ist nun 
g(alt..., a„) = O für alle alt..., av aus M, so ist nach (b.) (n = 1) zu-
nächst jedes g* (x„) = 0. Folglich sind nach (b.) (n = v — 1) die 
Koeffizienten von g(xr), d. h. g{xv) selbst = 0 , was g(xlt ..., z „ )=0 
bedeutet. Also ist (b.) dann auch für n = v, und daher allgemein 
richtig. 

Präziser als Satz 47, 48, insofern nicht mehr die Ver-
schiedenheit der Wurzeln vorausgesetzt wird, ist der folgende 
Satz: 

Satz 50. Z e r f ä l l t f(x) in A in L i n e a r f a k t o r e n : 
f{x)= ( x — a j ••• (x—ocn), 

so s ind ocv . . . , « „ W u r z e l n v o n f(x). W e i t e r e W u r -
ze ln v o n f(x) e x i s t i e r e n dann w e d e r in A noch in 
i rgende iner E r w e i t e r u n g A v o n A. 

B e w e i s : a.) Der erste Teil des Satzes ist klar (Satz 47 
[40]). 

b.) I s t « Wurzel von f(x) (in A oder einem A), so folgt 
aus /(<%) = 0, daß (a — a 1 ) • • • (a —ocn) = 0 ist, so daß oc 
einer der Wurzeln «¡ gleich sein muß (1, Satz 4 [12]). 

Wir verabreden für die Folge, daß bei der Voraussetzung 
von Satz 50 unter den Wurzeln von f(x) in A stets die den 
Linearfaktoren von f(x) entsprechende v o l l e Reiheoc1 ; . . .,<xn 

verstanden wird, ungeachtet ob darunter gleiche vorkommen 
oder nicht. 

Durch die Sätze 46, 47, 50 ist der Weg für die in III auszu-
führende Konstruktion der Wurzeln eines Polynoms f(x) aus K 
vorgezeichnet. Wir werden K schrittweise so zu erweitern haben, 
daß von fix) bei jedem Schritt mindestens ein Linearfaktor ab-
gespalten wird. Ist auf diese Weise eine Erweiterung A gefunden, 
in der f(x) vollständig in Linearfaktoren zerfällt, so dürfen wir 
mit dem Erweiterungsprozeß haltmachen, da eine Fortsetzung 
dann nach Satz 50 keine neuen Wurzeln mehr liefern kann. 

3.) Wir beweisen schließlich einige Tatsachen über die 
Wurzeln irreduzibler Polynome. 
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Aus Satz 46 [40] und dem Begriff der Irreduzibilität 
folgt zunächst unmittelbar: 

Satz 51. E i n i r r e d u z i b l e s P o l y n o m a u s K. h a t in 
K d a n n u n d n u r d a n n e ine W u r z e l , w e n n es v o m 
G r a d e 1 i s t . 

Hierdurch wird der in der Einleitung hervorgehobene Umstand 
2.) in Evidenz gesetzt, daß man i. a. den Grundkörper erweitern 
muß, um zu Wurzeln eines Polynoms zu gelangen. Man muß 
allerdings die hier nicht vollständig zu erörternde Tatsache hin-
zunehmen, daß der Grundkörper i. a. irreduzible Polynome von 
höherem als dem 1-ten Grade enthält. (Spezielle Sätze in dieser 
Richtung siehe in § 23.) 

Satz 52. Zwe i r e l a t i v p r i m e P o l y n o m e , i n s -
b e s o n d e r e a l so zwe i v e r s c h i e d e n e i r r e d u z i b l e P o l y -
n o m e a u s K h a b e n in k e i n e r E r w e i t e r u n g v o n K 
e i n e g e m e i n s a m e W u r z e l . 

B e w e i s : Ist oi eine gemeinsame Wurzel von f ^ x ) und 
f2(x) in A, so ist x — « nach Satz 46 [40] ein gemeinsamer 
Teiler von f^x) und f2(x) in A. Nach Satz 24 [23] ist dann 
also (j^x), f2(x)) 4= e. 

Aus Satz 52 ergibt sich der folgende sog. Fundamental-
satz über irreduzible Polynome: 

Satz 53. H a t d a s i n K i r r e d u z i b l e f(x) m i t 
i r g e n d e i n e m h(x) a u s K i n e i n e r E r w e i t e r u n g v o n 
K e i n e g e m e i n s a m e W u r z e l , so i s t f(x)\ h(x). 

B e w e i s : Nach Satz 17 [20] wäre sonst f(x) prim zu 
h(x'), was nach Satz 52 der Voraussetzung widerspricht. 

In diesem Satz braucht h(x) nicht ein Polynom, also von 0 
und Einheiten verschieden und normiert zu sein. Insbesondere 
wird der Satz für h(x)= 0 trivial, für h(x) = a inhaltlos. 

Auf Satz 53 wird sich unsere in I I I auszuführende Kon-
struktion der Wurzeln von j(x) vornehmlich stützen. 

§ 6. Mehrfache Wurzeln, Ableitung. 
Definition 15. E i n e W u r z e l a v o n f(x) i n A h e i ß t 

»'-fach, w e n n in A ( und s o m i t in j e d e r E r w e i t e r u n g 
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von A) eine Zerlegung 
f(x)= (x—oc)" <p(x) m i t 9?(«)4=0 

bes teh t ; mehrfach, wenn v > 1 ist. 
Die Bezeichnung v - fach rechtfertigt sich durch die Tatsache: 
Satz 54. I s t « eine v - fache W u r z e l von f(x) in A, 

so s ind genau v W u r z e l n von f(x) in A (und in j e d e r 
E r w e i t e r u n g von A) g le ich a . 

Beweis : Nach Def. 15 enthält dann f(x) den Primfaktor 
x — <x mindestens v-mal, wegen q>(tx) 4= 0 aber nach Satz 46 [40J 
nicht öfter. 

Die Vielfachheit einer Wurzel von f(x) steht in Zusammen-
hang mit der aus der Analysis bekannten Ableitung f'(x) 
von f(x). Natürlich können wir die Ableitung hier, für unsere 
abstrakten Grundkörper nicht auf die in der Analysis übliche 
Weise durch einen Grenzprozeß definieren. Wir geben daher 
die folgende, formale Definition: 

Definition 16. Unter der Ableitung von 
CD 

f(x)= a0 + djX + 1- anxn = 2 akxl 

vers tehen wir 
00 

f { x ) = iij + 2a2 x + • • • + nan 1 == x*—1 

CD 

= JS (k + l)ak+1xk. 

Für diesen formal mit der entsprechenden Differentiations-
regel der Analysis übereinstimmenden Prozeß der Ableitungs-
bildung gelten wie dort die Formeln 

(1-) (f(x)±g(x)y=f(x)±g'(a:), 
(2.) ( f ( x ) g(x))'^ f { x ) g{x) + f(x) g'(x), 

insbesondere also 
(al(x))'= a f ( x ) , 

( f ( x ) n ) ' = n f ( x r * f ( x ) . 
Beweis: Ist 
') Vgl. 1, Anm. 3 zu Satz 11 [32]. 
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00 00 

/(») = 2 ak xh, g(x) = 2 bkxk, 
S«=0 « = 0 

also 

fix) = 2 k a h x = 2 (k + 1) ak+1x", 
k=l k=0 

g'(x) hlk = 2q (k + 1) h+i xk, 

so folgt nach 1, § 4, (2.), (3.) [33] (vgl. auch 1, Schluß von 
§ 1 [13]) 

(/(*) + J(®))' = ( ß K + h) xk) = i Hat + bk) 

= 2 kak x*-1 + 2 klk x*-1 = f(x) + g'(x), 
k=1 k=1 

(j(x) g(x))' = ( 1 ( 2 xk) = 2 (k 2 avlß) x«-1 

= i ( (v + /,) av\) 

= 2 ( 2 vav b ) x*-1 + 2 ( 2 fiaX) 

= i ( (v +1)«v+i&„)x4 + 2( 2 U + 1 ) 1 ) x 4 

= f{x) g(x) + f(x)g'(x). 
Ferner gilt, sozusagen als Ersatz für die fehlende Grenz-

relation : 
Satz 55. W i r d für ein « 

/ W W W 
x — « 

g e s e t z t , so i s t 
9>(«) = /'(<*) • 

B e w e i s : D a « Wurzel von /(z) — /(a) ist, ist <p(x) nach 
Satz 46 [40] wirklich eine ganze rationale Funktion. Aus 

f(x)=f(<x)+(x — ot) <p(x) 
folgt daher nach (1.), (2.) 

/' (») =<p{x)+(x—ot)(p' (x), 
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also 
/'(«)= <p(<x). 

Aus Satz 55 ergibt sich nun der folgende Zusammenhang 
zwischen der Mehrfachheit einer Wurzel <x von f(x) und dem 
Ableitungswert f(oc): 

Satz 56. E i n e W u r z e l a v o n f(x) i s t d a n n u n d n u r 
d a n n m e h r f a c h , w e n n / ' («) = 0 i s t . 

B e w e i s : Ist oc Wurzel von f(x), so hat in der nach 
Satz 46 [40] bestehenden Zerlegung 

f(x)= (x—ot) <p(x) 
(p(x) dieselbe Bedeutung wie in Satz 55. Nun ist nach Def. 15 
[43] die Mehrfachheit v o n « mit <p(oc) = 0, also nach Satz 55 
mit /'(oc) = 0 gleichbedeutend. 

Der hierin liegende Zusammenhang führt zu einer wich-
tigen Folgerung über die Vielfachheit der Wurzeln eines irre-
duziblen Polynoms. Diese Folgerung beruht auf dem Ana-
logon zu dem Satz der Analysis, daß aus f'(x)= 0 folgt 
f(x) = a0. Wegen des Auftretens der ganzen Vielfachen 
ka/c der a-k als Koeffizienten von f'(x) findet aber hier eine Ab-
weichung gegenüber der Analysis statt : 

Satz 57. H a t K die C h a r a k t e r i s t i k 0, so h a b e n a l le 
u n d n u r die E i n h e i t e n f(x)= a0 au s K[»] die Able i -
t u n g f'(x)= 0. H a t K die C h a r a k t e r i s t i k p, so h a b e n 
a l le u n d n u r die E l e m e n t e von der F o r m 

OD 
(3.) f(x)= Zalv x1*, a l s o f(x) = f0(xP) 

aus K[a;] die A b l e i t u n g f(x)= 0. 
B e w e i s : a.) Daß für die genannten j(x) durchweg 

j'(x)= 0 ist, ist nach Satz 43 [37] und Def. 16 [44] klar. 
oo co 

b.) Ist i(x) = und ist f'(x) = 2kaky}~1 = 0 , 

also kak = 0 (k = 1, 2 , . . . . ) , so folgt nach Satz 43 im Falle 
der Charakteristik 0 

«4 = 0 (fc = 1, 2 , . . . ), 
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d. h. f(x) = a0, im Falle der Charakteristik p dagegen nur 
a¡¡ = 0 für k ^ 0 mod. p, 

so daß j(x) von der Form (3.) ist. 
Die in Satz 57 liegende Abweichung für den Fall der Charak-

teristik p bedingt nun, daß die angekündigte Folgerung über die 
Vielfachheit der Wurzeln eines irreduziblen Polynoms im Fall der 
Charakteristik p auf solche irreduziblen Polynome zu beschränken 
ist, die nicht von der Form (3.) sind. S t e i n i t z 1 ) nennt solche 
irreduziblen Polynome v o n ers ter Art , die von der Form (3.) 
v o n z w e i t e r Art . 

Dem Vorgang v. d. W a e r d e n s folgend, wollen wir die in 
der nachstehenden Definition gegebene Bezeichnung ge-
brauchen: 

Definition 17. E i n irreduzibles Polynom f(x) aus K 
h e i ß t separabel, wenn seine A b l e i t u n g f(x) ^ 0 i s t , 
a lso, f a l l s K die C h a r a k t e r i s t i k 0 h a t , s t e t s ; f a l l s K 
die C h a r a k t e r i s t i k p h a t , d a n n und nu r d a n n , wenn 
es n i c h t von der F o r m (3.) in Sa tz 57 ist. 

A n d e r n f a l l s h e i ß t f(x) inseparabel. 
Die Bezeichnung s e p a r a b e l spielt auf die folgende Tat-

sache, die bereits angekündigte Folgerung aus Satz 56, an: 
Satz 58. I s t ein i r r e d u z i b l e s P o l y n o m /(x) sepa-

r a b e l , so h a t /(x) nu r e i n f a c h e Wurze ln . 
Bewei s : Wäre a eine mehrfache Wurzel von f(x), so 

wäre / ' («) = 0 (Satz 56) und daher f(x) | / ' (x) (Satz 53 [43]). 
Wegen der vorausgesetzten Separabilität von f(x) ist nun 
f(x) ^ 0 (Def. 17). f{x) kommt also ein Grad zu, und dieser 
ist kleiner als der von f(x) (Def. 16 [44]). Das steht aber im 
Widerspruch zu f(x) \ f(x) (Satz 6 [13]). Also ist die An-
nahme, f(x) habe eine mehrfache Wurzel, unzutreffend. 

l ) Wir meinen bei Nennung des Namens S t e i n i t z hier und im folgenden 
stets dessen in I, Lit. Verz. I zitierte Arbeit, deren Abschnitte I und II bis auf 
das die Erweiterungen zweiter Art Betreffende in unseren Abschnitten I, I und 

I—IV verarbeitet sind, ja geradezu deren Inhalt ausmachen. In diese 
grundlegende Originalarbeit zur Körpertheorie sollte jeder Algebraiker ein-
mal hineingesehen haben. 
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Satz 58 läßt übrigens folgende Umkehrung zu: 
Satz 59. H a t ein i r r eduz ib le s Po lynom f(x) eine 

nur e in fache Wurze l oc, so is t f(x) separabel . 
Beweis : Es ist dann /'(«)=f=0 (Satz56), also gewiß 

f'(x) ^ 0, und daher f(x) separabel (Def. 17). 
Wir definieren ferner noch im Anschluß an Def. 17: 
*Zusatz zu Definition 17 E in beliebiges Polynom 

aus Khe iß t separabel in K, wenn seine P r i m f a k t o r e n 
in K s eparabe l s ind, sonst inseparabel in K. 

Im Falle der Charakteristik 0 ist also j e d e s Polynom separabel. 
Für den Fall der Charakteristik p sei ausdrücklich bemerkt, daß die 
Entscheidung über die Separabilität beliebiger Polynome nicht etwa, 
wie gemäß Def. 17 für irreduzible Polynome, einfach durch Bilden 
der Ableitung getroffen werden kann. Es kann sehr wohl f'(x) = 0 
auch für separables f(x) sein (z. B. wenn f(x) = f0(x)p mit sepa-
rablem irreduziblem f0(x) ist), und f'(x) ^ 0 für inseparables 
f(x) ( z . B . wenn f ( x ) = x f 0 ( x ) mit inseparablem irreduziblem 
f0(x) ist). Auch der in Satz 58, 59 gegebene Zusammenhang mit 
der Wurzelvielfachheit, der die Bezeichnung s e p a r a b e l recht-
fertigte, überträgt sich nicht auf beliebige Polynome. Dennoch ist 
die im Zusatz zu Def. 17 gegebene Ausdehnung dieser Bezeichnung 
auf beliebige Polynome für die späteren Zwecke nützlich. 

Über ein Verfahren zur Entscheidung über die Separa-
bilität beliebiger Polynome, das nicht die Zerlegung in Prim-
faktoren erfordert (was nach dem im Anschluß an Satz 24 
[23] Gesagten erwünscht sein muß), sei des knappen Raumes 
halber auf S t e i n i t z verwiesen. Hier sei nur die folgende für 
unsere Zwecke ausreichende Tatsache vermerkt, die sich 
gemäß Def. 17, Zusatz unmittelbar aus Satz 59 ergibt: 

Zusatz zu Satz 59. Ze r fä l l t ein bel iebiges Po ly-
nom f(x) aus K in einer E r w e i t e r u n g von K in ver-
schiedene L i n e a r f a k t o r e n , d. h. sind die Wurze ln 
Kv . . . ,«„ von 

f ( x ) = (x—Kj) • • • (x—Xn) 
vone inande r versch ieden , so ist f(x) separabe l (in K 
und j eder E r w e i t e r u n g von K). 

*) Über die Bedeutung von * vgl. die Einl. zu II [39], 
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Von Bedeutung sind diejenigen Körper, in denen jedes Polynom 

separabel ist. Sie heißen vollkommene Körper. Wir wollen 
unter Benutzung teilweise erst später zu gewinnender Resultate 
ganz kurz einige Angaben über vollkommene Körper machen. 

Zunächst ist jeder Körper der Charakteristik 0 vollkommen, wie 
wir den obigen Betrachtungen unmittelbar entnehmen können. — Soll 
ferner ein Körper K der Primzahlcharakteristik p vollkommen sein, 
so muß insbesondere jedes Polynom x v — a aus K separabel sein. 
Dann ist die Gleichung x p i o in K lösbar. Denn aus ihrer Unlös-
barkeit in K folgte nach dem späteren Satz 123, b.) [137] die 
Irreduzibilität des Polynoms x p — a in K und daher nach Def. 17 
seine Inseparabilität. Die Lösung von x p = a in K ist überdies 
eindeutig. Aus a p — a, a p = a folgt ja 0 = a p — a? = {ax — a2) p  

(Satz 44 [37]), also ai — a2 = 0, % = a2. Wir bezeichnen diese 

eindeutige Lösung von x p a mit )J a. 
Sei umgekehrt in dem Körper K der Primzahlcharakteristik p 

die Gleichung x p a für jedes a aus K lösbar. Wäre dann das 
irreduzible Polynom /(x) aus K inseparabel, so wäre f(x) nach 
Def. 17 von der Form 

n n / V \ p 
j ( x ) = 2 OvX> p = 2 ( Ko»)  V V > 

v=0 v=0 V ' 
und Satz 44 [37] lieferte 

/ n v sp 
f ( x ) = ( j : \ / a r x ) , 

\v=o y 
im Widerspruch zur Irreduzibihtät von f(x). — Wir haben dem-
nach gefunden: 

Ein Körper K der Pr imzahlcharak te r i s t ik p ist dann 
v 

und nur dann vol lkommen, wenn mit a s te t s auch ]/a 
in K en tha l t en ist. 

Hiernach und nach Satz 29 [29] sind die Primkörper P p voll-
kommene Körper. — Daß nicht jeder Körper vollkommen ist, 
d.h. daß es sogenannte unvol lkommene Körper gibt, zeigt 
das Beispiel P p ( x ) \ denn dieser Körper hat die Charakteristik p, 
und das Element x besitzt keine p-te Wurzel in ihm. Wäre nämlich 

d .h . ( f ( x ) ) p = x ( g ( x ) ) p (wobei natürlich f ( x ) , 

g(x) 0 sein müßten), und wären n, m die Grade von /(x), g(x), 
so folgte nach § 1, B., (3.) [12] pn = 1 + pm, d.h. 0 = 1 mod.p, 
was nicht der Fall ist. 

B a s s e , H ö h e r e A lgeb ra . I I . 4 


