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Einleitung

Die Grundaufgabe der Algebra

Das Wort Algebra stammt aus dem Arabischen und be-
deutet wortlich das Hiniiberschaffen eines Gliedes von einer
Seite einer Gleichung auf die andere. Spéaterhin versteht man
unter Algebra allgemein die Lehre von der Auflosung von
Gleichungen (und zwar ausschlieBlich von solchen, die zu
ihrer Bildung nur die vier sog. elementaren Rechenopera-
tionen erfordern) mit einer Anzahl unbekannter Grolen nach
diesen. Dieser Aufgabe sind die beiden vorliegenden Band-
chen gewidmet,

Es liegt schon in der gegebenen Erliduterung des Wortes Algebra
und ist fiir die moderne Auffassung der Aufgaben dieser Disziplin
charakteristisch, daB es nicht die Objekte, d. h. die GréBen, die
aus den aufzulésenden Gleichungen berechnet werden sollen, sind,
die im Mittelpunkt der Betrachtung stehen, sondern vielmehr der
ProzeB des Auflosens selber. Die Objekte (z. B. die drei Seiten eines
Dreiecks, dessen Hohen gegeben sind) interessieren denjenigen, der
die Algebra anwendet (im Beispiel der Geometer), den Algebraiker
beschaftigen allein die allgemeinen, formalen Regeln (Formalismen,
Algorithmen), mittels derer aus den gegebenen Gleichungen die ge-
suchten GroBen bestimmt werden kinnen (also im Beispiel die
Regeln zur Auflésung eines Systems von drei Gleichungen nach
drei Unbekannten). Wenn hiernach die Algebra als bloBe Hilfs-
wissenschaft anderer Zweige der Mathematik erscheint, kann sie
doch mit vollem Recht beanspruchen, als selbstindige mathe-
matische Disziplin betrieben zu werden, einmal wegen ihrer Unent-
behrlichkeit und vielgestaltizgen Bedeutung fiir fast alle Teile der
Mathematik, dann aber auch, weil die Methoden und Resultate
einer um ihrer selbst willen betriebenen Algebra in ihrer logischen
Geschlossenheit, durchgingigen Einfachheit und vollendeten
Schonheit die Kriterien in sich tragen, deren Erfiilltsein man von
einer lebensfahigen mathematischen Disziplin fordern mu8.

Im Sinne des zuvor Bemerkten erscheint es fiir eine Dar-
stellung der Algebra berechtigt, ja geboten, beziiglich der
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Objekte, um die es sich handelt, die groBtmogliche Allge-
meinheit zugrunde zu legen. Wir wollen daher nicht nur, was
selbstverstindlich ist, von jeder Benennung (metrisch, geo-
metrisch usw.) der in Rede stehenden Grofen absehen, son-
dern sogar von ihrer Zahlbedeutung im geldufigen Sinne des
Wortes Zahl (natiirliche, ganze, rationale, reelle, komplexe
Zahlen!). Die inhaltliche Bedeutung der in den Glei-
chungen vorkommenden Zeichen als Zahlen ist fiir den For-
malismus, der zur Auflosung fithrt, ebenso gleichgiiltig, wie
etwaige Benennungen. Das Wesentliche sind allein die for-
malen Regeln, nach denen mit jenen Zeichen gerechnet
wird, also die Tatsache, daB die vorkommenden Zeichen
Elemente eines Bereichs bezeichnen, in dem nach den be-
kannten, fiir die Addition, Multiplikation, Subtraktion und
Division charakteristischen Regeln gerechnet werden kann.
Wir werden dies im Abschnitt I, der sich u. a. mit solchen,
Korper genannten Bereichen eingehend zu beschiftigen
hat, exakt formulieren und stellen hier nur einleitend als
Grundaufgabe der Algebra folgendes hin:

Es sollen allgemeine, formale Methoden entwickell werden,
nach denen man mittels der vier elementaren Rechenoperationen
gebildete Gleichungen zwischen bekannten und unbekannien
Elementen eines Korpers nach den unbekannien auflisen
kann.

Ehe wir an die Losung dieser Aufgabe gehen kénnen,
miissen wir den Korperbegriff ausfiihrlich erlautern und
auch, was unter einer ,,Gleichung* im Sinne der Aufgabe
zu verstehen ist. Dazu dienen die Entwicklungen des Ab-
schnitts I, an dessen SchluB dann die Grundaufgabe der
Algebra exakt formuliert und ihre beiden wichtigsten Teil-
aufgaben hervorgehoben werden. In II werden sodann die
Elemente der Gruppentheorie auseinandergesetzt, die fiir
die Losung der ersten Teilaufgabe als beildufiges und fiir die
Losung der zweiten Teilaufgabe als entscheidendes Hilfsmittel
heranzuziehen sind. IIT und IV geben die vollstandige Losung
der ersten Teilaufgabe, wahrend schlieBlich 2 den die zweite
Teilaufgabe betreffenden Untersuchungen gewidmet ist.
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Es ist fiir die moderne Entwicklung der Algebra charakte-
ristisch, daB die oben genannten Hilfsmittel zu selbstdndigen um-
fangreichen Theorien AnlaB gegeben haben, die gegeniiber der
vorstehend angefithrten Grundaufgabe der klassischen Algebra
immer mehr in den Mittelpunkt des Interesses getreten sind. So
ist denn in moderner Auffassung die Algebra nicht mehr bloB die
Lehre von der Auflésung der Gleichungen, sondern die Lehre
von den formalen Rechenbereichen, wie Kérpern, Gruppen
u.a., und ihre Hauptaufgabe ist die Gewinnung von Einsichten
in die Struktur solcher Bereiche (sieche dazu S.24). Im be-
schrinkten Rahmen der vorliegenden Béndchen ist es uns jedoch
nicht moglich, diesen allgemeineren, modernen Gesichtspunkt in
den Vordergrund zu stellen. Wir nehmen daher die vorstehend aus-
gesprochene Grundaufgabe der klassischen Algebra als wegwei-
senden Leitfaden und abgrenzenden Rahmen fiir unsere Dar-
legungen, werden aber dabei in der Tat, vor allem in 2, auch zu
strukturellen Aussagen im Sinne der modernen Algebra gefiihrt
werden.

I. Ringe, Korper, Integrititsbereiche
§ 1. Definition der Ringe, Korper, Integritiitshereiche

Als das formal-charakteristische, von der inhaltlichen Be-
deutung der Zeichen als Zahlen befreite an den drei elemen-
taren Rechenoperationen Addition, Substraktion, Multipli-
kation — die vierte, Division, ziehen wir erst spater hinzu —
ist folgender Tatbestand anzusehen:

(a) Es liegt etne Menge B vonunterschiedenen Ele-
menten i irgendeiner endlichen Anzahl (mindestens zwes)
oder vn unendlicher Anzahl vor.

Wir verwenden Buchstaben a, b, ... und kompliziertere
Zeichen (z. B. die spaterhin erklirten Zeichen a 4 b, ab, . . .),
um die Resultate logischer Setzungen von Elementen aus B
mitzuteilen, und sagen dann auch einfach, a, b, ... seien
Elemente aus B. Auf Grund der in (a) geforderten Unter-
schiedenheit steht fiir je zwei solche logische Setzungen
a, b fest, ob es sich um dasselbe oder um verschiedene Ele-
mente aus B handelt, was wir durch die Bezeichnungen
a =b bzw. a & b angeben.
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(b) Fiir je zwei in bestimmter Rethenfolge gegebene, nichi
notwendig verschiedene Elemente a,b aus B sind zwei Ver-
kniipfungen definiert, d. h. jedem geordneten Elementpaar
a, b aus B 1st irgendwie ein Element ¢ (erste Verkniipfung) und
ein Element d (zweite Verkniipfung) aus B zugeordnet.

(a) und (b) sind z. B. realisiert, wenn B die Menge aller
geraden, oder aller ganzen, oder aller rationalen, oder aller
reellen, oder aller komplexen Zahlen, oder aller positiven von
einer dieser Zahlsorten (mit Ausnahme der letztgenannten)
ist und als Verkniipfungen die Addition (¢ = a 4 b) und
Multiplikation (4 = ab) gewihlt werden. In Anlehnung an
diese als Ausgangspunkt unserer Abstraktion anzusehenden
Spezialfalle wollen wir die beiden Verkniipfungen in (b)
auch allgemein Addition und Mulliplikation, die dem Paar
a, b zugeordneten Elemente ¢ und d Summe und Produkt
nennen und ¢ = a + b, d = ab schreiben, obwohl natiirlich
die rein formale Forderung (b) (und ebenso auch die gleich
folgende Forderung (c) an unsere Verkniipfungen) keinerlei
AnlaB zu der inhaltlichen Annahme gibt, dall diese Ver-
kniipfungen, wenn B eine Zahlenmenge ist, mit der gewdhn-
lichen Addition und Multiplikation iibereinstimmen.

(¢) Die in (b) genannien beiden Verkniipfungen geniigen fir

beliebige Elemente aus B den Gesefzen:

1N at+bdb=0bb+a (2) ab=ba

(kommutatives Gesetz);
@) e+d)te=a+G+c)y @ (abe = albe)
(assoziatives Gesetz);
(B) (@ + b)e =ac—+ be
(distributives Gesetz);

(8) Zu jedem geordneten Elementpaar a,c aus B existier
ewn ewndeutig besttmmies Element b aus B derart, daf
a--b=c st

(Gesetz der unbeschrinkten und eindeutigen

Subtraktion).
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‘Wie schon in der beigefiigten Benennung des Gesetzes (6)
zum Ausdruck gebracht ist, bezeichnet man die nach (6) in
B unbeschrankt und eindeutig ausfithrbare Operation der
Bestimmung von b aus a -- b = ¢ als Subtraktion und fithrt
daher in sinngemiBer Fortsetzung der unter (b) verwendeten
Terminologie die Bezeichnung b = ¢ — a (Differenz) ein.

Definition 1. Wenn fiir etne Menge B die unter (a), (b), (c)
aufgefithrten Tatsachen realisiert sind, heifit B ein Ring be-
ziiglich der Verkniipfungen (b).

Den letzten Zusatz muf man machen, weil eine Menge B
a priori beziiglich je zweier verschiedenartig erklarter Verkniip-
fungen, also in mehrfacher Weise Ring sein kann (siehe dazu
3,1, §1, Aufg. 4, 5). Unter einem Ring B schlechthin versteht man
immer die Menge B mit EinschluB der fiir sie definierten Ver-
kniipfungen. — Wir bezeichnen Ringe stets mit grofien griechi-
schen, Elemente ans Ringen mit kleinen lateinischen oder grie-
chischen Buchstaben?).

Wir beweisen nun zunichst einige in Ringen giiltige Tat-
sachen.

Satz 1. In jedem Ring B existiert ein eindeutig bestimmies
Element 0, das Nullelement oder Null von B heifft, mit der
Eigenschaft

a+ 0 = a fir alle a aus B.

Beweis. Nach (6) existieren in B zu den Elementen q,b, ...
von B je die Differenzen ¢ —a,b —b,b —a,.. ., fir die
nach ihrer Erklarung gilt

at+@—a)y=a, b+ b —0b)=ba+{b—a)=0,....

Vermige der ersten und dritten dieser Relationen hat
man, nun unter Beachtung von (1) und (3),

b+ (a—a)=la+ (b —a)]+ (a—0a)

=lat+@—a)+®b—a)=a+ (b—a)=0.
Der Vergleich mit der zweiten jener Relationen ergibt dann,
zufolge der Eindeutigkeit in (6),
a—a="5b—h

1) Die Buchstaben ¢, &, I, m, n, p, ¢, 7, 8; ¢, %, 4, u, v, g, ¢ behalten wir
jedoch fiir gewdhnliche ganze Zahlen, z. B. Indizes und Exponenten, vor.
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Also sind alle Differenzen a —a,b — b, ... dasselbe Ele-
ment 0 von B. Dieses hat die im Satz genannte Eigenschaft
und ist nach (6) sogar schon durch eine einzige der Forde-
rungen a -+ 0 = a eindeutig bestimmt.

Satz 2. Es ¢ilt Oc = 0 fir jedes ¢ aus B.
Bewets. Nach (5) und Satz 1 ist fiir beliebiges ¢ aus B

Oc = (0+ 0) ¢ = Oc + Oc,

also nach (6) und Satz 1 schlieBlich Oc = 0.

Wir ziehen jetzt die bisher noch unberiicksichtigte Divi-
sion in den Kreis unserer Betrachtungen, indem wir den
unter (¢) genannten Forderungen (1)—(6) noch die folgende
anreihen;

(7) Zu jedem geordneten Elementpaar a,c aus B, in dem
a =+ 0 st, existiert ein eindeutig bestimmies Element b aus B
derart, daf ab = ¢ st

(Gesetz der unbeschréankten und eindeutigen
Division).

Analog wie oben bei der Subtraktion bezeichnet man auch
hier, wenn (7) in B erfiillt ist, die in B bis auf die Einschrin-
kung a + 0 unbeschrinkt und eindeutig ausfiihrbare Ope-
ration der Bestimmung von b aus ab = ¢ als Division und

fiihrt die Bezeichnung b =%(Quotient) ein.

Die in (7) gemachte Einschrinkung a 4 0 ist keine willkiir-
liche Festsetzung, sondern notwendig, wenn (a), (b), (c) und (7)
widerspruchsfrei nebeneinander bestehen sollen. Ohne diese Ein-
schrinkung folgte ndmlich, wenn ¢ ein beliebiges Element aus B
ist, aus der Existenz eines b, so dafi 0b = ¢ ist, nach Satz 2, da}
¢ = 0 wire. Es enthielte also B nur das eine Element 0 im Wider-
spruch zu (a). Betreffs der hierdurch nahegelegten Frage, ob die
Forderungen (a), (b), (¢), (7) in der vorliegenden Gestalt wider-
spruchsfrei sind, sei bemerkt, daB ein Widerspruch in (a), (b), (c),
(7) einen Widerspruch im System der rationalen Zahlen zur Folge
hatte, das ja allen jenen Forderungen geniigt.

Es sei noch bemerkt, daB die in der Einschrinkung a = 0 in
(7) bestehende Unsymmetrie der sonst beziiglich Addition und
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Multiplikation symmetrischen Tafel der Forderungen (1) und (2),
(3) und (4), (6) und (7) natiirlich auf die Unsymmetrie des einzigen
beide Operationen verbindenden Gesetzes (5) zuriickgehen mus,
wie ja auch die obige Begriindung jener Einschrinkung (Beweis
von Satz 2) zeigt.

Definition 2. Gilt in einem Ringe B aufer (a), (b), (c)
auch noch (7), so heift B ein Korper beziiglich der Verkniip-
fungen (b).

Analog zu Satz 1 gilt in Kérpern auBerdem:

Satz 3. In jedem Korper K ewistiert ein eindeuiiq be-
stimmtes Element e &= 0, das Einselement oder Eins von
K heifit, mit der Eigenschaft

ae = a fir alle a aus K.

Beweis. Der Beweis wird, zunichst fiir die wegen (a) sicher
vorhandenen « = 0 aus K, unter Verwendung von (7) statt
(6) ganz analog wie bei Satz 1 gefiihrt. Dall ferner ae =«
auch fiir a = 0 gilt, ist nach Satz 2 klar. Aus e = 0 schlief-
lich wiirde folgen a4 = ae = a0 = 0 fiir jedes a aus K, im
Widerspruch zu (a).

AuBer Ringen und Korpern braucht man in der Algebra
noch einen weiteren derartigen Begriff, der logisch zwischen
jenen beiden steht, den des Integritdtsbereiches. Dieser ent-
steht aus dem Ringbegriff, wenn man nur einen Teil der zum
Korperbegriff fiihrenden Zusatzforderung (7) stellt, ndmlich
aus dieser einerseits die unbeschrinkte Existenz des Quo-
tienten wegliBt, also nur die Eindeutigkeit der Division,
falls sie itberhaupt ausfiihrbar ist, fordert:

(7a) Aus ab = ab’ und a = 0 folgt b =¥ (Eindeutig-
keit der Division),
andererseits aber doch die Existenz der speziellen Quotienten
a b
a’b’’
hergehenden auf die Forderung der Giiltigkeit des Analogons
zu Satz 3 hinausliuft:

.., woa,b,...=* 0sind, fordert, was nach dem Vor-
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(7b) Es existiert ein Element ¢ in B derart, daff ae = a fir
alle @ aus B ist (Existenz des Einselementes).

Definition 3. Gelten in einem Ringe B aufer (a), (b), (c)
auch noch (7a) und (7b), so heift B ein Integritdtsbereich
beziiglich der Verkniipfungen (b).

Jeder Korper ist ein Integritdtsbereich, weil ja (7a) und
{(7b) aus (7) gefolgert werden konnen, und jeder Integritits-
bereich ist nach Def. 3 ein Ring.

Ringe, Korper, Integritdtsbereiche nennen wir auch ge-
meinsam Bereiche') und die in ihnen erklirten Verkniip-
fungen Addition, Substraktion, Multiplikation, ev. Division
die drev ersten bzw. vier elementaren Rechenoperationen.

In Integrititsbereichen (also speziell in Korpern), die uns
im folgenden hauptséichlich interessieren werden, gilt auch
die Umkehrung von Satz 2:

Satz 4. Ist das Produkt zweier Elemente eines Integritils-
bereiches Null, so ist mindestens einer der Faktoren Null, d. h.
aus ab =0,a+ 0 folgt b = 0.

Bewets. Sei ab = 0, a % 0. Da nach Satz 2 a0 = 0, also
hier ab = a0 ist, folgt nach (7a) b = 0.

Das Bestehen von Satz 4 ist {ibrigens nicht nur, wie eben
gezeigt, Folge aus (7a), sondern auch umgekehrt. Denn gilt
das Analogon zu Satz 4 in einem Ringe und besteht fiir ein
@ =+ 0 die Gleichung ab = ad’, d. h. a(b —¥’) = 0, so folgt
b—b =0,dh b="V.

Zusatz zu Definition 3. A an kann die Forderungen (7a),
(7b) der Def. 3 auch durch die Forderungen ersefzen, daf die
Analoga zu Satz 3 und Satz 4 in B gelten sollen.

Es bedarf wohl nur des Hinweises, daB aus den Gesetzen (a),
(b), (c) fiir Ringe alle allgemeinen Rechenregeln der elementaren
Algebra fiir die Addition, Subtraktion und Multiplikation, insbe-
sondere die sog. Klammerauflésungsformeln, und, wenn man (7)
hinzunimmt, auch die allgemeinen Formeln der Bruchrechnung

') Bereich bedeutet zwar hicrnach dasselbe wie Ring; jedoch ist der
neutrale Ausdruck Bereich im angegebenen Sinne geliufiger, wihrend man
Ring gewohnlich nur dort anwendet, wo wirklich kein Integrititsbereich
vorliegt.
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durch einfache Schliisse hergeleitet werden konnen. Die nihere
Ausfiithrung darf dem Leser iiberlassen bleiben.

Man verwendet beim Rechnen in einem Bereich B zweckmifig
folgende abkiirzenden Bezeichnungen:

—a fiir 0 —a,

oy (—2)a,(—1) a, Oa, 1a, 2a,.. . fir... —(a+ a),—a,0,a,
ata,... (ganze Vielfache von a),
a2 e a0 al, a?,y ... fir ...,-i,i,e, a, aa, ...
as’ a

(ganze Potenzen von a)

(a=1, a2, ... natiirlich nur, soweit eindeutig erkliart, also z. B.
wenn B ein Korper und a % 0 ist). Aus (1)—(7) und Satz 1—4
ergeben sich dann mittels der Definition der Rechenopérationen
im Bereich der ganzen Zahlen leicht die Tatsachen
(m+nya=ma+4 na, a®*" = qma®, (a™)* = a™",
(mn)e = (me)(ne), e =¢, m0 =0, 0m =0

fiir ganze Zahlen m, n, soweit die darin vorkommenden Elemente
einen eindeutigen Sinn auf Grund des Vorhergehenden haben.

Beispiele

1. Auf Grund der vorstehenden Ausfithrungen diirfen wir als
aus den Elementen bekannt hinstellen:

. ganzen
Satz 5. Die { ationalen }Zahlen
Integrititsbereich T
Korper P

die gewdhnliche Addition und Multiplikation zugrunde gelegt werden.
Die Zahlen 0 und 1 sind Null- und Einselement von ' und P.

2. Ferner bilden auch alle reellen, sowie auch alle komplexen
Zahlen einen Korper beziiglich der gewéhnlichen Addition und
Multiplikation.

3. Die geraden Zahlen bilden einen Ring, aber keinen Integri-
titsbereich, weil fiir sie (7b) nicht gilt. Ringe, in denen (7b) gilt,
aber (7a) nicht, werden wir in 2, § 2 kennenlernen. Als Beispiel
eines Integrititsbereiches, der kein Korper ist, dient schon T.

4. Der folgende Korper mag als Beispiel einerseits fiir einen
solchen genannt werden, dessen Elemente keine Zahlen sind,
andererseits fiir einen mit nur endlich vielen Elementen:

bilden etnen { }, wenn als Verkniipfungen
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Fiir zwei Elemente 0 und ¢ werden zwei Verkniipfungsopera-
tionen durch die Festsetzungen

0+0=0 00=20
O0+e=e¢e+0=c¢ 0e=¢e0=0
et+¢e=20 ce=e

erklirt. Man bestitigt leicht die Richtigkeit von (1)—(7). Wir
haben also einen Korper, der lediglich aus seinem Null- und Eins-
element besteht. Dall dieser Korper kein uninteressanter Aus-
nahmefall ist, zeigen die Ergebnisse von 2, § 20, wonach endliche
Korper existieren, deren Elementzahl eine beliebige Primzahl-
potenz ist. Siehe auch schon §2, Beispiel 5 [25].

§ 2. Teilbereiche, Kongruenzrelationen, Isomorphie

In § 1 wird mit der Forderung (a) von einer Menge unter-
schiedener Elemente, der Grundgegebenheit der
Mengenlehre, ausgegangen, die dann durch Hinzunahme der
Forderungen (b), (c) usw. zu der Grundgegebenheit der
Algebra d. h. zZum Bereich, wird. Es ist daher verstandlich,
dal fiir das Studium unserer Bereiche u. a. auch Begriffe und
Tatsachen heranzuziehen sind, die allein aus (a) folgen, also
der Mengenlehre angehéren, und von denen dann zu unter-
suchen ist, wie sie bei Hinzunahme von (b), (c) usw. fiir das
Studium von Bereichen nutzbar gemacht werden kénnen.
Wir miissen uns hier darauf beschrinken, die heranzuzie-
henden mengentheoretischen Grundlagen vom sog. naiven
Standpunkt aus kurz zusammenzustellen, ohne auf die in
neuerer Zeit durch die Paradoxien der Mengenlehre ent-
standenen begritflichen Schwierigkeiten einzugehen, die man
durch ein entsprechendes axiomatisches Vorgehen be-
heben kann, wie es in § 1 fiir Bereiche, gestiitzt auf den Men-
genbegriff, durchgefithrt wurde. Wir verzichten also ins-
besondere auf eine naiv nicht in befriedigender Weise zu
gebende Prizisierung des Begriffs der Menge.

1. Teilmengen

Es sei M eine Menge, worunter wir stets, wie in § 1, (a), eine
Menge unterschiedener Elemente verstehen. Eine Menge M,
heiBt Terlmenge von M oder in M enthalten, wenn jedes Element
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von M, auch in M vorkommt. Wir rechnen die Menge M selbst,
sowie die kein Element enthaltende leere Menge (Nullmenge) eben-
falls als Teilmengen von M. Alle anderen Teilmengen von M heifien
echt oder eigentlich.

Liegen Teilmengen M;, M,, ... einer Menge M in irgendeiner
endlichen oder unendlichen Anzahl vor, so gibt es dazu zwei be-
stimmte Teilmengen von M, ihren Durchschnité A und ihre Ver-
etnigungsmenge E. Der Durchschnitt A besteht aus allen und nur
den Elementen von M, die sowohl in M; als auch in M,,.
enthalten sind. Er kann auch die Nullmenge sein. Die Vereini-
gungsmenge E besteht aus allen und nur den Elementen von M,
die entweder in M; oder in M,, ... enthalten sind. E lafit sich
auch erkliren als Durchschnitt aller M;, M,,... enthaltenden
Teilmengen von M und ist in diesem Sinne die engste M, M,, ...
enthaltende Teilmenge von M. Ebenso laB8t sich A erkliren als
Vereinigungsmenge aller in M,;, M,, ... enthaltenen Teilmengen
von M und ist in diesem Sinne die weiteste in My, M,, ... ent-
haltene Teilmenge von M.

2, Aquivalenzrelationen und Klasseneinteilungen

Fiir die Algebra von besonderer Wichtigkeit sind Zerlegungen
einer Menge M in elementfremde Teilmengen, d. h. Darstellun-
gen von M als Vereinigungsmenge von Teilmengen, von denen je
zwei die Nullmenge zum Durchschnitt haben. Solche Zerle-
gungen von M nennen wir Klasseneinteslungen von M und die
betr. Teilmengen auch Klassen. Liegt eine solche Klassenein-
teilung vor, und setzt man zwischen je zwei in bestimmter Reihen-
folge gegebene Elemente a,b aus M das Zeichen ~ oder das
Zeichen ~v jenachdem a in derselben Teilmenge wie b vorkommt
oder nicht, so bestehen offenbar die Tatsachen:

(a) a~ a (Gesetz der Reflexivitit),
(B) aus a~ b folgt b~ a (Gesetz der Symmetrie),
(y) aus a~ b, b~ ¢ folgt a~ ¢ (Gesetz der Transitivitit).

Fiir das Bestehen dieser Tatsachen, gleichgiiltiz welche Be-
deutung dabei den Zeichen ~, ~v zukommt, fiihren wir eine
besondere Ausdrucksweise ein:

(I) Wenn zwischen je zwei tn_bestimmier Rethenjolge gegebene
Elemente von M eines und nur etnes von zwer Zeichen ~, ~v in
solcher Weise gesetzt ist, daf3 die Bedingungen (a), (B), (¥) bestehen,
so sagt man, daf} eine Aquivalenzrelation ~ in' M erkldrt sei.
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Es gilt dann also:

(A) Jede Klasseneinteilung von M fihrt 2u einer Aquivalenz-
relation in M, tndem zwischen Elemente aus etner Klasse~, zwischen
Elemente aus verschiedenen Klassen ~|v gesetzt wird.

Nicht nur in der Algebra, sondern in fast jeder mathematischen
Disziplin hat man auBerordentlich hiufig die Umkehrung dieser
Tatsache zu benutzen, die wir daher hier ausfiihrlich begriinden
wollen.

(B) Jede Aquivalenzrelation tn M entspringt gemdfs (A) aus einer
und nur einer Klasseneinteilung von M.

Beweis. a) Wenn eine Aquivalenzrelation in M vorliegt, so kann
eine Teilmenge M, von M die Eigenschaft E haben, daf ein Ele-
ment ¢ aus M derart existiert, da8 M, aus allen und nur den Ele-
menten d von M besteht, fiir die ¢~ d ist. Wir nennen dann fiir
den Augenblick M, eine E-Teilmenge von M, die durch ¢ erzeugt
ist. Jedes Element ¢ aus M erzeugt eine E-Teilmenge, aber natiir-
lich kann dieselbe E-Teilmenge i. a. durch verschiedene Elemente
erzeugt sein. Wir betrachten nun die simtlichen E-Teilmengen
von M und zeigen, daB diese die Klassen einer Klasseneinteilung
von M sind, aus der die betrachtete Aquivalenzrelation im Sinne
von (A) entspringt.

Erstens sind verschiedene E-Teilmengen M,, M, von M element-
fremd. Ware ndmlich das Element @ in M; und M, enthalten, und
ist M, durch ¢;, M, durch ¢, erzeugt, so wire ¢;~ a, ¢,~ a, also
nach (B), (y) auch ¢;~ ¢,. Ist dann d, ein Element aus My, d, ein
Element aus M,, also ¢;~ d,, ¢;~ d,, so folgte wiederum aus (),
(y) auch ¢, ~ d,, ¢, ~ d;, so daB d, auch in M,, d, auch in M, ent-
halten wire. Es wiren also dann gegen die Annahme M, und M,
identisch.

Zweitens ist die Vereinigungsmenge aller E-Teilmengen die
Menge M, d. h. jedes Element a aus M kommt wirklich in einer
E-Teilmenge vor. Denn nach (a) kommta in der durch a erzeugten
E-Teilmenge vor.

Hiernach sind also die E-Teilmengen von M die Klassen einer
Klasseneinteilung von M. Dafi die betrachtete Aquivalenzrelation
im Sinne von (A) aus ihr entspringt, folgt so:

Erstens steht zwischen zwei Elementen a, b derselben E-Teil-
menge M; das Zeichen ~. Denn ist M, durch ¢ erzeugt, so ist
e~ a, c~ b, also nach (f), (p) auch a~b.

Zweitens steht zwischen zwei Elementen a, b verschiedener
E-Teilmengen M,, M, von M das Zeichen ~~. Wire nimlich a~ b,
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und ist M, durch ¢;, M, durch ¢, erzeugt, so folgte aus ¢, ~ a,
¢y~ b nach (B), (y) auch ¢;~ ¢, und daraus wie oben ein Wider-
spruch gegen die Verschiedenheit von M; und M,.

b) DaB eine Aquivalenzrelation nicht aus zwei verschiedenen
Klasseneinteilungen von M entspringen kann, folgt daraus, daf
die ein Element a enthaltende Klasse notwendig aus allen und nur
den b mit a~ b bestehen muf, also durch die Aquivalenzrelation
eindeutig (als die durch a erzeugte E-Teilmenge von M) bestimmt
ist.

Liegt eine Klasseneinteilung von M vor, so heifit jede Teilmenge
von M, die aus jeder Klasse ein und nur ein Element enthilt, ein
vollstindiges Reprisentantensystem fiir diese Klasseneinteilung.

Die einfachste Aquivalenzrelation ist die logische Identi-
tdt, d.i. die in §1 unter (a) durch die Zeichen =, & definierte
Relation. Die zu 1hr gehorige Klasseneinteilung ist die Einteilung
von M in seine unterschiedenen Elemente selbst.

3. Gleichmiichtigkeit und Kardinalzahlen

Man kann aus einer Menge M dadurch eine neue Menge M’ her-
leiten, daf man die Elemente von M irgendwie durch neue Ele-
mente ersetzt, nur so, daB alle Unterschiedenheiten der Elemente
von M erhalten bleiben (etwa indem man das Element a durch
den ,,Gedanken an das Element a‘ ersetzt). Setzt man dann
zwischen je zwei Elemente ¢ aus M und a’ aus M’ das Zeichen
<— oder das Zeichen <], je nachdem a’ bei dieser Ersetzung
aus a entsteht oder nicht, so bestehen offenbar die Tatsachen:

(6) zu jedem a aus M ewxistiert ein a’ aus M” mit @ < a’,
(8") zu jedem a’ aus M’ existiert ein a aus M mit a «— a’,
(&) wenn a <—a’, b<—b und a = b qilt, ista’ = b’,
(") wenn a<—>a’, b<«—>b und a’ = b qili, 7st a = .

Fiir das Bestehen dieser Tatsachen bei zwei vorliegenden Mengen
M und M’, gleichgiiltig welche Bedeutung dabei den Zeichen
> <|> zukommt, fiihren wir eine besondere Ausdrucksweise
ein:
(IT) Wenn zwischen je ein Element a einer Menge M und o’ einer
Menge M’ eins und nur eins von zwei Zeichen <—>, <—|— tn solcher
Weise gesetzt ist, dafi die Bedingungen (8), (8"), (), (&’) bestehen, so
sagt man, daf} etneeineindeutige Zuordnung <—>zwischenM
und M’ vorliege. Ist eine solche zwischen M und M” miglich, so nennt
man M und M’ gleichmachtig.

2 Hasse, Hohere Algebra
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Die Gleichmichtigkeit ist ersichtlich eine Aquivalenzrelation
im Sinne von (I). Fiir zwei endliche Mengen M und M’ ist die
Gleichmichtigkeit offenbar mit dem Ubereinstimmen der An-
zahlen der Elemente von M und M’ gleichbedeutend. Die durch
ein endliches M gemid (B) erzeugte Klasse gleichmichtiger
Mengen ist also die Gesamtheit aller Mengen gleicher Element-
anzahl wie M. Diese Klasse kann direkt zur eindeutigen Charakte-
risierung dieser Anzahl dienen!). Daher nennt man nach Cantor
allgemein die Klassen, die der Aquivalenzrelation (II) gemiB (B)
in der Menge aller Mengen entsprechen, also je die Gesamtheiten
aller zu einer Menge gleichmichtigen Mengen Kardinalzahlen
(Madchtigkeiten). Sie geben die Verallgemeinerung des Anzahl-
begriffs auf unendliche Mengen. Durch die Zusammenfassung je
aller gleichmichtigen Mengen in eine logische Einheit (die Klasse)
wird eben von jeder speziellen Bedeutung der Elemente der Einzel-
mengen abstrahiert und allein die fiir den Anzahlbegriff charak-
teristische Gesamtheit [(6), (6")] der Elemente nebst ihren
Unterschiedenheiten [(¢), (¢/)] ins Auge gefaBt.

Als Reprisentant einer endlichen Kardinalzahl » kann etwa
die Menge der natiirlichen Zahlen 1, 2, . .., n dienen. Als weitere,
fiir uns wichtige Kardinalzahl nennen wir noch die durch die
Menge aller natiirlichen Zahlen 1, 2, ... repriasentierte. Mengen
dieser Kardinalzahl, also solche, die mit der Menge der natiirlichen
Zahlen gleichmichtig sind, deren Elemente also durch Indi-
zierung: a;, a,, . . . den natiirlichen Zahlen eindeutig zugeordnet
werden konnen, heifien abzdhlbar.

Die Menge aller reellen Zahlen ist ein Beispiel dafiir, daf nicht
jede unendliche Menge abzdhlbar ist2).

Wir wenden nunmehr die im vorstehenden auseinander-
gesetzten Begriffe der Mengenlehre zur Einfithrung einiger
wichtiger entsprechender Begriffe fiir Bereiche an.

1) Djesen Gedanken hat R.Dedekind (Was sind und was sollen die
Zahlen ?, Braunschweig 1887) tatsichlich zur Definition der natiirlichen Zahlen
als Anzahlen endlicher Mengen benutzt.

) Lige eine Abzihlung a;, a;, ... der als Dezimalbriiche (unter Vermei-
dung der Periode 00...) geschriebenen reellen Zahlen vor, so konnte man
leicht einen (ebensolchen) Dezimalbruch a bilden, der von a,, @, ... ver-
schieden, also doch nicht mit abgezihlt wire. Man wihle nimlich fiir jedes
n=1,2,... dic n-te Ziffer von ¢ hinter dem Komma verschieden von der
n-ten Ziffer von ap hinter dem Komma (CantorschesDiagonalverfahren).
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1. Teilbereiche

Aus dem Begriff Teilmenge entspringt unmittelbar:

Definition 4. Bilden die Elemente einer Teilmenge B, eines
Bereiches B beziiglich derselben Verkniipfungen, wie sie in B
zugrunde liegen, einen 1. Ring, 2. Korper, 3. Integrititsbereich,
so heifit By etn 1. Teilring, 2. Teilkérper, 3. Teilinte-
gritdtsbereich von B und B ein Erweiterungs-Bereich
(-Ring, -Korper, -Integritdtsbereich) von B,.

Zur Entscheidung daritber, ob eine Teilmenge B, eines
Integritiatsbereiches B Teilring, Teilkorper, Teilintegri-
tatsbereich von B ist, braucht man nicht alle in §1 aufge-
fithrten Bedingungen zu priifen, sondern nur die in fol-
gendem Satz genannten:

Satz 6. Eine aus mindestens zwer Elementen bestehende
Teilmenge B, eines Integrititsbereiches B 1st dann und nur
dann 1. Teilring von B, wenn die ersten drei elementaren Rechen-
operationen, wie ste innerhald B definiert sind, angewandt auf
die Elemente von B, stefs wieder Elemente von B, ergeben,
2. Tedkorper von B, wenn zudem die vierle Rechenoperation
(Division) fiir Elemente aus B, (bei von Null verschiedenem
Nenner) stets ausfithrbar st und immer Elemente von B, ergibt,
3. Teslintegrititsbereich von B, wenn B, Tetlring von B 1st und
das Einselement von B enthdlt.

Bewers. a) Da} diese Bedingungen notwendig sind, ist nach
Def. 1—4 klar.

b) Sind diese Bedingungen erfiillt, so stimmen die folgenden
Bedingungen des §1 fiir B;: (a), (b), die Existenz in (6), ev.
die Existenz in (7) bzw. (7b). Andererseits sind die iibrigen
nach § 1 erforderlichen Bedingungen, nimlich (1)—(b), die
Eindeutigkeit in (6), ev. die Eindeutigkeit in (7), (7a), in B,
a fortiori erfiillt, weil sie in B gelten.

Das Kriterium von Satz 6 1a8t sich natiirlich sinngemi auch
auf Ringe B ausdehnen. Wir werden es aber nur fiir die in Satz 6
genannten Fille brauchen. Desgleichen werden wir der einfacheren
Redeweise halber auch den folgenden Satz 7 sowie Def. 5 nur fiir
Korper formulieren, fir die allein sie spiater zur Anwendung
kommen.

Q%



20 1. Ringe, Korper, Integrititsbereiche

Beziiglich des Durchschnittes haben wir fir Korper:

Satz 7. Sind K, K,, . .. irgendwelche [endlich oder unend-
lich) viele] Teilkorper esnes Korpers K, so 1st auch der Durch-
schnitt der Mengen Ky, K,, . .. ein Teldkorper von K; dieser
heift der Durchschnittskérper oder kurz Durschnitt
der Korper Ki,K,, .. ..

Beweis. Dafl der Durchschnitt mindestens zwei Elemente
enthilt, folgt daraus, daB alle K;,K,, ... die beiden ver-
schiedenen Elemente 0 und ¢ von K gemeinsam enthalten,
weil sie Teitkérper von K sind. Dann ergibt sich die Be-
hauptung ohne weiteres aus Satz 6.

Fiir die Vereinigungsmenge gilt aber ein entsprechen-
der Satz nicht. Denn ist a, in Ky, a, in K,, so braucht z. B.
a, + a, in keinem der Korper K;,K,, . . . enthalten zu sein.
Dagegen 146t sich ein dem Vereinigungsmengenbegriff ana-
loger dadurch einfithren, daB wir die auf S. 15 angegebene
Zuriickfithrung der Vereinigungsmengs auf einen Durch-
schnitt fiir die Verallgemeinerung zugrunde legen.

Definition 5. Sind K, K,, ... irgendwelche (endlich oder
unendlich viele) Teilkorper eines KorpersK, so heifit der Durch-
schuitt aller K, K,, . . . als Teilkorper enthaltenden Tedkorper
vonKdas KomypositumvonK,, Ky, . . . oder der ausK,K,, ...
komponierte Kérper.

Daf dieser Durchschnitt iiberhaupt gebildet werden kann, folgt
daraus, daff zum mindesten ein zu seiner Bildung zugrunde zu
legender Kdorper, namlich K, existiert.

Das Kompositum von K, K,, ... enthdlt die Vereinigungs-
menge der Mengen K, K,, ..., ist aber i. a. weiter. Es ist der
engste K, K,, ... als Teilkérper enthaltende Teilkorper von K,
ebenso wie der Durchschnitt von K, K,, ... der weiteste in K,
Ky, . . . als Teilkérper enthaltene Teilkorper von K ist.

2. Kongruenzrelationen und Restklassenringe

Indem wir fiir den Fall eines Bereiches B zu den Be-
dingungen (), (B), (y) fiir eine Aquivalenzrelation in der

1) Die Numerierung soll hier und in der folgenden Def. 5 nicht besagen,
daB hochstens abzihlbar viele gemeint sind.
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Menge B noch zwei in naturgemaBer Weise gebildete For-
derungen iiber das Verhalten der Aquivalenzrelation zu den
beiden Verkniipfungen von B hinzufiigen, definieren wir:

Definition 6. Erfillt eine Aquivalenzrelation = in einem
Bereiche B neben (), (8), (y) noch die Bedingungen:

(1) aus a; = by, a, = b, folgt a; + a,= b; + b,,

(2) aus a; = by, a,= b, folgt a, a;= b by,
so mennen wir sie eme Kongruenzrelation in B und die
thr entsprechenden Klassen die Restklassen in B nach ihr?).

Wir legen jetzt in §1, (a) die Menge B der Restklassen
nach einer Kongruenzrelation = in B zugrunde. Dazu ist zu
fordern, daBl mindestens zwei solche Restklassen vorhanden
sind, daB also nicht alle Elemente von B einander kongruent
sind. Sind dann r und s zwei Restklassen und bildet man alle
Summen ¢ - b bzw. Produkte ab von je einem Elemente a
aus r und b aus s, so folgt aus (1) und (2), daB diese alle

wieder je einer bestimmten Restklasse ¢ bzw. u aus B ange-
héren, Durch die Festsetzungen r 4 s = ¢ bzw. rs = u, die
man kurz als elementweise Addition bzw. Multiplikation
der Restklassen bezeichnen kann, wird also § 1, (b) reali-
siert. Wir beweisen nun, da8 dann auch §1, (c) realisiert
ist, d. h.:

Satz 8. Liegt in einem Bereiche B eine Kongruenzrelation
= vor, bes der nicht alle Elemente von B einander kongruent
sind, und definiert man in der Menge B der Restklassen nach
thr zwer Verkniipfungen durch elementweise Addition bzw.
Multiplikalion, so ist B ein Ring beziiglich dieser Verkniip-
fungen; B heift der Restklassenring von B nach der Kon-
gruenzrelation =.

Beweis. Das Erfiilltsein von § 1, (1)—(5) ist eine unmittel-
bare Folge des Bestehens dieser Gesetze im Bereiche B. Sind
ferner a bzw. ¢ Elemente aus den Restklassen r bzw. ¢, so

1y Die Menge M aller @ = 0 bei einer Kongruenzrelation in B ist genau das,
was man unter Ideal in B versteht. Dieser Begriff ist fiir dle Teilbarkeits-

lehre (siche 2, § 2) in allgemeinen Bereichen grundlegend (vgl. E. Noether,
Idealtheorie in Ringbereichen, Math. Ann. 83 [1921]).
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folgt aus § 1, (6) die Existenz eines b, so dall a + b = ¢ ist.
Ist dann s die Restklasse, der b angehort, so gilt nach (1)
und unserer Additionsfestsetzung r -+ s = {. Diese Rest-
klasse s ist schlieBlich auch die einzige Losung vonr 4 s = ¢.
Denn ist auch r 4- ' = ¢ und & ein Element aus s, so ist
a-+b=a-+ ¥, weil beide Seiten derselben Restklasse ¢
angehoren. Daraus und aus der nach («) sicher richtigen
Relation (—a)= (—a) kann aber nach (1) auf b=V,
d. h. s = s’ geschlossen werden. In B ist also die Subtraktion
unbeschréankt und eindeutig ausfiihrbar, d. h. § 1, (6) erfiiilt.

3 Es sei noch bemerkt, daB, wenn B ein Integritidtsbereich ist,
B nicht notwendig auch Integritéitsbereich zu sein braucht, weil
zwar § 1, (7b), aber nicht notwendig §1, (7a) in B erfiillt ist
(siehe 2, Satz 28). Der Fall, daB B sogar ein Kérper ist, ist un-
interessant, weil es dann nur triviale Restklasseneinteilungen in B
gibt (siehe 3, 1, §2 Aufg. 10).

3. Isomorphie und Bereichtypen

Wir fiigen fiir den Fall zweier Bereiche B und B’ auch
den Bedingungen (d), (6'), (¢), (¢') fir die Gleichméchtigkeit
der beiden Mengen B und B’ zwei in naturgemaBer Weise
gebildete Forderungen iiber das Verhalten der eineindeutigen
Zuordnung zu den beiden Verkniipfungen von B und B’
hinzu. In dieser Hinsicht beweisen wir zunéchst:

Satz 9. Die folgende Festselzung liefert eine Aquivalenz-
relation in der Menge aller Bereiche: Es sei B =~ B’ dann und
nur dann, wenn erstens B und B’ gleichmdchitg sind, und wenn
man zweilens die eineindeutige Zuordnung zwischen den Ele-
menten a,b,...von B und o',V ... von B’ so wihlen kann,
daf} die folgenden Bedingumgen bestehen:

(8) wenn a<—>a', b<—b ist, st a+ b<—a' -+ ¥,
(4) wenn g <«—>a’,b<«—b" st, ist ab<—a'l.
Beweis. Es ist unmittelbar ersichtlich, daf die fiir die

Gleichmichtigkeit erfiillten Bedingungen (), (), () auch bei
Hinzunabme der Forderungen (3) und (4) bestehenbleiben.
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Ebenso sieht man ohne weiteres:

Zusatz zu Satz 9. Betrachiet man nur die Erweiterungs-
bereiche eines festen Bereichs By, so gilt Entsprechendes zu
Satz 9 auch dann noch, wenn man den Bedingungen (3), (4)
die westere Bedingung hinzufiigt, daf8 die Elemente a, von
bei der eineindeutrgen Zuordnung zwischen B und B’ siwch selbst
entsprechen sollen:

(5) ag<—> a, fiir alle a, aus B,
Auf Grund von Satz 9 definieren wir nun:

Definition 7. Eine eineindeutige Zuordnung zwischen zwes
Bereichen B und B’ mit den Eigenschaften (3), (4) heift ein
Isomorphismus zwischen B und B’, und B und B’ selbst
heifien dann isomorph. Die in Salz 9 genannte Aquivalenz-
relation B = B’ fiir Bereiche heifff Isomorphie, die thr ent-
sprechenden Klassen die Typen der Bereiche.

Auf Grund des Zusatzes zu Satz 9 definieren wir ferner
analog:

Zusatz zu Definition 7. Ein Isomorphismus zwischen zwer
Erweiterungsbereichen B und B’ eines Bereichs By mit der
Eugenschaft (5) heifit ein Isomorphismus bzgl. By, und B
und B’ hetfen dann isomorph. bzgl B, Die vm Zusaiz zu
Satz9 genannte Aquivalenzrelation fiir E1 weiterungsbereiche
von By hetft Isomorphie bzgl. By, die ihr entsprechenden
Klassen die Erweiterungstypen bzgl. B,.

Die in Satz 9 fiir die Relation B ~ B’ geforderten Bedingungen
besagen, daBl beim Ubergang von B zu B’ oder von B” zu B durch
die betr. Zuordnung erstens nach (6), (6") jedem Element von B
eines von B’ entspricht und umgekeht, oder, kurz gesagt, die Ge-
samthest der Elemente erhalten bleibt, zweitens nach (e), (¢’) ver-
schiedenen Elementen von B verschiedene von B’ entsprechen und
umgekehrt, oder, kurz gesagt, die Unferschicdenhest der Elemente
erhalten bleibt, und drittens nach (3) bzw. (4) jede Additions-
bzw. Multiplikationsverkniipfung in B in die fiir die entsprechenden
Elemente aus B’ iibergeht und umgekehrt, oder, kurz gesagt, die
Verkniipfungen Addition und Multiplikation erhalten bleiben. Nun
sind nach § 1 die vorliegende Gesamtheit B von Elementen inkl.
ihrer Unterschiedenheiten [§1, (a)] und die Art, wie die Ver-
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knipfungen Addition und Multiplikation fir sie erklirt sind
[§1, (b)], das einzige, was bei Absehen von der Bedeutung der
Elemente als charakteristisch fiir den Bereich B iibrigbleibt.
Demgeméil8 ist jede von der Bedeutung der Elemente von B unab-
hingige Aussage iiber sie, wie sie ja von dem in der Einleitung for-
mulierten abstrakten Standpunkt aus allein interessiert, lediglich
mit den Relationen =, 3= und den Verkniipfungen Addition und
Multiplikation, auf die ja nach § 1 auch die Subtraktion und Divi-
sion zuriickfiihrbar sind, gebildet und bleibt somit, wenn man
durch die betr. Zuordnung von B zu B’ iibergeht, in obigem Sinne
erhalten und ebenso umgekehrt beim Ubergang von B” zu B. In
dem angegebenen Umfange sind mithin, kurz gesagt, die Bereiche
B und B’ gar nicht zu unterscheiden. Daher ist es also von
unserem Standpunkt aus ganz einerlei, ob man solche Aussagen
itber B oder B’ macht.

Weiter geht fiir zwei bzgl. B, isomorphe Erweiterungsbereiche
B und B’ von B, jede allein auf Gleichheit, Unterschiedenheit und
die vier elementaren Rechenoperationen gegriindete Aussage, die
Elemente von B mit solchen des Teilbereichs B, in Beziehung
setzt, in eine richtige Aussage iiber, wenn man die ersteren Ele-
mente durch die ihnen zugeordneten aus B” ersetzt und ebenso um-
gekehrt bei entsprechendem Ubergang von B’ zu B. Kurz gesagt
sind also die Erweiterungsbereiche B und B’ in dem angegebenen
Umfange von By aus nicht zu unterscheiden. Daher ist es
also wieder einerlei, ob man solche Aussagen iitber B oder B’
macht.

Dadurch, daf hiernach die Algebra sich beim Studium von
Bereichen schlechthin nur fiir solche Aussagen interessiert, die
allen Bereichen eines Typus gemeinsam sind, und beim Studium
der Erweiterungsbereiche eines festen Bereichs By nur fiir solche
Aussagen, die allen Bereichen eines Erweiterungstypus von B,
gemeinsam sind, rechtfertigen sich die in Def. 7 und Zusatz zu
Def. 7 eingefithrten Bezeichnungen Typus und Erweiterungstypus
in Hinsicht auf die gewéhnliche Bedeutung des Wortes ,,Typus‘.
Von Aussagen der genannten Art sagt man auch, sie betrefien die
Struktur der Bereiche. Die Gewinnung solcher Aussagen wurde am
Schluf der Einleitung als Hauptaufgabe der modernen Algebra
hingestellt.

Wenn es nach diesen Ausfiihrungen scheint, als ob in der
Algebra ein Unterschied zwischen isomorphen Bereichen iiber-
haupt nicht zu machen sei, so bedarf das einer Einschrinkung.
Wihrend es zwar gleichgiiltig ist, ob man die in der Einleitung
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formulierte Grundaufgabe der Algebra in einem Bereiche B oder
in einem zu B isomorphen Bereiche B’ behandelt, ist eine Unter-
scheidung isomorpher Bereiche B und B’ natiirlich dann geboten,
wenn beide Bereiche Teilbereiche eines anderen Bereiches B* sind,
also ihre Elemente auf Grund der Unterschiedenheit der Elemente
von B* (fiir Betrachtungen innerhalb B*) zu unterscheiden sind
(vgl. die Beispiele auf S.37 und 8. 56).

Es sei noch bemerkt, daB nach den obigen Ausfithrungen die
spezielle Eigenschaft, Korper bzw. Integritatsbereich zu sein,
gleichzeitig allen Bereichen eines Typus zukommt, so daf man
neben den allgemeinen Ringlypen speziell von Korpertypen und
Integritdtsbereschtypen reden kann.

Beispiele

1. Jeder Bereich B ist Teil- und Erweiterungsbereich von sich
selbst. Jeder andere Teil- bzw, Erweiterungsbereich von B heifit
echt oder eigentlich.

2. Aus den Beispielen 1—3 von §1 ergeben sich ohne néhere
Ausfiihrung verstindliche Beispiele fiir Teil- und Erweiterungs-
bereiche.

3. Sind K, K, Teilkérper von K, so ist dann und nur dann ihr
Durchschnitt mit K; und ihr Kompositum mit K, identisch, wenn
K, Teilkorper von K, ist. Das ist leicht aus Satz 7 und Def. 5 zu
entnehmen.

4. Weitere Beispiele fiir Teil- und Erweiterungsbereiche sowie
auch fiir Isomorphie von Bereichen werden uns in §§ 3, 4 ein-
gehend beschiftigen.

5. Die Einteilung der ganzen Zahlen in gerade und unge-
rade liefert gemdB (A) eine Aquivalenzrelation, die sich leicht
als Kongruenzrelation fiir den Integritdtsbereich " (Satz 5 [13])
erweist. Der zugehorige Restklassenring ist isomorph mit dem in
§ 1, Beispiel 4 genannten Kéorper, also ein Restklassenkorper.

6. Weitere Beispiele fitr Kongruenzrelationen und Restklassen-
ringe werden uns in 2, § 2 eingehend beschéftigen.

§ 3. Der Quotientenkorper eines Integrititshereiches

Es ist fiir uns von Wichtigkeit nachzuweisen, daf jeder
Integritiatsbereich durch Hinzunahme aller aus seinen Ele-
menten zu bildenden ,,Quotienten* zu einem Korper er-
weitert werden kann. Wir zeigen nimlich:
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Satz 10. Zu jedem Integrititsbereich | existiert ein Erweite-
rungskorper K, dessen similiche Elemente sich als Quotienten
von Elementen aus | darstellen lassen. Der Erweiterungstypus
von K bzgl. | ist durch diese Forderung eindeutiq bestimmd.

Beweis?).

a) Ewmdeutigkertsnachweis

Ist K ein Korper der im Satz genannten Art, so enthilt er

als Korper auch umgekehrt alle Quotienten —Z’— von Elemen-

ten a, b (b == 0) aus |, d. h. besteht aus der Gesamtheit aller
dieser (natiirlich nicht notwendig simtlich verschiedenen)
Quotienten. Nach den Gesetzen § 1, (1)—(7) fiir Kérper be-
stehen dann die folgenden Tatsachen in K:

1 % - E; dann und nur dann, wenn ab’ =a’b,.

b
. @ a. by 0,0
oy Yy g G0y Ge0;
2 W M
40y _ 0y
®) 3,7, = %5,
8 Gy Uy by— by
O30 5,

®) % /% _ U gonn %10 d b a,+ 0 (nebenby, b, +0).
b/ by ashy b,

Tst nun K ein weiterer Korper der im Satz genannten Art
und ordnet man jedem Element o von K auf Grund einer

beliebigen seiner Darstellungen als Quotient % von Ele-

menten aus | das durch denselben Quotienten dargestellte

') Wir legen hier, wie auch bei dem entsprechenden Beweis zu Satz 11in § 4
den Nachdruck auf das logische Geriist des Beweises. Die Bestitigung der bei
den einzelnen Schritten angefiihrten Tatsachen ist auf Grund von §§ 1,2
stets leicht zu erbringen. Wir begniigen uns fast durchweg mit dem Hinweis
auf die heranzuziechenden Stellen aus §§ 1, 2 und iiberlassen die nihere Aus-
fithrung dem Leser.
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Element o von K zu, so ist das nach dem Bemerkten
und (1) eine eineindeutige Zuordnung [§ 2, (4), (¢"), (&), (¢")]
zwischen den samtlichen Elementen von K und K, die nach
(2) und (3) den Bedingungen §2, (3) und (4) geniigt und
ferner ersichtlich auch die Bedingung §2, (0) bzgl. | als
Grundbereich erfiillt. Also ist dann K =K bzgl. |. Damit
ist der Nachweis fiir die eindeutige Bestimmtheit des Er-
weiterungstypus von K bzgl. | erbracht.

b) Vorbemerkungen zum Existenznachweis

Der Nachweis der Existenz eines Korpers K der im Satz ge-
nannten Art kann prinzipiell nur durch Konstruktion von K, d.h.
durch Angabe seiner Elemente und ihrer Verkniipfungen gefiihrt
werden. Hierbei diirfen wir natiirlich nicht schon mit den Quo-

tienten % operieren, da diese erst auf Grund der Existenz von K

einen Sinn haben. Wir entziehen daher fiir die Konstruktion dem

Bruchstrich in%die Bedeutung eines Divisionszeichens, sehen
vielmehr %lediglich als geordnetes Elementpaar aus | an und

schreiben dafiir (a, b), um Verwechslungen mit den ev. schon teil-

weise in | definierten Quotienten—g— zu vermeiden. Aus (1)—(3)

entnehmen wir dann die nétigen Richtlinien fiir die Angabe der
Elemente von K und ihrer Verkniipfungen.

¢) Konstruktion eines zu K isomorphen Kirpers K

In der Menge M aller geordneten Elementpaare (a, b) aus |,
bei denen b =+ 0 ist, definieren wir eine Aquivalenzrelation
durch die Festsetzung:

1) (a, b))~ (a’, b’) dann und nur dann, wenn ad’ = a’b.

Man bestitigt leicht das Erfiilltsein von §2, («), (), (¥),
so daB wirklich eine Aquivalenzrelation im Sinne von § 2,
(T) vorliegt.
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Auf Grund von (1’) zerfillt M in Klassen. Diese Klassen
sehen wir als Menge K’ unterschiedener Elemente an. Die
durch (a, b) erzeugte Klasse werde mit {a, b} bezeichnet.

Danach (1) und dem Analogon zu Satz 3 [11]{0, €} == {e, ¢}
gilt, ist § 1, (a) in K* realisiert.

Wir definieren weiter in K’ zwei Verkniipfungen Addition
und Multiplikation durch die Festsetzungen:

(2) {av bl} + {az’ bz} = {albz + a5b,, b1b2}v

(3) {ay, by} {as, by} = {ayaq, by by}.

Da nach Satz 4 [12] mit b; und b, auch b, b, = 0 ist, sind
die rechten Seiten in (2') und (3) wirklich bestimmte Klassen
aus K’.

Ferner sind diese, zunidchst mittels einzelner Reprisen-
tanten (a,, b;) und (az, b,) der Klassen links getroffenen Fest-
setzungen unabhingig von der Auswahl dieser Repréisen-
tanten innerhalb ihrer Klassen. Man bestitigt ndmlich
leicht, daf sich nur der Repriisentant, nicht die Klasse
rechts dndert, wenn man links (a;, b;) und (a,, b,) durch
aquivalente (a;, b7) und (ay, b;) ersetzt. Somit ist vermoge
(2) und (3') auch § 1, (b) in K realisiert.

SchlieBlich befriedigen die in (2) und (3') definierten Ver-
kniipfungen die Gesetze § 1, (1)—(7). Fiir §1, (1)—(5) folgt
das leicht aus dem Erfiilltsein jener Gesetze in I, fiir § 1, (6)
und (7) zeigt man ebenso auf Grund der Gultlgkelt von
§1, (6) und (7a) in I, daB Differenz und Quotient in K’ ein-
deutig bestimmt und durch

(#) {an, b1} — {a, Do} = {a,b; — asby, by by},
%) o b} _ = {a, by, a,b,}, wenn {ay, by} =+ 0,
{02, b}

stets gegeben sind. Die im Falle (5') zu stellende Bedingung
Oy, b} = 0 bedeutet a, = 0, weil nach (2') oder (4') die

lasse {0, e} Nullelement von K’ ist und nach (1) aus
{a, b} = {0 e} folgt a = 0.

Somit ist K’ ein Kérper beziiglich der Verkniipfungen (2')
und (3').
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d) Konstruktion von K

Der Korper K’ enthilt die Teilmenge I’ der speziellen
Klassen {a, ¢}, die nach (2')—(4') und Satz 6 [19] ein Teil-
1ntegr1tatsberelch von K’ und weiter nach (1')—(3") und Def.7
(23] vermoge der Zuordnung {a, e} <> a zu | isomorph ist.
Wir kénnen nun aus K’ eine Menge K dadurch bilden, daB
wir die zu I gehorigen Elemente {a, ¢} von K’ je durch die
ihnen zugeordneten Elemente a von | ersetzen, die nicht
zu | gehorigen Elemente von K’ dagegen beibehalten. Dann
wird also K eine K’ eineindeutig zugeordnete Menge unter-
schiedener Elemente. Weiter kénnen wir in K zwei Verkniip-
fungen Addition und Multiplikation, die den Gesetzen §1,
(1)—(7) geniigen und die fiir die Teilmenge | mit den in |
bereits bestehenden Verkniipfungen identisch sind, dadurch
eindeutig erkliren, daB wir auf die fiir die zugeordneten
Elemente von K’ definierten Verkniipfungen zuriickgehen,
m. a. W. die Bedingungen (3) und (4) von Satz 9 [22] zu-
grunde legen. Dann wird also K ein zuK’ isomorpher Erweite-
rungskorper von |,

Dieser KérperK hat nun die im Satz genannte Eigenschaft.
Da namlich nach (3') oder (5’) jedes Element {a, b} von K’

eine Darstellung {a,b} = m als Quotient zweier Elemente

von I besitzt — (es ist {b, e} & 0 wegen b & 0) —, folgt

fir das zugeordnete Element von K die Darstellung— als
Quotient zweier Elemente von I.
Damit ist Satz 10 bewiesen.

Die Eindeutigkeitsaussage von Satz 10 kann noch etwas ver-
scharft werden, niamlich durch den folgenden Zusatz, dessen
Existenzaussage nach Satz 6 [19] und (2)—(5) auf der Hand liegt:

Zusatz. Innerhald eines beliebigen Erweiterungskirpers K* von |
qibt es etnen und nur etnen Reprdsentanten des in Satz 10 genannten
Erweiterungstypus, ndmlich den Korper K, der durch die in K* ge-
bildeten Quotienten von Elementen aus | gebildet wird.

Beweis. Wird im vorhergehenden Beweis unter a) die Voraus-
setzung hinzugefiigt, daB K und K beide Teilkorper eines und
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desselben Erweiterungskorpers K* von I sind, so folgt dort sogar

K = K, weil dann die Quotienten —g— in Kund K eine und die-

selbe, durch K* festgelegte Bedeutung haben.

Im Hinblick auf die Ausfithrungen nach Def. 7 [231.] ist es
daher gerechtfertigt, isomorphe Erweiterungskorper von | des in
Satz 10 genannten Typus nicht zu unterscheiden und mit dem
bestimmten Artikel zu definieren:

Definition 8. Der in Satz 10 genannte Korper K heifit der
Quotientenkorper des Inlegritilshereiches 1.

Beispiele

1. Ist | schon selbst ein Korper, so ist sein Quotientenkérper
mit | identisch, und umgekehrt.

2. Der Quotientenkérper des in Satz 5 genannten Integritits-
bereiches I ist der ebendort genannte Kérper P. In der Tat geht
das unter ¢) benutzte Konstruktionsverfahren fiir [ = TI' in die be-
kannte Konstruktion der rationalen Zahlen aus den ganzen Zahlen
iiber.

3. Vgl. § 4, Det. 10 [38].

§ 4. Der Integritiitshereich der ganzen rationalen Funk-
tionen von n Unbestimmten iiber | und der Korper der
rationalen Funktionen von n Unbestimmten iiber K

Der in der Algebra zu verwendende Begriff der ganzen
rationalen und der rationalen Funktion ist von dem in der
Analysis iiblichen grundsétzlich verschieden.

In der Analysis definiert man die Funktionen als Zuordnungen
von Funktionswerten zu den Elementen einer Argumentmenge.
Dementsprechend wiirde im Sinne der Analysis (i.S.d.An.) von
einer Funktion f von n Verdnderlichen iiber einem Integritats-
bereich | zu reden sein, wenn jedem geordneten Elementsystem
%y, .. ., Zp aus | ein Element f(x,, . . ., #,) aus | zugeordnet ist, und
speziell von einer ganzen rationalen Funktion (g.r.Fkt.), wenn
jene Zuordnung fiir alle 2y, . . ., &, aus | in ein- und demselben, anf
Zy, ..., Tp und feste Elemente aus | anzuwendenden Rechenver-
fahren besteht, das aus endlich vielen Additionen, Subtraktionen
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und Multiplikationen, wie sie ja in | definiert sind, zusammen-
gesetzt ist. Entsprechend wire unter Hinzunahme auch der Divi-
sion eine rationale Funktion (r.Fkt.) i.S.d. An. von n Verinder-
lichen {iber einem Korper K zu erkldren, wobei allerdings wegen
des Nichtdefiniertseins der Division durch O bei einem gegebenen
Rechenverfahren unter Umstdnden nicht jedes System z,, .. ., 2,
aus K als Argumentsystem zuléssig ist; das wird nachher noch zu
prézisieren sein. Es ist ohne weiteres ersichtlich, da die g. r. Fkt.
bzw. 1. Fkt. i. 8. d. An. von n Verinderlichen iiber | bzw. K jeden-
falls je einen Ring bilden, wenn man die Verkniipfungen durch
Addition und Multiplikation je aller (definierten) Funktionswerte
erklart. :

In der Algebra kommt man aus einem spéater (nach Satz 12 [407)
néher auszufithrenden Grunde mit diesem Funktionsbegriff, der
die Zuordnung als das Primire, die Art der Zuordnung, d. h. im
Falle der rationalen Funktionen das Rechenverfahren als das Se-
kundére hinstellt, nicht aus. Man muf vielmehr umgekehrt fiir
die dort allein zu betrachtenden rationalen Funktionen den Re-
chenausdruck als das Primére, die durch ihn gelieferte Zuordnung
als das Sekundire ansehenl). Dem letzteren Standpunkte ent-
spricht es, wenn wir im folgenden eine Theorie der in =, .. ., z;
ganzen rationalen bzw. rationalen Rechenausdriicke iiber | bzw.
K entwickeln, die wir dann der formalen Analogie halber, wie
iiblich, auch g. r. bzw. r. Fkt. von @,, . . ., 2, iiber | bzw. K nennen,
und wenn wir dabei, um ein Zuriickfallen in den Zuordnungsstand-
punkt auszuschliefen, den =y, . . ., 2, vorldufig die Bedeutung von
Verinderlichen in 1 bzw. K entziehen, sie vielmehr als feste Ele-
mente auferhalb | bzw. K, sog. Unbestimmie?), einfiihren.

Zu dem Bereich der ganzen rationalen Funktionen von
Zy, . . ., &p Uber einem Integritdtshereich | im Sinne der Al-
gebra gelangen wir durch eine, zu der in § 3 ganz analoge,
abstrakte Konstruktion, indem wir beweisen:

Satz 11. Zu jedem Integritiisbereich | existiert ein Erweite-
rungsintegrititsbereich 1, mit der Eigenschaft:

Es existieren n Elemente x,, . . ., @n 0 |y derart, daf sich
jedes Element von l, eindeutiq in der Form

') Das ist also derjenige, vom Standpunkte der Analysis primitivere Funk-
tionsbegriff, der historisch dem genannten, modernen Funktionsbegriff i. S.
d. An. vorausgegangen ist. Unsere nachstehenden Entwicklungen zeigen, da8
vom Standpunkte der Algebra umgekehrt jener in der Analysis primitivere
Funktionshegriff der tiefergehende ist.

2) Siehe zu dieser Bezeichnung die Erlduterung hinter Def. 9 [37].
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a
2 Gk, k&R Zake 1)
N S
darstellen lifit, wo die ag,, .. &, Elemente aus | sind, unter
denen nur endlich viele von Null verschiedene vorkommen.
Der Erweiterungstypus von ln begl. | ist durch diese For-
derung eindeutig bestimmd.

Beweis?). Wir fithren den Beweis zunichst fiir n = 1, und
zwar in vollstindiger Analogie zum Beweis von Satz 10 in

§ 3.

a) Eindeutigkeitsnachweis

Ist I, ein Integrititsbereich der im Satz genannten Art
fir » = 1 und « das im Satz mit x, bezeichnete Element aus
I}, so enthilt |, als Integrititsbereich auch umgekehrt alle

Ausdriicke 3 azz*, wo die ax Elemente aus [ sind, von denen
k=0

nur endlich viele == 0 sind, d. h. I, besteht aus der Gesamt-

heit aller dieser Ausdriicke. Wegen der Eindeutigkeitsforde-

rung des Satzes und nach den Gesetzen §1, (1)—(6) fiir

Ringe bestehen dann folgende Tatsachen in I, :

s o] o
(1) I axa* = Jazz* dann und nur dann, wenn
k=0 E=0

ar = ay, Tir alle k,

(2) Zakx" —+ Zbkwk Z(dk + by) 2k,

(8) Xapat Zbpa*t = 3 (2‘1,1 ) TF
k=0 k=0 k=01+;;—£

1} Die Bedeutung des Summenzeichens X mit angefiigten Angaben iiber
den Summationsbereich darf als bekannt vorausgesetzt werden. — DaB wir
hier fiir die in Wahrheit endlichen Summen formal unendliche Summen mit
nur endlich vielen Summanden = 0 setzen, wobei natiirlich stillschweigend
unter einer Summe von unendlich vielen Nullen wieder Null verstanden ist,
geschieht lediglich aus bezeichnungstechnischen Griinden. Sonst wiirden
nimlich die Formulierung der Eindeutigkeit unserer Darstellungen, sowle
spater die Formeln fiir das Rechnen mit so dargestellten Elementen ziemlich
kompliziert.

%) Vgl die Anm. 1 [26] zum Beweis von Satz 10.
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Z(ak—bk)zk.
k=0

) Sapck — 3beak —
k=0

k=0
Ist nun [, ein weiterer Integrititsbereich dieser Art, Z das
im Satz mit z, bezeichnete Element fiir I;, und ordnet man

o] o«
einem Element X azz* von [, immer das Element X oz x*
- k=0 k=0
von |, zu, so erschlieBt man aus (1)—(3) ganz entsprechend
wie in § 3, a), daB auf Grund dieser Zuordnung |; ~ I, bzgl. |
ist, also die eindeutige Bestimmtheit des Erweiterungstypus
von |; bzgl. I.

b) Vorbemerkungen zum Existenznachwess
Der Nachweis der Existenz eines Integrititsbereiches I, der
im Satz genannten Art kann prinzipiell nur durch Konstruktion
von [, d.h. durch Angabe seiner Elemente und ihrer Verkniip-
fungen gefiibrt werden. Hierbei diirfen wir natiirlich nicht schon

=]
mit dem Element  und den Summendarstellungen 3 axx* ope-
k=0

rieren, da diese erst auf Grund der Existenz von I; einen Sinn
haben. Wir entziehen daher fiir die Konstruktion dem % die Be-
deutung eines Elementes, das mit den Elementen von | zusammen
den drei ersten elementaren Rechenoperationen unterworfen

o0
werden kann, und somit den Ausdriicken 3 axz* die Bedeutung

¥=0
von Rechenansdriicken, sehen diese vielmehr lediglich als geord-
nete Systeme (@, gy, . . .) von Elementen aus | an. Aus (1)—(3)
entnehmen wir dann die nétigen Richtlinien fiir die Angabe der
Elemente von I, und ibrer Verkniipfungen.

¢) Konstruktion eines zu |, isomorphen Integrititsbereiches 1

Wir sehen die Menge |} aller geordneten Elementsysteme
(@ @y, . . .) von je abzahlbar unendlich vielen Elementen
aus |, wobei aber jedesmal nur endlich viele az == 0 sein
sollen, als Menge unterschiedener Elemente an, haben also:

') (g, &y, - - .) = (ag, a1, - . .) dann und nur dann, wenn
ar = ay, tir alle k.

Wegen (0,0,...) =+ (¢,0,...) ist dann §1, (a) in ||
vealisiert.

8 Hasse, Hohere Algebra
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Wir definieren weiter in |; zwei Verkniipfungen Addition
und Multiplikation durch die Festsetzungen:

(2) (agpay, . ..)+ (B by, . . ) = (ag + by, @ + by, .. 2,

() (agy agy . . Y (bgy byy . - )

= (agbg, @yby 4 a1 by, gy + a0y + a5bg, . . ).

Man iiberzeugt sich leicht, dal die rechten Seiten in (2')
und (3') wieder nur endlich viele Glieder = 0 haben, also zu
1] gehoren, so da § 1, (b) vermége (2') und (3') realisiert ist.

Ferner befriedigen die in (2') und (3') definierten Ver-
kniipfungen die Gesetze § 1, (1)—(6). Fur §1, (1)—(5) folgt
das leicht aus dem Erfiilltsein jener Gesetze in |, fiir § 1, (6)
zeigt man ebenso auf Grund der Giiltigkeit von § 1, (6)in I,
daB die Differenz in |, eindeutig bestimmt und stets durch

(4) (a9 01,-.-) —(Bg, b5 .. ) = (g — by 8y — by, .. .)
gegeben ist,

Néaherer Ausfithrung bedarf jedoch der Nachweis, daB das
Gesetz § 1, (7a) in | gilt, an dessen Stelle nach dem Zusatz
zu Def. 3 [12] auch der Nachweis treten darf, daf das Ana-
logon zu Satz 4 [12] in I; richtig ist. Da sich als Nullelement
von [; aus (2') oder (4') das Element (0, 0, . . .) ergibt, be-
deutet die Voraussetzung

(ag, Ay, .. ) (bgy By, .. ) =0,
daB alle Glieder dieses nach (3') zu bildenden Produkt-
systems Null sind. Wire nun (ag, @y, . . .) = 0, (b, by, . . .) 50,
so daB also ein letztes a, &= 0 und ein letztes b, =|= 0 exi-
stierte, so folgte fiir das (v 4 p)-te Glied
Gobusy + < oo+ Gy bysy + @by + Gya by A by
des Produktsystems nach Wahl von a, und by, daB es glelch
a,by, also wegen der Giiltigkeit von Satz 4 in | von Null ver-
schieden wire, im Widerspruch zu der Voraussetzung. Somit
gilt das Analogon zu Satz 4 in ;.

SchiieBlich gilt auch §1, (7b), d. h. das Analogon zu
Satz 8 [11] in 1, weil nach (3') das Element (¢, 0,0,...)
Einselement von I; ist.

Somit ist I; ein Integrititsbereich beziiglich der Ver-
kniipfungen (2') und (3).
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d) Konstruktion von |,

Der Integritatsbereich I; enthilt die Teilmenge I’ der
speziellen Elemente (a,0,0,...), die nach (2')—(4’) und
Satz 6 [19] ein Teilintegritatsbereich von |; und weiter nach
nach (1')—(3') und Def. 7 [23] vermige der Zuordnung
(a,0,0,...)<«—a zu | isomorph ist. Ganz entsprechend
wie in §3 d) kann man dann einen zu l; isomorphen
Erweiterungsintegrititsbereich I, von | herleiten, indem man
die Elemente von I’ durch die ihnen zugeordneten von |
ersetzt.

Dieser Integritatsbereich I; hat nun die im Satz genannte
Eigenschaft. Bezeichnet namlich z das spezielle Element
(0,¢,0,0,...) von I;, so dafl also nach (3') gilt

z°=e=(e,0,0,...)z1—-x—-(0e,OO Js
=(0,0,¢0,0,. ),...,
und ist (ag, ay, - - .) irgendeln Element von |, so ist nach
{2} und (3)

(g @y - - -) = (20, 0,0,...)2°+ (2,,0,0,.. ) 2" +
Da x nlcht zum Tellberelch I’ von I gehdrt, bleibt es belm
Ubergang zu I, erhalten, und es besteht demnach fiir das

zugeordnete Element von I, die Darstellung Zakzk.
E=0
Diese Darstellung ist schlieBlich eindeutig. Denn aus

2 ap ek = 2 akz’f folgt durch Ubergang zum isomorphen |;
E=0

zunéchst (ao, @, ...) =(ag ay,...) und daraus nach (1')
ar = ay, fiir alle .

Damit ist Satz 11 fiir n = 1 bewiesen. Zum Beweise fiir
beliebiges » stehen folgende zwei Wege zur Verfiigung:

Entweder kann man den gesuchten Integrititsbereich I,
sukzessive konstruieren. Bezeichnet man dazu den zu irgend-
einem Integrititsbereich | nach dem schon bewiesenen Teil
des Satzes vorhandenen Integrititsbereich I, miv 1[z], so
bilde man sukzessive

L =1[z,] fo = 1i[z], - o la = Loy [%a].

9%
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Dann lassen sich die Behauptungen des Satzes fiir [, sdmt-
lich durch vollstindige Induktion beziiglich # beweisen.
Oder man iibertrage die Entwicklungen des vorstehenden
Beweises fiir » = 1 sinngeméf auf beliebiges n, was ohne
weiteres moglich ist. An Stelle von (1)—(3) tritt dabei:

=]
(la) 3 ay,  pezh...afn
koo kp=0 [

= ! L k
= 2 G, kT Ty
Fiyeens p=10
dann und nur dann, wWenn @ag,...k, = Q... k, fUr alle
Systeme (ky, . . ., ka),

0

(28) I k.. kp@h. .. akn
koo kp=0
© . .
+ 2 bi,. kg Xl xin
Eiyeory kp=0
< . .
= X (@hy.otn + Dby vn) 2EL 2R,
kyoonkn=0
© . .
(Ba) X ar,.. wa%y... @kn
Froeunkp=0
© . )
Py br,,..., kn®yt . . . Tyt
kiyeonskn="0
= 2 2. 2 ai,..., ;'nb!‘lx-n,lln)a;ﬂ- .. xnn’

Frpees k=0 A,iy=0  Igoup=0
Mt m=k ntun=kn

und daraus ist die zu treffende Wahl der Elemente von I,
[ndmlich alle in ein n-dimensionales Schema geordneten
Systeme a,....k, By, . . ., ko = 0,1,...) von Elementen aus
| mit nur endlich vielen = 0] und der Verkniipfungen fiir
sie ohne weiteres ersichtlich.

Die nihere Ausfithrung darf auf Grund dieser Hinweise
fiir beide Wege dem Leser iiberlassen bleiben.

Wihrend der erste Weg neben dem Vorzug des Auskommens
mit den rechnerisch einfachen Entwicklungen des ausgefithrten
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Beweises fiir » = 1 insofern auch theoretisch von Bedeutung ist,
als manche Satze iiber I, nur durch vollstindige Induktion be-
ziiglich », also durch Zuriickgehen auf die angegebene rekursive
Konstruktion von I, beweisbar sind (vgl. z. B. 2, Satz 49 [41}),
ist der zweite Weg deshalb befriedigender, weil er einmal die be-
sondere Behandlung des Falles » = 1 entbehrlich macht, dann
aber auch im Gegensatz zum ersten einer wichtigen Eigenschaft
von |, gerecht wird, ndmlich der Symmetrie in z,, .. ., Z,, d. h.
der aus Satz 11 ohne weiteres ersichtlichen Tatsache, da8 I, in
sich iibergeht, wenn die Rollen der Elemente z;, . . ., 2, irgendwie
vertauscht werden.

Anders als in §3, Satz10, Zusatz [29]konnen hier zwar innerhalb
eines beliebigen Erweiterungsintegrititsbereiches I1* mehrere ver-
schiedene Reprisentanten des in Satz 11 genannten Erweiterungs-
typus vorhanden sein (z.B. wenn I* = 1 [z, ..., Zp, Tp 4, ..., Tugm]
ist, alle | [z, . . ., @i,], WO %y, . . ., i irgendwelche % verschiedenen
Ziffern aus der Reihe 1, ..., n + m sind); aber offenbar ist jeder
solche Reprisentant innerhalb 1* durch die Angabe derjenigen
Elemente aus 1*, die die Rolle von z,, . . ., x, haben, eindeutig be-
stimmt, ndmlich als die Gesamtheit der Ausdriicke der in Satz 11
genannten Form in diesen Elementen.

Im Hinblick auf die Ausfiihrungen nach Def. 7 ist es daher
wieder gerechtfertigt, mit dem bestimmten Artikel zu definieren:

Definition 9. Der in Satz 11 genannte Integritilsbereich ln
heifft der Integritdtsbereich der ganzen rationalen
Funktionen der » Unbestimmten z,, .. ., z, iber |. Er
werde mit [z, . . ., za], seine Elemente auch kurz mait
f(#Zsy - « o Zn), - . . oder moch kiirzer mit f, . .. bezeichnet.

Die eindeutigen Darstellungen dieser Elemenie in der Form
von Satz 11 nennen wir thre Normaldarstellungen und
die darin aufiretenden Elemente ay,,..., x, aus | die Koeffi-
zienten dieser Darstellungen.

Die Bezeichnung Unbestimmie fiir die x; erliutern wir dahin,
daB jedes einzelne der z; von | aus keiner anderen Bestimmung

.9
féhig ist, als der negativen, daB keine Gleichung S agaf = 0 (mit

nur endlich vielen Koeffizienten ay -5 0) besteh?, auller der tri-
vialen, wo alle ax = 0 sind. Die ; sind also weder Elemente von |,
noch geniigen sie algebraischen Gleichungen in | (siehe §5 [47]



38 I. Ringe, Kdorper, Integrititsbereiche

und 2, Def. 21 [54]). Steinitz (Lit.-Verz. 21) nennt sie daher
bzgl. | transzendente Elemente. Ubrigens sind die x; wegen (la)
auch nicht untereinander durch positive Bestimmungen (alge-
braische Gleichungen) verkniipit. Steinitz nennt sie daher genauer
ein System bzgl. | algebraisch unabhdngiger Elemente.

[z, - .., #,] ist stets ein echter Erweiterungsbereich von I,
da infolge der Findeutigkeit der Normaldarstellungen z. B. die
Elemente z,, ..., z, nicht zu | gehoren.

I [y, ..., %] ist in keinem Falle ein Korper (auch nicht, wenn
| ein Korper ist). Auf Grund der obigen sukzessiven Konstruktion
geniigt es, das fiir | [z] zu beweisen. In | [2] existiert aber sicher

[os]
nicht der Quotient —‘%, weil fiir jedes f(z) = 3 apz* aus | [x] gilt
k=0

[es]
zf () =k2(‘]akz’° +1

=0+apr+a2*°+...5e4+ 04 0224 ... =c¢.

Um auch die zu Beginn dieses Paragraphen schon ge-
nannten rationalen Rechenausdriicke in z,, ..., z, einzu-
beziehen, erweitern wir [ [z, . . ., ] zum Quotientenkorper.
Da hierbei insbesondere der Teilbereich [ zum Quotienten-
kérper erweitert wird, geniigt es, von vornherein von einem
Korper K und dem zugeordneten Integritéitsbereich
K[y, .. ., 2] auszugehen:

Definition 10. Ist K ein Kirper, so heifit der Quotienten-
korper des Integrilatsbereiches K[xy,...,25] der Korper der
rationalenFunktionendern Unbestimmtenz,, ..., z,
tiber K. Er werde mit K (24, . . ., Za), seine Elemente auch kurz
mit @ (%, .« . ., Tn), - . . oder noch kiirzer mit @, . . . bezeichnet.

Aus den im vorstehenden vom algebraischen Standpunkt
aus definierten ganzen rationalen bzw. rationalen Funk-
tionen iiber | bzw. K lassen sich nun die ganzen rationalen
bzw. rationalen Funktionen i. S. d. An. iiber | bzw. K da-
durch herleiten, daf man den bisherigen Unbestimmien
2y, - .« ., Tn die Bedeutung von Elementen aus | bzw. K beilegt.
Wir definieren zunachst fiir [z, ..., #a]:

Definition 11. Unter der einem Element f von | [y, . . ., %]
zugeordnetenganzenrationalen Funktioni. S. d. An.
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verstehen wir diejenige Funklion . S. d. An. dber |, die ent-
steht, wenn man jedem - Elementsystem ., ..., 2o aus | das
durch die Normaldarstellung von f gelieferte Element von | als
Funktionswert zuordnet.

Wir bezeichnen fiir den Augenblick den zu Beginn dieses
Paragraphen erwidhnten Ring der ganzen rationalen Funk-

tionen i. S. d. An. von ,,..., 2 tiber | mit | [z,, ..., 2]
und beweisen die folgende, fiir den Ubergang von|l [z, . . ., %]
| [, . . ., Z»] grundlegende Tatsache, die wir Einsetzungs-

prinzip nennen:

Satz 12. Beim Ubergang von B =1{z, ..., z:] zu
B =1[zy,...,2n] durch die in Def. 11 erklirte Zuordnung
sind die Bedingungen §2, (8), (9"), (¢), (3), (4), (B) erfiillt,
dagegen nicht vmmer (¢'). Jener Ubergang liefert also die Ge-
samiheit der Elemente von | [z, ..., 2,] aus der Gesamtheit
derjenigen von | {2, . . ., 22], und es bleiben bei ihm die Gleich-
heit und alle Verkniipfungsbeziehungen, dagegen nicht immer
die Unlerschiedenheit der Elemente von 1 [2,, . . ., Ta] erhalien.
Dann und nur dann, wenn auch § 2, () erfiillt ist, gilt auf

Grund jener Zuordnung | {zy, .. ., 2a] 21 [2y, . . ., 2a].

Beweis. a) Das Erfiilltsein von § 2, (d), (¢) liegt natiirlich
in der eindeutigen und fiir jedes Element aus I [z, . . ., Za]
anwendbaren Zuordnungsvorschrift von Def. 11.

b) Das Erfiilltsein von § 2, (8), (4), (b) ist leicht aus den
obigen Formeln (2a), (3a) zu entnehmen, die die Normal-
darstellung der Summe und des Produkts zweier Elemente
von | [zy, . . ., #n] aus denen der Summanden bzw. Faktoren
unter alleiniger Anwendung der in 1 [z, ..., z.] giiltigen
Gesetze §1, (1)—(B) berechnen. Denn weil diese Gesetze
auch in | giiltig sind, diirfen jene Umformungen auch vor-
genommen werden, wenn z;, . . ., #» Elemente aus | sind.

¢) Um das Erfiilltsein von §2, (') einzusehen, ist zu
zeigen, dafl auch umgekehrt jede ganze rationale Funktion
i. S. d. An. von z,...,%s liber | einem Element f von
I [#,, ..., 2z] gemaB Def. 11 zugeordnet ist. Nun liefert jedes
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auf z,...,2, und feste Elemente aus | anzuwendende,
aus endlich vielen Additionen, Subtraktionen und Multipli-
kationen bestehende Rechenverfahren, wenn man zunichst
Ty, « « -, Tn als Unbestimmte, also als Elemente aus [z, . . ., za]
auffafit, ein Element f aus I[z,,.. ., z,], einfach weil im
Integrititsbereich [ [z, . . ., z»] jene Operation unbeschrinkt
ausfithrbar sind. Nach dem unter b) schon Bewiesenen blei-
ben ferner beim Ubergang von [{z,, . . ., 2,] zu I [zy, . . ., Za]
durch unsere Zuordnung alle Verkniipfungsbeziehungen er-
halten. Wendet man das auf diejenige Verkniipfungsbe-
ziehung an, die das Element f durch die Elemente z, . . ., z»
und die festen Elemente aus | ausdriickt, so folgt, daB die
durch jenes Rechenverfahren gelieferten Funktionswerte die-
selben sind, wie die durch die Normaldarstellung von f ge-
lieferten, daf also die betr. ganze rationale Funktion i. S. d.
An. mit der f zugeordneten identisch ist.

d) § 2, (¢') ist z. B. nicht erfiillt, wenn fiir | der nur aus 0
und e bestehende Kérper K (§ 1, Beispiel 4) gewéhlt wird.
Denn dann ist den beiden verschiedenen Elementen z -+ 2
und 0 von K[z] dieselbe Funktion O i.S.d.An. zugeordnet,
weil ja auch z -+ 22 fiir alle z aus K (d.h. fiir z =0 und
z = ¢) Null ist.

Wir werden im iibrigen in 2, Satz 49 [41Jund 8, 1, § 4, Aufg. 7,8
sowie § 1, Aufg. 9 sehen, daB §2, (¢/) dann und nur dann erfiillt
ist, wenn | unendlich viele Elemente besitzt, daB also fiir unend-
liches | gilt 1 {,, ..., 2p] = | {2, ..., Zx] bzgl. |, fiir endliches |
aber nicht.

In der nach d) vorhandenen Moglichkeit liegt der Grund, wes-
wegen man in der Algebra mit dem auf Zuordnung gestiitzten
und demgemiB die Funktionen nach ihren Funktionswerten
unterscheidenden Funktionsbegriff nicht auskommt, sondern den
auseinandergesetzten formalen Funktionsbegriff braucht, der eine
feinere Unterscheidung der Funktionen vermoge ihrer Rechen-
ausdriicke liefert. Wenn auch diese Notwendigkeit nach dem
unter d) Bemerkten tatsichlich nur fiir endliche Integritits-
bereiche vorliegt, so sprechen natiirlich weiterhin methodische
Gesichtspunkte dafiir, von den in § 1 gegebenen Grundlagen aus-
gehend den Rechenausdruck als den durch ihn gelieferten
Funktionswerten iibergeordnet anzusehen.
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‘Wir haben im vorhergehenden absichtlich nicht in der Be-
zeichnung, sondern nur im Text unterschieden, ob 2, . . .,
als Unbestimmte oder als Elemente aus | gemeint sind, um
den im folgenden oft auszufithrenden Ubergang von der
ersten zur zweiten Bedeutung der =z, ..., 2, nicht immer
mit einem Bezeichnungswechsel verbinden zu miissen. Auf
Grund von Satz 12 ist es weiterhin hinsichtlich der Ver-
kniipfungen angéngig, auch die Bezeichnung f(z, . . ., Za)
der Elemente von I{z,, ..., z-] unverdndert fir die zuge-
ordneten Funktionswerte zu verwenden. Wir wollen daher
fortan f(z;, . . ., z») auch zur Bezeichnung des f zugeordneten
Funktionswertes fiir das Elementsystem zj,..., &, aus |
gebrauchen und einen solchen Funktionswert dann der
kiirzeren Ausdrucksweise halber auch einfach eine ganze
rationale Funktion von x,, .. ., 2, iiber | nennen; dagegen
soll die Bezeichnung f (ohne Argumente) fiir das Element
von Iz, ..., za] vorbehalten bleiben. [f(z,, . . ., z,) ist hier-
nach nicht auch Zeichen fiir die f zugeordnete Funktion i.S.
d.An., sondern nur fiir einen einzelnen Wert dieser Funk-
tion, die selbst erst durch die Gesamtheit aller Funktions-
werte f(xy, ..., zn) gebildet wird.] Wir miissen dann nur
irgendwie einen Bezeichungsunterschied fiir die folgenden
beiden ganz verschiedenartigen Gleichheitsaussagen ein-
fiihren:
fxy, . . o 20) = glzy, . . ., zn) als Elemente von I{zy, ..., 2x],
f(@y . o @) = g(®y, . . ., Tn) als Funktionswert fiir das Ele-

mentsystem , ..., 2, aus |
Daher setzen wir weiter fest, daB fortan zur Bezeichnung
der ersteren dieser beiden Aussagen das Zeichen = (Gegen-
teil =) verwendet werden soll®). Auf Grund obiger Verabre-
dung kénnen und wollen wir aber die Schreibweise f = ¢
gleichbedeutend mit f(z,, . . ., @») = ¢(y, . . ., 2») verwenden.

1) Die Relation f(z,,..., ) = ¢(z,, ..., vn) hat dann zwar die Relation:
f(xy, .- Zn) = g{Zy,..., Tp) fir alle z,,..., zy aus |
zur Folge, aber nach obigem nicht notwendig umgekehrt. Das Zeichen = hat
also i. a. cine weitergehende Bedeutung, als die hiufig darunter verstandene:
gleich fiir alle z;,..., zp. — Eine Verwechslung der hier gemeinten Relation
= mit einer Kongruenzrelation im Sinne von Def. 6 [21) wird durch den Zu-
sammenhang ausgeschlossen.
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Nach diesen Festsetzungen geht aus der gewihlten Be-
zeichnung stets unzweideutig hervor, welche der beiden
moglichen Auffassungen der z,, ..., Z» in einer Gleichheits-
oder Ungleichheitsrelation vorliegt.

Wir vollziehen nun schlieBlich den Ubergang von den
Elementen von K(zy, .. ., #») zu den rationalen Funktionen
i. S. d. An. durch folgende Definition:

Definition 12, Unter der esnem Element ¢ vonK(zy, . . ., Tn)
zugeordneten rationalen Funktion i.S.d. An. ver-
stehen wir diejenige Funktion 3. S. d. An. iiber K, die enisteht,
wenn jedem Elementsystem zy, . . . &n QUS K, fiir das mindestens

eine Darstellung 1 von @ als Quotient zweter Elemente aus

Klzy, . .., za] mit g(@y, - . ., 2n) = O existiert, als Funktions-
Zyy e n a@

———————" der Funktionswerte von f und g
T

werl der Quotient

zugeordnet wird.
Analog zu Satz 12 gilt dann hier das Einselzungsprinzip:

Satz 13. Fir den Korper K(zy, ..., 2.) und den Ring

K(z,, ..., xn) der rationalen Funktionen 4.8.d. An. wvon
Ty, - . . Tn Uber K gilt vermdge der in Def. 12 erklirten Zu-

ordnung enisprechendes wie wn Salz 12, nur daf hier die ev.
Nichtgiltigkeit von § 2, () stets auch die Nichigiiliegkeit von
§ 2, (0) zur Folge hat.

Bewers. a) Um das Erfiilltsein von § 2, (¢) zu beweisen, ist
zu zeigen, daB die einem Element ¢ von K(zy, . . ., z») nach
Def. 12 zugeordnete Funktion i. S. d. An. unabhingig von
der speziellen Wahl der (der Bedingung von Def.12 geniigen-

den) Quotientendarstellung%allein durch ¢ bestimmt ist.

Sind nun L und f, zwei (dieser Bedingung geniigende) Quo-

tientendarstellungen von g, so folgt aus der dann nach §3, (1)
bestehenden Relation fg’ =/ ¢ nach Satz12, daB auch
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@ o @) (T oo o Zn) = F (2, - - ., Zn) (24, - - -, Tn)
ist, woraus sich unter der Annahme von Def. 12 iiber ¢
[@ - 2Zn) (@0 Tn)
g(&yy o Zn)  G(®y - -y Tn)

b) Durch Zuriickgehen auf die Formeln §3, (2) und (3)
und Anwendung von Satz 12 ergibt sich ebenso das Erfiillt-
sein von § 2, (3), (4), (5).

¢) Das Erfiilltsein von § 2, (6') folgt dann entsprechend
wie im Beweis zu Satz 12 unter c); siehe dazu die Prézi-
sierung und Anleitung in 3, 1, § 5, Aufg. 1.

d) Da8 § 2, (¢') nicht notwendig erfiillt ist, zeigt dasselbe
Beispiel wie oben. Es tritt das offenbar dann und nur dann
ein, wenn mindestens ein Element ¢ in K[z, . . ., z,] derart
existiert, da8 zwar ¢ + 0, aber doch g(zy, ..., zs) = 0 fiir
alle z,, . . ., 2, aus K ist. Ist nun einerseits dies der Fall, so

hat das Element % aus K(z,, ..., z,) die Eigenschaft, da8

zu ihm fiir kein Elementsystem x,, . . ., Z» aus K eine Quo-
tientendarstellung existiert, deren Nenner einen von Null

und ¢° weiter ergibt.

verschiedenen Funktionswert hat; denn nach § 3, (1) ist—z—
seine allgemeinste Quotientendarstellung, wo f ein beliebiges

. . e
Element aus K[z, ..., z,] ist. Also existiert dann zu —

keine zugeordnete Kunktion i. S. d. An., indem die Def. 12
des Funktionswertes fiir jedes z,,..., 2, aus K versagt.
Existiert andererseits kein ¢ der angegebenen Art in

Kiz, ..., 2], so 1aBt sich dem Quotienten 1 mindestens

fiir ein Elementsystem z,, .. ., z, aus K ein Funktionswert
gemiB Def. 12 zuordnen.

Auf Grund von Satz 13 iibertragen sich die im AnschluB
an Satz 12 gemachten Bemerkungen iiber I[z;, . . ., 2] sinn-
gemi auch aufK(z;, . . ., 2,). Es sollen daher unsere Bezeich-
nungsfestsetzungen auch fiir die Elemente von K(zy, . . ., z)
Giiltigkeit haben.
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§ 5. Ausfiihrliche Formulierung der Grundaufgabe
der Algebra

Mittels der im vorhergehenden auseinandergesetzten Be-
griffe wollen wir jetzt eine genaue Formulierung der in der
Kinleitung genannten Grundaufgabe der Algebra geben.

Eine mittels der vier elementaren Rechenoperationen ge-
bildete ,,Gleichung*‘ zwischen bekannten und unbekannten
Elementen eines Korpers K, wie sie in der Formulierung der
Einleitung gemeint ist, entsteht, wenn zwei auf die Unbe-
kannten x,, ..., 2, und vorgegebene (bekannte) Elemente
von K anzuwendende Rechenverfahren vorliegen und gefragt
wird, fiir welche Elementsysteme x;, . . ., 2, aus K beide Ver-
fahren dasselbe Ergebnis liefern. Hierbei haben also die Un-
bekannten z,, ..., 2, zunichst den Charakter von Unbe-
stimmten, und die vorliegenden Rechenverfahren sind zwei
Elemente ¢ und ¢’ vonK(z,, . . ., #5). Die in der ,,Gleichung**
liegende Frage bezieht sich dann, in gewisser Analogie zu
den letzten Entwicklungen von §4, auf die Ersetzung der
Unbestimmten z,, . . ., z, durch Elementsysteme z,, ..., Za
aus K und geht dahin, fiir welche solchen Elementsysteme
die Gleichung ¢(x;, .. ., Zn) = ¢'(2y, . . ., Zn) besteht.

Da das Hinschreiben einer solchen ,,Gleichung® als For-
derung oder Frage logisch einen ganz anderen Sinn hat als
die gewGhnlich ebenso bezeichnete Tatsache des Bestehens
der Gleichung, wollen wir fiir die Forderungsgleichheit ein
besonderes Zeichen == (Gegenteil ==) einfiihren, also die
eben genannte Frage mit

@@y ) = @@y, .0y Tn)
bezeichnen.

Die Gleichung ¢(zy, ..., 2n) = ¢'(y, . . ., 2») ist nun zu-
nachst nach dem Einsetzungsprinzip, angewandt auf die
Verkniipfungsbeziehung ¢ — ¢* = v, gleichbedeutend mit
einer Gleichung der Form (g, ..., #,) == 0, wo o wieder
ein Element von K(z,, ..., z,) ist.
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Ehe wir diese Gleichung weiter reduzieren, miissen wir uns mit
dem folgenden Umstand auseinandersetzen: Einerseits besteht das
zu y fithrende Rechenverfahren im Sinne der gestellten Aufgabe
(das gemédB p = @ — ¢’ aus den beiden urspriinglich gegebenen,
zu @ und ¢’ fithrenden zusammengesetzt ist) genauer betrachtet
in einer Kette von Einzeloperationen, deren jede eine Addition,
Substraktion, Multiplikation oder Division von je zwei Elementen
ist, deren jedes entweder ein Element aus K oder eines der 2y, . ., z,
oder ein Resultat einer der vorhergehenden Operationen ist. Ande-
rerseits 1468t sich ¢ als Element von K(z,, . . ., z,) in der einfachen

Form eines Quotienten—f- zweier Elemente aus K[z, ..., 2;] in

Normaldarstellung darstellen. Nach dem Einsetzungsprinzip hat
es dabei auf das Resultat der Einsetzung eines Elementsystems
215 « -« Zp 308 K keinen EinfluB, ob man diese Einsetzung vor der
Ausfithrung des Verfahrens stattfinden 148t (ob man also, wie es
dem Sinn der Aufgabe entspricht, von vornherein mit den z,, ..., z,
als Elementen aus K losrechnet), oder ob man erst nach der Aus-

fithrung des Verfahrens, in eine Quotientendarstellung 1 einsetzt,

solange man nur solche Einsetzungen betrachtet, fiir
die weder der Nenner g noch einer der sukzessive bei
dem Rechenverfahren auftretenden Nenner Null wird.
Es ist nun keineswegs von vornherein sicher, daB der Nenner ¢
genau fiir diejenigen Elementsysteme aus K nicht Null wird, fir
die keiner der sukzessiven Nenner des Verfahrens Null wird, die
also im Sinne der gestellten Aufgabe zulidssig sind. Doch
136t sich zeigen, daB es unter allen Quotientendarstellungen von
v (mindestens) eine mit dieser Eigenschaft gibt (siehe dafiir
3,1, § 5, Aufg. 1). Eine solche, der Aufgabe naturgemafl angepafite

Quotientendarstellung ¢ = 7 sei im folgenden zugrunde gelegt.

Vermoge einer Quotientendarstellung = s (der eben

ndher charakterisierten Art) reduziert sich nun nach §3
und dem Einsetzungsprinzip die Losung der Gleichung
w(Zy, . . ., @n) = 0 weiter darauf, alle diejemigen Loésungen
von f(z, ..., %x) =0 zu bestimmen, die zudem Losungen
von ¢(%, ..., Zx) ~0sind. Da man nun die Losungen der
letzteren Ungleichung kennt, wenn man die der Gleichung
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g(Zy, . . ., 2n) = 0 kennt, reduziert sich die Aufgabe auf die
Behandlung von Gleichungen der Form

flz, . . ., 20) =0,
wo f ein Element aus K[z,, . . ., z,] ist.

Obwohl man nun im Prinzip die gemeinsamen Losungen
einer Anzahl von Gleichungen beherrscht, wenn man die
Losungen jeder Einzelgleichung kennt, ist es doch sowohl
von theoretischen als auch von praktischen Gesichtspunkten
aus zweckmaBig, solche Gleichungssysteme als Ganzes zu be-
handeln. Somit formulieren wir als die uns zum Leitfaden
dienende Aufgabe der Algebra:

EsseienK ein Korper undf,, . . ., fm Elemente ausK[z,, ...,z ].
Es sollen Methoden zur Gewinnung aller Losungen des Gler-
chungssystems

fi(xlw--,xn)z.o (7/=1,,m)

entwickell werden?).

Eine systematisch vollendete Theorie zur Lisung dieser
Aufgabe in ihrer vollen Allgemeinheit wiirde den Rahmen
dieser Darstellung iibersteigen. Daher sollen uns hier nur
die beiden nachstehenden, fiir den allgemeinen Fall grund-
legenden Spezialfille beschiftigen:

1) Die Elemente f,,..., fn sind linear, d.h. in ihrer
Normaldarstellung (Def. 9 [38]) sind hochstens die n 4 1
Koeffizienten

9,...,0, ®1,0,..., 05+ -+ @0,..,0,1

von Null verschieden. Dann handelt es sich also um ein
Gleichungssystem, das in der Form

n

@ Sagty=a; (G=1,...,m)
F=1

') Es sei auf die beiden folgenden, naheliegenden Verallgemeinerungen

dieser Aufgabe hingewiesen:

1. die Anzahl der Gleichungen und Unbekannten wird auch als abzihlbar un-
endlich zugelassen,

2. an Stelle des Korpers K wird ein Integrititsbereich (oder auch nur ein Ring)
zugrunde gelegt,

mit denen man sich in neuerer Zeit ebenfalls beschiftigt hat.
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geschrieben werden kann, wo die a;; und a; Elemente aus K
sind. Ein Gleichungssystem der Form (1) heiBt ein lineares
Gleichungssystem in K.

2) Es ist m = n = 1. Dann handelt es sich also um eine
einzelne Gleichung der Form

apzkb=0,

E=0
wo die ar Elemente aus K sind, von denen nur endlich viele
= 0 sind. Von dem trivialen Falle, wo alle a;z = 0 sind und
somit jedes z aus K Losung der Gleichung ist, darf abgesehen
werden. Dann existiert also ein letztes a, = 0. Der so be-
stimmte Index r heilt der Grad des links stehenden Ele-
mentes aus K[z]. Der Fall r = 0 ist ebenfalls trivial, weil
dann wegen der Annahme a, = 0 kein = aus K Losung der
(leichung ist. Somit ist eine Gleichung der Form

@) Sazt=0 (440, r=1)
k=0

zu behandeln. Eine Gleichung der Form (2) heiBt eine alge-
braische Gleichung r-ten Grades in K.

In 1, IIT und IV werden wir die Teilaufgabe 1), in 2 die
Teilaufgabe 2) behandeln.

II. Gruppen
§ 6. Definition der Gruppen

Man redet von einer Gruppe, wenn folgender Tatbestand
realisiert ist:

(a) Es liegt eine Menge & von unterschiedenen Ele-
menten in trgendeiner endlichen oder unendlichen Anzahl vor.

Vgl. die Bemerkungen zu §1, (a). Anders als dort wird hier
nicht gefordert, da & mindestens zwei verschiedene Elemente
besitzt. Wir bezeichnen Gruppen mit grofen deutschen, Elemente
aus Gruppen mit groBen lateinischen Buchstaben.



48 II. Gruppen

(b) Fiir je zwet in bestimmier Rethenfolge gegebene Elemente
A, B aus & ist eine Verkniipfung definsert, d. h. jedem
geordneten Elementpaar A, B aus & st irgendwie ein Element
C aus ® zugeordnet.

Vzl. die Bemerkungen zu § 1, (b). Wir nennen diese Verkniipfung
hier Multiplikation, obwohl gelegentlich auch die Addition in
einem Bereich als Gruppenverkniipfung zu betrachten ist, schreiben
C = AB und nennen C das Produkt von A und B.

(e) Die in (b) genannte Verkniipfung geniigt fiir beliebige
Elemente aus & den Gesefzen:

(1) (AB)C = A(BC) (assoziatives Gesetz);

(2) Zu jedem geordneten Elementpaar A, C aus & existieren
evndeutiq bestimmie Elemente B, und B, aus & so, daff AB, =C
und B,A = C ist (Gesetz der unbeschrinkten und
eindeutigen, hinteren und vorderen Division).

Es fehlt also gegeniiber den Additions- bzw. Multiplikations-
gesetzen des § 1 tiir Korper das kommutative Gesetz. Daher muf}
in (2) zwischen hinterer!) Division (Bestimmung von B, aus
AB, = C) und vorderer!) Division (Bestimmung von B, aus
B,A = C) unterschieden werden. Man kann aus diesem Grunde
auch nicht die Bezeichnung 5— verwenden, sondern schreibt statt
dessen gelegentlich B, = A\C, B, = C/A; mehr eingebiirgert
hat sich jedoch die Schreibweise aus Satz 15. Die Einschrinkung
a = 0 in dem (2) entsprechenden Gesetz § 1, (7) fallt hier natiir-
lich fort, weil keine zweite Verkniipfung und somit kein distri-
butives Gesetz vorliegt [vgl. die Bemerkung hinter § 1, (7)].

Definition 13. Wenn fiir eine Menge & die unter (a), (b), (c)
aufgefiihrien Tatsachen realisiert sind, heifft & eine Gruppe
beziiglich der Verkniipfung (b). Die Anzahl der Elemente
von & (set ste endlich oder unendlich) herfit die Ordnung
von &. Wenn speziell auch noch das kommutative Geselz

3) AB = B4
erfillt ust, hetfit & eine abelsche Gruppe.

') Diese Angaben beziehen sich auf die Stcllung der Quotienten B,, B,.
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Auch fiir Gruppen gilt analog zu Satz 3 [11]:

Satz 14. In jeder Gruppe & existiert ein eindeuttg be-
stimmtes Element E, das Einselement oder Eins von &
heifit, mit der Eigenschaft:

AE = EA = A fir alle 4 aus ©.

Bewers. Nach (2) existieren in & fiir alle 4, B, ... aus &
Elemente E4, Ep,... und Fa, Fp,... derart, daB
AEs = A, BEp=BH,...
FaAd=4, FgB=B,...
ist. Nach (2) kann man ferner zu jedem Elementpaar 4, B
aus & Elemente C und D so wihlen, daf
AC=B, DA=B
ist. Daraus folgt nach (1)
BE4s =(DA)E4 = D(AE4) = D4 = B = BEp,
F4B = F4(AC) = (F44)C = AC = B = F3B,
also B4 = Ep, Fq = F'p wegen der Eindcutigkeit in (2).
Daher sind E 4, Ep, . .. cinerseits und F4, Fp, ... anderer-
seits alle dasselbe Element £ bzw. F, und es gilt AE = 4,

FA = A fir jedes A aus @. Insbesondere folgt daraus fiir
A=F bzw. E

FE=F bzw. FE =E, also E=1F.
DaB E eindeutig durch die Forderung des Satzes bestimmt
ist, folgt natiirlich aus der Eindeutigkeit in (2).

Beziiglich der Division in einer Gruppe beweisen wir
ferner:

Satz 156. Zu jedem Element A einer Gruppe & existiert emn
eindeutig bestimmies Element A= qus &, das das Reziproke
21 A heafit, mit der Evgenschaft

A4 =414 =E.
Es gilt i
(AB)™* = B14-1.

4 Hasse, Hohere Algebra
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Die in (2) genannten Elemente B, und B, (hinterer und vor-
derer Quotient von C und A) sind durch

B, = A-C, B,=CA"
gegeben.

Bewers. a) Nach (2) existieren eindeutig bestimmte Ele-
mente 4, und A4,in & derart, daB

A4, = 4,A=E
gilt. Nach (1) und Satz 14 folgt dann
Ay = FA;, = (4,4) A, = A(AA)) = 4,E = 4,.

Es hat also das Element 4-! = 4, = 4, die im Satz ge-
nannte Eigenschaft und ist durch A eindeutig bestimmt.

b) Aus (4AB)(B-1A-1) = A(BB 1) A1 = AEA
=AA1=E
und der Eindeutigkeit von (AB)-! folgt, daB (4B)-1
= B-1 A-1 ist.

¢) Die Elemente B, = 4-1C, B, = CA-* befriedigen nach
(1), Satz 14 und dem unter a) Bewiesenen die Gleichungen
4B, = C, B,A = C, sind also deren nach (2) eindeutig be-
stimmte Losungen.

Analog zu den am Schlufl von §1 getroffenen Festsetzungen
schreibt man

cen A7 A7 A0, AL, A{ oofiir.. ., 4714, 4A7LE, 4, A4, ..
(ganze Potenzen von A).
Unter Beriicksichtigung der nach Satz 15 bestehenden Formel
AH =4
ergibt sich dann mittels der Definition der Rechenoperationen im
Bereich der ganzen Zahlen
AmAn = Am +n’ (A’")" = Amn

fiir beliebige ganze Zahlen m, n. Speziell gilt Em = E fiir jede
ganze Zahl m.
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Der spéteren Anwendung halber formulieren wir noch
besonders die beiden folgenden Sitze, deren erster nur eine
andere Ausdrucksweise fiir das Gesetz (2) ist:

Satz 16. Ist A ein festes Element einer Gruppe &, so durch-
lauft jedes der Produkie AB und BA alle Elemente von @,
jedes einmal, wenn B dieses tuf.

Satz 17, Das Reziproke B~ durchliuft alle Elemente von @,
jedes einmal, wenn B dieses tut.

Bewers. a) Ist 4 irgendein Element von &, so ist nach
Satz1b 4 = (A~1)1; A4 ist also Reziprokes B-*zuB = A4-1,

b) Aus Byt = B folgt (ByY)~! = (Bz')% also B, = B,,
wieder nach Satz 15.

Fiir den Nachweis, da eine Gruppe vorliegt, kann man
die Feststellung (2), daB alle hinteren und vorderen Quotien-
ten vorhanden und eindeutig bestimmt sind, auf Grund des
folgenden Satzes durch zwei einfachere Feststellungen er-
setzen:

Satz 18, Unter der Voraussetzung, daf (a), (b) und (1)
erfiilll sind, ist die Forderung (2) gleichwertig mit den beiden
Forderungen

(2a) Es existiert ein Element E in ® derart, daff AE = A fir
alle 4 aus & st (Existenz des hinteren Einselements).

(2b) Zu jedem A aus ® existiert evn Element A aus @ derart,
daf} AA-' = Eist (Existenz des hinteren Reziproken).

Bewers. a) Ist (a), (b), (1), (2) erfiillt, so stimmen nach
dem Vorhergehenden auch (2a) und (2b).

b) Es seien (a), (b), (1), (2a) und (2b) erfiillt. Ist dann
(A-*)~* das nach (2b) ebenfalls existierende hintere Rezi-
proke zu A, also A-1(4-*)~1 = E, so ergibt sich durch vor-
dere Multiplikation dieser Relation mit 4 nach (1), (2a), (2b)
E(4-1)1=A.Daher ist einerseits auch£A4 = E(4-1)"1= 4,
d.h. E ist auch vorderes Einselement, und andererseits somit
(A-1H)-1 = 4, also 424 =E, d.h. 4-* ist auch vorderes
Reziprokes zu A. Hieraus und aus (2b) sowie (1) ergibt sich
dann, da8 die Gleichungen AB;, = C und B,4 = C mit den

4%
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Relationen B, = A-1C bzw. B, = C4-! gleichwertig sind,
némlich mit ithnen durch vordere bzw. hintere Multiplikation
mit A~ und riickwérts mit A zusammenhingen. Jene Glei-
chungen werden also durch diese Ausdriicke B,, B, ein-
deutig gelost. Daher ist (2) erfiillt.

Beispiele

1. Offenbar ist jeder Ring eine abelsche Gruppe beziiglich seiner
Addition als Gruppenverkniipfung. Das Einselement dieser Gruppe
ist die Null des Ringes. Ferner bilden auch die von Null verschie-
denen Elemente eines Korpers eine abelsche Gruppe beziiglich der
Kérpermultiplikation als Gruppenverkniipfung.

2. Besteht die Menge € nur aus einem Element E und setzt
man fest EE = E, so ist € eine abelsche Gruppe der Ordnung 1
beziiglich dieser Verkniipfung, die sog. identische Gruppe oder
Einsgruppe. E ist ihr Einselement.

3. Enthilt & nur zwei Elemente E, 4 und setzt man fest

EE=EFE EA=AE =4, AA=E,

so sieht man leicht, daB & eine abelsche Gruppe der Ordnung 2
beziiglich dieser Verkniipfung ist. Diese entsteht aus dem in § 1,
Beispiel 4 genannten Korper, wenn man dessen Addition als
Gruppenverkniipfung ansieht und 0 mit E, e mit 4 identifiziert.

4. Es sei ein gleichseitiges Dreieck im Raum gegeben, dessen
drei Ecken und zwei Seitenflichen als unterschieden gelten. Wir
betrachten alle Drehungen, die dieses Dreieck als Ganzes mit sich
zur Deckung bringen (ohne daB jedoch jede einzelne Ecke oder
Fliche in sich iiberzugehen braucht), und unterscheiden diese
Drehungen nur nach der Endlage der Ecken und Flichen des
Dreiecks relativ zu deren Anfangslage (also weder nach den Zwi-
schenstadien, noch nach der absoluten Anfangs- oder Endlage).
Die so erklirte Menge ® unterschiedener Elemente besteht offen-
bar aus den folgenden Drehungen:

a) der identischen Drehung E (Erhaltung der Lage),

b) zwei Drehungen A;, 4, um die durch den Dreiecksmittel-
punkt gehende, zur Dreiecksebene senkrechte Achse um die

- on 4n
Winkel —3—, T,

¢) drei Drehungen B, B,, B, um je eine der drei Mittellinien
des Dreiecks um den Winkel 7.
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Dabei mogen der in b) vorliegende Drehungssinn sowie die in
¢) genannten Drehachsen als im Raume fest, d. h. den Drehungen
des Dreiecks nicht mitunterworfen angesehen werden.

Ausgehend von einer festen Anfangslage lassen sich diese
Drehungen wie folgt durch ihre Endlagen veranschaulichen:

LN NN NN A,

Definiert man nun die Multiplikation in & durch Nacheinander-
ausfithrung der betr. Drehungen, so ist & eine endliche Gruppe
der Ordnung 6 beziiglich dieser Multiplikation. Denn*nach dem
Gesagten sind (a), (b) in & realisiert, ferner stimmt (1) offen-
sichtlich, schlieBlich sind (2a) und (2 b) erfiillt, weil ¢ die identi-
sche Drehung E als Einselement und zu jeder Drehung C die durch
riickwirtige Ausfithrung entstehende D enthalt, fiir die offenbar
CD = E gilt. Wie sich aus obiger Veranschaulichung sofort ergibt,
lassen sich die von E verschiedenen Elemente von & wie folgt
durch 4 = 4, und B = B, ausdriicken:
A4, =4, A,= 4% B,= B, B = B4, B,= BA%.
-Es bestehen ferner die folgenden Verkniipfungsbeziehungen:
A3=E, B*=E, AB= B4%

aus denen sich iibrigens alle anderen herleiten lassen. Die letzte
dieser Beziehungen zeigt, daB ® keine abelsche Gruppe ist. Als
Reziproke findet man

E1=FE, A7l= 4% (A% 1= A2 =4,

B = B, (BA)™* = BA, (BA4%*™'= BA.

Wahrend uns die in Beispiel 1 hervorgehobene Anwendung des
Gruppenbegriffs in 2, § 4 eine wichtige Einsicht in die Struktur
von Integrititsbereichen und Koérpern liefern wird, werden wir es
an zwei entscheidenden Stellen (Definition der Determinanten in
1, § 17 und Definition der galoisschen Gruppe in 2, § 15) mit end-
lichen, nicht notwendig abelschen Gruppen zu tun haben, deren
Elemente nicht gleichzeitig Elemente desjenigen Bereiches sind,
den wir fiir die Losung der Aufgaben der Algebra zugrunde legen.

§ 7. Untergruppen, Kongruenzrelationen, Isomorphie

Wir iibertragen in diesem Paragraphen die Entwicklungen
des § 2 sinngemiB auf Gruppen. In Analogie zu Def. 4 [19]
setzen wir fest:
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Definition 14. Bilden die Elemente einer Teilmenge  einer
Gruppe & beziiglich der in® zugrunde liegenden Multvplikation
evne Gruppe, so heift § eine Untergruppe von @.

Genau wie in § 2 den Satz 6 [19], beweist man hier:

Satz 19. Evne Teilmenge O der Gruppe & ist dann und nur
dann Uniergruppe von &, wenn Produkt sowie himterer und
vorderer Quolient von Elementen aus 9, wie sie innerhaldb &
definsert sind, stets wieder zu $ gehdren.

Beziiglich der Zugehorigkeit der Quotienten zu $ geniigt es
nach § 6 offenbar auch, zu fordern, daB das Einselement E von
® zu $ gehort, ebenso jedes Reziproke B! eines Elementes B
aus . Fiir den Fall einer endlichen Gruppe & gilt sogar:

Satz 20. Ist ® eine endliche Gruppe, so ist die Behauptung von
Satz 19 auch richitg, wenn nur die Produkie von Elementen aus $
(nicht auch die Quotienten) beriicksichtigt werden.

Beweis. Nach § 6, (2) sind fiir festes 4 aus $ die Elemente AB
und B4 je simtlich verschieden, wenn B die Elemente von $,
jedes einmal, durchlduft. Also miissen sie mit den in derselben
Anzahl vorhandenen samtlichen Elementen von § iibereinstimmen,
was die Existenz aller hinteren und vorderen Quotienten von Ele-
menten aus § innerhalb § besagt.

Fiir die Ubertragung der weiteren Sitze 7—9 [20—22]
und Definitionen 5—7 [20—23] des §2 koénnen wir uns
mit der Formulierung der entsprechenden Sitze und Defi-
nitionen begniigen und im iibrigen auf die entsprechenden
Beweise und Ausfithrungen des § 2 verweisen.

Satz 21. Sind 9y, D, . . . irgendwelche [endlich oder unend-
lichY) wviele] Untergruppen emner Gruppe ®, so ist auch der
Durchschmitt der Mengen 9y, O,, . . . etne Uniergruppe von &;
diese heifft Durchschnittsgruppe oder kurz Durch-
schnitt der Gruppen Dy, Do - - .-

Definition 15. Sind 9, Do, - . . trgendwelche (endlich oder
unendlich viele) Unlergruppen einer Gruppe &, so heifft der
Durchschnitt aller ©q, s, - - . als Untergruppen enthaltenden
Untergruppen von & das Kompositum von 9,, s, . . . oder
auch die aus £y, O, . . . komponierte Gruppe.

1) Vgl. das in der Anm. 1 zu Satz 7 {20) liber die Numerierung Gesagte.



§ 7. Untergruppen, Kongruenzrelationen, Isomorphie 55

Definition 16. Erfiillt eine Aquivalenzrelation = in einer
Gruppe ® neben § 2, (), (B), (y) auch noch die Bedingung:

(1) aus 4, = A, B,= B, folgt 4, B, = 4, B,,

so nennen wir sie eine Kongruenzrelation in & und die
thr enisprechenden Klassen die Restklassen von & nach ¢hr.

Satz 22. Liegt in einer Gruppe & eine Kongruenzrelation=

vor und definiert man in der Menge ® der Restklassen nach
thr emme Verkniipfung durch elementweise Mulliplikation, so

ist & eine Gruppe beziiglich dieser Verkniipfung; © heifit die
Restklassengruppe von & nach der Kongruenzrelation =.

Satz 23. Die folgende Festsetzung liefert eine Aquivalenz-
relation in der Menge aller Gruppen: Es sei @ ~ & dann
und nur dann, wenn erstens & und & gleichmdichiig sind und
wenn man zweitens die etneindeutige Zuordnung zwischen den
Elementen A, B, ... von & und A°, B'. ... von & so wihlen
kann, daf die Bedinjung besteht:

(2) wenn A <> A', B<—> B’ ist,ist AB<— A'B'.

Definition 17. Eine eineindeutige Zuordnung zwischen
zwet Gruppen & und & mit der Eigenschaft (2) heifit ein
Isomorphismus zwischen & und &, und & und & selbst
heifen dann isomorph. Die in Saiz 23 genannte Aquivalenz-
relation ® =~ & fiir Gruppen heifit Isomorphie, die thr
entsprechenden Klassen die Typen der Gruppen.

Beispiele

1. Jede Gruppe enthilt als Untergruppen: a) sich selbst, b) die
nur aus ihrem Einselement bestehende, identische Untergruppe
(§ 6, Beispiel 2). Alle anderen Untergruppen von & heiBlen echt
oder eigentlich.

2. Alle Gruppen der Ordnung 1 sind isomorph, d. h. es gibt
nur einen Gruppentypus der Ordnung 1. Auch innerhalb einer
Gruppe ® gibt es nur eine Untergruppe der Ordnung 1, denn aus
AA = A folgt nach § 6, (2) und Satz 14 [49] A = E. Daher kann
man mit Recht von der identischen Gruppe € und der identi-
schen Untergruppe € von ¢ reden.
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3. Die in §6, Beispiel 3 genannte Gruppe hat keine echten
Untergruppen.

4. Man bestitigt leicht, daB die folgenden Teilmengen, und
keine weiteren, echte Untergruppen der Gruppe & von § 6, Bei-
spiel 4 sind:

a) E, 4, A%; by) E, B; b)) E, BA; b,) E, B4
Sie seien mit N, Hy, H;, . bezeichnet. Ersichtlich ist der Durch-
schnitt je zweier €, das Kompositum je zweier ®. Ferner sind
Hos D1, H» zueinander isomorph (vgl. d. Bem. nach Def. 7 [24/257).

§ 8. Zerlegung einer Gruppe nach einer Untergruppe

Neben den Kongruenzrelationen (Def. 16 [55]) hat man
in der Gruppentheorie wegen des Wegfallens des kommu-
tativen Gesetzes noch allgemeinere Aquivalenzrelationen und
deren Klasseneinteilungen einzufiihren, deren Studium uns
gleichzeitig einen tieferen Einblick in die Natur der Kon-
gruenzrelationen in Gruppen vermitteln wird. Diese ergeben
sich anf folgende Weise:

Satz 24. Es set § eine Untergruppe der Gruppe &. Dann
liefert jede der beiden folgenden Fesiselzungen eine Aquwalenz-
relation wn der Menge &: Sind S und S Elemente aus ®, so set

(1a) S 2 §(H) dann und nur dann, wenn S = S’ A mit
A aus 9,

(1b) S & §(9) dann und nur dann, wenn S = AS" mit A
aus 9,

d. k. wenn der hintere bzw. vordere Quotient von S und S zu O
gehort.

Beweis. Es ist erfiillt: § 2, («), weil E, § 2, (8), weil mit 4
auch 4-1, § 2, (p), weil mit 4,, 4, auch 4; 4, und 4,4, zu
9 gehoren, wie man aus Def. 14 [54] oder Satz 19 [54] ohne
weiteres entnimmt.

Auf Grund von Satz 24 definieren wir nun:

Definition 18. Die in Saiz 24 genannten Aquivalenzrela-
tionen heifen hintere bzw. vordere Aquivalenz nach 9,
die thr entsprechenden Klassen von Elementen aus & hintere
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bzw. vordere Restklassen?!) nach 9, die durch diese ge-
lieferte Zerlegung von & hintere bew. vordere Zerlegung
von & nach 9 und ewn vollstindiges Reprisentantensystem
fiir diese vollstindiges hinteres bzw. vorderes Rest-
system von & nach 9.

Jede der Restklassen nach § entsteht aus irgendeinem ihr an-
gehorigen Elemente S, indem alle Produkte S4 bzw. AS mit den
Elementen A4 aus $ gebildet werden. Man deutet diese ihre
Struktur gewohnlich durch die Bezeichnung S bzw. HS an (vgl.
§ 9, Def. 20 [59]). Ist ferner S}, S,, . . . bzw. Ty, T,, .. .2) ein voll-
stindiges hinteres bzw. vorderes Restsystem von & nach §, so
schreibt man dementsprechend

G =89+ 89+ - bzw. & = 9T, + HT,+ - -+

fiir die hintere bzw. vordere Zerlegung von & nach §, wo also die
Zeichen + die in der Mengentheorie iibliche Bedeutung haben
(Bildung der Vereinigungsmenge elementfremder Mengen).

Die aus dem Einselement E oder auch aus irgendeinem Element
von § entspringende hintere sowohl wie vordere Restklasse ist
ersichtlich die Gruppe $ selbst.

Auf eine Beziehung der beiden Aquivalenzrelationen (1a) und
(1b), sowie der ihnen entsprechenden Klasseneinteilungen zuein-
ander wird im nichsten Paragraphen anlaBlich der Definition des
Begriffes Normalteiler eingegangen werden.

Die Zerlegungsmaoglichkeit von & nach § liefert ein be-
sonders wichtiges Resultat, wenn & und somit auch $ end-
lich ist. Aus § 6, (2) ergibt sich dann namlich sofort:

Satz 25. Ist & eine endliche Gruppe der Ordnung n und
etne Untergruppe von & der Ordnung m, so besiehen die hin-
teren wie die vorderen Restklassen nack © similich aus gleich
vielen, ndmlich m Elementen. Fiir thre Anzahl §, den sog.
Index von O in &, ¢ilt somit n = mj. Hiernach ist also die
Qrdnung m sowte der Index § jeder Uniergruppe von ® ein
Teiler der Ordnung n von ®.

1) Die in der Literatur vielfach iibliche Bezeichnung Nebengruppen nach
ist schlecht, weil stets nur die durch £ selbst gebildete Klasse Untergruppe
von @& ist (vgl. 3, 1, § 8, Aufg. 11). Will man Restklasser allein fir die in 2, § 2
behandelten Spezialfille vorbehalten, so sage man Nebenklassen; allerdings
hat das den Beiklang des Ausschliefens der aus der Untergruppe $ selbst be-

stehenden Hauptklasse, was meistens unerwiinscht ist.
?) Vgl. das in der Anm. 1 zu Satz 7 [20] iber die Numerierung Gesagte.
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Beispiele

1. Ist § = ©, so ist O selbst die einzige Restklasse nach §; fiir
endliches & der Ordnung » ist dann m =n, j = 1. Ist = G,
so sind die Elemente von & die Restklassen nach §; fiir endliches
& der Ordnung » ist dann m = 1, §j = n.

2. Fiir das in §§ 6,7 behandelte Beispiel 4 erhilt man:

N ist Untergruppe der Ordnung 3 vom Index 2,
Do O1» 9. sind Untergruppen der Ordnung 2 vom Index 3. Es

gelten die Zerlegungen
=N+ BR=N+ NB,
® = 9o+ ADo + A2Dp = Do + Hod + DHod>

Wihrend hintere und vordere Aquivalenz und Zerlegung nach R
schon deshalb zusammenfallen miissen, weil nur zwer Restklassen
existieren, deren eine M ist, und deren andere somit aus den nicht
zu RN gehorigen Elementen B, BA, BA* von & bestehen mu§,
sind hintere und vordere Aquivalenz und Zerlegung nach , ver-
schieden, und zwar nicht nur durch die (nicht als Verschiedenheit
zu zihlende) Reihenfolge der Klassen. Denn es enthilt

A9, die Elemente 4, BA42; A%, die Elemente 42, BA;
S?OA- ” 1 A) B-A-; ®0A2 1" " AZ, BAZ'

§ 9. Normalteiler, konjugierte Teilmengen einer Gruppe,
Faktorgruppe

Wie aus dem letzten Beispiel des vorigen Paragraphen
hervorgeht, brauchen die beiden Aquivalenzrelationen &

und & in einer Gruppe @& nach einer Untergruppe § nicht
iibereinzustimmen. Wir definieren nun:

Definition 19. Eine Unlergruppe © der Gruppe & heufst
dann und nur dann Normalteiler oderinvariante Unter-
gruppe von &, wenn hintere und vordere Aquivalenz nach 9
dasselbe besagen, d. h. dann und nur dann, wenn fiir jedes S
aus & die hintere Restklasse SO mit der vorderen Restklasse
98 iibereinstimmi.
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Ist $ Normalteiler von @, so ist also die hintere Zerlegung von
® nach § (bis auf die unbestimmte Rejhenfolge der Klassen) mit
der vorderen Zerlegung von & nach  identisch, und umgekehrt
folgt aus der Identiiit beider Zerlegungen nach einer Untergruppe
$ gemiB § 2, (A), (B) auch, daB hintere und vordere Aquivalenz
nach $ dasselbe besagen, also $ Normalteiler von & ist.

Fiir einen Normalteiler § von & brauchen wir natiirlich die
hintere und vordere Aquivalenz nach §, sowie die hinteren und
vorderen Restklassen nach § nicht durch die Bezeichnung ,,hin-
tere** und ,,vordere‘* zu unterscheiden.

Da fiir eine abelsche Gruppe & nach § 6, (3) und Satz 24
[56] hintere und vordere Aquivalenz sicher dasselbe besagen,
gilt:

Satz 26. Ist & ewne abelsche Gruppe, so ist jede Untergruppe
D von & Normaltesler von @.

Um zu einer niheren Einsicht in die Bedeutung des Be-
griffes Normalteiler zu gelangen, gehen wir, zunéichst ohne
Zusammenhang mit Def. 19, auf eine weitere, wichtige Aqui-
valenzrelation der Gruppentheorie ein, die sich auf die Menge
aller Teilmengen einer Gruppe & bezieht. Es empfiehlt sich
dabei zur Vereinfachung .der Schreibweise und der auszu-
fithrenden Schliisse, die obigen Bezeichnungen 8§ bzw. HS
fiir die hintere bzw. vordere Kongruenzklasse von S nach 9,
d. h. fiir die Menge aller Elemente SA bzw. AS, wo A die
Elemente von § durchliuft, auf beliebige Teilmengen von &
zu verallgemeinern:

Definition 20. Es seten I und N Teilmengen der Gruppe
®&. Dann werde unter MN diejenige Teilmenge von & wver-
standen, die aus allen Produkten AB besteht, wo A die Ele-
mente von M, B die von N durchliuft.

Aus der Giiltigkeit des assoziativen Gesetzes § 6, (1) fiir
die Multiplikation in & folgt dann ohne weiteres:

Satz 27. Diwe wn Def. 20 erklirte ,.elementweise Multipli-
kation® in der Menge aller Teilmengen einer Gruppe & geniigt
dem assoziativen Gesetz.

In der Menge aller Teilmengen von ® sind hiernach § 6, (a),
(b), (1) realisiert. Dennoch ist sie, falls ® == © ist, keine Gruppe
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beziiglich der Verkniipfung von Def. 20. Denn ist ¢ = E und
besteht M aus E und 4 =+ E, so existiert keine Teilmenge & der-
art, daB ML = M ist.

Nach Satz 27 hat speziell TS fiir beliebige T, S aus & den
eindeutig bestimmten Sinn (TIM)S = T(MS), und es gilt
T(TMS)S’ = (IT"TYM(SS"), was wir im folgenden haufig be-
nutzen werden.

‘Wir beweisen nun:

Satz 28. Wird fiir zwes Teilmengen M und I’ emner Gruppe
& festgesetet: M~ WM’ dann und nur dann, wenn M = S IMS
mit einem S aus & 1st, so st das eine Aquwalenzrelatwn m der
Menge aller Tezlmengen von ®.

Beweis. Es ist erfiillt: § 2, («), weil E-1 ME = M ist,
§ 2, (B), weil aus I = S~ MS folgt

M =SSP = (S-H) 1S,

§2, (p), weil aus I = S-HNS, MW" = T T folgt
WM = T-(S-RS)T = (T3 8-YM(ST)
= (ST) M (ST).

Die Herstellung von IRV’ = S—1IMS aus I nennt man Trans-
formation von M mit S.

Auf Grund von Satz 28 definieren wir:

Definition 21. Ist M~ W' im Sinne von Safz 28, so
heifien M und P’ konjugierte Teilmengen von &. Die
durch diese Aquivalenzrelation gelieferten Klassen in der Menge
aller Tetlmengen von & heifien die Klassen konjugierter
Teilmengen von &

Unter diesen Klassen kommen speziell vor:

a) Die Klassen konjugierter Elemente von @, d. h. solche
Klassen, die durch eine Teilmenge mit nur einem Element 4
aus & erzeugt werden, die also aus der Gesamtheit aller
Elemente S-1 AS bestehen, wo § die Elemente von @
durchléuft.
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Eine solche Klasse entspringt aus dem Einselement E und ent-
hilt kein weiteres Element. Ist & abelsch, also stets S—1AS
= 87184 = EA = A, so bestehen alle Klassen konjugierter Ele-
mente von & je nur aus einem Element; sonst mufl mindestens
eine solche Klasse mehr als ein Element enthalten, weil aus
AS = SA4 folgt S—14S8 == A.

b) Die Klassen konjugierter Untergruppen von &, d. h.
solche Klassen, die durch eine Untergruppe $ von & erzeugt
werden, die also aus der Gesamtheit aller Teilmengen
S-1 HS bestehen, wo § die Elemente von & durchliuft.

Die Bezeichnung konjugierte Untergruppen recht-
fertigt sich durch den folgenden Satz:

Satz 29. Die zu einer Untergruppe O einer Gruppe ®& kon-
jugierten Teilmengen S~ S sind wieder Untergruppen von
©, die iiberdies zu 9, also auch uniereinander isomorph sind.

Beweis. a) Es ist nach Satz 27

(S71985) (87198) = 571 (99) § = 57198,

da wegen der Gruppeneigenschaft § 6, (b) von $ und nach
Satz 16 [561] offenbar $9 = » ist. Diese Relation besagt
nach Def. 20, daB alle Produkte von Elementen aus S—* $8
wieder zu S—*9S gehoren. Da ferner in S-1HS das Element
E = §7ES und mit 4' = 8-*4AS auch 4’ = §-14-18
vorkommt, weil E und mit A auch 4-! in § enthalten ist,
ist S—1HS Untergruppe von & (Satz 19 [64]).

. b) Ordnet man die Elemente von  und S-S durch
die Festsetzung A <— S-1AS einander zu, so sind erfiillt:
§2, (6) und §2, (¢), weil so jedem A aus § eindeutig ein
Element aus S-19)S zugeordnet ist, § 2, (§'), weil jedes A4’
aus §-19S nach Definition dieser Teilmenge als S—1AS mit 4
aus © darstellbar ist, und § 2, ('), weil aus S-14,8 = §-14,8
durch vordere und hintere Multiplikation mit S bzw. -2 folgt
A, = A,. SchlieBlich ist (S-14,8)(S-14,9) = S-1(4,4,)S,
also auch die Bedingung (2) von Satz 23 [565] erfiillt. Somit
ist tatsiichlich § =~ S—1§S.

Uber die Unterschiedenheit konjugierter Untergruppen
beweisen wir:
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Satz 30. Zwei zur Unlergruppe O der Gruppe ®& konju-
gierte Untergruppen S—19HS und T-HT sind sicher identisch,

wenn S L T(Q) dst. Ist also Ty, T, . .. ein vollstindiges
vorderes Restsystem von & nach 9, so sind hochstens die kon-
jugierten Untergruppen

TU9OT, T79T, ...
voneinander verschieden, d. h. jede zu O konjugierte Unier-
gruppe & 1st mit einer von diesen identisch.

Beweis. Ist S @ T(9), also S = AT mit 4 aus §, so ist
S7198 = (AT)9(AT) = (T2 A V)P(AT) = T (49 A)T
= T-197T, weilnach Satz 16[51] offenbar 4-1HA = 4-1(HA)
= A719H = ist.

Wir stellen jetzt den Zusammenhang der speziellen, unter
a) und b) genannten Klassen konjugierter Teilmengen mit
dem Begriff Normalfeiler durch die folgenden beiden Satze
Ler, deren jeder auch zur Definition dieses Begriffes hitte
dienen kénnen: '

Satz 31. Eine Unlergruppe © der Gruppe ® ist dann und
nur dann Normalteiler von &, wenn sie mit allen thren kon-
jugierten Untergruppen identisch ist, d.h. wenn die Klasse von
O 1m Sinne von Def. 21 nur aus O selbst besteht.

Bewets. Die in Def. 19 vorkommenden Relationen S = HS
fiir die Elemente S aus & sind mit den Relationen  =S5-19S
gleichbedeutend, wie sich durch vordere Multiplikation mit
S-1 bzw. S ergibt.

Satz 32. Eine Untergruppe H von ® tst dann und nur dann
Normaltesler von &, wenn sie eine Vereinigungsmenge von
Klassen konjugierter Elemente von ®& vst, d. h. wenn mit A
stets auch alle zu A konjugierten Elemente von & zu § gehiren.

Beweis. a) Ist $ Normalteiler von &, also nach Satz 31
S19S = 9 fiir alle § aus @, so enthilt O alle Elemente
S-14S8, wo § zu & und A zu 9 gehort, d. h. mit 4 auch
alle zu A konjugierten Elemente von &.

b) Ist umgekehrt letzteres der Fall, so sind S-1§S und
SHS-1 fiir jedes S aus & in $ enthalten. Durch vordere
bzw. hintere Multiplikation mit S folgt daraus, da S in
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SH und 89 in HS enthalten ist, also SH = HS. Somit ist
dann § Normalteiler von @.

Nach Satz 31 ist eine Untergruppe $ als Normalteiler von
auch dadurch gekennzeichnet, daf $ bei Transformationen mit
allen Elementen S aus & ungedndert bleibt (vgl. die Bem. zu
Satz 28); daher die weitere Bezeichnung invariante Uniergruppe
in Def. 19.

Nicht immer ist jede Untergruppe von & Normalteiler
von &. Man kann aber aus jeder Untergruppe nach folgen-
dem Satz zwei Normalteiler herleiten:

Satz 33. Ist O eine Untergruppe von &, so sind der Durch-
schnitt und das Kompositum aller zu  konjugierien Unter-
gruppen Normalteiler von ©.

Beweis. a) Kommt 4 im Durchschnitt ® aller zu $ kon-
jugierten Untergruppen von @&, d. h. in allen S-19S vor, wo
§ die Gruppe & durchlduft, so kommt 7-*A7 fiir jedes
feste 7 aus & in allen 7-2(S-298)T = (ST)H(ST) vor.
Nach Satz 16 [51] sind das fiir jedes feste 7' aus & wieder
alle zu § konjugierten Untergruppen von &. Nach Satz 32
ist also © Normalteiler von .

b) Ist & das genannte Kompositum, so enthilt & alle
S8-15S. Wie eben enthalten dann 7187 und 787! eben-
falls alle S—19S, sind also solche Untergruppen von &, wie
sie nach Def. 15 [54] zur Bestimmung von & durch Durch-
schnittsbildung zu verwenden sind. Also ist & in 7QZT
und in TQ®T-1 fiir jedes T aus & enthalten. Daraus folgt
wie im Beweis zu Satz 32 unter b), da & Normalteiler von
® ist.

Die wichtigste Eigenschaft der Normalteiler, die fiir unsere
Anwendung der Gruppentheorie in 2, §17 von fundamen-
taler Bedeutung sein wird, besteht nun in dem engen Zu-
sammenhang der Normalteiler einer Gruppe & mit den in &
moglichen Kongruenzrelationen. In dieser Hinsicht gelten
die folgenden beiden Sitze:

Satz 34. Ist H Normalteiler von ®, so ist die (gleichzeitig
hintere und vordere) Aquivalenz nach 9 eine Kongruenzrelation
n®
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Beweis. Nach Def. 19 ist S = S fiir jedes S aus ©.
Daraus folgt nach Def. 20 und Satz 27

(1) (9)OT) = DESYT = HOHHT
= (DD)(ST) = H(ST).
Hiernach gehoéren alle Produkte aus Elementen zweier Rest-
klassen $S, HT' nach © einer und derselben Restklasse,
namlich H(ST), nach H an, d. h. es ist § 7, (1) fiir die Aqul-
valenz nach § erfiillt.

Satz 35. Jede Kongruenzrelation in & st mit der (gleich-
zesttg hinteren und vorderen) Aquivalenz nach etnem bestimmien
Normalteder  von & identisch. st die Gesamtheit der Ele-
mente von &, die dem Einselement E kongruent sind, d. h. die
Restklasse, der E nach der Kongruenzrelation angehort.

Beweis. a) Die Menge © der zu E kongruenten Elemente
von @ ist zunidchst eine Untergruppe von &. Denn die Be-
dingungen von Satz 19 [54] (vgl. die an ihn gekniipfte Be-
merkung) sind erfiillt, erstens weil aus E = 4, E = B nach
(1) in Def. 16 [55] folgt E = AB, zweitens weil £ = E ist,
drittens weil aus E= 4, A*= A4-* nach (1) in Def. 16
folgt A= E.

b) Wenn A = B, also nach (1) in Def. 16 AB-1= E und
B-*A=E ist, so ist nach Satz24 [56] 4 2 B($) und

AR B(9), und umgekehrt folgt aus jeder dieser Relationen
nach (1) in Def. 16 4 = B. Hintere und vordere Aquivalenz
nach der Untergruppe $ stimmen also beide mit unserer
Kongruenz, d. h. auch untereinander iiberein, was die Be-
hauptungen ergibt.

Nach den letzten beiden Sétzen gibt es in einer Gruppe ® keine
anderen Kongruenzrelationen als die Aquivalenzrelationen im
Sinne von Def. 18 [56] nach Normalteilern $ von ®. Insbesondere
sind die letztgenannten Aquivalenzrelationen keine Kongruenz-
relationen, wenn  kein Normalteiler von @ ist.

Wir konnen jetzt das Resultat von Satz 22 [55] auch so
aussprechen:

Satz 36. Ist H Normalleiler von @, so bilden die (gleich-
zeitig hinteren und vorderen) Restklassen von & nach  bei
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elementweiser Multiplikation eine Gruppe ®, die Restklassen-
gruppe von ®& nach . Man nennt® auch dieFaktorgruppe
von ® nach § und schreibt & = /.

Das Rechnen mit den Elementen S, $7, . . . der Faktor-
gruppe &/$ hat nach der Regel (1) zu geschehen. Fiir end-
liches & ist nach Satz 25 [67] /9 von der durch den Index
von § bestimmten Ordnung. SchiieBlich gilt ersichtlich:

Satz 37, Ist & eine abelsche Gruppe und  etne Untergruppe
von &, so ist auch &/ abelsch.

Beispiele

1. Die unechten Untergruppen € und & von ® sind stets
Normalteiler von &. Fiir die Faktorgruppen gilt &/€ ~ & und
G/G ~ €.

2. Fiir die in §§ 6, 7, Beispiel 4 behandelte Gruppe ® sind, wie
schon aus dem in § 8, Beispiel 2 iiber & Gesagten hervorgeht, die
Untergruppen g, $q, 9 zueinander konjugiert und keine Normal-
teiler, wihrend die Untergruppe : Normalteiler ist. Man erkennt
das auch durch Bildung der Klassen konjugierter Elemente von
®, die sich, wie aus den Formeln von §6, Beispiel 4 leicht zu
entnehmen ist, folgendermafen zusammensetzen:

a) E; b) 4, A? = B14B,
¢) B, BA = A2BA4?, BA?2 = A71BA.
Hiernach wird die Klasse der zu §, konjugierten:

Dos 1 = A9 4%, Ds = A71D,4,
wiahrend 9N die Vereinigungsmenge der Klassen a) und b) ist. Die
Faktorgruppe ®/M ist abelsch von der Ordnung 2 (vgl. § 6, Bei-
spiel 3).

3. Die abelsche Gruppe ®& der rationalen Zahlen == 0 beziiglich
der gewdhnlichen Multiplikation besitzt z. B. als Untergruppen
die Gruppe P der positiven rationalen Zahlen und die Gruppe I
derjenigen rationalen Zahlen, die sich als Quotienten ungerader
ganzer Zahlen darstellen lassen. Es gelten offenbar folgende Zer-
legungen von ® nach P bzw. U:

G=P+(—1P, G=U420+ 2N+ ...
N Rl IR

5 Hasse, Hohere Algebra
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so daB also &/} endlich von der Ordnung 2, ®/11 unendlich ist?).

4. Die abelsche Gruppe & der ganzen Zahlen beziiglich der ge-
wohnlichen Addition besitzt z. B. die Untergruppe $ aller geraden
Zahlen. Es gilt die Zerlegung

®=9+19,
so daB also /9 wieder endlich von der Ordnung 2 ist?). Wir
kommen in 2, §2 ausfiihrlich auf diese und analog gebildete
Untergruppen von ®, sowie deren Faktorgruppen zu sprechen.

II1. Determinantenireie lineare Algebra

§ 10. Linearformen, Vektoren, Matrizen

Es sei K ein beliebiger Korper, der Grundkirper, in dem
wir lineare Algebra im Sinne von § 5, 1) [46] treiben wollen,
und den wir fiir den Rest von 1 fest zugrunde legen.

Zur Vereinfachung der Ausdrucksweise verabreden wir, da in
IIT und IV alle mit a, b, ¢, a, B, ¥ und evtl. angehiangten Indizes
bezeichneten Elemente solche aus K sein sollen, ohne daf dies
immer ausdriicklich gesagt wird. Ebenso sollen z, . . ., 2z, wenn
zum Funktionsbegriff i. 8. d. An. iibergegangen wird, Elemente
aus K sein.

Ehe wir uns der eigentlichen Aufgabe, wie sie in §5, 1)
formuliert ist, zuwenden, sollen in diesem Paragraphen
einige Begriffe eingefithrt werden, die zwar an sich entbehr-
lich wiren, durch deren Verwendung sich aber die folgenden
Entwicklungen in der Schreib- und Redeweise auBerordent-
lich vereinfachen.

a) Linearformen

Zunichst fithren wir fiir ganze rationale Funktionen von
Xy, -+ - ., Ta, wie sie auf den linken Seiten des zu behandelnden

1) Beziiglich U ist hier der auf die Primzahl 2 beziiglicheTeil des Funda-
mentalsatzes der Arithmetik von der eindeutigen Zerlegbarkeit der rationalen
Zahlen in Primzahlpotenzen vorausgesetzt, den wir in 2, § 1 systematisch be-
handeln werden.

%) Hierbei ist der auf die Primzahl 2 beziigliche Fall des Satzes 13 von 2,
§ 1 vorausgesetzt, daB sich ndmlich jede ganze Zahl g eindeutig in die Form
g = 2¢q + rsetzen laBt, wo ¢ und » ganze Zahlen sind und 0 < r < 2 ist. § be-
steht dann aus den ¢ mit # = 0, 1§ aus den g mit » = 1. — Natiirlich bedeutet
19 hier, da8 1 zu den Elementen von $ zu addieren ist.
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Gleichungssystems §5, (1) auftreten, eine besondere Be-
nennung ein:

Definition 22. Ein Element von K[xy, . . ., 24], dessen Nor-
n
maldarstellung X agzx ist, heift eine Linearform won
k=1

.sZn oder auch linear und homogen n z,, . . ., Zn.

Die Bedeutung von linear wurde schon in § 5 bei (1) erklirt,
Form oder homogen soll besagen, daf auch der in Satz 11 [31]
mit @y, . . ., o bezeichnete Koeffizient der Normaldarstellung Null
ist. — Unter Linearform schlechthin verstehen wir, wo nichts
anderes aus dem Zusammenhang hervorgeht, stets eine solche der
n Unbestimmten z,, ..., Zn.

Von groBer Wichtigkeit fiir alles weitere sind nun die
beiden folgenden Definitionen:

- Definition 23. Eine Linearform f heifif lineares Kom-
positum oder linear abhingig von den I/mearformen

Frs <oy frms WENR Cyy <oy Cm derart existieren, dafS | = Zc,f, 18t.
iTh

Anderenfalls heifit f linear unabhéngig von /,, ..., fm.

n
Die Nullform 0 = 3 0z ist hiernach sicher lineares Komposi-

tum jedes Systems f,, . .., f» von Linearformen, indem ¢,, . . ., ¢m
= 0 gewdhlt werden. Dies beriicksichtigend definieren wir weiter:

Definition 24. Die Linearformen fy, . . ., fm heifien linear
abhangig, wenn ¢, .. ,cm, die nicht simtlich Null sind,

derart existieren, daf 2 ¢if; = 0 ast. Anderenfalls heifen

fir .+« fm linear una,bhanglg

Hiernach ist speziell (m = 1) jede Linearform f== 0 linear
unabhingig, wihrend die Form O linear abhéngig ist.

Die beiden in Def. 23 und 24 eingefiihrten, wohl zu unter-
scheidenden Begriffe linear (un-)abhingig von und linear
(un-)abhingtg stehen nun in folgenden Relationen zuein-

5%
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ander, deren einfacher Beweis dem Leser iiberlassen bleiben
darf!):

Satz 38. a) Ist f von [y, ..., [m linear abhingig, so sind
fs fis - - s [m linear abhingig.

b) Ist f von fy, . . ., [m linear unabhingig und sind f,, . . ., fm
linear unabhingig, so sind f, fy, . . ., fm linear unabhingiq.

a')Sind 1. f1, . . ., m linear abhdngig, und zwar so, dafi f in
einer Relation cf + ¢;f; + « -+ + emfm = 0 einen  Koeffi-
zienten ¢ & 0 hat (was speziell der Fall ist, wenn f,, .. ., [m
linear unabhingig sind), so ist f von fy, . . ., fm linear abhdnguy.

b)Sindf, fi, . . ., fm linear unabhingig, soist fvon fy, ..., fm
linear unabhingig, und es sind auch f,, .. ., fm linear unab-
hangig.

Aus b') ergeben sich durch wiederholte Anwendung die
beiden einander bedingenden Tatsachen:

Satz 39. Mit fy, ..., fms fmvare - o fmersind auch fy, . . . fm
linear unabhdngrg. Mitf,, . . ., fm sind auch fy, ... fmy frusas -
fm+ 1 linear abhdngig.

In gewisser Analogie dazu gelten die folgenden beiden
einander bedingenden Tatsachen:

n+1
Satz 40. Es ser f,_ Za,k T, §i = Zalkxk (i=1,...,m).

Dann sind mat f, . . ., fm auch G5 - - - gm linear unabhingtg
und mit gy, . . ., gm auch fy, . . ., fm linear abhingrg.

Bewets. Es sei K[y, . . ., 2x] = K. Dann sind die g; solche
Elemente (linear, aber keine Formen!) aus Kn[xnﬂ, . an],
deren Funktionswerte fiir das System (0, . .., 0) der Unbe-
stimmten z, .q, . . ., Zn +, die Elemente f; aus Kn sind. Nach
dem Einsetzungsprinzip [39] folgt also aus einer Relation

2 ¢;g; = 0 auch die Relation 20,]‘, = 0 firr die Funk-

t=1 i=1
tionswerte.

1) Man mache sich vor allem klar, da dazu die K6rpereigeuschaft [§1,(7)]
wesentlich benutzt wird, so daB schon diese fiir das Folgende grundlegenden
Tatsachen in Integritdtsbereichen nicht allgemein richtig sind. (Vgl. Punkt 2
in der Anm. 1 [46] zu § 5.)
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Wir untersuchen nun im AnsehluB an Satz 38, b) die
Frage, ob man zu m linear unabhéngigen Linearformen

f1s - - -» fm stets noch eine weitere von ihnen linear unab-
héngige Linearform f,, ,, finden kann, so daB also auch noch
f1» « « «s fms fm+, linear unabhingig sind. Dieses ist nicht

unbegrenzt moglich; vielmehr gilt:

Satz 41. Es gibt hichstens n linear unabhingige Linear-
formen von n Unbestimmien x, . . ., Tn; oder also: Mehr als n
Linearformen von n Unbestimmien sind stets linear abhingig.

Bewers. Nach Satz 39 geniigt es zu zeigen, daB n 4+ 1
Linearformen von n Unbestimmten stets linear abhingig
sind. Diesen Nachweis filhren wir durch vollstindige In-
duktion nach n. Fiir n = 1 ist die Behauptung trivialerweise
richtig. Dennist /' = &'z, f'* = &'’ 2, so sind entweder " = 0
und f* = 0, oder es besteht die Beziehung o”’f —a'f" = 0
mit o’ 5= 0 oder 4 3= 0; und in beiden Féllen sind f, f”
linear abhingig.

Wir nehmen nunmehr an, da je n (oder mehr) Linear-
formen von n — 1 Unbestimmten stets linear abhéngig sind,
und zeigen, daB dann auch % - 1 vorgelegte Linearformen
von n Unbestimmten

fi= iy @, - -+ o gy Tn t=1,..,n+1)

linear abhingig sind. Dazu bilden wir durch formales Ein-
setzen des Wertes 2, = 0 die n -+ 1 Linearformen

gi= Q&+ -+ A4 p1 Tny (i=1,..,n+1)
von den # —1 Unbestimmten ,,...,z,,. Nach der In-

duktionsannahme sind sie linear abhéngig, d. h. es besteht
eine Beziehung

g =ch+ -+ tpr1gn1 =0,

in der nicht alle ¢; = 0 sind und daher ohne Einschrinkung
¢n+q = 0 angenommen werden kann. Weiter sind nach der
Induktionsannahme aber auch schon die n Linearformen
15 « - - §n linear abhingig, d. h. es besteht eine weitere Be-
ziehung
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g” =ci’ gl+ ...+C;L'gn=0,
in der ebenfalls nicht alle ¢; = 0 sind. Wir bilden nun mit
den so bestimmten ¢; bzw. ¢; die entsprechenden linearen
Komposita der f;, d. h. die beiden Linearformen von n Un-
bestimmten

f=cht+- -+ c;z fa + epia frsrs
["=¢dh + + Cn s
so daB also die beiden Linearformen ¢° = 0, ¢ = 0 durch

Einsetzen des Wertes x, =0 aus f,f’ hervorgehen. Aus
diesem Grunde haben diese die besondere Gestalt

f’ — ar xn, f” — an Zn.

Ist hierin o™ = 0, also f* = 0, so sind schon f,, . . ., f» linear
abhdngig, da ja nicht alle ¢f = 0 sind. Ist aber a” 3= 0, so
entnehmen wir aus

al' '’ —al fll — 0’
also

(@ eg—a'cy) fit- (@ ep—acy) fn+ & Cpi1fnsn =0

wegen a”’ =£ 0, ¢pyq == 0, daB f, . . ., fr, {4+, linear abhingig
sind.

DaB es wirklich » linear unabhingige Linearformen von #» Un-
bestimmten gibt, zeigt das spezielle System der n Linearformen
%1y - « .y T denn wegen der Eindeutigkeit in Satz 11 [31] ist nur
dann ¢,#;, + -+ - + ¢p%p = 0, wenn ¢y, .. ., ¢p = 0 sind.

Nach Satz 41 gibt es in jeder (endlichen oder unendlichen)
Menge von Linearformen unter den linear unabhingigen
Teilsystemen f,, . . ., f; solche von maximaler Anzahl r, und
zwar ist dabei r £ n. Von besonderer Wichtigkeit werden
nun Linearformenmengen mit der in folgender Definition ge-
forderten Eigenschaft sein:

Definition 26. Eine Linearformenmenge M, die mit trgend-
welchen Linearformen tmmer auch alle deren lineare Komposita
enthdlt, heifit ein Linearformenmodul.

Die Maximalanzahl r linear unabhingiger Linearformen
aus M heifit der Rang von M.



§10. Linearformen, Vektoren, Matrizen 1

Ein linear unabhingiges Teilsystem fy, . .., fs aus M, von
dem alle Linearformen aus M linear abhingig sind, so daf
also M aus der Gesamtheit aller linearen Komposzta V0N
fis + « o [s besteht, hetfit eine Basis von M.

Solche Teilsysteme gibt es wirklich immer. Nach Satz 38, a’)
gilt namlich:

Satz 42. Ein linear unabhingiges Tellsystem fi, . . ., fr aus
M won der maximalen Anzahl v ist auch eine Basis von

Wir werden gleich sehen, dal auch die Umkehrung dieser
Aussage richtig ist. Zuvor beweisen wir:

Satz 43. Die Menge M aller linearen Komposita gegebener
m Linearformen f,, ..., fm von n Unbestimmien x,, ..., Zn
bildet einen Lamearformenmodul; man sagt kwrz, fi, ... [m
erzeugen den Modul M. Der Rang r von M geniigt neben der
nach Satz 41 bestehenden Ungleichung v < n auch noch der
Ungleichung r £ m.

Bewets. a) Das Erfiilltsein der in Def. 25 gei‘ordertén

Eigenschaft erkennt man folgendermaﬁen Aus g = 2 cri i
k=1..,0)und g = 2 bx gr folgt

=3 [bk (51”’“ f)] =z [( 2 b o) f,] .

Die dabei verwendete Regel iiber die Vertauschung der
Summationsfolge, die auf die Additionsgesetze § 1, (1), (3), (5)
zuriickgeht, werden wir im folgenden haufig anzuwenden haben.
Wegen ihrer Giiltigkeit diirfen wir ohne MiBverstindnis die
Klammern bei derartigen Umformungen fortlassen.

b) Zum Nachweis der Ungleichung r < m ordnen wir
jedem Linearformensystem

m
g =_2710m'fi *k=1,..,0
=
aus M das Linearformensystem

m
he E_Z;clciyi (k = 1, .y l)
o=
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von m neuen Unbestimmten y,, . . ., ym zu. Fiir I > m sind
die hz nach Satz 41 linear abhingig, d.h. es besteht eine
Beziehung

!
2 by =0,
r=1

in der nicht alle bz = 0 sind. Nach dem Einsetzungsprinzip,
angewandt im Integritatsbereich Ka[yy, . . ., ym] iiber K, =
K[z, - . ., z»] mit Ersetzung der y, durch die f,, folgt daraus
die entsprechende Beziehung

!
2 bkgk = 07
E=1
also die lineare Abhingigkeit der gx fiir I > m, d. h. die Be-
hauptung » < m.
Nunmehr kénnen wir die angekiindigte Umkehrung von
Satz 42 folgern:

Satz 44. Jede Basis eines Linearformenmoduls M vom Rang
r besteht aus genaw r Linearformen f,, . . ., fr, ist also auch ein
linear unabhingiges Teilsystem aus M von der maximalen
Anzahl r.

Bewess. Fiir eine Basis fi, . . ., fs von M ist einerseits nach
Def. 25 jedenfalls s < r, andererseits nach Satz 43 auch
r £ s, zusammengenommen also s = 7.

Eine Basis von M ist nach Satz 38, a) ein maximales linear
unabhingiges Teilsystem in dem Sinne, daB bei Hinzufiigung
irgendeiner weiteren Linearform aus M ein linear abhingiges Teil-
system entsteht. Da wir durch Satz 43 festgestellt haben, daB
diese schwichere Maximalitit die stirkere Maximalitit der An-
zahl nach zur Folge hat, kénnen wir fortan bei einer Basis von M
unmiBverstindlich auch von einem Maximalsystem linear unab-
hingiger Linearformen aus M reden.

Wir heben weiter im Anschlul an Def. 25 und Satz 44 die
folgende wichtige Tatsache hervor:

Satz 45, Die lineare Komposition der Linearformen eines
Linearformenmoduls M durch eine Basis von M st jeweils nur
auf eine einzige Art miglich.
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Beweis. Das ist eine unmittelbare Folge aus (und ersicht-
lich sogar gleichbedeutend mit) der 1inearen Una,bhangigkeit

einer Basis f,,...,fr von M. Aus Zc,f, )_,‘e,f,, d. h.
i=1

2(0,—0,) fi =0 folgt ndmlich nach Def 24 gerade
c,—c—O dh o¢=c¢ (t=1,...,1).

Wir bemerken schlieBlich, daB wir im trivialen Falle des nur
aus der Nullform bestehenden Linearformenmoduls M = 0 gemi8
Def. 25 auch r = 0 zu verstehen haben. Eine Basis von M existiert
in diesem Falle nicht; zur Vereinheitlichung der Ausdrucksweise
wollen wir dann sagen, M besitze eine Basis aus r = 0 Linearformen.

b) Vektoren

Nach der bei der Konstruktion von K[z, ..., 2,] aus K
in §4, ¢) und d) zugrunde gelegten Auffassung sind speziell

Linearformen Zaka:k formal nichts anderes, als Systeme

(ag, - - ., an) von Elementen die den sich aus § 4, (1a)—(3a)
ergebenden Unterscheldungs- und Verknupfungsregeln un-
terworfen sind, und wobei fiir die speziellen Systeme
(¢,0,...,0),...,(0,...,0,e) die abkiirzenden Bezeichnun-
gen zy, . . ., Zp eingefithrt sind. Ohne Einfithrung dieser Be-
zeichnungen lauten die Gesetze §4, (1a)—(3a), soweit sie
sich auf die jetzt allein zu betrachtenden Linearformen und
auf Elemente des Grundkorpers beziehen, folgendermaBen:

(1) (ay, ..., an) = (a3, - .., a,) dann und nur dann,

wenn ax = ay firk=1,...,n,
@) (@y, <.y an) + (By, - . o, ba) = (a4 + byy - - -y Gn + bp),
(3) alay, . . ., an) = (aay, . . ., a@n).

Nun hat man es in der linearen Algebra auBler mit den Koeffi-
zientensystemen von Linearformen auch mit Systemen von n
Elementen des Grundkérpers zu tun, die fiir die Unbestimmten
@y, . . ., Tn in Linearformen einzusetzen sind, und hat dann diese
Elementsysteme héufig nach (1) zu unterscheiden, sowie die
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rechts in (2) und (3) stehenden Bildungen aus ihnen vorzunehmen.
Man konnte das zwar nach dem eben Bemerkten so ausdriicken,
daB man jene einzusetzenden Elementsysteme als Koeffizienten-
systeme von Linearformen ansieht, sie demgema8 wie diese Linear-
formen unterscheidet und die in (2) und (3) rechts stehenden Bil-
dungen fiir sie durch die links stehenden Verkniipfungen mit diesen
Linearformen zur Ausfithrung bringt. Die hierbei zu verwendende
Ausdrucksweise wiirde aber sehr umstindlich werden; sie ist iiber-
dies auch insofern unschén, als man bei dem Ausdruck Linear-
form gewohnheitsmiBig an die Moglichkeit der Ersetzung der Un-
bestimmten durch Elemente des Grundkérpers denkt, wovon bei
den letztgenannten ,,Hilfslinearformen* natiirlich nicht die Rede
ist. Es ist daher zweckméBiger, fiir die Anwendung der formalen
Regeln (1)—(3) auf andere Art eine kurze Ausdrucksweise zu
ermoglichen.

Definition 26. Den Unferscheidungs- und Verkniipfungs-
regeln (1)—(3) unterworfene Systeme von n Elementen heiffen
n-gliedrige Vektoren. Wir bezeichnen sie mit den ihren
Gliedern entsprechenden kletnen deutschen Buchstaben.

Es wird also z. B. bezeichnet: (ay, . . ., a5) mit a, (@, . « ., Gin)
mit a;, usw. Unter Vekloren schlechthin verstehen wir, wo nichts
anderes aus dem Zusammenhang hervorgeht, stets n-gliedrige.

Durch (2) ist natiirlich zwangslaufig auch die Substraktion fiir
Vektoren unbesehrinkt und eindeutig erklirt, und zwar nach der
zu (2) analogen Formel

@ - e @n)—(Bpy ey bn) = (@, — by oy O — ba),
entweder weil fiir die Verkniipfung (2) die Gesetze §1, (1), (3),
(6) stimmen, oder einfach vermége der formalen Identitit mit den
Linearformen. Der hiernach sich als Nullvekior ergebende, der
Nullform entsprechende Vektor (0, ..., 0) darf wieder mit 0 be-~
zeichnet werden.

Auf Grund der formalen Ubereinstimmung von Vektoren
und Linearformen sind die in Def. 23—25 eingefiihrten Be-
griffe sinngemif auch fiir Vektoren als erklart anzusehen,
und es bestehen dann auch die Analoga der Sitze 38—45 in
sinngeméBer Formulierung fiir Vektoren.

Ausfiihrlich geschrieben bedeuten nach Def. 23, 24 die Aussagen
0 ist von ay, ..., an linear abhangig** bzw. ,a,,..., a, sind
linear abhingig* das Bestehen von Relationen
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" m
4) Xeamp=oar bzw. B) Jeaap=0 fir k=1,...,n
i=1 i=1

wobei in den letzteren mindestens ein ¢; & 0 ist.
Die speziellen n linear unabhingigen Vektorem (e, 0, ..., 0),
»(0,...,0,¢), die den Linearformen =, ..., 2, entsprechen,
nennt man auch die #n Einheitsvekioren und bezeichnet sie mit
5, .. . Cq. Sie bilden eine Basis des Moduls aller n-gliedrigen
Vektoren (der somit den Rang # hat); denn es besteht fiir jeden

Vektor a die Darstellung 2 ag ex durch diese Einheitsvektoren.

Durch Einfiihrung dleser Darstellungen kommt man natiirlich
(bis auf den Bezewhnungsunterschled zwischen ex und zx) auf den
Linearformenstandpunkt zuriick.

Wihrend die bisherigen Festsetzungen iiber Vektoren
formal mit denen iiber Linearformen iibereinstimmen, treffen
wir schlieBlich eine letzte Festsetzung, die iiber den Linear-
formenstandpunkt hinausgeht:

Definition 27. Unier dem inneren Produkt ab zweter

n
Vektoren a und b werde das Element 3 axby verstanden.
k=1
Im Gegensatz zu (3) sind also beim inneren Produkt beide
Faktoren Vektoren, wiahrend das Ergebnis dieser inneren Produkt-
bildung kein Vektor, sondern ein Element des Grundkorpers ist. —
Speziell gilt aeg = ag, exerr = § & 00 E=F 1 00
POZel g1t aek = Gk, Cxee’ = Ofiirkzlzk’}’ -

Satz 46. Fir die innere Produktbildung von Vekloren gelten
die Regeln:

ab = ba, ¢(ab) = (ca) b = a(ch), (a + b) ¢ = ac -+ be.

Beweis. Das folgt nach Def. 26, 27 unmittelbar aus den
Gesetzen §1, (1)—(b).

Natiirlich folgt aus der letzten dieser Regeln durch wiederholte
Anwendung noch die allgemeinere Formel

(Za,)c—-Zaic,

i=1
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die ausfiihrlich geschrieben in 2 2 ey = 2 2 am ¢k, d. h.
=14i=1 i=1%Fk

in die im Beweis von Satz 43 erwidhnte Regel von der Ver-

tauschung der Summationsfolge, iibergeht und von der wir haupt-

sachlich Gebrauch zu machen haben werden (Satz 47).

Da von der Korpereigenschaft [§ 1, (7)] des Grundbereichs
K beim inneren Produkt kein Gebrauch gemacht ist, gelten
die letzten Entwicklungen auch fiir Vektoren des Integritits-
bereiches K[z, ..., Z»]*). Von solchen Vektoren brauchen
wir lediglich den Vektor z der Unbestimmten.

Wir bezeichnen unter Verwendung dieses Vektors eine Linear-
form f(z,, . . ., ») auch mit f(zr) und treffen beziiglich der Moglich-
keit, ¢ auch als Vektor des Grundbereichs aufzufassen, sowie der
hierauf beziiglichen Zeichen = und = die entsprechenden Fest-
setzungen wie im Anschluf an Satz 12 [41].

Nach Def. 27 besteht fiir jede Linearform f(z,, ..., z)
= )7:“ axxy auch die Darstellung f(r) = ag als inneres Pro-

E=1

dukt. Diese Darstellung fiihrt auf Grund der Formeln des
Satzes 46 zu einer auBerordentlich einfachen Gestaltung des
Rechnens mit den Funktionswerten einer Linearform. Wir
heben insbesondere, im AnschluB an die Bemerkung hinter
Satz 46, folgende Tatsache hervor:

Satz 47, Ist f(x) esne Linearform, so gilt fiir ein lineares

Kompositum ¢ = X ¢;L; YON Ly, - . ., Lm die Formel
i=1

1) = 2 ez,

d.h. der Funktionswert von f fiir ein lineares Kompositum von
m Vektoren st das entsprechende lineare Kompositum der m
Funktionswerte fiir jene Vektoren.

Beweis. Ist f(r) = ar, so ist nach Satz 46
') Solchen Vektoren wiirden dann Linearformenf(§,, ..., &,) des Integritats-

bereiches K,[&,,..., &,] Uber K, = K[z,,..., z,] entsprechen; wir brauchen

jedoch fiir unsere Zwecke diese Auffassung nicht (vgl. die Ausfithrungen vor
Def. 26).
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ffé? L) = ‘11_(57’: ¢:%:) =i é;a(ci?ii) =i énr;ci(a z) =i=2m;cif(&)-

An Tatsachen und Rechnungen, wie sie in Satz 47 und seinem
Beweise vorkommen, wurde bei den Ausfithrungen vor Def. 26
vornehmlich gedacht. Im Hinblick auf Satz 47 liegt die Zweck-
mifBigkeit der Einfiihrung der Vektoren auf der Hand.

Wir heben schlieBlich, anschlieBend an die Ausfiihrungen des
§ 4 noch hervor, daB fiir Linearformen der formale Funktions-
begriff der Algebra mit dem Funktionsbegriff i. 8. d. An. zu-
sammenfillt, Auf Grund des nachstehenden Satzes ist namlich
die fragliche Bedingung §2, (¢') beim Ubergang zu den Linear-
formen i. S. d. An. erfiillt:

Satz 48, Fir Linearformen f und g uber K ist die Relation

f(x) = g(v)

() = 9(x) far alle g aus K

mit der Relation

gletchbedeutend.
. Beweis. a) Dal aus der ersten Relation die letztere folgt, ist
ar.

b) Ist f(x) = g(x) fiir alle ¢ aus K, so ist speziell f(ex) = g(ex)
k=1,...,n). Danun, wenn f(z) = ag ist, gilt /(ex) = aex = a,
folgt das Ubereinstimmen entsprechender Koetfiizienten von f
und g, d. h. f(x) = g(x)-

¢) Matrizen

In den Koeffizientensystemen auf den linken Seiten line-
arer Gleichungssysteme treten uns Systeme von m n-glie-
drigen Vektoren entgegen, die wir zu einem (mn)-gliedrigen
Vektor zusammengefalt denken koénnen. Diesen (mn)-
gliedrigen Vektor konnen wir uns auch aus den »n m-gliedri-
gen Vektoren, die je durch die Koeffizienten einer festen
Unbestimmten gebildet werden, durch andersartige Zu-
sammenfassung entstanden denken. Es empfiehlt sich fiir
diese beiden Zusammenfassungsprozesse, sowie umgekehrt
fir die Zerlegung eines (mn)-gliedrigen Vektors auf eine
dieser beiden Weisen eine besondere Ausdrucksweise einzu-
fithren. Wir definieren in diesem Sinne:
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Definition 28. Ein (mn)-gliedriger Vektor, insofern er als
durch Zusammenfassung von m n-gliedrigen bzw. n m-glie-
drigen Vekioren in ein rechteckiges Schema

Qg ovenns Gy i1 "
yeoo

............ , kurz (“ik) (k:l,...,n)’

entstanden gedacht wird, heift eine (m,n)-reihige Matrix.
Die waagerechien bzw. senkrechten zusammensetzenden Vek-
foren hevflen die Zeilen bzw. Spalten der Matriz. Wir be-
zeichnen Matrizen auch durch die thren Gliedern entsprechen-
den grofien Buchstaben.

Es wird also z. B. bezeichnet: (as) mit 4, (azx) mit A, .. .; die
dem (mn)-gliedrigen Nullvektor entsprechende (m, n)-reihige Null-
matriz darf wieder mit 0 bezeichnet werden. — Den Zusatz (m, n)-
reihig lassen wir auch fort, wo die Zahlen m und » aus dem Zu-
sammenhang hervorgehen.

Der Begriff (m, n)-reihige Matrix ist gema8 Def. 28 enger
als der Begriff (mn)-gliedriger Vektor, etwa in demselben
Sinne, wie ,,die in Faktoren zerlegte ganze Zahl [ = mn‘ ein
engerer Begriff als ,,die ganze Zahl I* ist. Die Unterscheidungs-
und Verkniipfungsregeln fiir Matrizen, ndmlich analog zu (1),
@), (3)

(1) (asx) = (@iz) dannund nur dann, wenn ag= ay, i—1 m
(@) (aix) + (bix) = (ex + bix) (k; 1, ooey 'n)’
(8) a(asx) = (aas) e
lassen das allerdings nicht hervortreten. Die Einengung liegt viel-
mehr in dem dem (mn)-gliedrigen Vektor iibergelegten rechteckigen
Schema, durch das eine begriffliche Zusammenfassung je der in
einer Zeile bzw. Spalte stehenden Glieder gefordert wird.

Es ist allgemein iiblich, den Index ¢ immer fiir die Nume-
rierung der Zeilen, k fiir die der Spalten zu verwenden.
DemgemiB wire bei vorgelegtem (m, n)-reihigen (a;) unter
(ax;) die durch Vertauschung der Zeilen und Spalten ent-
stehende (n, m)-reihige Matrix
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zu verstehen; denn in dieser numeriert eben der erste Index
die Spalten, der zweite die Zeilen.

Definition 29. Die aus emer (m, n)-reihigen Matriz (a;y)
durch Vertauschung ihrer Zeilen und Spalten entstehende
(m, m)-reshige Matriz (ay;) hetfit die transponierte zu (a;z).
Bei Verwendung der Bezeichnung A fiir (agy) wird (az;) mit A’
bezeichnet.

AuBer den Verkniipfungen (2’) und (3") benutzt man im sog.
Matrizenkalkiil noch eine weitere, auBerordentlich wichtige Ver-
kniipfung zweier Matrizen zu einer neuen Matrix, dem sog. Ma-
trizenprodukt, das sich aber erst innerhalb der Menge aller Ma-
trizen (nicht nur der mit festem m und ») erkliren lagt. Diese Ma-
trizenproduktbildung enthilt zwar die innere Produktbildung fiir
Vektoren als Spezialfall?), 1duft aber nicht einfach auf das innere
Produkt der den Matrizen entsprechenden Vektoren hinaus. Wenn
auch der so zustande kommende sog. Matrizenkalkil von
groBter Bedeutung fiir die lineare Algebra ist, insbesondere in
noch viel weiterem MaBe als die Vektorschreibweise zur Uber-
sichtlichkeit der Entwicklungen und Resultate der linearen Algebra
beitrigt, miissen wir doch im begrenzten Rahmen unserer Dar-
stellung von einem weiteren Eingehen darauf absehen und auf
umfangreichere Werke verweisen?).

§ 11. Inhomegene und homogene lineare
Gleichungssysteme

Wir beginnen jetzt mit der systematischen Behandlung
der in § 5, (1) formulierten Aufgabe. Neben dem eigentlich
zu untersuchenden linearen Gleichungssystem

J) i@y -« s Zn) Eké‘laikxk =g (C=1,...,m)

betrachten wir selbstindig das lineare Gleichungssystem

1) Vom Standpunkte des Matrizenproduktes sind die beiden Faktoren des
inneren Vektorproduktes eine (1, n)-rethige und eine (n, 1)-reihige Matrix und
das Ergebnis eine (1, 1)-reihige Matrix, also formal, aber nicht begrifflich cin
Element des Grundkdrpers.

2) Z. B. Lit.-Verz. 2—10, 13, 14, 16, 17, 20, 23. Siehe auch 3, 1, § 10,
Aufg. 3, sowie zahlreiche weitere Aufgaben zu den nachfolgenden Paragra-
phen von 1 und 2.
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(H) fi@y, .o s xn)Ekgn:laika?k =0 (=1,...,m).

Man nennt (H) das (J) zugeordnete homogene Gleichungs-
system, wahrend (J) tnhomogen heiBit.

In dieser gegensitzlichen Benennung von (J) und (H) ist
schon zum Ausdruck gebracht, daB wir (H) nicht, wie es
zunichst naturgemif zu sein scheint, als den formal mit
(H) identischen Spezialfall von (J), wo alle a; = 0 sind, an-
sehen wollen. Wir treffen vielmehr mit Riicksicht auf eine
glatte Formulierung der herzuleitenden Resultate die (H)
von diesem Spezialfall von (J) methodisch unterscheidende
Festsetzung, daB der stets eine Ldsung von (H) bildende
Nullvektor ¢ = 0 (die sog. identische Lisung) nicht als
Losung von (H) gerechnet werden soll. Speziell wird also
(H) unlisbar genannt, wenn auBer dem Nullvektor keine
Liosung existiert. Dagegen sehen wir den Nullvektor sehr
wohl als Losung fiir den genannten Spezialfall von (J) an.

Unter der Matriz von (J) und (H) verstehen wir die (m, n)-
reihige Matrix 4 = (a;).

Mittels der in § 10 entwickelten Begriffe 148t sich das Bestehen
von (J) bzw. (H) fiir ein System z,, . . ., , auch so ausdriicken,
daB die Spalten von 4 durch lineare Komposition mit den Koeffi-
zienten z, . . ., Z, den durch die rechten Seiten von (J) gebildeten
Vektor a bzw. den Nullvektor ergeben. Nach obiger Verabredung
ist also insbesondere die Lésbarkeit von (H) mit der linearen Ab-
héngigkeit der Spalten von 4 gleichbedeutend. (Vgl. die Formeln
§ 10, (4), (5) [75], die sich allerdings in diesem Sinne auf die Glei-
chungssysteme mit der Matrix 4’ beziehen.) Die Aufgabe der
linearen Algebra §5, (1) kann demnach auch dahin formuliert
werden, daf alle Moglichkeiten, aus einem vorgegebenen Vektoren-
system einen vorgegebenen Vektor linear zu komponieren, und
speziell alle linearen Abhingigkeiten eines vorgegebenen Vektoren-
systems gefunden werden sollen. Es empfiehlt sich, diese im fol-
genden haufig benutzte Auffassungsweise gegenwirtig zu behalten.

Wir werden schlieBSlich neben (J) und (H) auch noch das
mit der transponierten Matrix A" = (a;;) gebildete transpo-
nierte homogene Gleichungssystem
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m
H) fley, - o am) = T apzy =0 ) k=1,...,m)

zu betrachten haben.

Die selbstindige Betrachtung von (H) neben dem ur-
spriinglich allein zu untersuchenden Gleichungssystem (J)
wird durch den folgenden Satz gerechtfertigt:

Satz 49. Ist (J) losbar, so erhdlt man alle ibrigen Lisungen
ts von (J), wenn man zu irgendeiner festen Losung ¢ von (J)
alle Losungen tg von (H) addiert, also in der Form

P+
big
Bewezs a) Nach Satz47[76]folgt aus f,(r®) = a;, fi(z;) =0,

da /() + xH) = 1i(z%) + fi(ty) = @i+ 0 = a; ist. Also
sind alle ¢, = ¢ + r,; Losungen von (J).

b) Ist fi(x,) = aa £i(x§?) = as, so folgt ebenso fi(x, — 1)
= 0. Also ist, falls ¢, =+ ¢ ist, ¢, — r{¥ = r,, Losung von
(H), d. h. es ist wirklich jede von g verschiedene Lisung
t, von (J) von der Form g, =tV + .

Nach Satz 49 reduziert sich die Aufgabe der linearen
Algebra auf die folgenden beiden Teilaufgaben:

J) Bestimmung einer Losung von (J),
H) Bestimmung aller Losungen von (H).

Was einerseits H) betrifft, so gilt:

Satz 50. Falls (H) lisbar ist, bilden die Lisungen von (H)
ewnen Vektormodul, den Losungsmodul von (H).

Beweis. Gemif Def. 25 [70] ist zu zeigen, daB mit be-
liebigen Lésungen gy, . . ., r; auch jedes ihrer linearen Kom-
posita eine Losung von (H) ist. Aus fi(r;) =0( = 1,.

9 =1,...,5) folgt aber nach Satz 47

1) In der Tat steht in der i-ten Zeile und k-ten Spalte dieses ausgeschrieben
gedachten Gleichungssystems der Koeffizient ag; und nicht a;z, wie man auf
den ersten Blick glauben mochte! — Es sei jedoch fiir das Folgende empfohlen,
sich die Gleichungen von (H') nebeneinander und jedc einzelne Gleichung
von oben nach unten geschrieben vorzustellen, so wie es der Entstehung
von (H') aus der Matrix 4 entspricht.

6 Hasse, Hohere Algebra
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f X eity) = Zeifi(ty) = 2 ¢0=0 t=1,...,m).
j=1 i=1 j=1

Falls (H) lgsbar ist, hat nach Satz 41 [69], Def. 25 [70]
und Satz 44 [72] der Lésungsmodul von (H) einen Rang s mit
1 £ s £ n und besteht aus der Gesamtheit aller linearen
Komposita irgendeiner seiner Basen, die ihrerseits aus genau
s linear unabhéingigen Vektoren besteht; nach Satz 45 [72]
sind iiberdies die Darstellungen der Losungen durch eine
solche Basis eindeutig.

Falls (H) unlosbar ist, d. h. nur die identische Lésung r =0
besitzt, gilt gemal der Bemerkung und Verabredung nach Satz 45
[73] Entsprechendes mit s = 0. Daf8 dieser Fall eintreten kann,
zeigt etwa das nur aus einer Gleichung in nur einer Unbestimmten
z bestehende Gleichungssystem az = 0 mit a 5= 0.

Demnach reduziert sich die Aufgabe H) auf die Bestim-
mung des Ranges s mit 0 = s < n, sowie einer Basis g;,..., L
des Liosungsmoduls von (H). Fir diese Bildungen fiithren
wir die folgenden kurzen Bezeichnungen ein:

Definition 30. Der Rang des Lisungsmoduls von (H) heifit
der Losungsrang von (H). Jede Basts des Losungsmoduls
heift ein Fundamentallosungssystem von (H).

Was andererseits J) betrifft, so besteht folgende not-
wendige Losbarkeitsbedingung, von der sich dann spiter
(Satz b3 [92]) herausstellen wird, daB sie auch hinreichend
ist:

Satz 51. Damit (J) l()'sbar ist, st notwendig, daff mit jeder
linearen Abhdngigkedt 2 xz fi=0 zwzschen den Linearformen

links auch die entsprechende Relation Z,‘x ia; =0 fiir die
=1
rechien Seiten besteht. =

Bewess. Ist (J) lsbar, existiert also ein Vektor g derart,
daB die Funktionswerte f;(g) = a; werden, so folgt aus

2 z5f; = 0 nach dem Einsetzungsprinzip auch 2 zia; = 0.
i=1
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m
Da eine lineare Abhingigkeit 3 xif; = 0 der Linearformen f;
i=1
nach §10 gleichbedeutend ist mit der entsprechenden linearen
Abhanglgkext 2,‘ #50; = 0 zwischen den zugeordneten Vektoren ay,

d. h. den Zellen von A, und da diese wiederum nur ein anderer
Ausdruck fiir die Tatsache ist, daf} ¢’ Losung von (H) ist, so folgt:

Zusatz 1. Die Bedingung von Saiz 51 kann auch dahin ausge-
sprochen werden, daf3 fir jede Losung ¢’ von (H’) gelten muf r’a = 0.

Daraus ergibt sich dann nach Satz 46 [75] noch weiter:

Zusatz 2, Die Bedingung von Saiz 51 kann auch dahin ausge-
sprochen werden, daf fiir die Lisungen t; eines Fundamentalldsungs-
systems von (H') gelten muff r,a =0

Diese Zusitze rechtfertigen die Einfilhrung von (H’) in den
Kreis unserer Betrachtungen, da durch sie, neben der Verkettung
von (J) mit (H) in Satz 49, (J) auch mit (H’) verkettet ist.

Die zu behandelnden Aufgaben J) und H) konnen jetzt
ausfiihrlicher so formuliert werden:

J*) Enischeidung iiber die Losbarkeit von (J) und Be-
stimmung ewner Losung vm Losbarkeitsfalle,

B*) Bestimmung des Lisungsranges und eines Fundamental-
losungssystems von (H).

§ 12. Aquivalente lineare Gleichungssysteme

Wir entwickeln in diesem Paragraphen ein konstruktives
Verfahren, das es gestattet, ein beliebig vorgegebenes (in-
homogenes oder homogenes) lineares Gleichungssystem in
ein anderes von besonderer Gestalt mit derselben Lésungs-
gesamtheit zu transformieren, aus dem sich dann die Lo-
sungen der am Schlul von §11 herausgestellten Aufgaben
J*) und H*) in einfacher Weise ergeben werden.

Dazu definieren wir:

Definition 31. Zwei lineare Gleichungssysteme heilfien
dquivalent, wenn sie dieselbe Lisungsgesamiheit haben.

6*
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Das ist natiirlich eine Aqualenzrelation im Sinne von §2, (I).
Wir brauchen hier jedoch die ihr entsprechende Klasseneinteilung
nicht. Diese wird erst im Matrizenkalkiil von Bedeutung, wo sich
die Aquivalenz durch rechnerische Beziehungen zwischen den
Matrizen der Gleichungssysteme beschreiben 1at (vgl. 3, 1, § 12,
Aufg. 1—3).

Unsere Aufgabe besteht dann darin, zu (J) bzw. (H) ein
dquivalentes Gleichungssystem (J) bzw. (H) zu konstruieren,
dessen Losungsgesamtheit sich in einfacher Weise bestimmen
1aBt. Dabei werden wir uns vor allem auf den folgenden
Hilfssatz stiitzen.

Hilfssatz. Wird in einem linearen Gleichungssystem ent-
weder

(a) dve Reihenfolge der Gleichungen gedndert
oder

(b) die linke und rechle Seite einer Gleichung mit einer Kon-
stanten ¢ = 0 multvpliziert
oder

(c) zu der linken und rechten Seile einer Gleichung das
c-fache der enisprechenden Seite einer anderen Gleichung
addiert,
so geht das Gleichungssystem in ein dquivalentes iiber, und die
beiden auf den linken Seiten stehenden Linearformensysteme
erzeugen tm Sinne von Satz 43 [71] denselben Linearformen-
modul.

Bewers. Hinsichtlich (a) ist die Behauptung klar. Hinsicht-
lich (b) und (¢) konnen wir uns dann auf den Fall beschrin-
ken, daB die erste Gleichung mit ¢ multipliziert bzw. zur
ersten Gleichung das c-fache der zweiten addiert werden
soll, und schlieBen so: Ist

91 =¢h , b =ca, mit ¢=0
bzw.
n=h+cls, by=a,4cay
sowie
gi =1 y bi=ua; (i=2,...,m),
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50 gilt einerseits fiir jeden Vektor g, der den Gleichungen
f{g) =a; (1 =1,...,m) geniigt, nach dem Einsetzungs-
prinzip auch g,(g) =b;(t=1,...,m) und ist andererseits
jedes g; ein lineares Komposxtum der fi- Umgekehrt gilt dann
aber auch

1 1 !
f1=791 s a1=?b1 mltT:G:O
bzw.
. h=0—¢g, a=>0—cb
sowie

fi=9: , 4 =b; (6=2,...,m),

so daB wie eben einerseits fiir jede Losung ¢ der Gleichungen

9x) =b; 1 =1,...,m) amch f(r) = a; 0 =1, ..., m) gilt

und andererseits jedes f; ein lineares Kompositum der ¢; ist.

Nach diesen Vorbereitungen kommen wir nunmehr zum
Beweis unseres Hauptsatzes:

Satz 52. Geniigt (J) der notwendigen Lisbarkeitsbedingung
aus Satz b1 [82], so lGft sich (J) tn esn dquivalentes Gleschungs-

system (J) von der Gestalt

AT =24, + b g1 @rarr F oo + binZn = by
_ D= A L A + byny = by
() e
gf(g) = zk'. + bf,kr+lzkf+1 + R + brnzn = bn

transformieren. Dabei gult:

(1) r ist die Maximalanzahl linear unabhingiger unter den
linken Seiten f,, . . ., fm von (J),

(2) 91y - - -, gr stnd linear unabhingig und bilden eine Basis
des von fy, . . ., fm erzeugten Linearformenmoduls,

(3) 1= k1<k2<"’<kr§ n.
Bewers. Wir fithren das vorgelegte Gleichungssystem
AE) =aua + -+ 12T =
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durch Operationen der Form (a), (b), (c) aus dem Hilfssatz
schrittweise in dquivalente Gleichungssysteme iiber, bis wir
schlieBlich, nach dem r-ten Schritt, eines von der angegebenen
Gestalt erhalten.

Eyrster Schritt. Sofern nicht alle f; = 0, d. h. nicht alle
a;; = 0sind?), sei k, der kleinste Index , fiir den mindestens
ein ag, =& O ist, etwa ay,;, == 0; dabei gilt natiirlich1 £ &, < n.
Dann dndern wir (gemal3 (a)) die Reihenfolge der Gleichungen
so, daB die 4,-te Gleichung f;(r) = a;, an die erste Stelle
kommt, und dividieren diese Gleichung (gemaf (b)) durch
@i k,- WIr erhalten so an der ersten Stelle eine Gleichung der
Gestalt

Gu(8) = @y + by by 11k 41+ ¢ - -+ Bin@a = by,

AnschlieBend subtrahieren wir (gemi8 (c)) von den iibrigen
Gleichungen f,(z) = a; (¢ F=1%,) jeweils das a;,-fache dieser
neuen ersten Gleichung, so daf in jenen Gleichungen dann
auch noch der k;-te Koeffizient verschwindet (wihrend alle
vorherigen Koeffizienten bereits nach der Wahl von %, ver-
schwanden). Damit haben wir ein zu (J) dquivalentes Glei-
chungssystem (J;) von der folgenden Gestalt gewonnen:

B =ak, + by, k1 @rr + o bin2e =0y

— 1 =~ 40
() = “(21,)1c1+1xk1+1 + oot af) 20 = 0

(J) e
1 — 1 | 1 = Q1
() = A 1Ty et a), = af)

mit 1 2k, £ n.

j-ter Schritt (j = 2). Angenommen, wir haben in j —1
Schritten durch Operationen der Formen (a), (b), (¢) bereits
ein zu (J) dquivalentes Gleichungssystem (J;_,) der folgen-
den Gestalt gewonnen:

1) Beziiglich dieses Falles siehe die Bemerkung 4 am SchluB dieses Para-
graphen.
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95-1(2) = @k;_y+ bjmy ey g +1%k;_y+1 + + - o+ bjog, nln =Dy,

j—1 = (j-1) e i—1) = g1
GffD@= af) s, T =0
(-1 _ -1 -1 = G-
D () = aghkj)_1+1xkj_1+1+ Y )

mit 12k <ky<<---<kjyZn

Dann konstruieren wir ein zu (J;-;) dquivalentes Glei-
chungssystem (J;) ganz entsprechend wie im ersten Schritt:
Sofern noch Gleichungen mit fY~1<=0 hinter der (j—1)-ten
vorhanden sind, d.h. j < m ist und nicht alle a{~" =0
sind, sei k; der kleinste Index k, fiir den mindestens ein
ali-1 == 0 ist, etwa ag;jl):i:O; dabei gilt wegen der Gestalt von
(dj=1) kj—y <k; < n. Dann dndern wir (gemé0 (a)) die Reihen-
folge der letzten m — j -+ 1 Gleichungen f¥~1)(r) = a{-V
so ab, dal die 47te Gleichung fg‘l) (x) = ag“l) an
die j-te Stelle des ganzen Gleichungssystems kommt, und
dividieren diese Gleichung (gemif (b)) durch a@fjf,;jl). Wir
erhalten so an der j-ten Stelle eine Gleichung der Gestalt

Gi(E) = Tyt By By g e by, = by

AnschlieBend subtrahieren wir (gemé8 (c)) von den iibrigen
Gleichungen f9-1(g)=af-1 (i = ;) jeweils das agc;l)-fache

der neuen j-ten Gleichung, so daB in diesen Gleichungen
dann auch noch der k;-te Koeffizient verschwindet
(wihrend alle vorherigen Koeffizienten bereits nach der
Wahl von k; verschwanden). Damit haben wir ein zu (J;_,)
und daher auch zu (J) dquivalentes Gleichungssystem (J;)
von der folgenden Gestalt gewonnen:
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B(E) = T, + b @y oo +binza =5
gi(x) = Ti; + bj,kj+1 Trif1 4t b;’nzn =
i) 1Y = j @ NN}
(Jy) /,(QI(Z) = a,;]_)l_l’kj_l_l wkj+v+"'+aj7+1,nmn— aj-f’-1
() = a%),kjﬂ U R +adz =

mit 1 Sk <k <---<k=<mn

r-ter Schritt. Dieses Verfahren der schrittweisen Umfor-
mungen setzen wir fort, solange das moglich ist; das ist der
Fall, solange noch nicht erfaBte Gleichungen mit £’ =0
tibrig sind. Der letzte mogliche Schritt sei der r-te. Diese
Zahl r bestimmt sich demnach dadurch, daB nach dem r-ten
Schritt entweder alle Gleichungen erfaBt sind, also 7 = m ist,
oder aber in den noch nicht erfalten Gleichungen (also fiir
t=r41,...,m) [ =0 ist, d. h. alle a{ =0 sind. Da
die in jedem einzelnen Schritt vorgenommene Wahl des
Index 4. und Abanderung der Reihenfolge der Gleichungen
mit Willkiirlichkeiten behaftet, also das ganze Transforma-
tionsverfahren nicht durch das Gleichungssystem (J) allein
eindeutig festgelegt ist, hingt auch die Zahl r zunéchst nicht
allein von (J), sondern auch noch von der Wahl des Ver-
fahrens ab. Es wird sich jedoch zeigen, daB r in Wahrheit
allein durch das Gleichungssystem (J) eindeutig bestimmt ist.

Nach dem r-ten Schritt haben wir demnach em zu (J)
dquivalentes Gleichungssystem (J,) der folgenden Gestalt

gewonnen:

7(%) Exk1+b1'k1+1zk]+1+ cenee e by, = b,

g(r) = Tk, + brgys1 @41+ 00 beny = br
(3 19, (2) = bz

fs:;)(g) = 0= agb)

mitl < ky <ky,<<---<k £ n
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Das Teilsystem

@
gx) = by

von (Jr) hat die im Satz angegebene Gestalt und besitzt die
Eigenschaft (3). Wir zeigen zunichst, daB es auch die Eigen-
schaften (2) und (1) besitzt.

Wenn eine Relation

T+ o+ 20 =0

besteht, so gl]t msbesondere fiir die Koeffizienten der T,
G=1.

’ ’ '
xlblkr + cee + xr——lbr—lykr -+ X, = 0,

und daraus folgt der Reihe nach z; =0,...,z; = 0. Die
Linearformen g¢,, .. ., gr sind somit linear unabhingig. Da
sie zusammen mit den Nullformen /) ,,..., {0 aus dem
Linearformensystem f;, ..., fm durch wiederholte Anwendung
der Operationen (a), (b), (¢) hervorgegangen sind, erzeugen
sie nach dem Hilfssatz denselben Linearformenmodul M
wie fy, . . ., fm und bilden darin wegen ihrer linearen Unab-
hingigkeit nach Def. 25 [70] eine Basis. Damit ist die Eigen-
schaft (2) nachgewiesen und im Hinblick auf Satz 44 [72]
zugleich gezeigt, daB die Zahl r der Rang von M ist und so-
mit tatséchlich nur von dem Gleichungssystem (J) und nicht
auch noch von den Willkiirlichkeiten des Transformations-
verfahrens abhiéingt. Schliefilich erzeugt nach Satz 38, a’)
[68] und Satz 43 [71] bereits ein Maximalsystem linear un-
abhingiger unter den Linearformen f,,..., f den Modul
M, bildet somit nach Def. 25 eine Basis von M und hat
daher nach Satz 44 die Anzahl r; und das bedeutet die
die Eigenschaft (1).

Es bleibt noch zu beweisen, daf das durch Weglassen der
m —r letzten Gleichungen
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N P@=0=d G=r+l...m

aus (J;) entstehende Teilsystem (J) mit (J,) und daher auch
mit (J) dquivalent ist. Fiir » = m, wo gar keine Gleichungen

wegzulassen sind, also (J) mit (J;) zusammenfillt, ist das
trivialerweise richtig. Fiir r << m zeigen wir: Wenn (J) — wie
im Satz vorausgesetzt — die notwendige Liosbarkeitsbedin-
gung aus Satz 51 [82] erfiillt, dann sind in (N) mit den linken
auch die rechten Seiten

dN =0 (@=r+1,...,m),

also die m —r letzten Gleichungen (N) von (J;) identisch

erfiillt und daher die Losungen des Teilsystems (J) in der
Tat auch Losungen des vollen Systems (J;).

Bei den Operationen (a), (b), (¢) aus dem Hilfssatz geht
namlich ein Gleichungssystem jeweils in ein neues iiber,
dessen linke Seiten linear aus den linken Seiten des Aus-
gangssystems komponiert sind und dessen rechte Seiten sich
1n gleicher Weise linear aus den rechten Seiten des Ausgangs-
systems zusammensetzen. Da das System (J;) durch wieder-
holte Anwendung von Operationen (a), (b), (¢) aus dem
System (J) hervorgegangen ist, sind daher nach Satz 43 [71]
die linken Seiten von (J,) linear aus f,, ..., fm komponiert
und, da die im Beweis von Satz 43 angewendete Regel
iiber die Vertauschung der Summationsfolge ebenso wie fiir
Linearformen f; auch fiir Korperelemente g; giiltig ist, sind
die rechten Seiten in gleicher Weise linear aus a,,..., an
zusammengesetzt. Insbesondere sind also die a{” in gleicher

Weise linear aus ay, . . ., @ zusammengesetzt wie die ) aus
fis « - - m. Da aber die fg’) = 0 sind, besagt die notwendige
Losbarkeitsbedingung aus Satz 51 [82], daB auch die a{” =0
sind, wie behauptet.

Damit ist der Beweis von Satz 52 zum Abschiuf gebracht.
Wir haben in diesem Beweis das vorgelegte Gleichungs-
system (J) in ein dquivalentes von der besonderen Gestalt

(J) transformiert, von dem wir im folgenden §13 zeigen
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werden, daB es stets 16sbar ist und wie man seine Liosungs-
gesamtheit bestimmen kann. Zuvor wollen wir an den Be-
weis noch einige Bemerkungen ankniipfen:

1. Uber die in Satz 52 formulierte Existenzaussage
hinaus liefert der Beweis zugleich ein konstruktives Ver-
fahren aus endlich vielen (ndmlich r < Min (m, n)) Schritten,
durch das man jedes vorgelegte lineare Gleichungssystem (J)
in ein dquivalentes von der einfacheren Gestalt (J) iiber-
fithren kann.

2. Die Pritfung, ob ein vorgelegtes lineares Gleichungs-
system (J) die notwendige Losbarkeitsbedingung aus Satz 51
[82] ertiillt, wiirde im allgemeinen unendlich viele Schritte
erfordern, da ja bei unendlichem Grundkérper unendlich viele
Moglichkeiten linearer Abhéingigkeit der Linearformen auf
den linken Seiten durchzuprobieren waren, Fiir die Lésung
der Aufgaben J*), H*) aus § 11 ist man aber auf diese Priifung
gar nicht angewiesen. Wendet man ndmlich das beschriebene
Verfahren auf ein vorgelegtes lineares Gleichungssystem (J)
an, von dem nicht feststeht, ob die notwendige Losbarkeits-
bedingung aus Satz 51 erfilllt ist, so gibt es fiir das
nach r Schritten resultierende zu (J) dquivalente System
(J-) mit den m — r letzten Gleichungen (N) nur die folgenden
beiden Moglichkeiten:

a) Es sind, wie im vorstehenden Beweis, in () alle rechten
Seiten a{” = 0 — hierunter zihlen wir auch den Fall r —=m
in dem gar keine a{” mehr existieren. Dann ist (J) wie oben
zu dem Teilsystem (J) von (J;) dquivalent, und fiir dieses
Teilsystem ist die notwendige Losbarkeitsbedingung aus
Satz b1 trivialerweise erfiillt, da seine linken Seiten ja linear
unabhéngig sind.

b) Es ist in (N) mindestens eine rechte Seite ai” == 0.
Dann ist (J,) und damit auch (J) unlésbar.

3. Das (J) zugeordnete homogene lineare Glelchungssystem
(H) ist mit dem (J) zugeordneten homogenen linearen Glei-
chungssystem (H) dquivalent. Denn wendet man das be-
schriebene Verfahren auf (H) an, so ergibt sich gerade (H).
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4. Der triviale Fall, da8 in (J) alle linken Seiten f; = 0 sind,
ordnet sich dem beschriebenen Verfahren folgendermafen unter:
Hier hat (J) von vornherein schon die im allgemeinen Fall nach r
Schritten resultierende Endgestalt (J,). Demnach ist sinngemi8

7 = 0 zu setzen und das Teilsystem (J) aus =0 Gleichungen als
identisch erfilllt anzusehen. Die beiden Moglichkeiten aus Be-
merkung 2 stellen sich hier wie folgt dar:

a) Es sind alle rechten Seiten a; — 0. Dann ist (J) mit (J) dqui-
valent und identisch erfiillt.
b) Es ist mindestens ein a; = 0. Dann ist (J) unlosbar.

§ 13. Losbarkeit und Losungen linearer Gleichungs-
systeme

Wir wenden jetzt den Satz 52 [85] zur Losung der beiden
am SchluB von § 11 formulierten Aufgaben J*) und H*) an.

Die Aufgabe J*) wird durch den Beweis des folgenden
Satzes gelost:

Satz 53. Das Gleichungssystem (J) st stets losbar; d. h. die
notwendige Losbarkettsbedingung fiir (J) aus Satz 51 [82] 1st
auch hinreichend.

Beweis. Die Losbarkeit des Gleichungssystems (J) folgt
aus seiner besonderen Gestalt, wie sie in der Eigenschaft (3)
aus Satz b2 zum Ausdruck kommt.

Man wihle ndmlich, um eine Lésung zu konstruieren, zu-
nichst die » — & Unbestimmten zy, . .., zx, +1 (s0Weit sie
iiberhaupt vorkommen, d. h. k» < n ist) ganz beliebig. Dann
1aBt sich zp, (eindeutig) so bestimmen, daB die letzte Glei-
chung ¢,(r) = b, erfiillt ist, wie auch die iibrigen zx gewahlt
werden mogen. Danach wahle man weiter die kr — k,_1 —1
Unbestimmten 2x, _;,..., T _;+1 (soweit sie iiberhaupt
vorkommen, d.h. k-1 <k, —1 ist) ganz beliebig. Dann
148t sich zy,_, (eindeutig) so bestimmen, da} auch die zweit-
letzte Gleichung ‘g, 1(x) = b,_1 erfiillt ist, wie auch die noch
nicht festgelegten zx gewdhlt werden mégen. So fahre man
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fort, bis schlieBlich auch z, bestimmt ist, und wihle dann
noch die k; —1 Unbestimmten zx 1, ...,2; (soweit sie
iiberhaupt vorkommen, d. h. k; > 1 ist) ganz beliebig. Der
damit vollstandig festgelegte Vektor g ist eine Losung von(dJ).

Diesem Lisungsverfahren ordnet sich auch der am SchluB von
§ 12 in der Bemerkung 4 aufgefiihrte triviale Fall r = 0 unter,
indem dann alle Unbestimmten z; ganz beliebig gewahit werden
konnen, d. h. jeder Vektor ¢ Losung von (J) ist.

Nach Satz 53 konnen wir ergénzend zu der Bemerkung 2
am Schluf von § 12 feststellen:

Zusatz. Notwendig und hinreichend fiir die Losbarkeit des
wmhomogenen linearen Gleichungssystems (J) — und daher
gletchbedeutend mit der Ldsbarkeitsbedingung aus Safz 51
[82] — ist, daf3 bes der tm Beweis zu Satz 52 [85] beschriebenen
Transformation nach dem r-ten Schritt nicht nur die linken,
sondern auch die rechien Seiten der letzten m — r (leichungen
zum Verschwinden kommen.

Im Hinblick auf die Bemerkung 1 am Schluf von § 12 ist
damit die Aufgabe J*), bei einem vorgelegten inhomogenen
linearen Gleichungssystem (J) iiber die Losbarkeit zu ent-
scheiden und gegebenenfalls eine Losung zu bestimmen,
durch ein konstruktives, in endlich vielen Schritten durch-
fithrbares Verfahren geldst.

Dieses Verfahren liefert zudem nicht nur, wie in der Aufgabe
J*} verlangt, eine Losung von (J), sondern sogar alle Losungen
von (J), indem man fiir die ganz beliebig zu wahlenden von den
Tk verschiedenen zy jeweils nicht nur ein, sondern nacheinander
alle Elemente des Grundkérpers einsetzt (vgl. den anschliefenden
Beweis von Satz 54 fiir den homogenen Fall). Wir wollen jedoch
hierauf nicht genauer eingehen, da sich die Lgsungsgesamtheit
von (J) auf dem bisher eingeschlagenen, durch Satz 49 [81] be-
stimmten Wege, namlich durch getrennte Behandlung der Auf-
gaben J) und H), in iibersichtlicherer Form darstellt.

Die Aufgabe H*) wird durch den Beweis des folgenden
Satzes gelost:

Satz b4. Der Lisungsrang von (H) ist s =n —r, wo r der
Rang des von [y, ..., fm erzeugten Linearformenmoduls 1ist;
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oder also: Jedes Fundamentallosungssystem von (H) bestehi
aus s = m —r Vekloren, wo r die Maximalanzahl linear un-
abhingiger unter f,, . . ., fm 1st.

Beweis. Wir betrachten das (J) zugeordnete homogene

lineare Gleichungssystem (H), das nach der Bemerkung 3 am
SchluB von § 12 zu (H) dquivalent ist, und konstruieren alle

Lésungen von (H) ebenso, wie wir im Beweis des vorigen

Satzes eine Losung von (J) konstruierten, indem wir nimlich
die von zg,, . . ., 7y, verschiedenen unter den Unbestimmten

Ty, ..., Tn ganz beliebig wihlen und zy, . . ., 2%, der Reihe

nach so bestimmen, daB eine Gleichung von (H) nach der
anderen erfilllt wird. Der Lésungsrang s = n — r ergibt sich
dabei als die Anzahl der von den xx, verschiedenen, frei wihl-

baren zx. Das erkennt man im einzelnen folgendermalen.
* Fiir jeden Losungsvektor ¢ von (H) ergibt sich z, aus der
letzten Gleichung von (H) als lineares Kompositum der

n —k; Unbestimmten 2, 4.1, . . ., Z» mit durch (ﬁ) eindeutig
festgelegten Koeffizienten:
Tk, = "“br, Ep+1 Thy+ ——bmwn

(bzw. 2y, = 0, falls kr = n ist). Ebenso ergibt sich z;__ aus

der zweltletzten Gleichung von (H) zunichst als hneares
Komp0s1tum der n — 1k, - Unbestimmten Tp, _+1y o s Tn

mit durch (H) eindentig festgelevten Koeffizienten:

T, _, = '—br—1,k,_1+1 Tky _q+1 0" — b _1,n Tn.

Da aber hierin zy, seinerseits lineares Kompositum von
Thp41s - » To mit durch (H) eindeutig festgelegten Koeffi-
zienten ist, ergibt sich nach Satz43 [71] durch Einsetzen Te,
als lineares Kompositum der zx mit k> k,_;, k == k-, mit durch
(H) eindeutig festgelegten Koeffizienten (bzw. 2, _, =0, falls
keine solchen 2 vorhanden sind, d. h. &, =n, %k, _; =n—1
ist). Fahrt man so fort, so erhilt man schlieflich fiir jeden
Lésungsvektor von (H) die » Unbestimmten Thepy « + oy Ty der
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Reihe nach als lineare Komposita der iibrigen n — r Unbe-

stimmten z; mit durch (H) eindeutig festgelegten Koeffi-
zienten (bzw. @, =0,..., Ty, = 0, falls keine weiteren

2 vorhanden sind, d. h. r = n ist).

Um uns einfacher ausdriicken zu kénnen, bezeichnen wir
im folgenden die n — r von Trys o or Ty verschiedenen unter
den Unbestimmten z,..., 2, mit Te, y 5 o o By Dann

liefert das eben beschriebene Verfahren 7 durch (H) ein-
deutig festgelegte Linearformen k..., k von n —7 Un-

bestimmten zx_ ,..., 2, derart, daB fiir jeden Ldsungs-
P41 n ] g

vektor ¢ von (H) gilt:

xkl = hl(xk,+1a R wk'n) = 01,r+1mkr+1 4 e + c1n$kn

Ty = he(@, , s o ooy Thg) = Crypra @, o0 o Oy,
(Dabei ist im Falle r = n sinngemi »;, = 0,...,k =0 zn
verstehen.)

Setzt man umgekehrt fiir @y, , ,, . . ., 7, beliebige und fiir
Tk, . . ., 3%, die sich dann aus den Linearformen hy, ..., &,
ergebenden Werte ein, so erhalt man nach dem Einsetzungs-
prinzip auch stets einen Losungsvektor ¢y von (H). Der Lo-

sungsmodul von (H) ist demnach identisch mit der Gesamt-
heit der Vektoren von der erhaltenen Form. Diese Vektoren
r sind nach Satz 47 [76] gerade die siamtlichen linearen
Komposita der folgenden s =mn —r speziellen Vektoren
(deren Komponenten wir der Einfachheit halber auf die
Reihenfolge Thps v oy Ty statt 2,, . .., z» der Unbestimmten

bezogen angeben):
Cryy = (cl,r+1’ e oo Orrt1, 6 Oa L) O)

namlich
T =a7kr+1 Creq + "'+xlcn Cne
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Die s = n — r Vektoren ¢, 4, . . ., ¢» sind nach Satz 40 [68]
linear unabhéngig, da bereits die aus ihren » — 7 (in der
angegebenen Reihenfolge) letzten Komponenten gebildeten
Vektoren ersichtlich linear unabhéngig sind. Sie bilden daher

eine Basis des Losungsmoduls von (H), d. h. ein Fundamen-

tallosungssystem von (H) und damit auch von (H). Somit
ist Satz 54 bewiesen.

Wir wollen noch kurz darauf eingehen, wie sich die beiden
Grenzfille r = 0 und r = » diesem Lésungsverfahren unterordnen.

Ist # = 0, so besteht das Gleichungssystem (H) aus 7 =0
Gleichungen. Dann ist jeder Vektor r Losung von (H). — In
diesem Falle ist das Teilsystem Bheyy - - o1 Tk (und damit auch das
Linearformensystem %, ..., i) leer und besteht das Teilsystem
w"r+1 - Tk, BUS allen Unbestlmmten Zyy « « o, Tp. Dann ist das
obige Fundamentallosungssystem Cr11, - - - O gerade das System
der s = n — 7 = n Einheitsvektoren.

Ist dagegen r = n, so besteht das Gleichungssystem (H) aus
r = n Gleichungen, die der Reihe nach eindeutig z, = 0, ce By = 0
bestimmen. Dann ist £ = 0 die einzige Losung, d. h. (H) ist im
Sinne der in § 11 getroffenen Festsetzung unlésbar. — In diesem
Falle besteht das Teilsystem Tpys o+ oy Tk, BUS allen Unbestimmten
Ty, . . ., %p, wihrend das Teilsystem 2, e Ty leer ist. Dann
sind, wie gesagt, by = 0, ..., by = 0 zu verstehen, und das obige
Fundamentallosungssystem ist leer, d. h. besteht aus s = n —r
=0 Vektoren.

Damit ist auch die Aufgabe H*), bei einem vorgelegten
homogenen linearen Gleichungssystem (H) den Lésungsrang
und ein Fundamentalldsungssystem zu bestimmen, durch
ein konstruktives, in endlich vielen Schritten durchfiihrbares
Verfahren gelost.

Wir wollen nun zum SchluB noch einige zusétzliche Fest-
stellungen iiber die bei der Losung von (J) bzw. (H) auf-
getretenen Anzahlen r und s treffen und damit gleichzeitig
das transponierte homogene Gleichungssystem (H') wieder
in den Kreis der Untersuchungen einbeziehen.
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Satz 54 besagt, daB der Losungsrang des Gleichungs-
systems (H) um so grofer ist, je weniger linear unabhingige
Zeilen seine Matrix 4 hat, je mehr lineare Abhingigkeiten
also zwischen diesen Zeilen bestehen, oder, da eine lineare
Abhangigkeit zwischen den Zeilen von A mit einer Lésung
von (H') gleichbedeutend ist, je groBer die Losungsgesamtheit
von (H') ist. Es ist daher eine Relation zwischen den L&-
sungsrangen von (H) und (H') zu vermuten, die sich nach
Satz 54 auch als Relation zwischen den Maximalanzahlen
linear unabhéngiger Zeilen bzw. Spalten von A aussprechen
lassen muB. Wir beweisen nun in der Tat die beiden folgenden
Tatsachen:

Satz b5. Die Maximalanzahl r linear unabhingiger Zeilen
evner Matriz A ist gleich der Maximalanzahl v linear unab-
hingiger Spalten von A.

Satz 56. Zwischen den Lisungsringen s eines homogenen
linearen Gleichungssystems (H) von m Gleichungen und s
seines transponierten (H') von m’ Gleichungen besteht die Re-

lation
m-t+s=m-+¢.

Dabei haben wir der Symmetrie halber ausnahmsweise m’ fiir
die sonst mit n bezeichnete Anzahl der Spalten geschrieben.

Beweise. 1) (Satz 55) Es seien r und »* die im Satz genannten
Maximalanzahlen fiir die (m, m’)-reihige Matrix 4.

a) Ist A = 0, so ist die Aussage des Satzes trivial, da dann
r = Qund 7 = 0ist (vgl. Bemerkung 4 am Schlu} von § 12).

b) Ist A == 0, so diirfen wir ohne Einschrinkung die Zeilen
so geordnet annehmen, daB a, ..., a, ein Maximalsystem
linear unabhéngiger Zeilen ist. Ist nun zundchst r << m,
so sind nach Satz 38, a’) [68] die letzten m —r Zeilen
Op 415 - - - O vOn den ersten r Zeilen qy, ..., ar linear ab-
hingig, d.h. es bestehen m — r Relationen der Form

ay =i§;c,~,a,- G=r+1,..,m)

zwischen den Zeilen. Diese besagen, daf die m — r nach
Satz 40 [68] linear unabhingigen Vektoren

7 Hasse, Hohere Algebra
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(—le yooey —Clmr ,0,...,0,6)

Losungen des A zugeordneten transponierten homogenen
Gleichungssystems (H') sind. Nach Satz 54, angewandt auf
(H’), ist somit der Losungsrang m — »* von (H') mindestens
m—r,dh m—r = m—r, also < r. Ist aber r = m,
so gilt " < r bereits nach Satz 41 [69], da die Spalten von
A ja m-gliedrige Vektoren sind. Durch die entsprechenden
Betrachtungen iiber die transponierte Matrix A’ folgt ebenso
r < 1. Zusammen gilt also r = r’.

2) (Satz 56) Nach Satz 54,55 gilt s =m' — 7,8 =m —7,
dh mt+s=m+4s(=m+m —r).

Durch Satz 55 wird die nach Satz 41 [69] richtige Tatsache, dal
in einer (m, m’)-reihigen Matrix 4 fiir die Maximalanzahl r linear
unabhéngiger Zeilen nicht nur r < m, sondern auch r < m’ gilt,
in helles Licht gestellt. Denn nach Satz 55 geht die ,,nicht-selbst-
verstindliche** Ungleichung 0 < r < m’ zwischen einer Zeilen-
und einer Spaltenanzahlin die,,selbstverstindliche* Ungleichung
0 < r < m zwischen zwei Spaltenanzahlen iiber.

Durch Satz 56 wird der ,,Kreis* unserer Betrachtungen iiber
(J), (H), (H’) geschlossen: Durch Satz 49 [81] ist (J) mit (H),
durch Satz 56 (H) mit (H’) und durch Satz 51 [82], 53 (und deren
Zusétze) (H’) mit (J) verkettet.

§14. Der Fallm =n

Es ist fiir die Betrachtungen in IV und auch fiir die Anwen-
dungen von Interesse, die in Satz 49—56 [81—97] gewonnenen
Resultate iiber Losbarkeit und Loésungen linearer Gleichungs-
systeme auf den Fall zu spezialisieren, daf die Anzahl m der
Gleichungen mit der Anzahl #» der Unbekannten iibereinstimmt,
daB also A eine (n, n)-reihige Matrix ist. Da aber nach den Resul-
taten des vorigen Paragraphen die Anzahlen m und # allein fiir die
Lisungsgesamtheit von (H) (und damit nach Satz 49 [81] auch fiir
die von (J)) so gut wie nichts besagen, vielmehr diese sich erst
durch Hinzunahme der dortigen Anzahl r bestimmt, haben wir
ohne eine feste Annahme iiber r keine besonderen Resultate zu
erwarten. Wir wollen daher auBer der Spezialisierung m = % noch
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die weitere einfiihren, daf nur zwischen dem Grenzfallr = m = n
und dem Fall 0 < r < m = n (ohne weitere Unterscheidungen
im letzteren Falle) unterschieden wird?).

Wir treffen demgemiB, vorldufig nur der kiirzeren Ausdrucks-
weise halber, die folgende, erst durch die Entwicklungen in IV in
ihrer vollen Bedeutung verstindlich werdende Festsetzung:

Definition 82. Eine (n, n)-rethige Matriz A heifle regulir oder
singulir, je nachdem, ob fur sie der Fall r = n oder der Fall
0 < r < n vorliegt, wo r die Bedeutung aus §§ 12, 13 hat.

Der in Satz 54—56 [93—97] enthaltene Tatsachenkomplex
iiber (H) liefert dann hier, zusammengefaft, unmittelbar fol-
gendes Resultat:

Satz (54, 65, 56) a. Ist A eine (n,n)-rechige Matriz, so sind ent-
weder sowohl ihre Zeilen als auch thre Spalten linear unabhingig
oder sowohl thre Zeilen als auch thre Spalten linear abhingig, d. h.
es sind die A zugehirigen Gleichungssysteme (H) und (H') entweder
betde unlisbar oder berde losbar, und zwar gill das erstere oder das
letatere, je nachdem A requldr oder singuldr ist.

Ferner liefert der in Satz 49 [81], 51 [82], 53 [92] enthaltene
Tatsachenkomplex iiber (J) hier, zusammengefafit, folgendes Re-
sultat:

Satz (49, 61, 88) a. Das Gleichungssystem (J) mit (n, n)-reihiger
Matriz A ist genau dann fir jeden beliebigen Vektor a rechis und
genau dann sogar esndeutiqg lisbar, wenn A regular ist.

Bewets. a) Es sei A4 regulér.

1. Dann ist (J) nach Satz 53 [92] fiir beliebiges a losbar, weil
(H’) nach Satz (54, 55, 56)a unlésbar ist, also die einschrankende
Bedingung von Satz 51 (Zusatze) [83] fiir a fortfallt.

2. Ferner ist dann (J) nach Satz 49 [81] eindeutig auflésbar,
weil (H) nach Satz (54, 55, 56)a unlésbar ist.

b) Es sei A singulir.

1. Dann existiert nach Satz (54, 55, 56)a eine Losung ¢’(+= 0)
von (H"). Ist darin z} = 0, also t’e; = z; = 0, so ist (J) nach
Satz 51, Zusatz 1 [83] fiir den Vektor a = e; unlgsbar, also nicht
fiir jeden beliebigen Vektor a ldsbar.

2. Ferner ist (J) nach Satz 49 [81], wenn iiberhaupt, dann nicht
eindeutig losbar, weil (H) nach Satz (54, 55, 56)a losbar ist.

!) Der andere Grenzfall » = 0 verlohnt seiner Tnvmhtat halber keiner be-
sonderen Hervorhebung.

7=
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Die beiden erhaltenen Sitze ergeben noch durch Elimination
derAlternative(d.h.derkontradiktorisch entgegengesetzten
Aussagen) ,,A ist reguldr‘ oder ,,4 ist singuldr*:

Zusatz, Es besteht die Alternative: Enfweder ist (J) einschrin-
kungslos und eindeutig losbar, oder es sind (H) und (H’) lisbar.

Fiir den ersten Fall dieser Alternative, d. h. fiir regulires 4,
kénnen wir schlieBlich eine iiber die Resultate von §13 hinaus-
gehende, elegante Aussage betreffend die Abhingigkeit der dann
stets vorhandenen, eindeutig bestimmten Lésung r von (J) von
dem rechtsstehenden Vektor a machen. Wir bezeichnen in diesem
Zusammenhang a mit £* und beweisen:

Satz 57. Ist A = (ai) eine (n, n)-reshige requlire Matriz, so
existiert etne etndeutig bestimmte (n, n)-rethige Matriz A* derart,
daf} die stets vorhandene und eindeutrg bestimmie Losung ¢ des
Gleichungssystems

n
)] kz‘lamzk=z: t=1...,n)

mat der Matrix A in shrer Abhingigkeit von den rechisstehenden
durch die Formeln

n
3" Skt = (=1
mit der Matriz A* gegeben wird. A* ist ebenfalls requldr, und es gilt

(A¥)* = A, d. h. das den Formeln (J*) entsprechende Gleichungs-
system '

n
(7% Sapap=a  (i=1,...m)
k=1

mit der Matriz A* fir die Unbekannten zi mit den rechten Seiten
x; wird durch die dem Gleichungssystem (J) entsprechenden Formeln

n
(3 kglaikxk =z (=1...n)
mit der Matriz A geldst.
Beweist). a) Sind die n Vektoren a*y = (af, ..., ajy) die Losun-
gen von (J) fiir die speziellen rechten Seiten e (k =1, ..., n), so

1) Der Leser setze in diesem Beweise, wie im Satz geschehen, zum besseren
Verstindnis des Zusammenhangs vor jedes (J), (J*) das Wort Gleichungs-
system, vor jedes (), (3*) das Wort Formeln.
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folgt nach Satz47 [76] sofort, daB das lineare Kompositum
n

Tt = X xf a*y eine, also die Lb’sung von (J) fiir das entsprechende
=1

lineare Kompositum z* = sz ex ist. Die Darstellung von g

durch die a¥y geht aber, ausfuhrhch geschrieben, in (*) itber.
Es existiert daher eine (n, n)-reihige Matrix A* mit der im ersten
Teil des Satzes genannten Eigenschaft.

b) Ist A* = (@},) eine weitere Matrix mit dieser Eigenschaft,
so daB also (§*) und das mit 4* gebildete (§*) fiir alle r* jeweils
dasselbe g rechts liefern, so folgt speziell fiir £* = ex, daBl die k-ten
Spalten a*y und a*y von A*und A* iibereinstimmen (k =1, ...,n),
und daraus 4* = A*, d. h. die eindeutige Bestimmtheit von 4*
durch die im ersten Teil des Satzes genannte Eigenschaft.

¢) Wird umgekehrt ¢ irgendwie gewahlt und ¢* dazu so be-
stimmt, daB (§) besteht, so muB nach a) auch (§*) bestehen (weil
eben dann ¢ die Lésung von (J) fiir das so bestimmte r* ist).
Anders ausgedriickt, es liefert (J) fiir jedes beliebige r eine Lésung
von (J*). Dessen Matrix 4* ist also nach Satz (49, 51, 53)a regu-
lir, und ferner (4*)* = A.

Im Hinblick auf die charakteristische Eigenschaft der Matrix
A* aus Satz 57 definieren wir noch:

Definition 83. Die nach Satz 57 durch eine (n, n)-rethige reguldre
Matriz A eindeutig bestimmie Matriz A* heifit die l16sende Ma-
trix von A.

§ 15. Die Tragweite der determinantenfreien
linearen Algebra

Durch die Resultate aus §§ 11—13 haben wir die Aufgabe der
linearen Algebra §5, (1) in theoretischer wie praktischer Hinsicht
vollstindig geldst.

Intheoretischer Hinsicht haben wir fiir das Gleichungssystem
(J) eine notwendige und hinreichende Lésbarkeitshedingung
(Satz 51 [82], 53 [92]) sowie eine genaue Kenntnis der Struktur
der Losungsgesamtheit (Satz 49 [81] verbunden mit Satz 50 [81],
54 [93]) gewonnen.

Inpraktischer Hinsicht haben wir aus endlich vielen Schritten
bestehende, konstruktive Verfahren zur Entscheidung iiber die
Losbarkeit (Beweis von Satz 52 [85], Zusatz zu Satz 53 [93])
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sowie zur Bestimmung der Losungsgesamtheit (Beweis von Satz 52
185], 63 [92], 64 [93]) des Gleichungssystems (J) entwickelt.

Diese Bemerkungen beziehen sich auch auf den in § 14 behan-
delten Spezialfall. Insbesondere wird itber die dortige Alternative
dadurch entschieden, ob das Transformationsverfahren aus § 12
erst nach n Schritten oder schon frither zum Abschluf kommt,
und die n Spalten der l6senden Matrix werden durch Auflésung
der speziellen Gleichungssysteme (J) mit den » Einheitsvektoren
als rechten Seiten gewonnen.

Trotz aller dieser Errungenschaften bleibt in theoretischer
wie praktischer Hinsicht noch etwas zu wiinschen iibrig.

In theoretischer Hinsicht ist der Beweis von Satz 55 [97]
insofern unbefriedigend, als er keine tiefere Einsicht in den wahren
Grund fiir das Ubereinstimmen der Maximalanzahlen linear unab-
hiingiger Zeilen und Spalten einer Matrix liefert. Man wiirde sich
eine neue, in den Zeilen und Spalten symmetrische Definition
dieser Anzahl wiinschen, aus der sich ihre beiden bisherigen Be-
deutungen durch ein und dieselbe SchluBweise folgern lassen.

In praktischer Hinsicht sind die entwickelten Verfahren inso-
fern unbefriedigend, als sie mit Willkiirlichkeiten behaftet sind
und weder die Ldsbarkeitsentscheidung noch die Lisungsgesamt-
heit in geschlossener Form liefern. Man wiirde sich dafiir Formeln
wiinschen, die nur aus den Koeffizienten und rechten Seiten des
Gleichungssystems in einheitlicher Form aufgebaut sind.

Diese Wiinsche werden nun durch die Deferminantenlehre
erfiillt.

Der Grund, weswegen wir hier, von dem bis zur ersten Auflage
dieses Biandchens fast immer iiblichen Wege abweichend, nicht
von vornherein diese Determinantenlehre zur Herleitung aller bis-
herigen Resultate verwendet haben, ist ein doppelter. Einerseits
erscheint bei der eben angedeuteten Behandlungsart der an die
Spitze gestellte Determinantenbegriff als etwas Fremdartiges, in
gar keiner Beziehung zu dem zu losenden Problem Stehendes, so
daB die mit ihm gewonnenen Resultate iiberraschend wirken und
aus ihrem Sinnzusammenhang geldst erscheinen, wihrend die von
uns eingeschlagene Methode dem Problem durchaus angepaf8t ist
und die Zusammenhangsfaden zwischen den Sitzen 49—b56 in
voller Klarheit hervortreten 1aBt. Andererseits aber hat der ent-
wickelte determinantenfreie Sitzekomplex der linearen
Algebra in neuerer Zeit ein besonderes Interesse gewonnen, da er
allein es ist, der sich mit allen seinen Beweisen fast wortlich auf
die entsprechenden Probleme fiir unendlich viele Gleichungen
mit unendlich vielen Unbekannten und auf die damit eng
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zusammenhéngende Theorie der linearen Integralgleichun-
gen iibertragen laBt, wihrend der Begriff der Determinante sich
dort, abgesehen von Spezialfillen, als zu eng erweist. Im iibrigen
ist die Schonheit und Geschlossenheit der determinantenfreien
Theorie, wie sie vorstehend entwickelt wurde, Rechtfertigung
genug fiir ihre gesonderte Behandlung.

IV. Lineare Algebra mit Determinanten
§ 16. Permutationsgruppen

In den Beweisen des vorigen Abschnitts haben wir mehr-
fach Umordnungen der Zeilen oder Spalten einer Matrix
vorgenommen. Der in diesem Abschnitt einzufithrende
Determinantenbegriff beruht nun in sachlicher Hinsicht auf
solchen Umordnungen, oder genauer auf gewissen dabei
vorliegenden Verhiltnissen. Wir miissen uns daher, ehe wir
an die Entwicklung der Determinantenlehre gehen, zuvor
mit diesen Verhiltnissen vertraut machen.

Der Begriff Umordnung oder Permutation ist rein mengen-
theoretisch. Er geht davon aus, daf jede Menge zu sich
selbst gleichmachtig ist [§ 2, (I1)], also sich zum mindesten
auf eine Weise eineindeutig sich selbst zuordnen 1a8t (in-
dem nidmlich jedes Element sich selbst zugeordnet wird),
und entsteht durch Betrachtung irgendeiner derartigen
Zuordnung:

Definition 34. Unter einer Permutation einer Menge M
versteht man irgendeine eineindeutige Zuordnung mit be-
stimmier Zuordnungsrichtung von M 2y sich selbst, unter Aus-
fiithrung oder Anwendung der Permutation das Erselzen
der Elemente von M durch die ihnen zugeordneten.

Wir unterscheiden Permutationen nach Def. 34 sinngemifl ver-
moge der ihnen zugrunde liegenden Zuordnungen unter Beriick-
sichtigung der Zuordnungsrichtung, nennen also zwei Permuta-
tionen dann und nur dann gleich, wenn jedem Element bei beiden
dasselbe Element zugeordnet ist. Natiirlich kénnen wir zur ein-
deutigen Beschreibung einer Permutation sowohl die Mitteilung
der samtlichen Zuordnungen als auch die der simtlichen, bei ihrer
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Ausfithrung zu machenden Ersetzungen (Uberginge) verwenden;
das sind eben nur zwei verschiedene Vorstellungsweisen fiir ein-
und dieselbe formale Tatsache. Auf die Reihenfolge, in der diese
Mitteilungen gemacht werden, kommt es selbstverstindlich
nicht an.

Uber die Permutationen einer Menge beweisen wir nun:

Satz b8. Die simtlichen Permutationen einer Menge bilden
ewne Gruppe, wenn unier dem Produkt zweier Permutationen
die durch Nacheinanderausfilhrung entstehende Permutation
verstanden wird. Das Einselement dieser Gruppe ist die Per-
mutation, bet der jedes Element in sich selbst iibergeht, die Rezi-
proke zu einer Permulation erhalt man durch Umkehrung der
Zuordnungsrichtunyg.

Bewers. § 6, (a) ist im Sinne des zuvor Bemerkten erfiilit.

§6, (b) ist erfiillt. Denn die Nacheinanderausfithrung
zweier Permutationen, d. h. die jeweilige Ersetzung von a
durch a’*, wenn a bei der ersten in a’, a’ bei der zweiten in
a'’’ iibergeht, liefert fiir jedes beliebige Permutationspaar
wieder eine Permutation.

§6, (1) stimmt, weil (logische) Ersetzungen dem assozia-
tiven Gesetz geniigen, § 6, (2a) und (2b) sind ersichtlich auf
die im Satz angegebene Art erfiillt.

Satz 59. Sind M und M gleickmiichtige Mengen, so sind
die Gruppen der Permutation von M und M isomorph.

Bewets. Ordnet man jeder Permutation von M diejenige
von M zu, die durch Ausfiihrung eines eineindeutigen Uber-
ganges von M zu M aus ihr entsteht, so geniigt diese Zu-

ordnung der Bedingung (2) von Satz 23 [5b]. Die leichte
Einzelausfithrung bleibe dem Leser iiberlassen.

Auf Grund von Satz 59 ist nach § 2, (IT) und Def. 17 [55]
der Typus der Permutationsgruppe von M allein durch die
Kardinalzahl von M, speziell fiir den Fall eines endlichen
M allein durch die Anzahl der Elemente von M bestimmt.
UnterNichtunterscheidung isomorpher Gruppen definieren
wir demgemaB:
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Definition 35. Die Gruppe aller Permutationen einer end-
lichen Menge von n unierschiedenen Elementen heifit die
symmetrische Gruppe?) von n Elementen. Sie werde mit
&n bezeichnet.

Mit dieser Gruppe ©, haben wir uns hier ausschlieBlich
zu beschéftigen. Da man jede Menge von n Elementen ein-
eindeutig der speziellen Menge der # Ziffern 1,...,n
zuordnen kann, geniigt es nach Satz 59, diese Ziffernmenge
fiir das Studium von &, zugrundezulegen. Man bezeichnet
dann mit

(1"'"),kurz (1) (i=1,...,m),
Pr---Pn V23

diejenige Permutation der Ziffern 1, . . ., n, bei der die Ziffer
1 in p; libergeht (¢ =1,...,n). Ist a,,..., an irgendeine
Menge von n Elementen, die durch Numerierung ihrer Ele-
mente eineindeutig der Ziffernmenge 1, ..., n zugeordnet
ist, so kann man die obige Permutation auch als eine solche
der n Elemente a,, . . ., d, ansehen, ndmlich die, bei der a;
in ap, iibergeht (o =1,...,n).

Die in Def. 35 fiir Permutationen geforderte Eineindeutig-
keit [Bedingungen § 2, (), (6'), (¢), (¢')] ist, auf die obige

Schreibweise ; (¢ =1, ..., n) angewandt, die prazise For-
mulierung der Ausdrucksweise: p,, ..., p» sind die Ziffern
1,...,n abgesehen von der Reihenfolge oder in ir-
gendeiner Reihenfolge, der wir uns im folgenden haufig
bedienen werden. Die samtlichen Reihenfolgen von 1,.. ., n
sind so den sdmtlichen Permutationen von 1, ..., n einein-
deutig zugeordnet?).

1} Die Bezeichnung symmetrische Gruppe ist so zu verstehen, daB
netwas’ symmetrisch im geldufigen Sinne des Wortes in bezug auf » Elemente
ist, wenn es bei Anwendung aller Permutationen dieser Elemente erhalten
bleibt. In diesemn Sinne nannten wir z. B. in § 4 l{z,,..., zp] symmetrisch in

Ty, - v . Ty Vgl auch 2, Satz 131 [153] (Satz von den symmeirischen Funk-
tionen).

2) In der Schulmathematik pflegt man die Reihenfolgen selbst, nicht
den ProzeB ihrer Herstellung, Permutationen von 1,..., #» zu nennen.
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Da nach der Bemerkung zu Def. 34 die Mitteilungsreihen-
folge der einzelnen Ubergiinge einer Permutation gleich-
gilltig ist, kann ebensogut

G o---qn U5 .
(Pq; o p!ln) , kurz (2%) (t=1,...,mn),

zur Mitteilung obiger Permutation verwendet werden, wenn
qys - - - n irgendeine Reihenfolge von 1,...,n ist. Mittels
dieser Bemerkung kann die Multiplikationsregel von Satz 56
fiir Permutationen aus &, durch die Formel

) 6ot

ausgedriickt werden, und ebenso la6t sich die Reziproke zu
(@ ) als (?‘) angeben.
144 Y

@, ist natiirlich die Einsgruppe €, &, die aus den zwei Ele-
menten E = ( i §>’ P= (; ?) (mit P? = E) bestehende abelsche
Gruppe (vgl. § 6, Beispiel 3), fiir » = 3 ist dagegen &, sicher nicht
abelsch; denn es ist z. B.

123...y/128...\ [123...
(213...)(321...>—(231...)’
123...\/123...y (123...
(321...)(213...)—(312...)'
&, ist iibrigens isomorph zu der in §§ 6, 7, Beispiele 4 behandelten
Gruppe von 6 Elementen, wie man erkennt, wenn man den dor-

tigen Drehungen die durch sie erzeugten Permutationen der Drei-
ecksecken zuordnet. )

Als aus den Elementen bekannt diirfen wir voraussetzen:
Satz 60. &, ist endlich und hat die Ordnungnl =1+2---n.

Wir brauchen dbrigens im folgenden nur die Endlichkeit, nicht
die Ordnung von &,

Wenn dieses auch nach dem hier Bemerkten auf dasselbe hinausliuft, so ist
es doch einerseits fiir die Aussprache der Verkntipfungsregel von S8atz 58 un-
bequem und steht andererseits nicht in Einklang mit der wortlichen Bedeu-
tung von Permutation (Vertauschung) als einer Handlung.



§ 16. Permutationsgruppen 107

Wir definieren jetzt eine fiir die Definition der Deter-
minanten grundlegende Unterscheidung der Permutationen
aus &, in zwei Arten.

Dazu, und spiter auch in anderem Zusammenhange, miissen
wir Teilmengen der fiir die Permutationen aus &, zugrunde-
gelegten Ziffernmenge 1,..., #n betrachten. Solche Teilmengen
nennen wir, indem wir uns dem aus den Elementen gelaufigen
Sprachgebrauch anschlieBen, Kombinationen der Ziffern 1, ..., n,
und zwar von der v-ten Ordnung, wenn sie aus » Ziffern bestehen.
Wir bezeichnen die aus den Ziffern 4, ..., %, bestehende Kombi-
nation mit {¢,, . ..,%,}. In dieser Bezeichnung liegt dann nach ihrer
Erklarung: 1.) ¢,,..., %, sind verschiedene Ziffern der Reihe
1,...,m 2) {ty, ..., %} = {4, ..., 4y} dann und nur dann, wenn
die Ziffern ¢, . . ., 9, bisauf die Reihenfolge die Ziffern ¢, ..., 1,
sind, also durch eine Permutation aus diesen hergeleitet werden
konnen. Auf die Mitteilungsreihenfolge der Ziffern einer Kombi-
nation kommt es also nicht an. Zwei elementfremde Kombinationen
von 1, ..., n, deren Vereinigungsmenge die ganze Menge 1,..., 7
ist, heiBen komplemenidr. Die komplementire Kombination zu
{iy, - .5 4} (1 £ » = n—1) bezeichnen wir meist mit {i, 4, ..., %n}.
Die Anzahl der verschiedenen Kombinationen »-ter Ordnung von

1,...,n bezeichnen wir wie iiblich mit :‘ . Auf ihren Wert, der

sich beildufig im Beweis von Satz 68 [121] ergeben wird, kommt
es nicht an,

Es gilt zundchst:

Satz 61, Es set 1 < v £ n. Wendet man auf die simtlichen
(:f) Kombinationen v-ter Ordnung der Ziffern 1,...,n eine
Pormutation P = (z) dieser Ziffern an, d. h. erselzt man
jede solche{iy, . . ., 1} durch {piry+- o> Pi,}, S0 entstehen wieder diese
samtlichen (Z’) Kombinationen, m. a. W. es wird durch P eine
Permutation der Menge dieser Kombinationen bewirkt.

Beweis. Offenbar entstehen durch Anwendung von P die
samtlichen (Z) Kombinationen y-ter Ordnung der Menge
D1y - - - Pn, die aber mit der Menge 1,...,n identisch ist.
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Wir betrachten nun speziell die Kombinationen 2-ter
Ordnung von 1, . . ., n. Denken wir uns in jeder solchen {ri, k}
die beiden Ziffern ¢+ und k in ihrer natiirlichen Reiheniolge
angeordnet (also ¢ << k vorausgesetzt), so wird diese Anord-
nungsrelation bei Anwendung einer Permutation nicht not-
wendig erhalten bleiben, da ja sehr wohl Ziffernpaare ¢, k
mit ¢ < k aber p; > pr existieren kénnen. Dieser Umstand
gibt den AnlaB zu der schon angekiindigten, fiir die Deter-
minantendefinition wichtigen Unterscheidung der Permuta-
tionen aus &, in zwei Arten:

7

Definition 36. Es sei n>1 und P = (p) etne Permu-
?

tation von 1,...,n. Das Auflreten eines Ziffernpaares , k
mit 1<k aber p;>pr heifit eime Inversion won P.
Man nennt P gerade oder ungerade, je nachdem die
Anzahl v threr Inversionen gerade oder ungerade ist, und setzt
sgn P = (—1), also =1 oder = — 1, je nachdem P gerade
oder ungerade?) vst.

Fiir n = 1, wo nur die Permutation E = G) vorhanden 1st,
werde sgn E = 1 geselet.

sgn ist Abkiirzung fiir das lateinische signum (Vorzeichen). Fiir
reelle Zahlen p == 0 setzt man bekanntlich sgn p = 1 oder — 1,
je nachdem p > 0 oder <C 0 ist.

Es ist leicht zu sehen, daB es fiir » > 1 wirklich gerade

und ungerade Permutationen gibt. Es ist z. B. E = G o Z)

gerade, (% % g’ Z) ungerade.

Wir beweisen nun die fiir unsere Anwendung grund-
legende Tatsache:

Satz 62. Fiir zwet Permutationen P und Q von 1, . . ., n gilt
sgn (PQ) = sgn P sgn Q.

! Hicr gilt dasselbe, wie bei § 9, Beisp. 4 (Anm. 2) [66].
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Beweis, Fiir n = 1 ist die Behauptung trivial. Sei n > 1.
Fir die Abzahlung der Inversionen einer Permutation

P= (z; ) (i =1,...,n) sind dann nach Def. 36 alle Ziffern-

paare 1, ,k mit ¢ < k der Reihe 1, .. ., n, d. h. also alle Kom-
binationen 2-ter Ordnung {i, k} mit der Anordnungsvor-
schrift ¢ < £ fiir ihre Ziffern heranzuziehen. LaBt man diese
Anordnungsvorschrift fort, so liefert eine Kombination {7, &}
genau dann eine Inversion von P, wenn die (von Null ver-
schiedenen) ganzen Zahlen ¢ —k und p; — pi verschiedene

Vorzeichen haben, d. h. wenn ik << 0 ist. Demnach

i k
kann man sgn P auch durch die Formel

11—k

sgn P = sgn
& {ig}g Pi — P

erkliren, wo das Produkt rechts iiber alle verschiedenen
Kombinationen 2-ter Ordnung von 1, .. ., n (gleichgiiltig in
welcher Reihenfolge ihre beiden Ziffern genommen werden)
zu erstrecken ist. Denn die Anzahl der Faktoren — 1 dieses
Produkts ist nach dem Bemerkten gerade die Anzahl » der

’) G=1,...m), so gilt

Inversionen von P. Ist nun Q = (q‘
?

t—k _ <o Pi — Dk
G— 9 @B 9p; — 9o

sgn @ = I sgn
(i, &}

letzteres, weil nach Satz 61 {p;, px} mit {7, k} die samtlichen
verschiedenen Kombinationen 2-ter Ordnung von 1,...,n
durchlduft und es fiir das Produkt auf die Reihenfolge der
Faktoren npicht ankommt. Da nun bekanntlich fiir reelle
Zahlen p,q = 0 die Regel des Satzes, d. h. sgn (pg) =
sgn p sgn ¢ gilt, folgt durch gliedweise Multiplikation der
beiden Produkte fiir sgn P und sgn @
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sgn Psgn @ = II sgn .—]]; sgn ;:‘:Z:
i P
= JI sgn — —F

1} Op— oy
Das rechtsstehende Produkt ist aber sgn (P@Q), We11

PQ — (qz) G—=1,...m) ist.

Als unmittelbare Folge aus Satz 62 nennen wir zwecks
spaterer Anwendung noch:

Satz 63. Es gilt sgn P = sgn P~L.
Bewers. Nach Satz 62 ist sgn P sgn P-1 =sgn (PP1)

=sgnE =1, well £ = G Z) offenbar keine Inversionen

hat.

Der in Def. 36 erklarte Begriff Inversion und die darauf
gegriindete Erklirung von sgn P ist nicht allein durch die
Permutation P der Menge 1,.. ., n bestimmt, sondern
bezieht sich iiberdies auf eine bestimmte Grundreihen-
folge dieser Menge, ndmlich die natiirliche Reihenfolge
1,...,n.

Dies Beziehen auf die natiirliche Reihenfolge 1,...,n als
Grundreihenfolge wird besonders deutlich, wenn man die aus
Def. 36 zu entnehmende Regel zum Abzdhlen der Inversionen

von P = (1 o 'Z)in folgende Form setzt: Man schreibe die
1o

n

obere Zeile von P in der natiirlichen Reihenfolge und bestimme
die Anzahl derjenigen Ziffernpaare der unteren Zeile, die dort in
umgekehrter Reihenfolge wie in der oberen Zeile stehen. Wiirde
man dieselbe Regel bei irgendwie anders angeordneter oberer
Zeile von P anwenden, so wiirde man i. a. zu einer anderen An-
zahl solcher Ziffernpaare der unteren Zeile gelangen. So stehen
z. B. bei der Schreibweise:

(,1 23 g) unten die 4 Ziffernpaare {41}, {43}, {42}, {32} umgekehrt
wie oben,
(g i g ‘f) unten die 2 Ziffernpaare {41}, {21} umgekehrt wie oben.
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Fiir die Bestimmung von sgn P bedeutet das hier keinen Unter-
schied, weil beide Anzahlen gerade sind. Der folgende Satz zeigt,
daB dies allgemein so ist.

Satz 64. Das in Def. 36 erklirte sgn P ist in folgendem
Sinne von der bei seiner Erklirung zugrunde gelegten natiir-
lichen Reihenfolge der Ziffern 1,...,n unabhingig: Ist
1y - - - Gn trgendeine Reihenfolge von 1, . . ., n, und wird

R A B R B A g B

also Py, = ¢r, (1=1,...,1)

gesetzt, so daf die hierdurch eingefiihrie Permutation B = (}1'::; )
angibt, wie sich die Rethenjfolge q,, . . ., qn tnfolge von P dndert,
so gilt

sgn P = sgn R.

Beweis. Wird Q = (; T QZ) gesetzt, so folgt aus der Per-
mutationsgleichung des Satzes durch vordere Multiplikation

mie @ QP——(l""n )_(1....71, )—RQ
T \Pgr - Vgl Nyl

und daraus nach Satz62 sgn @ sgn P =sgn B sgn @
(= sgn @ sgn R), also wegen sgn @ =+ 0 die Behauptung.

Die Inversionen der im Satz eingefiihrten Permutation R be-
deuten ersichtlich diejenigen Ziffernpaare, die in der unteren Zeile
von P umgekehrt wie in der oberen stehen, wenn die obere in der
Reihenfolge gy, . . ., ¢n geschrieben wird, so daf also durch Satz 64
die in der Bemerkung vorher aufgestellte Behauptung bewiesen
ist. — Es sei darauf hingewiesen, daf die Permutation R des
Satzes 64 aus P durch Transformation mit Q' entsteht (vgl. die
Bem. zu Satz 28 [60]). — Nach Satz 64 hat es nunmehr einen
Sinn, von geraden und ungeraden Permutationen von n Elementen
ohne Angabe einer Grundreihenfolge zu reden, in bezug auf die
»gerade* und ,,ungerade‘‘ gemeint sind.

‘Wir heben zum SchluB noch die folgende Tatsache hervor,
die wir zwar hier nicht brauchen werden, die aber doch eine
tiefere Einsicht in unsere Einteilung der Permutationen von
n Elementen in gerade und ungerade gewahrt:
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Satz 65. Die similichen geraden Permulationen von n Ele-
menten (n > 1) bilden einen Normalleiler Up von S, vom
Index 2, die sog. alternierende Gruppe von n Elementen.
Die beiden Restklassen, in die S, nach W, zerfdlll, sind die
der geraden und der ungeraden Permulationen, deren es somait

!
gleichviel (ndmlich je "7) gibt.

Beweis. Das folgt unmittelbar aus Satz 35 [64], weil offen-
bar die Relation P= @), wenn sgn P = sgn §), eine Kon-
gruenzrelation in der Gruppe &, darstellt, der als Klassen-
einteilung von &, die Einteilung in die geraden und die un-
geraden Permutationen entspricht.

DaB U, Normalteiler ist, folgt iibrigens auch aus Satz 64. Denn
die Gleichung QP = R@ aus seinem Beweise besagt ja in der
Gestalt QP@Q~! = R, verbunden mit dem Resultat sgn P = sgn R,
dal mit P auch alle seine konjugierten R gerade sind (Satz 32
[62]). Umgekehrt 146t sich iibrigens der Satz 64 auch aus dem
Resultat von Satz 65, daB %, Normalteiler vom Index 2 ist, er-
schlieBen (Satz 32).

§ 17. Determinanten

Wir miissen im Rahmen dieser Darstellung auf eine sich
den Methoden von III anschlieBende genetische Ein-
fithrung der Determinanten?!) verzichten, stellen vielmehr
unmittelbar die folgende Definition hin:

Definition 37. Unier der Determinante der (n, n)-
rethigen Matriz A = (a;,) versteht man den Ausdruck

@y -« - Oqg

11
......... = 3 sgn Payy, . . . tnp,?)

Al =1a;, | =
[ l l ‘kl Pin &,

1) Durch eine solche an den Beweis von Satz 52 ankniipfende Einfithrung
wiirde der Determinantenbegriff seine Fremdartigkeit gegeniiber den Begriffs-
bildungen und Methoden aus III verlieren und so das Verstindnis dafiir ver-
tieft werden, daB unser jetziger Weg zu denselben Ergebnissen fiihrt.

2) Uber die Bedeutung von sgn P = 4 1 als ,,Faktor** vor einem Korper-
element siehe den SchluB von § 1.
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erstreckt wber alle Permutationen P = ( g
1,...,n Dbi

Ausfiihrlich gesagt wird hiernach die Determinante | 4 |
von A in folgender Weise gebildet: Bei festgehaltenen ersten
(Zeilen-)Indizes wende man in dem Produkt ay, ... ann
der n in der sog. Hauptdiagonale von A stehenden Glieder
auf die zweiten (Spalten-)Indizes alle Permutationen

P = 7’. an, wodurch also Produkte der Form Qp, « - - Onp,
(in der Anzahl n!) entstehen, und bilde dann die Differenz

Zlypy - Onp, — 2yp, - . . Anp, = X5gN Payp, . . . anp,,
Pin %, P nicht in 91, Pin &,

) der Spaltenindizes

1

der Summe aller den geraden Permutationen entsprechenden
und der Summe aller den ungeraden Permutationen ent-
sprechenden solchen Produkte.

Speziell wird so

. . danth
fir n=1: |ay|=ay, fir n=2: a;ia:: = Oy 095 — 13031
(y10100
fiir n=3: a;ia;:a;: — { 041820833 + 198305y + a 305,05
| G31835055 T (11823035 — G1algyllyy — (1209133

Fiir » = 3 kann man die Bildung auch nach folgender Regel voll-
ziehen:

(110150,5]0112,, Man denke sich die beiden ersten Spalten noch
N X ></  einmal rechts an A4 angefiigt, bilde dann die
gy a2§<a2§ ‘Z‘n\“zz Produkte gemif den 6 eingezeichneten Parallelen

alacalla . T den beiden Diagonalen von A und subtra-
31732%331731%32  hijere von der Summe der Produkte in der Rich-
tung \_(Hauptdiagonale) die Summe der Produkte in der Rich-
tung / (Nebendiagonale). Fir n = 2 gilt ersichtlich eine ent-
sprechende Regel, dagegen nicht mehr fiir n > 3.
Als oft gebrauchte, direkt aus Def. 37 zu entnehmende Formel
fiir beliebiges » nennen wir noch:

| a;,0..... 0 1e0..... 0‘
9 a'z'f_" 0 _ @10y * * * Gn, Speziell 080 =e
0 0....aq 00....e

& Hasse, Hoherc Algebra
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Historisch ist man (Leibniz, Cramer u. a.) etwa in folgender
Weise auf den Determinantenbegriff gekommen: Fiir 2 lineare
Gleichungen mit 2 Unbekannten

1% + ‘112972 =0
Un®y + Oy == Oy
ergibt die sog. Multiphkatlonsmetho de die Forderungen
(311005 — 01505) ) = s gty — Gy,
Q11lpp — Grollyy) Tp = g1y — Gyl
aus denen leicht die eindeutige Auflosbarkeit bei beliebigen a,, a,
folgt, falls der Ausdruck a;,8,5 — 1505 = } auam ‘ = 0Oist. Ebenso

erhilt man durch die Mlﬂtlphkatlonsmethode fiir n = 3,4,.
gerade die Determinante | a; | als Koeffizienten, wenn man aus
den Linearformen links solche mit nur einer Unbestimmten Ty
in einem einzigen Schritt linear zu komponieren sucht. Die so fiir
n = 2, 3, 4 leicht zu bildenden Ausdriicke erlauben, das allgemeine
Bildungsgesetz abzulesen (wenn man will, sogar durch Schlul von
n auf n + 1 abzuleiten), und fiithren zu der oben gegebenen Defi-
nition. Wir miissen hier auch auf eine derartige induktive Ein-
fithrung der Determinanten verzichten, werden vielmehr den an-
gedeuteten Zusammenhang mit dem Auflosungsproblem der line-
aren Algebra im Falle m = n streng deduktiv ableiten (§§ 20, 21),
nachdem wir in §§ 17—19 die wichtigsten Eigenschaften der oben
definjerten Determinanten entwickelt haben.

In der Def. 37 spielen die Zeilen und Spalten von 4 eine
unterschiedliche Rolle. Das ist aber nur scheinbar, denn es
gilt:

Satz 66. Eine (n, n)-reshige Matriz A und ihre transpo-
nierte A’ haben gleiche Determinanten: | A| =| A" |. Die
Determinante von A hingt somit von den Zeilen von A in
glercher Weise wie von den Spallen von A ab, und zu ihrer
Defination kann neben der Formel von Def. 37 ebensogut die
Formel

! 4 I = 3 sgn Paml - Bpyns

Pin &,

erstreckt iiber alle Permutationen P = ( ;) der Zeilenindizes,
1

dienen.
Bewers. Nach Def. 37 ist
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A= YsgnP . .
| l Pinz;@ng ®py1 Gpyn
Da die Reihenfolge der Faktoren eines Produkts beliebig ist,
diirfen wir in jedem Summanden auf die n Faktoren jeweils
die Permutation P-* anwenden. Ist P-* = (Z:‘) = (;) =Q,
1
so erhalten wir so
4| = 3sgn Pay, ...a0n,.
| | P%@ﬂg 101 gn
Da nun einerseits sgn P = sgn @ ist (Satz 63 [110]), anderer-
seits @ mit P die ganze Gruppe &, jedes Element einmal,
durchlduft (Satz 17 [51]), so wird auch

A | = sgn Qay,, ... 0n,, =|4}.
| 4] Qi%:@ng Qayg, Ny | 4|

Auf die in Satz 66 zum Ausdruck kommende Symmetrie der
Determinante | 4 | beziiglich der Zeilen und Spalten von 4 gehen
vom Standpunkt der Determinantenlehre die vom friiheren Stand-
punkt nicht so recht verstindlichen Symmetrien beziiglich Zeilen
und Spalten in Satz 55, 56 [97] und Satz (54, 55, 56)a [99] letzten
Endes zuriick, wie sich im folgenden noch genauer ergeben wird.

Wahrend Satz 66 die Abhingigkeit der Determinante | 4 |
von den Zeilen mit der von den Spalten von A vergleicht,
sagt der folgende Satz etwas itber die Abhingigkeit der
Determinante | 4 | von der Reihenfolge der Zeilen oder der
Spalten von 4 aus:

Satz 67. Enisteht A, aus der (n, n)-rethigen Matriz A durch
eine Permutation R der Zeilen (Spalten), so 1st

| 4| =sgnR]A],

also| Ay | =| A | oder | 4, | = — | 4|, je nachdem R gerade
oder ungerade ist.
Bewers. Nach Satz 66 geniigt es, den Beweis fiir den Fall

zu fiithren, daB A4, aus 4 durch eine Permutation B = (1)
der Zeilen entsteht. Es ist dann nach Def. 37 i

lAll = ngn Pa”'lpl"‘arnpn’
P

in &,

8*
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weil ja aryy, . . . 0r,n die n in der Hauptdiagonale von A4;
stehenden Glieder sind. Durch Anwendung der Permutation
R = (’;) =(;) =5 anf die n Fakioren jedes Sum-
manden und Anv'vendung vonsgn R sgn S = 1 (Satz 63 [110])
erhdlt man

| 4, ] =sgnR.ngnSsgnPalpsl...anps ;

wo also die Spaltenmdlzes jeweils durch die Permutation
(p ) SP=Q = (q) aus 1, ..., n entstehen. Da dann
s; i

einerseits sgn S sgn. P =sgn @ ist (Satz 62 [108]),
andererseits @ mit P die ganze Gruppe &, jedes Element
einmal, durchlauft (Satz 16 [51]), so wird auch
| 4 | _sgnRz‘sgnQam...an%=sgnR]A[.
ll] n

Die beiden Tatsachen aus Satz 66 und Satz 67 haben zur Folge,
daB alle allgemeinen Sétze iiber Determinanten eine symmetrische
Form haben, einerseits beziiglich der Worte Zeilen und Spalten,
andererseits (bis auf ev. Vorzeichenunterschiede) beziiglich der
einzelnen Zeilen sowohl wie der einzelnen Spalten. Wir werden uns
das im folgenden, in entsprechender Weise wie schon im Beweis
zu Satz 67, fiir die Beweise zu Nutze machen.

§ 18. Unterdeterminanten und Adjunkten
Der Laplacesche Entwicklungssatz

Wir wollen in diesem und den folgenden Paragraphen den
beiden Sitzen 66 und 67 des vorigen Paragraphen weitere,
tiefer in die Struktur der Determinanten eindringende Sitze
zur Seite stellen, die den doppelten Zweck haben, einerseits
die Anwendung der Determinanten auf lineare Gleichungs-
systeme vorzubereiten, andererseits fiir die Berechnung der
Determinanten brauchbarere Methoden zu entwickeln, als
deren Definitionsformel es ist. Dazu definieren wir:

Definition 38. Es seien A ene (n, n)-rethige Matriz,
1svsn—1{i,..,5} und {ky, ..., k} je emne Kombi-
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nation v-ter Ordnung threr Zeiden und threr Spallen?)
{tys1 o s in} und {y 1y, . . ., kn} die zugehdrigen komplemen-
taren Kombinationen. Dann bezeichne, bzw. werde gesetzt und
genannt:

Agiyyei) toieen k)

die durch Streichung der Zeilen i, q, . . ., in und der Spalten
kyi1s e - ko aus A entstehende (v, v)-rethige Matriz;

AG, conigh e by = Aliy 4 1o by 1o g s

d. k. die durch Streichung der Zetlen iy, . . ., 1, und der Spalten
ki, .. ok, aus A enlstehende (n—v, n—v)-rethige Mairiz;

Ay iy Freenn by} = | Aliyyeen iy koo B} |

Unterdeterminante oder Minor y-ten Grades oder
(n—v)-ter Ordnung von 4;

CICHE R WY !
— (_ 1)1,+..‘+iv+k,+...+kv IA(i,,..., iy fyyeens o} |
= (— Dttty @iy ek
Adjunkte (n—v)-ten Gradesoder y-ter Ordnung von 4,
algebraisches Komplement oder Adjunkte zu

Qligyy iyhs hayee K)o

Fiir die Grenzfille v = 0 und v = n belrachten wir e bzw.
| A | als die einzigen Unterdeterminanten und Adjunkien O-ten
bzw. n-ten Grades.

Die groBen Buchstaben bezeichnen also Matrizen, die ent-
sprechenden kleinen ihre Determinanten. Die lateinischen
Buchstaben deuten das alleinige Beibehalten des Schnittes der
in ihren Indizes genannten Zeilen und Spalten an, die griechi-
schen das Streichen dieser Zeilen und Spalten, also das alleinige
Beibehalten des Schnittes ihrer komplementdren. Der Grad gibt
die stehengebliebene Reihenzahl an, die Ordnung die ge-
strichene Reihenzahl. Fiir den besonders wichtigen Grenzfall
v =1 werde einfach A, asx, Ask, xqp fiir die Ay, 3, ... ge-
schrieben. Beziiglich der a;x ist das statthaft, weil die 44 und

1) Wir teilen der Einfachheit halber Zeilen und Spalten durch bloBe An-
gabe ihrer Indizes mit.
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somit auch ihre Determinanten wirklich die Elemente a;; von 4
sind. :

Ferner setzen wir fest:
Definition 39. Es migen die Vorausselzungen von Def. 38
gelten, und es seien die (:f) Kombinationen v-ter Ordnung der

Ziffern 1, . . ., n irgendwie in eine bestimmie Reihenfolge ge-
sefzl. Unler jedesmaliger Zugrundelequng einer und derselben
solchen Reihenfolge werde {1y, ..., .} als Zedlen- und {ky, . .., k,}

als Spaltenindex angesehen und demgemdif3 die (:}’) (’:) Under-
determinanien v-ten Grades ag,,...,i), (..., k) von A zu einer

((ﬁ) (’:)) -reihigen Matriz A® vereinigt, und ebenso die

(7,:) (2) Adjunkten v-ter Ordnung o.g,,...,i,}, (k,....k,} Vo0 A 24

etner ( (Z) , (Z)) -reshigen Matriz A®). Man nennt A® die v-te

abgeleitete Matrix und A(® die v-te adjungierte
Matrix von A oder die adjungierte Matrix zu A®,
leteteres in Hinsicht darauf, daf die Glieder von A®) die Ad-
junkten zu den enisprechenden Gliedern von A®™ genanni
waren.

Im Falle » = 1, wo die 71’) Kombinationen 1-ter Ordnung ein-

fach die n Ziffern 1, ..., n sind, sei deren natiirliche Reihenfolge
fiir die Bildung von 4(1) und A1) zugrunde gelegt. Dann wird 4(1)
die Matrix A selbst. Wir schreiben entsprechend fiir A1) einfach
A. Die Bildung dieser 1-ten adjungierten Matrix von 4 oder ad-
jungierten Matrix zu A geschieht demnach nach folgender Regel;

Man ersetze jedes Element a;; von A durch die Determinante
derjenigen (n — 1, » — 1)-reihigen Matrix As, die durch Strei-
chung der i-ten Zeile und 4-ten Spalte aus A entsteht, und setze
den Vorzeichenfaktor (— 1)i+¥ dazu. Die Verteilung dieser Vor-
zeichenfaktoren 1 und — 1 kann man sich dadurch veranschau-
lichen, daB man das quadratische Schema von 4 mit 1 und —1
ebenso iiberdeckt, wie ein Schachbrett mit schwarzen und weiBlen
Feldern, und dabei mit 1 in der linken oberen Ecke (an der Stelle
von a,,) beginnt.
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Fiir die Grenzfille » = 0 und v = n ist gemiB der in Def. 38
getroffenen Festsetzung A = A®™ = (), A™ = A® = (4 |y
setzen. Insbesondere ist hiernach A = (e) die adjungierte Matrix
zu einer (1,1)-reihigen Matrix 4 = (ay,).

Die Einfiihrung dieser zunichst sehr kompliziert anmu-
tenden Begriffsbildungen geschieht, um das folgende, unter
dem Namen Laplacescher Entwicklungssatz bekannte
Theorem méoglichst einfach aussprechen zu konmen:

Satz 68, Unter den Voraussetzungen von Def. 38, 39 gelten
die Formeln

i (k) i)y ek = | A,
{errrrly)

2 Qi) ek} Rlieeniy), ek = | A ]
figy- iy}

i denen die Summation iiber alle (:) Kombinationen {k,,..., k,}

bow. {iy, ..., %)} 2u erstrecken ist, wihrend 5@'1, o ) Dow.
{kl, .o, &} eine feste Kombination bedeuten. In Worten: Das
wnmere Produki aus einer Zeile (Spalte) der v-ten abgeleitelen
Matriz A und der entsprechenden Zeile (Spalte) der v-ten
adjungierten Matriz A®) von A ist die Determinante | A |.
Eben wegen der hierin liegenden Verkoppelung der
Ofinsee iy}, {Byy. .k, Wit den ag,,...,i), (k... k,) heilen erstere die
Adjunkten zu letzteren und A die adjungierte Matrix zu A®.

Bewers. Fiir die Grenzfille ¥ = 0 und » = n ist der Satz
nach den getroffenen Festsetzungen trivial. Sei also
1< » = n—1, d h insbesondere » > 1. Es geniigt dann,
die erste Formel des Satzes zu beweisen. Denn die zweite
geht durch Anwendung von Satz 66 [114] auf die Deter-
minanten links und rechts aus der fir die Matrix 4’ gebil-
deten ersten Formel hervor.

Der Beweis der ersten Formel besteht nun in einer be-
stimmten Gruppierung der Summanden in der Definitions-
formel fiir die Determinante:

| 4] = X sgn Payy, ... anp,-
Pin &,
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Wir zerlegen nimlich dazu die Gruppe &, nach einer durch
die Kombination {7}, ... 4} bestimmten Untergruppe

C,,....i,p vom Index (Z) in vordere Restklassen &, . . ., Q(n)

und fithren dann die geforderte Summation X' in der
Gruppierung Fin Gy

S =3+t 3

Pin@, Pin® Pinﬁ\(n)
v
aus. Jede solche, iiber eine Restklasse erstreckte Summe

ist dann gerade einer der ja ebenfalls in der Anzahl (:L)

vorhandenen Summanden auf der linken Seite der zu be-
weisenden Formel.
Die zu benutzende Untergruppe @{il,-.‘,i,,} von &, vom

Index (:f) ist die Gesamtheit aller derjenigen Permutationen

von 1,...,m, bei denen die Ziffern 4,,...,¢, (und daher
auch die iibrigen Ziffern 4,.,,.. ., ¢,) nur unter sich per-
mutiert werden. Nach Satz 20 [54] ist das sicher eine Unter-
gruppe von &,. Thre Permutationen lassen sich in der Form

ons— (0

T o .ty

Typy - - - In
. i
1 v

")

Sn

Ty  on
v+1
schreiben, wo

R=(;‘) (t:l,...,v)undS:(SL[)(t=v+].,...,n)

unabhingig voneinander alle Permutationen der Ziffern
1,...,vbzw. v 4+ 1,..., n, also die Gruppen &, bzw. &, _,
(erstere fiir die Elemente 1, .. ., », letztere fiir die Elemente
v+ 1,...,n) durchlaufen.

Die vorderen Restklassen nach €g,...:,) und dadurch
der Index von @, ) bestimmen sich folgendermaBen:
Es sei P, irgendeine Permutation aus &,. Wir kénnen sie
in der Form

1) Der senkrechte Strich soll andeuten, daf3 der vordere und der hintere
Teil fiir sich Permutationen sind.
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T ooy yyg -0
Py = (kl...kvk,,+1...kn)
geschrieben denken. Dann besteht die durch P, erzeugte

vordere Restklasse €y,,...,1,) Py aus der Gesamtheit der Per-
mutationen

iy

Tyyy - - .i,,) (il...i,,i,,+1. . zn)
Ug, g - lay) \E1o o KRy . K
_(i1 ey By .- tn )
Forpoo ke ks, o hy,
d. h. aus genau denjenigen Permutationen, bei denen die
Ziffern von {i},..., %} in die von {k,,... %} (und somit
die von {i,.y, ..., %} in die von {k,,y, ..., ks}) in irgend-
einer Reihenfolge iibergehen. Hiernach entspricht jeder Kom-
bination {k,,..., %} eineindeutig eine vordere Restklasse
R4,,....k,) nach €, iy, insbesondere ist also der Index

B ..,

P =CpgsP,= (7/

Ty Ty

von G, ....;,;) gleich der Anzahl (") der Kombinationen
p-ter Ordnung von 1,...,n. v

Diese Zerlegung von G, nach €,.. ., ist nichts anderes als
die gruppentheoretische Einkleidung der aus den Elementen ge-

laufigen SchluBweise zur Bestimmung der Anzahl Z . Inder Tat

ist die Ordnung von €,...,i,} nach obigem »!(n— )], so dal
!

nach Satz 25 [57] die bekannte Formel (:}L) n folgt.

Ty (n—)!

Wir betrachten nunmehr denjenigen Teil der];LA] dar-

stellenden Summe 3, der einer solchen vorderen Restklasse
Pin &),

R,,...,.#, entspricht. Dieser 148t sich nach obigem in der

Form

o PP 0 R4k, ky}

= sgn Qisk, o @ ] .

Cp Sin@z{i: i% (Cr sPo)ait, tykr, Bty 4185, g @+ Gink
el 1r ey v

schreiben, oder nach Satz 62 [108], und da P, in dieser

Summe fest ist,

Sn
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Pin ﬁ‘{k &}
13+ 0 23 By,
=sgnPy 3 sgnCrsaig, ... Gk, i,
Rin §, : v
Sin &y __y
wobei entsprechend der oben auseinandergesetzten Struktur
von @:{i,,...,i,} die Summation iiber alle Cg,s als Summation
ilber alle B und S,der oben angegebenen Art geschrieben ist.
Es kommt nun alles auf die Berechnung von sgn P, und
eine geeignete Aufspaltung von sgn Cr, s in zwei den beiden
Teilen von Cp,s entsprechende Faktoren an. Wir diirfen
dabei und im weiteren ohne Beschrinkung annehmen, da8
die Ziffern der vier Kombinationen {iy, . . ., %}, {§y41, - - -, I}
{ky, .. 1}, {kt1s ... ka} in der natiirlichen Reihenfolge
stehen.

Einerseits geht namlich die Reihenfolge der Ziffern dieser Kom-
binationen in die zn beweisende Formel gar nicht ein; denn nach
Def. 38 macht sie sich in dem Entstehungsprozef der Unter-
determinanten und Adjunkten nur als Reihenfolge des Streiches
von Zeilen und Spalten bemerkbar, wihrend die Zeilen und Spalten
der ihnen zugrundeliegenden Matrizen stets in der natiirlichen
Reihenfolge stehen bleiben. Andererseits ist sowohl€,, .. .,q,) unab-
hingig von der Reihenfolge der Ziffern ¢y, ..., % und 7,,4, ..., %,
als auch die Klassen Ri,,..., x,} von der Reihenfolge dieser Ziffern
und der Ziffern &y, ..., k, und &, _,, . . ., kn, und es kann in jeder
solchen Klasse der Reprisentant P, so gewdhlt werden, dafl
kyy oo kyund ky oy, . . ., Ky in natiirlicher Reihenfolge stehen.

lksv_l_ 1°°° ain"sn ?

1) Berechnung von sgn P,
Wir zerlegen:

Poz(i,...ivivﬂ z,,,)
by oo kykyrr .- ka

=(i1...i,,15,,+1 ...in)(l...v v+1...’n)=1_1K
1.o..ve+l oo n)\k .k kg ook

und haben dann nach Satz 62, 63 [108, 110]
sgn Py = sgn I-'sgn K = sgn I sgn K.
Da %,...,%, und %,4,,...,%, in natiitlicher Reihenfolge
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. . 1....vv+l...m
stehen, kénnen Inversionen von I = +
.ln

11 b Wi
nur durch je eine Ziffer von {7, .. z,,} und eine von
{tysr . - ,1,,,]} sustande kommen. Diese Inversionen lassen
sich abzihlen, indem man fiir jede der » Ziffern ¢,...,1,
zahlt, mit wie vielen der Ziffern 4, .4, . . ., ¢, sie Inversionen
verursacht. Offenbar fiihrt nun ¢, mit den ¢, — 1 der zweiten
Reihe angehirigen Ziffern 1, . . ., 4; — 1) und nur mit diesen
zu Inversionen, ebenso ¢, mit den ¢, — 2 der zweiten Reihe
angehorigen Ziffern 1,...,1, —1%) auBer ¢, und nur mit
diesen, ..., schlieBlich ¢, mit den 12, — » der zweiten Reihe
angehorigen Ziffern 1, . . ., 2, — 1?) auBer ¢,, . . ., 7, _4. Somit
ist
Sgn I —_ (_l)il-—l + =24+ iv-—v
= (1)t iyt ),

Ebenso folgt
sgn K = (—1yta+ -+ b0+ 49,
Damit ist gefunden:

sgn Py =sgn I sgn K
= (—1)i1+"'+iv+k1+'“+k,,= (_1)({,@

wobei zur Abkiirzung (¢, k) fiir ¢, + - - -+ 4, + by + - - -+ &,
gesetzt ist.
2) Aufspaltung von sgn Cg, s,

Da die beiden Teile von Cr, ¢ fiir sich Permutationen sind,
gestattet Cr, s die folgende Aufspaltung:

(2 !
na= (i

iv+1 ...7;11,)

UL 5 L P
iy i i+...i,, AT,
=(., v | e )( aK ") = CrCs.
(O P AP Ty g e e Ty

1) Sofern solche Ziffern iiberhaupt vorkommen; d, h., sofern nicht ¢, = 1,
B = 2...,14, = v ist.
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Nach Satz 62 [108] ist dann
sgn Cg, s = sgn Cr sgn Cs,
ferner nach Satz 64 [111]

1...vv+4+1...n
SgnoR:Sgn(rl...r,,v—%—l...n)’

1...rv+1...n
sgnGS:sgn(]_...st+1 ...Sn.

Da nun offenbar Inversionen der rechtsstehenden Permuta-

tionen nur durch Ziffernpaare aus der Reihe ry, ..., 7, bzw.
solche aus der Reihe s,.,,..., s, zustande kommen, gilt
weiter
1...
sgn Cp = sgn (r Z): sgn R,
e Ty
1...
sgn Cg = sgn (: + Sn) =sgn S,
v+l -5
also sgn Cg, s = sgn Rsgn §.

Mit den Ergebnissen von 1) und 2) wird nunmehr

Pin®aq . ky}
=(—1)&h 3 sgnRa;x ...0x
R G, T v
Sin &, _,

-sgn S @iy gk, - o - Qigksy

= D sgnRa;p ...a;
Ring, 1 i

(=1 m sz@' sgn‘S’a,-H_lksv+ L GigksyS
n—v
denn die gliedweise Ausmultiplikation der beiden Summen

) 2’ ergibt wegen der Unabhingigkeit der Sum-
Ring, Sing,_,

mationen ilber B und S die zuerst geschriebene Doppel-
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summe S . Die beiden in der letzen Formel auf-
Rin G,
Sis €,__,
tretenden Faktoren ¥ und (—1)%#® 3 sind nun die
Rin &, Sin &,__,

in der zu beweisenden Formel stehenden Determinanten
Qi i), (ureoky) UNA 0L L6, (B k)

Denn wegen der Annahme iiber die Reihenfolge der Ziffern un-
serer Kombination sind @iy ...k, und @5y gy q- - - Gi k,
die Produkte der Hauptdiagonalglieder der Matrizen
Ag i), ryund Ay iy By oo h ferner erstrecken sich

13- alph Wy . p 1ty 1
die Sammationen’iiber alle Permutationen B und § der Spalten-
indizes k,,..., %k, und %, ;,.... %y in diesen Produkten, wobei
jedesmal die rlchtlgen Vorzeichenfaktoren sgn B und sgn S an-
gefiigt sind, und schlieBlich steht vor der Zweiten Summe der
richtige Vorzeichenfaktor (—1)HE = (—Dh+. i+ kit +Ey,

Somit ist schlieBlich

= Qi iy), B byl Ciyenniydy Ky e byds

Pin Rp, .,k et | o e g
und daraus folgt die zu beweisende Formel, weil nach dem
oben iiber die Restklassen Bemerkten

|4] = = 3 .
PinG, {kuk) Pinfg . p)
ist.

Die erste der Formeln von Satz 68 148t sich auch so aussprechen:
Man wihle eine feste Zeilenkombination {3,, . . ., 1,} der Matrix A.
Aus diesen v Zeilen lassen sich dann, den (?) Kombinationen
{ky, . . ., k,} der Spalten entsprechend, (%) (», »)-reihige Matrizen
A, ’7’11} Uik} mit den Determinanten By, iyl kool
ausschneiden. Jeder solchen Matrix entspricht eine komplementa,re
Ali,...3 0 (... k) die aus der komplementiren Zeilenkombination
unter Benutzung der komplementiren Spaltenkombination ausge-
schnitten ist, oder auch durch Streichung derin 4, .. il fnseen k)
vorkommenden Zeilen und Spalten aus .4 gewonnen werden
kann, und deren Determinante, mit dem Vorzeichenfaktor
(— 1)il+"'+iv+kl+“'+kv versehen, das algebraische Komple-
ment &, i), sy ky) B0 G0, Ry ky ISt Indem man
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nun -mit By iy}, (oyyee by} das Zeilensystem {iy, ..., 7,} durch-
gleitet und alle Produkte der Unterdeterminanten a..,.. mit
ihren algebraischen Komplementen e . ., . . addiert, erhalt man die
Determinante | 4 |. Entsprechend liefert die Vertauschung der
Rolle von Zeilen und Spalten in dieser Regel die zweite Formel
von Satz 68. Man nennt diese Formeln in diesem Sinne auch die
Entwicklungen der Determinante | A | nach den Unierdeterminanten
des Zeilensystems {iy, . . ., 1,}, baw. des Spaltensystems {&y, . . ., k,}.

In dem besonders wichtigen Falle » = 1 werden die Formeln
von Satz 68 zu

1) |Al=£a’tk“ik f=1,...,mn),
k=1
@ A= Sowon (k=1

(Entwicklungen von | A| nach den Elementen einer
Zeile bzw. Spalte). Durch (1) oder (2) wird die Berechnung
einer Determinante n-ten Grades | 4| zuriickgefiihrt auf die
Berechnung von 7 Determinanten (n — 1)-ten Grades (etwa
@y, - -+ GQyy). Das hierin liegende rekursive Verfahren zur Be-
rechnung von Determinanten ist fiir die Anwendungen mitunter
brauchbar.

§ 19. Weitere Determinantensitze

Wir ziehen zunichst einige Folgerungen aus dem Spezial-
fall » =1 des Laplaceschen Entwicklungssatzes. Dieser
ergibt namlich unmittelbar die folgende Tatsache, die man
iibrigens auch unmittelbar aus der Definitionsformel fiir
die Determinante (Def. 37 [112]) ablesen kann:

Satz 69. Die Determinante | A | einer (n, n)-reihigen Matriz
A st linear und homogen in den Elementen jeder Zeile
(Spalte) von A, d. h. genauer eine Linearform der Elemente
wgendeiner Zeile (Spalte), deren Koeffizienten alletn durch die
in den wbrigen Zeilen (Spaliten) stehenden Elemente bestimmit
sind.

Hieraus ergibt sich unter Anwendung des Satzes 47 [76]
ohne weiteres die oft gebrauchte Regel:
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Satz 70. Stimmen die (n, n)-reshigen Matrizen 4, A,,. .., An
m n-—1 entsprechenden Zeilen (Spalten) iberein, wihrend
die ubrige Zeile (Spalte) a von A das lineare Kompositum

m-
a = 2 c;iQ;
i=1
der entsprechenden Zeilen (Spalten) ay, . . ., am von 4, ..., Anm

ist, so st die Delerminante | A | das gleiche lineare Kom-
positum

m
| 4] = Zei| 4]
=1

der Determinanten | 4, |, ..., | An|.

Besonders hiufig braucht man den Spezialfall m = 1 dieses
Satzes, wonach sich | 4 | mit ¢ multipliziert, wenn die Elemente
einer Zeile (Spalte) von A mit ¢ multipliziert werden. Hiernach
ist ferner [vgl. § 10, ¢), (3')]

|edl=c?| A}, dh |eag| =¢c"|ax] (Ek=1,...,0)

SchlieBlich heben wir noch den entweder direkt aus Satz 69
oder aus Satz 70 fiir m =1, ¢; = 0 folgenden Satz hervor:

Satz 71. Sind alle Elemente einer Zeile (Spalte) von A Null,
sodst | A] =0.

Auch alles dies 148t sich wieder unmittelbar aus der Deter-
minantendefinitionsformel (Def. 37 [112]) ablesen.

Weiter ziehen wir jetzt aus dem Spezialfall » = 2 des
Laplaceschen Entwicklungssatzes die nachstehende, wichtige
Folgerung:

Satz 72, Stimmen zwei Zeilen (Spalten) evner (n, n)-reshigen
Matriz A (n > 1) diberein, so st | 4| =

Beweis. Da die Determinante | 4 | nach dem Laplaceschen
Entwicklungssatz auch linear und homogen in-den Unter-
determinanten eines Zeilen- oder Spaltenpaares ist, geniigt
es zu zeigen, daB alle Determinanten zweiten Grades, die aus
einem iibereinstimmenden Zeilen- oder Spaltenpaar gebildet
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sind, Null sind. Das folgt aber unmittelbar aus der Defini-
tionsformel der Determinanten, nach der jene Determinanten

der Form oder

ab “% sich zu ab — ab = 0 berechnen.
ab bb

Meist wird fiir Satz 72 der folgende, auf Satz 67 [115] gegriin-
dete Beweis gegeben: Da eine nur zwei Ziffern vertauschende Per-

matation von 1, ..., 7, die also in der Form (2 :':2 ':_a e in) ge-

213 .
schrieben werden kann, nach Satz 64 [111] ungerade ist, folgt
durch Vertauschung der beiden iibereinstimmenden Zeilen (Spalten)
nach Satz 67[115]| 4| = — |4 |, dh.[4A|+ |[A]=2]A|=0.
Daraus darf aber i. a. nicht auf | A | = 0 geschlossen werden, weil
ja z. B. in dem Korper von §1, Beispiel 4 (und auch in jedem
seiner Erweiterungskoérper) e 4 ¢ = 2e = 0, aber doch e & 0 ist.
Man kommt nur deshalb meist mit diesem einfacheren Beweis
aus, weil man sich auf Grundkorper aus Zahlen beschriankt, in
denen jener Schluf zuldssig ist. Theoretisch richtiger, weil ganz
allgemein giiltig, ist jedoch auch dann der oben gegebene Beweis
mittels des Laplaceschen Eutwicklungssatzes. (Siehe jedoch
auch 3, 2, §4 Aufg. 11.)

Mittels der Satze 70 und 72 beweisen wir jetzt den folgen-
den Satz, der fiir die Anwendungen der Determinanten auf
lineare Gleichungssysteme grundlegend ist:

Satz 738. Sind die Zeilen oder die Spallen einer (n, n)-
rethigen Matriz A linear abhiingig, so ist | A| = 0.

Bewers. Fiir n =1 ist der Satz trivial. Fir n>1 ist
nach Satz 38, a’) [68] dann mindestens eine Zeile (Spalte)
ein lineares Kompositum. der iibrigen Zeilen (Spalten), nach
Satz 70 also die Determinante | 4 fein lineares Kompositum
derjenigen » — 1 Determinanten, die entstehen, wenn man
die fragliche Zeile (Spalte) von A jeweils durch eine der
iibrigen n — 1 Zeilen (Spalten) ersetzt. Diese n — 1 Deter-
minanten sind aber nach Satz 72 Null, also auch ihr lineares
Kompositum | 4 |.

Fiir die praktischen Anwendungen (Berechnung von Determi-

nanten) ist es zweckmiBig, den Satz 73 auch in folgender Form
auszusprechen:
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Zusatz. Entsieht die Matriz B aus der (n, n)-reshigen Matriz A
(n > 1) dadurch, dafi zu einer Zeile (Spalte) von A ein lineares
Kompositum der dbrigen Zeilen (Spalten) addiert wird, so ist
|B|=14].

Beweis. | B ist dann das lineare Kompositum
(Al +eldl+ -t el Apal, wo |A],...[Ap,]
die im Bewels von Satz 73 vorkommenden Determinanten be-
zeichnen, die hier samtlich Null sind. ’

Wir wenden schlieBlich Satz 72 an, um die folgende Er-
weiterung des Laplaceschen Entwicklungssatzes zu be-
welsen:

Satz 74. Unter den Voraussetzungen von Def. 38, 39 [116,
118] gelten die Formeln

. . .’ R4
. Z ,ky)am,...,z,}xkl,...,k,> OL i, gy (oo Ky}

_ [A|,wenn{il,...,i,}:{i;,...,i,’,}},
0, wenn{iy, ..., 5} =+={i, ..., 0}

r
P TCNUN I e SOOI 20 R SCHUUON W/ LUy 28]
{Ll,...,lv

_ 1Al wenn{ky, .. Kk} ={k, .., k}].
0, wenn{ky, ...k}, ...k}’

wm Worlen: Das innere Produkt einer Zeile (Spalte) der v-ten
abgeleiteten Matriz A®) und ewner Zeile (Spalte) der v-ten ad-
jungierten. Matriz A®) von A ist | A | oder 0, je nachdem beide
Zeilen (Spalten) die enisprechenden oder verschiedene Stellen
m den Matrizen A® und A®) einnehmen.

Beweis. Wir haben nur noch die nicht schon in Satz 68
[119] enthaltenen zweiten Hilften beider Formeln zu be-
weisen und kénnen uns nach Satz 66 [114] auf die erste
Formel beschrianken. Nach dem schon bewiesenen Laplace-
schen Entwicklungssatz (Satz 68) 1468t sich die in der ersten
Formel von Satz 74 links stehende Summe auffassen als
die Entwicklung nach der Zeilenkombination {3, ..., %}
derjenigen Matrix 4,, die aus A entsteht, wenn man an
Stelle der » — v komplementiren Zeilen 1,.,,..., in die-
jenigen n — » Zeilen von A4 setzt, aus denen die Adjunkten

9 Hasse, Hohere Algebra
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LT3 N | T 9 gebildet sind, also die Zeilenkombination
., ). Da ab ) ) 4 i} folgt
Gyiseeln). Da aber aus {iy, ... 4} =+ {ij, ..., 0} folgt,
al mindestens eins der %,,- .., ¢, von allen ¢, ..., 1, ver-

schieden, also einem der 4, ., ..., 9, gleich ist, enthalt 4,

mindestens zwei iibereinstimmende Zeilen. Also ist]| 4;] =0

nach Satz 72, woraus sich die erste Formel ergibt.

Entsprechend den auf den Spezialfall » = 1 beziiglichen For-
meln § 18, (1) und (2) vermerken wir hier als deren Erweiterungen

» | 4], wenn ¢ =1
@ kélalk% ke { 0, wenn ¢ == i’}’

" {14, wemmk=¥
@) ié;a’k%k - { 0, wennk= k’}'

§ 20. Anwendung der Determinantentheorie auf lineare
Gleichungssysteme im Falle m = n

Wir wollen nunmehr die im vorstehenden entwickelten
Satze anwenden, um auf dieser Basis erneut den S#tze-
komplex von III iiber lineare Gleichungssysteme herzu-
leiten und dariiber hinaus die in § 15 hervorgehobenen, bei
der determinantenfreien Behandlung verbliebenen Desiderata
zu erfiillen. Dabei soll aus methodischen Griinden von den
fritheren, mittels des Transformationsverfahrens aus §12
gewonnenen Satzen der §§13, 14 kein Gebrauch gemacht
werden, wiahrend die diesem Verfahren vorangestellten Ent-
wicklungen der §§10, 11 als elementar zu beweisende Tat-
sachen angesehen und auch fiir die jetzigen Darlegungen
zugrunde gelegt werden sollen.

Wir beginnen, wie es der Methode der Determinanten-
theorie naturgemal entspricht, mit der Behandlung der
linearen Gleichungssysteme (J) und (H) mit (n, n)-reihiger
Matrix A. Die hierauf beziiglichen Resultate dieses Para-
graphen sind zur Herleitung der Resultate fiir den allge-
meinen Fall in den folgenden beiden Paragraphen unent-
behrlich, umgekehrt wie in III, wo der Fall m =n an-
schliefend an den allgemeinen Fall durch Spezialisierung
behandelt werden konnte.
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Zunichst besagt das in Satz 73 [128] erhaltene Ergebnis
ohne weiteres:

Satz 75. (Satz (54,55, 56) a [99]). Das Gleichungssystem (H)
mit (n, n)-rethiger Matriz A und sein transponiertes (H') sind
unldsbar, wenn die Determinante | A | == 0 ost.

Satz 73 [128] oder 75 sagen iiber den in § 14 eingefiihrten Be-
griff reguldr folgendes aus:

Zusatz. (Def. 32 [99]). Ist | A| = 0, so ist A reguldr.

Es ist eines der Hauptergebnisse der Determinantenlehre, da
auch umgekehrt fiir ein regulires 4 gilt | A | &= 0, so da8 also die
Alternative von § 14, die damals nur in der Form 4 regulir
oder 4 singuldr ausgesprochen werden konnte, mittels der
genau dasselbe besagenden Disjunktion | A| == 0 oder | 4| =0
praktisch entschieden werden kann. Daf3 jene Umkehrung richtig
1st, werden wir aber erst mittels der allgemeinen Theorie im fol-
genden Paragraphen beweisen.

Ferner konnen wir mittels des Spezialfalles » = 1 des er-
weiterten Laplaceschen Entwicklungssatzes (Satz 74 [129])
beziiglich (J) folgendes beweisen:

Satz 76. (Satz) 49,51,53) a, Satz 57 und Def. 33 [99, 100]).
Das Gleichungssystem {(J) mit (n, n)-rethiger Matriz A st fiir
jeden Vektor t* rechts eindeutig auflosbar, wenn | 4] == 0 dst.
Es hat dann evne evndeutty bestimmite lisende Matriz A*, ndm-
lich

A% = (4] A =(%) Gk=1,...n),
wo A die adjungierte Matriz zu A 1st.

Bewess. Fiir n = 1 ist der Satz trivial (vgl. die Bemerkung
bei Def. 39 [118]). Sei also n > 1.

a) Die im Satz genannte, wegen | 4| # 0 wirklich bild-
bare Matrix 4* ist 16sende Matrix von 4. Bildet man nim-
lich mit ihr aus den z¥ die Elemente

n
Lik *
= Z—A‘—.’E‘,’ (k=1,...,n),1)
iS4
1) Vgl die Anm. 1 [80] zu (H')in § 11. Die hier gewihlte Bezeichnung der
Indizes ist fiir die folgende Einsetzung bequemer als die in § 14 verwendete

(%4 x’;, und demgemiB o), durch die sofort hervortritt, daB die transpo-
nierte Matrix A’=(ay;) und nicht A=(a;,) vorliegt.

Tk

g*
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so folgt durch Einsetzen dieser z; in die Jinken Seiten von
(J) unter Vertauschung der Summationsfolge

n

n 2 @i 1%k
st * —_—
k‘:;lat b= -2 “ kz%; | A o 51 | A

@ =1..,n).
Nach §19, (1) [180] ist aber die Summe );‘ rechts = | A

oder = 0, je nachdem ' =14 oder ¢ 4: i ist. Daher folgt

n
Sane = (@ =1,..,%),
=1
also das Erfiilltsein von (J) fiir die obigen .

b) Die unter a) angegebene Losung von (J) ist die einzige.
Ist nédmlich ¢ Losung von (J), also
n
Sagae=2F (=1,...,n),
E=1

so folgt durch Multiplikation der ¢-ten Gleichung mit der
Adjunkte 1-ter Ordnung «; und Summation iiber 4

20% Zazkﬂﬁk = Za,kw F=1,...,n),

i=1

also durch Vertauschung der Summationsfolge
n n n
Do Yaguy = Sagzf B =1,...,n).
F=1 i=1 i=1

Nach § 19, (2) [180] ist aber die Summe 2 links =| 4|

oder = 0, je nachdem k = %’ oder k == k’ lst Daher besagt
dieses Gleichungssystem einfach
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n
| A| 2w = X e} k =1,...,m)
i=1
oder, weil | 4| = 0 ist,
_ o3 %k -
T —zéwllfllx/" (k—].,...,n),

also die Identitiit von g mit der Losung unter a).

¢) DaB A* eindeutig bestimmt ist, folgt wie im Beweis zu
Satz 57 [100].

Wir hatten den Punkt b) des Beweises ebenfalls wie im Beweis
zu Satz (49, 51, 53)a [99], also dadurch erledigen kénnen, dafl das
zugeordnete (H) nach Satz 75 fiir | 4 | <= 0 unldsbar und somit
(J) nach Satz 49 [81] eindeutig losbar ist. Der hier gewahlte Weg
igt aber fiir die tatsidchliche Konstruktion der Losung ¢ von Be-
deutung. Er lauft auf die schen in §17 [114] erwdhnte Multi-
plikationsmethode hinaus. In der Tat sind nach b) die Ad-
junkten eyx (¢ = 1, . . ., n) zu den Elementen der k-ten Spalte von
A gerade solche Multiplikatoren fiir die » linksstehenden Linear-

n
formen #;, daB das lineare Kompositum _ S ouxli =| 4| xp nur

im
noch die eine Unbestimmte x;, enthilt. Es sei iibrigens darauf hin-
gewiesen, daB das Ausrechnen der Losung ¢ gemidB der Multi-
plikationsmethode b) theoretisch noch nicht besagt, daB ¢ wirklich
Losung ist, sondern nur, daB, falls eine Losung existiert,
dies r die einzige Losung ist. Der Punkt a) des Beweises ist also
theoretisch unentbehrlich?).

Auf Grund von Satz 76 kinnen wir iiberdies fiir die im
Tralle | A| = O stets vorhandene und eindeutig bestimmte
Lésung von (J) ein allgemeines Formelsystem aufstellen, das
unter dem Namen Cramersche Regel bekannt ist:

Satz 77. Die fir beliebiges rechisstehendes t* vorhandene
und evndeuttg bestimmie Lisung t des Gleichungssystems (J)
mit (n, n)-reshiger Matriz A und | A| 4= 0 wird durch die
Determinantenquotrenten

!) Diesc Tatsache wird ganz allgemein beim Gleichungsauflisen im Schul-
unterricht leider oft iibersehen oder nicht geniigend betont.
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Ak
$k='l—|A—}|' (ICZ].,...,’H)

gegeben, wo die Malriz A®) aus A entstehl, indem die k-te
Spalte von A durch den Vektor £* ersetet wird.

Beweis. Fiir n = 1 ist der Satz trivial. Sei also n > 1.
Dann ist nach Satz 76 die Losung

421 0(,10.’1,'1:)r
P Lt SR k=1,...n).
| 4]

Die darin auftretende Summe ¥ ist aber nach Satz 68 [119]

i

(§18, (2)) einfach die Entwicklung der Determinante | A¢*) |
der im Satz genannten Matrix A®) nach den Elementen
ihrer k-ten Spalte.

Durch die Satze 75—77 sind die Resultate von § 14 nur zur
einen Halfte wiedergewonnen. Es fehlen noch die umgekehrten
Behauptungen, daB fiir | 4 | = 0 einerseits (H) und (H") losbar
und andererseits (J) nicht einschrankungslos und nicht eindeutig
losbar ist, sowie die weiteren Aussagen des Satzes 57 [100] iiber
die lésende Matrix A4*. Alles dies wird, durch wortliche Uber-
tragung der betr. Beweise des § 14 auch vom jetzigen Standpunkt
aus festgestellt sein, wenn nur die Umkebrung des obigen Zu-
satzes, d. h. die Gleichwertigkeit der Aussagen ,,4 ist regular
und ,,| 4| = 0‘ bewiesen sein wird. Man kénnte zunichst meinen,
daB diese Umkehrung ebenfalls, wie alles Bisherige!), aus dem
Spezialfall » = 1 des erweiterten Laplaceschen Entwicklungs-
satzes erschlossen werden kann, in der Weise, dafl fiir | 4| =0
die Formeln §19, (1), (2) [130] lineare Abhangigkeiten zwischen den
Zeilen und Spalten von A darstellen, also A singuldr sein mu8.
Das ist aber deshalb nicht méglich, weil ja, wie leicht durch Bei-
spiele zu belegen, die Koeffizienten o, in jenen Formeln simtlich
Null sein kénnen, so dafl durch sie keine linearen Abhingigkeiten
geliefert werden. Die Entwicklungen der folgenden Paragraphen
lehren, daB die fragliche Umkehrung tiefer liegt, da man nédmlich
zu ihrem Nachweis den allgemeinen Fall des erweiterten La-
placeschen Entwicklungssatzes heranzuziehen hat.

1} bis auf die Anwendung des Falles y = 2 im Beweis zu Satz 72 [127]
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§ 21. Der Rang einer Matrix

Die Entwicklungen (und Ankiindigungen) des § 20 zeigen, dafl
nicht die Determinante | 4 | selbst, sondern nur die Alternative
| A| =+ 0 oder | A| =0 fiir die Losbarkeit der linearen Glei-
chungssysteme mit der (, n)-reihizen Matrix 4 von Bedeutung
ist. Es erscheint daher nicht angebracht, fiir die Anwendungen
auf allgemeine lineare Gleichungssysteme nach einer sinngemifen
Ubertragung der Determinantendefinition (Def.37 [112]) auf
(m, n)-reihige Matrizen 4 zu suchen. Vielmehr kommt es daranf
an, die richtige Verallgemeinerung jener Alternative zu finden. Die
mit ihr de facto gleichwertige Alternative in § 14 entspringt nun
aus der dort gemachten Disjunktion 0 < r << n oder 0 < r = n,
also aus einer ,,(n + 1)-ative®, in der n Mdglichkeiten in eins zu-
sammengefaft sind. Wir werden somit hier versuchen miissen, die
Alternative | A| == 0 oder | A| =0 in eine fiir beliebige Ma-
trizen A aussprechbare (n - 1)-ative aufzuspalten. Das erreichen
wir, indem wir die damalige Anzahl r determinantentheoretisch
definieren.

Der bequemeren Ausdrucksweise halber setzen wir zu-
néachst in Verallgemeinerung von Def. 38 [116] fest:

Definition 40. Unter einer Unterdeterminante y-fen
Grades einer (m, n)-rethigen Matriz A, wo 0 <<» £ m und
0 < v £ n ist, verstehen wir die Determinanie einer durch
Streschung von m — v Zeilen und n — v Spalter. aus A ent-
stehenden (v, v)-rethigen Matrix.

Mit Hilfe dieses Begriffes definieren wir nun fiir eine be-
liebige Matrix A eine charakteristische Zahl o, die — wie
wir dann zeigen werden — mit der Zahl r aus Satz 55 [97]
fibereinstimmt: )

Definition 41. Unier dem Rang o etner Matriz A versieht
man die Zahl 0, falls A = 0 ist, und die grofite unter den Grad-
zahlen der von Null verschiedenen Unterdeterminanten von A,
falls A = 0 ist.

Um zu beweisen, daB der so definierte Rang ¢ von A4 mit
der in III vorkommenden Zahl r iibereinstimmt, stellen wir
drei Hilfssdtze iiber ¢ voran, durch die eine Reihe von selbst-
verstindlichen Eigenschaften der de facto einander gleichen
Maximalanzahlen r und #* linear unabhingiger Zeilen und
Spalten von A auch fiir ¢ festgestellt werden.
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Ohne weiteres klar ist nach Def. 40, 41:

Hilfssatz 1. Fiir den Rang o einer (m, n)-rethigen Matriz
A gelten die Relationen

0So<m 0= o<,

= ¥

o == 0 st gleichbedeutend mit A = 0.

Ferner ergibt sich unmittelbar durch Anwendung von
Satz 66, 67 {114, 115] auf alle Unterdeterminanten von A:

Hilfssatz 2, Hat die Matriz A den Rang o, so haben auch
die transponierte A’, sowie alle aus A durch Zeilen- und
Spaltenpermutationen herlevtbaren Matrizen den Rang o.

SchlieBlich gilt:

Hilfssatz 3. Entsteht die (m, n)-reshige Matriz A aus der
(m + 1, n)-rethigen [(m, n -+ 1}-rethigen) Matriz A; durch
Streichung einer von den fdibrigen linear abhingigen Zeile
(Spalte), so haben A und A4, denselben Rang.

Bewers. Nach Hilfssatz 2 geniigt es, den Satz fiir die Zeilen
zu beweisen. Es seien qy, . . ., 0 die Zeilen von 4 und a die
iiberschiissige Zeile von 4, durch deren Streichung A ent-
steht, und die nach Voraussetzung lineares Kompositum von
ay, - . ., On ist. Ferner sei ¢ der Rang von A, g, der von 4,.
Ist ¢ =0, so folgt nach Hilfssatz1 auch ¢, = 0, weil ja
dann alle a; = 0 sind, und somit a = 0 ist. Ist ¢ >> 0, so hat
A eine von Null verschiedene Unterdeterminante o-ten
Grades. Da diese auch Unterdeterminante von 4, ist, ist
jedenfalls o; = o. Wére nun g, > ¢, so existierte eine durch
Zeilen- und Spaltenstreichungen aus A, entstehende (g;, 0,)-
reihige Matrix 4; mit | 4, | &= 0. Wir zeigen, daB dies un-
mdglich ist.

Entweder ist ndmlich ¢ = #, so daB das Ausschneiden
einer (g,, o;)-reihigen Matrix 4, aus der (m - 1, n)-reihigen
Matrix 4, mit der Voraussetzung ¢y > ¢ (= n) unvertriglich
ist (Hilfssatz 1).

Oder es ist o << n, so daB jedenfalls (o,, 0,)-reihige Matrizen

A, mit ¢, > o aus A4, ausschneidbar sind. Dann sind nur
die folgenden beiden Fille denkbar:
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a) In 4, kommt kein Teil der Zeile a vor. Dann ist 4,

schon aus A ausschneidbar, also | 4; | = 0 als Unterdeter-
minante eines Grades g, > ¢ von A.

b) In A, kommt ein Teil der Zeile a vor. Dieser ist dann
nach Satz 40 [68] lineares Kompositum der entsprechenden

Teile von a,, . . ., am. Dann 1aBt sich nach Satz 70 {127] | 4, |
aus den Determinanten von solchen (g,, g{)-reihigen Ma-
trizen linear komponieren, die aus entsprechenden Zeilen-
teilen von A bestehen. Diese Determinanten und somit | 4, |
sind aber Null, weil ihre Matrizen entweder zwei iiberein-
stimmende Zeilen haben, oder, wenn dies nicht der Fall ist,
Unterdeterminanten eines Grades g, > ¢ von A vorliegen.

Damit ist die Unmoglichkeit der Existenz einer (o, o,)-
reihigen Matrix 4; mit ¢, > ¢ und | 4, | &= 0 gezeigt. Es
kann also nicht g, > o sein, d. h. esist o; = o.

Wir beweisen, nunmehr die Identitit von o mit » und ¢':

Satz 78. (Satz 55 [97]). Der Rang o einer Matriz A st
gleich der Mazimalanzahl v linear unabhingiger Zeilen und
gleich der Maiwimalanzahl v linear unabhingiger Spallen von
A. Insbesondere ist also r = 1'.

Beweis. Wir reduzieren zunéchst mittels unserer Hilfs-
satze 1—3 die zu beweisende Behauptung auf ihren eigent-
lichen Kern, indem wir folgende vier Feststellungen machen:

1. Es geniigt, den Satz fiir die Zeilen zu beweisen (Hilfs-
satz 2).

2. Es geniigt, 4 =0, also >0, ¢ >0 anzunehmen
(Hilfssatz 1).

3. Es geniigt anzunehmen, daB die wegen 2. vorhandene
von Null verschiedene Unterdeterminante o-ten Grades von
A die aus den ersten o Zeilen und Spalten von 4 gebildete
Unterdeterminante ist (Hilfssatz 2).

4. Es geniigt, die Zeilen von A als linear unabhingig an-
zunehmen (Hilfssatz 3).

Denn ist 4, die aus einem Maximalsystem # linear unabhin-
giger Zeilen von A bestehende Matrix, die wegen 2. existiert, so
sind nach Satz 38, a’) [68] alle iibrigen Zeilen von A von den
Zeilen von 4, linear abhangig. Bei sukzessiver Streichung dieser
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iibrigen Zeilen von A bleibt aber nach Hilfssatz 3 der Rang un-
geandert, so dafl die Behauptung auf den Nachweis ¢ = 7 fiir 4,
zuriickkommt.

Sei demgemal 4 = (aj;) eine (r, n)-reihige Matrix mit
linear unabhéngigen Zeilen vom Range o, fiir die die aus
den ersten ¢ Zeilen und Spalten gebildete Unterdeterminante
o =|ay|( k=1,... ¢ von Null verschieden ist. Dann
erganzen wir die ersten g Zeilen von 4 durch Hinzufiigung
von n — ¢ = 0 (Hilfssatz 1) Zeilen zu einer (n, n)-reihigen
Matrix wie folgt:

Q1. 019 Q1041 Oin
T=| e oo Ggo+1 - Gon

Fiir die Determinante von A4 gilt dann | 4| = « & 0. Fir
¢ =n, also A = A, ist dies ohne weiteres ersichtlich. Ist
aber ¢ <C m, so ergibt es sich durch Entwicklung von A nach
den Unterdeterminanten der letzten n — g Zeilen, von denen
nach Satz 71 [127] nur die den letzten n — ¢ Spalten ent-
sprechende (mit der Adjunkte «) von Null verschieden, ndm-
hich gerade e, ist.

Es ist nun nach 2., Hilfssatz 1 und Satz 41 [69] jedenfalls
0 << ¢ £ r = n. Wire p << r und dann erst recht auch ¢ << n,
$0 wiren 7 — p in 4 nicht vorkommende Zeilen (a;y, . . ., @)
(i=0e+1,...,7) von A vorhanden, und man koénnte nach
Satz 76 [131] und Satz 66 [114] jedes der r — ¢ linearen
Gleichungssysteme

@y E -ty T+ 0z 4o+ 02 =ay
g Tyt ctod 8y T+ 0T+ -+ 020 =ay
Oroe1®i T v Bpori%et+ Ty F oo T 02 =554

e Ty ccotam T+ 0zt et Zn =i
G=0+1...,7
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mit der Matrix A’ auflosen, d. h. jede dieser r — o Zeilen aus

den n Zeilen von 4 linear komponieren. Wir zeigen, daB dann
in den Losungen (z;,...,%;) (t=0+41,...,7) dieser
(leichungssysteme die letzten n — ¢ Unbekannten z; 4.,
.« - Zin gleich Null, also die letzten r — p Zeilen von 4 lineare
Komposita der ersten ¢ wiren, was der vorausgesetzten line-
aren Unabhangigkeit der Zeilen von A widerspricht.

Dazu denken wir uns die nach Satz 76 [131] eindeutig be-
stimmten Losungen (%;,...,2m) (@ =90+ 1,...,7) nach
der Cramerschen Regel (Satz 77 [133]) in der Form

P B (i=e+1,...,r)
T | 4| j=1,..,n
dargestellt. Die Matrizen A9 entstehen dabei aus 4, indem
in A die j-te Zeile durch (a;, . . ., a;») ersetzt wird. Ist nun

j einer der uns interessicrenden Indizes ¢4 1,...,n, so
enthilt 49 demgemiB o 4- 1 verschiedene Zeilen von A.

Entwickelt man dann A% nach diesen o+ 1 Zeilen und
bedenkt, daB alle deren Unterdeterminanten als Unterdeter-
minanten (¢ + 1)-ten Grades von 4 Null sind, so ergibt sich
| 4P| =0,als02,;=0(=0+1,...75§=¢+1, ..., n).
Damit ist nach dem schon Gesagten die Unmdglichkeit von
¢ < r dargetan. Es gilt somit o = r, wie behauptet.

Der damit bewiesene Satz 78 rechtfertigt die Verwendung
desselben Wortes Rang fiir die beiden scheinbar verschieden-
artigen Begriffe in den Definitionen 25 [70] und 41 [135]:
Der Rang ¢ einer Matrix ist gleich dem Rang r des von
ihren Zeilen (oder Spalten) erzeugten Vektormoduls. Ferner
liefert Satz 78 ohne weiteres den am Schlull des vorigen
Paragraphen genannten, noch fehlenden Teil der Ergebnisse
des §14 fiir die speziellen Gleichungssysteme mit m = n.
Wir konnen nédmlich jetzt leicht die folgende Umkehrung
von Satz 73 [128] beweisen:

Satz 79. Ist A eine (n, n)-reihige Matriz mit | A| = 0, so
sind sowohl die Zetlen als auch die Spalten von A linear ab-
hingig.
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Bewers. Ist | A| =0, so ist der Rang o <<n, weil | 4|
die einzige Unterdeterminante n-ten Grades von A ist. Nach
Satz 78 sind also die » Zeilen und die » Spalten von 4 linear
abhingig.

Satz 79 besagt auch in Umkehrung zu Satz 75 [131]:

Satz 80. (Satz b4, b5, 56)a [99]). Das Gleichungssystem
(H) met (n, n)-reihager Matriz A und sein transponiertes (H')
sind losbar, wenn | A | = 0 ust.

Satz 79 oder 80 geben schlieSlich die in § 20 angekiindigte
Umkehrung des Zusatzes zu Satz 75 [131]:

Zusatz. (Def. 32 [99]). Ist A requldr, so ist | A | <= 0.

Somit haben wir:

Satz 81. (Def. 32 [99]). Die Alternativen ,.A requldr oder A
singuldr* und ,,| A | == 0 oder | A | = 0% sind gleichbedeutend.

Wie schon am SchluB von §20 festgestellt, ist durch
diese, sdmtlich dasselbe besagenden Sidtze nunmehr auch
die folgende Umkehrung zu "Satz 76 [131] sowie die an-
schlieBende weitere Aussage als vom jetzigen Standpunkt
bewiesen anzusehen:

Satz 82. (Satz 49, b1, 53)a [99]). Die Bedingung | A| = 0
st fir die esnschrankungslose und fir die evndeutrge Auflos-
barkeit des Gletchungssystems (J) mat (n, n)-rethiger Matriz
A auch notwendig.

Satz 83. (Satz 57 [100]). Ist| A| == 0, so vst auch die Deter-
minante | A* | der losenden Matriz A% = | A|7*A’, d. h.
auch die Determinante 1A | =14 | 4% |1) der ad]ungm ten
Matriz zu A von Null verschieden und (A*)* = A.

Man kann hieraus leicht folgern, da$ die adjungierte Matrix i
zur adjungierten A von 4 sich von A nur um einen Faktor unter-
scheidet, da8 nimlich 4 = :ATll A ist. Die Bestimmung dieses
Faktors, d. h. die Berechnung von | A | 148t sich aber erst mittels
des Matrizenkalkiils naturgemiall ausfithren. Dort zeigt sich
nimlich, daB A* einfach die Reziproke A-! von 4, und dem-
gemdaf | 4% | = | 4 |7 ist, woraus dann fiir A" = | 4| A7 folgt
[Al=[A|"| A|t=]| 4|7 Ubrigens sind auch die Deter-

1) Vgl. das bei Satz 70 [127] Bemerkte.
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minanten aller abgeleiteten und adjungierten Matrizen A®), A®)
Potenzen von [ 4 [. (Vgl. dazu 3, 1, § 14, Aufg. 4; § 19, Aufg. 13;
2, §2, Aufg. 30—32.)

Damit sind die sémtlichen LErgebnisse des § 14 fiir den
Spezialfall m = n determinantentheoretisch begriindet.
Uberdies kann gemif Satz 81 iiber die dortige Alter-
native, d. h. itber die Ldsbarkeit von (H) oder die ein-
schrankungslose und eindeutige Ldsbarkeit von (J) durch
Bestimmung von | 4 | entschieden werden, und ist in Satz 76,
77 [131, 133] ein weiteres Verfahren zur Losungshestimmung
von (J) im ,reguliren Falle (] 4| = 0) gefunden, das es
gestattet, die Losung in geschlossener Korm anzugeben.

Fiir den allgemeinen Fall besagt unser Satz 78, dall die
nach §§ 11, 13 zur Entscheidung iiber die Losbarkeit
von (H) und Ubersicht iiber die Lésungsgesamtheit
von (H) und (J) allein zu bestimmende Anzahl r als Rang o
von A auch mittels Determinanten in endlich vielen Schritten,
nimlich durch die Berechnung aller Unterdeterminanten
von A gefunden werden kann. Dariiber hinaus kann so auch
ein Maximalsystem linear unabhédngiger Zeilen
(Spalten) von A in endlich vielen Schritten bestimmt
werden. Wir konnen namlich aus Satz 78 ohne weiteres die
nachstehende, im folgenden Paragraphen anzuwendende
Tatsache entnehmen:

Hilissatz 4. Ist A eine Matriz vom Range o > 0, so liefert
jedes Kombinationspaar von o Zeien und o Spallen von A,
dem eine von Null wverschiedene Unlerdeterminante o-ten
Grades entspricht, etn Mazimalsystem linear unabhdngiger
Zeslen und Spalten von A.

Bewers. Nach Satz 73 [128] sind die in jene Unterdeter-
minante o-ten Grades eingehenden Teile der betr. o Zeilen
(Spalten) von A linear unabhingig, nach Satz 40 [78] also
auch die ganzen ¢ Zeilen (Spalten), und nach Satz 78 sind
sie dann ein Maximalsystem, linear unabhiingiger Zeilen
(Spalten).

Zur vollstindigen Wiedergewinnung der fritheren Re-
sultate bleibt nur noch iibrig, die in § 13 mittels des Trans-
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formationsverfabrens aus § 12 erschlossenen Sitze 53 [92]
und 54 [93] iiber (J) und (H) determinantentheoretisch zu
beweisen, was im folgenden, letzten Paragraphen geschehen
soll. Daraus ergibt sich dann natiirlich auch der einzige noch
nicht genannte Satz 56 [97] des §13 iiber (H) und (H’)
ohne weiteres auf Grund von Satz 78.

§ 22. Anwendung der Determinantentheorie auf lineare
Gleichungssysteme im allgemeinen Falle

Der angekiindigte Nachweis der Sitze 53 [92] und 54 [93]
mittels Determinanten liefert iiber die darin ausgesprochenen
Behauptungen hinaus eine explizite Bestimmung der
Losungsgesamtheit von (J) und (H), also die voll-
stindige Losung der beiden am Schluf von § 11 genannten
Aufgaben J) und H) auf determinantentheoretische Weise.
Es empfiehlt sich aus methodischen Griinden, hier die Be-
handlung von (H) der von (J) voranzustellen.

1. Lisung von H)

Die vollstindige Losung von H) ist ersichtlich in dem
folgenden Satz enthalten:

Satz 84. (Satz 54 [93]). Das Gleichungssystem (H) mat
(m, n)-reshiger Matriz A vom Range o besitzt ein Fundamen-
tallosungssystem von n — o Lisungen. Ist 0 <o <<n und,
wie ohne Beschrinkung angenommen werden darf, die Rethen-
folge der Gleichungen und der Unbekannten so gewdhlt, dafs
die aus den ersten o Zeilen und Spalten von A gebildete Unter-
determinante von Null verschieden 1st, so wird ewn solches
durch die n — g letzien Zeilen der adjungierten Matriz A zu
der (n, n)-rethigen Matriz A aus dem Beweise von Satz 78
[137], also durch die n — o Vekioren

(&ih""&i") (7/ = Q+1,...,’£’:)
aus den Adjunkien 1. Ordnung jener Matriz A gebildet,

Bewess. Fir ¢ = 0, also 4 =0, ist der Satz trivial (vgl.
Bew. zu Satz 54 [93]). Sei also ¢ > 0, mithin 4 3 0. Bei der
im Satz gemachten Annahme bilden dann die ersten ¢ Zeilen
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ein Maximalsystem linear unabhéngiger Zeilen von 4 (§ 21,
Hilfssatz 4 [141]). Nach Satz 38, a") [68] sind demnach
f1s - - - fm sdmtlich lineare Komposita von 7, .. ., fp, s0 daB
nach dem Elnsetzungspr1nz1p jede Losung 1 von IAE

- [o(£) = 0 auch Losung samtlicher Gleichungen £, (r) = 0

.. Im(z) =0 ist. Da das Umgekehrte trivialerweise gllt
ist also das aus den ersten ¢ Gleichungen von (H) gebildete
Gleichungssystem (Hg) mit der (g, n)-reihigen Matrix 4, zu
(H) dquivalent, so dall es zum Beweis geniigt, (H,) an Stelle
von (H) zugrunde zu legen.

Ist nun einerseits ¢ = n, also 4, eine (g, g)-reihige Matrix,
tiir die nach Voraussetzung | 4, | & 0 1st, so ist (Hy) nach
Satz 73 [128] unlésbar, besitzt also ein Fundamentallosungs-
system von 0 = o — ¢ = n — ¢ Lisungen, wie behauptet.

Ist andererseits 0 <C ¢ << n, so zeigen wir:

a) Die genannten n — ¢ Vektoren sind Ldsungen von
(Hp).- Denn nach dem erweiterten Laplaceschen Entwick-
lungssatz [§ 19, (1)], angewandt auf die Matrix A, gilt

n
k%:ldik&i'k:o (’Lzl,...,g; 7;'=Q—l—1,...,”).

b) Diese n—¢ Losungen von (H,) sind linear unab-
héngig. Denn nach Satz 83 [140] ist wegen | 4 | + 0 auch
|K| = 0. Es sind also nach Satz 73 [128] die » Zeilen von
A, also nach Satz 39 [68] auch die n — g letzten linear un-
abhingig.

c) Aus diesen n — ¢ Losungen von (H,) 148t sich jede

Losung g von (Hy) linear komponieren. Denn das Glei-
chungssystem

IAI

dessen Matrix die lésende Matrix A* von 4 ist, hat wegen

| A |+ 0 nach Satz 76 [131], 83 [140] die eindeutig be-
stimmte Losung
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n
= agr, (@=1,...0)
=1
n= i=e+1,...,m)
mit der Matrix (A*)* = 4. Da aber ¢ Lisung von (H,)
sein sollte, sind z = 0, ..., 25 =0, d. h. es bestehen die
Formeln
" X

T - . Ty _ N
i-Te1 (4] °°”‘< Y °‘”‘> e =1y m),
nach denen g ein lineares Kompositum unserer n — ¢ Lo-
sungen aus a), b) ist.

Aus a)—ec) folgt, daB die im Satz genannten n — o Vek-
toren ein Fundamentallgsungssystem von (H,), also auch
von (H) bilden.

2. Lisung von J)

Die vollstindige Losung von J) ist ersichtlich in dem fol-
genden Satz enthalten:

Satz 85. (Satz 53 [92]). Ist fiir das Gleichungssystem (J)
mit (m, n)-rethiger Matrizx A vom Range o die mofwendige
Lisbarkeitsbedingung von Satz 51 [82] erfillt, so ist (J) losbar.
Ist 0 > 0 und wird iiber die Rethenfolge der Gleichungen und
der Unbekannten wieder die Annahme von Sate 84 gemacht, so
findet man eine Losung von (J), indem man in dem aus den
ersten o Gleichungen von (J) gebildeten Gleichungssystem (J,)
die Unbekannten x,. ., . . ., tn = 0 setzt (falls ¢ > n ist) und
dann zq, . . ., z, durch Auflosung des so resultierenden Glei-
chungssystems mat (o, ¢)-rethiger Matriz von Null verschie-
dener Determinante gemif3 Satz 76, 77 [131, 133] bestemmid.

Bewers. Falls ¢ = 0 ist, ist der Satz trivial, weil dann in
(J) alle linken Seiten f; = 0 und folglich nach der Voraus-
setzung auch alle rechten Seiten a; = 0 sind. Sei also ¢ > 0.
Bei der im Satz gemachten Annahme ist dann wieder nach
§ 21, Hilfssatz 4 [141] und dem Einsetzungsprinzip wie im
Beweis von Satz 84 das System (J,) zu (J) dquivalent. Dafl
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das im Satz beschriebene Verfahren eine Lisung von (Jy)
und somit von (J) liefert, ist ohne weiteres klar.

Durch Satz 84 und 85 ist nach dem im §11 Bemerkten
die Aufgabe § 9, (1) der linearen Algebra vollstindig geldst.

Wir leiten zum Schlufl in Erginzung zu Satz 85 noch zwei fiir
die praktischen Anwendungen niitzliche Regeln her, die es er-
lauben, einerseits die Bestimmung der Lésungsgesamtheit
von (J) direkt, und nicht erst gemaB Satz 49 [81] durch Berech-
nung eines Fundamentallésungssystems von (H) nach Satz 84,
und andererseits die Entscheidung iiber die Losbarkeit von
(J) direkt, und nicht erst gemaB Satz 51, Zusatz 2 [83] durch Be-
rechnung eines Fundamentallésungssystems von (1I’) nach Satz 84
auszufiihren:

Ohne néhere Begriindung klar ist?):
Zusatz 1. Unter den Voraussetzungen von Salz 85 findet man

die Lisungsgesamtheit von (J) vm Falle ¢ > 0 folgendermafen : Man
setze tn dem dortigen Gleichungssystem (J) fir die Unbekannten

Tg i1y - - - Tn 1rgendwelche Elemente &, o, . . ., & (falls o < n ist)
und bestimme dann x,, . . ., 5, durch Auflisung des so resultierenden
Gleichungssystems )

[4 7
2 ary = a; + (—a)éx? (G=1,..,0
k=1 k=pe+1
mit (g, o)-rethiger Mairiz von Null verschiedener Determinante
gemdfs Satz 16, 17 [131, 133]. Jedem beliebigen System €,y q, - . ., én
entspringt so evne und nur eine Losung von (J).

Bezeichnen iibrigens «;; die Adjunkten zu den Elementen as;
in jener (g, o)-reihigen Matrix (a;x) (4, k = 1,..., 0)und a = | a |
deren Determinante, so wird nach Satz 76 [131] unter Vertau-
schung der Summationsfolge

2, i LG &, g . LA
= X a+ 2 &% (—a)y=0a;+ X afh
i=1 @ l=9o+1 i=1 & l=o+1

k=1,...0)

1) Vgl. auch die entsprechende Bemerkung im AnschluB8 an Satz 53, Zusatz
[93] iiber die Moglichkeit, alle Ldsungen von (J) ohne Betrachtung von (H)
mit Hilfe des Losungsverfahrens aus §§ 12, 13 zu gewinnen.

%) Im Grenzfall ¢ = n ist die rechtsstehende Sunime leer und sinngemis
gleich Null zu setzen.

10 Hasse, Hohcre Algebra
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die Aunflésung des fraglichen Gleichungssystems, die verbunden mit

wk=0+£k (k=9+1>-$n)
die allgemeine Losung r; von (J) liefert. Hierbei erscheint die
Losung t; von selbst in zwei Summanden gf,o) und rz gemil

Satz 49 [81] zerlegt, deren erster gf?) = (ei,... as, 0,...,0)
offenbar die in Satz 85 genannte, &, ,, . . ., §, = 0 entsprechende,
spezielle Losung von (J) ist, wihrend der zweite ry demnach die
allgemeine LAsung des zugeordneten (H) darstellen muB, die hier
in &hnlicher Weise aus n — g Fundamentallosungen komponiert
erscheint, wie im Beweis zu Satz 54 [93].

Ferner beweisen wir:

Zusatz 2. Das Gleichungssystem (J) vst dann und nur dann
losbar, wenn seine (m, n)-rethige Matriz A denselben Rang hat, wie
die aus thr durch Anfagung der aus den rechten Seiten (a, . . ., tm)
von (J) gebildeten Spalte entstehende (m, n + 1)-reshige Matriz A,.

Bewets. a) Ist (J) losbar, so ist die Spalte (ay, . . ., @) von den
Spalten von A linear abhangig. Dann hat aber 4; nach § 21, Hilfs-
satz 3 [136] denselben Rang wie 4.

b) Ist (J) unlésbar, so ist die Spalte (ay, . . ., @) von den Spalten
von 4 linear unabhangig. Ist 4 = 0, so ist also jene Spalte von
Null verschieden, d. h. der Rang von 4, gleich 1, wiahrend der von
A gleich 0 ist. Ist aber 4 = 0, so bildet jene Spalte mit einem
Maximalsystem ¢ linear unabhéingiger Spalten zusammen nach
Satz 38, b) [68] ein System von ¢ 4 1 linear unabhingigen Spal-
ten. Nach Satz 78 [137] ist also der Rang von 4, gréBer als der
Rang ¢ von 4. Wenn somit 4 und A; denselben Rang haben,
muf (J) losbar sein.

SchluB
Abhiingigkeit vom Grundkorper

Zum AbschluB unserer Entwicklungen gehen wir noch
auf die Frage ein, ob sich die Resultate von IIT und IV
dndern, wenn von den Losungen z,, ..., z, des vorgelegten
linearen Gleichungssystems (J) nicht mehr, wie bisher
durchweg, verlangt wird, daB sie dem Korper K angehéren,
sondern fiir sie irgendein Erweiterungskorper K von K zu-
grunde gelegt wird. Da das Gleichungssystem (J) dann auch
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als eines mit Koeffizienten aus K angesehen werden kann,
ist unsere ganze Theorie auch fiir K als Grundkérper durch-
fiithrbar. Wenn sich nun hierbei auch die Losungsgesamtheit
von (J) gegeniiber K im allgemeinen vergrofert, weil die in
die allgemeine Lisung von (J) eingehenden, frei verfiigharen
Elemente aus K jetzt aus dem umfangreicheren Korper K
frei wahlbar werden, so gilt doch:

Satz 86. Die Losbarkeit bzw. Unlisbarkeit, die eindeutige
Losbarkeit sowte die Aneahl n —r der in der allgemeinen
Lisung frei verfiigbaren Elemente [iir ewn lineares Gleichungs-
system (J) in K sind snvariant beim Ubergang von K zu irgend-
evnem Erweiterungskorper K von K als Grundkorper.

Beweis. Ist A die Matrix von (J), A, die in Satz 85, Zu-
satz 2 [146] genannte Matrix, und sind r und », die Rang-
zahlen von A und 4,, so ist die Losbarkeit bzw. Unlgsbar-
keit von (J) nach Satz 85, Zusatz 2 mit der Relation

r =1 bzw. r <1y,

die eindeutige Losbarkeit von (J) nach Satz 85, Zusatz 1
[145], mit der Relation

r=1 =10
gleichbedeutend. Nun ist aber das Nullsein bzw. von Null

verschieden sein einer Determinante unabhingig davon, ob

ihre Glieder als Elemente von K oder K angesehen werden.
Daher ist gemaB Def. 41 [135] der Rang einer Matrix beim
Ubergang von K zu K invariant, also wegen der selbstver-
standlichen Invarianz von n auch die obigen Relationen, d.h.
die Losbarkeit bzw. Unlosbarkeit und die eindeutige Lds-
barkeit von (J), sowie die im Satz genannte Anzahl n —r.
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Geschichte der Deutschen Sprache von H. Sperber. 4. Auflage, besorgt
von W, Fleischhauer. 128 Seiten. 1963. (915)

Deutsches Rechtschreibungsworterbuch von M. Gottschald }. 2., ver-
besserte Auflage. 219 Seiten. 1953. (200/200a)

Deutsche Wortkunde. Kulturgeschichte des deutschen Wortschatzes
von A. Schirmer. 4. Auflage von W, Mitzka. 123 Seiten. 1960. (929)

Deutsche Sprachlehre von W. Hofstaetter. 10. Auflage. Vollige Um-
arbeitung der 8. Auflage. 150 Seiten. 1960. (20)

Stimlrgkunzjgofur Beruf, Kunst und Heilzwecke von H. Biehle. 111 Seiten.

55. (60)

Redetechnik. Einfiihrung in die Rhetonk von H. Biehle. 2., erweiterte
Auflage. 151 Seiten. 1961. (61)

Sprechen und Sprachpflege (Die Kunst des Sprechens) von H. Feist,
2., verbesserte Auflage. 99 Seiten, 25 Abbildungen. 1952. (1122)

Deutsches Dichten und Denken von der germanischen bis zur staufischen
Zeit von H. Naumann t. (Deutsche Literaturgeschichte vom
511—2111)3 Jahrhundert.) 2., verbesserte Auflage. 166 Seiten. 1952.

Deutsches Dichten und Denken vom Mittelalter zur Neuzeit von G, Miiller
(1270 bis 1700). 3., durchgesehene Auflage. 159 Seiten. In Vor-
bereitung. (1086)

Deutsches Dichten und Denken von der Aufkldrung bis zum Realismus
(Deutsche Literaturgeschichte von 1700—1890) von K. Viétor f.
3., durchgesehene Auflage. 159 Seiten, 1958. (1096)

Deutsche Heldensage von H. Schneider. 2. Auflage, bearbeitet von
R. Wisniewski. 148 Seiten. 1964. (32)

Der Nibelunge N6t in Auswahl mit kurzem Wérterbuch von K. Langosch.
10., durchgesehene Auflage. 164 Seiten. 1956. (1)

Kudrun und Dietrich- -Epen in Auswahl mit Wérterbuch von O. L. Jiric-
zek. 6. Auflage, bearbeitet von R, Wisniewski. 173 Seiten. 1957. (10)

Wolfram von Eschenbach. Parzival. Eine Auswahl mit Anmerkungen
und Wérterbuch von H. Jantzen. 2. Auflage, bearbeitet von H. Kolb.
128 Seiten. 1957. (921)
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GEISTESWISSENSCHAFTEN

Hartmann von Aue. Der arme Heinrich nebst einer Auswahl aus der
., Kilage', dem ,,Gregorius‘* und den Liedern (mit einem Worter-
verzeichnis) herausgegeben von F. Maurer. 96 Seiten. 1958. (18)

Gottfried von Strassburg in Auswahl herausgegeben von F. Maurer,
142 Seiten. 1959. (22)

Die deutschen Personennamen von M. Golfschald t. 2., verbesserte
Auflage, 151 Seiten. 1955. (422)

Althochdeutsches Elementarbuch. Grammatik und Texte von H. Nau-
mann + und W, Betz, 3., verbesserte und vermehrte Auflage.
183 Seiten. 1962. (1111/1111a)

Mitteihochdeutsche Grammatik von H. de Boor und R, Wisniewski. 3.,
verbesserte und erginzte Auflage. 150 Seiten. 1963. (1108)

Indogermanisch, Germanisch

Indogermanische Sprachwissenschaft von H. Krahe. 2 Bande. 4., iiber-
arbeitete Auflage.

I: Einleitung und Lautlehre. 110 Seiten. 1962. (59)
II: Formenlehre. 100 Seiten. 1963, (64)

Gotisches Elementarbuch. Grammatik, Texte mit Ubersetzung und
Erlauterungen von H. Hempel. 3., umgearbeitete Auflage. 166 Sei-
ten. 1962. (79/79a)

Germanische Sprachwissenschaft von H. Krahe. 2 Binde,

I: Einleitung und Lautlehre. 5., iiberarbeitete Auflage.
149 Seiten. 1963. (238)
II: Formenlehre. 4., iiberarbeitete Auflage. 149 Seiten. 1961. (780)

Altnordisches Elementarbuch. Schrift, Sprache, Texte mit Ubersetzung
und Worterbuch von F. Ranke. 2., durchgesehene Auflage. 146
Seiten. 1949. (1115)

Englisch, Romanisch

Altenglisches Elementarbuch. Einfiihrung, Grammatik, Texte mit Uber-
setzung und Worterbuch von M. Lehnert. 5., verbesserte Auflage.
178 Seiten. 1962, (1125)

Historische neuenglische Laut- und Formenlehre von E. Ekwall. 3.,
durchgesehene Auflage. 150 Seiten. 1956. (735)

Englische Phonetik von H. Mutschmann t. 2. Auflage, bearbeitet von
G. Scherer. 127 Seiten. 1963. (601)

Englische Literaturgeschichte von F. Schubel. 4 Bande,

I: 8i1<i4e)11t- und mittelenglische Periode. 163 Seiten. 1954.

II: Von der Renaissance bis zur Aufklarung. 160 Seiten.
1956. (1116)

IIl: Romantik und Viktorianismus, 160 Seiten. 1960, (1124)

Beowulf von M. Lehnert, Eine Auswahl mit Einfiihrung, teilweiser
Ubersetzung, Anmerkungen und etymologischem Wérterbuch, 3.,
verbesserte Auflage., 135 Seiten, 1959, (1135)

Shakespeare von P. Meifiner t. 2. Auflage, neubearbeitet von M. Leh-
nert. 136 Seiten, 1954. (1142)
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GEISTESWISSENSCHAFTEN

Romanische Sprachwissenschaft von H. Lausberg. 4 Biande.
1: Einleitung und Vokalismus, 2., durchgesehene Auflage.
211 Seiten, 1963. (128/128a)
II: Konsonantismus. 95 Seiten. 1956. (250)
111: Formenlehre. 1. Teil. 99 Seiten. 1962. (1199)
III: Formeniehre. 2. Teil. S. 99—260. 1962. (1200/1200a)
IV: Wortlehre. In Vorbereitung. (1208)

Griechisch, Lateinisch

Griechische Sprachwissenschaft von W. Brandenstein. 3 Biande.
I: Einleitung, Lautsystem, Etymologie. 160 Seiten. 1954.

(117)
II: Wé)rtbildung und Formenlehre, 192 Seiten. 1959. (118/
118a)

111: Syntax. In Vorbereitung, (1218) R
Geschichte der griechischen Sprache. 2 Binde.
I: Bis zum Ausgang der klassischen Zeit von O. Hoff-
mgasrgn %‘ 3. Auflage, bearbeitet von A. Debrunner }. 156 Seiten.
1
II: Grundfragen und Grundziige des nachklassischen
Griechisch von A, Debrunner f. 144 Seiten, 1954, (114)
Geschichte der griechischen Literatur von W, Nestle. 2 Béande. 3. Auf-
lage, bearbeitet von W. Liebich.
1: 144 Seiten. 1961.(70)
11: 149 Seiten. 1963. (657)
Grammatik der neugriechischen Volkssprache von J. Kalitsunakis.
3., wesentlich erweiterte und verbesserte Auflage, 196 Seiten, 1963.
(756/156 a)
Neugriechisch-deutsches Gespriachsbuch von J. Kalitsunakis. 2. Auflage,
bearbeitet von A. Steinmetz. 99 Seiten. 1960. (587)
Geschichte der Iateinischen Sprache von F, Stolz. 4. Auflage von A, De-
brunner f. In Vorbereitung. (492)
hichte der romi Literatur von L. Bieler. 2 Bénde.
I: Die Literatur der Republik, 160 Seiten. 1961. (52)
I1: Die Literatur der Kaiserzeit. 133 Seiten. 1961. (866)

Hebriisch, Sanskrit, Russisch

Hebriilsche Grammatik von G. Beer }. 2 Bande. Vollig neubearbeitet
von R. Meyer. .
I: Schrift. Laut- und Formenlehrel. 3. Auflage. Etwa 224
Seiten. In Vorbereitung. (763/763a)
II: Formenlehre Il. Syntax und Flexionstabellen. 2. Auflage.
195 Seiten. 1955. (7164/764a)
Hebridisches Textbuch zu G. Beer-R. Meyer, Hebraische Grammatik
von R. Meyer. 170 Seiten. 1960. (769/769a)
Sanskrit-Grammatik von M. Mayrhofer. 89 Seiten. 1953, (1158)
Russische Grammatik von E. Berneker t. 6., verbesserte Auflage von
M. Vasmer t. 155 Seiten. 1961. (66)
Slavische Sprachwissenschaft von H. Brduer. 2 Ban
I: Einleitung, Lautlehre, 221 Seiten. 1961 (1191/1191a)
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GEISTESWISSENSCHAFTEN
Erd- und Linderkunde, Kartographie

Afrii(a von F. Jaeger. Ein geographischer Uberblick. 2 Bande. 3. Auf-
age.
I: Der Lebensraum, 179 Seiten, 18 Abbildungen. In Vorberei-
tung. (910)
II: Mensch und Kultur. 155 Seiten, 6 Abbildungen. In Vorberei-
tung. (911)
Ausﬁga;légn und Ozeanien von H. J. Krug. 176 Seiten, 46 Skizzen. 1953.

Kartographie von V. Heissler, 213 Seiten, 125 Abb., 8 Anlagen. 1962,
(30/30a)

Volkswirtschaft, Statistik, Publizistik

Allgemeine Betriebswirtschaftslehre von K. Mellerowicz. 4 Bande.
11., durchgesehene Aufiage.
I: 224 Seiten. 1961. (1008/1008a)
I1: 188 Seiten. 1962, (1153/1153a)
I11: 260 Seiten. 1963. (1154/1154a)
1V: 209 Seiten. 1963, (1186/1186a)
Buchhaltung und Bilanz von E. Kosiol. Etwa 114 Seiten, 29 Tafeln.
1964. (1213)
Geschichte der Volkswirtschaftslehre von S, Wendt. 182 Seiten. 1961.
(1194)
Allgemeine Volkswirtschaftslehre von A. Paulsen. 4 Béinde.
I: Grundlegung, Wirtschaftskreislauf. 5., neubearbeitete
Auflage. 154 Seiten. 1964. (1169)
II: Haushalte, Unternehmungen, Marktformen. 5., neu-
bearbeitete Auflage. 168 Seiten, 35 Abbildungen. 1964. (1170)
IIl: Produktionsfaktoren, 3., neubearbeitete und ergédnzte
Auflage. 198 Seiten, 1963, (1171)
IV: Gesamtbeschiaftigung Konjunkturen, Wachstum,
3. Auflage. 174 Seiten. 1964 (1172)
Allgemeine Volkswirtschaftspolitik von H. Ohm. 2 Bénde.
I: Systematisch-Theoretische Grundlegung. 137 Seiten,
6 Abbildungen, 1962. (1195)
II: Der volkswirtschaftliche Gesamtorganismus als
Objekt der Wirtschaftspolitik. In Vorbereitung. (1196)
Finanzwissenschaft von H. Koims. 4 Binde.
I: Grundlegung, Offentlnche Ausgaben. 2., verbesserte
Auflage. 162 Seiten. 1963. (148
II: Erwerbseinkiinfte, Gebiihren und Beitrdge, All-
gemeine Steuerlehre. 2., verbesserte Auflage. 150 Seiten.
1964. (391)
IIl: Besondere Steuerlehre, 178 Seiten. 1962. (776)
1V: Offentlicher Kredit. Haushaltswesen. Finanzaus-
gleich, 1964. In Vorbereitung, (782)
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Finanzmathematik von M. Nicolas. 192 Seiten, 11 Tafeln, 8 Tabellen
und 72 Beispiele. 1959. (1183/1183a)

Industrie- und Betriebssoziologie von R. Dahrendorf. 2., umgearbeitete
und erweiterte Auflage. 142 Seiten, 3 Figuren, 1962. (103)

Wirtschaftssoziologie von F. Firstenberg. 122 Seiten. 1961. (1193)

Psychologie des Berufs- und Wirtschaftslebens von W. Moede . 190
Seiten, 48 Abbildungen. 1958. (851/851 a)

Einfithrung in die Arbeitswissenschaft von H. H, Hilf. 164 Seiten, 57
Abbildungen. 1964. (1212/1212a)

Allgemeine Methodenlehre der Statistik von J. Pfanzagl. 2 Biande.

I: Elementare Methoden unter besonderer Beriick-
sichtigung der Anwenduungen in den Wirtschafts-
und Sozialwissenschaften. 2. Auflage, 251 Seiten, 42 Ab-
bildungen. 1964. (746/746a)

II: Hohere Methoden unter besonderer Berilicksichti-
gung der Anwendungen in Naturwissenschaft, Me-
dizin und Technik., 295 Seiten, 39 Abbildungen. 1962.
(147/747a)

Zeitungslehre von E. Dovifat. 2 Binde. 4., neubearbeitete Auflage.
I: Theoretische und rechtliche Grundlagen—Nachricht
zll’('l)d Meinung — Sprache und Form. 149 Seiten. 1962,
1039)
Il: Redaktion — Die Sparten: Verlag und Vertrieb,
Wirtschaft und Technik— Sicherung der 6ffentlichen
Aufgabe. 168 Seiten. 1962. (1040)
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Naturwissenschaften

Mathematik

Geschichte der Mathematik von J. E. Hofmann. 4 Binde.
I: Von den Anfidngen bis zum Auftreten von Fermat

und Descartes. 2., verbesserte und vermehrte Auflage.
251 Seiten. 1963. (226/226a)

II: Von Fermat und Descartes bis zur Erfindung des
Calculus und bis zum Ausbau der neuen Methoden.
109 Seiten. 1957. (875)

II1: Von den Auseinandersetzungen um den Calculus
bis zur franzosischen Revolution. 107 Seiten. 1957. (882)

IV: Geschichte der Mathematik der neuesten Zeit von
N. Stuloff. In Vorbereitung. (883)

Mathematische Formelsammlung von F. O. Ringleb. 1., erweiterte Auf-
lage. 320 Seiten, 40 Figuren, 1960. (51/51a)

Vierstellige Tafeln und Gegentafeln fiir logarithmisches und trigono-
metrisches Rechnen in zwei Farben zusammengesteilt von H., Schu-
bert und R. Haussner. 3., neubearbeitete Auflage von J. Erlebach.
158 Seiten., 1960. (81)

Fiinfstellige Logarithmen mit mehreren graphischen Rechentafeln und
haufig vorkommenden Zahlenwerten von A, Adler. 4. Auflage,
iiberarbeitet von J. Erlebach. 127 Seiten, 1 Tafel, 1962. (423)

Arithmetik von P. B. Fischer t. 3. Auflage von H. Rohrbach. 152 Seiten,
19 Abbildungen. 1958. (47)

Héhere Algebra von H, Hasse. 2 Bénde.

I: {.gigse a((r)g]g}leichungen. 5., neubearbeitete Auflage, 150 Seiten.
II: Gleichungen hoheren Grades. 4., durchgesehene Auflage.
158 Seiten, 5 Figuren. 1958. (932)

Aufgabensammlung zur hdheren Algebra von H. Hasse und W. Klobe.
3., verbesserte Auflage, 183 Seiten. 1961, (1082)

Elementare und Kklassische Algebra vom dernen Standpunkt von
W. Krull, 2 Bande.

I: 3., erweiterte Auflage. 148 Seiten. 1963. (930)
I1: 132 Seiten. 1959. (933)

Lineare Programmierung von H. Langen. Etwa 200 Seiten. 1964.
(1206/1206 a)

Algebraische Kurven und Flichen von W, Burau. 2 Bénde. X
I: Algebraische Kurven der Ebene, 153 Seiten, 28 Abbil-

dungen. 1962. (435)

II: Algebraische Flachen 3, Grades und Raumkurven 3. und
4, Grades. 162 Seiten, 17 Abbildungen. 1962. (436/436a)
Einfithrung in die Zahlentheorie von A, Scholz f. Uberarbeitet und
?lelrgusgegeben von B. Schoeneberg. 3. Auflage. 128 Seiten. 1961.

1))

Formale Logik von P. Lorenzen. 2., verbesserte Auflage. 165 Seiten.

1962. (1176/1176a)
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NATURWISSENSCHAFTEN

Topologle von W, Franz. 2 Bénde.
Allgemeine Topologie. 144 Seiten, 9 Flguren 1960 (1181)
: Algebraische Topologie. 130 Seiten. 1964. (118

Elemente der Funktionentheorle von K. Knopp t. 6. Auflage. 144 Seiten,
23 Figuren. 1963. (11

Funktionentheorle von K Knoppf 2 Bande. 10, Auflage.
I: Grundlagen der allgemeinen Theorie der analyti-
schen Funktionen. 144 Seiten, 8 Figuren, 1961. (668)
II: Anwendungen und Weiterfﬁhrung der allgemeinen
Theorie. 130 Seiten, 7 Figuren. 1962, (703)

Aufgabensammlung zur Funktionentheorie von K. Knopp f. 2 Bénde,

I: Aufgaben zur elementaren Funktionentheorie. 6. Auf-
lage. 135 Seiten. 1962. (877)

II: Aufgaben zur hoheren Funktionentheorie. 5. Auflage.

151 Seiten. 1959. (878)

Diﬁerglﬁa&- und Integralrechnung von M. Barner. (Friiher Witting).

ande.

I: Grenzwertbegriff, Differentialrechnung. 2., durch-
gesehene Auflage, 176 Seiten, 39 Figuren. 1963. (86

Gewbhnliche Differentialgleichungen von G. Hoheisel. 6., neubearbeitete
und erweiterte Auflage. 128 Seiten. 1960. (920)

Partielle Differentialgleichungen von G. Hoheisel, 4., durchgesehene
Auflage. 128 Seiten. 1960. (1003)

Aufgabensammlung zu den gewdhnlichen und partiellen Differential-
gleichungen von G. Hoheisel, 5., durchgesehene und verbesserte
Auflage, 124 Seiten. 1964. (1059/1059a)

Integralgleichungen von G. Hoheisel. 2., neubearbeitete und erweiterte
Auflage. 112 Seiten. 1963. (1099)

Mengenlehre von E. Kamke. 4., verbesserte Auflage. 194 Seiten,
6 Figuren, 1962, (999/999a)

Gruppentheorie von L. Baumgartner, 4., neubearbeitete Auflage, 110
Seiten, 3 Tafeln. 1964. In Vorbereitung. (837)

Ebene und sphirische Trigonometrie von G, Hessenbergt. 5. Auflage,
durchgesehen von H, Kneser. 172 Seiten, 60 Figuren. 1957. (99)

Darstellende Geometrie von W. Haack. 3 Bande.

1: Die wichtigsten Darstellungsmethoden. Grund- und
AufriB ebenflachiger Korper. 4., durchgesehene und
erganzte Auflage. 113 Seiten, 120 Abbildungen. 1963. (142)

II: Korper mit krummen Begrenzungsflachen. Kotierte
Projektionen. 3., durchgesehene Auflage, 129 Seiten, 86 Ab-
bildungen. 1962. (143)

IIT: Axonometrie und Perspektive. 2., durchgesehene und
ergénzte Auflage. 129 Seiten, 100 Abbildungen. 1962, (144)

Analytische Geometrie von K. P. Grotemeyer. 2., erweiterte Auflage.
218 Seiten, 73 Abbildungen. 1962. (65/65a)

Nichteuklidische Geometrie. Hyperbolische Geometrie der Ebene von
R. Baldus #. Durchgesehen und herausgegeben von F. Ldbell. 4.,
verbesserte Auflage. 140 Seiten, 70 Figuren. 1964, (970)

Differentialgeometrie von K. Strubecker (frither Rothe). 3 Bande.

I: Kurventheorie der Ebene und des Raumes, 2. Auflage.
200 Seiten, 18 Figuren. 1964. In Vorbereitung. (1113/1113a)
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II: Theorie der Flachenmetrik. 195 Seiten, 14 Figuren. 1958.

(1179/1179a)
IIl: Theorie der Flachenkriimmung, 254 Seiten, 38 Figuren.
1959. (1180/1180a)
Vari:titf)lnsrechnung von L. Koschmieder. 2 Bénde. 2., neubearbeitete
uflage.
1: Das freie und gebundene Extrem einfacher Grund-
integrale, 128 Seiten, 23 Figuren. 1962. (1074)

II: Anwendung klassischer Verfahren auf allgemeine
Fragen des Extrems. — Neuere unmittelbare
Verfahren. In Vorbereitung, (1075)

Einflihrung in die konforme Abbildung von L. Bieberbach. 5., erweiterte
Auflage. 180 Seiten, 42 Figuren. 1956. (768/768a)

Vektoren und Matrizen von S. Valentiner. 3. Auflage. (10., erweiterte
Auflage der ,,Vektoranalysis' '), Mit Anhang: Aufgaben zur Vektor-
rechnung von H. Konig. 206 Seiten, 35 Figuren. 1963. (354/354a)

‘Wahrscheinlichkeitstheorie und Grundziige der MafBtheorie von H. Bauer,

Bénde.
I: 1964. Im Druck. (1216)

I1: In Vorbereitung. (1217)

Versicherungsmathematik von F. Béhm. 2 Bénde.

Elemente der Versicherungsrechnung., 3., vermehrte
und verbesserte Auflage. Durchgesehener Neudruck. 151 Seiten.
1953, (180)

II: Lebensversicherungsmathematik. Einfithrung in die
technischen Grundlagen der Sozialversicherung. 2., verbesserte
und vermehrte Auflage 205 Seiten. 1953. (917/917a)

Finanzmathematik von M. Nicolas 192 Seiten, 11 Tafeln, 8 Tabellen
und 72 Beispiele. 1959. (1183/1183a)

Kinematik von H. R, Miiller. 171 Seiten, 75 Figuren. 1963. (584/584 a)

Physik

Einfiihrung in die theoretische Physik von W. Ddring. 5 Bénde.
I: Né)%(c)h(aréik. 2., verbesserte Auflage. 123 Seiten, 25 Abbildungen.
1 (T
II: Das ele)ktromagnetische Feld. 2., verbesserte Auflage.
132 Seiten, 15 Abbildungen. 1962, (77)
IIT: ?geglk 2., verbesserte Auflage. 117 Seiten, 32 Abbildungen,
78)
1V: Thenﬁwdynamxk 2., verbesserte Auflage. 107 Seiten, 9 Ab-
bildungen. 1964. (374)
\'H Sltoz;t’?istische Mechanik. 114 Seiten, 12 Abbildungen. 1957,
Mecharglk dgformlerbarer Korper von M. Pdsler, 199 Seiten, 48 Ab-
bildungen. 1960. (1189/1189a)
Atomphysik von K, Bechert, Ch. Gerthsen+ und A. Flammersfeld,
7 Béande. 4., durchgesehene Auflage.
1: Allgemeine Grundlagen, 1. Teil von A. Flammersfeld. 124
Seiten, 35 Abbildungen. 1959. (1009)
IL: Allgememe Grundlagen., 2. Teil von A, Flammersfeld.
112 Seiten, 47 Abbildungen. 1963, (1033)
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III: Theorie des Atombaus. 1, Teil von K. Bechert, 148 Seiten,
16 Abbildungen. 1963. (1123/1123a)
IV: Theorie des Atombaus, 2. Teil von K. Bechert. 170 Seiten,
14 Abbildungen. 1963. (1165/1165a)
Differentialgleichungen der Physik von F. Sauter. 3., durchgesehene
und ergdnzte Auflage. 148 Seiten, 16 Figuren. 1958. (1070)

Physikalische Formelsammlung von G. Mahlert. Fortgefithrt von
K. Mahler, Neubearbeitet von H. Graewe. 11, Auflage. 167 Seiten,
69 Figuren., 1963, (136)

Physikalische Aufgabensammiung von G. Mahler }. Neubearbeitet von
H, Graewe. Mit den Ergebnissen. 12. Auflage. 127 Seiten. 1964. (243)

Chemie

Geschllgptedder Chemie in kurzgefaBter Darstellung von G. Lockemann.
ande,
I: Vom Altertum bis zur Entdeckung des Sauerstoffs.
2, Auflage. 142 Seiten, 8 Bildnisse. In Vorbereitung. (264)
1I: Von der Entdeckung des Sauerstoffs bis zur Gegen-
wart, 151 Seiten, 16 Bildnisse. 1955. (265/265a)

Anorganische Chemie von W. Klemm. 13., neubearbeitete und erweiterte
Auflage. 255 Seiten, 35 Abbildungen. 1964, (37/37a)

Organische Chemie von W. Schienk. 9., erweiterte Auflage. 273 Seiten,
16 Abbildungen. 1963. (38/38a)

Physikglische Methoden in der Organischen Chemie von G. Kresze.

ande.

I: 119 Seiten, 65 Abbildungen. 1962, (44)
I1: 164 Seiten. 1962. (45/45a)

Allgemeine und physikalische Chemie von W. Schulze. 2 Binde.

1: 5., durchgesehene Auflage. 139 Seiten, 10 Figuren. 1960. (71)
II: 5., verbesserte Auflage. 178 Seiten, 37 Figuren. 1961. (698/698a)

Einfache Versuche zur allgemeinen und physikalischen Chemie von
E. Dehn, 371 Versuche mit 40 Abbildungen. 272 Seiten. 1962,
(1201/1201a)

Molekiilbau, Theoretische Grundlagen und Methoden der Struktur-
ermittlung von W. Schulze. 123 Seiten, 43 Figuren. 1958, (786)

Physikalisch-chemische Rechenaufgaben von E. Asmus. 3., verbesserte
Auflage. 96 Seiten, 1958, (445)

MaBanalyse. Theorie und Praxis der klassischen und der elektroche-
mischen Titrierverfahren von G. jander und K. F. Jahr. 10., er-
weiterte Auflage, mitbearbeitet von H. Knoll. 358 Seiten, 56 Figu-~
ren. 1963. (221221 a)

Qualitative Analyse von H. Hofmann u. G. jander, 2., durchgesehene
und verbesserte Auflage. 308 Seiten, 5 Abbildungen. 1963. (247/247 a)

Thermochemie von W. A, Roth f. 2,, verbesserte Auflage. 109 Seiten,
16 Figuren. 1952, (1057)
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Stichiometrische Aufgabensammlung von W. Bahrdt ¥ und R. Scheer.
?2i5t2;1en Ergebnissen. 7., durchgesehene Auflage. 119 Seiten. 1960.
Elektrochemie von K. Veffer. 2 Binde,
: 1964. In Vorbereitung. (252)
II: 1964. In Vorbereitung. (253)

Technologie

Die Chemie der Kunststoffe von K. Hamann, unter Mitarbeit von W,
Funke und H. D. Hermann. 143 Seiten. 1960. (1173)
Warenkunde von K. Hassak und E. Beutel f. 2 Binde,
I: Anorganische Waren sowie Kohle und Erddl, 8. Auf-
llagg5eé lzlzezuzl;earbeitet von A. Kutzelnigg, 119 Seiten, 18 Figuren.
II: Organische Waren. 8. Auflage. Volistandig neubearbeitet
von A. Kutzelnigg. 157 Seiten, 32 Figuren, 1959. (223)
Die IFQ%F -;ng Ole von Th. Klug. 6., verbesserte Auflage. 143 Seiten.
. (335)
Die Seifenfabrikation von K, Braun . 3., neubearbeitete und verbesserte
Auflage von Th Klug. 116 Seiten, 18 Abbildungen. 1953. (336)
Thermische Verfahrenstechnik von H. Bock. 3 Binde.
I: Eigenschalten und Verhalten der realen Stoffe.
164 Seiten. 28 Abbildungen. 1963, (1209/1209a)
II: Funktionen und Berechnung der elementaren Geréate,
In Vorbereitung (1210/1210a)
III: FlieBbilder, ihre Funktion und ihr Zusammenbau aus
Gerédten. In Vorbereitung. (1211/1211a)
Textilindustrie von A. Bliimcke.
I: Spinnerei und Zwirnerei. 111 Seiten, 43 Abbildungen.
1954, (184)

Biologie

Einfilihrung in die allgemeine Biologie und ihre philosophischen Grund-
?Sgsﬁg?zfragen von M, Hartmann. 132 Seiten, 2 Abbildungen.

Hormone von G. Koller. 2., neubearbeitete und erweiterte Auflage.
187 Seiten, 60 Abbildungen, 19 Tabellen. 1949, (1141)

Fortpflanzung im Tier- und Pflanzenreich von J. Hdmmerling. 2.,
erganzte Auflage. 135 Seiten. 101 Abbildungen. 1951. (1138)

Geschlecht und Geschlechtsbestimmung im Tier- und Pflanzenreich von
M. Hartmann. 2., verbesserte Auflage. 116 Seiten, 61 Abbildungen,
7 Tabellen. 1951. (1127)

Symbiose der Tiere mit pflanzlichen Mikroorganismen von P. Buchner.
2.,4\éerbeszs§rte und vermehrte Auflage. 130 Seiten, 121 Abbildungen.
1949, (1128)

GrundriB der Allgemeinen Mikrobiologie von W. u. A. Schwartz, 2 Bénde,
2., verbesserte und erginzte Auflage.

I: 147 Seiten, 25 Abbildungen. 1960. (1155)
II: 142 Seiten, 29 Abbildungen, 1961. (1157)

16



NATURWISSENSCHAFTEN
Botanik

Entwicklungsgeschichte des Pflanzenreiches von H. Heil, 2, Auflage.

138 Seiten, 94 Abbildungen, 1 Tabelle. 1950. (1137)

‘Morphologie der Pflanzen von L. Geitler,, 3 umgearbeitete Auflage.

126 Seiten, 114 Abbildungen. 1953. (

Pflanzengeographie von L. Diels f. 5., vi:illig neubearbeitete Auflage
von F. Mattick. 195 Seiten, 2 Karten, 1958. (389/389a)

Die Laubholzer. Kurzgefaite Beschreibung der in Mitteleuropa ge-
deihenden Laubbaume und Straucher von F. W, Neger 7 und

E. Minch 1. 3., durchgesehene Auflage, herausgegeben von B. Hu-

ber. 143 Seiten, 63 Figuren, 7 Tabellen. 1950. (718)

Die Nadelhdlzer (Koniferen) und iibrigen Gymnospermen von F, W.

Neger 1 und E. Miinch f. 4. Auflage, durchgesehen und ergénzt von

B. Huber. 140 Seiten, 75 Figuren, 4 Tabellen, 3 Karten. 1952. (355)

Pflanzenziichtung von H. Kuckuck. 2 Bénde.

I: Grundziige der Pflanzenziichtung, 3., vollig umgearbei-
tet% und erweiterte Auflage. 132 Seiten, 22 Abbildungen. 1952,
(1134)

I1: Spezielle gartenbauliche Pflanzenziichtung (Ziichtung
von Gemiise, Obst und Blumen), 178 Seiten, 27 Abbildungen.
1957. (1178/1178a)

Zoologie

Entwicklungsphysiologie der Tiere von F. Seidel, 2 Binde.
l: Ei und Furchung. 126 Seiten, 29 Abbildungen. 1953, (1162)
I: Kérpergrundgestalt und Organblldung 159 Seiten,
42 Abbildungen, 1953, (1163)

Das Tierreich
I: Einzeller, Protozoen von E, Reichenow. 115 Seiten. 59
Abblldungen. 1956, (444)
II: Schwamme und Hohltiere von H, J. Hannemann,
95 Seiten, 80 Abbildungen. 1956. (44
III: Wiirmer. Platt-, Hohl-, Schnurwurmer, Kamptozoen, Ringel-
wiirmer, Protracheaten, Bértierchen, Zungenwiirmer von
S. Jaeckel, 114 Seiten, 36 Abbildungen. 1955. (439)
IV, 1: Krebse von H. E. Gruner und K. Deckert. 114 Seiten, 43 Ab-
bildungen. 1956. (443)
IV, 2: Spinnentiere (Trilobitomorphen, Fiihlerlose) und Tau-
sendfiiBler von A, Kaestner, 96 Seiten, 55 Abbildungen.
1955, (1161)
IV, 3: Insekten von H. von Lengerken. 128 Seiten, 58 Abbildungen.
1953. (594)
V: Weichtiere. Urmollusken, Schnecken, Muscheln und Kopf-
fiiler von S. Jaeckel. 92 Seiten. 34 Figuren, 1954, (440)
VI: Stachelhduter. Tentakulaten, Binnenatmer und Pfeilwiir-
mer von S, Jaeckel. 100 Seiten, 46 Abbildungen. 1955, (441)
VII, 1: Manteltiere, Schadellose, Rundméuler von Th. Haltenorth.
In Vorbereitung. (448)
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NATURWISSENSCHAFTEN

VII, 2: rgisg:h(&g)on D. Lidemann. 130 Seiten, 65 Abbildungen,
55.

VII, 3: Lurche (Chordatiere) von K. Herter. 143 Seiten, 129 Abbii-
dungen. 1955, (847)

VIIL, 4: Kriechtiere (Chordatiere) von K. Herter. 200 Seiten, 42
Abbildungen. 1960. (447/447 a)

VII, 5: Voégel (Chordatiere) von H.-A. Freye, 156 Seiten, 69 Figuren.
1960. (869)

VII, 6: Saugetiere (Chordatiere) von Th. Haltenorth. In Vorberei-
tung, (282)

Land- und Forstwirtschaft

Landwirtschaftliche Tierzucht. Die Ziichtung und Haltung der land-
wirtschaftlichen Nutztiere von H. Vogel. 139 Seiten, 11 Abbildun-
gen, 1952; (228)

Kulturtechnische Bodenverbesserungen von O. Fauser, 2 Bande. 5.,
verbesserte und vermehrte Auflage.

I: Allgemeines, Entwésserung, 127 Seiten, 49 Abbildungen.
1959. (691)
II: Bewiasserung, Odlandkultur, Flurbereinigung. 159
Seiten, 71 Abbildungen, 1961. (692)
Agrikulturchemie von K. Scharrer. 2 Bande.
1: Pflanzenernahrung. 143 Seiten. 1953. (329)
II: Futtermittelkunde. 192 Seiten. 1956. (330/330a)

Geologie, Mineralogie, Kristallographie

Geologie von F. Lofze. 2., verbesserte Auflage. 178 Seiten, 80 Abbil-
dungen. 1961. (13)

Esrzkunde von H.von Philipsborn, In Vorbereitung. (1207)

Mineral- und Erzlagerstittenkunde von H. Huttenlocher }. 2 Bénde.
2. Auflage.

1: 128 Seiten, 34 Abbildungen. In Vorbereitung. (1014)
11: 156 Seiten, 48 Abbildungen. In Vorbereitung. (1015/1015a)

Allgemeine Mineralogie. 11., erweiterte Auflage der ,,Mineralogie* von
R. Braunst, neubearbeitet von K. F, Chudoba. 152 Seiten, 143 Text-
figuren, 1 Tafel, 3 Tabellen. 1963. (29/292a)

Spezielle Mineralogie. 11., erweiterte Auflage der , Mineralogie’‘ von
R. Brauns t, bearbeitet von K. F. Chudoba. Etwa 170 Seiten, 127
Textfiguren, 4 Tabellen. 1964. (31/21a)

Petrographie (Gesteinskunde) von W, Bruhns }. Neubearbeitet von
P, Ramdohr. 5., erweiterte Auflage. 141 Seiten, 10 Figuren. 1960,

(173

Kristallo)graphie von W. Bruhns 7. 5. Auflage, neubearbeitet von P.
Ramdohr, 109 Seiten, 164 Abbildungen. 1958. (210)

Einfiihrung in die Kristalloptik von E. Buchwald. 5., verbesserte
Auflage. 128 Seiten, 117 Figuren. 1963. (619/619a)

Létrohrprobierkunde. Mineraldiagnose mit Létrohr und Tipfelreaktion
von M. Henglein. 4., durchgesehene und erweiterte Auflage.
108 Seiten, 12 Figuren. 1962. (483)
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Technik

Graphische Darstellung in Wissenschaft und Technik von M, Pirani,
3., erweiterte Auflage bearbeitet von J. Fischer unter Benutzung
der von I. Runge besorgten 2, Auflage. 216 Seiten, 104 Abbildungen.
1957, (728/7282a)

Technische Tabellen und Formeln von W. Miiller. 5., verbesserte und
erweiterte Auflage von E. Schulze. 165 Seiten, 114 Abbildungen,
99 Tafeln, 1962, (679)

Einfithrung in die Arbeitswissenschaft von H. H. Hilf. 164 Seiten, 57
Abbildungen. 1964, (1212/1212a)

Grundlagen der Strafienverkehrstechnik. Theorie der Leistungsfahigkeit
von E. Engel. 101 Seiten, 55 Abbildungen. 1962. (1198)

Elektrotechnik

Grundlagen der aligemeinen Elektrotechnik von O. Mohr. 2., durchgese-
hene Aufiage. 260 Seiten, 136 Bilder, 14 Tafeln. 1961, (196/196a)

Die gleichstrommaschine von K. Humburg. 2 Bande. 2., durchgesehene
uflage.
I: 102 Seiten, 59 Abbildungen, 1956. (257)
I1: 101 Seiten, 38 Abbildungen. 1956. (881)
Die Synchronmaschine von W, Putz. 92 Seiten, 64 Bilder. 1962, (1146)

Induktionsmaschinen von F, Unger. 2., erweiterte Auflage. 142 Seiten,
49 Abbildungen. 1954, (1140)

Die komplexe Berechnung von Wect T Itungen von H. H.
Meinke. 3. Auflage. 180 Seiten, 120 Abbildungen. 1964. In Vor-
bereitung. (1156/1156a)

Theoretische Grundlagen zur Berechnung der Schaltgeréite von F. Kessel-
ring. 3. Auflage. 144 Seiten, 92 Abbildungen. 1950. (711)

Einfiihrung in die Technik selbsttatiger Regelungen von W. zur Megede.
2,, durchgesehene Auflage. 180 Seiten, 86 Abbildungen. 1961.
(714/714a)

Elektromotorische Antriebe (Grundlagen fiir die Berechnung) von
A. Schwaiger, 3., neubearbeitete Auflage. 96 Seiten, 34 Abbildun-
gen. 1952, (827) .

berspannungen und Uberspannungsschutz von G. Frihauf, Durch-
gesehener Neudruck. 122 Seiten, 98 Abbildungen. 1950. (1132)

Elektrische Hochstspannungs-Schaltanlagen fiir Freiluft und Innen-
anordnung von G. Meiners und K.-H. Wiesenewsky. 138 Seiten,
58 Abbildungen. 1964, (796/796a)

Transformatoren von W. Schdfer. 4., iiberarbeitete und ergédnzte Auf-
lage. 130 Seiten, 73 Abbildungen. 1962. (952)

1ot +
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TECHNIK

Maschinenbau

Metglllf(lunde von H, Borchers. 3 Binde,. 5., ergianzte und durchgesehene
uflage,
I: Aufbau der Metalle und Legierungen.
120 Seiten, 90 Abbildungen, 2 Tabellen. 1962. (432)

II: Eigenschaften, Grundziige der Form- und Zustands-
gebung. 182 Seiten, 107 Abbildungen, 10 Tabellen. 1963.
(433/433a)

IIl: Die metallkundlichen Untersuchungsmethoden von
E, Hanke. In Vorbereitung. (434)
Die Werkstoffe des Maschinenbaues von A, Thum § und C. M. v. Mey-
senbug. 2 Béande.
I: Einfithrung in die Werkstoffpriifung. 2,, neubearbeitete
Auflage. 100 Seiten, 7 Tabellen, 56 Abbildungen, 1956. (476)

II: Die Konstruktionswerkstoffe. 132 Seiten, 40 Abbildungen.

1959, (936)
Dynamik von W. Miiller. 2 Bénde. 2., verbesserte Auflage.
I: (Igynamik des Einzelkérpers. 128 Seiten, 48 Figuren, 1952,

II: Systeme von starren KoOrpern, 102 Seiten, 41 Figuren,
1952. (903)
Technische Schwingungslehre von L. Zipperer. 2 Bénde. 2., neube-
arbeitete Auflage.
I: Allgemeine Schwingungsgleichungen, einfache
Schwinger. 120 Seiten, 101 Abbildungen, 1953. (953)
II: Torsionsschwingungen in Maschinenantagen. 102 Sei-
ten, 59 Abbildungen. 1955. (961/961 a)
Werkzeugmaschinen fiir Metallbearbeitung von K. P. Matthes. 2 Bande.
I: 100 Seiten, 27 Abbildungen, 11 Zahlentafeln, 1 Tafelanhang.
1954, (561)
II: Fertigungstechnische Grundlagen der neuzeitlichen
Metallbearbeitung. 101 Seiten, 30 Abbildungen, 5 Tafeln.
1955. (562)
Das Maschinenzeichnen mit Einfiihrung in das Konstruleren von W. Toch-
termann. 2 Bande. 4. Auflage.
I: Das Maschinenzeichnen. 156 Seiten, 75 Tafeln. 1950. (589)
II: Ausgefithrte Konstruktionsbeispiele. 130 Seiten, 58
Tafeln. 1950. (590)
Die Maschinenelemente von E. A. vom Ende }. 4., (iberarbeitete Auf-
lage. 184 Seiten, 179 Figuren, 11 Tafeln. 1963. (3/3a)
Die Maschi der Eisenhiittenwerke von L. Engel. 156 Seiten, 95 Ab-
bildungen. 1957. (583/583a)
Walzwerke von H. Sedlaczek ¢ unter Mitarbeit von F, Fischer und
M. Buch. 232 Seiten, 157 Abbildungen. 1958. (580/580a)
Getriebelehre von P. Grodzinski t. 2 Bande. 3., neubearbeitete Auflage
von G. Lechner.
I: gggmetrische Grundlagen. 164 Seiten, 131 Figuren. 1960.
1)
II: Angewandte Getriebelehre. In Vorbereitung. (1062)

Kinematik von H. R. Miiller. 171 Seiten, 75 Figuren. 1963. (584/584a)
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TECHNIK

GieBereitechnik von H. jungbluth. 2 Bénde.
1: EisengieBerei. 126 Seiten, 44 Abbildungen. 1951. (1159)

Die Dampfturbinen. Thre Wirkungsweise, Berechnung und Konstruk=
tion von C. Zietemann. 3 Binde.
I: Theorie der Dampfturbinen. 4. Auflage. 139 Seiten,
48 Abbildungen. 1964. In Vorbereitung. (274)
II: Die Berechnung der Dampfturbinen und dle Kon-
struktion der Einzelteile. 4,, verbesserte Auflage. 132 Sei-
ten, 111 Abbildungen. 1964. In Vorbereitung. (715)
III: Die Regelung der Dampfturbinen, die Bauarten,
Turbinen fiir Sonderzwecke, Kondensatlonsanlagen
3., verbesserte Auflage. 126 Sexten 90 Abbildungen. 1956. (716)

Verbrennungsmotoren von W. Endres. 3 Béande.
: Uberblick. Motor-Brennstoffe. Verbrennung im Motor

allgemein, im Otto- und Diesel-Motor. 153 Seiten,
57 Abblldungen 1958. (1076/1076a)

11: Die heutigen Typen der Verbrennungskraftmaschine.
In Vorbereitung. (1184)

I1I: Die Einzelteile des Verbrennungsmotors. In Vor-
bereitung. (1185)

Autogenes Schweiien und Schneiden von H. Niese. 5. Auflage, neu-
bearbeitet von A. Kiichler. 136 Seiten, 71 Figuren. 1953. (499)

Die elektrischen SchweiBverfahren von H. Niese. 2. Auflage, neu-
bearbeitet von H. Dienst. 136 Seiten, 58 Abbildungen. 1955. (1020)

Die Hebezeuge. Entwurf von Winden und Kranen von G. Tafel. 2.,
verbesserte Auflage. 176 Seiten, 230 Figuren. 1954. (414/414a)

‘Wasserbau

Wasselglgragtanlagen von A, Ludin unter Mitarbeit von W. Borkenstein.
ande.
I: Planung, Grundlagen und Grundziige. 124 Seiten,
60 Abbildungen. 1955. (665)
II: Anordnung und Ausbildung der Hauptbauwerke,
184 Seiten, 91 Abbildungen. 1958, (666/666 a)

Verkehrswasserbau von H. Dehnert, 3 Bande.
: Entwurfsgrundlagen, FluBregelungen. 103 Seiten,
53 Abbildungen. 1950. (585)
I1: FluBkanalisierung und Schiffahrtskanéle. 94 Seiten,
60 Abbildungen. 1950, (597)
III: Schleusen und Hebewerke. 98 Seiten, 70 Abbildungen.
1950, (1152)

Wehrg— tzmt(:!gSts;uanlagen von H, Dehnert. 134 Seiten, 90 Abbildungen.
195

Talsperren von F. Télke. 122 Seiten, 70 Abbildungen. 1953, (1044)
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TECHNIK

Vermessungswesen

Vermessungskunde von W, Gromann. 3 Bande.
I: Stiickvermessung und Nivellieren. 11., verbesserte Auf-
lage. 144 Seiten. 117 Figuren, 1962. (468)
1I: Horizontalaufnahmen und ebene Rechnungen. 9,
verbesserte Auflage. 136 Seiten, 101 Figuren. 1963. (469)
III: Trigonometrische und barometrische Hohenmessung.
Tachymetrie und Absteckungen. 8. Auflage. 136 Seiten,
97 Figuren, 1964. (862)

Kartographie von V. Heissler, 213 Seiten, 125 Abbildungen, 8 Anlagen.
1962. (30/30a)

Photogrammetrie von G. Lehmann. 189 Seiten, 132 Abbildungen.
1959, (1188/1188a)

Hoch- und Tiefbau

Die wichtigsten Baustoffe des Hoch- und Tiefbaus von O. Graf f. 4.,
verbesserte Auflage. 131 Seiten, 63 Abbildungen. 1953. (984)

Baustoffverarbeitung und Baustellenpriifung des Betons von A. Klein-
logel, 2., neubearbeitete und erweiterte Auflage. 126 Seiten, 35 Ab-
bildungen. 1951. (978)

Festigkeitslehre. 2 Bande,

I: Elastizitdat, Plastizitdt und Festigkeit der Baustoffe
und Bauteile von W.Gehler ¥ und W. Herberg. Durch-
gesehener und erweiterter Neudruck. 159 Seiten, 118 Abbil-
dungen. 1952, (1144)

Il: Forméanderung, Platten, Stabilitat und Bruch-
hypothesen von W. Herberg und N. Dimitrov. 187 Seiten,
94 Abbildungen. 1955. (1145/1145a)

Grundlagen des Stahilbetonbaus von A. Troche. 2., neubearbeitete und
erweiterte Auflage. 208 Seiten, 75 Abbildungen, 17 Bemessungs-
tafeln, 20 Rechenbeispiele. 1953. (1078)

Statik der Baukonstruktionen von A. Teichmann. 3 Bénde.

I: Grundlagen, 101 Seiten, 51 Abbildungen, 8 Formeltafeln.
1956. (119)
II: Statisch bestimmte Stabwerke. 107 Seiten, 52 Abbil-
dungen, 7 Tafeln. 1957. (120)
IIl: Statisch unbestimmte Systeme., 112 Seiten, 34 Abbil-
dungen, 7 Formeltafeln. 1958. (122)
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Fenster, Tiiren, Tore aus Holz und Metall. Eine Anleitung zu ihrer
guten Gestaltung, wirtschaftlichen Bemessung und handwerks-
gerechten Konstruktion von W. Wickop f. 4., iiberarbeitete und
erganzte Auflage. 155 Seiten, 95 Abblldungen. 1955, (1092)

l-lelz”;mfgl und Liftung von W. Kdrting. 2 Bande. 9., neubearbeitete
uflage.

I: Das Wesen und die Berechnung der Heizungs- und
Liftungsanlagen. 171 Seiten, 29 Abbildungen, 36 Zahlen-
tafeln. 1962. (342/342a)

II: Die Ausfiihrung der Heizungs- und Liiftungsanlagen.
1964. In Vorbereitung. (343)

Industrielle Kraft- und Warmewirtschaft von F. A, F. Schmidt und
A. Beckers. 167 Seiten, 73 Abbildungen. 1957, (318/318a)

Weitere Sonderverzeichnisse aller
Wissensgebiete und Einzelprospekte,
sowtie die Verlagskataloge
aus dem Verlag
WALTER DE GRUYTER & CO.
erhalten Sie jederzeit
bei Threm Buchhdindler.
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Sammlung Géschen /| Bandnummernfolge

1 Langosch, Der Nibelunge N6t

3/3a v. Ende, Maschinenele-
mente

10 Jiriczek-Wisniewski, Kudrun-
und Dietrich-Epen

13 Lotze, Geologie

18 Maurer, Hartmann von Aue.
Der arme Heinrich

19 f\ltlheim, Romische Geschich-
e

20 Hofstaetter, Dt. Sprachlehre
22 Maurer, Gottfried von Strass-

burg

29/29a Brauns-Chudoba, Allge-
meine Mineralogie

30/30a Heissler, Kartographie

31/31a Brauns-Chudoba, ~Spezi-
elle Mineralogie

32 Schneider-Wisniewski, Deut-
sche Heldensage

35 Treue, Dt. Geschichte von
1648—1740

37/37a Klemm, Anorganische

Chemie
38/38a Schlenk, Organische Che-

mie

39 Treue, Dt, Geschichte von
1713—1806

42 Behn-Hoernes, Vorgeschichte
Europas

44 Kresze, Physikalische Metho-
den in der Organischen Che-

mie I

45/45a Kresze, Physikalische Me-
thoden in der Organischen
Chemie 11

47 Fischer-Rohrbach, Arithmetik

51/51a Ringleb, Mathem. For-
melsammlung

52 Bieler Rom. Literaturgesch. I

59 Krahe, Indog. Sprachwiss. I

60 Biehle, Stimmkunde

61 Biele, Redetechnik

24

64 Krahe, Indog. Sprachwiss. I

65/656a Grotemeyer, Analyt. Ge-
ometrie

66 Berneker-Vasmer, Russische
Grammatik

70 Nestle-Liebich, Gesch, d, grie-
chischen Literatur I

71 Schulze, Allgemeineund phy-
sikalische Chemie I

76 Doring, Einf.i.d. th. Physik [

77 Déring, Einf. i.d. th, Physik 11

78 Déring,Einf.i.d.th, PhysikIII

79/79a Hempel, Got. Elementar-
buch

80 Weigert, Stilkunde 1

81 Schubert-Haussner-Erlebach,
Vierstell. Logarithmentafeln

86 Barner, Differential- u. Inte-
gralrechnung !

96 Hartmann,Einf.in dieallgem,
Biologie

99 Hessenberg-Kneser, Ebene
und sphar. Trigonometrie

101 v. Wiese, Soziologie

103 Dahrendorf, Industrie- und
Betriebssoziologie

104/104a Hofstatter,
chologie

111 Hoffmann-Debrunner,Gesch.
der griechischen Sprache I

114 Debrunner, Gesch. der grie-
chischen Sprache 11

117 Brandenstein, Griechische
Sprachwissenschaft I

118/118a Brandenstein, Griechi-
sche Sprachwissenschaft 11

119 Teichmann, Statik der Bau-
konstruktionen I

120 Teichmann, Statik der Bau-
konstruktionen I1I

122 Teichmann, Statik der Bau-
konstruktionen I1I

Sozialpsy-



128/128a Lausberg, Romanische
Sprachwissenschaft I

136 Mahler-Graewe, Physikal.’
Formelsammiung

141 Geitler, Morphologie der
Pflanzen

142 Haack, Darst. Geometrie I

143 Haack, Darst. Geometrie I1

144 Haack, Darst. Geometrie I11

145 Weimer, Gesch., der Pad-
agogik

148 Kolms, Finanzwissenschaft I

156/156a Landmann, Philosophi-
sche Anthropologie

170 Oehlmann, Musik des 19, Jhs.

171/171a Oehlmann, Musik des

20, Jhs,

173 Bruhns-Ramdohr, Petro-
graphie

174 Schlingloff, Religion des Bud-
dhismus [

180 Bshm, Versicherungsmathe-
matik I

184 Bliimcke, Textilindustrie 1

196/196a Mohr, Grundlagen der
allgem. Elektrotechnik

200/200a Gottschald, Dt. Recht-
schreibungsworterbuch

210 Bruhns-Ramdohr, Kristallo-

graphie

220/220a Moser, Allg. Musiklehre

221/221a Jander-Jahr-Knoll,
MaBanalyse

222 Hassak-Beutel-Kutzelnigg,
Warenkunde I

223 Hassak-Beutel-Kutzelnigg,
Warenkunde 11

226/226a Hofmann, Gesch. der
Mathematik |

228 Vogel, Landw. Tierzucht

231/231a Ehrlich, Gesch. Israels

238 Krahe, Germ. Sprachwiss. 1

243 Mahler-Graewe, Physikal,
Aufgabensammlung

247/247a Hofmann-jander, Qua-
litative Analyse

250 Lausberg, Romanische
Sprachwissenschaft 11

252 Vetter, Elektrochemie I

253 Vetter, Elektrochemie J1

257 Humburg, Gleichstrom-
maschine [
264 Lockemann, Gesch. der

Chemie 1

265/265a Lockemann, Geschichte
der Chemie 11

270 Kirn, Einfithrung in die
Geschichtswissenschaft

274 Zietemann, Dampfturbinen I

279 Jacob-Hohenleutner,
Quellenkunde der deutschen
Geschichte I

280 Jacob-Hohenleutner, Quel-
lenkunde der deutschen Ge-
schichte I1

281 Leisegang, Einfiihrung in die
Philosophie

282 Haltenorth, Saugetiere

284 Jacob-Weden, Quellenkunde
der deutschen Geschichte 111

318/318a Schmidt-Beckers, In-
dustrielle Kraft- u. Warme-
wirtschaft

319 Krug, Australien und Oze-
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