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Einleitung 

Die Grundaufgabe der Algebra 
Das Wort Algebra stammt aus dem Arabischen und be-

deutet wörtlich das Hinüberschaffen eines Gliedes von einer 
Seite einer Gleichung auf die andere. Späterhin versteht man 
unter Algebra allgemein die Lehre von der Auflösung von 
Gleichungen (und zwar ausschließlich von solchen, die zu 
ihrer Bildung nur die vier sog. elementaren Rechenopera-
tionen erfordern) mit einer Anzahl unbekannter Größen nach 
diesen. Dieser Aufgabe sind die beiden vorliegenden Bänd-
chen gewidmet. 

Es liegt schon in der gegebenen Erläuterung des Wortes Algebra 
und ist für die moderne Auffassung der Aufgaben dieser Disziplin 
charakteristisch, daß es nicht die Objekte, d. h. die Größen, die 
aus den aufzulösenden Gleichungen berechnet werden sollen, sind, 
die im Mittelpunkt der Betrachtung stehen, sondern vielmehr der 
Prozeß des Auflösens selber. Die Objekte (z. B. die drei Seiten eines 
Dreiecks, dessen Höhen gegeben sind) interessieren denjenigen, der 
die Algebra anwendet (im Beispiel den Geometer), den Algebraiker 
beschäftigen allein die allgemeinen, formalen Regeln (Formalismen, 
Algorithmen), mittels derer aus den gegebenen Gleichungen die ge-
suchten Größen bestimmt werden können (also im Beispiel die 
Regeln zur Auflösung eines Systems von drei Gleichungen nach 
drei Unbekannten). Wenn hiernach die Algebra als bloße Hilfs-
wissenschaft anderer Zweige der Mathematik erscheint, kann sie 
doch mit vollem Recht beanspruchen, als selbständige mathe-
matische Disziplin betrieben zu werden, einmal wegen ihrer Unent-
behrlichkeit und vielgestaltigen Bedeutung für fast alle Teile der 
Mathematik, dann aber auch, weil die Methoden und Resultate 
einer um ihrer selbst willen betriebenen Algebra in ihrer logischen 
Geschlossenheit, durchgängigen Einfachheit und vollendeten 
Schönheit die Kriterien in sich tragen, deren Erfülltsein man von 
einer lebensfähigen mathematischen Disziplin fordern muß. 

Im Sinne des zuvor Bemerkten erscheint es für eine Dar-
stellung der Algebra berechtigt, j a geboten, bezüglich der 
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Objekte, um die es sich handelt, die größtmögliche Allge-
meinheit zugrunde zu legen. Wir wollen daher nicht nur, was 
selbstverständlich ist, von jeder Benennung (metrisch, geo-
metrisch usw.) der in Rede stehenden Größen absehen, son-
dern sogar von ihrer Zahlbedeutung im geläufigen Sinne des 
Wortes Zahl (natürliche, ganze, rationale, reelle, komplexe 
Zahlen!). Die i n h a l t l i c h e B e d e u t u n g der in den Glei-
chungen vorkommenden Zeichen als Zahlen ist für den For-
malismus, der zur Auflösung führt, ebenso gleichgültig,, wie 
etwaige Benennungen. Das Wesentliche sind allein die f o r -
m a l e n R e g e l n , nach denen mit jenen Zeichen gerechnet 
wird, also die Tatsache, daß die vorkommenden Zeichen 
Elemente eines Bereichs bezeichnen, in dem nach den be-
kannten, für die Addition, Multiplikation, Subtraktion und 
Division charakteristischen Regeln gerechnet werden kann. 
Wir werden dies im Abschnitt I, der sich u. a. mit solchen, 
K ö r p e r genannten Bereichen eingehend zu beschäftigen 
hat, exakt formulieren und stellen hier nur einleitend als 
Grundaufgabe der Algebra folgendes hin: 

Es sollen allgemeine, formale Methoden entwickelt werden, 
nach denen man mittels der vier elementaren Rechenoperationen 
gebildete Gleichungen zwischen bekannten und unbekannten 
Elementen eines Körpers nach den unbekannten auflösen 
kann. 

Ehe wir an die Lösung dieser Aufgabe gehen können, 
müssen wir den Körperbegriff ausführlich erläutern und 
auch, was unter einer „ G l e i c h u n g " im Sinne der Aufgabe 
zu verstehen ist. Dazu dienen die Entwicklungen des Ab-
schnitts I, an dessen Schluß dann die Grundaufgabe der 
Algebra exakt formuliert und ihre beiden wichtigsten Teil-
aufgaben hervorgehoben werden. In I I werden sodann die 
Elemente der G r u p p e n t h e o r i e auseinandergesetzt, die für 
die Lösung der ersten Teilaufgabe als beiläufiges und für die 
Lösung der zweiten Teilaufgabe als entscheidendes Hilfsmittel 
heranzuziehen sind. I I I und IY geben die vollständige Lösung 
der ersten Teilaufgabe, während schließlich 2 den die zweite 
Teilaufgabe betreffenden Untersuchungen gewidmet ist. 
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Es ist für die moderne Entwicklung der Algebra charakte-
ristisch, daß die oben genannten Hilfsmittel zu selbständigen um-
fangreichen Theorien Anlaß gegeben haben, die gegenüber der 
vorstehend angeführten Grundaufgabe der k lass ischen Algebra 
immer mehr in den Mittelpunkt des Interesses getreten sind. So 
ist denn in moderner Auffassung die Algebra nicht mehr bloß die 
Lehre von der Auflösung der Gleichungen, sondern die Lehre 
von den fo rma len Rechenbere ichen , wie Körpern, Gruppen 
u.a., und ihre H a u p t a u f g a b e ist die Gewinnung von Einsichten 
in die S t r u k t u r solcher Bereiche (siehe dazu S. 24). Im be-
schränkten Rahmen der vorliegenden Bändchen ist es uns jedoch 
nicht möglich, diesen allgemeineren, modernen Gesichtspunkt in 
den Vordergrund zu stellen. Wir nehmen daher die vorstehend aus-
gesprochene Grundaufgabe der klassischen Algebra als wegwei-
senden Leitfaden und abgrenzenden Rahmen für unsere Dar-
legungen, werden aber dabei in der Tat, vor allem in 2, auch zu 
strukturellen Aussagen im Sinne der modernen Algebra geführt 
werden. 

I. Ringe, Körper, Integritätsbereiche 
§ 1. Definition der Hinge, Körper, Integritätsbereiche 
Als das formal-charakteristische, von der inhaltlichen Be-

deutung der Zeichen als Zahlen befreite an den drei elemen-
taren Rechenoperationen Addition, Substraktion, Multipli-
kation — die vierte, Division, ziehen wir erst später hinzu — 
ist folgender Tatbestand anzusehen: 

(a) Es liegt eine Menge B von unterschiedenen Ele-
menten in irgendeiner endlichen Anzahl (mindestens zwei) 
oder in unendlicher Anzahl vor. 

Wir verwenden Buchstaben a,b,... und kompliziertere 
Zeichen (z. B. die späterhin erklärten Zeichen a + b, ab,...), 
um die Resultate logischer Setzungen von Elementen aus B 
mitzuteilen, und sagen dann auch einfach, a,l,... seien 
Elemente aus B. Auf Grund der in (a) geforderten Unter-
schiedenheit steht für je zwei solche logische Setzungen 
a, b fest, ob es sich um dasselbe oder um verschiedene Ele-
mente aus B handelt, was wir durch die Bezeichnungen 
a = b bzw. a + 6 angeben. 
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(b) Für je zwei in bestimmter Reihenfolge gegebene, nicht 
notwendig verschiedene Elemente a, b aus B sind zwei V e r -
k n ü p f u n g e n definiert, d. h. jedem geordneten Elementpaar 
a, b aus B ist irgendwie ein Element c (erste Verknüpfung) und 
ein Element d (zweite Verknüpfung) aus B zugeordnet. 

(а) und (b) sind z. B . realisiert, wenn B die Menge aller 
geraden, oder aller ganzen, oder aller rationalen, oder aller 
reellen, oder aller komplexen Zahlen, oder aller positiven von 
einer dieser Zahlsorten (mit Ausnahme der letztgenannten) 
ist und als Verknüpfungen die Addition (c = a -f- 6) und 
Multiplikation (d = ab) gewählt werden. In Anlehnung an 
diese als Ausgangspunkt unserer Abstraktion anzusehenden 
Spezialfälle wollen wir die beiden Verknüpfungen in (b) 
auch allgemein Addition und Multiplikation, die dem Paar 
a, b zugeordneten Elemente c und d Summe und Produkt 
nennen und c = a b, d = ab schreiben, obwohl natürlich 
die rein formale Forderung (b) (und ebenso auch die gleich 
folgende Forderung (c) an unsere Verknüpfungen) keinerlei 
Anlaß zu der inhaltlichen Annahme gibt, daß diese Ver-
knüpfungen, wenn B eine Zahlenmenge ist, mit der gewöhn-
lichen Addition und Multiplikation übereinstimmen. 

(c) Die in (b) genannten beiden Verknüpfungen genügen für 
beliebige Elemente aus B den Gesetzen: 

(1) a + b = b + a, (2) ab = ba 
( k o m m u t a t i v e s G e s e t z ) ; 

(3) (a + b) + c = a + (6 + c), (4) (ab)e = a{bc) 
( a s s o z i a t i v e s G e s e t z ) ; 

(5) (a + b) c = ac + bc 
( d i s t r i b u t i v e s G e s e t z ) ; 

(б) Zu jedem geordneten Elementpaar a, c aus B existiert 
ein eindeutig bestimmtes Element b aus B derart, daß 
a+b = c ist 

( G e s e t z der u n b e s c h r ä n k t e n und e i n d e u t i g e n 
S u b t r a k t i o n ) . 
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Wie schon in der beigefügten Benennung des Gesetzes (6) 
zum Ausdruck gebracht ist, bezeichnet man die nach (6) in 
B unbeschränkt und eindeutig ausführbare Operation der 
Bestimmung von b aus a -f- b = c als Subtraktion und führt 
daher in sinngemäßer Fortsetzung der unter (b) verwendeten 
Terminologie die Bezeichnung b = c — a (Differenz) ein. 

Definition 1. Wenn für eine Menge B die unter (a), (b), (c) 
aufgeführten Tatsachen realisiert sind, heißt B ein R ing be-
züglich der Verknüpfungen (b). 

Den letzten Zusatz muß man machen, weil eine Menge B 
ä priori bezüglich je zweier verschiedenartig erklärter Verknüp-
fungen, also in mehrfacher Weise Ring sein kann (siehe dazu 
3,1, § 1, Aufg. 4, 5). Unter einem Ring B schlechthin versteht man 
immer die Menge B mit Einschluß der für sie definierten Ver-
knüpfungen. — Wir bezeichnen Ringe stets mit großen griechi-
schen, Elemente aus Ringen mit kleinen lateinischen oder grie-
chischen Buchstaben1). 

Wir beweisen nun zunächst einige in Ringen gültige Tat-
sachen. 

Satz 1. In jedem Ring B existiert ein eindeutig bestimmtes 
Element 0, das N u l l e l e m e n t oder Nu l l von B heißt, mit der 
Eigenschaft 

a + 0 = a für alle a aus B. 
Beweis. Nach (6) existieren in B zu den Elementen a,b, ... 

von B je die Differenzen a — a,b — b,b — a,.. ., für die 
nach ihrer Erklärung gilt 

a + (a — a) = a, b + (b — b) = b, a + (6 — a) = b,.... 
Vermöge der ersten und dritten dieser Relationen hat 

man, nun unter Beachtung von (1) und (3), 
6 + (a — a) = [a + (b — a)] + (« — «) 

= [a + (« — + (& — a) = a + (& — a) = 
Der Vergleich mit der zweiten jener Relationen ergibt dann, 
zufolge der Eindeutigkeit in (6), 

a — a = b —b. 
*) Die Buchstaben i, k, l, m, n, pt q, r, s; i, x, )., v, q, a behalten wir 

jedoch für gewöhnliche ganze Zahlen, z. B. Indizes und Exponenten, vor. 
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Also sind alle Differenzen a — a,b — b,... dasselbe Ele-
ment 0 von B. Dieses hat die im Satz genannte Eigenschaft 
und ist nach (6) sogar schon durch eine einzige der Forde-
rungen a -f- 0 = a eindeutig bestimmt. 

Satz 2. Es gilt Oc = 0 für jedes c aus B. 
Beweis. Nach (5) und Satz 1 ist für beliebiges c aus B 

Oc = (0 + 0) c = Oc + Oc, 
also nach (6) und Satz 1 schließlich Oc = 0. 

Wir ziehen jetzt die bisher noch unberücksichtigte Divi-
sion in den Kreis unserer Betrachtungen, indem wir den 
unter (c) genannten Forderungen (1)—(6) noch die folgende 
anreihen: 

(7) Zu jedem, geordneten Elementpaar a, c aus B, in dem 
« + 0 ist, existiert ein eindeutig bestimmtes Element b aus B 
derart, daß ab = c ist 

(Gesetz der u n b e s c h r ä n k t e n und e i n d e u t i g e n 
Division). 

Analog wie oben bei der Subtraktion bezeichnet man auch 
hier, wenn (7) in B erfüllt ist, die in B bis auf die Einschrän-
kung a 4= 0 unbeschränkt und eindeutig ausführbare Ope-
ration der Bestimmung von b aus ab = c als Division und 

führt die Bezeichnung b = — (Quotient) ein. 
a 

Die in (7) gemachte Einschränkung a 4= 0 ist keine willkür-
liche Festsetzung, sondern notwendig, wenn (a), (b), (c) und (7) 
widerspruchsfrei nebeneinander bestehen sollen. Ohne diese Ein-
schränkung folgte nämlich, wenn c ein beliebiges Element aus B 
ist, aus der Existenz eines b, so daß Ob = c ist, nach Satz 2, daß 
c = 0 wäre. Es enthielte also B nur das eine Element 0 im Wider-
spruch zu (a). Betreffs der hierdurch nahegelegten Frage, ob die 
Forderungen (a), (b), (c), (7) in der vorliegenden Gestalt wider-
spruchsfrei sind, sei bemerkt , daß ein Widerspruch in (a), (b), (c), 
(7) einen Widerspruch im System der rationalen Zahlen zur Folge 
hät te , das ja allen jenen Forderungen genügt. 

Es sei noch bemerkt , daß die in der Einschränkung a 4= 0 in 
(7) bestehende Unsymmetrie der sonst bezüglich Addition und 
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Multiplikation symmetrischen Tafel der Forderungen (1) und (2), 
(3) und (4), (6) und (7) natürlich auf die Unsymmetrie des einzigen 
beide Operationen verbindenden Gesetzes (5) zurückgehen muß, 
wie ja auch die obige Begründung jener Einschränkung (Beweis 
von Satz 2) zeigt. 

Definition 2. Gilt in einem Ringe B außer (a), (b), (e) 
auch noch (7), so heißt B ein K ö r p e r bezüglich der Verknüp-
fungen (b). 

Analog zu Satz 1 gilt in Körpern außerdem: 
Satz 3. In jedem Körper K existiert ein eindeutig be-

stimmtes Element e =f= 0, das E i n s e l e m e n t oder E i n s von 
K heißt, mit der Eigenschaft 

ae = a für alle a aus K. 

Beweis. Der Beweis wird, zunächst für die wegen (a) sicher 
vorhandenen « 4 = 0 aus K, unter Verwendung von (7) statt 
(6) ganz analog wie bei S a t z l geführt. Daß ferner ae = a 
auch für a = 0 gilt, ist nach Satz 2 klar. Aus e = 0 schließ-
lich würde folgen a = ae = «0 = 0 für jedes a aus K, im 
Widerspruch zu (a). 

Außer Ringen und Körpern braucht man in der Algebra 
noch einen weiteren derartigen Begriff, der logisch zwischen 
jenen beiden steht, den des Integritätsbereiches. Dieser ent-
steht aus dem Ringbegriff, wenn man nur einen Teil der zum 
Körperbegriff führenden Zusatzforderung (7) stellt, nämlich 
aus dieser einerseits die unbeschränkte Existenz des Quo-
tienten wegläßt, also nur die Eindeutigkeit der Division, 
falls sie überhaupt ausführbar ist, fordert: 

(7a) Aus ab = ab' und a =4= 0 folgt b — b' ( E i n d e u t i g -
k e i t de r Div is ion) , 
andererseits aber doch die Existenz der speziellen Quotienten 

—, , . . . , wo a, b,... 4= 0 sind, fordert, was nach dem Vor-
a b 

hergehenden auf die Forderung der Gültigkeit des Analogons 
zu Satz 3 hinausläuft: 
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(7 b) Es existiert ein Element e in B derart, daß ae = a für 
alle a aus B ist (Ex i s t enz des E inse l emen te s ) . 

Definition 3. Gelten in einem Ringe B außer (a), (b), (c) 
auch noch (7 a) und (7b), so heißt B ein I n t e g r i t ä t s b e r e i c h 
bezüglich der Verknüpfungen (b). 

Jeder Körper ist ein Integritätsbereich, weil ja (7 a) und 
(7 b) aus (7) gefolgert werden können, und jeder Integritäts-
bereich ist nach Def. 3 ein Ring. 

Ringe, Körper, Integritätsbereiche nennen wir auch ge-
meinsam Bereiche1) und die in ihnen erklärten Verknüp-
fungen Addition, Substraktion, Multiplikation, ev. Division 
die drei ersten bzw. vier elementaren Rechenoperationen. 

In Integritätsbereichen (also speziell in Körpern), die uns 
im folgenden hauptsächlich interessieren werden, gilt auch 
die Umkehrung von Satz 2: 

Satz 4. Ist das Produkt zweier Elemente eines Integritäts-
bereiches Null, so ist mindestens einer der Faktoren Null, d. h. 
aus ab = 0, a=|= 0 folgt 6 = 0 . 

Beweis. Sei ab = 0, a 4= 0. Da nach Satz 2 aO = 0, also 
hier ab = aO ist, folgt nach (7a) b = 0. 

Das Bestehen von Satz 4 ist übrigens nicht nur, wie eben 
gezeigt, Folge aus (7 a), sondern auch umgekehrt. Denn gilt 
das Analogon zu Satz 4 in einem Ringe und besteht für ein 
a 4= 0 die Gleichung ab = ab', d. h. a(b — b') = 0, so folgt 
l—V = 0 , d .h . b = V. 

Zusatz zu Definition 3. Man kann die Forderungen (7 a), 
(7 b) der Def. 3 auch durch die Forderungen ersetzen, daß die 
Analoga zu Satz 3 und Satz 4 in B gelten sollen. 

Es bedarf wohl nur des Hinweises, daß aus den Gesetzen (a), 
(b), (c) für Ringe alle allgemeinen Rechenregeln der elementaren 
Algebra für die Addition, Subtraktion und Multiplikation, insbe-
sondere die sog. Klammerauflösungsformeln, und, wenn man (7) 
hinzunimmt, auch die allgemeinen Formeln der Bruchrechnung 

') B e r e i c h bedeutet zwar hiernach dasselbe wie R i n g ; jedoch ist der 
neutrale Ausdruck B e r e i c h im angegebenen Sinne geläufiger, während man 
H i n g gewöhnlich nur dort anwendet, wo wirklich kein Integritätsbereich 
vorliegt. 
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durch einfache Schlüsse hergeleitet werden können. Die nähere 
Ausführung darf dem Leser überlassen bleiben. 

Man verwendet beim Rechnen in einem Bereich B zweckmäßig 
folgende abkürzenden Bezeichnungen: 

— a f ü r 0 — a, 
. . . , (— 2)a, (— 1) a, Oa, 1 a, 2a, . . . für . . . — (a + ä), — a, 0, o, 
a + a,. .. (ganze Vielfache von ä), 

. . . , a~2 , a - 1 , a°, a1, a2, . . . fü r . . . , - — , — , e, a, aa, . . . 
aa a 

(ganze Potenzen von a) 

( a - 1 , a - 2 , . . . natürlich nur, soweit eindeutig erklärt, also z. B. 
wenn B ein Körper und a 4= 0 ist). Aus (1)—(7) und Satz 1—4 
ergeben sich dann mittels der Definition der Rechenoperationen 
im Bereich der ganzen Zahlen leicht die Tatsachen 

(m + n) a = m a + n a, am + n = am an, (am)n — amn, 
(m n)e = (rae) (n e), em = e, mO = 0, 0 m = 0 

für ganze Zahlen m, n, soweit die darin vorkommenden Elemente 
einen eindeutigen Sinn auf Grund des Vorhergehenden haben. 

Beispiele 
1. Auf Grund der vorstehenden Ausführungen dürfen wir als 

aus den Elementen bekannt hinstellen: 

S a t z ö - D i e { ¡ Z 2 u n } Z M ™ 

bilden einen j ^ j , wenn als Verknüpfungen 

die gewöhnliche Addition und Multiplikation zugrunde gelegt werden. 
Die Zählen 0 und 1 sind Null- und Einselement von V und P. 

2. Ferner bilden auch alle reellen, sowie auch alle komplexen 
Zahlen einen Körper bezüglich der gewöhnlichen Addition und 
Multiplikation. 

3. Die geraden Zahlen bilden einen Ring, aber keinen Integri-
tätsbereich, weil f ü r sie (7 b) nicht gilt. Ringe, in denen (7 b) gilt, 
aber (7 a) nicht, werden wir in 2, § 2 kennenlernen. Als Beispiel 
eines Integritätsbereiches, der kein Körper ist, dient schon 

4. Der folgende Körper mag als Beispiel einerseits f ü r einen 
solchen genannt werden, dessen Elemente keine Zahlen sind, 
andererseits fü r einen mit nur endlich vielen Elementen: 
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Für zwei Elemente 0 und e werden zwei Verknüpfungsopera-
tionen durch die Festsetzungen 

0 + 0 = 0 00 = 0 
0 + e = e + 0 = e 0e = eO = 0 
e + e = 0 e e = e 

erklärt. Man bestätigt leicht die Richtigkeit von (1)—(7). Wir 
haben also einen Körper, der lediglich aus seinem Null- und Eins-
element besteht. Daß dieser Körper kein uninteressanter Aus-
nahmefall ist, zeigen die Ergebnisse von 2, § 20, wonach endliche 
Körper existieren, deren Elementzahl eine beliebige Primzahl-
potenz ist. Siehe auch schon § 2, Beispiel 5 [25]. 

§ 2. Teilbereiche, Kongruenzrelationen, Isomorphie 

In § 1 wird mit der Forderung (a) von einer Menge u n t e r -
schiedener E l e m e n t e , der G r u n d g e g e b e n h e i t der 
Mengenlehre, ausgegangen, die dann durch Hinzunahme der 
Forderungen (b), (c) usw. zu der G r u n d g e g e b e n h e i t der 
Algebra d. h. zum Bereich, wird. Es ist daher verständlich, 
daß für das Studium unserer Bereiche u. a. auch Begriffe und 
Tatsachen heranzuziehen sind, die allein aus (a) folgen, also 
der Mengenlehre angehören, und von denen dann zu unter-
suchen ist, wie sie bei Hinzunahme von (b), (c) usw. für das 
Studium von Bereichen nutzbar gemacht werden können. 
Wir müssen uns hier darauf beschränken, die heranzuzie-
henden mengentheoretischen Grundlagen vom sog. na iven 
S t a n d p u n k t aus kurz zusammenzustellen, ohne auf die in 
neuerer Zeit durch die Paradoxien der Mengenlehre ent-
standenen begrifflichen Schwierigkeiten einzugehen, die man 
durch ein entsprechendes ax ioma t i s ches Vorgehen be-
heben kann, wie es in § 1 für Bereiche, gestützt auf den Men-
genbegriff, durchgeführt wurde. Wir verzichten also ins-
besondere auf eine naiv nicht in befriedigender Weise zu 
gebende Präzisierung des Begriffs der Menge. 

1. Teilmengen 
Es sei M eine Menge, worunter wir stets, wie in § 1, (a), eine 

M e n g e u n t e r s c h i e d e n e r E l e m e n t e verstehen. Eine Menge 
heißt Teilmenge von M oder in M enthalten, wenn jedes Element 
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von Mj auch in M vorkommt. Wir rechnen die Menge M selbst, 
sowie die kein Element enthaltende leere Menge (Nullmenge) eben-
falls als Teilmengen von M. Alle anderen Teilmengen von M heißen 
echt oder eigentlich. 

Liegen Teilmengen Mj, M 2 , . . . einer Menge M in irgendeiner 
endlichen oder unendlichen Anzahl vor, so gibt es dazu zwei be-
st immte Teilmengen von M, ihren Durchschnitt A und ihre Ver-
einigungsmenge E. Der Durchschnit t A besteht aus allen und nur 
den Elementen von M, die s o w o h l in a l s a u c h in M 2 , . . . 
enthalten sind. Er kann auch die Nullmenge sein. Die Vereini-
gungsmenge E besteht aus allen und nur den Elementen von M, 
die e n t w e d e r in M t o d e r in M 2 , . . . enthalten sind. E läßt sich 
auch erklären als Durchschnit t aller M1; M 2 , . . . enthaltenden 
Teilmengen von M und ist in diesem Sinne die e n g s t e M 2 , . . . 
enthaltende Teilmenge von M. Ebenso läßt sich A erklären als 
Vereinigungsmenge aller in Mj, M 2 , . . . enthaltenen Teilmengen 
von M und ist in diesem Sinne die w e i t e s t e in M 2 , . . . ent-
haltene Teilmenge von M. 

2. Äquivalenzrelationen und Klasseneinteilungen 
Für die Algebra von besonderer Wichtigkeit sind Zerlegungen 

einer Menge M in e l e m e n t f r e m d e Teilmengen, d. h. Darstellun-
gen von M als Vereinigungsmenge von Teilmengen, von denen je 
zwei die Nullmenge zum Durchschnit t haben. S o l c h e Z e r l e -
g u n g e n v o n M n e n n e n w i r Klasseneinteilungen von M u n d d i e 
b e t r . T e i l m e n g e n a u c h Klassen. Liegt eine solche Klassenein-
teilung vor, und setzt man zwischen je zwei in best immter Reihen-
folge gegebene Elemente a, 6 aus M das Zeichen •—• oder das 
Zeichen <-{«< je nachdem a in derselben Teilmenge wie b vorkommt 
oder nicht, so bestehen offenbar die Tatsachen: 

(a) a ~ a (Gesetz der R e f l e x i v i t ä t ) , 
(ß) aus ar^j b folgt a (Gesetz der S y m m e t r i e ) , 
(y) aus a < ~ b, c folgt c (Gesetz der T r a n s i t i v i t ä t ) . 

Für das Bestehen dieser Tatsachen, gleichgültig welche B e -
d e u t u n g dabei den Zeichen *~~> zukommt, führen wir eine 
besondere Ausdrucksweise ein: 

(I) Wenn zwischen je zwei in bestimmter Reihenfolge gegebene 
Elemente von M eines und nur eines von zwei Zeichen • — i n 
solcher Weise gesetzt ist, daß die Bedingungen (a), (ß), (y) bestehen, 
so sagt man, daß eine Ä q u i v a l e n z r e l a t i o n ~ in M erklärt sei. 
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Es gilt dann also: 
(A) Jede Klasseneinteilung von M führt zu einer Äquivalenz-

relation in M, indem zwischen Elemente aus einer Klassen, zwischen 
Elemente aus verschiedenen Klassen gesetzt wird. 

Nicht nur in der Algebra, sondern in fast jeder mathematischen 
Disziplin hat man außerordentlich häufig die Umkehrung dieser 
Tatsache zu benutzen, die wir daher hier ausführlich begründen 
wollen. 

(B) Jede Äquivalenzrelation in M entspringt gemäß (A) aus einer 
und nur einer Klasseneinteilung von M. 

Beweis, a) Wenn eine Äquivalenzrelation in M vorliegt, so kann 
eine Teilmenge Mx von M die Eigenschaft E haben, daß ein Ele-
ment c aus M derart existiert, daß Mx aus allen und nur den Ele-
menten d von M besteht, für die c ~ d ist. Wir nennen dann für 
den Augenblick Mx eine E-Teilmenge von M, die durch c erzeugt 
ist. Jedes Element c aus M erzeugt eine B-Teilmenge, aber natür-
lich kann dieselbe JB-Teilmenge i. a. durch verschiedene Elemente 
erzeugt sein. Wir betrachten nun die sämtlichen E-Teilmengen 
von M und zeigen, daß diese die Klassen einer Klasseneinteilung 
von M sind, aus der die betrachtete Äquivalenzrelation im Sinne 
von (A) entspringt. 

Erstens sind verschiedene ^-Teilmengen Mx, M2 von M element-
fremd. Wäre nämlich das Element a in Mi und M2 enthalten, und 
ist Mj durch Cj, M2 durch c2 erzeugt, so wäre a, c 2 ~ a, also 
nach (ß), (y) auch c2. Ist dann ein Element aus Mt, d2 ein 
Element aus M2, also dlt c 2 ~ d2, so folgte wiederum aus (ß), 
(y) auch d2, c 2 ~ dv so daß d2 auch in M^ d1 auch in M2 ent-
halten wäre. Es wären also dann gegen die Annahme Mx und M2 
identisch. 

Zweitens ist die Vereinigungsmenge aller E-Teilmengen die 
Menge M, d. h. jedes Element a aus M kommt wirklich in einer 
E-Teilmenge vor. Denn nach (a) kommt a in der durch a erzeugten 
E-Teilmenge vor. 

Hiernach sind also die E-Teilmengen von M die Klassen einer 
Klasseneinteilung von M. Daß die betrachtete Äquivalenzrelation 
im Sinne von (A) aus ihr entspringt, folgt so: 

Erstens steht zwischen zwei Elementen a, b derselben B-Teil-
menge Mj das Zeichen Denn ist Mx durch c erzeugt, so ist 
e ~ a, c<~ b, also nach (ß), (y) auch b. 

Zweitens steht zwischen zwei Elementen a, b verschiedener 
E-Teilmengen Mj, M2 von M das Zeichen r^j. Wäre nämlich a—• b, 
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und ist Mj durch clt M2 durch c2 erzeugt, so folgte aus cr—• a, 
nach (ß), (y) auch c2 und daraus wie oben ein Wider-

spruch gegen die Verschiedenheit von Mx und M2. 
b) Daß eine Äquivalenzrelation nicht aus zwei verschiedenen 

Klasseneinteilungen von M entspringen kann, folgt daraus, daß 
die ein Element a enthaltende Klasse notwendig aus allen und nur 
den b mit a.—• b bestehen muß, also durch die Äquivalenzrelation 
eindeutig (als die durch a erzeugte E-Teilmenge von M) bestimmt 
ist. 

Liegt eine Klasseneinteilung von M vor, so heißt jede Teilmenge 
von M, die aus jeder Klasse ein und nur ein Element enthält, ein 
vollständiges Repräsentantensystem für diese Klasseneinteilung. 

Die einfachste Äquivalenzrelation ist die log ische I d e n t i -
t ä t , d. i. die in § 1 unter (a) durch die Zeichen = , =|= definierte 
Relation. Die zu ihr gehörige Klasseneinteilung ist die Einteilung 
von M in seine unterschiedenen Elemente selbst. 

3. Gleichmächtigkeit und Kardinalzahlen 
Man kann aus einer Menge M dadurch eine neue Menge M' her-

leiten, daß man die Elemente von M irgendwie durch neue Ele-
mente ersetzt, nur so, daß alle Unterschiedenheiten der Elemente 
von M erhalten bleiben (etwa indem man das Element a durch 
den „Gedanken an das Element a " ersetzt). Setzt man dann 
zwischen je zwei Elemente a aus M und a' aus M' das Zeichen 

oder das Zeichen i e nachdem a' bei dieser Ersetzung 
aus a entsteht oder nicht, so bestehen offenbar die Tatsachen: 

(<5) zu jedem a aus M existiert ein a' aus M' mit a *—¡- a', 
(ö') zu jedem a' aus M' existiert ein a aus M mit a <—»• a', 
(E) wenn a > a', b •«—> V und a = b gilt, ist a' = V, 
(e') wenn a > a', b <—>• V und a' = V gilt, ist a = J. 

Für das Bestehen dieser Tatsachen bei zwei vorliegenden Mengen 
M und M', gleichgültig welche B e d e u t u n g dabei den Zeichen 
• < — z u k o m m t , führen wir eine besondere Ausdrucksweise 
ein: 

( II) Wenn zwischen je ein Element a einer Menge M und a' einer 
Menge M' eins und nur eins von zwei Zeichen < — s o l c h e r 
Weise gesetzt ist, daß die Bedingungen (<5), (<5'), («), (e') bestehen, so 
sagt man, daß eine ein ein deut ige Zuordnung — > z wisch enM 
und M' vorliege. Ist eine solche zwischen M und M' möglich, so nennt 
man M und M' g l e i c h m ä c h t i g . 

2 H a s s e , Höhere Algebra 
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Die Gleichmächtigkeit ist ersichtlich eine Äquivalenzrelation 
im Sinne von (I). Für zwei endliche Mengen M und M' ist die 
Gleichmächtigkeit offenbar mit dem Übereinstimmen der An-
zahlen der Elemente von M und M' gleichbedeutend. Die durch 
ein endliches M gemäß (B) erzeugte Klasse gleichmächtiger 
Mengen ist also die Gesamtheit aller Mengen gleicher Element-
anzahl wie M. Diese Klasse kann direkt zur eindeutigen Charakte-
risierung dieser Anzahl dienen1). Daher nennt man nach C a n t o r 
allgemein die Klassen, die der Äquivalenzrelation (II) gemäß (B) 
in der Menge aller Mengen entsprechen, also je die Gesamtheiten 
aller zu einer Menge gleichmächtigen Mengen Kardinalzahlen 
(Mächtigkeiten). Sie geben die Verallgemeinerung des Anzahl-
begriffs auf unendliche Mengen. Durch die Zusammenfassung je 
aller gleichmächtigen Mengen in eine logische Einheit (die Klasse) 
wird eben von jeder speziellen Bedeutung der Elemente der Einzel-
mengen abstrahiert und allein die für den Anzahlbegriff charak-
teristische G e s a m t h e i t [(<5), (<5')] der Elemente nebst ihren 
U n t e r s c h i e d e n h e i t e n [(s), (e')] ins Auge gefaßt. 

Als Repräsentant einer endlichen Kardinalzahl n kann etwa 
die Menge der natürlichen Zahlen 1, 2 , . . . , n dienen. Als weitere, 
für uns wichtige Kardinalzahl nennen wir noch die durch die 
Menge aller natürlichen Zahlen 1, 2 , . . . repräsentierte. Mengen 
dieser Kardinalzahl, also solche, die mit der Menge der natürlichen 
Zahlen gleichmächtig sind, deren Elemente also durch I n d i -
z i e rung : a v a 2 , . . . den natürlichen Zahlen eindeutig zugeordnet 
werden können, heißen abzählbar. 

Die Menge aller reellen Zahlen ist ein Beispiel dafür, daß nicht 
jede unendliche Menge abzählbar ist2). 

Wir wenden nunmehr die im vorstehenden auseinander-
gesetzten Begriffe der Mengenlehre zur Einführung einiger 
wichtiger entsprechender Begriffe für Bereiche an. 

1) Diesen Gedanken hat R. D e d e k i n d (Was sind und was sollen die 
Zahlen?, Braunschweig 1887) tatsächlich zur Definition der natürlichen Zahlen 
als Anzahlen endlicher Mengen benutzt. 

2) Läge eine Abzählung a l t a3, . . . der als Dezimalbrüche (unter Vermei-
dung der Periode 00 . . .) geschriebenen reellen Zahlen vor, so könnte man 
leicht einen (ebensolchen) Dezimalbruch a bilden, der von a„ a2, . . . ver-
schieden, also doch nicht mit abgezählt wäre. Man wähle nämlich für jedes 
11 = 1, 2, . . . die n-te Ziffer von a hinter dem Komma verschieden von der 
n-ten Ziffer von a n hinter dem Komma (Cantorsch es D i a g o n a l v e r f a h r e n ) . 



§ 2. Teilbereiche, Kongruenzrelationen, Isomorphie 19 

1. Teilbereiche 
Aus dem Begriff Teilmenge entspringt unmittelbar: 
Definition 4. Bilden die Elemente einer Teilmenge Bj eines 

Bereiches B bezüglich derselben Verknüpfungen, wie sie in B 
zugrunde liegen, einen 1. Ring, 2. Körper, 3. Integritätsbereich, 
so heißt Bx ein 1. Te i l r ing , 2. T e i l k ö r p e r , 3. Te i l i n t e -
g r i t ä t s b e r e i c h von B und B ein E r w e i t e r u n g s - B e r e i c h 
(-Ring, - K ö r p e r , - I n t e g r i t ä t s b e r e i c h ) von Bj. 

Zur Entscheidung darüber, ob eine Teilmenge eines 
I n t e g r i t ä t s b e r e i c h e s B Teilring, Teilkörper, Teilintegri-
tätsbereich von B ist, braucht man nicht alle in § 1 aufge-
führten Bedingungen zu prüfen, sondern nur die in fol-
gendem Satz genannten: 

Satz 6. Eine aus mindestens zwei Elementen bestehende 
Teilmenge Bx eines Integritätsbereiches B ist dann und nur 
dann 1. Teilring von B ,wenn die ersten drei elementaren Rechen-
operationen, wie sie innerhalb B definiert sind, angewandt auf 
die Elemente von Bx stets wieder Elemente von Bx ergeben, 
2. Teilkörper von B, wenn zudem die vierte Rechenoperation 
{Division) für Elemente aus Bx (bei von Null verschiedenem 
Nenner) stets ausfuhrbar ist und immer Elemente von Bj ergibt, 
3. Teilintegritätsbereich von B, wenn Bx Teilring von B ist und 
das Einselement von B enthält. 

Beweis, a) Daß diese Bedingungen notwendig sind, ist nach 
Def. 1—4 klar. 

b) Sind diese Bedingungen erfüllt, so stimmen die folgenden 
Bedingungen des § 1 für Bj: (a), (b), die Existenz in (6), ev. 
die Existenz in (7) bzw. (7 b). Andererseits sind die übrigen 
nach § 1 erforderlichen Bedingungen, nämlich (1)—(5), die 
Eindeutigkeit in (6), ev. die Eindeutigkeit in (7), (7 a), in Bj 
a fortiori erfüllt, weil sie in B gelten. 

Das Kriterium von Satz 6 läßt sich natürlich sinngemäß auch 
auf Ringe B ausdehnen. Wir werden es aber nur für die in Satz 6 
genannten Fälle brauchen. Desgleichen werden wir der einfacheren 
Redeweise halber auch den folgenden Satz 7 sowie Def. 5 nur für 
K ö r p e r formulieren, für die allein sie später zur Anwendung 
kommen. 

o* 
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Bezüglich des D u r c h s c h n i t t e s haben wir für Körper: 
Satz 7. Sind K,, K 2 , . . . irgendwelche [endlich oder unend-

lich1) viele] Teilkörper eines Körpers K, so ist auch der Durch-
schnitt der Mengen K1; K 2 , . . . ein Teilkörper von K; dieser 
heißt der D u r c h s c h n i t t s k ö r p e r oder kurz D u r s c h n i t t 
der Körper Kx, K 2 , . . . . 

Beweis. Daß der Durchschnitt mindestens zwei Elemente 
enthält, folgt daraus, daß alle Klt K 2 , . . . die beiden ver-
schiedenen Elemente 0 und e von K gemeinsam enthalten, 
weil sie Teilkörper von K sind. Dann ergibt sich die Be-
hauptung ohne weiteres aus Satz 6. 

Für die V e r e i n i g u n g s m e n g e gilt aber ein entsprechen-
der Satz nicht. Denn ist ax in K1: a2 in K2, so braucht z. B. 
ÖJ + a2 in keinem der Körper K1; K 2 , . . . enthalten zu sein. 
Dagegen läßt sich ein dem Vereinigungsmengenbegriff ana-
loger dadurch einführen, daß wir die auf S. 15 angegebene 
Zurückführung der Vereinigungsmenge auf einen Durch-
schnitt für die Verallgemeinerung zugrunde legen. 

Definition 5. Sind Kl5 K 2 , . . . irgendwelche (endlich oder 
unendlich viele) Teilkörper eines Körpers K, so heißt der Durch-
schnitt aller Kj, K 2 , . . . als Teilkörper enthaltenden Teilkörper 
vonKdas K o m p o s i t u m von K^ K 2 , . . . oder der aus KVK2,... 
k o m p o n i e r t e Körpe r . 

Daß dieser Durchschnitt überhaupt gebildet werden kann, folgt 
daraus, daß zum mindesten ein zu seiner Bildung zugrunde zu 
legender Körper, nämlich K, existiert. 

Das Kompositum von K1; K 2 , . . . enthält die Vereinigungs-
menge der Mengen Kx, K2,. . . , ist aber i. a. weiter. Es ist der 
engste Kt, K2, . . . als Teilkörper enthaltende Teilkörper von K, 
ebenso wie der Durchschnitt von Kj, K2,. . . der w e i t e s t e in Kx, 
K j , . . . als Teilkörper enthaltene Teilkörper von K ist. 

2. Kongruenzrelationen und Restklassenringe 
Indem wir für den Fall eines Bere iches B zu den Be-

dingungen (a), (ß), (y) für eine Äquivalenzrelation in der 
') Die Numerierung soll hier und in der folgenden Def. 5 nicht besagen, 

daß höchstens abzählbar viele gemeint sind. 
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Menge B noch zwei in naturgemäßer Weise gebildete For-
derungen über das Verhalten der Äquivalenzrelation zu den 
beiden Verknüpfungen von B hinzufügen, definieren wir: 

Definition 6. Erfüllt eine Äquivalenzrelation = in einem 
Bereiche B neben (a), (ß), (y) noch die Bedingungen: 

(1) aus a1 == bv a2 = b2 folgt ax + a2 = + b2, 
(2) aus a1 = bv a2 = \ folgt a1 a2 = \ b2, 

so nennen wir sie eine K o n g r u e n z r e l a t i o n in B und die 
ihr entsprechenden Klassen die R e s t k l a s s e n inB nach ihr1). 

Wir legen jetzt in § 1, (a) die Menge B der Restklassen 
nach einer Kongruenzrelation = in B zugrunde. Dazu ist zu 
fordern, daß mindestens zwei solche Restklassen vorhanden 
sind, daß also nicht alle Elemente von B einander kongruent 
sind. Sind dann r und s zwei Restklassen und bildet man alle 
Summen a -f- b bzw. Produkte ab von je einem Elemente a 
aus r und b aus s, so folgt aus (1) und (2), daß diese alle 
wieder je einer bestimmten Restklasse t bzw. u aus B ange-
hören. Durch die Festsetzungen r + s = t bzw. rs = u, die 
man kurz als e l emen twe i se Addition bzw. Multiplikation 
der Restklassen bezeichnen kann, wird also § 1, (b) reali-
siert. Wir beweisen nun, daß dann auch § 1, (c) realisiert 
ist, d. h.: 

Satz 8. Liegt in einem Bereiche B eine Kongruenzrelation 
= vor, bei der nicht alle Elemente von B einander kongruent 
sind, und definiert man in der Menge B der Restklassen nach 
ihr zwei Verknüpfungen durch elementweise Addition bzw. 
Multiplikation, so ist B ein Ring bezüglich dieser Verknüp-
fungen; B heißt der R e s t k l a s s e n r i n g von B nach der Kon-
gruenzrelation =. 

Beweis. Das Erfülltsein von § 1, (1)—(5) ist eine unmittel-
bare Folge des Bestehens dieser Gesetze im Bereiche B. Sind 
ferner a bzw. c Elemente aus den Restklassen r bzw. t, so 

^ Die Menge M aller a = 0 bei einer Kongruenzrelation in B ist genau das, 
was man unter Ideal in B verstellt. Dieser Begriff ist für die Teilbarkeit«-
lehre (siehe § 2) in allgemeinen Bereichen grundlegend (vgl. E. N o e t h e r , 
Idealtheorie in Ringbereichen, Math. Ann. 83 [1921]). 
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folgt aus § 1, (6) die Existenz eines b, so daß a + b = c ist. 
Ist dann s die Restklasse, der b angehört, so gilt nach (1) 
und unserer Additionsfestsetzung r + s = t. Diese Rest-
klasse s ist schließlich auch die einzige Lösung von r + s = t. 
Denn ist auch r + s' = t und b' ein Element aus s', so ist 
a + b = a + V, weil beide Seiten derselben Restklasse t 
angehören. Daraus und aus der nach (a) sicher richtigen 
Relation ( — a ) = (—a) kann aber nach (1) auf b = b', 
d. h. s = s' geschlossen werden. In B ist also die Subtraktion 
unbeschränkt und eindeutig ausführbar, d. h. § 1, (6) erfüllt. 

Es sei noch bemerkt, daß, wenn B ein Integritätsbereich ist, 
B nicht notwendig auch Integritätsbereich zu sein braucht, weil 
zwar § 1 , (7b), aber nicht notwendig § 1 , (7a) in B erfüllt ist 
(siehe 2, Satz 28). Der Fall, daß B sogar ein Körper ist, ist un-
interessant, weil es dann nur triviale Restklasseneinteilungen in B 
gibt (siehe 3, 1, § 2 Aufg. 10). 

3. Isomorphie und Bereichtypen 

Wir fügen für den Fall zweier B e r e i c h e B und B' auch 
den Bedingungen (d), (Ö'j, (e), (e') für die Gleichmächtigkeit 
der beiden Mengen B und B' zwei in naturgemäßer Weise 
gebildete Forderungen über das Verhalten der eineindeutigen 
Zuordnung zu den beiden Verknüpfungen von B und B' 
hinzu. In dieser Hinsicht beweisen wir zunächst: 

Satz 9. Die folgende Festsetzung liefert eine Äquivalenz-
relation in der Menge aller Bereiche: Es sei B ^ B' dann und 
nur dann, wenn erstens B und B' gleichmächtig sind, und wenn 
man zweitens die eineindeutige Zuordnung zwischen den Ele-
menten a,b,... von B und a', V,... von B' so wählen kann, 
daß die folgenden Bedingungen bestehen: 

(3) wenn a <—^ a', b <—> b' ist, ist a-\- b <—> a' + 6', 
(4) wenn a<—>a',b-(—>b' ist, ist ab <—>a'b'. 
Beweis. Es ist unmittelbar ersichtlich, daß die für die 

Gleichmächtigkeit erfüllten Bedingungen (a), (ß), (y) auch bei 
Hinzunahme der Forderungen (3) und (4) bestehenbleiben. 
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Ebenso sieht man ohne weiteres: 
Zusatz zu Satz 9. Betrachtet man nur die Erweiterungs-

lereiche eines festen Bereichs B0, so gilt Entsprechendes zu 
Satz 9 auch dann noch, wenn man den Bedingungen (3), (4) 
die weitere Bedingung hinzufügt, daß die Elemente a0 von B0 

bei der eineindeutigen Zuordnung zwischen B und B' sich selbst 
entsprechen sollen: 

(5) a0 <—> a0 für alle a0 aus B0. 
Auf Grund von Satz 9 definieren wir nun: 
Definition 7. Eine eineindeutige Zuordnung zwischen zwei 

Bereichen B und B' mit den Eigenschaften (3), (4) heißt ein 
Isomorphismus zwischen B und B', und B und B' selbst 
heißen dann isomorph. Die in Satz 9 genannte Äquivalenz-
relation B säB' für Bereiche heißt I somorphie , die ihr ent-
sprechenden Klassen die Typen der Bereiche. 

Auf Grund des Zusatzes zu Satz 9 definieren wir ferner 
analog: 

Zusatz zu Definition 7. Ein Isomorphismus zwischen zwei 
Erweiterungsbereichen B und B' eines Bereichs B0 mit der 
Eigenschaft (5) heißt ein I somorphismus bzgl. B0, und B 
und B' heißen dann isomorph, bzgl. B0. Die im Zusatz zu 
Satz 9 genannte Äquivalenzrelation für Erweiterungsbereiche 
von B0 heißt I somorphie bzgl. B0, die ihr entsprechenden 
Klassen die E r w e i t e r u n g s t y p e n bzgl. B0. 

Die in Satz 9 für die Relation B ^ B' geforderten Bedingungen 
besagen, daß beim Übergang von B zu B' oder von B' zu B durch 
die betr. Zuordnung erstens nach (<5), (<5') jedem Element von B 
eines von B' entspricht und umgekeht, oder, kurz gesagt, die Ge-
samtheit der Elemente erhalten bleibt, zweitens nach (e), (E') ver-
schiedenen Elementen von B verschiedene von B' entsprechen und 
umgekehrt, oder, kurz gesagt, die Unterschicdenheit der Elemente 
erhalten bleibt, und drittens nach (3) bzw. (4) jede Additions-
bzw. Multiplikationsverknüpfung in B in die für die entsprechenden 
Elemente aus B' übergeht und umgekehrt, oder, kurz gesagt, die 
Verknüpfungen Addition und Multiplikation erhalten bleiben. Nun 
sind nach § 1 die vorliegende G e s a m t h e i t B von Elementen inkl. 
ihrer U n t e r s c h i e d e n h e i t e n [§ 1, (a)] und die Art, wie die Ver -
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k n ü p f u n g e n Addition und Multiplikation für sie erklärt sind 
[§ (b)]i das einzige, was bei Absehen von der Bedeutung der 
Elemente als charakteristisch für den B e r e i c h B übrigbleibt. 
Demgemäß ist jede von der Bedeutung der Elemente von B unab-
hängige Aussage über sie, wie sie ja von dem in der Einleitung for-
mulierten abstrakten Standpunkt aus allein interessiert, lediglich 
mit den Relationen = , 4= und den Verknüpfungen Addition und 
Multiplikation, auf die ja nach § 1 auch die Subtraktion und Divi-
sion zurückführbar sind, gebildet und bleibt somit, wenn man 
durch die betr. Zuordnung von B zu B' übergeht, in obigem Sinne 
erhalten und ebenso umgekehrt beim Übergang von B' zu B. In 
dem angegebenen Umfange sind mithin, kurz gesagt, die Bereiche 
B und B' gar n i c h t zu u n t e r s c h e i d e n . Daher ist es also von 
unserem Standpunkt aus ganz einerlei, ob man solche Aussagen 
über B oder B' macht. 

Weiter geht für zwei bzgl. B0 isomorphe Erweiterungsbereiche 
B und B' von B0 jede allein auf Gleichheit, Unterschiedenheit und 
die vier elementaren Rechenoperationen gegründete Aussage, die 
Elemente von B mit solchen des Teilbereichs B0 in Beziehung 
setzt, in eine richtige Aussage über, wenn man die ersteren Ele-
mente durch die ihnen zugeordneten aus B' ersetzt und ebenso um-
gekehrt bei entsprechendem Übergang von B' zu B. Kurz gesagt 
sind also die Erweiterungsbereiche B und B' in dem angegebenen 
Umfange von B0 aus n i c h t zu u n t e r s c h e i d e n . Daher ist es 
also wieder einerlei, ob man solche Aussagen über B oder B' 
macht. 

Dadurch, daß hiernach die Algebra sich beim Studium von 
Bereichen schlechthin nur für solche Aussagen interessiert, die 
allen Bereichen eines Typus gemeinsam sind, und beim Studium 
der Erweiterungsbereiche eines festen Bereichs B0 nur für solche 
Aussagen, die allen Bereichen eines Erweiterungstypus von B0 
gemeinsam sind, rechtfertigen sich die in Def. 7 und Zusatz zu 
Def. 7 eingeführten Bezeichnungen Typus und Erweiterungstypus 
in Hinsicht auf die gewöhnliche Bedeutung des Wortes „Typus". 
Von Aussagen der genannten Art sagt man auch, sie betreffen die 
Struktur der Bereiche. Die Gewinnung solcher Aussagen wurde am 
Schluß der Einleitung als Hauptaufgabe der modernen Algebra 
hingestellt. 

Wenn es nach diesen Ausführungen scheint, als ob in der 
Algebra ein Unterschied zwischen isomorphen Bereichen über-
haupt nicht zu machen sei, so bedarf das einer Einschränkung. 
Während es zwar gleichgültig ist, ob man die in der Einleitung 
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formulierte Grundaufgabe der Algebra in einem Bereiche B oder 
in einem zu B isomorphen Bereiche B' behandelt, ist eine Unter-
scheidung isomorpher Bereiche B und B' natürlich dann geboten, 
wenn beide Bereiche Teilbereiche eines anderen Bereiches B* sind, 
also ihre Elemente auf Grund der Unterschiedenheit der Elemente 
von B* (für Betrachtungen innerhalb B*) zu unterscheiden sind 
(vgl. die Beispiele auf S. 37 und S. 56). 

Es sei noch bemerkt, daß nach den obigen Ausführungen die 
spezielle Eigenschaft, Körper bzw. Integritätsbereich zu sein, 
gleichzeitig allen Bereichen eines Typus zukommt, so daß man 
neben den allgemeinen Ringtypen speziell von Körpertypen und 
Integritätsbereichtypen reden kann. 

Beispiele 
1. Jeder Bereich B ist Teil- und Erweiterungsbereich von sich 

selbst. Jeder andere Teil- bzw. Erweiterungsbereich von B heißt 
echt oder eigentlich. 

2. Aus den Beispielen 1—3 von § 1 ergeben sich ohne nähere 
Ausführung verständliche Beispiele für Teil- und Erweiterungs-
bereiche. 

3. Sind Kx, K2 Teilkörper von K, so ist dann und nur dann ihr 
Durchschnitt mit und ihr Kompositum mit l<2 identisch, wenn 
Kj Teilkörper von K2 ist. Das ist leicht aus Satz 7 und Def. 5 zu 
entnehmen. 

4. Weitere Beispiele für Teil- und Erweiterungsbereiche sowie 
auch für Isomorphie von Bereichen werden uns in §§ 3, 4 ein-
gehend beschäftigen. 

5. Die Einteilung der ganzen Zahlen in gerade und unge-
rade liefert gemäß (A) eine Äquivalenzrelation, die sich leicht 
als Kongruenzrelation für den Integritätsbereich T (Satz 5 [13]) 
erweist. Der zugehörige Restklassenring ist isomorph mit dem in 
§ 1, Beispiel 4 genannten Körper, also ein Restklassenkörper. 

6. Weitere Beispiele für Kongruenzrelationen und Restklassen-
ringe werden uns in 2, § 2 eingehend beschäftigen. 

§ 3. Der Quotientenkörper eines Integritätsbereiches 

Es ist für uns von Wichtigkeit nachzuweisen, daß jeder 
Integritätsbereich durch Hinzunahme aller aus seinen Ele-
menten zu bildenden „Quotienten" zu einem Körper er-
weitert werden kann. Wir zeigen nämlich: 
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Satz 10. Zu jedem, Integritätsbereich I existiert ein Erweite-
rungskörper K, dessen sämtliche Elemente sich als Quotienten 
von Elementen aus I darstellen lassen. Der Erweiterungstypus 
von K bzgl. I ist durch diese Forderung eindeutig bestimmt. 

Beweis1). 
a) Eindeutigkeitsnachweis 

Ist K ein Körper der im Satz genannten Art, so enthält er 

als Körper auch umgekehrt alle Quotienten von Elemen-
b 

ten a, b (b 4= 0) aus I, d. h. besteht aus der Gesamtheit aller 
dieser (natürlich nicht notwendig sämtlich verschiedenen) 
Quotienten. Nach den Gesetzen § 1, (1)—(7) für Körper be-
stehen dann die folgenden Tatsachen in K: 

(1) ~ = dann und nur dann, wenn ab' = a'b, 
b b 

(2) -f ^ = a A + «2&1 
bx b2 \b2, 

(3) 

(4) 

«1 «2 = «1«2 
h M 2 ' 

a1 a2 at b2— a2b1 

h &2 hh 

(5) = wenn £ * 0 , d . h . a2+0(nebenbv b2 =t= 0). 
V b2 b2 

Ist nun K ein weiterer Körper der im Satz genannten Art 
und ordnet man jedem Element a von K auf Grund einer 

beliebigen seiner Darstellungen als Quotient ~ von Ele-

menten aus 1 das durch denselben Quotienten dargestellte 
') Wir legen hier, wie auch bei dem entsprechenden Beweis zu Satz 11 in § 4 

den Nachdruck auf das logische Gerüst des Beweises. Die Bestätigung der bei 
den einzelnen Schritten angeführten Tatsachen ist auf Grund von §§ 1, 2 
stets leicht zu erbringen. Wir begnügen uns fast durchweg mit dem Hinweis 
auf die heranzuziehenden Stellen aus §§ 1, 2 und überlassen die nähere Aus-
führung dem Leser. 
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Element a von K zu, so ist das nach dem Bemerkten 
und (1) eine eineindeutige Zuordnung [§ 2, ((5), (<5'), (s), (e')] 
zwischen den sämtlichen Elementen von K und K, die nach 
(2) und (3) den Bedingungen § 2, (3) und (4) genügt und 
ferner ersichtlich auch die Bedingung § 2, (5) bzgl. I als 
Grundbereich erfüllt. Also ist dann K s ^ K bzgl. !. Damit 
ist der Nachweis für die eindeutige Bestimmtheit des Er-
weiterungstypus von K bzgl. I erbracht. 

b) Vorbemerkungen zum Existenznachweis 
Der Nachweis der Existenz eines Körpers K der im Satz ge-

nannten Art kann prinzipiell nur durch Konstruktion von K, d.h. 
durch Angabe seiner Elemente und ihrer Verknüpfungen geführt 
werden. Hierbei dürfen wir natürlich nicht schon mit den Quo-
tienten operieren, da diese erst auf Grund der Existenz von K 
einen Sinn haben. Wir entziehen daher für die Konstruktion dem 
Bruchstrich in die Bedeutung eines Divisionszeichens, sehen 

vielmehr lediglich als geordnetes Elementpaar aus I an und 

schreiben dafür (a, i), um Verwechslungen mit den ev. schon teil-

weise in 1 definierten Q u o t i e n t e n z u vermeiden. Aus (1)—(3) 

entnehmen wir dann die nötigen Richtlinien für die Angabe der 
Elemente von K und ihrer Verknüpfungen. 

c) Konstruktion eines zu K isomorphen Körpers K' 
In der Menge M aller geordneten Elementpaare (a, b) aus I, 

bei denen b #= 0 ist, definieren wir eine Äquivalenzrelation 
durch die Festsetzung: 

(1') (a, b) ~ («', b') dann und nur dann, wenn ab' = a' b. 
Man bestätigt leicht das Erfülltsein von § 2, (a), (ß), (y), 
so daß wirklich eine Äquivalenzrelation im Sinne von § 2, 
(I) vorliegt. 
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Auf Grund von (1') zerfällt M in Klassen. Diese Klassen 
sehen wir als Menge K' unterschiedener Elemente an. Die 
durch (a, b) erzeugte Klasse werde mit [a, b} bezeichnet. 

D a nach (1') und dem Analogon zu Satz 3 [11] {0, e} 4= {e, e} 
gilt, ist § 1, (a) in K' realisiert. 

Wir definieren weiter in K' zwei Verknüpfungen Addition 
und Multiplikation durch die Fes t se tzungen: 

(2') {av &,} + {a2, b2} = {a^ + a 2 \ , 2 } , 
(3') {«!, &,} {a2, b2} = {a,^, 61fc2}. 

Da nach Satz 4 [12] mi t und b2 auch \ b2 4= 0 ist, sind 
die rechten Seiten in (2') und (3') wirklich bes t immte Klassen 
aus K'. 

Ferner sind diese, zunächst mittels einzelner Kepräsen-
tan ten (a^ bj) und (a2, b2) der Klassen links getroffenen Fest-
setzungen unabhängig von der Auswahl dieser Repräsen-
tan ten innerhalb ihrer Klassen. Man bestä t ig t nämlich 
leicht, daß sich nur der Repräsen tan t , nicht die Klasse 
rechts änder t , wenn m a n links (av b{) und (a2, b2) durch 
äquivalente (a[, &i) u n d (a'2, b'2) ersetzt . Somit ist vermöge 
(2') und (3') auch § 1, (b) in K' realisiert. 

Schließlich befriedigen die in (2') und (3') definierten Ver-
knüpfungen die Gesetze § 1, (1)—(7). F ü r § 1, (1)—(5) folgt 
das leicht, aus dem Erfüll tsein jener Gesetze in I, fü r § 1, (6) 
und (7) zeigt man ebenso auf Grund der Gültigkeit von 
§ 1, (6) und (7a) in I, daß Differenz u n d Quotient in K' ein-
deutig bes t immt u n d durch 

(4') {«!, & J — {a2, Z>2} = { a ^ — a2\, btb2}, 

(5') ( - » 4 1 = b2, a2~b}], wenn {a2, b2) 4= 0, 
iö2' 2/ 

stets gegeben sind. Die im Falle (5') zu stellende Bedingung 
{a2, J2} #= 0 bedeute t a2 4= 0, weil nach (2') oder (4') die 
Klasse {0, e} Nullelement von K' ist u n d nach (1') aus 
{«, b] = {0, e} folgt a = 0. 

Somit ist K' ein Körper bezüglich der Verknüpfungen (2') 
und (3'). 
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d) Konstruktion von K 

Der Körper K' enthält die Teilmenge 1' der speziellen 
Klassen {a, e}, die nach (2')—(4') und Satz 6 [19] ein Teil-
integritätsbereich von K' und weiter nach (1')—(3') und Def. 7 
[23] vermöge der Zuordnung {«, e} a zu I isomorph ist. 
Wir können nun aus K' eine Menge K dadurch bilden, daß 
wir die zu I' gehörigen Elemente {a, e] von K' je durch die 
ihnen zugeordneten Elemente a von I ersetzen, die nicht 
zu I' gehörigen Elemente von K' dagegen beibehalten. Dann 
wird also K eine K' eineindeutig zugeordnete Menge unter-
schiedener Elemente. Weiter können wir in K zwei Verknüp-
fungen Addition und Multiplikation, die den Gesetzen § 1, 
(1)—(7) genügen und die für die Teilmenge 1 mit den in I 
bereits bestehenden Verknüpfungen identisch sind, dadurch 
eindeutig erklären, daß wir auf die für die zugeordneten 
Elemente von K' definierten Verknüpfungen zurückgehen, 
m. a. W. die Bedingungen (3) und (4) von Satz 9 [22] zu-
grunde legen. Dann wird also K ein zu K' isomorpher Erweite-
rungskörper von I. 

Dieser Körper K hat nun die im Satz genannte Eigenschaft. 
Da nämlich nach (3') oder (5') jedes Element {a, 6} von K' 

eine Darstellung (a, 6} = j-f' e-j als Quotient zweier Elemente 
{ 6 , ej 

von 1' besitzt — (es ist {6, e} 4= 0 wegen Z> =|= 0) —, folgt 

für das zugeordnete Element von K die Darstellung-^- als 
Quotient zweier Elemente von I. " 

Damit ist Satz 10 bewiesen. 
Die Eindeutigkeitsaussage von Satz 10 kann noch etwas ver-

schärft werden, nämlich durch den folgenden Zusatz, dessen 
Existenzaussage nach Satz 6 [19] und (2)—(5) auf der Hand liegt: 

Zusatz. Innerhalb eines beliebigen Erweiterungskörpers K* von 1 
gibt es einen und nur einen Repräsentanten des in Satz 10 genannten 
Erweiterungstypus, nämlich den Körper K, der durch die in K* ge-
bildeten Quotienten von Elementen aus I gebildet wird. 

Beweis. Wird im vorhergehenden Beweis unter a) die Voraus-
setzung hinzugefügt, daß K und K beide Teilkörper eines und 
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desselben Erweiterungskörpers K* von I sind, so folgt dort sogar 

K = K, weil dann die Quotienten ~ in K und K eine und die-

selbe, durch K* festgelegte Bedeutung haben. 
Im Hinblick auf die Ausführungen nach Def. 7 [23f.] ist es 

daher gerechtfertigt, isomorphe Erweiterungskörper von I des in 
Satz 10 genannten Typus nicht zu unterscheiden und mit dem 
b e s t i m m t e n Artikel zu definieren: 

Definition 8. Der in Satz 10 genannte Körper K heißt der 
Q u o t i e n t e n k ö r p e r des Integritätsbereiches I. 

Beispiele 
1. Ist 1 schon selbst ein Körper, so ist sein Quotientenkörper 

mit I identisch, und umgekehrt. 
2. Der Quotientenkörper des in Satz 5 genannten Integritäts-

bereiches T ist der ebendort genannte Körper P. In der Tat geht 
das unter c) benutzte Konstruktionsverfahren für I = r in die be-
kannte Konstruktion der rationalen Zahlen aus den ganzen Zahlen 
über. 

3. Vgl. § 4, Def. 10 [38]. 

§ 4. Der Integritätsbereich der ganzen rationalen Funk-
tionen von n Unbestimmten über I und der Körper der 

rationalen Funktionen von n Unbestimmten über K 

Der in der Algebra zu verwendende Begriff der ganzen 
rationalen und der rationalen Funktion ist von dem in der 
Analysis üblichen grundsätzlich verschieden. 

In der Analysis definiert man die Funktionen als Zuordnungen 
von Funktionswerten zu den Elementen einer Argumentmenge. 
Dementsprechend würde im Sinne der Analysis (i.S.d.An.) von 
einer Funktion / von n Veränderlichen über einem Integritäts-
bereich I zu reden sein, wenn jedem geordneten Elementsystem 

..., xn aus I ein Element / ( x l t . . . , x„) aus I zugeordnet ist, und 
speziell von einer ganzen rationalen Funktion (g.r.Fkt.), wenn 
jene Zuordnung für alle xv ..., x„ aus I in ein- und demselben, auf 
xv ..., xn und feste Elemente aus I anzuwendenden Rechenver-
fahren besteht, das aus endlich vielen Additionen, Subtraktionen 
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und Multiplikationen, wie sie ja in 1 definiert sind, zusammen-
gesetzt ist. Entsprechend wäre unter Hinzunahme auch der Divi-
sion eine rationale Funktion (r.Fkt.) i.S.d.An. von n Veränder-
lichen über einem Körper K zu erklären, wobei allerdings wegen 
des Nichtdefiniertseins der Division durch 0 bei einem gegebenen 
Rechenverfahren unter Umständen nicht jedes System xv ..., x„ 
aus K als Argumentsystem zulässig ist; das wird nachher noch zu 
präzisieren sein. Es ist ohne weiteres ersichtlich, daß die g. r. Fkt. 
bzw. r. Fkt. i. S. d. An. von n Veränderlichen über I bzw. K jeden-
falls je einen R ing bilden, wenn man die Verknüpfungen durch 
Addition und Multiplikation je aller (definierten) Funktionswerte 
erklärt. 

In der Algebra kommt man aus einem später (nach Satz 12 [40]) 
näher auszuführenden Grunde mit diesem Funktionsbegriff, der 
die Zuordnung als das Primäre, die Art der Zuordnung, d. h. im 
Falle der rationalen Funktionen das Rechenverfahren als das Se-
kundäre hinstellt, nicht aus. Man muß vielmehr umgekehrt für 
die dort allein zu betrachtenden rationalen Funktionen den Re-
chenausdruck als das Primäre, die durch ihn gelieferte Zuordnung 
als das Sekundäre ansehen1). Dem letzteren Standpunkte ent-
spricht es, wenn wir im folgenden eine Theorie der III >Z>2) • • •> 
ganzen rationalen bzw. rationalen Rechenausdrücke über I bzw. 
K entwickeln, die wir dann der formalen Analogie halber, wie 
üblich, auch g. r. bzw. r. Fkt. von xlt..., xn über I bzw. K nennen, 
und wenn wir dabei, um ein Zurückfallen in den Zuordnungsstand-
punkt auszuschließen, den xv .. ,,x„ vorläufig die Bedeutung von 
Veränderlichen in 1 bzw. K entziehen, sie vielmehr als feste Ele-
mente außerhalb 1 bzw. K, sog. Unbestimmte2), einführen. 

Zu dem Bereich der ganzen rationalen Funktionen von 
xv ..., xn über einem Integritätsbereich I im Sinne der Al-
gebra gelangen wir durch eine, zu der in § 3 ganz analoge, 
abstrakte Konstruktion, indem wir beweisen: 

Satz 11. Zu jedem Integritätsbereich I existiert ein Erweite-
rungsintegritätslereich In mit der Eigenschaft: 

Es existieren n Elemente i i <) XJI Vfh In derart, daß sich 
jedes Element VOn I n eindeutig in der Form 

x) Das ist also derjenige, vom Standpunkte der Analysis primitivere Funk-
tionsbegriff, der historisch dem genannten, modernen Funktionsbegriff i. S. 
d. An. vorausgegangen ist. Unsere nachstehenden Entwicklungen zeigen, daß 
vom Standpunkte der Algebra umgekehrt jener in der Analysis primitivere 
Funktionsbegriff der tiefergehende ist. 

a) Siehe zu dieser Bezeichnung die Erläuterung hinter Def. 9 [37]. 
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oo 

2 knBlkl---Xnknl) 
i-! k n = 0 

darstellen läßt, wo die akl kn Elemente aus 1 sind, unter 
denen nur endlich viele von Null verschiedene vorkommen. 

Der Erweiterungstypus von I« bzgl. I ist durch diese For-
derung eindeutig bestimmt. 

Beweis2). Wir führen den Beweis zunächst für n = 1, und 
zwar in vollständiger Analogie zum Beweis von Satz 10 in 
§ 3 . 

a) Eindeutigkeitsnachweis 

Ist ein Integritätsbereich der im Satz genannten Art 
für n = 1 und x das im Satz mit xl bezeichnete Element aus 

so enthält als Integritätsbereich auch umgekehrt alle 
CO 

Ausdrücke £aicXk , wo die an Elemente aus I sind, von denen 
k = 0 

nur endlich viele + 0 sind, d. h. I1 besteht aus der Gesamt-
heit aller dieser Ausdrücke. Wegen der Eindeutigkeitsforde-
rung des Satzes und nach den Gesetzen § 1, (1)—(6) für 
Ringe bestehen dann folgende Tatsachen in : 

00 OC 

(1) £akxk = £a'kxk dann und nur dann, wenn 
k = 0 k = 0 

ak = a'k für alle k, 
CO 00 00 

(2) 2 aicX* + £ hx* = £ {ak + bk) xk , 
k = 0 k = 0 i = 0 

(3) £akxk £bkxk = £ (£axi„) xk , 
£ = 0 & = 0 fc = 0 A, fi = 0 

' ) Die Bedeutung des Summenzeichens H mit angefügten Angaben über 
den Summationsbereich darf als bekannt vorausgesetzt werden. — Daß wir 
hier für die in "Wahrheit endlichen Summen formal unendliche Summen mit 
nur endlich vielen Summanden # 0 setzen, wobei natürlich stillschweigend 
unter einer Summe von unendlich vielen Nullen wieder Null verstanden ist, 
geschieht lediglich aus bezeichnungstechnischen Gründen. Sonst würden 
nämlich die Formulierung der Eindeutigkeit unserer Darstellungen, sowie 
später die Formeln für das Rechnen mit so dargestellten Elementen ziemlich 
kompliziert. 

*) Vgl. die Anm. 1 [26] zum Beweis von Satz 10. 
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(4) J akx* — J hex* = J {ak — . 
fc = 0 k = 0 ¡6 = 0 

Ist nun Tj ein weiterer Integritätsbereich dieser Art, x das 
im Satz mit x1 bezeichnete Element für ll5 und ordnet man 

CO CO 

einem Element £aic%k von immer das Element £ akXk 

k=0 k=0 
von I] zu, so erschließt man aus (1)—(3) ganz entsprechend 
wie in § 3, a), daß auf Grund dieser Zuordnung ^ bzgl. 1 
ist, also die eindeutige Bestimmtheit des Erweiterungstypus 
von Ij bzgl. I. 

b) Vorbemerkungen zum Existenznachweis 
Der Nachweis der Existenz eines Integritätsbereiches der 

im Satz genannten Art kann prinzipiell nur durch Konstruktion 
von d.h. durch Angabe seiner Elemente und ihrer Verknüp-
fungen geführt werden. Hierbei dürfen wir natürlich nicht schon 

CO 

mit dem Element x und den Summendarstellungen akxk ope-
k= o 

rieren, da diese erst auf Grund der Existenz von einen Sinn 
haben. Wir entziehen daher für die Konstruktion dem x die Be-
deutung eines Elementes, das mit den Elementen von 1 zusammen 
den drei ersten elementaren Rechenoperationen unterworfen 

CO 

werden kann, und somit den Ausdrücken J£aicXk die Bedeutung 
k = 0 

von Rechenausdrücken, sehen diese vielmehr lediglich als geord-
nete Systeme (a0, a t , . . . ) von Elementen aus I an. Aus (1)—(3) 
entnehmen wir dann die nötigen Richtlinien für die Angabe der 
Elemente von Ii und ihrer Verknüpfungen. 
c) Konstruktion eines zu isomorphen Integritätsiereiches Ii 

Wir sehen die Menge Ii aller geordneten Elementsysteme 
(ia0, av ...) von je abzählbar unendlich vielen Elementen 
aus I, wobei aber jedesmal nur endlich viele a* 4= 0 sein 
sollen, als Menge unterschiedener Elemente an, haben also: 

(1') (a0, ...) = (aö, a[,...) dann und nur dann, wenn 
(ix = «j für alle k. 

Wegen (0, 0 , . . . ) =)= (e, 0 , . . . ) ist dann § 1, (a) in 
realisiert. 

3 Hasse, Höhere Algebra 
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Wir definieren weiter in I, zwei Verknüpfungen Addition 
und Multiplikation durch die Festsetzungen: 

(2') (a0, av . . . ) + K • • •) = K + K % + K • • •). 

(3') (a0, av . . . ) (60, 6 X , . . . ) 
= («A» a o h + a i K a<A + a i h + a26o> • • •)• 

Man überzeugt sich leicht, daß die rechten Seiten in (2') 
und (3') wieder nur endlich viele Glieder #= 0 haben, also zu 

gehören, so daß § 1, (b) vermöge (2') und (3') realisiert ist. 
Ferner befriedigen die in (2') und (3') definierten Ver-

knüpfungen die Gesetze § 1, (1)—(6). Für § 1, (1)—(5) folgt 
das leicht aus dem Erfülltsein jener Gesetze in I, für § 1, (6) 
zeigt man ebenso auf Grund der Gültigkeit von § 1, (6) in I, 
daß die Differenz in eindeutig bestimmt und stets durch 

(4') (a0, « ! , . . . ) — (K •• •) = (oo — &0) % — .) 
gegeben ist. 

Näherer Ausführung bedarf jedoch der Nachweis, daß das 
Gesetz § 1, (7 a) in Ii gilt, an dessen Stelle nach dem Zusatz 
zu Def. 3 [12] auch der Nachweis treten darf, daß das Ana-
logon zu Satz 4 [12] in Ii richtig ist. Da sich als Nullelement 
von Ii aus (2') oder (4') das Element (0, 0 , . . . ) ergibt, be-
deutet die Voraussetzung 

(a0, . . . ) (60, . . . ) = 0, 
daß alle Glieder dieses nach (3') zu bildenden Produkt-
systems Null sind. Wäre nun (a0, au ...)=(= 0, (&0, hlt ...)=)= 0, 
so daß also ein letztes a„ 4= 0 und ein letztes bß + 0 exi-
stierte, so folgte für das (v + ju)-te Glied 
ao?>ti+v + b «v-ifyi+i + avbß + «Wifyi-i + b av+uK 
des Produktsystems nach Wahl von av und daß es gleich 
dyb/t, also wegen der Gültigkeit von Satz 4 in I von Null ver-
schieden wäre, im Widerspruch zu der Voraussetzung. Somit 
gilt das Analogon zu Satz 4 in 

Schließlich gilt auch §1, (7b), d .h . das Analogon zu 
Satz 3 [11] in Ii, weil nach (3') das Element (e, 0 , 0 , . . . ) 
Einselement von Ii ist. 

Somit ist Ii ein Integritätsbereich bezüglich der Ver-
knüpfungen (2') und (3'). 
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d ) Konstruktion von 

Der Integritätsbereich Ii enthält die Teilmenge I' der 
speziellen Elemente (a, 0 , 0 , . . . ) , die nach (2')—(4') und 
Satz 6 [19] ein Teilintegritätsbereich von Ii und weiter nach 
nach (1')—(3') und Def. 7 [23] vermöge der Zuordnung 
(a, 0, 0 , . . . ) <—> a zu 1 isomorph ist. Ganz entsprechend 
wie in § 3, d) kann man dann einen zu !( isomorphen 
Erweiterungsintegritätsbereich von I herleiten, indem man 
die Elemente von 1' durch die ihnen zugeordneten von I 
ersetzt. 

Dieser Integritätsbereich hat nun die im Satz genannte 
Eigenschaft. Bezeichnet nämlich x das spezielle Element 
(0, e, 0, 0 , . . . ) von so daß also nach (3') gilt 

= e = (e, 0, 0 , . . .), x1 = x = (0, e, 0, 0 , . . . ) , 
z 2 = ( 0 , 0 , e , 0, 0 , . . . ) , . . . , 

und ist ( a 0 , « ! , . . . ) irgendein Element von so ist nach 
(2') und (3') 

(a0, a v . . . ) = (a,0, 0 , 0 , . . .) x° + ( a l t 0, 0 , . . . ) s H . 
Da x nicht zum Teilbereich I' von gehört, bleibt es beim 
Übergang zu Ij erhalten, und es besteht demnach für das 

CO 
zugeordnete Element von It die Darstellung 

k = 0 

Diese Darstellung ist schließlich eindeutig. Denn aus 
00 00 

£ a k X k = J £ a ' k x k folgt durch Übergang zum isomorphen 
£ = 0 k = o 
zunächst (a0, . . . ) = (a'0, a ' t , . . . ) und daraus nach (1') 
aic = a'h für alle k. 

Damit ist Satz 11 für n = 1 bewiesen. Zum Beweise für 
beliebiges n stehen folgende zwei Wege zur Verfügung: 

Entweder kann man den gesuchten Integritätsbereich l„ 
sukzessive konstruieren. Bezeichnet man dazu den zu irgend-
einem Integritätsbereich 1 nach dem schon bewiesenen Teil 
des Satzes vorhandenen Integritätsbereich mit l[a], so 
bilde man sukzessive 

•l = 1 [>l]> (2 = ' l f e L •••.!» = K J • 
3 * 



36 I. Ringe, Körper, Integritätsbereiche 

Dann lassen sich die Behauptungen des Satzes für \n sämt-
lich durch vollständige Induktion bezüglich n beweisen. 

Oder man übertrage die Entwicklungen des vorstehenden 
Beweises für n = 1 sinngemäß auf beliebiges n, was ohne 
weiteres möglich ist. An Stelle von (1)—(3) tri t t dabei: 

00 

"(la) 2 4 " 
kls..kn= 0 co 

= 2 < kn4* • • • 

dann und nur dann, wenn a* = ai,---,kn für alle 
Systeme (fe^ . . . , lcn), 

00 

(2 a) 2 ah i B a i « . . . a i « 
Ä'i kn = 0 

oo 
+ 2 K kn s f ' • • • 4 n 

kit...t kn=0 
00 

= 2 0*! kn + h , kn) • • • xn"> 
k„...,kn = 0 

00 

(3 a) 2 akl k n x ^ . . . x l n 
k1,...,kn = 0 

CO 

ki kn= 0 
CO OO 00 

= 2 ( 2 2 i n ^ f i fn)xl'- • • xnn^ 
k1,...,kn = 0 Äu/j1=0 ?n>Pn = 0 

+ = >n+ßn = kn 

und daraus ist die zu treffende Wahl der Elemente 
von In 

[nämlich alle in ein w-dimensionales Schema geordneten 
Systeme (fcl5. . ., kn = 0 , 1 , . . . ) von Elementen aus 
I mit nur endlich vielen 4= 0] und der Verknüpfungen für 
sie ohne weiteres ersichtlich. 

Die nähere Ausführung darf auf Grund dieser Hinweise 
für beide Wege dem Leser überlassen bleiben. 

Während der erste Weg neben dem Vorzug des Auskommens 
mit den rechnerisch einfachen Entwicklungen des ausgeführten 
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Beweises für n = 1 insofern auch theoretisch von Bedeutung ist, 
als manche Sätze über \n nur durch vollständige Induktion be-
züglich n, also durch Zurückgehen auf die angegebene rekursive 
Konstruktion von \n beweisbar sind (vgl. z. B. 2, Satz 49 [41]), 
ist der zweite Weg deshalb befriedigender, weil er einmal die be-
sondere Behandlung des Falles n = 1 entbehrlich macht, dann 
aber auch im Gegensatz zum ersten einer wichtigen Eigenschaft 
von ln gerecht wird, nämlich der S y m m e t r i e in xlt..., xn, d. h. 
der aus Satz 11 ohne weiteres ersichtlichen Tatsache, daß \n in 
sich übergeht, wenn die Rollen der Elemente xv ..., xn irgendwie 
vertauscht werden. 

Anders als in §3, Satz 10, Zusatz [29] können hier zwar innerhalb 
eines beliebigen Erweiterungsintegritätsbereiches I* mehrere ver-
schiedene Repräsentanten des in Satz 11 genannten Erweiterungs-
typus vorhanden sein (z. B. wenn I* = I [®j,..., x„, xn+1, ..., xn+m] 
ist, alle 1 [a^,, . . . , xin], wo . . ., in irgendwelche n verschiedenen 
Ziffern aus der Reihe 1 , . . . , « + m sind); aber offenbar ist jeder 
solche Repräsentant innerhalb 1* durch die Angabe derjenigen 
Elemente aus 1*, die die Rolle von a ^ , . . . , xn haben, eindeutig be-
stimmt, nämlich als die Gesamtheit der Ausdrücke der in Satz 11 
genannten Form in diesen Elementen. 

Im Hinblick auf die Ausführungen nach Def. 7 ist es daher 
wieder gerechtfertigt, mit dem b e s t i m m t e n Artikel zu definieren: 

Definition 9. Der in Satz 11 genannte Integritätsbereich \n 
heißt der I n t e g r i t ä t s b e r e i c h der g a n z e n r a t i o n a l e n 
F u n k t i o n e n der n U n b e s t i m m t 611 3/j, » . ., Xn über 1. Er 
werde mit \[xx, . . xn], seine Elemente auch kurz mit 
f ( x l t . . . , xn),... oder noch kürzer mit / , . . . bezeichnet. 

Die eindeutigen Darstellungen dieser Elemente in der Form 
von Safe 11 nennen wir ihre N o r m a l d a r s t e l l u n g e n und 
die darin auftretenden Elemente aiclt...,icn aus 1 die K o e f f i -
z i e n t e n dieser Darstellungen. 

Die Bezeichnung Unbestimmte für die xt erläutern wir dahin, 
daß jedes einzelne der Xi von I aus keiner anderen B e s t i m m u n g 

00 

fähig ist, als der negativen, daß keine Gleichung 2 j a k x \ = 0 (mit 
*=o 

nur endlich vielen Koeffizienten a& 0) besteht, außer der tri-
vialen, wo alle ak = 0 sind. Die xt sind also weder Elemente von I, 
noch genügen sie algebraischen Gleichungen in I (siehe §5 [47] 
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und 2, Def. 21 [54]). S t e in i t z (Lit.-Verz. 21) nennt sie daher 
bzgl. I transzendente Elemente. Übrigens sind die xt wegen ( la) 
auch nicht untereinander durch positive Bestimmungen (alge-
braische Gleichungen) verknüpft. Steinitz nennt sie daher genauer 
ein System bzgl. I algebraisch unabhängiger Elemente. 

I [xv . . ., xn] ist stets ein echter Erweiterungsbereich von I, 
da infolge der Eindeutigkeit der Normaldarstellungen z. B. die 
Elemente xv . . ., xn nicht zu I gehören. 

I [xv . . ., xn~\ ist in keinem Falle ein Körper (auch nicht, wenn 
I ein Körper ist). Auf Grund der obigen sukzessiven Konstruktion 
genügt es, das für 1 [x] zu beweisen. In I [x] existiert aber sicher 

e °° nicht der Quotient—, weil für jedes/(®) = ^JaicXk aus I [a;] gilt x k= o 
00 

x)(x) = 2Jakxk+1 

k = o 
= 0 + a0x + a^x* + . . . =j= e + Ox + Ox2 + . . . = e. 

Um auch die zu Beginn dieses Paragraphen schon ge-
nannten rationalen Rechenausdrücke in xv .. ., xn einzu-
beziehen, erweitern wir I . . . , xn] zum Quotientenkörper. 
Da hierbei insbesondere der Teilbereich 1 zum Quotienten-
körper erweitert wird, genügt es, von vornherein von einem 
Körper K und dem zugeordneten Integritätsbereich 
K ^ , . . . , xn] auszugehen: 

Definition 10. Ist K ein Körper, so heißt der Quotienten-
Jcörper des Integritätsbereiches K [ x ^ . . . , x„] der K ö r p e r der 
r a t i o n a l e n F u n k t i o n e n der n U n b e s t i m m t e n xv ..., x„ 
über K. Er werde mit K (xx,..., xn), seine Elemente auch kurz 
mit 9? ..., xn), •. • oder noch kürzer mit <p, . .. bezeichnet. 

Aus den im vorstehenden vom algebraischen Standpunkt 
aus definierten ganzen rationalen bzw. rationalen Funk-
tionen über I bzw. K lassen sich nun die ganzen rationalen 
bzw. rationalen Funktionen i. S. d. An. über I bzw. K da-
durch herleiten, daß man den bisherigen Unbestimmten 
xv ..., xn die Bedeutung von Elementen aus 1 bzw. K beilegt. 
Wir definieren zunächst für I . . . , xn]: 

Definition 11. Unter der einem Element f von I [x1, . . ., xn] 
z u g e o r d n e t e n ganzen r a t i o n a l e n F u n k t i o n i. S. d. An. 
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verstehen wir diejenige Funktion i. S. d. An. über I, die ent-
steht, wenn man jedem Elementsystem «2/j, . . ., XJI CLXiS 1 das 
durch die Normaldarstellung von / gelieferte Element von I als 
Funktionswert zuordnet. 

Wir bezeichnen für den Augenblick den zu Beginn dieses 
Paragraphen erwähnten Ring der ganzen rationalen Funk-
tionen i. S. d. An. von xu . . . , Xn über I mit I ..., xn] 
und beweisen die folgende, für den Übergang von I [ a ^ , . . x n \ 
zu I [aij , . . ,,x„\ grundlegende Tatsache, die wir Einsetzungs-
prinzip nennen: 

Satz 12. Beim Ubergang von B = I [xv . . ., xn] zu 
B' = 1 [ x j , . . . , xn] durch die in Def. 11 erklärte Zuordnung 
sind die Bedingungen § 2, (ö), (6'), (e), (3), (4), (5) erfüllt, 
dagegen nicht immer (e'). Jener Übergang liefert also die Ge-
samtheit der Elemente von I [a^,..., xn] aus der Gesamtheit 
derjenigen von I ..., xn], und es bleiben bei ihm die Gleich-
heit und alle Verknüpfungsbeziehungen, dagegen nicht immer 
die Unterschiedenheit der Elemente von 1 ..., xn] erhalten. 
Dann und nur dann, wenn auch § 2, (e') erfüllt ist, gilt auf 
Grund jener Zuordnung I [a^,..., xn] ^ I ..., xn]. 

Beweis, a) Das Erfülltsein von § 2, (ö), (s) liegt natürlich 
in der eindeutigen und für jedes Element aUS I \x~i, . . ., Xn\ 
anwendbaren Zuordnungsvorschrift von Def. 11. 

b) Das Erfülltsein von § 2, (3), (4), (5) ist leicht aus den 
obigen Formeln (2 a), (3 a) zu entnehmen, die die Normal-
darstellung der Summe und des Produkts zweier Elemente 
von I [x^ ..., xn] aus denen der Summanden bzw. Faktoren 
unter alleiniger Anwendung der in 1 [a^, . . . , xn\ gültigen 
Gesetze § 1, (1)—(5) berechnen. Denn weil diese Gesetze 
auch in 1 gültig sind, dürfen jene Umformungen auch vor-
genommen werden, wenn xx,..., xn Elemente aus 1 sind. 

c) Um das Erfülltsein von § 2, (<5') einzusehen, ist zu 
zeigen, daß auch umgekehrt jede ganze rationale Funktion 
i. S. d. An. von xv ..., xn über 1 einem Element f von 
I [a ;x , . . . , xn] gemäß Def. 11 zugeordnet ist. Nun liefert jedes 
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auf xv ..., x„ und feste Elemente aus I anzuwendende, 
aus endlich vielen Additionen, Subtraktionen und Multipli-
kationen bestellende Rechenverfahren, wenn man zunächst 

..., xn als Unbestimmte, also als Elemente aus I . . . , xn] 
auffaßt, ein Element / aus I [xy,..., xn], einfach weil im 
Integritätsbereich I \xx,..., xn] jene Operation unbeschränkt 
ausführbar sind. Nach dem unter b) schon Bewiesenen blei-
ben ferner beim Übergang von I [a;1, . . . , x„] ZU I [iEj, . . Xn] 
durch unsere Zuordnung alle Verknüpfungsbeziehungen er-
halten. Wendet man das auf diejenige Verknüpfungsbe-
ziehung an, die das Element / durch die Elemente 
und die festen Elemente aus I ausdrückt, so folgt, daß die 
durch jenes Rechenverfahren gelieferten Funktionswerte die-
selben sind, wie die durch die Normaldarstellung von / ge-
lieferten, daß also die betr. ganze rationale Funktion i. S. d. 
An. mit der / zugeordneten identisch ist. 

d) § 2, (V) ist z. B. nicht erfüllt, wenn für I der nur aus 0 
und e bestehende Körper K (§ 1, Beispiel 4) gewählt wird. 
Denn dann ist den beiden verschiedenen Elementen x + x2 

und 0 von K[x] dieselbe Funktion 0 i.S.d. An. zugeordnet, 
weil ja auch x -¡- x2 für alle x aus K (d.h. für x = 0 und 
x = e) Null ist. 

Wir werden im übrigen in 2, Satz 49 [41] und 3, 1, § 4, Aufg. 7, 8 
sowie § 1, Aufg. 9 sehen, daß § 2, (Y) dann und nur dann erfüllt 
ist, wenn 1 unendlich viele Elemente besitzt, daß also für unend-
liches I gilt I [xv ..x„] I [x1:..., xn] bzgl. I, für endliches 1 
aber nicht. 

In der nach d) vorhandenen Möglichkeit liegt der Grund, wes-
wegen man in der Algebra mit dem auf Zuordnung gestützten 
und demgemäß die Funktionen nach ihren F u n k t i o n s w e r t e n 
unterscheidenden Funktionsbegriff nicht auskommt, sondern den 
auseinandergesetzten formalen Funktionsbegriff braucht, der eine 
feinere Unterscheidung der Funktionen vermöge ihrer Rechen-
ausdrücke liefert. Wenn auch diese Notwendigkeit nach dem 
unter d) Bemerkten tatsächlich nur für endliche Integritäts-
bereiche vorliegt, so sprechen natürlich weiterhin methodische 
Gesichtspunkte dafür, von den in § 1 gegebenen Grundlagen aus-
gehend den Rechenausdruck als den durch ihn gelieferten 
F u n k t i o n s w e r t e n übergeordnet anzusehen. 
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Wir haben im vorhergehenden absichtlich nicht in der Be-
zeichnung, sondern nur im Text unterschieden, ob xv ..., x„ 
als Unbestimmte oder als Elemente aus I gemeint sind, um 
den im folgenden oft auszuführenden Übergang von der 
ersten zur zweiten Bedeutung der xv ..., x„ nicht immer 
mit einem Bezeichnungswechsel verbinden zu müssen. Auf 
Grund von Satz 12 ist es weiterhin hinsichtlich der V e r -
k n ü p f u n g e n angängig, auch die Bezeichnung f(xv . .., x„) 
der Elemente von I \x1, ..., xn~\ unverändert für die zuge-
ordneten Funktionswerte zu verwenden. Wir wollen daher 
fortan / ( % , . . . , x„) auch zur Bezeichnung des / zugeordneten 
Funktionswertes für das Elementsystem X-^) . . .) clUS 1 
gebrauchen und einen solchen F u n k t i o n s w e r t dann der 
kürzeren Ausdrucksweise halber auch einfach eine ganze 
rationale F u n k t i o n von xlt..., xn über I nennen; dagegen 
soll die Bezeichnung / (ohne Argumente) für das Element 
von . . x n ] vorbehalten bleiben. [f(xv ..., x„) ist hier-
nach nicht auch Zeichen für die / zugeordnete Funktion i. S. 
d.An., sondern nur für einen einzelnen Wert dieser Funk-
tion, die selbst erst durch die Gesamtheit aller Funktions-
werte / ( % , . . . , xn) gebildet wird.] Wir müssen dann nur 
irgendwie einen Bezeichungsunterschied für die folgenden 
beiden ganz verschiedenartigen G l e i c h h e i t s a u s s a g e n ein-
führen : 
f(xv ..., xn) = g(xlt..., xn) als Elemente von 1 . . . , xn], 
/(%,..., xn) = gfa,..., xn) als Funktionswert für das Ele-

mentsystem . . .j Xn aus i. 
Daher setzen wir weiter fest, daß fortan zur Bezeichnung 
der ersteren dieser beiden Aussagen das Zeichen = (Gegen-
teil =i=) verwendet werden soll1). Auf Grund obiger Verabre-
dung können und wollen wir aber die Schreibweise f = g 
gleichbedeutend mit . . x n ) = g{x^.. xn) verwenden. 

x) Die Relation f(zlt..., x^) g(xlt xn) hat dann zwar die Relation: 
xn) = ff («i , . . .» %n) für a l l e xlt . . x n aus l 

zur Folge, aber nach obigem nicht notwendig umgekehrt. Das Zeichen = hat 
also i. a. eine weitergehende Bedeutung, als die häufig darunter verstandene: 
gleich für a l l e xu...t xn. — Eine Verwechslung der hier gemeinten Relation 
= mit einer Kongruenzrelation im Sinne von Def. 6 [21] wird durch den Zu-
sammenhang ausgeschlossen. 
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Nach diesen Festsetzungen geht aus der gewählten Be-
zeichnung stets unzweideutig hervor, welche der beiden 
möglichen Auffassungen der xv .. ,,xn in einer Gleichheits-
oder Ungleichheitsrelation vorliegt. 

Wir vollziehen nun schließlich den Übergang von den 
Elementen von K f o , . . . , xn) zu den rationalen Funktionen 
i. S. d. An. durch folgende Definition: 

Definition 12. Unter der einem Element <p vonK(x^,..., xn) 
z u g e o r d n e t e n r a t i o n a l e n F u n k t i o n i. S. d. An. ver-
stehen wir diejenige Funktion i. 8. d. An. über K, die entsteht, 
wenn jedem Elementsystem ..., xn aus K, für das mindestens 

eine Darstellung von <p als Quotient zweier Elemente aus 

K f ^ j , . . . , xn] mit g(xlt..., xn) #= 0 existiert, als Funktions-

wert der Quotient r- der Funktionswerte von f und g 
9\XU ) xn) 

zugeordnet wird. 
Analog zu Satz 12 gilt dann hier das Einsetzungsprinzip: 
Satz 13. Für den Körper K(xv ..., x„) und den Ring 

K(£J, ..., xn) der rationalen Funktionen i. S. d. An. von 
Xy, ..., xn über K gilt vermöge der in Def. 12 erklärten Zu-
ordnung entsprechendes wie in Satz 12, nur daß hier die ev. 
Nichtgültigkeit von § 2, (e') stets auch die Nichtgültigkeit von 
§ 2, (ö) zur Folge hat. 

Beweis, a) Um das Erfülltsein von § 2, (e) zu beweisen, ist 
zu zeigen, daß die einem Element q> von K(a;1,..., xn) nach 
Def. 12 zugeordnete Funktion i. S. d. An. unabhängig von 
der speziellen Wahl der (der Bedingung von Def. 12 genügen-
den) Quotientendarstellungallein durch <p bestimmt ist. 

Sind nun und zwei (dieser Bedingung genügende) Quo-
tientendarstellungen von <p, so folgt aus der dann nach §3, (1) 
bestehenden Relation fg' = f' g nach Satz 12, daß auch 
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f(xl! • • Xn) g' (x 1, • • Xn) = /'(%, • • •) xn) (j(Xi, • • Xn) 

ist, woraus sich unter der Annahme von Def. 12 über g 
J , ftP 1> • • •> I \X1> • • •> Mi und g weiter - j - 1 = — ~ f- ergibt. 

g ( x l t , . . , xn) g { x j , . . . , xn) 

b) Durch Zurückgehen auf die Formeln § 3, (2) und (3) 
und Anwendung von Satz 12 ergibt sich ebenso das Erfüllt-
sein von § 2, (3), (4), (5). 

c) Das Erfülltsein von § 2, (6') folgt dann entsprechend 
wie im Beweis zu Satz 12 unter c); siehe dazu die Präzi-
sierung und Anleitung in 3, 1, § 5, Aufg. 1. 

d) Daß § 2, (e') nicht notwendig erfüllt ist, zeigt dasselbe 
Beispiel wie oben. Es tritt das offenbar dann und nur dann 
ein, wenn mindestens ein Element g in K . . x n ] derart 
existiert, daß zwar g 4= 0, aber doch g ( x 1 , . . . , xn) = 0 für 
a l le x 1 , . . . , xn aus K ist. Ist nun einerseits dies der Fall, so g 

hat das Element — aus K ( x 1 , . . . , xn) die Eigenschaft, daß 

zu ihm für k e i n Elementsystem ..., x„ aus K eine Quo-
tientendarstellung existiert, deren Nenner einen von Null 

verschiedenen Funktionswert hat; denn nach § 3, (1) ist 

seine allgemeinste Quotientendarstellung, wo / ein beliebiges 
ß 

Element 3>US Kfä/Jj • • •) #71 ] ist. Also existiert dann zu — 

keine zugeordnete Funktion i. S. d. An., indem die Def. 12 
des Funktionswertes für j e d e s xly . . . , x n aus K versagt. 
Existiert andererseits kein g der angegebenen Art in 

K f ^ , . . . , xn], so läßt sich dem Quotienten mindestens 

für ein Elementsystem X . . Xn cLUS K ein Funktionswert 
gemäß Def. 12 zuordnen. 

Auf Grund von Satz 13 übertragen sich die im Anschluß 
an Satz 12 gemachten Bemerkungen über I [as j , . . . , Xn\ sinn-
gemäß auch auf K ( x x , . . . , x„). Es sollen daher unsere Bezeich-
nungsfestsetzungen auch für die Elemente VOI1 . . Xn) 
Gültigkeit haben. 
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§ 5. Ausführliche Formulierung der Grundauigabe 
der Algebra 

Mittels der im vorhergehenden auseinandergesetzten Be-
griffe wollen wir jetzt eine genaue Formulierung der in der 
Einleitung genannten Grundaufgabe der Algebra geben. 

Eine mittels der vier elementaren Rechenoperationen ge-
bildete „Gleichung" zwischen bekannten und unbekannten 
Elementen eines Körpers K, wie sie in der Formulierung der 
Einleitung gemeint ist, entsteht, wenn zwei auf die Unbe-
kannten xu...,xn und vorgegebene (bekannte) Elemente 
von K anzuwendende Rechenverfahren vorliegen und gefragt 
wird, für welche Elementsysteme ZC^i • • tCfi clUS K beide Ver-
fahren dasselbe Ergebnis liefern. Hierbei haben also die Un-
bekannten . . . , x„ zunächst den Charakter von Unbe-
stimmten, und die vorliegenden Rechenverfahren sind zwei 
Elemente <p und <p' von K ^ , . . . , xn). Die in der „Gleichung" 
liegende Frage bezieht sich dann, in gewisser Analogie zu 
den letzten Entwicklungen von § 4, auf die Ersetzung der 
Unbestimmten xv . . ., xn durch Elementsysteme xv . . ., xn 
aus K und geht dahin, für welche solchen Elementsysteme 
die Gleichung (p(xv . . x n ) = ^'(^n • • •> xn) besteht. 

Da das Hinschreiben einer solchen „Gleichung" als F o r -
d e r u n g oder F r a g e logisch einen ganz anderen Sinn hat als 
die gewöhnlich ebenso bezeichnete T a t s a c h e des Bestehens 
der Gleichung, wollen wir für die Forderungsgleichheit ein 
besonderes Zeichen = (Gegenteil ) einführen, also die 
eben genannte Frage mit 

^p(x1, . . ., x„) = cp'ix^ .. ., x„) 
bezeichnen. 

Die Gleichung <p(xlt..., x„) = <p'(xlt. . ., xn) ist nun zu-
nächst nach dem Einsetzungsprinzip, angewandt auf die 
Verknüpfungsbeziehung <p — <p' = y>, gleichbedeutend mit 
einer Gleichung der Form . . x„) 0, wo ip wieder 
ein Element von K ^ , . . . , x„) ist. 
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Ehe wir diese Gleichung weiter reduzieren, müssen wir uns mit 
dem folgenden Umstand auseinandersetzen: Einerseits besteht das 
zu y führende Rechenverfahren im Sinne der gestellten Aufgabe 
(das gemäß y> = <p — <p' aus den beiden ursprünglich gegebenen, 
zu <p und rp' führenden zusammengesetzt ist) genauer betrachtet 
in einer Kette von Einzeloperationen, deren jede eine Addition, 
Substraktion, Multiplikation oder Division von je zwei Elementen 
ist, deren jedes entweder ein Element aus K oder eines der xv..., xn 

oder ein Resultat einer der vorhergehenden Operationen ist. Ande-
rerseits läßt sich y> als Element von Kfo^, . . . , xn) in der einfachen 

Form eines Quotienten — zweier Elemente aus K f ^ , . . . , in 

Normaldarstellung darstellen. Nach dem Einsetzungsprinzip hat 
es dabei auf das Resultat der Einsetzung eines Elementsystems 
x • • %n aus K keinen Einfluß, ob man diese Einsetzung vor der 
Ausführung des Verfahrens stattfinden läßt (ob man also, wie es 
dem Sinn der Aufgabe entspricht, von vornherein mit den . . . , xn 

als Elementen aus K losrechnet), oder ob man erst nach der Aus-
führung des Verfahrens, in eine Quotientendarstellung — einsetzt, 

so lange man nur so lche E i n s e t z u n g e n b e t r a c h t e t , für 
die weder der N e n n e r g noch e iner der s u k z e s s i v e bei 
dem R e c h e n v e r f a h r e n a u f t r e t e n d e n Nenner Null wird. 
Es ist nun keineswegs von vornherein sicher, daß der Nenner g 
genau für diejenigen Elementsysteme aus K nicht Null wird, für 
die keiner der sukzessiven Nenner des Verfahrens Null wird, die 
also im S inne der g e s t e l l t e n A u f g a b e zuläss ig sind. Doch 
läßt sich zeigen, daß es unter allen Quotientendarstellungen von 
y> (mindestens) eine mit dieser Eigenschaft gibt (siehe dafür 
3 ,1 , § 5, Aufg. 1). Eine solche, der Aufgabe naturgemäß angepaßte 

Quotientendarstellung yi = — sei im folgenden zugrunde gelegt. 

Vermöge einer Quotientendarstellung y> = — (der eben 

näher charakterisierten Art) reduziert sich nun nach § 3 
und dem Einsetzungsprinzip die Lösung der Gleichung 
y)(xv . . . , xn) = 0 weiter darauf, alle diejenigen Lösungen 
von / ( « ! , . . . , xn) = 0 zu bestimmen, die zudem Lösungen 
von g(xlt. . ., xn) ' 0 sind. Da man nun die Lösungen der 
letzteren Ungleichung kennt, wenn man die der Gleichung 
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g(xv ..., xn) = 0 kennt, reduziert sich die Aufgabe auf die 
Behandlung von Gleichungen der Form 

f{xlt. . .,Xn) = 0, 
wo / ein Element aus . . . , xn\ ist. 

Obwohl man nun im Prinzip die gemeinsamen Lösungen 
einer Anzahl von Gleichungen beherrscht, wenn man die 
Lösungen jeder Einzelgleichung kennt, ist es doch sowohl 
von theoretischen als auch von praktischen Gesichtspunkten 
aus zweckmäßig, solche Oleichungssysteme als Ganzes zu be-
handeln. Somit formulieren wir als die uns zum Leitfaden 
dienende Aufgabe der Algebra: 

Es seienK ein Körper und flt.. ,,fmElemente aus ..., Xn\. 
Es sollen Methoden zur Gewinnung aller Lösungen des Olei-
chungssyslems 

/,•(%, . . Xn) = 0 (i = 1, . . ., m) 
entwickelt werden1). 

Eine systematisch vollendete Theorie zur Lösung dieser 
Aufgabe in ihrer vollen Allgemeinheit würde den Rahmen 
dieser Darstellung übersteigen. Daher sollen uns hier nur 
die beiden nachstehenden, für den allgemeinen Fall grund-
legenden Spezialfälle beschäftigen: 

1) Die Elemente flt..., fm sind l i n e a r , d .h . in ihrer 
Normaldarstellung (Def. 9 [38]) sind höchstens die n + 1 
Koeffizienten 

ao,..., o , ßi.o,..., o , • • «o o. i 
von Null verschieden. Dann handelt es sich also um ein 
Gleichungssystem, das in der Form 

n 
(1) = 1, - .-,*») 

k = 1 
') Es sei auf die beiden folgenden, naheliegenden Verallgemeinerungen 

dieser Aufgabe hingewiesen: 
1. die Anzahl der Gleichungen und Unbekannten wird auch als abzählbar un-

endlich zugelassen, 
2. an Stelle des Körpers K wird ein Integritätsbereich (oder auch nur ein Ring) 

zugrunde gelegt, 
mit denen man sich in neuerer Zeit ebenfalls beschäftigt hat . 
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geschrieben werden kann, wo die aik und a( Elemente aus K 
sind. Ein Gleichungssystem der Form (1) heißt ein lineares 
Oleichungssystem in K. 

2) Es ist m = n = 1. Dann handelt es sich also um eine 
einzelne Gleichung der Form 

k = 0 
wo die dk Elemente aus K sind, von denen nur endlich viele 
4= 0 sind. Von dem trivialen Falle, wo alle = 0 sind und 
somit jedes x aus K Lösung der Gleichung ist, darf abgesehen 
werden. Dann existiert also ein letztes av 4= 0. Der so be-
stimmte Index r heißt der G r a d des links stehenden Ele-
mentes aus K[cc]. Der Fall r = 0 ist ebenfalls trivial, weil 
dann wegen der Annahme a0 4= 0 kein x aus K Lösung der 
Gleichung ist. Somit ist eine Gleichung der Form 

(2) ¿akx* = 0 (ar 4= 0, r £ 1) 
jfc = 0 

zu behandeln. Eine Gleichung der Form (2) heißt eine alge-
braische Gleichung r-ten Grades in K. 

In 1, I I I und IV werden wir die Teilaufgabe 1), in 2 die 
Teilaufgabe 2) behandeln. 

n . Gruppen 

§ 6. Definition der Gruppen 

Man redet von einer Gruppe, wenn folgender Tatbestand 
realisiert ist: 

(a) Es liegt eine Menge © von u n t e r s c h i e d e n e n E l e -
m e n t e n in irgendeiner endlichen oder unendlichen Anzahl vor. 

Vgl. die Bemerkungen zu § 1, (a). Anders als dort wird hier 
nicht gefordert, daß © mindestens zwei verschiedene Elemente 
besitzt. Wir bezeichnen Gruppen mit großen deutschen, Elemente 
aus Gruppen mit großen lateinischen Buchstaben. 
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(b) Für je zwei in bestimmter Reihenfolge gegebene Elemente 
A, B aus © ist e i n e V e r k n ü p f u n g definiert, d.h. jedem 
geordneten Elementpaar A, B aus © ist irgendwie ein Element 
G aus © zugeordnet. 

Vgl. die Bemerkungen zu § 1, (b). Wir nennen diese Verknüpfung 
hier Multiplikation, obwohl gelegentlich auch die Addition in 
einem Bereich als Gruppenverknüpfung zu betrachten ist, schreiben 
C = AB und nennen C das Produkt von A und B. 

(c) Die in (b) genannte Verknüpfung genügt für beliebige 
Elemente aus © den Gesetzen: 

(1) (AB) C = A(BC) ( a s s o z i a t i v e s G e s e t z ) ; 
(2) Zu jedem geordneten Elementpaar A, G aus © existieren 

eindeutig bestimmte Elemente B1 und B2 aus © so, daß ABÍ = C 
und B2A = C ist ( G e s e t z d e r u n b e s c h r ä n k t e n u n d 
e i n d e u t i g e n , h i n t e r e n u n d v o r d e r e n D i v i s i o n ) . 

Es fehlt also gegenüber den Additions- bzw. Multiplikations-
gesetzen des § 1 für Körper das kommutative Gesetz. Daher muß 
in (2) zwischen hinterer1) Division (Bestimmung von B± aus 
AB1 = C) und vorderer1) Division (Bestimmung von B2 aus 
B2A = C) unterschieden werden. Man kann aus diesem Grunde 

Q 
auch nicht die Bezeichnung -j- verwenden, sondern schreibt statt 

dessen gelegentlich Bx — A \ C, B2 = ü ¡A\ mehr eingebürgert 
hat sich jedoch die Schreibweise aus Satz 15. Die Einschränkung 
a =|= 0 in dem (2) entsprechenden Gesetz § 1, (7) fällt hier natür-
lich fort, weil keine zweite Verknüpfung und somit kein distri-
butives Gesetz vorliegt [vgl. die Bemerkung hinter § 1, (7)]. 

Definition 13. Wenn für eine Menge © die unter (a), (b), (c) 
aufgeführten Tatsachen realisiert sind, heißt © eine G r u p p e 
bezüglich der Verknüpfung (b). Die Anzahl der Elemente 
von © (sei sie endlich oder unendlich) heißt die O r d n u n g 
von ©. Wenn speziell auch noch das kommutative Gesetz 

(3) AB = BA 

erfüllt ist, heißt © eine a b e l s c h e G r u p p e . 
l) Diese Angaben beziehen sich auf die Stellung der Quotienten B^ B 2 . 
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Auch für Gruppen gilt analog zu Satz 3 [11]: 
Satz 14. In jeder Gruppe © existiert ein eindeutig be-

stimmtes Element E, das E i n s e l e m e n t oder E i n s von © 
heißt, mit der Eigenschaft: 

AE = EA = A für alle A aus ©. 
Beweis. Nach (2) existieren in © für alle A, B, . . . aus © 

E l e m e n t e EA,EB, • • • u n d FA,FB, • • • d e r a r t , d a ß 

AEÄ = A, BEb = B,.. . 
FÄA = A, FbB = B,.. . 

ist. Nach (2) kann man ferner zu jedem Elementpaar A, B 
aus © Elemente C und D so wählen, daß 

AC = B, DA = B 
ist. Daraus folgt nach (1) 

BEa = (DA)Ea = D(AEA) = DA = B = BEB, 
FaB = Fa(AC) = (FÄA)C = AC = B = FbB, 

also EA — EB,FA — FB wegen der Eindeutigkeit in (2). 
Daher sind EA, EB, • .. einerseits und FA, FB, • • • anderer-
seits alle dasselbe Element E bzw. F, und es gilt AE = A, 
FA = A für jedes A aus ©. Insbesondere folgt daraus für 
A = F bzw. E 

FE = F bzw. FE = E, also E = F. 

Daß E eindeutig durch die Forderung des Satzes bestimmt 
ist, folgt natürlich aus der Eindeutigkeit in (2). 

Bezüglich der Division in einer Gruppe beweisen wir 
ferner: 

Satz 15. Zu jedem Element A einer Gruppe © existiert ein 
eindeutig bestimmtes Element A_1 aus das das R e z i p r o k e 
zu A heißt, mit der Eigenschaft 

AA-1 = A-i-A = E. 
Es gilt 

(AB)-1 = B*A-\ 
4 H a s s e , Höhere Algebra 
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Die in (2) genannten Elemente Bl und B2 (hinterer und vor-
derer Quotient von C und A) sind durch 

Bx = A~lC, B2 = CA-1 

gegeben. 

Beweis, a) Nach (2) existieren eindeutig bestimmte Ele-
mente A1 und A2 in © derart, daß 

AAX = A2A = E 
gilt. Nach (1) und Satz 14 folgt dann 

Ax = EÄ1 = {A2A) A, = A2{AA,) = A2E = A2. 
Es hat also das Element A'1 = Ax = A% die im Satz ge-
nannte Eigenschaft und ist durch A eindeutig bestimmt. 

b) Aus {AB) (B-U- 1 ) = A{BB~1) A-1 = AEA-1 

= AA-1 = E 
und der Eindeutigkeit von {AB)-1 folgt, daß {AB)-1 

= B-1 A-1 ist. 

c) Die Elemente Bx = A_1C, B2 = CA-1 befriedigen nach 
(1), Satz 14 und dem unter a) Bewiesenen die Gleichungen 
ABt = C, B2A = C, sind also deren nach (2) eindeutig be-
stimmte Lösungen. 

Analog zu den am Schluß von § 1 getroffenen Festsetzungen 
schreibt man 
..., A-2, A-\ A°, A1, Ä\ . . . für . . A ^ A - 1 , A~\ E, A, AA,... 

{ganze Potenzen von A). 
Unter Berücksichtigung der nach Satz 15 bestehenden Formel 

( ¿ - 1 ) - 1 = A 

ergibt sich dann mittels der Definition der Rechenoperationen im 
Bereich der ganzen Zahlen 

j^m^n — ¿¡m + r») - Amn 

für beliebige ganze Zahlen m, n. Speziell gilt Em = E für jede 
ganze Zahl m. 
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Der späteren Anwendung halber formulieren wir noch 
besonders die beiden folgenden Sätze, deren erster nur eine 
andere Ausdrucksweise für das Gesetz (2) ist: 

Satz 16. Ist A ein festes Element einer Gruppe ©, so durch-
läuft jedes der Produkte AB und BA alle Elemente von ©, 
jedes einmal, wenn B dieses tut. 

Satz 17. Das Reziproke Bdurchläuft alle Elemente von ©, 
jedes einmal, wenn B dieses tut. 

Beweis, a) Ist A irgendein Element von ©, so ist nach 
Satz 15 A = (4 - 1 ) - 1 ; A ist also Reziprokes B-1 zu 2? = A-1. 

b) Aus B-1 = B - i folgt (Bf 1 ) - 1 = (Sa"1)-1, also B1 = B2, 
wieder nach Satz 15. 

Für den Nachweis, daß eine Gruppe vorliegt, kann man 
die Feststellung (2), daß alle hinteren und vorderen Quotien-
ten vorhanden und eindeutig bestimmt sind, auf Grund des 
folgenden Satzes durch zwei einfachere Feststellungen er-
setzen : 

Satz 18. Unter der Voraussetzung, daß (a), (b) und (1) 
erfüllt sind, ist die Forderung (2) gleichwertig mit den leiden 
Forderungen: 

(2a) Es existiert ein Element Ein © derart, daß AE = A für 
alle A aus © ist (Ex i s t enz des h i n t e r e n E inse l emen t s ) . 

(2 b) Zu jedem A aus © existiert ein Element A-1 aus © derart, 
daß AA-1 = Eist (Ex i s t enz des h i n t e r e n Rez iproken) . 

Beweis, a) Ist (a), (b), (1), (2) erfüllt, so stimmen nach 
dem Vorhergehenden auch (2 a) und (2 b). 

b) Es seien (a), (b), (1), (2 a) und (2 b) erfüllt. Ist dann 
das nach (2b) ebenfalls existierende hintere Rezi-

proke zu A'1, also = E, so ergibt sich durch vor-
dere Multiplikation dieser Relation mit A nach (1), (2 a), (2 b) 
E(A-1)-1=A. Daher ist einerseits zxLckEA = E{A~1)-1 = A, 
d. h. E ist auch vorderes Einselement, und andererseits somit 
(^l - 1)-1 = A, also A_1A = E, d. h. A~l ist auch vorderes 
Reziprokes zu A. Hieraus und aus (2 b) sowie (1) ergibt sich 
dann, daß die Gleichungen AB1 = G und B2A = G mit den 

4 ' 
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Relationen Bl = A~1C bzw. B2 = CA-1 gleichwertig sind, 
nämlich mit ihnen durch vordere bzw. hintere Multiplikation 
mit A'1 und rückwärts mit A zusammenhängen. Jene Glei-
chungen werden also durch diese Ausdrücke Blt B2 ein-
deutig gelöst. Daher ist (2) erfüllt. 

Beispiele 
1. Offenbar ist jeder Ring eine abelsche Gruppe bezüglich seiner 

Addition als Gruppenverknüpfung. Das Einselement dieser Gruppe 
ist die Null des Ringes. Ferner bilden auch die von Null verschie-
denen Elemente eines Körpers eine abelsche Gruppe bezüglich der 
Körpermultiplikation als Gruppenverknüpfung. 

2. Besteht die Menge (£ nur aus einem Element E und setzt 
man fest EE = E, so ist 6 eine abelsche Gruppe der Ordnung 1 
bezüglich dieser Verknüpfung, die sog. identische Gruppe oder 
Einsgruppe. E ist ihr Einselement. 

3. Enthält © nur zwei Elemente E, A und setzt man fest 
EE = E, EA = AE = A, AA = E, 

so sieht man leicht, daß © eine abelsche Gruppe der Ordnung 2 
bezüglich dieser Verknüpfung ist. Diese entsteht aus dem in § 1, 
Beispiel 4 genannten Körper, wenn man dessen Addition als 
Gruppenverknüpfung ansieht und 0 mit E, e mit A identifiziert. 

4. Es sei ein gleichseitiges Dreieck im Raum gegeben, dessen 
drei Ecken und zwei Seitenflächen als unterschieden gelten. Wir 
betrachten alle Drehungen, die dieses Dreieck als Ganzes mit sich 
zur Deckung bringen (ohne daß jedoch jede einzelne Ecke oder 
Fläche in sich überzugehen braucht), und unterscheiden diese 
Drehungen nur nach der Endlage der Ecken und Flächen des 
Dreiecks relativ zu deren Anfangslage (also weder nach den Zwi-
schenstadien, noch nach der absoluten Anfangs- oder Endlage). 
Die so erklärte Menge © unterschiedener Elemente besteht offen-
bar aus den folgenden Drehungen: 

a) der identischen Drehung E (Erhaltung der Lage), 
b) zwei Drehungen Alt A2 um die durch den Dreiecksmittel-

punkt gehende, zur Dreiecksebene senkrechte Achse um die 

Winkel - g - , - g - , 

c) drei Drehungen B0, B v B2 um je eine der drei Mittellinien 
des Dreiecks um den Winkel n. 
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Dabei mögen der in b) vorliegende Drehungssinn sowie die in 
c) genannten Drehachsen als im Räume fest, d. h. den Drehungen 
des Dreiecks nicht mitunterworfen angesehen werden. 

Ausgehend von einer festen Anfangslage lassen sich diese 
Drehungen wie folgt durch ihre Endlagen veranschaulichen: 

Definiert man nun die Multiplikation in © durch Nacheinander-
ausführung der betr. Drehungen, so ist © eine endliche Gruppe 
der Ordnung 6 bezüglich dieser Multiplikation. DennTnach dem 
Gesagten sind (a), (b) in © realisiert, ferner stimmt" (1) offen-
sichtlich, schließlich sind (2 a) und (2 b) erfüllt, weil © die identi-
sche Drehung E als Einselement und zu jeder Drehung C die durch 
rückwärtige Ausführung entstehende D enthält, für die offenbar 
CD = E gilt. Wie sich aus obiger Veranschaulichung sofort ergibt, 
lassen sich die von E verschiedenen Elemente von © wie folgt 
durch A — Ar und B = B0 ausdrücken: 

Ax = A, A2 = A2, B0 -B, Bx = BA, B2 = BA2. 
•Es bestehen ferner die folgenden Yerknüpfungsbeziehungen: 

A3 = E, B2 = E, AB = BA2, 
aus denen sich übrigens alle anderen herleiten lassen. Die letzte 
dieser Beziehungen zeigt, daß © keine abelsche Gruppe ist. Als 
Reziproke findet man 

E-i = E, A-1 = A2 (A2)-1 = A~2 = A, 
B-1 = B, (BA)-1 = BA, {BA2)-1 = BA2. 

Während uns die in Beispiel 1 hervorgehobene Anwendung des 
Gruppenbegriffs in 2, § 4 eine wichtige Einsicht in die Struktur 
von Integritätsbereichen und Körpern liefern wird, werden wir es 
an zwei entscheidenden Stellen (Definition der Determinanten in 
1, § 17 und Definition der galoisschen Gruppe in 2, § 15) mit end-
lichen, nicht notwendig abelschen Gruppen zu tun haben, deren 
Elemente n ich t gleichzeitig Elemente desjenigen Bereiches sind, 
den wir für die Lösung der Aufgaben der Algebra zugrunde legen. 

§ 7. Untergruppen, Kongruenzrelationen, Isomorphie 
Wir übertragen in diesem Paragraphen die Entwicklungen 

des § 2 sinngemäß auf Gruppen. In Analogie zu Def. 4 [19] 
setzen wir fest: 
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Definition 14. Bilden die Elemente einer Teilmenge einer 
Gruppe © bezüglich, der in © zugrunde liegenden Multiplikation 
eine Gruppe, so heißt § eine U n t e r g r u p p e von ©. 

Genau wie in § 2 den Satz 6 [19], beweist man hier: 
Satz 19. Eine Teilmenge § der Gruppe © ist dann und nur 

dann Untergruppe von ©, wenn Produkt sowie hinterer und 
vorderer Quotient von Elementen aus wie sie innerhalb © 
definiert sind, stets wieder zu § gehören. 

Bezüglich der Zugehörigkeit der Quotienten zu § genügt es 
nach § 6 offenbar auch, zu fordern, daß das Einselement E von 
© zu § gehört, ebenso jedes Reziproke B~l eines Elementes B 
aus Für den Fall einer endlichen Gruppe © gilt sogar: 

Satz 20. Ist © eine endliche Gruppe, so ist die Behauptung von 
Satz 19 auch richtig, wenn nur die Produkte von Elementen aus § 
(nicht auch die Quotienten) berücksichtigt werden. 

Beweis. Nach § 6, (2) sind für festes A aus § die Elemente AB 
und BA je sämtlich verschieden, wenn B die Elemente von 
jedes einmal, durchläuft. Also müssen sie mit den in derselben 
Anzahl vorhandenen sämtlichen Elementen von § übereinstimmen, 
was die Existenz aller hinteren und vorderen Quotienten von Ele-
menten aus § innerhalb § besagt. 

Für die Übertragung der weiteren Sätze 7—9 [20—22] 
und Definitionen 5—7 [20—23] des § 2 können wir uns 
mit der Formulierung der entsprechenden Sätze und Defi-
nitionen begnügen und im übrigen auf die entsprechenden 
Beweise und Ausführungen des § 2 verweisen. 

Satz 21. Sind §2,... irgendwelche [endlich oder unend-
lich1) viele] Untergruppen einer Gruppe ©, so ist auch der 
Durchschnitt der Mengen §2,. . . eine Untergruppe von ©; 
diese heißt D u r c h s c h n i t t s g r u p p e oder kurz Durch-
schni t t der Gruppen ^ §2,.... 

Definition 15. Sind §2,... irgendwelche (endlich oder 
unendlich, viele) Untergruppen einer Gruppe ©, so heißt der 
Durchschnitt aller §2,... als Untergruppen enthaltenden 
Untergruppen von © das K o m p o s i t u m von J p 2 , . . . oder 
auch die aus § 2 , . . . k o m p o n i e r t e Gruppe. 

Vgl. das in der Anm. 1 zu Satz 7 [20] über die Numerierung Gesagte. 
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Definition 16. Erfüllt eine Äquivalenzrelation = in einer 
Gruppe © neben §2, (a), (ß), (y) auch noch die Bedingung: 

(1) aus A1 = A2, B1 = B2 folgt At B1 = A2B2, 
so nennen wir sie eine Kongruenzre la t ion in © und die 
ihr entsprechenden Klassen die Res tk lassen von © nach ihr. 

Satz 22. Liegt in einer Gruppe ® eine Kongruenzrelation= 
vor und definiert man in der Menge © der Restklassen nach 
ihr eine Verknüpfung durch elementweise Multiplikation, so 
ist © eine Gruppe bezüglich dieser Verknüpfung; © heißt die 
Restk lassengruppe von © nach der Kongruenzrelation ==•. 

Satz 23. Die folgende Festsetzung liefert eine Äquivalenz-
relation in der Menge aller Gruppen: Es sei © gs ©' dann 
und nur dann, wenn erstens © und ©' gleichmächtig sind und 
wenn man zweitens die eineindeutige Zuordnung zwischen den 
Elementen A, B,.. . von © und A' ,B'... . von ©' so wählen 
kann, daß die Bedingung besteht: 

(2) wenn A <—> A', B > B' ist, ist AB A' B'. 

Definition 17. Eine eineindeutige Zuordnung zwischen 
zwei Gruppen © und ©' mit der Eigenschaft (2) heißt ein 
Isomorphismus zwischen © und ©', und © und ©' selbst 
heißen dann isomorph. Die in Satz 23 genannte Äquivalenz-
relation © as ©' für Gruppen heißt I somorphie , die ihr 
entsprechenden Klassen die Typen der Gruppen. 

Beispiele 
1. Jede Gruppe enthält als Untergruppen: a) sich selbst, b) die 

nur aus ihrem Einselement bestehende, identische Untergruppe 
(§ 6, Beispiel 2). Alle anderen Untergruppen von ® heißen echt 
oder eigentlich. 

2. Alle Gruppen der Ordnung 1 sind isomorph, d. h. es gibt 
nur einen Gruppentypus der Ordnung 1. Auch innerhalb einer 
Gruppe © gibt es nur eine Untergruppe der Ordnung 1, denn aus 
AA = A folgt nach § 6, (2) und Satz 14 [49] A = E. Daher kann 
man mit Recht von der identischen Gruppe <2 und der identi-
schen Untergruppe (5 von © reden. 
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3. Die in § 6, Beispiel 3 genannte Gruppe hat keine echten 
Untergruppen. 

4. Man bestätigt leicht, daß die folgenden Teilmengen, und 
keine weiteren, echte Untergruppen der Gruppe @ von § 6, Bei-
spiel 4 sind: 

a) E, A, A2; b„) E, B; bx) E, BA; b2) E, BÄK 
Sie seien mit 9i, <p0, bezeichnet. Ersichtlich ist der Durch-
schnitt je zweier das Kompositum je zweier ©. Ferner sind 
§0 , § 2 zueinander isomorph (vgl. d. Bern, nach Def. 7 [24/25]). 

§ 8. Zerlegung einer Gruppe nach einer Untergruppe 

Neben den Kongruenzrelationen (Def. 16 [55]) hat man 
in der Gruppentheorie wegen des Wegfallens des kommu-
tativen Gesetzes noch allgemeinere Äquivalenzrelationen und 
deren Klasseneinteilungen einzuführen, deren Studium uns 
gleichzeitig einen tieferen Einblick in die Natur der Kon-
gruenzrelationen in Gruppen vermitteln wird. Diese ergeben 
sich auf folgende Weise: 

Satz 24. Es sei § eine Untergruppe der Gruppe_ ©. Dann 
liefert jede der leiden folgenden Festsetzungen eine Äquivalenz-
relation in der Menge ©: Sind S und S' Elemente aus ©, so sei 

(la) S ü-' S'Oö) dann und nur dann, wenn S = S'A mit 
A aus 

(lb) S = S'($q) dann und nur dann, wenn S = AS' mit A 
aus 

d. h. wenn der hintere bzw. vordere Quotient von S und S' zu 
gehört. 

Beweis. Es ist erfüll t : § 2, (a), weil E, § 2, (ß), weil mit A 
auch A~\ § 2, (y), weil mit Alt A2 auch A1 A2 und A2A1 zu 
§ gehören, wie man aus Def. 14 [54] oder Satz 19 [54] ohne 
weiteres entnimmt. 

Auf Grund von Satz 24 definieren wir nun : 
Definit ion 18. Die in Satz 24 genannten Äquivalenzrela-

tionen heißen h i n t e r e bzw. v o r d e r e Ä q u i v a l e n z n a c h 
die ihr entsprechenden Klassen von Elementen aus © h i n t e r e 
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bzw. v o r d e r e B e s t k l a s s e n 1 ) n a c h die durch diese ge-
lieferte Zerlegung von © h i n t e r e bzw. v o r d e r e Z e r l e g u n g 
v o n © n a c h § und ein vollständiges Repräsentantensystem 
für diese v o l l s t ä n d i g e s h i n t e r e s bzw. v o r d e r e s R e s t -
s y s t e m v o n © n a c h ig. 

Jede der Restklassen nach § entsteht aus irgendeinem ihr an-
gehörigen Elemente S, indem alle Produkte SA bzw. mit den 
Elementen A aus § gebildet werden. Man deutet diese ihre 
Struktur gewöhnlich durch die Bezeichnung S$Q bzw. an (vgl. 
§ 9, Def. 20 [59]). Ist ferner Sv S2,... bzw. T l f T a , . . .2) ein voll-
ständiges hinteres bzw. vorderes Restsystem von © nach so 
schreibt man dementsprechend 

© = S & + + • . • bzw. © = + ©r 2 + • . . 
für die hintere bzw. vordere Zerlegung von © nach wo also die 
Zeichen + die in der Mengentheorie übliche Bedeutung haben 
(Bildung der Vereinigungsmenge elementfremder Mengen). 

Die aus dem Einselement E oder auch aus irgendeinem Element 
von § entspringende hintere sowohl wie vordere Restklasse ist 
ersichtlich die Gruppe § selbst. 

Auf eine Beziehung der beiden Äquivalenzrelationen ( la) und 
(lb), sowie der ihnen entsprechenden Klasseneinteilungen zuein-
ander wird im nächsten Paragraphen anläßlich der Definition des 
Begriffes Normalteiler eingegangen werden. 

Die Zerlegungsmöglichkeit von © nach § liefert ein be-
sonders wichtiges Resultat , wenn © und somit auch § end-
lich ist. Aus § 6, (2) ergibt sich dann nämlich sofort: 

Satz 25. Ist © eine endliche Gruppe der Ordnung n und § 
eine Untergruppe von © der Ordnung m, so bestehen die hin-
teren wie die vorderen Restklassen nach sämtlich aus gleich 
vielen, nämlich m Elementen. Für ihre Anzahl j, den sog. 
I n d ex von IQ in gilt somit n = mj. Hiernach ist also die 
Ordnung m sowie der Index j jeder Untergruppe von @ ein 
Teiler der Ordnung n von 

Die in der Literatur vielfach übliche Bezeichnung Nebengruppen nach £ 
ist schlecht, weil stets nur die durch § selbst gebildete Klasse Untergruppe 
von © ist (vgl. 3 ,1 , § 8, Aufg. 11). Will man Restklassen allein für die in 2, § 2 
behandelten Spezialfälle vorbehalten, so sage man Nebenklassen; allerdings 
hat das den Beiklang des Ausschließens der aus der Untergruppe § selbst be-
stehenden Ilaupiklasse, was meistens unerwünscht ist. 

2) Vgl. das in der Anm. 1 zu Satz 7 [20] über die Numerierung Gesagte. 
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Beispiele 
1. Ist § = ©, so ist § selbst die einzige Restklasse nach für 

endliches © der Ordnung n ist dann m = n, j = 1. Ist £> = (£, 
so sind die Elemente von © die Restklassen nach § ; für endliches 
© der Ordnung n ist dann m = 1, j = n. 

2. Für das in §§ 6,7 behandelte Beispiel 4 erhält man: 

3Í ist Untergruppe der Ordnung 3 vom Index 2, 
§0' §i> §2 sind Untergruppen der Ordnung 2 vom Index 3. Es 

gelten die Zerlegungen 
© = % + B5R = 9Í + fflB, 

& = §„ + + A2%0 = § 0 + + 

Während hintere und vordere Äquivalenz und Zerlegung nach 51 
schon deshalb zusammenfallen müssen, weil nur zwei Restklassen 
existieren, deren eine SJÍ ist, und deren andere somit aus den nicht 
zu 9J gehörigen Elementen B, BA, BA2 von © bestehen muß, 
sind hintere und vordere Äquivalenz und Zerlegung nach Jp0 ver-
schieden, und zwar nicht nur durch die (nicht als Verschiedenheit 
zu zählende) Reihenfolge der Klassen. Denn es enthält 

die Elemente A, BA2; A2§a die Elemente A2, BA; 
•VqA ,, ,, A, BA; ^QQA2 ,, ,, A2, BA2. 

§ 9. Normalteiler, konjugierte Teilmengen einer Gruppe, 
Faktorgruppe 

Wie aus dem letzten Beispiel des vorigen Paragraphen 
hervorgeht, brauchen die beiden Äquivalenzrelationen 
und S in einer Gruppe © nach einer Untergruppe ig nicht 
übereinzustimmen. Wir definieren nun: 

Definition 19. Eine Untergruppe Q der Gruppe ® heißt 
dann und nur dann Normal te i l e r oder i n v a r i a n t e U n t e r -
gruppe von wenn hintere und vordere Äquivalenz nach § 
dasselbe besagen, d. h. dann und nur dann, wenn für jedes S 
aus ® die hintere Restklasse mit der vorderen Restklasse 
SqS übereinstimmt. 
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Ist § Normalteiler von ©, so ist also die hintere Zerlegung von 
& nach § (bis auf die unbestimmte Reihenfolge der Klassen) mit 
der vorderen Zerlegung von © nach § identisch, und umgekehrt 
folgt aus der Identität beider Zerlegungen nach einer Untergruppe 
§ gemäß § 2, (A), (B) auch, daß hintere und vordere Äquivalenz 
nach § dasselbe besagen, also § Normalteiler von © ist. 

Für einen Normalteiler § von © brauchen wir natürlich die 
hintere und vordere Äquivalenz nach sowie die hinteren und 
vorderen Restklassen nach § nicht durch die Bezeichnung „hin-
tere" und „vordere" zu unterscheiden. 

Da für eine abelsche Gruppe © nach § 6, (3) und Satz 24 
[56] hintere und vordere Äquivalenz sicher dasselbe besagen, 
gilt : 

Satz 26. Ist © eine abelsche Gruppe, so ist jede Untergruppe 
fe von © Normalteiler von ©. 

Um zu einer näheren Einsicht in die Bedeutung des Be-
griffes Normalteiler zu gelangen, gehen wir, zunächst ohne 
Zusammenhang mit Def. 19, auf eine weitere, wichtige Äqui-
valenzrelation der Gruppentheorie ein, die sich auf die Menge 
aller Teilmengen einer Gruppe © bezieht. Es empfiehlt sich 
dabei zur Vereinfachung der Schreibweise und der auszu-
führenden Schlüsse, die obigen Bezeichnungen Sig bzw. ipS 
für die hintere bzw. vordere Kongruenzklasse von S nach 
d. h. fü r die Menge aller Elemente SA bzw. AS, wo A die 
Elemente von § durchläuft , auf beliebige Teilmengen von © 
zu verallgemeinern: 

Definit ion 20. Es seien ÜÖ2 und 91 Teilmengen der Gruppe 
©. Dann werde unter SDi-Ji diejenige Teilmenge von © ver-
standen, die aus allen Produkten AB besteht, wo A die Ele-
mente von 3)?, B die von durchläuft. 

Aus der Gültigkeit des assoziativen Gesetzes § 6, (1) für 
die Multiplikation in © folgt dann ohne weiteres: 

Satz 27. Die in Def. 20 erklärte „elementweise Multipli-
kation" in der Menge aller Teilmengen einer Gruppe © genügt 
dem assoziativen Gesetz. 

In der Menge aller Teilmengen von & sind hiernach § 6, (a), 
(b), (1) realisiert. Dennoch ist sie, falls © ={= (5 ist, keine Gruppe 
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bezüglich der Verknüpfung von Def. 20. Denn ist 9JI = E und 
besteht 51t aus E und A 4= E, so existiert keine Teilmenge £ der-
art, daß SRC = 9K ist. 

Nach Satz 27 hat speziell T'üRS für beliebige T, S aus © den 
eindeutig bestimmten Sinn ( T W ) S = T(mS), und es gilt 
T'(TmS)S' = (T'T)Wl(SS'), was wir im folgenden häufig be-
nutzen werden. 

Wir beweisen n un : 

Satz 28. Wird für zwei Teilmengen 9JI und $01' einer Gruppe 
© festgesetzt: ÜD? 3Ji' dann und nur dann, wenn 2J}' = S'1SDtS 
mit einem S aus © ist, so ist das eine Äquivalenzrelation in der 
Menge aller Teilmengen von ©. 

Beweis. Es ist erfüll t : § 2, (a), weil E-1 WE = ist, 

§ 2, (ß), weil aus W = S " 1 SRS folgt 

3« = SWS-1 = (S-1)-1 WS~\ 

§2, (y), weil aus = S ~ m S , SK" = T ^ W T folgt 
HR" = T-i(S~mS)T = (T-iS-^miST) 

= (ST)-1 m (ST). 

Die Herstellung von W = S^WIS aus 3Ji nennt man Trans-
formation von 351 mit S. 

Auf Grund von Satz 28 definieren wir: 

Def in i t ion 21. Ist 3J1' im Sinne von Satz 28, so 
heißen 3)1 und 9J}' k o n j u g i e r t e T e i l m e n g e n von ®. Die 
durch, diese Äquivalenzrelation gelieferten Klassen in der Menge 
aller Teilmengen von © heißen die K l a s s e n k o n j u g i e r t e r 
T e i l m e n g e n von ©. 

Unter diesen Klassen kommen speziell vor : 

a) Die Klassen konjugierter Elemente von ©, d. h. solche 
Klassen, die durch eine Teilmenge mit nur einem Element A 
aus © erzeugt werden, die also aus der Gesamtheit aller 
Elemente S - 1 4 / S bestehen, wo S die Elemente von © 
durchläuft . 
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E i n e solche Klasse entspringt aus dem Einselement E und ent-
hält kein weiteres Element. Ist © abelsch, also stets S ^ A S 
= S^SA = EA = A, so bestehen alle Klassen konjugierter Ele-
mente von © je nur aus einem Element; sonst muß mindestens 
eine solche Klasse mehr als ein Element enthalten, weil aus 
AS 4= SA folgt S-^AS =t= A. 

b) Die Klassen konjugierter Untergruppen von d. h. 
solche Klassen, die durch eine Untergruppe § von © erzeugt 
werden, die also aus der Gesamtheit aller Teilmengen 
S~l bestehen, wo S die Elemente von © durchläuft . 

Die Bezeichnung konjugierte U n t e r g r u p p e n recht-
fertigt sich durch den folgenden Satz: 

Satz 29. Die zu einer Untergruppe § einer Gruppe ® kon-
jugierten Teilmengen S s i n d wieder Untergruppen von 

die überdies zu also auch untereinander isomorph sind. 

Beweis, a) Es ist nach Satz 27 

(S-^S) (S-ISQS) = ( m S = 8-^8, 
da wegen der Gruppeneigenschaft § 6, (b) von § und nach 
Satz 16 [51] offenbar § § = § ist. Diese Relation besagt 
nach Def. 20, daß alle Produkte von Elementen aus S - 1 !qS 
wieder zu S ^ i g S gehören. Da ferner in S^SqS das Element 
E = S^ES und mit A' = S^AS auch A'-1 = S^A^S 
vorkommt, weil E und mit A auch A-1 in § enthalten ist, 
ist S - i Q S Untergruppe von © (Satz 19 [54]). 
. b) Ordnet man die Elemente von § und S~1iQS durch 
die Festsetzung A <—^ S~XAS einander zu, so sind erfüll t : 
§ 2, (<5) und § 2, (e), weil so jedem A aus § eindeutig ein 
Element aus zugeordnet ist, § 2, (¿'), weil jedes A' 
aus nach Definition dieser Teilmenge als S^AS mit A 
aus § darstellbar ist, und § 2, (e'), weil aus ¿'"M^S' = S~1A2S 
durch vordere und hintere Multiplikation mit 8 bzw. S~x folgt 
Ax = A2. Schließlich ist (S-^S^S-^S) = S-^Ä^S, 
also auch die Bedingung (2) von Satz 23 [55] erfüllt. Somit 
ist tatsächlich § ^ 8 ~ ^ 8 . 

Über die Unterschiedenheit konjugierter Untergruppen 
beweisen wir: 
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Satz 30. Zwei zur Untergruppe § der Gruppe © konju-
gierte Untergruppen und sind sicher identisch, 
wenn S ä T(!Q) ist. Ist also T1: T2,.. . ein vollständiges 
vorderes Restsystem von © nach so sind höchstens die kon-
jugierten Untergruppen 

voneinander verschieden, d. h. jede zu § konjugierte Unter-
gruppe © ist mit einer von diesen identisch. 

Beweis. Ist S T($), also S = AT mit A aus so ist 
= {AT)-^(AT) = (T-^A'^MAT) = T~\A-^A)T 

= T _ 1 § T, weil nach Satz 16[51] offenbar A~^A = A~H$A) 
= A-1 !» = $Q ist. 

Wir stellen jetzt den Zusammenhang der speziellen, unter 
a) und b) genannten Klassen konjugierter Teilmengen mit 
dem Begriff Normalteiler durch die folgenden beiden Sätze 
her, deren jeder auch zur Definition dieses Begriffes hätte 
dienen können: 

Satz 31. Eine Untergruppe § der Gruppe © ist dann und 
nur dann Normalteiler von ©, wenn sie mit allen ihren kon-
jugierten Untergruppen identisch ist, d. h. wenn die Klasse von 
ig im Sinne von Def. 21 nur aus § selbst besteht. 

Beweis. Die in Def. 19 vorkommenden Relationen SSj = igS 
für die Elemente S aus © sind mit den Relationen § 
gleichbedeutend, wie sich durch vordere Multiplikation mit 
Sbzw. S ergibt. 

Satz 32. Eine Untergruppe § von © ist dann und nur dann 
Normalteiler von ©, wenn sie eine Vereinigungsmenge von 
Klassen konjugierter Elemente von © ist, d. h. wenn mit A 
stets auch alle zu A konjugierten Elemente von © zu gehören. 

Beweis, a) Ist § Normalteiler von ©, also nach Satz 31 
S-1 Jp<S' = § für alle S aus ©, so enthält ig alle Elemente 
S^AS, wo S zu © und A zu § gehört, d. h. mit A auch 
alle zu A konjugierten Elemente von ©. 

b) Ist umgekehrt letzteres der Fall, so sind S ^ i g S und 
SigS-1 für jedes S aus © in § enthalten. Durch vordere 
bzw. hintere Multiplikation mit S folgt daraus, daß igS in 
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BIG und <S'§ in §<S enthalten ist, also SIQ = IQS. Somit ist 
dann § Normalteiler von ©. 

Nach Satz 31 ist eine Untergruppe § als Normalteiler von © 
auch dadurch gekennzeichnet, daß § bei Transformationen mit 
allen Elementen S aus ® urlgeändert bleibt (vgl. die Bern, zu 
Satz 28); daher die weitere Bezeichnung invariante Untergruppe 
in Def. 19. 

Nicht immer ist jede Untergruppe von © Normalteiler 
von ©. Man kann aber aus jeder Untergruppe nach folgen-
dem Satz zwei Normalteiler herleiten: 

Satz 33. Ist § eine Untergruppe von ©, so sind der Durch-
schnitt und das Kompositum aller zu ¡Q konjugierten Unter-
gruppen Normalteiler von ©. 

Beweis, a) Kommt A im Durchschnitt SD aller zu § kon-
jugierten Untergruppen von ©, d. h. in allen S ^ Q S vor, wo 
S die Gruppe © durchläuft, so kommt T_1AT für jedes 
feste T aus © in allen T-^S-^T = (STj-^ST) vor. 
Nach Satz 16 [51] sind das für jedes feste T aus © wieder 
alle zu § konjugierten Untergruppen von @. Nach Satz 32 
ist also ® Normalteiler von ®. 

b) Ist ® das genannte Kompositum, so enthält ® alle 
Wie eben enthalten dann T ~ m T und eben-

falls alle S-ifaS, sind also solche Untergruppen von ©, wie 
sie nach Def. 15 [54] zur Bestimmung von ® durch Durch-
schnittsbildung zu verwenden sind. Also ist £ in T^HiT 
und in T^tT'1 für jedes T aus © enthalten. Daraus folgt 
wie im Beweis zu Satz 32 unter b), daß ® Normalteiler von 
© ist. 

Die wichtigste Eigenschaft der Normalteiler, die für unsere 
Anwendung der Gruppentheorie in 2, § 17 von fundamen-
taler Bedeutung sein wird, besteht nun in dem engen Zu-
sammenhang der Normalteiler einer Gruppe © mit den in © 
möglichen Kongruenzrelationen. In dieser Hinsicht gelten 
die folgenden beiden Sätze: 

Satz 34. Ist § Normalteiler von ©, so ist die (gleichzeitig 
hintere und vordere) Äquivalenz nach § eine Kongruenzrelation 
in ©. 
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Beweis. Nach Def. 19 ist ¡qS = SIG für jedes S aus ®. 
Daraus folgt nach Def. 20 und Satz 27 
(i) mm=¡gm)? = zm? 

= mm = $(st). 
Hiernach gehören alle Produkte aus Elementen zweier Rest-
klassen ¡qS,$qT nach § einer und derselben Restklasse, 
nämlich !$(ST), nach § an, d. h. es ist § 7, (1) für die Äqui-
valenz nach § erfüllt. 

Satz 36. Jede Kongruenzrelation in © ist mit der (gleich-
zeitig hinteren und vorderen) Äquivalenz nach einem bestimmten 
Normalteiler § von © identisch. § ist die Gesamtheit der Ele-
mente von ©, die dem Einselement E kongruent sind, d. h. die 
Restklasse, der E nach der Kongruenzrelation angehört. 

Beweis, a) Die Menge § der zu E kongruenten Elemente 
von © ist zunächst eine Untergruppe von ©. Denn die Be-
dingungen von Satz 19 [54] (vgl. die an ihn geknüpfte Be-
merkung) sind erfüllt, erstens weil aus E = A, E = B nach 
(1) in Def. 16 [55] folgt E = AB, zweitens weil Z?= E ist, 
drittens weil aus E = A, A~x = Anach (1) in Def. 16 
folgt A-1 = E. 

b) Wenn Ä = B, also nach (1) in Def. 16 AB-1 = E und 
B-^A = E ist, so ist nach Satz 24 [56] A M £(§) und 
A ffi und umgekehrt folgt aus jeder dieser Relationen 
nach (1) in Def. 16 A = B. Hintere und vordere Äquivalenz 
nach der Untergruppe ip stimmen also beide mit unserer 
Kongruenz, d. h. auch untereinander überein, was die Be-
hauptungen ergibt. 

Nach den letzten beiden Sätzen gibt es in einer Gruppe © keine 
anderen Kongruenzrelationen als die Äquivalenzrelationen im 
Sinne von Def. 18 [56] nach Normalteilern § von ©. Insbesondere 
sind die letztgenannten Äquivalenzrelationen keine Kongruenz-
relationen, wenn § ke in Normalteiler von © ist. 

Wir können jetzt das Resultat von Satz 22 [55] auch so 
aussprechen: 

Satz 36. Ist § Normalteiler von @, so lüden die (gleich-
zeitig hinteren und vorderen) Restklassen von © nach § bei 
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elementweiser Multiplikation eine Gruppe ©, die Restklassen-
gruppe von © nach ig. Man nennt © auch die F a k t o r g r u p p e 
von © nach § und schreibt © = ©/§. 

Das Rechnen mit den Elementen QS, !qT, . . . der Faktor-
gruppe © / § hat nach der Regel (1) zu geschehen. Für end-
liches © ist nach Satz 25 [57] © / § von der durch den Index 
von § bestimmten Ordnung. Schließlich gilt ersichtlich: 

Satz 37. Ist © eine abelsche Gruppe und § eine Untergruppe 
von ©, so ist auch ©/§ abelseh. 

Beispiele 
1. Die unechten Untergruppen G und © von © sind stets 

Normalteiler von ©. Für die Faktorgruppen gilt ®/@ © und 
©/© ^ e . 

2. Für die in §§ 6, 7, Beispiel 4 behandelte Gruppe © sind, wie 
schon aus dem in § 8, Beispiel 2 über © Gesagten hervorgeht, die 
Untergruppen § 0 , ¡pt, zueinander konjugiert und keine Normal-
teiler, während die Untergruppe Sli Normalteiler ist. Man erkennt 
das auch durch Bildung der Klassen konjugierter Elemente von 

die sich, wie aus den Formeln von § 6, Beispiel 4 leicht zu 
entnehmen ist, folgendermaßen zusammensetzen: 

a) E\ b) A, A2 = B~lAB, 
c) B, BA = A~2BA2, BA2 = A_1BA. 

Hiernach wird die Klasse der zu § 0 konjugierten: 

§0. 'Vi " §2 ~ A 
während $Ji die Vereinigungsmenge der Klassen a) und b) ist. Die 
Faktorgruppe ®/9l ist abelsch von der Ordnung 2 (vgl. § 6, Bei-
spiel 3). 

3. Die abelsche Gruppe © der rationalen Zahlen =4= 0 bezüglich 
der gewöhnlichen Multiplikation besitzt z. B. als Untergruppen 
die Gruppe iß der positiven rationalen Zahlen und die Gruppe U 
derjenigen rationalen Zahlen, die sich als Quotienten ungerader 
ganzer Zahlen darstellen lassen. Es gelten offenbar folgende Zer-
legungen von © nach bzw. II: 
© = sp + ( _ 1) % © = U + 2U + 22 U + • • • 

+ 2"1 U + 2 - 2 U + • • •, 
5 Hasse, Höhere Algebra 
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so daß also ©/iß endlich von der Ordnung 2, ®/U unendlich ist1). 
4. Die abelsche Gruppe © der ganzen Zahlen bezüglich der ge-

wöhnlichen Addition besitzt z. B. die Untergruppe § aller geraden 
Zahlen. Es gilt die Zerlegung 

© = § + ! © , 
so daß also ©/§ wieder endlich von der Ordnung 2 ist2). Wir 
kommen in 2, § 2 ausführlich auf diese und analog gebildete 
Untergruppen von sowie deren Faktorgruppen zu sprechen. 

III. Determinantenfreie lineare Algebra 

§ 10. Linearformcn, Vektoren, Matrizen 
Es sei K ein beliebiger Körper, der Grundkörper, in dem 

wir lineare Algebra im Sinne von § 5, 1) [46] treiben wollen, 
und den wir für den Rest von 1 fest zugrunde legen. 

Zur Vereinfachung der Ausdrucksweise verabreden wir, daß in 
III und IV alle mit a, b, c, a, ß, y und evtl. angehängten Indizes 
bezeichneten Elemente solche aus K sein sollen, ohne daß dies 
immer ausdrücklich gesagt wird. Ebenso sollen xv . .., xn, wenn 
zum Funktionsbegriff i. S. d. An. übergegangen wird, Elemente 
aus K sein. 

Ehe wir uns der eigentlichen Aufgabe, wie sie in § 5, 1) 
formuliert ist, zuwenden, sollen in diesem Paragraphen 
einige Begriffe eingeführt werden, die zwar an sich entbehr-
lich wären, durch deren Verwendung sich aber die folgenden 
Entwicklungen in der Schreib- und Redeweise außerordent-
lich vereinfachen. 

a) Linearformen 
Zunächst führen wir für ganze rationale Funktionen von 

xlt..., x„, wie sie auf den linken Seiten des zu behandelnden 
J) Bezüglich U ist hier der auf die Primzahl 2 bezüglicheTeil des Funda-

mentalsatzes der Arithmetik von der eindeutigen Zerlegbarkeit der rationalen 
Zahlen in Primzahlpotenzen vorausgesetzt, den wir in ä, § 1 systematisch be-
handeln werden. 

2) Hierbei ist der auf die Primzahl 2 bezügliche Fall des Satzes 13 von 2, 
§ 1 vorausgesetzt, daß sich nämlich jede ganze Zahl g eindeutig in die Form 
g = 2q + r setzen läßt, wo q und r ganze Zahlen sind und 0 ^ r < 2 ist. § be-
steht dann aus den g mit r — Q, l,p aus den g mit r = 1. — Natürlich bedeutet 
1$ hier, daß 1 zu den Elementen von ® zu a d d i e r e n ist. 
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Gleichungssystems § 5, (1) auftreten, eine besondere Be-
nennung ein: 

Definition 22. Ein Element von K [xv ..., xn]: dessen Nor-
n 

maldarstellung &kXk ist. heißt eine L i n e a r f o r m von 
k = i 

x^.-.jXn oder auch l i n e a r und homogen in x¡, .. ,,xn. 
Die Bedeutung von linear wurde schon in § 5 bei (1) erklärt, 

Form oder homogen soll besagen, daß auch der in Satz 11 [31] 
mit a0 o bezeichnete Koeffizient der Normaldarstellung Null 
ist. — Unter Linearform schlechthin verstehen wir, wo nichts 
anderes aus dem Zusammenhang hervorgeht, stets eine solche der 
n Unbestimmten xlt..., xn. 

Von großer Wichtigkeit für alles weitere sind nun die 
beiden folgenden Definitionen: 

Definition 23. Eine Linearform / heißt l i n e a r e s K o m -
p o s i t u m oder l i n e a r a b h ä n g i g von den Linearformen 

m 
/u ..., fm, wenn clt ...,cm derart existieren, daß / = J£c¿/; ist. 

i = 1 
Anderenfalls heißt f l i n e a r u n a b h ä n g i g von fu ..., fm. 

n 
Die Nullform 0 = ¿ 0a¡t ist hiernach sicher lineares Komposi-

k= 1 
tum jedes Systems f v . . . , fm von Linearformen, indem clt..., em 

= 0 gewählt werden. Dies berücksichtigend definieren wir weiter: 

Definition 24. Die Linearformen fx,..., fm heißen l i n e a r 
a b h ä n g i g , wenn cv ..., cm, die nicht sämtlich Null sind, 

m 
derart existieren, daß X ciii = 0 ist- Anderenfalls heißen 

i= i 
flt..., fm l i n e a r u n a b h ä n g i g . 

Hiernach ist speziell (m = 1) jede Linearform / =# 0 linear 
unabhängig, während die Form 0 linear abhängig ist. 

Die beiden in Def. 23 und 24 eingeführten, wohl zu unter-
scheidenden Begriffe linear (un-)abhängig von und linear 
{un-)abhängig stehen nun in folgenden Relationen zuein-

5* 
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ander, deren einfacher Beweis dem Leser überlassen bleiben 
darf1): 

Satz 38 . a) Ist f von fv . . f m linear abhängig, so sind 
f , f i , . . . , f m linear abhängig. 

b) Ist f von / ] , . . . , fm linear unabhängig und sind fv . . f m 

linear unabhängig, so sind f , fv ..., fm linear unabhängig. 
a' ) Sind f , fu . . ., fm linear abhängig, und zwar so, daß f in 

einer Relation cf + e ^ -)- b cmfm = 0 einen Koeffi-
zienten c 4= 0 hat (was speziell der Fall ist, wenn /-,,. . ., fm 

linear unabhängig sind), so ist f von fv ..., fm linear abhängig. 
b') Sind f , f v . . . , fm linear unabhängig, so ist f von fv ...,fm 

linear unabhängig, und es sind auch fx,..., fm linear unab-
hängig. 

Aus b ' ) ergeben sich durch wiederholte Anwendung die 
beiden einander bedingenden Tatsachen: 

Satz 39 . Mit fv ..., fm, f m +1 • • •> fm +1 sind auch / l 5 . . ., fm 

linear unabhängig. Mit fv . .., fm sind auch fv ..., fm, fm+1,..., 
fm + i linear abhängig. 

In gewisser Analogie dazu gelten die folgenden beiden 
einander bedingenden Tatsachen: 

n n + l 
Satz 40 . Es sei /,• = 21 aik xk, (Ji = a-nc Xk (i = 1 , . . . , m). 

k = 1 k = 1 
Dann sind mit fv . .., fm auch g},.. ., gm linear unabhängig 
und mit gx,..., gm auch fv . .., fm linear abhängig. 

Beweis. Es sei K f ^ , . . . , xn] = Kre. Dann sind die </,- solche 
Elemente (linear, aber keine Formen!) aus KB[a;n+i, . . . , %n+i\, 
deren Funktionswerte für das System ( 0 , . . . . 0) der Unbe-
stimmten xn+1,.. .,xn + i die Elemente /,• aus Kn sind. Nach 
dem Einsetzungsprinzip [39] folgt also aus einer Relation 

m m 
2 £i(Ji = 0 auch die Relation Cift = 0 für die Funk-

¿ = i ¿=1 
tionswerte. 

L) Man mache sich vor allem klar, daß dazu die Körpere igeuschaf t [§1 , (7 ) ] 
wesentlich benutzt wird, so daß schon diese für das Folgende grundlegenden 
Tatsachen in Integritätsbereichen nicht allgemein richtig sind. (Vgl. Punkt 2 
in der Anm. 1 [461 zu § 5.) 



§ 10. Linearformen, Vektoren, Matrizen 69 

Wir untersuchen nun im Anschluß an Satz 38, b) die 
Frage, ob man zu m linear unabhängigen Linearformen 
/],..., fm stets noch eine weitere von ihnen linear unab-
hängige Linearform fm+1 finden kann, so daß also auch noch 
fi, • • fm, fm + i linear unabhängig sind. Dieses ist nicht 
unbegrenzt möglich; vielmehr gilt : 

Satz 41. Es gibt höchstens n linear unabhängige Linear-
formen von n Unbestimmten xv ..., xn\ oder also: Mehr als n 
Linearformen von n Unbestimmten sind stets linear abhängig. 

Beweis. Nach Satz 39 genügt es zu zeigen, daß n + 1 
Linearformen von n Unbestimmten stets linear abhängig 
sind. Diesen Nachweis führen wir durch vollständige In-
duktion nach n. Fü r n —- 1 ist die Behauptung trivialerweise 
richtig. Denn ist / ' = a' x, /" = a" x, so sind entweder f = 0 
und f" = 0, oder es besteht die Beziehung a" f — a' / " = 0 
mit a'-)= 0 oder a" 4= 0; und in beiden Fällen sind / ' , / " 
linear abhängig. 

Wir nehmen nunmehr an, daß je n (oder mehr) Linear-
formen von n — 1 Unbestimmten stets linear abhängig sind, 
und zeigen, daß dann auch n + 1 vorgelegte Linearformen 
von n Unbestimmten 

fi = aü Xj^-r- [- ain x„ (i = 1,...,»-}- 1) 

linear abhängig sind. Dazu bilden wir durch formales Ein-
setzen des Wertes xn = 0 die n + 1 Linearformen 

g ( = aa x1 -l b au „^ x„_t (i = l,...,n+ 1) 

von den n — 1 Unbestimmten x1,..., xn_v Nach der In-
duktionsannahme sind sie linear abhängig, d. h. es besteht 
eine Beziehung 

9' = e'i öi f- 9n+1 = 0, 
in der nicht alle c[ = 0 sind und daher ohne Einschränkung 
c ^ , =|= 0 angenommen werden kann. Weiter sind nach der 
Induktionsannahme aber auch schon die n Linearformen 
gv ..., gn linear abhängig, d. h. es besteht eine weitere Be-
ziehung 
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g" = c? 0 H 1- c'n Qu = 0, 
in der ebenfalls nicht alle c'( = 0 sind. Wir bilden nun mit 
den so bestimmten c[ bzw. c" die entsprechenden linearen 
Komposita der /,-, d. h. die beiden Linearformen von n Un-
bestimmten 

/' = c'l fl + • ' " + c'n fn + ch+1 fn+l > 
r = «1*/i + • • • + < £ / « , 

so daß also die beiden Linearformen g' = 0, g" = 0 durch 
Einsetzen des Wertes xn = 0 aus /',/" hervorgehen. Aus 
diesem Grunde haben diese die besondere Gestalt 

f = d Xji j f d Xn. 
Ist hierin a" = 0, also /" = 0, so sind schon /-,,. . . , /„ linear 
abhängig, da ja nicht alle c'l = 0 sind. Ist aber a" =f= 0, so 
entnehmen wir aus 

a" f — a' / " = 0, 
also 

(a" d - t f ei) U+---+ /„ + a"c'n+1fn+l = 0 
wegen a" =|= 0, c'n+14= 0, daß fv . . f n , /„+1 linear abhängig 
sind. 

Daß es wirblich n linear unabhängige Linearformen von n Un-
bestimmten gibt, zeigt das spezielle System der n Linearformen 
«u ..., xn; denn wegen der Eindeutigkeit in Satz 11 [31] ist nur 
dann c^ + • • • + cnxn = 0, wenn ct, .. ., cn = 0 sind. 

Nach Satz 41 gibt es in jeder (endlichen oder unendlichen) 
Menge von Linearformen unter den linear unabhängigen 
Teilsystemen . . . , /s solche von maximaler Anzahl r, und 
zwar ist dabei r ^ n. Von besonderer Wichtigkeit werden 
nun Linearformenmengen mit der in folgender Definition ge-
forderten Eigenschaft sein: 

Definition 25. Eine Linearformenmenge M, die mit irgend-
welchen Linearformen immer auch alle deren lineare Komposita 
enthält, heißt ein L inear formenmodul . 

Die Maximalanzahl r linear unabhängiger Linearformen 
aus M heißt der Rang von M. 
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Ein linear unabhängiges Teilsystem flt. . ., /s aus M, von 
dem alle Linearformen aus M linear abhängig sind, so daß 
also M aus der Gesamtheit aller linearen Komposita von 
/],..., fs besteht, heißt eine Basis von M. 

Solche Teilsysteme gibt es wirklich immer. Nach Satz 38, a') 
gilt nämlich: 

Satz 42. Ein linear unabhängiges Teilsystem . . ., fr aus 
M von der maximalen Anzahl r ist auch eine Basis von M. 

Wir werden gleich sehen, daß auch die Umkehrung dieser 
Aussage richtig ist. Zuvor beweisen wir: 

Satz 43. Die Menge M aller linearen Komposita gegebener 
m Linearformen flt..., fm von n Unbestimmten xv ...,£„ 
bildet einen Linearformenmodul-, man sagt kurz, flt...,fm 
erzeugen den Modul M. Der Rang r von M genügt neben der 
nach Satz 41 bestehenden Ungleichung r ^ n auch noch der 
Ungleichung r m. 

Beweis, a) Das Erfülltsein der in Def. 25 geforderten 
m 

Eigenschaft erkennt man folgendermaßen: Aus gn = 21 ch fi 
l i = 1 

(k = 1,..., T) und g = £bkgk folgt 

i 
9 = 2 k — 1 (

m \ m j L \ 

Heuft) = 2 L £ 6 » c h /, i = l / i = l \Jfe = l / 

Die dabei verwendete R e g e l ü b e r die V e r t a u s c h u n g der 
S u m m a t i o n s f o lge , die auf die Additionsgesetze § 1, (1), (3), (5) 
zurückgeht, werden wir im folgenden häufig anzuwenden haben. 
Wegen ihrer Gültigkeit dürfen wir ohne Mißverständnis die 
Klammern bei derartigen Umformungen fortlassen. 

b) Zum Nachweis der Ungleichung r ^ m ordnen wir 
jedem Linearformensystem 

m 
gk = 2 cHU (k = l , . . i ) 

» = i 
aus M das Linearformensystem 

m 
hk=£ CjeiVi (k = 1,..., I) 

i = 1 
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von m neuen Unbestimmten yv ..., ym zu. Für l > m sind 
die fix nach Satz 41 linear abhängig, d. h. es besteht eine 
Beziehung 

Jlhht = 0, 
k = 1 

in der nicht alle 6^ = 0 sind. Nach dem Einsetzungsprinzip, 
angewandt im Integritätsbereich Kn[f / i , . . . , ym] über Kn = 
Kf^j,..., x„\ mit Ersetzung der yl durch die / f, folgt daraus 
die entsprechende Beziehung 

k hgk = 0, 
k = 1 

also die lineare Abhängigkeit der gn für l > m, d. h. die Be-
hauptung r iS m. 

Nunmehr können wir die angekündigte Umkehrung von 
Satz 42 folgern: 

Satz 44. Jede Basis eines Linearformenmoduls M vom Rang 
r besteht aus genau r Linearformen flt .. ., fr, ist also auch ein 
linear unabhängiges Teilsystem aus M von der maximalen 
Anzahl r. 

Beweis. Für eine Basis / l 5 . . . , fs von M ist einerseits nach 
Def. 25 jedenfalls s ^ r, andererseits nach Satz 43 auch 
r s, zusammengenommen also s = r. 

Eine Basis von M ist nach Satz 38, a) ein m a x i m a l e s linear 
unabhängiges Teilsystem in dem Sinne, daß bei Hinzufügung 
irgendeiner weiteren Linearform aus M ein linear abhängiges Teil-
system entsteht. Da wir durch Satz 43 festgestellt haben, daß 
diese schwächere Maximalität die stärkere Maximalität der A n -
z a h l nach zur Folge hat, können wir fortan bei einer Basis von M 
unmißverständlich auch von einem Maximalsystem linear unab-
hängiger Linearformen aus M reden. 

Wir heben weiter im Anschluß an Def. 25 und Satz 44 die 
folgende wichtige Tatsache hervor: 

Satz 45. Die lineare Komposition der Linearformen eines 
Linearformenmoduls M durch eine Basis von M ist jeweils nur 
auf eine einzige Art möglich. 
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Beweis. Das ist eine unmittelbare Folge aus (und ersicht-
lich sogar gleichbedeutend mit) der linearen Unabhängigkeit 

r r 
einer Basis f l y . . . , f r von M. Aus 2} Cih = d . h . 

r i = 1 i = 1 
2 (Cj — c'i) fi = 0 folgt nämlich nach Def. 24 gerade 

i = 1 
c, — c\ = 0, d. h. et = 4 (i = 1 , . . . , r). 

Wir bemerken schließlich, daß wir im trivialen Falle des nur 
aus der Nullform bestehenden Linearformenmoduls M = 0 gemäß 
Def. 25 auch r = 0 zu verstehen haben. Eine Basis von M existiert 
in diesem Falle nicht; zur Vereinheitlichung der Ausdrucksweise 
wollen wir dann sagen, M besitze eine Basis aus r = 0 Linearformen. 

b) Vektoren 

Nach der bei der Konstruktion von K [ a i ; . . . , xn~\ aus K 
in § 4, c) und d) zugrunde gelegten Auffassung sind speziell 

n 
Linearformen £ akxk formal nichts anderes, als Systeme 

k= 1 
( « ! , . . . , an) von Elementen, die den sich aus § 4, ( l a )—(3 a) 
ergebenden Unterscheidungs- und Verknüpfungsregeln un-
terworfen sind, und wobei für die speziellen Systeme 
(e, 0 , . . ., 0 ) , . . . , (0 , . . ., 0, e) die abkürzenden Bezeichnun-
gen xv . . x „ eingeführt sind. Ohne Einführung dieser Be-
zeichnungen lauten die Gesetze §4 , ( la)—(3a) , soweit sie 
sich auf die jetzt allein zu betrachtenden Linearformen und 
auf Elemente des Grundkörpers beziehen, folgendermaßen: 

(1) ( f l j , . . ., an) = (a[,. . ., a,n) dann und nur dann, 
wenn dk = a'k fü r k = 1 , . . ., n, 

(2) ( « ! , . . . , an) + (6j , . . ., 6») = K ., an + &„), 

(3) a(«], . . . , an) = (aav . . ., aan). 

Nun hat man es in der linearen Algebra außer mit den K o e f f i -
zientensystemen von Linearformen auch mit Systemen von n 
Elementen des Grundkörpers zu tun, die für die U n b e s t i m m t e n 
iCj, . . ., Xn in Linearformen einzusetzen sind, und hat dann diese 
Elementsysteme häufig nach (1) zu unterscheiden, sowie die 
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rechts in (2) und (3) stehenden Bildungen aus ihnen vorzunehmen. 
Man könnte das zwar nach dem eben Bemerkten so ausdrücken, 
daß man jene einzusetzenden Elementsysteme als Koeffizienten-
systeme von Linearformen ansieht, sie demgemäß wie diese Linear-
formen unterscheidet und die in (2) und (3) rechts stehenden Bil-
dungen für sie durch die links stehenden Verknüpfungen mit diesen 
Linearformen zur Ausführung bringt. Die hierbei zu verwendende 
Aus drucks weise würde aber sehr umständlich werden; sie ist über-
dies auch insofern unschön, als man bei dem Ausdruck Linear-
form gewohnheitsmäßig an die Möglichkeit der Ersetzung der Un-
bestimmten durch Elemente des Grundkörpers denkt, wovon bei 
den letztgenannten „Hilfslinearformen" natürlich nicht die Rede 
ist. Es ist daher zweckmäßiger, für die Anwendung der formalen 
Regeln (1)—(3) auf andere Art eine kurze Aus drucks weise zu 
ermöglichen. 

Definition 26. Den TJnterscheidungs- und Verknüpfungs-
regeln (1)—(3) unterworfene Systeme von n Elementen heißen 
w-gl iedr ige V e k t o r e n . IVir bezeichnen sie mit den ihren 
Gliedern entsprechenden kleinen deutschen Buchstaben. 

Es wird also z. B. bezeichnet: (av . . ., a„) mit a, (a^,..., atn) 
mit aj, usw. Unter Vektoren schlechthin verstehen wir, wo nichts 
anderes aus dem Zusammenhang hervorgeht, stets M-gliedrige. 

Durch (2) ist natürlich zwangsläufig auch die Substraktion für 
Vektoren unbeschränkt und eindeutig erklärt, und zwar nach der 
zu (2) analogen Formel 

(%,..., an) — (blt..., b„) = («! — &!,..., a„ — bn), 
entweder weil für die Verknüpfung (2) die Gesetze § 1, (1), (3), 
(6) stimmen, oder einfach vermöge der formalen Identität mit den 
Linearformen. Der hiernach sich als Nullvektor ergebende, der 
Nullform entsprechende Vektor (0 , . . . , 0) darf wieder mit 0 be-
zeichnet werden. 

Auf Grund der formalen Übereinstimmung von Vektoren 
und Linearformen sind die in Def. 23—25 eingeführten Be-
griffe sinngemäß auch für Vektoren als erklärt anzusehen, 
und es bestehen dann auch die Analoga der Sätze 38—45 in 
sinngemäßer Formulierung für Vektoren. 

Ausführlich geschrieben bedeuten nach Def. 23, 24 die Aussagen 
,,a ist von a t , . . . , am linear abhängig" bzw. „a^ . . . , am sind 
linear abhängig" das Bestehen von Relationen 
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m m 
(4) 2 ciaik = cik bzw. (5) 2 ctOve = 0 für k = 1, . . ., n, 

i = l i = l 
wobei in den letzteren mindestens ein c» 4= 0 ist. 

Die speziellen » linear unabhängigen Vektoren (e, 0, . . . , 0), 
. . . , ( 0 , . . . , 0, e), die den Linearformen a ^ , . . x n entsprechen, 
nennt man auch die n Einheitsvektoren und bezeichnet sie mit 
ev . . cn. Sie bilden eine Basis des Moduls a l ler w-gliedrigen 
Vektoren (der somit den Rang n hat); denn es besteht für jeden 

n 
Vektor a die Darstellung 2 ej; durch diese Einheitsvektoren. 

k = 1 
Durch Einführung dieser Darstellungen kommt man natürlich 
(bis auf den Bezeichnungsunterschied zwischen e¡c und xt) auf den 
Linearformenstandpunkt zurück. 

Während die bisherigen Festsetzungen über Vektoren 
formal mit denen über Linearformen übereinstimmen, treffen 
wir schließlich eine letzte Festsetzung, die über den Linear-
formenstandpunkt hinausgeht: 

Definition 27 . Unter dem i n n e r e n P r o d u k t ab zweier 
n 

Vektoren a und 6 werde das Element 2 aiclk verstanden. 
k = 1 

Im Gegensatz zu (3) sind also beim inneren Produkt be ide 
Faktoren Vektoren, während das Ergebnis dieser inneren Produkt-
bildung kein Vektor, sondern ein Element des Grundkörpers ist. — 

Speziell gilt atjc = ak, ekek- = j ® * ~ j , uO = 0. 

Satz 46 . Für die innere Produktbildung von Vektoren gelten 
die Regeln: 

ab = ba, c(ab) = (ca) b = a(eb), (a + b) c = ac + bc. 

Beweis. Das folgt nach Def. 26, 27 unmittelbar aus den 
Gesetzen § 1, (1)—(5). 

Natürlich folgt aus der letzten dieser Regeln durch wiederholte 
Anwendung noch die allgemeinere Formel 

(m \ m 
2 c = 2 QiC. ¿ = 1 / i = 1 
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n in m n 
die ausführlich geschrieben in £ 2 1 <HJcCk = 2 2 'HkCk, d.h. 

* = 1 i = 1 i = 1 t = 1 
in die im Beweis von Satz 43 erwähnte Regel von der Ver-
tauschung der Summationsfolge, übergeht und von der wir haupt-
sächlich Gebrauch zu machen haben werden (Satz 47). 

Da von der Körpereigenschaft [§ 1, (7)] des Grundbereichs 
K beim inneren Produkt kein Gebrauch gemacht ist, gelten 
die letzten Entwicklungen auch für Vektoren des Integritäts-
bereiches K[ icx , . . . , xny). Von solchen Vektoren brauchen 
wir lediglich den Vektor £ der Unbestimmten. 

Wir bezeichnen unter Verwendung dieses Vektors eine Linear-
form / ( % , . . . , xn) auch mit /(j) und treffen bezüglich der Möglich-
keit, j auch als Vektor des Grundbereichs aufzufassen, sowie der 
hierauf bezüglichen Zeichen = und = die entsprechenden Fest-
setzungen wie im Anschluß an Satz 12 [41]. 

Nach Def. 27 besteht für jede Linearform f(xx,..., xn) 
n 

= 2 «jA auch die Darstellung /( j) = a j als inneres Pro-
k = l 

dukt. Diese Darstellung führt auf Grund der Formeln des 
Satzes 46 zu einer außerordentlich einfachen Gestaltung des 
Rechnens mit den Funktionswerten einer Linearform. Wir 
heben insbesondere, im Anschluß an die Bemerkung hinter 
Satz 46, folgende Tatsache hervor: 

Satz 47. Ist /(j) eine Linearform, so gilt für ein lineares 
m 

Kompositum j = 2 ciE; von £j,..., Jm die Formel 
i= 1 

m 
/(s) = 2 altii), i = 1 

d. h. der Funktionswert von f für ein lineares Kompositum von 
m Vektoren ist das entsprechende lineare Kompositum der m 
Funktionswerte für jene Vektoren. 

Beweis. Ist / ( j) = a j, so ist nach Satz 46 
l) Solchen Vektoren würden dann Linearformen / ( ^ des Integritätf»-

bereiches K n [ l 1 ( $ n ] über Kn = Kix^..., xn] entsprechen; wir brauchen 
jedoch für unsere Zwecke diese Auffassung nicht (vgl. die Ausführungen vor 
Def. 26). 
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m m m in m 
KUcth) = aderti) = JMctit) = 2ciaii) = 2 
i = l i = 1 ¿=1 i = l 1=1 
An Tatsachen und Rechnungen, wie sie in Satz 47 und seinem 

Beweise vorkommen, wurde bei den Ausführungen vor Def. 26 
vornehmlich gedacht. Im Hinblick auf Satz 47 liegt die Zweck-
mäßigkeit der Einführung der Vektoren auf der Hand. 

Wir heben schließlich, anschließend an die Ausführungen des 
§ 4 noch hervor, daß für Linearformen der formale Funktions-
begriff der Algebra mit dem Funktionsbegriff i. S. d. An. zu-
sammenfäll t . Auf Grund des nachstehenden Satzes ist nämlich 
die fragliche Bedingung § 2, (e') beim Übergang zu den Linear-
formen i. S. d. An. erfüll t : 

Satz 48. Für Linearformen / und g über K ist die Relation 

Ks) - 9(i) 
mit der Relation 

/(S) = S(i) tür alle S a u s K 
gleichbedeutend. 

Beweis, a) Daß aus der ersten Relation die letztere folgt, ist 
klar. 

b) Ist / ( j ) = g(%) fü r alle j aus K, so ist speziell /(e^) = g(ejc) 
(k = 1 , . . . , «). Da nun, wenn / ( j ) = a j ist, gilt j(ek) = atk = a 
folgt das Übereinstimmen entsprechender Koeffizienten von / 
und g, d. h. / ( j ) = g{j). 

c) Matrizen 

In den Koeffizientensystemen auf den linken Seiten line-
arer Gleichungssysteme treten uns Systeme von m w-glie-
drigen Vektoren entgegen, die wir zu einem (mw)-gliedrigen 
Vektor zusammengefaßt denken können. Diesen (mw)-
gliedrigen Vektor können wir uns auch aus den n m-gliedri-
gen Vektoren, die je durch die Koeffizienten einer festen 
Unbestimmten gebildet werden, durch andersartige Zu-
sammenfassung entstanden denken. Es empfiehlt sich für 
diese beiden Zusammenfassungsprozesse, sowie umgekehrt 
für die Zerlegung eines (mw)-gliedrigen Vektors auf eine 
dieser beiden Weisen eine besondere Ausdrucksweise einzu-
führen. Wir definieren in diesem Sinne: 
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Definition 28. Ein (mn)-gliedriger Vektor, insofern er als 
durch Zusammenfassung von m n-gliedrigen bzw. n m-glie-
drigen Vektoren in ein rechteckiges Schema 

an aln 
J, kurz (aikj = 1 , ' ^ 

ßmi &mn } 
n, 

entstanden gedacht wird, heißt eine (m,w)-reihige Matr ix . 
Die waagerechten bzw. senkrechten zusammensetzenden Vek-
toren heißen die Zeilen bzw. Spal ten der Matrix. Wir be-
zeichnen Matrizen auch durch die ihren Gliedern entsprechen-
den großen Buchstaben. 

Es wird also z. B. bezeichnet: (o«) mit A, (aa) mit A , . . . ; die 
dem (mn)-gliedrigen Nullvektor entsprechende (m, n)-reihige Null-
matrix darf wieder mit 0 bezeichnet werden. — Den Zusatz (m, n)-
re ih ig lassen wir auch fort, wo die Zahlen in und n aus dem Zu-
sammenhang hervorgehen. 

Der Begriff (m, n)-reihige M a t r i x ist gemäß Def. 28 enger 
als der Begriff (m«)-gl iedriger V e k t o r , etwa in demselben 
Sinne, wie „die in Faktoren zerlegte ganze Zahl l = IM" ein 
engerer Begriff als „die ganze Zahl Z" ist. Die Unterscheidungs-
und Verknüpfungsregeln für Matrizen, nämlich analog zu (1), 
(2), (3) 

Q') iaik)= d a n n u n d n _ u r d a n n ' w e n n a « = 1 /i = 1 . . m \ (2') (<Hk) + (hk) = {<Hk + hk) fi l. _ i „I 
(3') a(aik) = (aalk) )\K-i,...,nj 
lassen das allerdings nicht hervortreten. Die Einengung liegt viel-
mehr in dem dem (mw)-gliedrigen Vektor übergelegten rechteckigen 
Schema, durch das eine begriffliche Zusammenfassung je der in 
einer Zeile bzw. Spalte stehenden Glieder gefordert wird. 

Es ist allgemein üblich, den Index i immer für die Nume-
rierung der Zeilen, k für die der Spalten zu verwenden. 
Demgemäß wäre bei vorgelegtem (m, w)-reihigen (a^) unter 
(aki) die durch Vertauschung der Zeilen und Spalten ent-
stehende (n, m)-reihige Matrix 

ian • • • • aml \ 

ain . . . . amn / 
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zu verstehen; denn in dieser numeriert eben der erste Index 
die Spalten, der zweite die Zeilen. 

Definition 29. Die aus einer (m, n)-reihigen Matrix (ailc) 
durch Vertauschung ihrer Zeilen und Spalten entstehende 
(n, m)-reihige Matrix (a^) heißt die t r a n s p o n i e r t e zu (aik). 
Bei Verwendung der Bezeichnung A für (a¡t) wird {aM) mit AI 
bezeichnet. 

Außer den Verknüpfungen (2') und (3') benutzt man im sog. 
Matrizenkalkül noch eine weitere, außerordentlich wichtige Ver-
knüpfung zweier Matrizen zu einer neuen Matrix, dem sog. Ma-
trizenprodukt, das sich aber erst innerhalb der Menge aller Ma-
trizen (nicht nur der mit festem m und n) erklären läßt. Diese Ma-
trizenpro duktbildung enthält zwar die innere Produktbildung für 
Vektoren als Spezialfall1), läuft aber nicht einfach auf das innere 
Produkt der den Matrizen entsprechenden Vektoren hinaus. Wenn 
auch der so zustande kommende sog. M a t r i z e n k a l k ü l von 
größter Bedeutung für die lineare Algebra ist, insbesondere in 
noch viel weiterem Maße als die Vektorschreibweise zur Über-
sichtlichkeit der Entwicklungen und Resultate der linearen Algebra 
beiträgt, müssen wir doch im begrenzten Rahmen unserer Dar-
stellung von einem weiteren Eingehen darauf absehen und auf 
umfangreichere Werke verweisen2). 

§ 11. Inhomogene und homogene lineare 
Gleichungssysteme 

Wir beginnen jetzt mit der systematischen Behandlung 
der in § 5, (1) formulierten Aufgabe. Neben dem eigentlich 
zu untersuchenden linearen Gleichungssystem 

n 
(J) fi(x1,...,xn)=£aikxt: = ai (i = l,...,m) 

4 = 1 

betrachten wir selbständig das lineare Gleichungssystem 
J) Vom Standpunkte des Matrizenproduktes sind die beiden Faktoren des 

inneren Vektorproduktes eine (1, n)-reihige und eine (n, l)-reihige Matrix und 
das Ergebnis eine (1, l)-reihige Matrix, also formal, aber nicht begrifflich ein 
Element des Grundkörpers. 

2) Z. B. Lit.-Verz. 2—10, 13, 14, 16, 17, 20, 23. Siehe auch 3, 1, § 10, 
Aufg. 3, sowie zahlreiche weitere Aufgaben zu den nachfolgenden Paragra-
phen von 1 und 2. 
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n 
(H) f f a , . . . , X n ) = 2 at&k = 0 (i = 1 , . . ., m). 

k = 1 

Mail nennt (H) das (J) zugeordnete homogene Gleichungs-
system, während (J) inhomogen heißt. 

In dieser gegensätzlichen Benennung von (J) und (H) ist 
schon zum Ausdruck gebracht, daß wir (H) nicht, wie es 
zunächst naturgemäß zu sein scheint, als den f o r m a l mit 
(H) identischen Spezialfall von (J), wo alle at = 0 sind, an-
sehen wollen. Wir treffen vielmehr mit Rücksicht auf eine 
glatte Formulierung der herzuleitenden Resultate die (H) 
von diesem Spezialfall von (J) m e t h o d i s c h unterscheidende 
Festsetzung, daß der stets eine Lösung von (H) bildende 
Nullvektor £ = 0 (die sog. identische Lösung) n i c h t als 
Lösung von (H) gerechnet werden soll. Speziell wird also 
(H) unlösbar genannt, wenn außer dem Nullvektor keine 
Lösung existiert. Dagegen sehen wir den Nullvektor sehr 
wohl als Lösung für den genannten Spezialfall von (J) an. 

Unter der Matrix von (J) und (H) verstehen wir die (m, n)-
reihige Matrix A = (aik). 

Mittels der in § 10 entwickelten Begriffe läßt sich das Bestehen 
von (J) bzw. (H) für ein System xx, .. ., xn auch so ausdrücken, 
daß die Spalten von A durch lineare Komposition mit den Koeffi-
zienten xlt.. ., xn den durch die rechten Seiten von (J) gebildeten 
Vektor a bzw. den Nullvektor ergeben. Nach obiger Verabredung 
ist also insbesondere die Lösbarkeit von (H) mit der linearen Ab-
hängigkeit der Spalten von A gleichbedeutend. (Vgl. die Formeln 
§ 10, (4), (5) [75], die sich allerdings in diesem Sinne auf die Glei-
chungssysteme mit der Matrix A' beziehen.) Die Aufgabe der 
linearen Algebra § 5, (1) kann demnach auch dahin formuliert 
werden, daß alle Möglichkeiten, aus einem vorgegebenen Vektoren-
system einen vorgegebenen Vektor linear zu komponieren, und 
speziell alle linearen Abhängigkeiten eines vorgegebenen Vektoren-
systems gefunden werden sollen. Bs empfiehlt sich, diese im fol-
genden häufig benutzte Auffassungsweise gegenwärtig zu behalten. 

Wir werden schließlich neben (J) und (H) auch noch das 
mit der transponierten Matrix A' = (aki) gebildete transpo-
nierte homogene Gleichungssystem 
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m 
(H') fk{;x'lt ...,x'm) = 2 aitx'i = 0 (k = 1 , . . w ) 

i = 1 
zu betrachten haben. 

Die selbständige Betrachtung von (H) neben dem ur-
sprünglich allein zu untersuchenden Gleichungssystem (J) 
wird durch den folgenden Satz gerechtfertigt: 

Satz 49. Ist (J) lösbar, so erhält man alle übrigen Lösungen 
von (J), wenn man zu irgendeiner festen Lösung von (J) 

alle Lösungen von (H) addiert, also in der Form 

Beweis, a) Nach Satz 47 [76] folgt aus /¿(^0 )) = au /¿( jH) = 0, 
daß /¿(jW + E h ) = /,.(Ei,0)) + MEh) = <H + 0 = «,• ist. Also 
sind alle TCj = xjj^ + j 7 / Lösungen von (J). 

b) Ist i h j ) = au /,•($>) = au so folgt ebenso — $ > ) 
= 0. Also ist, falls TCj 4= ist, i j — = i B Lösung von 
(H), d. h. es ist wirklich jede von j^0 ' verschiedene Lösung 
l j v o n (J) von der Form ^ = + i H . 

Nach Satz 49 reduziert sich die Aufgabe der linearen 
Algebra auf die folgenden beiden Teilaufgaben: 

J) Bestimmung e i n e r Lösung von (J), 
H) Bestimmung a l l e r Lösungen von (H). 

Was einerseits H) betr iff t , so gilt : 
Satz 50. Falls (H) lösbar ist, bilden die Lösungen von (H) 

einen Vektormodul, den L ö s u n g s m o d u l v o n (H). 
Beweis. Gemäß Def. 25 [70] ist zu zeigen, daß mit be-

liebigen Lösungen j j , . . ., j s auch jedes ihrer linearen Kom-
posita eine Lösung von (H) ist. Aus /j(£j) = 0 (i = 1 , . . ., m\ 
j = l , . . . , s) folgt aber nach Satz 47 

l) In der Tat steht in der i - ten Zeile und i - t en Spalte dieses ausgeschrieben 
gedachten Gleichungssystems der Koeffizient a ^ und n i c h t a ^ , wie man auf 
den ersten Blick glauben möchte! — Es sei jedoch für das Folgende empfohlen, 
sich die Gleichungen von (H') n e b e n e i n a n d e r und jede einzelne Gleichung 
v o n o b e n n a c h u n t e n geschrieben vorzustellen, so wie es der Entstehung 
von (H') aus der Matrix A entspricht. 

(i H a s s e , Höhere Algebra 
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/ ¿ ( i ; <VSi) = 2 Cjfiil,) = h e , 0 = 0 (t = 1 , . . . , m). j=i j=i 7=1 
Falls (H) lösbar ist, hat nach Satz 41 [69], Def. 25 [70] 

und Satz 44 [72] der Lösungsmodul von (H) einen Rang s mit 
l S s i n und besteht aus der Gesamtheit aller linearen 
Komposita irgendeiner seiner Basen, die ihrerseits aus genau 
s linear unabhängigen Vektoren besteht; nach Satz 45 [72] 
sind überdies die Darstellungen der Lösungen durch eine 
solche Basis eindeutig. 

Falls (H) unlösbar ist, d. h. nur die identische Lösung £ — 0 
besitzt, gilt gemäß der Bemerkung und Verabredung nach Satz 45 
[73] Entsprechendes mit s = 0. Daß dieser Fall eintreten kann, 
zeigt etwa das nur aus einer Gleichung in nur einer Unbestimmten 
x bestehende Gleichungssystem a x = 0 mit a 4= 0. 

Demnach reduziert sich die Aufgabe H) auf die Bestim-
mung des Ranges s mit 0 s ^ n, sowie einer Basis £j,..., js 
des Lösungsmoduls von (H). Für diese Bildungen führen 
wir die folgenden kurzen Bezeichnungen ein: 

Definition 30. Der Rang des Lösungsmoduls von (H) heißt 
der L ö s u n g s r a n g von (H). Jede Basis des Lösungsmoduls 
heißt ein F u n d a m e n t a l l ö s u n g s s y s t e m von (H). 

Was andererseits J) betrifft, so besteht folgende not-
wendige Lösbarkeitsbedingung, von der sich dann später 
(Satz53 [92]) herausstellen wird, daß sie auch hinreichend 
ist: 

Satz 51. Damit (J) lösbar ist, ist notwendig, daß mit jeder 
m 

linearen Abhängigkeit x'i fi = 0 zwischen den Linearformen 
i = l m 

links auch die entsprechende Relation 2j = 0 für die 
i = 1 

rechten Seiten besteht. 

Beweis. Ist (J) lösbar, existiert also ein Vektor £ derart, 
daß die Funktionswerte / , ( j ) = a{ werden, so folgt aus 

m m 
£ x'ifi = 0 nach dem Einsetzungsprinzip auch £ x\ = 0. 
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m 
Da eine lineare Abhängigkeit 2 1 x ih — 0 der Linearformen ft 

i = 1 
nach § 10 gleichbedeutend ist mit der entsprechenden linearen 

m 
Abhängigkeit x'fii = 0 zwischen den zugeordneten Vektoren aj, 

¿ = i 
d. h. den Zeilen von A, und da diese wiederum nur ein anderer 
Ausdruck für die Tatsache ist, daß j ' Lösung von (H') ist, so folgt: 

Zusatz 1. Die Bedingung von Satz 51 kann auch dahin ausge-
sprochen werden, daß für jede Lösung j ' von (H') gelten muß j 'a = 0. 

Daraus ergibt sich dann nach Satz 46 [75] noch weiter: 
Zusatz 2. Die Bedingung von Satz 51 kann auch dahin ausge-

sprochen werden, daß für die Lösungen eines Fundamentallösungs-
systems von (H') gelten muß = 0. 

Diese Zusätze rechtfertigen die Einführung von (H') in den 
Kreis unserer Betrachtungen, da durch sie, neben der Verkettung 
von (J) mit (Ii) in Satz 49, (J) auch mit (H') verkettet ist. 

Die zu behandelnden Aufgaben J) und H) können jetzt 
ausführlicher so formuliert werden: 

J*) Entscheidung Hier die Lösbarkeit von (J) und Be-
stimmung einer Lösung im Löslarkeitsfalle, 

H*) Bestimmung des Lösungsranges und eines Fundamental-
lösungssystems von (H). 

§ 12. Äquivalente lineare Gleichungssysteme 

Wir entwickeln in diesem Paragraphen ein konstruktives 
Verfahren, das es gestattet, ein beliebig vorgegebenes (in-
homogenes oder homogenes) lineares Gleichungssystem in 
ein anderes von besonderer Gestalt mit derselben Lösungs-
gesamtheit zu transformieren, aus dem sich dann die Lö-
sungen der am Schluß von § 11 herausgestellten Aufgaben 
J*) und H*) in einfacher Weise ergeben werden. 

Dazu definieren wir: 
Definition 81. Zwei lineare Gleichungssysteme heißen 

ä q u i v a l e n t , wenn sie dieselbe Lösungsgesamtheit haben. 
6» 
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Das ist natürlich eine Äqualenzrelation im Sinne von § 2, (I). 
Wir brauchen hier jedoch die ihr entsprechende Klasseneinteilung 
nicht. Diese wird erst im Matrizenkalkül von Bedeutung, wo sich 
die Äquivalenz durch rechnerische Beziehungen zwischen den 
Matrizen der Gleichungssysteme beschreiben läßt (vgl. 3, 1, § 12, 
A.ufg. 1—3). 

Unsere Aufgabe besteht dann darin, zu (J) bzw. (H) ein 
äquivalentes Gleichungssystem (J) bzw. (H) zu konstruieren, 
dessen Lösungsgesamtheit sich in einfacher Weise bestimmen 
läßt. Dabei werden wir uns vor allem auf den folgenden 
Hilfssatz stützen. 

Hilfssatz. Wird in einem linearen Gleichungssystem ent-
weder 

(a) die Reihenfolge der Gleichungen geändert 
oder 

(b) die linke und rechte Seite einer Gleichung mit einer Kon-
stanten c =(= 0 multipliziert 
oder 

(c) zu der linken und rechten Seite einer Gleichung das 
c-fache der entsprechenden Seite einer anderen Gleichung 
addiert, 
so geht das Gleichungssystem in ein äquivalentes über, und die 
beiden auf den linken Seiten stehenden Linearformensysteme 
erzeugen im Sinne von Satz 43 [71] denselben Linearformen-
modul. 

Beweis. Hinsichtlich (a) ist die Behauptung klar. Hinsicht-
lich (b) und (c) können wir uns dann auf den Fall beschrän-
ken, daß die erste Gleichung mit c multipliziert bzw. zur 
ersten Gleichung das c-fache der zweiten addiert werden 
soll, und schließen so: Ist 

9i = c/i > = cai nrit e=t= 0 
bzw. 

9i=fi + ch > h = ai + ca2 
sowie 

9i = fi , h = «i (i = 2 , . . ., m), 
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so gilt einerseits f ü r jeden Vektor 5, der den Gleichungen 
/¿(j) = (i = 1 , . . . , m) genügt, nach dem Einsetzungs-
prinzip auch gi(jc) = bt (i = 1 , . . . , m) und ist andererseits 
jedes (ji ein lineares Kompos i tum der /,-. Umgekehrt gilt dann 
aber auch 

fi=~^9i > m i t — = # 0 
bzw. 

fi=9i— <h=h — ch 
sowie 

fi = 9i . «< = h (i = 2, . . . , m), 
so daß wie eben einerseits f ü r jede Lösung 5 der Gleichungen 
9i(t) = h ii = ! > • • • . m) a u c h /¿(E) = cii{i = 1 , . . . , m) gilt 
und andererseits jedes /,• ein lineares Komposi tum der gt ist. 

Nach diesen Vorbereitungen kommen wir nunmehr zum 
Beweis unseres Haup tsa tzes : 

Satz 52. Genügt (J ) der notwendigen Lösbarkeitsbedingung 
aus Satz 51 [82], so läßt sich (J) in ein äquivalentes Gleichungs-
system (J) von der Gestalt 

9l(t) = XH + Kki + lxki + l + + h nxn = h 
92(1) = xk, + h,k, + lxk, + i + + \nxn = \ 

(J) 
gAi) = xkr + K,kr+lxkr + l H h Knxn = in 

transformieren. Dabei gilt: 
(1) r ist die Maximalanzahl linear unabhängiger unter den 

linken Seiten f l t . . ., fm von (J), 
(2) glt..., gT sind linear unabhängig und bilden eine Basis 

des von fv . . ., fm erzeugten Linearformenmoduls, 

(3) 1 ^ k1<k2<---<kr^n. 

Beweis. Wir führen das vorgelegte Gleichungssystem 

/i(E) = a.uxi + h <hnxn = «1 
(J) 

tm{E) = amixi " ' ' amnxn = am 
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durch Operationen der Form (a), (b), (c) aus dem Hilfssatz 
schrittweise in äquivalente Gleichungssysteme über, bis wir 
schließlich, nach dem r-ten Schritt, eines von der angegebenen 
Gestalt erhalten. 

Erster Schritt. Sofern nicht alle f{ = 0, d. h. nicht alle 
aik = 0 sind1), sei kx der kleinste Index k, fü r den mindestens 
ein aik =j= 0 ist, etwa aitkl 4= 0; dabei gilt natürlich 1 ^ ^ ^ ti. 
Dann ändern wir (gemäß (a)) die Reihenfolge der Gleichungen 
so, daß die te Gleichung /¡ ,( j) = a i t an die erste Stelle 
kommt, und dividieren diese Gleichung (gemäß (b)) durch 

Wir erhalten so an der ersten Stelle eine Gleichung der 
Gestalt 

0l(s) = X*1 + + A + l + • • • + h nXn = ii. 

Anschließend subtrahieren wir (gemäß (c)) von den übrigen 
Gleichungen / , ( j ) = at (i =(= ij) jeweils das «¿¿.-fache dieser 
neuen ersten Gleichung, so daß in jenen Gleichungen dann 
auch noch der k^ te Koeffizient verschwindet (während alle 
vorherigen Koeffizienten bereits nach der Wahl von k1 ver-
schwanden). Damit haben wir ein zu (J) äquivalentes Glei-
chungssystem (Jx) von der folgenden Gestalt gewonnen: 

!/l(E) = + b h lcl + i%k1 + i + h \ n X n = \ 

TO - + 1 + • • • + *» = 4 1 ' 

(Jl) 

TO- + = 

mit 1 kx ^ n. 

j-ter Schritt ( j 2). Angenommen, wir haben in j — 1 
Schritten durch Operationen der Formen (a), (b), (c) bereits 
ein zu (J) äquivalentes Gleichungssystem (J ;-_i) der folgen-
den Gestalt gewonnen: 

Bezüglich dieses Falles siehe die Bemerkung 4 am Schluß dieses Para-
graphen. 
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?l(E) = X*1 + &!,*.+! 3*1+1 + + hnXn = &i 

9j-i(E) = i + ^ j - i . ^ i + i ^ . i + i H h V i . = 

mit 1 ^ /q < k2 < • • • < j w. 

Dann konstruieren wir ein zu (J^-j) äquivalentes Glei-
chungssystem (J,) ganz entsprechend wie im ersten Schritt: 
Sofern noch Gleichungen mit f h ^ =j= 0 hinter der (j—l)-ten 
vorhanden sind, d. h. j 5 m ist und nicht alle = 0 
sind, sei /c,- der kleinste Index k, für den mindestens ein 
a{i]~l) 4= 0 ist, etwa j=0; dabei gilt wegen der Gestalt von 
(Jj— i) < kj g n. Dann ändern wir (gemäß (a)) die Reihen-
folge der letzten m — j + 1 Gleichungen = a(^r> 

so ab, daß die ij-te Gleichung (5) = an 
die j-te Stelle des ganzen Gleichungssystems kommt, und 
dividieren diese Gleichung (gemäß (b)) durch aJJ^K Wir 
erhalten so an der j-ten Stelle eine Gleichung der Gestalt 

9i(E) = x
k j + h.ti + 1% + 1 + ' *" + h«xn = V 

Anschließend subtrahieren wir (gemäß (c)) von den übrigen 
Gleichungen /^-1)(E)==ai'-1> =f= h) jeweils das a^"1)-fache 
der neuen j-ten Gleichung, so daß in diesen Gleichungen 
dann auch noch der kr-te Koeffizient verschwindet 
(während alle vorherigen Koeffizienten bereits nach der 
Wahl von kj verschwanden). Damit haben wir ein zu (J;-i) 
und daher auch zu (J) äquivalentes Gleichungssystem (Jj) 
von der folgenden Gestalt gewonnen: 
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ffl(s) = + Kkl+l^ + l + + hnXn = \ 

9i(t) = x k j + bj,kj + 1 afy+H h bjnxn = bf 

W f & i i l ) - « f t 1 > t , + 1 V + - + = + x 

TO - «S2t,+1 + 1 + - + = a2? 
mit 1 ^ < k2 < • • • < ^ n. 

r-<er Schritt. Dieses Verfahren der schrittweisen Umfor-
mungen setzen wir fort, solange das möglich ist; das ist der 
Fall, solange noch nicht erfaßte Gleichungen mit f f =(= 0 
übrig sind. Der letzte mögliche Schritt sei der r-te. Diese 
Zahl r bestimmt sich demnach dadurch, daß nach dem r-ten 
Schritt entweder alle Gleichungen erfaßt sind, also r = m ist, 
oder aber in den noch nicht erfaßten Gleichungen (also für 
i = r + 1, . . ., m) /<r> = 0 ist, d. h. alle = 0 sind. Da 
die in jedem einzelnen Schritt vorgenommene Wahl des 
Index it und Abänderung der Reihenfolge der Gleichungen 
mit Willkürlichkeiten behaftet, also das ganze Transforma-
tionsverfahren nicht durch das Gleichungssystem (J) allein 
eindeutig festgelegt ist, hängt auch die Zahl r zunächst nicht 
allein von (J), sondern auch noch von der Wahl des Ver-
fahrens ab. Es wird sich jedoch zeigen, daß r in Wahrheit 
allein durch das Gleichungssystem (J) eindeutig bestimmt ist. 

Nach dem r-ten Schritt haben wir demnach ein zu (J) 
äquivalentes Gleichungssystem (Jr) der folgenden Gestalt 
gewonnen: 
?i(E) = + &i,*1 + i&i1+i + + h nxn = ^ 

gv(E) = Xkr + br,kr + 1Xkr + 1 + b brnXn = 

(Jr) / & ( £ ) = 0 = 

TO -
m i t 1 ^ k 1 < k 2 < - • • <kr ^ n. 

0 = <> 



§ 12. Äquivalente lineare Gleichungssysteme 89 

Das Teilsystem 
?i(E) = h 

(J) 
?r(i) = br 

von (Jr) hat die im Satz angegebene Gestalt und besitzt die 
Eigenschaft (3). Wir zeigen zunächst, daß es auch die Eigen-
schaften (2) und (1) besitzt. 

Wenn eine Relation 
x'i9i H 1- x'r9r = 0 

besteht, so gilt insbesondere für die Koeffizienten der xk. 

xi = 0 
xihk2+xi = ° 

x'lblkr H + + 4 = 0, 
und daraus folgt der Reihe nach x[ = 0 , . . ., x'r — 0. Die 
Linearformen glt..., gr sind somit linear unabhängig. Da 
sie zusammen mit den Nullformen • • •, f1-̂  aus dem 
Linearformensystem /-,,..., fm durch wiederholte Anwendung 
der Operationen (a), (b), (c) hervorgegangen sind, erzeugen 
sie nach dem Hilfssatz denselben Linearformenmodul M 
wie / j , . . . , fm und bilden darin wegen ihrer linearen Unab-
hängigkeit nach Def. 25 [70] eine Basis. Damit ist die Eigen-
schaft (2) nachgewiesen und im Hinblick auf Satz 44 [72] 
zugleich gezeigt, daß die Zahl r der Rang von M ist und so-
mit tatsächlich nur von dem Gleichungssystem (J) und nicht 
auch noch von den Willkürlichkeiten des Transformations-
verfahrens abhängt. Schließlich erzeugt nach Satz 38, a') 
[68] und Satz 43 [71] bereits ein Maximalsystem linear un-
abhängiger unter den Linearformen / l 5 . . . , fm den Modul 
M, bildet somit nach Def. 25 eine Basis von M und hat 
daher nach Satz 44 die Anzahl r; und das bedeutet die 
die Eigenschaft (1). 

Es bleibt noch zu beweisen, daß das durch Weglassen der 
m — r letzten Gleichungen 
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(N) / i r ) ( E ) = 0 = (» = r + l , . . . , f » ) 

aus (Jr) entstehende Teilsystem (J) mit (Jr) und daher auch 
mit (J) äquivalent ist. Für r = m, wo gar keine Gleichungen 
wegzulassen sind, also (J) mit (Jr) zusammenfällt, ist das 
trivialerweise richtig. Für / < m zeigen wir: Wenn (J) — wie 
im Satz vorausgesetzt — die notwendige Lösbarkeitsbedin-
gung aus Satz 51 [82] erfüllt, dann sind in (N) mit den linken 
auch die rechten Seiten 

« f = 0 (t = r + 1 , . . . , m), 
also die m — r letzten Gleichungen (N) von (Jr) identisch 
erfüllt und daher die Lösungen des Teilsystems (J) in der 
Tat auch Lösungen des vollen Systems (Jr). 

Bei den Operationen (a), (b), (c) aus dem Hilfssatz geht 
nämlich ein Gleichungssystem jeweils in ein neues über, 
dessen linke Seiten linear aus den linken Seiten des Aus-
gangssystems komponiert sind und dessen rechte Seiten sich 
in gleicher Weise linear aus den rechten Seiten des Ausgangs-
systems zusammensetzen. Da das System (Jr) durch wieder-
holte Anwendung von Operationen (a), (b), (c) aus dem 
System (J) hervorgegangen ist, sind daher nach Satz 43 [71] 
die linken Seiten von (Jr) linear aus / l t . . . , fm komponiert 
und, da die im Beweis von Satz 43 angewendete Begel 
über die Vertauschung der Summationsfolge ebenso wie für 
Linearformen f( auch für Körperelemente a{ gültig ist, sind 
die rechten Seiten in gleicher Weise linear aus ax,..., am 
zusammengesetzt. Insbesondere sind also die d p in gleicher 
Weise linear aus am zusammengesetzt wie die fp aus 
flt..., fm- Da aber die fip = 0 sind, besagt die notwendige 
Lösbarkeitsbedingung aus Satz 51 [82], daß auch die a^p = 0 
sind, wie behauptet. 

Damit ist der Beweis von Satz 52 zum Abschluß gebracht. 
Wir haben in diesem Beweis das vorgelegte Gleichungs-
system (J) in ein äquivalentes von der besonderen Gestalt 
(J) transformiert, von dem wir im folgenden § 13 zeigen 



§ 12. Äquivalente lineare Gleichungssysteme 91 

werden, daß es stets lösbar ist und wie man seine Lösungs-
gesamtheit bestimmen kann. Zuvor wollen wir an den Be-
weis noch einige Bemerkungen anknüpfen: 

1. Über die in Satz 52 formulierte E x i s t e n z a u s s a g e 
hinaus liefert der Beweis zugleich ein k o n s t r u k t i v e s V e r -
f a h r e n aus endlich vielen (nämlich r ^ Min (m, n)) Schritten, 
durch das man jedes vorgelegte lineare Gleichungssystem (J ) 
in ein äquivalentes von der einfacheren Gestalt ( J ) über-
führen kann. 

2. Die Prüfung, ob ein vorgelegtes lineares Gleichungs-
system ( J ) die notwendige Lösbarkeitsbedingung aus Satz 51 
[82] erfüllt, würde im allgemeinen unendlich viele Schritte 
erfordern, da j a bei unendlichem Grundkörper unendlich viele 
Möglichkeiten linearer Abhängigkeit der Linearformen auf 
den linken Seiten durchzuprobieren wären. Für die Lösung 
der Aufgaben J * ) , H*) aus § 11 ist man aber auf diese Prüfung 
gar nicht angewiesen. Wendet man nämlich das beschriebene 
Verfahren auf ein vorgelegtes lineares Gleichungssystem ( J ) 
an, von dem nicht feststeht, ob die notwendige Lösbarkeits-
bedingung aus Satz 51 erfüllt ist, so gibt es für das 
nach r Schritten resultierende zu ( J ) äquivalente System 
( J r ) mit den m — r letzten Gleichungen (N) nur die folgenden 
beiden Möglichkeiten: 

a) Es sind, wie im vorstehenden Beweis, in (N) alle rechten 
Seiten = 0 — hierunter zählen wir auch den Fall r = m, 
in dem gar keine afp mehr existieren. Dann ist ( J ) wie oben 
zu dem Teilsystem ( J ) von ( J r ) äquivalent, und für dieses 
Teilsystem ist die notwendige Lösbarkeitsbedingung aus 
Satz 51 trivialerweise erfüllt, da seine linken Seiten ja linear 
unabhängig sind. 

b) Es ist in (N) mindestens eine rechte Seite afp =j= 0. 
Dann ist ( J r ) und damit auch ( J ) unlösbar. 

3. Das ( J ) zugeordnete homogene lineare Gleichungssystem 
(H) ist mit dem ( J ) zugeordneten homogenen linearen Glei-
chungssystem (H) äquivalent. Denn wendet man das be-
schriebene Verfahren auf (H) an, so ergibt sich gerade (H). 
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4. Der triviale Fall, daß in (J) alle linken Seiten /« = 0 sind, 
ordnet sich dem beschriebenen Verfahren folgendermaßen unter: 
Hier hat (J) von vornherein schon die im allgemeinen Fall nach r 
Schritten resultierende Endgestalt (J r). Demnach ist sinngemäß 
r = 0 zu setzen und das Teilsystem (J) aus r = 0 Gleichungen als 
identisch erfüllt anzusehen. Die beiden Möglichkeiten aus Be-
merkung 2 stellen sich hier wie folgt dar: 

a) Es sind alle rechten Seiten at = 0. Dann ist (J) mit (J) äqui-
valent und identisch erfüllt. 

b) Es ist mindestens ein a, #= 0. Dann ist (J) unlösbar. 

§ 13. Lösbarkeit und Lösungen linearer Gleichungs-
systeme 

Wir wenden jetzt den Satz 52 [85] zur Lösung der beiden 
am Schluß von § 11 formulierten Aufgaben J*) und H*) an. 

Die Aufgabe J*) wird durch den Beweis des folgenden 
Satzes gelöst: 

Satz 53. Das Gleichungssystem (J) ist stets lösbar; d. h. die 
notwendige Lösbarkeitsbedingung für (J) aus Satz 51 [82] ist 
auch hinreichend. 

Beweis. Die Lösbarkeit des Gleichungssystems (J) folgt 
aus seiner besonderen Gestalt, wie sie in der Eigenschaft (3) 
aus Satz 52 zum Ausdruck kommt. 

Man wähle nämlich, um eine Lösung zu konstruieren, zu-
nächst die n — k r Unbestimmten xn,...,%+1 (soweit sie 
überhaupt vorkommen, d. h. kr < w ist) ganz beliebig. Dann 
läßt sich Xi-r (eindeutig) so bestimmen, daß die letzte Glei-
chung gr(j) = hr erfüllt ist, wie auch die übrigen Xk gewählt 
werden mögen. Danach wähle man weiter die kr — ÄV-i — 1 
Unbestimmten xkr _ x , . . . , Xkr _ 1 +1 (soweit sie überhaupt 
vorkommen, d. h. kr—i<kr — 1 ist) ganz beliebig. Dann 
läßt sich ZkT_x (eindeutig) so bestimmen, daß auch die zweit-
letzte Gleichung'grr_i(£) = &r_i erfüllt ist, wie auch die noch 
nicht festgelegten x^ gewählt werden mögen. So fahre man 
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fort, bis schließlich auch bestimmt ist, und wähle dann 
noch die K1 — 1 Unbestimmten XKx—I, . . .,x± (soweit sie 
überhaupt vorkommen, d. h. k t > 1 ist) ganz beliebig. Der 
damit vollständig festgelegte Vektor j ist eine Lösung von(J) . 

Diesem Lösungsverfahren ordnet sich auch der am Schluß von 
§ 12 in der Bemerkung 4 aufgeführte triviale Fall r = 0 unter, 
indem dann alle Unbestimmten » j ganz beliebig gewählt werden 
können, d. h. j e d e r Vektor x Lösung von (J) ist. 

Nach Satz 53 können wir ergänzend zu der Bemerkung 2 
am Schluß von § 12 feststellen: 

Zusatz. Notwendig und hinreichend für die Lösbarkeit des 
inhomogenen linearen Gleichungssystems (J) — und daher 
gleichbedeutend mit der Lösbarkeitsbedingung aus Satz 51 
[82] — ist, daß bei der im Beweis zu Satz 52 [85] beschriebenen 
Transformation nach dem r-ten Schritt nicht nur die linken, 
sondern auch die rechten Seiten der letzten m — r Gleichungen 
zum Verschwinden kommen. 

Im Hinblick auf die Bemerkung 1 am Schluß von § 12 ist 
damit die Aufgabe J*), bei einem vorgelegten inhomogenen 
linearen Gleichungssystem (J) über die Lösbarkeit zu ent-
scheiden und gegebenenfalls eine Lösung zu bestimmen, 
durch ein konstruktives, in endlich vielen Schritten durch-
führbares Verfahren gelöst. 

Dieses Verfahren liefert zudem nicht nur, wie in der Aufgabe 
J*) verlangt, eine Lösung von (J), sondern sogar al le Lösungen 
von (J), indem man für die ganz beliebig zu wählenden von den 
x/cj verschiedenen x& jeweils nicht nur ein, sondern nacheinander 
al le Elemente des Grundkörpers einsetzt (vgl. den anschließenden 
Beweis von Satz 54 für den homogenen Fall). Wir wollen jedoch 
hierauf nicht genauer eingehen, da sich die Lösungsgesamtheit 
von (J) auf dem bisher eingeschlagenen, durch Satz 49 [81] be-
stimmten Wege, nämlich durch getrennte Behandlung der Auf-
gaben J) und H), in übersichtlicherer Form darstellt. 

Die Aufgabe H*) wird durch den Beweis des folgenden 
Satzes gelöst: 

Satz 54. Der Lösungsrang von (H) ist s = n — r, wo r der 
Rang des von fv . . ., fm erzeugten Linearformenmoduls ist; 



94 III. Determinantenfreie lineare Algebra 

oder also: Jedes Fundamentallösungssystem von (H) besteht 
aus s = m — r Vektoren, wo r die Maximalanzahl linear un-
abhängiger unter ..., fm ist. 

Beweis. Wir betrachten das (J) zugeordnete homogene 
lineare Gleichungssystem (H), das nach der Bemerkung 3 am 
Schluß von § 12 zu (H) äquivalent ist, und konstruieren alle 
Lösungen von (H) ebenso, wie wir im Beweis des vorigen 
Satzes eine Lösung von (J) konstruierten, indem wir nämlich 
die von xnv . . . , xkr verschiedenen unter den Unbestimmten 
x^,..xn ganz beliebig wählen und xj-^...., der Reihe 
nach so bestimmen, daß eine Gleichung von (H) nach der 
anderen erfüllt wird. Der Lösungsrang s = n — r ergibt sich 
dabei als die Anzahl der von den xjCj verschiedenen, frei wähl-
baren xk. Das erkennt man im einzelnen folgendermaßen. 

Für jeden Lösungsvektor % von (H) ergibt sich xkr aus der 
letzten Gleichung von (H) als lineares Kompositum der 
n—kr Unbestimmten Xkr +1,..., xn mit durch (H) eindeutig 
festgelegten Koeffizienten: 

%lcr — br,kr +1 ®fcr + i • " " brn%n 
(bzw. xicr = 0, falls kr = n ist). Ebenso ergibt sich x!Cf_1 aus 
der zweitletzten Gleichung von (H) zunächst als lineares 
Kompositum der n —fer Unbestimmten +i, ..., x„ 
mit durch (H) eindeutig festgelegten Koeffizienten: 

X*T_1
 = ,kr_t + i + i — """ bT_ljnxn. 

Da aber hierin x%r seinerseits lineares Kompositum von 
iCj;r+1, mit durch (H) eindeutig festgelegten Koeffi-
zienten ist, ergibt sich nach Satz 43 [71] durch Einsetzen x*T 

als lineares Kompositum der x% mit kr_v k =f= kr, mit durch 
(H) eindeutig festgelegten Koeffizienten (bzw. z* = 0, falls 
keine solchen Xk vorhanden sind, d. h. kr = n, k, _j = n — 1 
ist). Fährt man so fort, so erhält man schließlich für jeden 
Lösungsvektor von (H) die T Unbestimmton . .XJC der 
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Reihe nach als lineare Komposita der übrigen n — r Unbe-
stimmten X/c mit durch (H) eindeutig festgelegten Koeffi-
zienten (bzw. Xkr = 0 , . . . , = 0, falls keine weiteren 
Xk vorhanden sind, d. h. r = n ist). 

Um uns einfacher ausdrücken zu können, bezeichnen wir 
im folgenden die n — r von x^,..., Xkr verschiedenen unter 
den Unbestimmten a ^ , . . . , xn mit £fcr + 1 , . . . , '£kn- Dann 
liefert das eben beschriebene Verfahren r durch (H) ein-
deutig festgelegte Linearformen h^ . . .,hr von n — r Un-
bestimmten % , . . . , X]cn derart, daß für jeden Lösungs-
vektor j von (H) gilt: 

Xki = \{xkr + 1, . . ., Xkn) = C-i,r + lxkr + 1 H b CinXkn 

%kT — + • • •j xk„) = Cr,r + + 1 ~b " ' ' ~b Crn£kn-

(Dabei ist im Falle r = n sinngemäß = 0 , . . . , Jw = 0 zu 
verstehen.) 

Setzt man umgekehrt für Xkr + 1 5 . . . , xkn beliebige und für 
afc , . . X k r die sich dann aus den Linearformen \ , . . . , h T 
ergebenden Werte ein, so erhält man nach dem Einsetzungs-
prinzip auch stets einen Lösungsvektor £ von (H). Der Lö-
sungsmodul von (H) ist demnach identisch mit der Gesamt-
heit der Vektoren von der erhaltenen Form. Diese Vektoren 
5 sind nach Satz 47 [76] gerade die sämtlichen linearen 
Komposita der folgenden s = n — r speziellen Vektoren 
(deren Komponenten wir der Einfachheit halber auf die 
Reihenfolge x^,..xkn statt xv ..., xn der Unbestimmten 
bezogen angeben): 

cr + l = (cl,r+i, • • Cr,r+1, 6, 0, . . ., 0) 

Cn — (cln , . . ., Crn , 0, . . ., 0, e), 
nämlich 

l = x * r + 1 <V+i H Yxkn c 
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Die s = n—r Vektoren cr + 1 , . . . , cn sind nach Satz40 [68] 
linear unabhängig, da bereits die aus ihren n — r (in der 
angegebenen Reihenfolge) letzten Komponenten gebildeten 
Vektoren ersichtlich linear unabhängig sind. Sie bilden daher 
eine Basis des Lösungsmoduls von (H), d. h. ein Fundamen-
tallösungssystem von (H) und damit auch von (H). Somit 
ist Satz 54 bewiesen. 

Wir wollen noch kurz darauf eingehen, wie sich die beiden 
Grenzfälle r = 0 und r = n diesem Lösungsverfahren unterordnen. 

Ist r = 0, so besteht das Gleichungssystem (H) aus r = 0 
Gleichungen. Dann ist j e d e r Vektor j Lösung von (H). — In 
diesem Falle ist das Teilsystem x . . . , x/cr (und damit auch das 
Linealformensystem . . ., hr) leer und besteht das Teilsystem 
Xkr+V • • X]cn aus allen Unbestimmten xx,..., xn. Dann ist das 
obige Fundamentallösungssystem cr + 1 , . . . , cn gerade das System 
der s = n — r = n Einheitsvektoren. 

Ist dagegen r = n, so besteht das Gleichungssystem (H) aus 
t — 7i Gleichungen, die der Reihe nach eindeutig xn — 0, . . . , % = () 
bestimmen. Dann ist j = 0 die einzige Lösung, d. h. (H) ist im 
Sinne der in § 11 getroffenen Festsetzung unlösbar. — In diesem 
Falle besteht das Teilsystem x ^ , . . . , x t r aus allen Unbestimmten 
x1}..., Xn, während das Teilsystem x/cr+1, • • xkn leer ist. Dann 
sind, wie gesagt, = 0, . . ., hT = 0 zu verstehen, und das obige 
Fundamentallösungssystem ist leer, d. h. bestellt aus s = n — r 
= 0 Vektoren. 

Damit ist auch die Aufgabe H*), bei einem vorgelegten 
homogenen linearen Gleichungssystem (H) den Lösungsrang 
und ein Fundamentallösungssystem zu bestimmen, durch 
ein konstruktives, in endlich vielen Schritten durchführbares 
Verfahren gelöst. 

Wir wollen nun zum Schluß noch einige zusätzliche Fest-
stellungen über die bei der Lösung von (J) bzw. (H) auf-
getretenen Anzahlen r und s treffen und damit gleichzeitig 
das transponierte homogene Gleichungssystem (H') wieder 
in den Kreis der Untersuchungen einbeziehen. 
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Satz 54 besagt, daß der Lösungsrang des Gleichungs-
systems (H) um so größer ist, je weniger linear unabhängige 
Zeilen seine Matrix A hat, je mehr lineare Abhängigkeiten 
also zwischen diesen Zeilen bestehen, oder, da eine lineare 
Abhängigkeit zwischen den Zeilen von A mit einer Lösung 
von (H') gleichbedeutend ist, je größer die Lösungsgesamtheit 
von (H') ist. Es ist daher eine Eelation zwischen den Lö-
sungsrängen von (H) und (H') zu vermuten, die sich nach 
Satz 54 auch als Eelation zwischen den Maximalanzahlen 
linear unabhängiger Zeilen bzw. Spalten von A aussprechen 
lassen muß. Wir beweisen nun in der Tat die beiden folgenden 
Tatsachen: 

Satz 55. Die Maximalanzahl r linear unabhängiger Zeilen 
einer Matrix A ist gleich der Maximalanzahl r' linear unab-
hängiger Spalten von A. 

Satz 56. Zwischen den Lösungsrängen s eines homogenen 
linearen Gleichungssystems (H) von m Gleichungen und s' 
seines transponierten (H') von m' Gleichungen besteht die Re-
lation 

m + s = m' + s'. 
Dabei haben wir der Symmetrie halber ausnahmsweise m' für 

die sonst mit n bezeichnete Anzahl der Spalten geschrieben. 
Beweise. 1) (Satz 55) Es seien r und r' die im Satz genannten 

Maximalanzahlen für die (m, m')-reihige Matrix A. 
a) Ist A = 0, so ist die Aussage des Satzes trivial, da dann 

r = 0 und r' = 0 ist (vgl. Bemerkung 4 am Schluß von § 12). 
b) Ist A =)= 0, so dürfen wir ohne Einschränkung die Zeilen 

so geordnet annehmen, daß a X ) . . . , a r ein Maximalsystem 
linear unabhängiger Zeilen ist. Ist nun zunächst r < m, 
so sind nach Satz 38, a') [68] die letzten m — r Zeilen 
a r + 1 , . . . , am von den ersten r Zeilen d j , . . . , a r linear ab-
hängig, d. h. es bestehen m — r Relationen der Form 

T 

d) = Cijüi ( j ' = r + l , . . . , m) 
i= 1 

zwischen den Zeilen. Diese besagen, daß die m —r nach 
Satz 40 [68] linear unabhängigen Vektoren 

7 H a s s e , Höhere Algebra 
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( c r + l . l ! • • •> c r + l . r ' e> • • •> 

( Cmi i • . •) Cmr i 0 , . . 0 , e) 

Lösungen des 4 zugeordneten transponierten homogenen 
Gleichungssystems (H') sind. Nach Satz 54, angewandt auf 
(H'), ist somit der Lösungsrang m —r' von (H') mindestens 
m — r, d. h. m — r' S: m — r, also r' ^ r. Ist aber r = w, 
so gilt r' ^ r bereits nach Satz 41 [69], da die Spalten von 
A ja m-gliedrige Vektoren sind. Durch die entsprechenden 
Betrachtungen über die transponierte Matrix A' folgt ebenso 
r ^ f . Zusammen gilt also r = r'. 

2) (Satz 56) Nach Satz 54, 55 gilt s = m' — r,s' = m — r, 
d. h. m + s = m' + s' ( = m + m' — r). 

Durch Satz 55 wird die nach Satz 41 [69] richtige Tatsache, daß 
in einer (m, m')-reihigen Matrix A für die Maximalanzahl r linear 
unabhängiger Zeilen nicht nur r g m, sondern auch r g m' gilt, 
in helles Licht gestellt. Denn nach Satz 55 geht die „nicht-selbst-
verständliche" Ungleichung 0 g r ^ t n ' zwischen einer Zeilen-
und einer Spaltenanzahl in die „selbstverständliche" Ungleichung 
0 ¡¿ r ¡0, m zwischen zwei Spaltenanzahlen über. 

Durch Satz 56 wird der „Kreis" unserer Betrachtungen über 
(J), (H), (H') geschlossen: Durch Satz 49 [81] ist (J) mit (H), 
durch Satz 56 (H) mit (H') und durch Satz 51 [82], 53 (und deren 
Zusätze) (H') mit (J) verkettet. 

§ 14. Der Fall m = n 

Es ist für die Betrachtungen in IV und auch für die Anwen-
dungen von Interesse, die in Satz 49—56 [81—97] gewonnenen 
Resultate über Lösbarkeit und Lösungen linearer Gleichungs-
systeme auf den Fall zu spezialisieren, daß die Anzahl m der 
Gleichungen mit der Anzahl n der Unbekannten übereinstimmt, 
daß also A eine («, «)-reihige Matrix ist. Da aber nach den Resul-
taten des vorigen Paragraphen die Anzahlen m und n allein für die 
Lösungsgesamtheit von (H) (und damit nach Satz 49 [81] auch für 
die von (J)) so gut wie nichts besagen, vielmehr diese sich erst 
durch Hinzunahme der dortigen Anzahl r bestimmt, haben wir 
ohne eine feste Annahme über r keine besonderen Resultate zu 
erwarten. Wir wollen daher außer der Spezialisierung m = n noch 
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die weitere einführen, daß nur zwischen dem Grenzfall r = m = n 
und dem Fall 0 ^ r < m = « (ohne weitere Unterscheidungen 
im letzteren Falle) unterschieden wird1). 

Wir treffen demgemäß, vorläufig nur der kürzeren Ausdrucks-
weise halber, die folgende, erst durch die Entwicklungen in IV in 
ihrer vollen Bedeutung verständlich werdende Festsetzung: 

Definition 32. Eine (n, n)-reihige Matrix A heiße regulär oder 
singulär, je nachdem, ob für sie der Fall r — n oder der Fall 
0 si r < w vorliegt, wo r die Bedeutung aus §§ 12, 13 hat. 

Der in Satz 54—56 [93—97] enthaltene Tatsachenkomplex 
über (H) liefert dann hier, zusammengefaßt, unmittelbar fol-
gendes Resultat: 

Satz (54, 55, 56) a. IstA eine (w, n)-reihige Matrix, so sind ent-
weder sowohl ihre Zeilen als auch ihre Spalten linear unabhängig 
oder sowohl ihre Zeilen als auch ihre Spalten linear abhängig, d. h. 
es sind die A zugehörigen Qleichungssysteme (H) und (H') entweder 
beide unlösbar oder beide lösbar, und zwar gilt das erstere oder das 
letztere, je nachdem, A regulär oder singulär ist. 

Ferner liefert der in Satz 49 [81], 51 [82], 53 [92] enthaltene 
Tatsachenkomplex über (J) hier, zusammengefaßt, folgendes Re-
sultat : 

Satz (49,51,53) a. Das Gleichungssystem (J) mit (n, n)-reihiger 
Matrix A ist genau dann für jeden beliebigen Vektor a rechts und 
genau dann sogar eindeutig lösbar, wenn A regulär ist. 

Beweis, a) Es sei A regulär. 
1. Dann ist (J) nach Satz 53 [92] für beliebiges a lösbar, weil 

(H') nach Satz (54, 55, 56) a unlösbar ist, also die einschränkende 
Bedingung von Satz 51 (Zusätze) [83] für a fortfällt. 

2. Ferner ist dann (J) nach Satz 49 [81] eindeutig auflösbar, 
weil (H) nach Satz (54, 55, 56) a unlösbar ist. 

b) Es sei A singulär. 
1. Dann existiert nach Satz (54, 55, 56)a eine Lösung j'(=f= 0) 

von (H'). Ist darin =|= 0, also %'ti = x- 4= 0, so ist (J) nach 
Satz 51, Zusatz 1 [83] für den Vektor a = ej unlösbar, also nicht 
für jeden beliebigen Vektor a lösbar. 

2. Ferner ist (J) nach Satz 49 [81], wenn überhaupt, dann nicht 
eindeutig lösbar, weil (H) nach Satz (54, 55, 56) a lösbar ist. 

1) Der andere Grenzfall r — 0 verlohnt seiner Trivialität halber keiner be-
sonderen Hervorhebung. 

7 * 
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Die beiden erhaltenen Sätze ergeben noch durch Elimination 
der A l t e r n a t i v e (d. h. der k o n t r a d i k t o r i s c h entgegengesetzten 
Aussagen) , ,A ist regulär" oder ,,A ist singulär": 

Zusatz. Es besteht die A l t e r n a t i v e : Entweder ist (J) einschrän-
kungslos und eindeutig lösbar, oder es sind (H) und (H') lösbar. 

Für den ersten Fall dieser Alternative, d. h. für reguläres A, 
können wir schließlich eine über die Resultate von § 13 hinaus-
gehende, elegante Aussage betreffend die Abhängigkeit der dann 
stets vorhandenen, eindeutig bestimmten Lösung j von (J) von 
dem rechtsstehenden Vektor a machen. Wir bezeichnen in diesem 
Zusammenhang a mit j* und beweisen: 

Satz 57. Ist A = (atjc) eine (n, n)-rdhige reguläre Matrix, so 
existiert eine eindeutig bestimmte (n, n)-reihige Matrix A* derart, 
daß die stets vorhandene und eindeutig bestimmte Lösung j des 
Gleichungssystems 

n 
(J) JS<HkXk = x\ (i = 1, . . ., n) 

k = 1 
mit der Matrix A in ihrer Abhängigkeit von den rechtsstehenden x\ 
durch die Formeln 

(3*) 2 ? o & * f = »« (» = 1 «) 
i-= l 

mit der Matrix A* gegeben wird. A* ist ebenfalls regulär, und es gilt 
(4*)* = A, d. h. das den Formeln (Q*) entsprechende Gleichungs-
system 

n 
(J*) j ; a*h x% = xi (i = 1 , . . ., n) 

k = 1 
mit der Matrix A* für die Unbekannten x% mit den rechten Seiten 
Xi wird durch die dem Gleichungssystem (J) entsprechenden Formeln 

n 
(3) ¿jaikxk = X* (»' = 1, . . ., n) 

k = 1 
mit der Matrix A gelöst. 

Beweis1). a) Sind die n Vektoren a*k = (a*k,..., ajj.) die Lösun-
gen von (J) für die speziellen rechten Seiten e^ (k = 1, . . . , n), so 

*) Der Leser setze in diesem Beweise, wie im Satz geschehen, zum besseren 
Verständnis des Zusammenhangs vor jedes (J), (J*) das Wort G l e i c h u n g s -
s y s t e m , vor jedes (£f), (0*) das Wort F o r m e l n . 
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folgt nach Satz 47 [76] sofort, daß das lineare Kompositum 
n 

E = £ x % a*k einei a ls° die Lösung von (J) für das entsprechende 
k = 1 n 

lineare Kompositum £* = £ x t tk ist. Die Darstellung von j 
k= 1 

durch die a*t geht aber, ausführlich geschrieben, in (Q*) über. 
Es existiert daher eine (n, n)-reihige Matrix A* mit der im ersten 
Teil des Satzes genannten Eigenschaft. 

b) Ist A* = (flijc) eine weitere Matrix mit dieser Eigenschaft, 
so daß also (Q*) und das mit A* gebildete (g*) für alle £* jeweils 
dasselbe j rechts liefern, so folgt speziell für £* = e^, daß die fc-ten 
Spalten ä*ic und a i s von A * u n d 4 * übereinstimmen (/c = 1, ...,w), 
und daraus A* = A*, d. h. die eindeutige Bestimmtheit von A* 
durch die im ersten Teil des Satzes genannte Eigenschaft. 

c) Wird umgekehrt j irgendwie gewählt und j* dazu so be-
stimmt, daß (Q) besteht, so muß nach a) auch (Q*) bestehen (weil 
eben dann j die Lösung von (J) für das so bestimmte j* ist). 
Anders ausgedrückt, es liefert (Q) für jedes beliebige j eine Lösung 
von (J*). Dessen Matrix A* ist also nach Satz (49, 51, 53)a regu-
lär, und ferner (X*)* = A. 

Im Hinblick auf die charakteristische Eigenschaft der Matrix 
A* aus Satz 57 definieren wir noch: 

Definition 33. Die nach Satz 57 durch eine (n, n)-reihige reguläre 
Matrix A eindeutig bestimmte Matrix A* heißt die l ö s e n d e Ma-
t r i x von A. 

§ 15. Die Tragweite der determinantenfreien 
linearen Algebra 

Durch die Resultate aus §§ 11—13 haben wir die Aufgabe der 
linearen Algebra § 5, (1) in theoretischer wie praktischer Hinsicht 
vollständig gelöst. 

In t h e o r e t i s c h e r Hinsicht haben wir für das Gleichungssystem 
(J) eine notwendige und hinreichende Lösbarkeitsbedingung 
(Satz 51 [82], 53 [92]) sowie eine genaue Kenntnis der Struktur 
der Lösungsgesamtheit (Satz 49 [81] verbunden mit Satz 50 [81], 
54 [93]) gewonnen. 

In p r a k t i s c h er Hinsicht haben wir aus endlich vielen Schritten 
bestehende, konstruktive Verfahren zur Entscheidung über die 
Lösbarkeit (Beweis von Satz 52 [85], Zusatz zu Satz 53 [93]) 
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sowie zur Bestimmung der Lösungsgesamtheit (Beweis von Satz 52 
[85], 53 [92], 54 [93]) des Gleichungssystems (J) entwickelt. 

Diese Bemerkungen beziehen sich auch auf den in § 14 behan-
delten Spezialfall. Insbesondere wird über die dortige Alternative 
dadurch entschieden, ob das Transformationsverfahren aus § 12 
erst nach n Schritten oder schon früher zum Abschluß kommt, 
und die n Spalten der lösenden Matrix werden durch Auflösung 
der speziellen Gleichungssysteme (J) mit den n Einheitsvektoren 
als rechten Seiten gewonnen. 

Trotz aller dieser Errungenschaften bleibt in theoretischer 
wie praktischer Hinsicht noch etwas zu wünschen übrig. 

In t h e o r e t i s c h e r Hinsicht ist der Beweis von Satz 55 [97] 
insofern unbefriedigend, als er keine tiefere Einsicht in den wahren 
Grund für das Übereinstimmen der Maximalanzahlen linear unab-
hängiger Zeilen und Spalten einer Matrix liefert. Man würde sich 
eine neue, in den Zeilen und Spalten symmetrische Definition 
dieser Anzahl wünschen, aus der sich ihre beiden bisherigen Be-
deutungen durch ein und dieselbe Schlußweise folgern lassen. 

In p r a k t i s c h e r Hinsicht sind die entwickelten Verfahren inso-
fern unbefriedigend, als sie mit Willkürlichkeiten behaftet sind 
und weder die Lösbarkeitsentscheidung noch die Lösungsgesamt-
heit in geschlossener Form liefern. Man würde sich dafür Formeln 
wünschen, die nur aus den Koeffizienten und rechten Seiten des 
Gleichungssystems in einheitlicher Form aufgebaut sind. 

Diese Wünsche werden nun durch die Determinantenlehre 
erfüllt. 

Der Grund, weswegen wir hier, von dem bis zur ersten Auflage 
dieses Bändchens fast immer üblichen Wege abweichend, nicht 
von vornherein diese Determinantenlehre zur Herleitung aller bis-
herigen Resultate verwendet haben, ist ein doppelter. Einerseits 
erscheint bei der eben angedeuteten Behandlungsart der an die 
Spitze gestellte Determinantenbegriff als etwas Fremdartiges, in 
gar keiner Beziehung zu dem zu lösenden Problem Stehendes, so 
daß die mit ihm gewonnenen Resultate überraschend wirken und 
aus ihrem Sinnzusammenhang gelöst erscheinen, während die von 
uns eingeschlagene Methode dem Problem durchaus angepaßt ist 
und die Zusammenhangsfäden zwischen den Sätzen 49—-56 in 
voller Klarheit hervortreten läßt. Andererseits aber hat der ent-
wickelte d e t e r m i n a n t e n f r e i e S ä t z e k o m p l e x der l i n e a r e n 
A l g e b r a in neuerer Zeit ein besonderes Interesse gewonnen, da er 
allein es ist, der sich mit allen seinen Beweisen fast wörtlich auf 
die entsprechenden Probleme für u n e n d l i c h v i e l e G l e i c h u n g e n 
m i t u n e n d l i c h v i e l e n U n b e k a n n t e n und auf die damit eng 
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zusammenhängende Theorie der l inearen I n t e g r a l g l e i c h u n -
gen übertragen läßt, während der Begriff der Determinante sich 
dort, abgesehen von Spezialfällen, als zu eng erweist. Im übrigen 
ist die Schönheit und Geschlossenheit der determinantenfreien 
Theorie, wie sie vorstehend entwickelt wurde, Rechtfertigung 
genug für ihre gesonderte Behandlung. 

IY. Lineare Algebra mit Determinanten 
§ 16. Permutationsgruppen 

In den Beweisen des vorigen Abschnitts haben wir mehr-
fach Umordnungen der Zeilen oder Spalten einer Matrix 
vorgenommen. Der in diesem Abschnitt einzuführende 
Determinantenbegriff beruht nun in sachlicher Hinsicht auf 
solchen Umordnungen, oder genauer auf gewissen dabei 
vorliegenden Verhältnissen. Wir müssen uns daher, ehe wir 
an die Entwicklung der Determinantenlehre gehen, zuvor 
mit diesen Verhältnissen vertraut machen. 

Der Begriff Umordnung oder Permutation ist rein mengen-
theoretisch. E r geht davon aus, daß jede Menge zu sich 
selbst gleichmächtig ist [§ 2, (II)], also sich zum mindesten 
auf eine Weise eineindeutig sich selbst zuordnen läßt (in-
dem nämlich jedes Element sich selbst zugeordnet wird), 
und entsteht durch Betrachtung i r g e n d e i n e r derartigen 
Zuordnung: 

Definition 34. Unter einer P e r m u t a t i o n einer Menge M 
versteht man irgendeine eineindeutige Zuordnung mit be-
stimmter Zuordnungsrichtung von M zu sich selbst, unter A u s -
f ü h r u n g oder A n w e n d u n g der Permutation das Ersetzen 
der Elemente von M durch die ihnen zugeordneten. 

Wir unterscheiden Permutationen nach Def. 34 sinngemäß ver-
möge der ihnen zugrunde liegenden Zuordnungen unter Berück-
sichtigung der Zuordnungsrichtung, nennen also zwei Permuta-
tionen dann und nur dann gleich, wenn jedem Element bei beiden 
dasselbe Element zugeordnet ist. Natürlich können wir zur ein-
deutigen Beschreibung einer Permutation sowohl die Mitteilung 
der sämtlichen Zuordnungen als auch die der sämtlichen, bei ihrer 
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Ausführung zu machenden Ersetzungen (Übergänge) verwenden; 
das sind eben nur zwei verschiedene Vorstellungsweisen für ein-
und dieselbe formale Tatsache. Auf die Reihenfolge, in der diese 
Mitteilungen gemacht werden, kommt es selbstverständlich 
nicht an. 

Über die Permutat ionen einer Menge beweisen wir nun : 

Satz 58. Die sämtlichen Permutationen einer Menge lüden 
eine Gruppe, wenn unter dem Produkt zweier Permutationen 
die durch Nacheinanderausführung entstehende Permutation 
verstanden wird. Das Einselement dieser Gruppe ist die Per-
mutation, bei der jedes Element in sich selbst übergeht, die Rezi-
proke zu einer Permutation erhält man durch Umkehrung der 
Zuordnungsrichtung. 

Beweis. § 6, (a) ist im Sinne des zuvor Bemerkten erfüllt. 
§ 6, (b) ist erfüllt. Denn die Nacheinanderausführung 

zweier Permutationen, d. h. die jeweilige Ersetzung von a 
durch a", wenn a bei der ersten in a', a' bei der zweiten in 
a" übergeht, liefert für jedes beliebige Permutat ionspaar 
wieder eine Permutat ion. 

§ 6, (1) st immt, weil (logische) Ersetzungen dem assozia-
tiven Gesetz genügen, § 6, (2 a) und (2 b) sind ersichtlich auf 
die im Satz angegebene Art erfüllt. 

Satz 59. Sind M und M gleichmächtige Mengen, so sind 
die Gruppen der Permutation von M und M isomorph. 

Beweis. Ordnet man jeder Permutat ion von M diejenige 
von M zu, die durch Ausführung eines eineindeutigen Über-
ganges von M zu M aus ihr entsteht, so genügt diese Zu-
ordnung der Bedingung (2) von Satz 23 [55]. Die leichte 
Einzelausführung bleibe dem Leser überlassen. 

Auf Grund von Satz 59 ist nach § 2, (II) und Def. 17 [55] 
der Typus der Permutat ionsgruppe von M allein durch die 
Kardinalzahl von M, speziell für den Fall eines endlichen 
M allein durch die Anzahl der Elemente von M best immt. 
UnterNichtunterscheidung isomorpher Gruppen definieren 
wir demgemäß: 
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Definition 35. Die Gruppe aller Permutationen einer end-
lichen Menge von n unterschiedenen Elementen heißt die 
symmetr ische Gruppe 1) von n Elementen. Sie werde mit 
<5n bezeichnet. 

Mit dieser Gruppe ©re haben wir uns hier ausschließlich 
zu beschäftigen. Da man jede Menge von n Elementen ein-
eindeutig der speziellen Menge der n Ziffern 1 , . . ., n 
zuordnen kann, genügt es nach Satz 59, diese Ziffernmenge 
für das Studium von S n zugrundezulegen. Man bezeichnet 
dann mit 

L.'lJ'kurz ü i'-1' 
diejenige Permutation der Ziffern 1 , . . . , n, bei der die Ziffer 
i in Pi übergeht (i = 1 , . . ., n). Ist alt. . ., an irgendeine 
Menge von n Elementen, die durch Numerierung ihrer Ele-
mente eineindeutig der Ziffernmenge 1 , . . . , « zugeordnet 
ist, so kann man die obige Permutation auch als eine solche 
der n Elemente av ..., an ansehen, nämlich die, bei der a,-
in ap. übergeht (i = 1 , . . . , n). 

Die in Def. 35 für Permutationen geforderte Eineindeutig-
keit [Bedingungen § 2, (3), (ö'), (e), («')] ist, auf die obige 
Schreibweise Q j (i = 1 , . . n) angewandt, die präzise For-
mulierung der Ausdrucksweise: pv ..., pn sind die Ziffern 
1 , . . . , n abgesehen von der Reihenfolge oder in ir-
gendeiner Reihenfo lge , der wir uns im folgenden häufig 
bedienen werden. Die sämtlichen Reihenfolgen von 1 , . . ., n 
sind so den sämtlichen Permutationen von 1, . . . , n einein-
deutig zugeordnet2). 

*) Die Bezeichnung s y m m e t r i s c h e G r u p p e ist so zu verstehen, daß 
„etwas" symmetrisch im geläufigen Sinne des Wortes in bezug auf n Elemente 
ist, wenn es bei Anwendung aller Permutationen dieser Elemente erhalten 
bleibt. In diesem Sinne nannten wir z. B . in § 4 l [ T l t . . z n ] symmetrisch in 
z , , . . ., x n . Vgl. auch 2, Satz 131 [153] (Satz von den symmetrischen Funk-
tionen). 

3) In der Schulmathematik pflegt man die R e i h e n f o l g e n Belbst, nicht 
den P r o z e ß i h r e r H e r s t e l l u n g , Permutationen von 1 n zu nennen. 
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Da nach der Bemerkung zu Def. 34 die Mitteilungsreihen-
folge der einzelnen Übergänge einer Permutation gleich-
gültig ist, kann ebensogut 

£.:::£]• ta" fei (<=1 •>• 
zur Mitteilung obiger Permutation verwendet werden, wenn 
qv ..., qn irgendeine Reihenfolge von 1 , . . . , n ist. Mittels 
dieser Bemerkung kann die Multiplikationsregel von Satz 56 
für Permutationen aus durch die Formel 

( ; , ) ( ; , ) = ( ; „ ) • • - > 

ausgedrückt werden, und ebenso läßt sich die Reziproke zu 

lp,) als anseben-
©ii s t natürlich die Einsgruppe ©2 die aus den zwei Ele-

menten E = g j , P = Q (mit P 2 = E) bestehende abelsche 

Gruppe (vgl. § 6, Beispiel 3), f ü r n Jg 3 ist dagegen ©„ sicher nicht 
abelsch; denn es ist z. B. 

/ 1 2 3 . . . \ / 1 2 3 . . . \ _ / 1 2 3 . . . \ 
\2 1 3 . . , / \ 3 2 1 . . . / - 1 2 3 1 . . . / ' 
/ 12 3 . . . \ / 1 2 3 . . . \ _ / 12 3 . . . \ 
\3 2 1 . . J I 2 1 3 . . J ~ 13 1 2 . . .) ' 

©3 ist übrigens isomorph zu der in §§ 6, 7, Beispiele 4 behandelten 
Gruppe von 6 Elementen, wie man erkennt, wenn man den dor-
tigen Drehungen die durch sie erzeugten Permutationen der Drei-
ecksecken zuordnet. 

Als aus den Elementen bekannt dürfen wir voraussetzen: 
Satz 60. ©n ist endlich und hat die Ordnung n\ — 1 • 2 • • • n. 
Wir brauchen übrigens im folgenden nur die Endlichkeit, nicht 

die Ordnung von ©„. 
Wenn dieses auch nach dem hier Bemerkten auf dasselbe hinausläuft, so ist 
es doch einerseits für die Aussprache der Verknüpfungsregel von Satz 58 un-
bequem und steht andererseits nicht in Einklang mit der wörtlichen Bedeu-
tung von P e r m u t a t i o n ( V e r t a u s c h u n g ) als einer Handlung. 
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Wir definieren jetzt eine für die Definition der Deter-
minanten grundlegende Unterscheidung der Permutationen 
aus ©B in zwei Arten. 

Dazu, und später auch in anderem Zusammenhange, müssen 
wir Te i lmengen der für die Permutationen aus <Bn zugrunde-
gelegten Ziffernmenge 1 , . . . , n betrachten. Solche Teilmengen 
nennen wir, indem wir uns dem aus den Elementen geläufigen 
Sprachgebrauch anschließen, Kombinationen der Ziffern 1 , . . . , n, 
und zwar von der v-ten Ordnung, wenn sie aus v Ziffern bestehen. 
Wir bezeichnen die aus den Ziffern . . . , i„ bestehende Kombi-
nation mit {iv . . . , i„). In dieser Bezeichnung liegt dann nach ihrer 
Erklärung: 1.) ilt..., iv sind v e r s c h i e d e n e Ziffern der Reihe 
1 , . . . , n, 2.) {ix,..., iv) = {i[,..., i'v} dann und nur dann, wenn 
die Ziffern ilt. .., iv b is auf die R e i h e n f o l g e die Ziffern iv . . . , iv 
sind, also durch eine Permutation aus diesen hergeleitet werden 
können. Auf die Mitteilungsreihenfolge der Ziffern einer Kombi-
nation kommt es also nicht an. Zwei elementfremde Kombinationen 
von 1 , . . . , n, deren Vereinigungsmenge die ganze Menge 1 , . . . , n 
ist, heißen komplementär. Die komplementäre Kombination zu 

—• 1) bezeichnen wir meist mit {iv+1,..., in}. 
Die Anzahl der verschiedenen Kombinationen v-ter Ordnung von 

1 , . . . , n bezeichnen wir wie üblich mit . Auf ihren Wert, der 
sich beiläufig im Beweis von Satz 68 [121] ergeben wird, kommt 
es nicht an. 

Es gilt zunächst: 

Satz 61. Es sei 1 g v i n. Wendet man auf die sämtlichen 
fl\ 

J Kombinationen v-ter Ordnung der Ziffern 1 , . . n eine 

Permutation P = dieser Ziffern an, d.h. ersetzt man 

jede solche {iv.. durch{piv.. .,p{^,so entstehen wieder diese 

sämtlichen (^j Kombinationen, m. a. W. es wird durch P eine 

Permutation der Menge dieser Kombinationen bewirkt. 

Beweis. Offenbar entstehen durch Anwendung von P die 

sämtlichen Kombinationen r-ter Ordnung der Menge 

Pj,..., pn, die aber mit der Menge 1 , . . . , n identisch ist. 
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Wir betrachten nun speziell die Kombinationen 2-ter 
Ordnung von 1 , . . ., n. Denken wir uns in jeder solchen {i, k} 
die beiden Ziffern i und k in ihrer natürlichen Reihenfolge 
angeordnet (also i < k vorausgesetzt), so wird diese Anord-
nungsrelation bei Anwendung einer Permutation nicht not-
wendig erhalten bleiben, da ja sehr wohl Ziffernpaare i, k 
mit i < k aber p¡ > pt existieren können. Dieser Umstand 
gibt den Anlaß zu der schon angekündigten, für die Deter-
minantendefinition wichtigen Unterscheidung der Permuta-
tionen aus <27i in zwei Arten: 

Definition 36. Es sei n > 1 und P = j eine Permu-
tation von 1, ..., n. Das Auftreten eines Ziffernpaares i, k 
mit i<.k aber fi>Pk heißt eine Invers ion von P. 
Man nennt P gerade oder ungerade, je nachdem die 
Anzahl v ihrer Inversionen gerade oder ungerade ist, und setzt 
sgn P = (— 1)", also = 1 oder = — 1, je nachdem P gerade 
oder ungerade1) ist. 

Für n = 1, wo nur die Permutation E = ^ j vorhanden ist, 
werde sgn E = 1 gesetzt. 

sgn ist Abkürzung für das lateinische Signum (Vorzeichen). Für 
reelle Zahlen p 4= 0 setzt man bekanntlich sgn p = 1 oder — 1, 
je nachdem p > 0 oder < 0 ist. 

Es ist leicht zu sehen, daß es für n > 1 wirklich gerade 

und ungerade Permutationen gibt. Es ist z. B. £ = | j " ' j j | 
gerade, ( 2 1 3 ; ; ; " ) ungerade. 

Wir beweisen nun die für unsere Anwendung grund-
legende Tatsache: 

Satz 62. Für zwei Permutationen P und Q von 1, ..., n gilt 
sgn (PQ) = sgn P sgn Q. 

1 Hier gilt dasselbe, wie bei § 9, Beisp. 4 (Anm. 2) [661. 
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Beweis. Für n = 1 ist die Behauptung trivial. Sei w > 1. 
Für die Abzahlung der Inversionen einer Permutation 
P = Q j (i = 1 , . . . , n) sind dann nach Def. 36 alle Ziffern-
paare i, k mit i < 7c der Keihe 1, . . . , n, d. h. also alle Kom-
binationen 2-ter Ordnung {i, k} mit der Anordnungsvor-
schrift i < k für ihre Ziffern heranzuziehen. Läßt man diese 
Anordnungsvorschrift fort, so liefert eine Kombination {i, k} 
genau dann eine Inversion von P, wenn die (von Null ver-
schiedenen) ganzen Zahlen i — k und pt — pk verschiedene 

Vorzeichen haben, d. h. wenn — — — < 0 ist. Demnach 
Vi — Pk 

kann man sgn P auch durch die Formel 

sgn P = n sgn 
{i, k} Vi — Vk 

erklären, wo das Produkt rechts über alle verschiedenen 
Kombinationen 2-ter Ordnung von 1 , . . ., n (gleichgültig in 
welcher Reihenfolge ihre beiden Ziffern genommen werden) 
zu erstrecken ist. Denn die Anzahl der Faktoren — 1 dieses 
Produkts ist nach dem Bemerkten gerade die Anzahl v der 

Inversionen von P. Ist nun Q = ^ j (i = 1, . . ., w), so gilt 

^ r r i — ^ TT Vi— Pk sgn Q = 77 sgn — = D s g n - — -
{», k) Ii ~ 1k jfc> Ipi—Hpic 

letzteres, weil nach Satz 61 {pj, p^} mit {i, k} die sämtlichen 
verschiedenen Kombinationen 2-ter Oranung von 1 , . . . , n 
durchläuft und es für das Produkt auf die Reihenfolge der 
Faktoren nicht ankommt. Da nun bekanntlich für reelle 
Zahlen p,q =t= 0 die Regel des Satzes, d. h. sgn (p q) = 
sgn p sgn q gilt, folgt durch gliedweise Multiplikation der 
beiden Produkte für sgn P und sgn Q 
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sgnPsgn Q = J J 
{i,k} 

i — k Pi— pk sgn sgn 
Pi-Pie iPi-iPk 

„ i — k 
= 77 s g n - — 

H,h) Qpi—ipk 
Das rechtsstehende Produkt ist aber sgn (PQ), weil 

(i = 1 , . . . , n) ist. 

Als unmittelbare Folge aus Satz 62 nennen wir zwecks 
späterer Anwendung noch: 

Satz 63. Es gilt sgn P = sgn P~K 
Beweis. Nach Satz 62 ist sgn P sgn P - 1 = sgn ( P P - 1 ) 

= sgn E = 1, weil E = Q ' ' ' offenbar keine Inversionen 
hat. 

Der in Def. 36 erklärte Begriff Inversion und die darauf 
gegründete Erklärung von sgn P ist nicht allein durch die 
P e r m u t a t i o n P de r Menge 1 , . . . , » bestimmt, sondern 
bezieht sich überdies auf eine bestimmte G r u n d r e i h e n -
fo lge dieser Menge, nämlich die natürliche Reihenfolge 
1, ...,n. 

Dies Beziehen auf die natürliche Reihenfolge 1 , . . . , n als 
Grundreihenfolge wird besonders deutlich, wenn man die aus 
Def. 36 zu entnehmende Regel zum Abzählen der Inversionen 
von P = P ' ' ' in folgende Form setzt: Man schreibe die 

\Pi ••Vnl 
obere Zeile von P in der natürlichen Reihenfolge und bestimme 
die Anzahl derjenigen Ziffernpaare der unteren Zeile, die dort in 
umgekehrter Reihenfolge wie in der oberen Zeile stehen. Würde 
man dieselbe Regel bei irgendwie anders angeordneter oberer 
Zeile von P anwenden, so würde man i. a. zu einer anderen An-
zahl solcher Ziffernpaare der unteren Zeile gelangen. So stehen 
z. B. bei der Schreibweise: 

( \ ? p o) ™ten die 4 Ziffernpaare {41}, {43}, {42}, {32} umgekehrt 
1 ö wie oben, 

( 3 4 2 1 ) un*'en ^ Ziffernpaaie {41}, {21} umgekehrt wie oben. 
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Für die Bestimmung von sgn P bedeutet das hier keinen Unter-
schied, weil beide Anzahlen gerade sind. Der folgende Satz zeigt, 
daß dies allgemein so ist. 

Satz 64. Das in Def. 36 erklärte sgn P ist in folgendem 
Sinne von der bei seiner Erklärung zugrunde gelegten natür-
lichen Reihenfolge der Ziffern 1 ,...,n unabhängig: Ist 
q t , . . q n irgendeine Reihenfolge von 1,..., n, und wird 

p = (l....n\iq1....q„\lq1...qn\ 
VPl • • • Vnl \ptl . • • VqJ Wr,. • • ?r„/ ' 

also fq = qr 0 = 1 , . . . , n) 
/I n\ gesetzt, so daß die hierdurch eingeführte Permutation R = I r " J 

angibt, wie sich die Reihenfolge ..., qn infolge von P ändert, 
so gilt 

sgn P = sgn R. 

Beweis. Wird Q = ^ ' ' ' ' ^ J gesetzt, so folgt aus der Per-
mutationsgleichung des Satzes durch vordere Multiplikation 
mit Q 

und daraus nach Satz 62 sgn Q sgn P = sgn R sgn Q 
( = sgn Q sgn R), also wegen sgn Q 4= 0 die Behauptung. 

Die Inversionen der im Satz eingeführten Permutation R be-
deuten ersichtlich diejenigen Ziffernpaare, die in der unteren Zeile 
von P umgekehrt wie in der oberen stehen, wenn die obere in der 
Reihenfolge qlt geschrieben wird, so daß also durch Satz 64 
die in der Bemerkung vorher aufgestellte Behauptung bewiesen 
ist. — Es sei darauf hingewiesen, daß die Permutation R des 
Satzes 64 aus P durch Transformation mit Q~x entsteht (vgl. die 
Bern, zu Satz 28 [60]). — Nach Satz 64 hat es nunmehr einen 
Sinn, von geraden und ungeraden Permutationen von n Elementen 
ohne Angabe einer Grundreihenfolge zu reden, in bezug auf die 
„gerade" und „ungerade" gemeint sind. 

Wir heben zum Schluß noch die folgende Tatsache hervor, 
die wir zwar hier nicht brauchen werden, die aber doch eine 
tiefere Einsicht in unsere Einteilung der Permutationen von 
n Elementen in gerade und ungerade gewährt: 
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Satz 65. Die sämtlichen geraden Permutationen von n Ele-
menten (n > 1) bilden einen Normalteiler 21» von ©re vom 
Index 2, die sog. a l tern ierende Gruppe von n Elementen. 
Die leiden RestHassen, in die <Bn nach 21» zerfällt, sind die 
der geraden und der ungeraden Permutationen, deren es somit 

/ n! \ 
gleichviel (nämlich je 1 gibt. 

Beweis. Das folgt unmittelbar aus Satz 35 [64], weil offen-
bar die Relation P = Q, wenn sgn P = sgn Q, eine Kon-
gruenzrelation in der Gruppe darstellt, der als Klassen-
einteilung von <&n die Einteilung in die geraden und die un-
geraden Permutationen entspricht. 

Daß 91» Normalteiler ist, folgt übrigens auch aus Satz 64. Denn 
die Gleichung QP = RQ aus seinem Beweise besagt ja in der 
Gestalt QPQ~X = B, verbunden mit dem Resultat sgn P = sgn B, 
daß mit P auch alle seine konjugierten B gerade sind (Satz 32 
[62]). Umgekehrt läßt sich übrigens der Satz 64 auch aus dem 
Resultat von Satz 65, daß SCn Normalteiler vom Index 2 ist, er-
schließen (Satz 32). 

§ 17. Determinanten 

Wir müssen im Rahmen dieser Darstellung auf eine sich 
den Methoden von I I I anschließende genet i sche Ein-
führung der Determinanten1) verzichten, stellen vielmehr 
unmittelbar die folgende Definition hin: 

Definition 37. Unter der D e t e r m i n a n t e der (n, n)-
reihigen Matrix A = (aik) versteht man den Ausdruck 

= 2 sgn Palpi. . . anpn2 
P in ©_ 

au . • " i n 

an\ • 
Durch eine solche an den Beweis von Satz 52 anknüpfende Einführung 

würde der Determinantenbegriff seine Fremdartigkeit gegenüber den Begriffs-
bildungen und Methoden aus I I I verlieren und so das Verständnis dafür ver-
tieft werden, daß unser jetziger Weg zu denselben Ergebnissen führt. 

a) Über die Bedeutung von sgn P = ± 1 als , ,Faktor" vor einem Körper-
element siehe den Schluß von § 1. 
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erstreckt über alle Permutationen P = Q J ¿er Spaltenindizes 

Ausführlich gesagt wird hiernach die Determinante | A \ 
von A in folgender Weise gebildet: Bei festgehaltenen ersten 
(Zeilen-)Indizes wende man in dem Produkt a u . . . ann 

der n in der sog. Hauptdiagonale v o n A s tehenden Glieder 
auf die zweiten (Spalten-)Indizes alle Permutat ionen 

P = ( 1 ) an, wodurch also Produkte der Form a1Pi... anPn 
Wi 1 

(in der Anzahl n!) entstehen, und bilde dann die Differenz 

• • • anp„ —¿*aipi • • • anpn = ^sgn Palp, . . . anPn P in 2tra P nicht in l'in P in <Bn 

der Summe aller den geraden Permutat ionen entsprechenden 
und der Summe aller den ungeraden Permutat ionen ent-
sprechenden solchen Produkte. 

Speziell wird so 

für n = 1: | \ = a t l , f ü r n = 2: "n®12 = ana22 — ax,a21, | ^21^22 I I «11 I = °11. 
dì-tdinQ'ìa 

für n = 3: (!-<-< On'iO.',,, • ' d^r.dnnß^ U-, ndiy-td-* 

Für n = 3 kann man die Bildung auch nach folgender Regel voll-
ziehen: 
a n a i 2 a i 3 

\ X > 
^21^22 ̂ 23 

/ x > 
'̂31^32^33 

ailffl12 
< / 

°21 °22 

< \ 
'̂31^32 

Man denke sich die beiden ersten Spalten noch 
einmal rechts an A angefügt, bilde dann die 
Produkte gemäß den 6 eingezeichneten Parallelen 
zu den beiden Diagonalen von A und subtra-
hiere von der Summe der Produkte in der Rich-

tung \ (Hauptdiagonale) die Summe der Produkte in der Rich-
tung / (Nebendiagonale). Für n = 2 gilt ersichtlich eine ent-
sprechende Regel, dagegen nicht mehr für n > 3. 

Als oft gebrauchte, direkt aus Def. 37 zu entnehmende Formel 
fü r beliebiges n nennen wir noch: 

ax 0 0 e 0 0 
0 a2 • .. 0 = OJOJ ' • an, speziell Oe 0 

0 0 . . • o» 0 0 . . .. e 

S Hasse , Höhcrc Algebra 
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Historisch ist man ( L e i b n i z , C r a m e r u. a.) etwa in folgender 
Weise auf den Determinantenbegriff gekommen: Für 2 lineare 
Gleichungen mit 2 Unbekannten 

ergibt die sog. M u l t i p l i k a t i o n s m e t h o d e die Forderungen 

aus denen leicht die eindeutige Auflösbarkeit bei beliebigen alt a2 

folgt, falls der Ausdruck a u a 2 2 — a1 2a2 1 = =f= 0 ist. Ebenso 
I 21 22 I 

erhält man durch die Multiplikationsmethode für n = 3, 4,... 
gerade die Determinante \<Hk \ als Koeffizienten, wenn man aus 
den Linearformen links solche mit nur e iner Unbestimmten 
in einem einzigen Schritt linear zu komponieren sucht. Die so für 
n = 2, 3, 4 leicht zu bildenden Ausdrücke erlauben, das allgemeine 
Bildungsgesetz abzulesen (wenn man will, sogar durch Schluß von 
n auf n -f- 1 abzuleiten), und führen zu der oben gegebenen Defi-
nition. Wir müssen hier auch auf eine derartige i n d u k t i v e Ein-
führung der Determinanten verzichten, werden vielmehr den an-
gedeuteten Zusammenhang mit dem Auflösungsproblem der line-
aren Algebra im Falle m = n streng d e d u k t i v ableiten (§§ 20,21), 
nachdem wir in §§ 17—19 die wichtigsten Eigenschaften der oben 
definierten Determinanten entwickelt haben. 

In der Def. 37 spielen die Zeilen und Spalten von A eine 
unterschiedliche Rolle. Das ist aber nur scheinbar, denn es 
gilt: 

Satz 6 6 . Eine (n, n)-reihige Matrix A und ihre transpo-
nierte A' haben gleiche Determinanten: | A | = | A' |. Die 
Determinante von A hängt somit von den Zeilen von A in 
gleicher Weise ioie von den Spalten von A ab, und zu ihrer 
Definition kann neben der Formel von Def. 37 ebensogut die 
Formel 

M | = 2 sgn Paptl... aPnn, 
Pin @„ 

erstreckt über alle Permutationen P = Q j der Zeilenindizes, 

dienen. 
Beweis. Nach Def. 37 ist 
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\A' I = 2 sgn Papil... aPn„. 
P in ©„ 

Da die Reihenfolge der Faktoren eines Produkts beliebig ist, 
dürfen wir in jedem Summanden auf die n Faktoren jeweils 

die Permutation P ' 1 anwenden. Ist P ' 1 = = Q j = Q, 
so erhalten wir so 

| Ä | = 2 sgn Pa19l... a»ln. Pin©„ 
Da nun einerseits sgn P = sgn Q ist (Satz 63 [110]), anderer-
seits Q mit P die ganze Gruppe ©», jedes Element einmal, 
durchläuft (Satz 17 [51]), so wird auch 

\Ä | = 2 sgn Qam ... anQn = \A\. 
Q in©„ 

Auf die in Satz 66 zum Ausdruck kommende Symmetrie der 
Determinante | A I bezüglich der Zeilen und Spalten von A gehen 
vom Standpunkt der Determinantenlehre die vom früheren Stand-
punkt nicht so recht verständlichen Symmetrien bezüglich Zeilen 
und Spalten in Satz 55, 56 [97] und Satz (54, 55, 56) a [99] letzten 
Endes zurück, wie sich im folgenden noch genauer ergeben wird. 

Während Satz 66 die Abhängigkeit der Determinante | A | 
von den Zeilen mit der von den Spalten von A vergleicht, 
sagt der folgende Satz etwas über die Abhängigkeit der 
Determinante | A | von der Reihenfolge der Zeilen oder der 
Spalten von A aus: 

Satz 67. Entsteht A1 aus der (n, n)-reihigen Matrix A durch 
eine Permutation R der Zeilen (Spalten), so ist 

| Ä! | = sgn R | A |, 
also 1^1=1^1 oder \ A} | = — \ A\, je nachdem R gerade 
oder ungerade ist. 

Beweis. Nach Satz 66 genügt es, den Beweis für den Fall 
zu führen, daß At aus A durch eine Permutation R = 11 j 
der Zeilen entsteht. Es ist dann nach Def. 37 \r>' 

M l | = 2 sgn ParlPl... OrnVn, Pin 

8 ' 
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weil ja Or t l , . . . , Ornn die n in der Hauptdiagonale von A1 

stehenden Glieder sind. Durch Anwendung der Permutation 
R~x = ß ) = ^ j = S auf die n Faktoren jedes Sum-
manden und Anwendung von sgn R sgn S = 1 (Satz 63 [110]) 
erhält man 

| Ax | = sgn R £ sgn S sgn P alp . . . anps , 
P in <Bn

 n 

wo also die Spaltenindizes jeweils durch die Permutation 

j = SP = Q = j aus 1, . . . , n entstehen. Da dann 

einerseits sgn S sgn. P = sgn Q ist (Satz 62 [108]), 
andererseits Q mit P die ganze Gruppe <3n, jedes Element 
einmal, durchläuft (Satz 16 [51]), so wird auch 

| A-L | = sgn R 2 sgn Qalqi . .. a„qn = sgn R \ A |. 
Qin ©M 

Die beiden Tatsachen aus Satz 66 und Satz 67 haben zur Folge, 
daß alle allgemeinen Sätze über Determinanten eine symmetrische 
Form haben, einerseits bezüglich der Worte Zeilen und Spalten, 
andererseits (bis auf ev. Vorzeichenunterschiede) bezüglich der 
einzelnen Zeilen sowohl wie der einzelnen Spalten. Wir werden uns 
das im folgenden, in entsprechender Weise wie schon im Beweis 
zu Satz 67, für die Beweise zu Nutze machen. 

§ 18. Unterdeterminanten und Adjunkten 
Der Laplacesche Entwicklungssatz 

Wir wollen in diesem und den folgenden Paragraphen den 
beiden Sätzen 66 und 67 des vorigen Paragraphen weitere, 
tiefer in die Struktur der Determinanten eindringende Sätze 
zur Seite stellen, die den doppelten Zweck haben, einerseits 
die Anwendung der Determinanten auf lineare Gleichungs-
systeme vorzubereiten, andererseits für die Berechnung der 
Determinanten brauchbarere Methoden zu entwickeln, als 
deren Definitionsformel es ist. Dazu definieren wir: 

Definition 38. Es seien A eine (n, n)-reihige Matrix, 
1 ^ v i n — 1, {iv ..., iv} und {kv ..., fcv} je eine Kombi-
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nation v-ter Ordnung ihrer Zeilen und ihrer Spaltenx) 
{¿i,+i, . . i n } und {kv+l,..., kn} die zugehörigen komplemen-
tären Kombinationen. Dann bezeichne, bzw. werde gesetzt und 
genannt : 

MH y , {ti *„} 
die durch Streichung der Zeilen iv + 1,. . ., in und der Spalten 
kv+1,..., kn aus A entstehende (v, v)-reihige Matrix; 

A{»! y, {*!, ..., k„) = + J in),{kv + ! k„j, 

d. h. die durch Streichung der Zeilen . .., iv und der Spalten 
kv . . k v aus A entstehende {n—v, n—v)-reihige Matrix; 

HH y, {*, k„) = | A& y, ity | 
U n t e r d e t e r m i n a n t e oder M i n o r j>-ten G r a d e s oder 
(n—v)-ter O r d n u n g von A; 

«{i. y . {*.,...,*„> 
= ( _ + ••• + <, + *, + ••• + *, |A(il y , {*, v i 
= ( _ 1 ) i l + ... + <„ + ,, + . + a{iv + 1,...,in),{kv + 1 v 

A d j u n k t e ( n — v ) - t e n G r a d e s oder v - t e r O r d n u n g von A, 
a l g e b r a i s c h e s K o m p l e m e n t oder A d j u n k t e zu 

«{¿i y,i*i V-
Für die Grenzfälle v = 0 und v = n betrachten wir e bzw. 

| A | als die einzigen Unterdeterminanten und Adjunkten 0-ten 
bzw. n-ten Grades. 

Die g r o ß e n Buchstaben bezeichnen also M a t r i z e n , die ent-
sprechenden k le inen ihre D e t e r m i n a n t e n . Die l a t e i n i s c h e n 
Buchstaben deuten das alleinige B e i b e h a l t e n des Schnittes der 
in ihren Indizes genannten Zeilen und Spalten an, die g r i e c h i -
schen das S t r e i c h e n dieser Zeilen und Spalten, also das alleinige 
Beibehalten des Schnittes ihrer komplementären. Der Grad gibt 
die s t e h e n g e b l i e b e n e Reihenzahl an, die Ordnung die ge-
s t r i c h e n e Reihenzahl. Für den besonders wichtigen Grenzfall 
v = 1 werde einfach AM, CHIC, hik, <*ik für die Am, . . . ge-
schrieben. Bezüglich der a¡^ ist das statthaft, weil die Au- und 

*) Wir teilen der Einfachheit halber Zeilen und Spalten durch bloße An-
gabe ihrer Indizes mit. 
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somit auch ihre Determinanten wirklich die Elemente a^ von A 
sind. 

Ferner setzen wir fest: 
Definition 39. Es mögen die Voraussetzungen von Def. 38 

gelten, und es seien die j^j Kombinationen v-ter Ordnung der 
Ziffern 1,..., n irgendwie in eine bestimmte Reihenfolge ge-
setzt. Unter jedesmaliger Zugrundelegung einer und derselben 
solchen Reihenfolge werde {iu ..., ¿„} als Zeilen- und {fcj,..., 
als Spaltenindex angesehen und demgemäß die ^ j Unter-

determinanten v-ten Grades «{»„...,»}, {*„...,*} von A zu einer 

((r)' (j>)) ̂ Mgen Matrix -4<"> vereinigt, und ebenso die 

(v)(r) Adjunkten v-ter Ordnung ap, y, {k,...,kp} von A zu 

einer , ^ j j -reihigenMatrix Man nennt AM die r - t e 
a b g e l e i t e t e M a t r i x und AM die j>-te a d j u n g i e r t e 
M a t r i x v o n A oder die a d j u n g i e r t e M a t r i x zu AM, 
letzteres in Hinsicht darauf, daß die Glieder von AM die Ad-
junkten zu den entsprechenden Gliedern von AM genannt 
waren. 

Im Falle v = 1, wo die ^ j Kombinationen 1-ter Ordnung ein-
fach die n Ziffern 1 , . . . , n sind, sei deren natürliche Reihenfolge 
für die Bildung von A(r) und A(i) zugrunde gelegt. Dann wird AW 
die Matrix A selbst. Wir schreiben entsprechend für A(i) einfach 
A. Die Bildung dieser 1-ten adjungierten Matrix von A oder ad-
jungierten Matrix zu A geschieht demnach nach folgender Regel; 

Man ersetze jedes Element aoc von A durch die Determinante 
derjenigen (n — 1, n — l)-reihigen Matrix A^, die durch Strei-
chung der i'-ten Zeile und /c-ten Spalte aus A entsteht, und setze 
den Vorzeichenfaktor (— 1)'+* dazu. Die Verteilung dieser Vor-
zeichenfaktoren 1 und — 1 kann man sich dadurch veranschau-
lichen, daß man das quadratische Schema von A mit 1 und — 1 
ebenso überdeckt, wie ein Schachbrett mit schwarzen und weißen 
Feldern, und dabei mit 1 in der linken oberen Ecke (an der Stelle 
von «u) beginnt. 
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Für die Grenzfälle v = 0 und v = n ist gemäß der in Def. 38 
getroffenen Festsetzung A (0 ) = A(n) = (e), A(n) = A(0) = (}A |) zu 
setzen. Insbesondere ist hiernach A = (e) die adjungierte Matrix 
zu einer (l,l)-reihigen Matrix A = (du). 

Die Einführung dieser zunächst sehr kompliziert anmu-
tenden Begriffsbildungen geschieht, um das folgende, unter 
dem Namen Laplacescher Entwicklungssatz bekannte 
Theorem möglichst einfach aussprechen zu können: 

Satz 68. Unter den Voraussetzungen von Def. 38, 39 gelten 
die Formeln 

2 «{i, »„}, {*, kv} a{i, y , y = | A | , 

2 Hh y , v <*{»!,...,»,,}, Ä,...,*„> = I ^ 11 

bzw. {»i,..., i„] zu erstrecken ist, wahrend ..., iv) bzw. 
{k^,..kv) eine feste Kombination bedeuten. In Worten: Das 
innere Produkt aus einer Zeile (Spalte) der v-ten abgeleiteten 
Matrix -4M und der entsprechenden Zeile (Spalte) der v-ten 
adjungierten Matrix AM von A ist die Determinante \ A |. 

Eben wegen der hierin liegenden Verkoppelung der 
a{i, y , {*, hv) mit den a y , k„) heißen erstere die 
Adjunkten zu letzteren und A(v' die adjungierte Matrix zu Ä w . 

Beweis. Für die Grenzfälle v = 0 und v — n ist der Satz 
nach den getroffenen Festsetzungen trivial. Sei also 

insbesondere n > 1. Es genügt dann, 
die erste Formel des Satzes zu beweisen. Denn die zweite 
geht durch Anwendung von Satz 66 [114] auf die Deter-
minanten links und rechts aus der für die Matrix A' gebil-
deten ersten Formel hervor. 

Der Beweis der ersten Formel besteht nun in einer be-
stimmten Gruppierung der Summanden in der Definitions-
formel für die Determinante: 

{¿1 ,-••>»,,} 

in denen die Summation über alle 

M | = 2 Sgn Palv . . . an. 
P in©„ 1 
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Wir zerlegen nämlich dazu die Gruppe © » nach einer durch 
die Kombination {iv . . ., %} bestimmten Untergruppe 

©{i, iv) vom Index ( ^ j in vordere Restklassen . . . , 

und führen dann die geforderte Summation E in der 

Gruppierung F m 

H = 2 + • • •+ 2 
P in <Sn P in Sx P in ff 

aus. Jede solche, über eine Restklasse erstreckte Summe 

ist dann gerade einer der ja ebenfalls in der Anzahl ^ J 

vorhandenen Summanden auf der linken Seite der zu be-
weisenden Formel. 

Die zu benutzende Untergruppe » } von ©n vom 

Index ( ^ j ist die Gesamtheit aller derjenigen Permutationen 

von 1 , . . . , n, bei denen die Ziffern iv ..., iv (und daher 
auch die übrigen Ziffern iv + 1,.. .,in) nur unter sich per-
mutiert werden. Nach Satz 20 [54] ist das sicher eine Unter-
gruppe von <s„. Ihre Permutationen lassen sich in der Form 

h1 . . . iv iv+1 . . . in\ 

C a - S = \ i r ...ir t. . . . i , > x Ti rv *»+i sn 

schreiben, wo 

R = (/J (« = 1 , . . ., v) und 8 = (g*) (» = r + 1, . .., » ) 

unabhängig voneinander alle Permutationen der Ziffern 
1 , . . ., v bzw. v + 1, . . . , n, also die Gruppen ©„ bzw. 
(erstere für die Elemente 1,. . ., v, letztere für die Elemente 
v + 1, ..., n) durchlaufen. 

Die vorderen Restklassen nach ¡^ und dadurch 
der Index von » } bestimmen sich folgendermaßen: 
Es sei P 0 irgendeine Permutation aus © n . Wir können sie 
in der Form 

r) Der senkrechte Strich soll andeuten, daß der vordere und der hintere 
Teil für sich Permutationen sind. 
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Aj . . . ly lv + 1 . . . inj 
o .. . kv lcv+i. .. hn/ 

geschrieben denken. Dann besteht die durch P0 erzeugte 
vordere Restklasse (£{{, y P0 aus der Gesamtheit der Per-
mutationen 
p _ q p _ /h • • • h h+l • • • 1n\ (Ii • • • 1>v 1V+1 • • • 

° • • • irv hv+1 • • • hnJ \ki • • • kvkv+1 • • • knj 

(ll • • • lv lv+l •• - In \ 
kTl. . . krv kh+1. . . kSnJ ' 

d. h. aus genau denjenigen Permutationen, bei denen die 
Ziffern von { ¿ j , . . . , in die von . . . , k^ (und somit 
die von {iv+1,..., in\ in die von {kv+1,. .., kn}) in irgend-
einer Reihenfolge übergehen. Hiernach entspricht jeder Kom-
bination { fc j , . . . , kv] eineindeutig eine vordere Restklasse 

kr) nach ©{ij iv), insbesondere ist also der Index 
von Efi, iv) gleich der Anzahl (w) der Kombinationen 
i>-ter Ordnung von 1 , . . . , n. ^v ' 

Diese Zerlegung von <Bn nach (£{;, y ist nichts anderes als 

die gruppentheoretische Einkleidung der aus den Elementen ge-

läufigen Schlußweise zur Bestimmung der Anzahl . In der Tat 

ist die Ordnung von E{i, iv\ nach obigem vi (n — i>)!, so daß 

(fi\ fi' 

= —r~/—' rr folgt. vl vi (n—v)\ 
Wir betrachten nunmehr denjenigen Teil der I A | dar-

stellenden Summe 2d, der einer solchen vorderen Restklasse Pin © n 

Äfifci,..itv> entspricht. Dieser läßt sich nach obigem in der 
Form 

Pin S t ^ £ } 
= sgn(C'i(16'P0)ai1 kri... • • • ainksn 

schreiben, oder nach Satz 62 [108], und da P0 in dieser 
Summe fest ist, 
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H 
Pin®{*, V 

= sgnP0 + + 

S in <Bnl.v 

wobei entsprechend der oben auseinandergesetzten Struktur 
von y die Summation über alle CR,S alsSummation 
über alle R und iŜ der oben angegebenen Art geschrieben ist. 
Es kommt nun alles auf die Berechnung von sgn P0 und 
eine geeignete Aufspaltung von sgn CR,S in zwei den beiden 
Teilen von CR,S entsprechende Faktoren' an. Wir dürfen 
dabei und im weiteren ohne Beschränkung annehmen, daß 
die Ziffern der vier Kombinationen {¿j, . . . , iv), {iv+1,..., in}, 
{fcj,..., fc„}, {&„+!,..., k„} in der natürlichen Reihenfolge 
stehen. 

Einerseits geht nämlich die Reihenfolge der Ziffern dieser Kom-
binationen in die zu beweisende Formel gar nicht ein; denn nach 
Def. 38 macht sie sich in dem Entstehungsprozeß der Unter-
determinanten und Adjunkten nur als Reihenfolge des Streiches 
von Zeilen und Spalten bemerkbar, während die Zeilen und Spalten 
der ihnen zugrundeliegenden Matrizen stets in der natürlichen 
Reihenfolge stehen bleiben. Andererseits ist sowohl ©{¿j,...,i} unab-
hängig von der Reihenfolge der Ziffern .. ,,iv und iv+1,..., 
als auch die Klassen kv) von der Reihenfolge dieser Ziffern 
und der Ziffern klt..., kv und fc„+1,..., kn, und es kann in jeder 
solchen Klasse der Repräsentant P0 so gewählt werden, daß 
fcj kv und kv+..., kn in natürlicher Reihenfolge stehen. 

1) Berechnung von sgn P0 

Wir zerlegen: 
p h H+l • • • ln \ 

. . . lcvkv+i . . . kn) 
= /% ... iy iv+1 ... in\/l . . . V v + 1 .. .n 

\1 . . . v v + 1 . . . n/\ 
und haben dann nach Satz 62, 63 [108,110] 

sgn P0 = sgn I'1 sgn K = sgn 1 sgn K. 
Da . . . , iv und iv+l,..., in in natürlicher Reihenfolge 
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stehen, können Inversionen von 1 = i } [ ' ' ' ' v . v +1••• 
. . . . %v . . . In' 

nur durch je eine Ziffer von {iv . . ., i„} und eine von 
{iv+1, . . ., in} zustande kommen. Diese Inversionen lassen 
sich abzählen, indem man für jede der v Ziffern iv . . i v 
zählt, mit wie vielen der Ziffern iv+1,..., in sie Inversionen 
verursacht. Offenbar führt nun mit den — 1 der zweiten 
Reihe angehörigen Ziffern 1 , . . . , — l 1 ) und nur mit diesen 
zu Inversionen, ebenso i2 mit den i2 — 2 der zweiten Reihe 
angehörigen Ziffern 1 , . . ., i2—l1) außer % und nur mit 
diesen, . . . , schließlich iv mit den iv — v der zweiten Reihe 
angehörigen Ziffern 1 , . . . , iv — l 1 ) außer iv ..., i r_x . Somit 
ist 

sgn I = (—1)*!—1 + 2 + • • • + »„—V 
= (—l)i> + + (l'+ — +»). 

Ebenso folgt 

sgn K = (—l)*i + • •• •• + *„-<! + ••• + -). 

Damit ist gefunden: 
sgn P0 = sgn I sgn K 

= ( _ l ) t , + -•• + *„ + &! + ••• + *>.= ( _ l ) « , i ) j 

wobei zur Abkürzung (i, k) für % + • • • + iv + ky + 1- lcv 
gesetzt ist. 

2) Aufspaltung von sgn CR,S, 
Da die beiden Teile von CR, S für sich Permutationen sind, 

gestattet CR, S die folgende Aufspaltung: 

Q _ . . . lv lv+i . . . In \ 
\\ • • • \ | \+1 ... isJ 

(Ii . . . lv lv + i • . • ßi • • • h h + i • • • tn j _ QrQs 

Vj • • • V„ h+i • • • W Vi • • • h • • • ^n' 
*) Sofern solche Ziffern überhaupt vorkommen; d . h . , sofern nicht i , = 1, 
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Nach Satz 62 [108] ist dann 

sgn Cr, s = sgn Cr sgn Cs, 
ferner nach Satz 64 [111] 

/I .. .v v+1.. .n\ 
sgn Cr = sgn I . 1 , 6 D Vi . . . rv V + 1 . . . w/ 

/I . . . v v + 1 . . . «\ 
sgn Cs = sgn ^ _ ^ ^ J . 

Da nun offenbar Inversionen der rechtsstehenden Permuta-
tionen nur durch Ziffernpaare aus der Eeihe r l t . . ., rv bzw. 
solche aus der Reihe s„+ 1 , . . . , sn zustande kommen, gilt 
weiter 

sgn Cr = sgn ' ' " - sgn R, 
(v + 1 ... n\ 

sgn Cs = sgn I = sgn S, 
+ 1 . . . i>„/ 

also sgn Cr, s = sgn R sgn S. 

Mit den Ergebnissen von 1) und 2) wird nunmehr 

2 
Pin®{i- *v} 

= ( - l ) « . * > £ sgn R a ( k a i k r v 
R in <BV 

S in 

• sgn S a i v + l k S v + l . . . a i n k S n 

= 2 sgn R ailk . . . aipkrv R in ©„ 
(_ ! ) ( » , i) 2 sgn s ai ks ainkSn; 

S m @„_„ 

denn die gliedweise Ausmultiplikation der beiden Summen 
27 , Z ergibt wegen der Unabhängigkeit der Sum-

R in ®„ S in @n_r 

mationen über R und S die zuerst geschriebene Doppel-



§ 18. Unterdeterminanten und Adjunkten 125 

summe 2 • Die beiden in der letzen Formel auf-
R in 

S in ©„_„ 
tretenden Faktoren 2 und ( — l ) ^ 2 sind nun die 

R in ©„ S in ©„_,, 
in der zu beweisenden Formel stehenden Determinanten 
«{». V und <x(t, »„},{*! y . 

Denn wegen der Annahme über die Reihenfolge der Ziffern un-
serer Kombination sind (Hlkl... aivkv und aiv + lkv + 1. .. (Hnkn 

die Produkte der Hauptdiagonalglieder der Matrizen 
<„i, {*, kv), ferner erstrecken sich 

die Summationen über alle Permutationen Ii und S der Spalten-
indizes kv . . ., fe„ und kp+1, . . .. kn in diesen Produkten, wobei 
jedesmal die richtigen Vorzeichenfaktoren sgn B und sgn S an-
gefügt sind, und schließlich steht vor der zweiten Summe der 
richtige Vorzeichenfaktor (—1)(». *) = (—1)»! + ••• + »„ + + •.. + 

Somit ist schließlich 

2 = «{»,,...{i, i } a{i, »}, {i,,...,«•„}, 
P i n »{*, V 

und daraus folgt die zu beweisende Formel, weil nach dem 
oben über die Restklassen Bemerkten 

M I = 2 = 2 2 
P™<5n l*i *„> i,,} 

ist. 
Die erste der Formeln von Satz 68 läßt sich auch so aussprechen: 

Man wähle eine feste Zeilenkombination { % , . . . , iv} der Matrix A. 
Aus diesen v Zeilen lassen sich dann, den (*) Kombinationen 
{klt..., kv} der Spalten entsprechend, (") (v, v)-reihige Matrizen 
^{i, y , {k, kv) mW den Determinanten a{ij y, {ti ¡y 
ausschneiden. Jeder solchen Matrix entspricht eine komplementäre 
A{i„...t }, {k„...,k } die aus der komplementären Zeilenkombination 
unter Benutzung der komplementären Spaltenkombination ausge-
schnitten ist, oder auch durch Streichung der in .A{{ j, {¡̂  k } 
vorkommenden Zeilen und Spalten aus A gewonnen werden 
kann, und deren Determinante, mit dem Vorzeichenfaktor 
(—l)*i + ---+ »» + *i + ... + *„ versehen, das algebraische Komple-
ment a { i i i v ) i l k i zu a { i i »,,},{*;, kv) i s t - Indem man 
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nun mit a^,...,» j, ¡ep} das Zeilensystem { i x , . . { „ } durch-
gleitet und alle Produkte der Unterdeterminanten a mit 
ihren algebraischen Komplementen a . . , . . addiert, erhält man die 
Determinante | A |. Entsprechend liefert die Vertauschung der 
Rolle von Zeilen und Spalten in dieser Regel die zweite Formel 
von Satz 68. Man nennt diese Formeln in diesem Sinne auch die 
Entwicklungen der Determinante \ A \ nach den Unterdeterminanten 
des Zeilensystems ..., i„}, Izw. des Spaltensystems [kv ..kv}. 

In dem besonders wichtigen Falle v = 1 werden die Formeln 
von Satz 68 zu 

n 
(1) | A | = ¿aikccih (i = 1,..., «), 

k = l 

(2) = (k = 1,..n) 
i= 1 

(Entwicklungen von | A \ nach den Elementen einer 
Zeile bzw. Spalte). Durch (1) oder (2) wird die Berechnung 
einer Determinante w-ten Grades | A) zurückgeführt auf die 
Berechnung von n Determinanten («•— l)-ten Grades (etwa 
% a l n). Das hierin liegende rekursive Verfahren zur Be-
rechnung von Determinanten ist für die Anwendungen mitunter 
brauchbar. 

§ 19. Weitere Determmantensätze 

Wir ziehen zunächst einige Folgerungen aus dem Spezial-
fall v = 1 des Laplaceschen Entwicklungssatzes. Dieser 
ergibt nämlich unmittelbar die folgende Tatsache, die man 
übrigens auch unmittelbar aus der Definitionsformel für 
die Determinante (Def. 37 [112]) ablesen kann: 

Satz 69. Die Determinante \ A \ einer (n, n)-reihigen Matrix 
A ist linear und homogen in den Elementen jeder Zeile 
(Spalte) von A, d. h. genauer eine Linearform der Elemente 
irgendeiner Zeile (Spalte), deren Koeffizienten allein durch die 
in den übrigen Zeilen (Spalten) stehenden Elemente bestimmt 
sind. 

Hieraus ergibt sich unter Anwendung des Satzes 47 [76] 
ohne weiteres die oft gebrauchte Regel: 
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Satz 70. Stimmen die (n, n)-reihigen Matrizen A, Alt..., Am 
in n — 1 entsprechenden Zeilen (Spalten) überein, während 
die übrige Zeile (Spalte) a von A das lineare Kompositum 

m • 
0 = JJcfii 

i = l 

der entsprechenden Zeilen (Spalten) a1;..., am von Ax,..., Am 
ist, so ist die Determinante \ A \ das gleiche lineare Kom-
positum 

m 
\A\ = 2el\At\ 

i= 1 

der Determinanten \A1\,...,\Am\. 
Besonders häufig braucht man den Spezialfall m — 1 dieses 

Satzes, wonach sich | A | mit e multipliziert, wenn die Elemente 
einer Zeile (Spalte) von A mit c multipliziert werden. Hiernach 
ist ferner [vgl. § 10, c), (3')] 

| cA | = cn | A |, d. h. | cauc | = cn \ <Hk | (i, k = 1 , . . . , n). 
Schließlich heben wir noch den entweder direkt aus Satz 69 

oder aus Satz 70 fü r m = 1, = 0 folgenden Satz hervor: 

Satz 71. Sind alle Elemente einer Zeile (Spalte) von A Null, 
so ist | A | =0. 

Auch alles dies läßt sich wieder unmit telbar aus der Deter-
minantendefinitionsformel (Def. 37 [112]) ablesen. 

Weiter ziehen wir jetzt aus dem Spezialfall v = 2 des 
Laplaceschen Entwicklungssatzes die nachstehende, wichtige 
Folgerung: 

Satz 72. Stimmen zwei Zeilen (Spalten) einer (n, n)-reihigen 
Matrix A{n~> 1) überein, so ist | A \ = 0. 

Beweis. Da die Determinante | A \ nach dem Laplaceschen 
Entwicklungssatz auch linear und homogen in den Unter-
determinanten eines Zeilen- oder Spaltenpaares ist, genügt 
es zu zeigen, daß alle Determinanten zweiten Grades, die aus 
einem übereinstimmenden Zeilen- oder Spaltenpaar gebildet 
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sind, Null sind. Das folgt aber unmittelbar aus der Defini-
tionsformel der Determinanten, nach der jene Determinanten 

Meist wird für Satz 72 der folgende, auf Satz 67 [115] gegrün-
dete Beweis gegeben: Da eine nur zwei Ziffern vertauschende Per-

schrieben werden kann, nach Satz 64 [111] ungerade ist, folgt 
durch Vertauschung der beiden übereinstimmenden Zeilen (Spalten) 
nach Satz 67 [115] \A\ = — | 4 |, d.h. \ A\ + \ A\ = 2 \ A\ = 0. 
Daraus darf aber i. a. nicht auf | A | = 0 geschlossen werden, weil 
ja z. B. in dem Körper von § 1, Beispiel 4 (und auch in jedem 
seiner Erweiterungskörper) e + e = 2e = 0, aber doch e ={= 0 ist. 
Man kommt nur deshalb meist mit diesem einfacheren Beweis 
aus, weil man sich auf Grundkörper aus Zahlen beschränkt, in 
denen jener Schluß zulässig ist. Theoretisch richtiger, weil ganz 
allgemein gültig, ist jedoch auch dann der oben gegebene Beweis 
mittels des Laplaceschen Entwicklungssatzes. (Siehe jedoch 
auch 3, 2, § 4 Aufg. 11.) 

Mittels der Sätze 70 und 72 beweisen wir jetzt den folgen-
den Satz, der für die Anwendungen der Determinanten auf 
lineare Gleichungssysteme grundlegend ist: 

Satz 73. Sind die Zeilen oder die Spalten einer (n, n)-
reihigen Matrix A linear abhängig, so ist | A | =0. 

Beweis. Für n = 1 ist der Satz trivial. Für n > 1 ist 
nach Satz 38, a') [68] dann mindestens eine Zeile (Spalte) 
ein lineares Kompositum der übrigen Zeilen (Spalten), nach 
Satz 70 also die Determinante | A \ ein lineares Kompositum 
derjenigen n — 1 Determinanten, die entstehen, wenn man 
die fragliche Zeile (Spalte) von A jeweils durch eine der 
übrigen n — 1 Zeilen (Spalten) ersetzt. Diese n — 1 Deter-
minanten sind aber nach Satz 72 Null, also auch ihr lineares 
Kompositum | A |. 

Für die praktischen Anwendungen (Berechnung von Determi-
nanten) ist es zweckmäßig, den Satz 73 auch in folgender Form 
auszusprechen: 

der Form a ^ 
a o 

oder f a' sich zu ab — ab = 0 berechnen, 
o o 

matation von 1 , . . ., n, die also in der Form 
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Zusatz. Entsteht die Matrix B aus der (n, n)-reihigen Matrix A 
(n > 1) dadurch, daß zu einer Zeile (Spalte) von A ein lineares 
Kompositum der übrigen Zeilen (Spalten) addiert wird, so ist 
\B\ = [A\. 

Beweis. \ B | ist dann das lineare Kompositum 
I I + CX [ A1 H h Cn-11 An-11, wo I Ax I , . . I A n | 
die im Beweis von Satz 73 vorkommenden Determinanten be-
zeichnen, die hier sämtlich Null sind. 

Wir wenden schließlich Satz 72 an, um die folgende Er-
weiterung des Laplaceschen Entwicklungssatzes zu be-
weisen : 

Satz 74. Unter den Voraussetzungen von Def. 38, 39 [116, 
118] gelten die Formeln 

2 «{i, y , ^ y «{ti,...,y,{*„...,*„} 
*„> 

= i| A |, wenn {ilt . .., iv} = {i'x, ..., 
} 0, wenn{ilt . . ., i„} 4= {i[, ..., i'„}j' 

H «Ä,...,»„},{*! y «{»i y,{*i h\) 

= 11 A |, wenn {kv ..., = {h[,..., j . 
[ 0, wenn { /c l 5 . . . , #= {k^,..., K}j ' 

in Worten: Das innere Produkt einer Zeile (Spalte) der v-ten 
abgeleiteten Matrix AM und einer Zeile (Spalte) der v-ten ad-
jungierten Matrix AW von A ist \ A | oder 0, je nachdem beide 
Zeilen (Spalten) die entsprechenden oder verschiedene Stellen 
in den Matrizen AM und AW einnehmen. 

Beweis. Wir haben nur noch die nicht schon in Satz 68 
[119] enthaltenen zweiten Hälf ten beider Formeln zu be-
weisen und können uns nach Satz 66 [114] auf die erste 
Formel beschränken. Nach dem schon bewiesenen Laplace-
schen Entwicklungssatz (Satz 68) läßt sich die in der ersten 
Formel von Satz 74 links stehende Summe auffassen als 
die Entwicklung nach der Zeilenkombination {iv ..., i„} 
derjenigen Matrix Au die aus A entsteht, wenn man an 
Stelle der n—v komplementären Zeilen iv+1,...,in die-
jenigen n — v Zeilen von A setzt, aus denen die Adjunkten 

9 Hasse, Höhere Algebra 
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ot{i; »'},{*! hv} gebildet sind, also die Zeilenkombination 
"„in}- D a a b e r a u s {%> • • •> %} + • • •> C} folgt, 

daß mindestens eins der ix,-. . ., iv von allen ii,.. ., i'v ver-
schieden, also einem der . . . , i'n gleich ist, enthält A, 
mindestens zwei übereinstimmende Zeilen. Also ist | A11 = 0 
nach Satz 72, woraus sich die erste Formel ergibt. 

Entsprechend den auf den Spezialfall v = 1 bezüglichen For-
meln § 18, (1) und (2) vermerken wir hier als deren Erweiterungen 

„ , £ (\Ä | , wenn i = 
(1) „ , , 

k = l l 0, wenn t #= %') 
... » l | i | , wenn k = k' (2) £<kk°Cilc' = 1 n , , ,, w i = ! [ 0 , wcnn/c=i=/c 

§ 20. Anwendung der Determinantentheorie auf lineare 
Gleichungssysteme im Falle m = n 

Wir wollen nunmehr die im vorstehenden entwickelten 
Sätze anwenden, um auf dieser Basis erneut den Sätze-
komplex von III über lineare Gleichungssysteme herzu-
leiten und darüber hinaus die in § 15 hervorgehobenen, bei 
der determinantenfreien Behandlung verbliebenen Desiderata 
zu erfüllen. Dabei soll aus methodischen Gründen von den 
früheren, mittels des Transformationsverfahrens aus § 12 
gewonnenen Sätzen der §§ 13, 14 kein Gebrauch gemacht 
werden, während die diesem Verfahren vorangestellten Ent-
wicklungen der §§ 10, 11 als elementar zu beweisende Tat-
sachen angesehen und auch für die jetzigen Darlegungen 
zugrunde gelegt werden sollen. 

Wir beginnen, wie es der Methode der Determinanten-
theorie naturgemäß entspricht, mit der Behandlung der 
linearen Gleichungssysteme (J) und (H) mit (n, w)-reihiger 
Matrix A. Die hierauf bezüglichen Resultate dieses Para-
graphen sind zur Herleitung der Resultate für den allge-
meinen Fall in den folgenden beiden Paragraphen unent-
behrlich, umgekehrt wie in III, wo der Fall m = n an-
schließend an den allgemeinen Fall durch Spezialisierung 
behandelt werden konnte. 
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Zunächst besagt das in Satz 73 [128] erhaltene Ergebnis 
ohne weiteres: 

Satz 75. (Satz (54,55,56) a [99]). Das Gleichungssystem (H) 
mit (n, n)-reihiger Matrix A und sein transponiertes (H') sind 
unlösbar, wenn die Determinante \ A | 4= 0 ist. 

Satz 73 [128] oder 75 sagen über den in § 14 eingeführten Be-
griff regulär folgendes aus: 

Zusatz. (Def. 32 [99]). Ist \ A | 4= 0, so ist A regulär. 
Es ist eines der Hauptergebnisse der Determinantenlehre, daß 

auch umgekehrt für ein reguläres A gilt | A | #= 0, so daß also die 
Alternat ive von § 14, die damals nur in der Form A regulär 
oder A singulär ausgesprochen werden konnte, mittels der 
genau dasselbe besagenden Disjunktion | .A |= |=0ode r | ^ l | = 0 
praktisch entschieden werden kann. Daß jene Umkehrung richtig 
ist, werden wir aber erst mittels der allgemeinen Theorie im fol-
genden Paragraphen beweisen. 

Ferner können wir mittels des Spezialfalles v = 1 des er-
weiterten Laplaceschen Entwicklungssatzes (Satz 74 [129]) 
bezüglich (J) folgendes beweisen: 

Satz 76. (Satz) 49,51,53) a, Satz 57 und Def. 33 [99,100]). 
Das OleicJiungssystem (J) mit (n, n)-reihiger Matrix A ist für 
jeden Vektor £* rechts eindeutig auflösbar, wenn \ A | 4= 0 ist. 
Es hat dann eine eindeutig bestimmte lösende Matrix A*, näm-
lich 

A* = = ( p f j ) (i,k = l,...,n), 

wo A die adjungierte Matrix zu A ist. 
Beweis. Für n = 1 ist der Satz trivial (vgl. die Bemerkung 

bei Def. 39 [118]). Sei also n > 1. 
a) Die im Satz genannte, wegen | A | =f= 0 wirklich bild-

bare Matrix A* i s t lösende Matrix von A. Bildet man näm-
lich mit ihr aus den x'f die Elemente 

= (ä = 1 »),x) i = 1 \A\ 
l ) Vgl. die Anm. 1 [80] zu (H') in § 11. Die hier gewählte Bezeichnung der 

Indizes ist für die folgende Einsetzung bequemer als die in § 14 verwendete 
(#,«, Xfc und demgemäß durch die sofort hervortritt, daß die t r a n s p o -
n i e r t e Matrix A' = ( « ^ ) und nicht A = vorliegt. 

9 * 
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so folgt durch Einsetzen dieser xk in die linken Seiten von 
(J) unter Vertauscliung der Summationsfolge 

a-i'k^ik k = 1 
i_i 1-1 i = iUi"'1 ~1 1 \Ä~\ 

n n n n.. " z. i 
2 artXk = 2 ailt 2 -t—t x? - 2, z» 

(¿' = 1,.. .,n). 

Nach § 19, (1) [130] ist aber die Summe J ? rechts = j A | 
k = 1 

oder = 0, je nachdem i' — i oder i' #= i ist. Daher folgt 
n 

2J tti'ifXk = x% (i' = 1, . .., n), 
k = 1 

also das Erfülltsein von (J) für die obigen xk. 

b) Die unter a) angegebene Lösung von (J) ist die e inz ige . 
Ist nämlich j Lösung von (J), also 

n 
aaxk = xf (i = 1, . . n), 

k = 1 

so folgt durch Multiplikation der i-ten Gleichung mit der 
Adjunkte 1-ter Ordnung a u n d Summation über i 

n n n 
2 a-ik' 2 a-ikZk = 2 = ! » • • • , « ) , 

i = 1 ifc = 1 i = 1 

also durch Vertauschung der Summationsfolge 
n n n 

JJxjc 2 aika.ik' = 2 <*ik'xt = ! . • • • . n)• 
k=l %=1 i = 1 

rt 
Nach § 19, (2) [130] ist aber die Summe 2 links = | A \ 

i = 1 
oder = 0, je nachdem k — k' oder k 4= k' ist. Daher besagt 
dieses Gleichungssystem einfach 



§ 20. Anwendung (1er Determinantentheorie für m = n 133 

n 
\A\xr = 2! (V = 1, • • n) 

i= 1 
oder, weil | A | =p 0 ist, 

av = ^ -pq- xf (k' = 1,. . ., n), 

also die Identität von j mit der Lösung unter a). 
c) Daß A* eindeutig bestimmt ist, folgt wie im Beweis zu 

Satz 57 [100]. 
Wir hätten den Punkt b) des Beweises ebenfalls wie im Beweis 

zu Satz (49, 51, 53)a [991, a l s o dadurch erledigen können, daß das 
zugeordnete (H) nach Satz 75 für | A \ 4= 0 unlösbar und somit 
(J) nach Satz 49 [81] eindeutig lösbar ist. Der hier gewählte Weg 
ist aber für die tatsächliche Konstruktion der Lösung £ von Be-
deutung. Er läuft auf die sehen in § 17 [114] erwähnte Multi-
p l ika t ionsmethode hinaus. In der Tat sind nach b) die Ad-
junkten otjfc (i = 1 , . . . , n) zu den Elementen der fc-ten Spalte von 
A gerade solche Multiplikatoren für die n linksstehenden Linear-

is 
formen /¡, daß das lineare Kompositum £ <*«/« = \ A\xic nur 

i= 1 
noch die eine Unbestimmte xk enthält. Es sei übrigens darauf hin-
gewiesen, daß das Ausrechnen der Lösung £ gemäß der Multi-
plikationsmethode b) theoretisch noch nicht besagt, daß £ wirklich 
Lösung ist, sondern nur, daß, fal ls eine Lösung ex is t i e r t , 
dies £ die einzige Lösung ist. Der Punkt a) des Beweises ist also 
theoretisch unentbehrlich1). 

Auf Grund von Satz 76 können wir überdies für die im 
Falle | A | #= 0 stets vorhandene und eindeutig bestimmte 
Lösung von (J) ein allgemeines Formelsystem aufstellen, das 
unter dem Namen Cramersche Kegel bekannt ist: 

Satz 77. Die für beliebiges rechtsstehendes 5* vorhandene 
und eindeutig bestimmte Lösung £ des Gleichungssystems (J) 
mit (n, n)-reihiger Matrix A und | A | =f= 0 wird durch die 
Determinantenquotienten 

Diese Tatsache wird ganz aUgemein beim Gleichungsauflösen im Schul-
unterricht leider oft übersehen oder nicht genügend betont. 
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I AM I Xk = = !>•••>«) 

gegeben, wo die Matrix AM aus A entsteht, indem, die k-te 
Spalte von A durch den Vektor j* ersetzt wird. 

Beweis. Für n = 1 ist der Satz trivial. Sei also n > 1. 
Dann ist nach Satz 76 die Lösung 

n 
2J a-ikXi 

Xk = '"i1 , i— (/c = !.•••. n)• MI 
Die darin auftretende Summe ist aber nach Satz 68 [119] 

i 
(§ 18, (2)) einfach die Entwicklung der Determinante | AW \ 
der im Satz genannten Matrix AW nach den Elementen 
ihrer k-ten Spalte. 

Durch die Sätze 75—77 sind die Resultate von § 14 nur zur 
einen Hälfte wiedergewonnen. Es fehlen noch die umgekehrten 
Behauptungen, daß für | A | = 0 einerseits (H) und (H') lösbar 
und andererseits (J) nicht einschränkungslos und nicht eindeutig 
lösbar ist, sowie die weiteren Aussagen des Satzes 57 [100] über 
die lösende Matrix A*. Alles dies wird, durch wörtliche Über-
tragung der betr. Beweise des § 14 auch vom jetzigen Standpunkt 
aus festgestellt sein, wenn nur die Umkehrung des obigen Zu-
satzes, d. h. die Gleichwertigkeit der Aussagen „A ist regulär" 
und A | 4= 0" bewiesen sein wird. Man könnte zunächst meinen, 
daß diese Umkehrung ebenfalls, wie alles Bisherige1), aus dem 
S p e z i a l f a l l v = 1 des erweiterten Laplaceichen Entwicklungs-
satzes erschlossen werden kann, in der Weise, daß für | A \ = 0 
die Formeln § 19, (1), (2) [130] lineare Abhängigkeiten zwischen den 
Zeilen und Spalten von A darstellen, also A singulär sein muß. 
Das ist aber deshalb nicht möglich, weil ja, wie leicht durch Bei-
spiele zu belegen, die Koeffizienten <x,t in jenen Formeln sämtlich 
Null sein können, so daß durch sie keine linearen Abhängigkeiten 
geliefert werden. Die Entwicklungen der folgenden Paragraphen 
lehren, daß die fragliche Umkehrung tiefer liegt, daß man nämlich 
zu ihrem Nachweis den a l l g e m e i n e n Fa l l des erweiterten La-
placeschen Entwicklungssatzes heranzuziehen hat. 

-) bis auf die Anwendung des Falles v = 2 im Beweis zu Satz 72 [127] 
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§ 21. Der Bang einer Matrix 
Die Entwicklungen (und Ankündigungen) des § 20 zeigen, daß 

nicht die Determinante | A | selbst, sondern nur die Alternative 
| A | =(= 0 oder | A \ = 0 für die Lösbarkeit der linearen Glei-
chungssysteme mit der («, n)-reihigen Matrix A von Bedeutung 
ist. Es erscheint daher nicht angebracht, für die Anwendungen 
auf allgemeine lineare Gleichungssysteme nach einer sinngemäßen 
Übertragung der Determinantendefinition (Def. 37 [112]) auf 
(m, w)-reihige Matrizen A zu suchen. Vielmehr kommt es darauf 
an, die richtige Verallgemeinerung jener Alternative zu finden. Die 
mit ihr de facto gleichwertige Alternative in § 14 entspringt nun 
aus der dort gemachten Disjunktion 0 r < n oder 0 < r = n, 
also aus einer ,,(« + l)-ative", in der n Möglichkeiten in eins zu-
sammengefaßt sind. Wir werden somit hier versuchen müssen, die 
Alternative | A | =|= 0 oder | A | = 0 in eine für beliebige Ma-
trizen A aussprechbare (n - f l)-ative aufzuspalten. Das erreichen 
wir, indem wir die damalige Anzahl r determinantentheoretisch 
definieren. 

Der bequemeren Ausdrucksweise halber setzen wir zu-
nächst in Verallgemeinerung von Def. 38 [116] fest: 

Definition 40. Unter einer U n t e r d e t e r m i n a n t e v-ten 
Grades einer (m, n)-reihigen Matrix A, wo 0 < v :£ m und 
0 -< v ^ n ist, verstehen wir die Determinante einer durch 
Streichung von m — v Zeilen und n — v Spalten aus A ent-
stehenden (v, v)-reihigen Matrix. 

Mit Hilfe dieses Begriffes definieren wir nun für eine be-
liebige Matrix A eine charakteristische Zahl Q, die — wie 
wir dann zeigen werden — mit der Zahl r aus Satz 55 [97] 
übereinstimmt: 

Definition 41. Unter dem R a n g e einer Matrix A versteht 
man die Zahl 0, falls A = 0 ist, und die größte unter den Grad-
zahlen der von Null verschiedenen Unterdeterminanten von A, 
falls A 4= 0 ist. 

Um zu beweisen, daß der so definierte Rang Q von A mit 
der in I I I vorkommenden Zahl r übereinstimmt, stellen wir 
drei Hilfssätze über g voran, durch die eine Reihe von selbst-
verständlichen Eigenschaften der de facto einander gleichen 
Maximalanzahlen r und r' linear unabhängiger Zeilen und 
Spalten von A auch für Q festgestellt werden. 
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Ohne weiteres klar ist nach Def. 40, 41 : 
Hilfssatz 1. Für den Rang g einer (m, n)-reihigen Matrix 

A gelten die Relationen 
O ^ e ^ m , 0 5= g ^ w, 
g = 0 ist gleichbedeutend mit A = 0. 

Ferner ergibt sich unmittelbar durch Anwendung von 
Satz 66, 67 [114, 115] auf alle Unterdeterminanten von A: 

Hilfssatz 2. Hat die Matrix A den Rang g, SO haben auch 
die transponierte A', sowie alle aus A durch Zeilen- und 
Spaltenpermutaiionen herleitbaren Matrizen den Rang g. 

Schließlich gilt: 
Hilfssatz 3. Entsteht die (m, n)-reihige Matrix A aus der 

(m + 1, n)-reihigen [(m, n + l)-reihigen] Matrix A1 durch 
Streichung einer von den übrigen linear abhängigen Zeile 
(Spalte), so haben A und denselben Rang. 

Beweis. Nach Hilfssatz 2 genügt es, den Satz für die Zeilen 
zu beweisen. Es seien a 1 ; . . . , am die Zeilen von A und a die 
überschüssige Zeile von Av durch deren Streichung A ent-
steht, und die nach Voraussetzung lineares Kompositum von 
dj, . . . , o m ist. Ferner sei g der Rang von A, g1 der von Av 
Ist q — 0, so folgt nach Hilfssatz 1 auch g1 = 0, weil ja 
dann alle a,- = 0 sind, und somit a = 0 ist. Ist g > 0, so hat 
A eine von Null verschiedene Unterdeterminante g-ten 
Grades. Da diese auch Unterdeterminante von A1 ist, ist 
jedenfalls g1 ^ q. Wäre nun q1 > g, so existierte eine durch 
Zeilen- und Spaltenstreichungen aus A1 entstehende gj)-
reihige Matrix Ä l mit | Ä1 | =1= 0. Wir zeigen, daß dies un-
möglich ist. 

Entweder ist nämlich g — n, so daß das Ausschneiden 
einer (gj, g^-reihigen Matrix Ä1 aus der (m + 1, w)-reihigen 
Matrix A1 mit der Voraussetzung g, > g «) unverträglich 
ist (Hilfssatz 1). 

Oder es ist g < n, so daß jedenfalls ojj-reihigeMatrizen 
At mit g1> g aus A1 ausschneidbar sind. Dann sind nur 
die folgenden beiden Fälle denkbar: 
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a) In A1 kommt kein Teil der Zeile a vor. Dann ist A1 

schon aus A ausschneidbar, also 1 ^ 1 = 0 als Unterdeter-
minante eines Grades £>i > q von A. 

b) In Ä1 kommt ein Teil der Zeile a vor. Dieser ist dann 
nach Satz 40 [68] lineares Kompositum der entsprechenden 
Teile von ax, . . . , am. Dann läßt sich nach Satz 70 [127] | Ä11 
aus den Determinanten von solchen ( e u e,)-reihigen Ma-
trizen linear komponieren, die aus entsprechenden Zeilen-
teilen von A bestehen. Diese Determinanten und somit | Ä1 \ 
sind aber Null, weil ihre Matrizen entweder zwei überein-
stimmende Zeilen haben, oder, wenn dies nicht der Fall ist, 
Unterdeterminanten eines Grades > g v o n -A vorliegen. 

Damit ist die Unmöglichkeit der Existenz einer gj)-
reihigen Matrix Ä1 mit > o und | Ä1 | 4= 0 gezeigt. Es 
kann also nicht > e sein, d. h. es ist = q. 

Wir beweisen, nunmehr die Ident i tä t von q mit r und r': 
Satz 78. (Satz 55 [97]). Der Rang q einer Matrix A ist 

gleich der Maximalanzahl r linear unabhängiger Zeilen und 
gleich der Maiximalanzahl f linear unabhängiger Spalten von 
A. Insbesondere ist also r — r'. 

Beweis. Wir reduzieren zunächst mittels unserer Hilfs-
sätze 1—3 die zu beweisende Behauptung auf ihren eigent-
lichen Kern, indem wir folgende vier Feststellungen machen: 

1. Es genügt, den Satz für die Zeilen zu beweisen (Hilfs-
satz 2). 

2. Es genügt, 4 + 0 , also r > 0, q > 0 anzunehmen 
(Hilfssatz 1). 

3. Es genügt anzunehmen, daß die wegen 2. vorhandene 
von Null verschiedene Unterdeterminante (?-ten Grades von 
A die aus den ersten q Zeilen und Spalten von A gebildete 
Unterdeterminante ist (Hilfssatz 2). 

4. Es genügt, die Zeilen von A als linear unabhängig an-
zunehmen (Hilfssatz 3). 

Denn ist A0 die aus einem Maximalsystem r linear unabhän-
giger Zeilen von A bestehende Matrix, die wegen 2. existiert, so 
sind nach Satz 38, a') [68] alle übrigen Zeilen von A von den 
Zeilen von A0 linear abhängig. Bei sukzessiver Streichung dieser 
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übrigen Zeilen von A bleibt aber nach Hilfssatz 3 der Rang un-
geändert, so daß die Behauptung auf den Nachweis q = r für A0 
zurückkommt. 

Sei demgemäß A = (aiJ;) eine (r, w)-reihige Matrix mit 
linear unabhängigen Zeilen vom Range q, für die die aus 
den ersten q Zeilen und Spalten gebildete Unterdeterminante 
a = I aik k = 1, . . ., q) von Null verschieden ist. Dann 
ergänzen wir die ersten q Zeilen von A durch Hinzufügung 
von n — e ;> 0 (Hilfssatz 1) Zeilen zu einer (w, w)-reihigen 
Matrix wie folgt: 

Für die Determinante von A gilt dann | A | = oc =f= 0. Für 
q = n, also Ä = A, ist dies ohne weiteres ersichtlich. Ist 
aber q < n, so ergibt es sich durch Entwicklung von A nach 
den Unterdeterminanten der letzten n — q Zeilen, von denen 
nach Satz 71 [127] nur die den letzten n — o Spalten ent-
sprechende (mit der Adjunkte a) von Null verschieden, näm-
lich gerade e, ist. 

Es ist nun nach 2., Hilfssatz 1 und Satz 41 [69] jedenfalls 
0 < e ^ t ^ n. Wäre g < r und dann erst recht auch q < w, 
so wären r — q in A nicht vorkommende Zeilen ( a n , . . . , ain) 
(i = q + 1 , . . ., r) von A vorhanden, und man könnte nach 
Satz 76 [131] und Satz 66 [114] jedes der r — q linearen 
Gleichungssysteme 

«li xi + b aei xeJr®xQ + I + 1" 0 == an 

«1Q X1 ' ' * &QQ XQ 0 XQ +1 "1" * * ' -f- 0 Xn — Oj{q 
al~Q+\Xi * " " 3 XQ ~f~ XQ + X ' ' ' Q xn — +1 

/ ®ii aie ai,e+i a\n 

j\ — ®si aee a0'0 -l acn 
0 0 e 0 

n * * * ttgn •••-{- Xn — CLin 

(i = Q + 1 , . . . , r) 
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mit der Matrix Ä auflösen, d. h. jede dieser r — g Zeilen aus 
den n Zeilen von Ä linear komponieren. Wir zeigen, daß dann 
in den Lösungen (x^,..., xin) (i = g + 1, . . . , r) dieser 
Gleichungssysteme die letzten n — g Unbekannten xi: e +,, 
..., xin gleich Null, also die letzten r — o Zeilen von A lineare 
Komposita der ersten g wären, was der vorausgesetzten line-
aren Unabhängigkeit der Zeilen von A widerspricht. 

Dazu denken wir uns die nach Satz 76 [131] eindeutig be-
stimmten Lösungen (x^,. . ., Xjn) (i = q'+ 1 , . . ., r) nach 
der Cramerschen Regel (Satz 77 [133]) in der Form 

xti~ |>| \ä\ \j = h...,n ) 
dargestellt. Die Matrizen A^ entstehen dabei aus Ä, indem 
in A die j-te Zeile durch (aiv . . ., ain) ersetzt wird. Ist nun 
j einer der uns interessierenden Indizes q + 1, • • w, so 
enthält demgemäß q + 1 verschiedene Zeilen von A. 
Entwickelt man dann Ä ^ nach diesen 1 Zeilen und 
bedenkt, daß alle deren Unterdeterminanten als Unterdeter-
minanten (g + l)-ten Grades von A Null sind, so ergibt sich 
¡2^1 = 0 , also 2^ = 0(7; = e + l , . . . , r ; j = g + 1, ..., n). 
Damit ist nach dem schon Gesagten die Unmöglichkeit von 
g < r dargetan. Es gilt somit g = r, wie behauptet. 

Der damit bewiesene Satz 78 rechtfertigt die Verwendung 
desselben Wortes Rang für die beiden scheinbar verschieden-
artigen Begriffe in den Definitionen 25 [70] und 41 [135]: 
Der Rang g einer Matrix ist gleich dem Rang r des von 
ihren Zeilen (oder Spalten) erzeugten Vektormoduls. Ferner 
liefert Satz 78 ohne weiteres den am Schluß des vorigen 
Paragraphen genannten, noch fehlenden Teil der Ergebnisse 
des § 14 für die speziellen Gleichungssysteme mit m = w. 
Wir können nämlich jetzt leicht die folgende U m k e h r u n g 
von Sa tz 73 [128] beweisen: 

Satz 79. Ist A eine (n, n)-reihige Matrix mit \ A \ = 0, so 
sind sowohl die Zeilen als auch die Spalten von A linear ab-
hängig. 
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Beweis. Ist | A \ = 0, so ist der Rang g < weil | A \ 
die einzige Unterdeterminante w-ten Grades von A ist. Nach 
Satz 78 sind also die n Zeilen und die n Spalten von A linear 
abhängig. 

Satz 79 besagt auch in U m k e h r u n g zu S a t z 75 [131]: 
Satz 80 . (Satz 54, 55, 56) a [99]). Das Gleichungssystem 

(H) mit (n, n)-reihiger Matrix A und sein transponiertes (H') 
sind lösbar, wenn | A \ — 0 ist. 

Satz 79 oder 80 geben schließlich die in § 20 angekündigte 
Umkehrung des Zusatzes zu Sa tz 75 [131]: 

Zusatz. (Def. 32 [99]). Ist A regulär, so ist | A | + 0. 
Somit haben wir: 
Satz 81. (Def. 32 [99]). Die Alternativen „A regulär oder A 

singulär" und ,, | A | #= 0 oder | A | = 0 " sind gleichbedeutend. 
Wie schon am Schluß von § 20 festgestellt, ist durch 

diese, sämtlich dasselbe besagenden Sätze nunmehr auch 
die folgende U m k e h r u n g zu S a t z 76 [131] sowie die an-
schließende weitere Aussage als vom jetzigen Standpunkt 
bewiesen anzusehen: 

Satz 82 . (Satz 49, 51, 53)a [99]). Die Bedingung \A | 0 
ist für die einschränkungslose und für die eindeutige Auflös-
barkeit des Gleichungssystems ( J ) mit (n, n)-reihiger Matrix 
A auch notwendig. 

Satz 83 . (Satz 57 [100]). Ist ] A \ #= 0, so ist auch die Deter-
minante \ A* | der lösenden Matrix A* = | A | _ 1 A ' , d.h. 
auch die Determinante \ A | = ] A || A* |der adjungierten 
Matrix zu A von Null verschieden und (^1*)* = A. 

Man kann hieraus leicht folgern, daß die adjungierte Matrix yi 
zur adjungierten A von A sich von A nur um einen Faktor unter-

I A I 
scheidet, daß nämlich Ä = A Die Bestimmung dieses 

Faktors, d. Ii. die Berechnung von ] A | läßt sich aber erst mittels 
des Matrizenkalküls naturgemäß ausführen. Dort zeigt sich 
nämlich, daß A* einfach die Reziproke A_1 von A, und dem-
gemäß | A* | = | A | _ 1 ist, woraus dann für A' = | A \ A_1 folgt 
| A | = | A | A I"1 = | A I " - 1 . Übrigens sind auch die Deter-

') Vgl. das bei Satz 70 [127] Bemerkte. 
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minanten aller abgeleiteten und adjungierten Matrizen A(v), AM 
Potenzen von | A | . (Vgl. dazu 3,1, § 14, Aufg. 4; § 19, Aufg. 13; 
2, § 2, Aufg. 30—32.) 

Damit sind die sämtlichen Ergebnisse des § 14 für den 
Spezialfall m = n determinantentheoretisch begründet. 
Überdies kann gemäß Satz 81 über die dortige A l t e r -
n a t i v e , d . h . über die Lösbarkeit von (H) oder die ein-
schränkungslose und eindeutige Lösbarkeit von (J) durch 
Bestimmung von | A | entschieden werden, und ist in Satz 76, 
77 [131,133] ein weiteres Verfahren zur Lösungsbestimmung 
von (J) im „regulären" Falle (| A | + 0 ) gefunden, das es 
gestat tet , die Lösung in geschlossener Form anzugeben. 

Für den allgemeinen Fall besagt unser Satz 78, daß die 
nach §§ 11, 13_zur E n t s c h e i d u n g ü b e r d i e L ö s b a r k e i t 
v o n (H) und Ü b e r s i c h t ü b e r d i e L ö s u n g s g e s a m t h e i t 
v o n (H) u n d (J) allein zu bestimmende Anzahl r als Rang o 
von A auch mittels Determinanten in endlich vielen Schritten, 
nämlich durch die Berechnung aller Unterdeterminanten 
von A gefunden werden kann. Darüber hinaus kann so auch 
ein M a x i m a l s y s t e m l i n e a r u n a b h ä n g i g e r Z e i l e n 
( S p a l t e n ) von A in endlich vielen Schritten best immt 
werden. Wir können nämlich aus Satz 78 ohne weiteres die 
nachstehende, im folgenden Paragraphen anzuwendende 
Tatsache entnehmen: 

Hilfssatz 4. Ist A eine Matrix vom Range & > 0, so liefert 
jedes Kombinationspaar von q Zeilen und q Spalten von A, 
dem, eine von Null verschiedene Unterdeterminante Q-ten 
Grades entspricht, ein Maximalsystem linear unabhängiger 
Zeilen und Spalten von A. 

Beweis. Nach Satz 73 [128] sind die in jene Unterdeter-
minante g-ten Grades eingehenden Teile der betr. q Zeilen 
(Spalten) von A linear unabhängig, nach Satz 40 [78] also 
auch die ganzen q Zeilen (Spalten), und nach Satz 78 sind 
sie dann ein Maximalsystem, linear unabhängiger Zeilen 
(Spalten). 

Zur vollständigen Wiedergewinnung der früheren Re-
sultate bleibt nur noch übrig, die in § 13 mittels des Trans-
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formationsverfahrens aus § 12 erschlossenen Sätze 53 [92] 
und 54 [93] über (J) und (H) determinantentheoretisch zu 
beweisen, was im folgenden, letzten Paragraphen geschehen 
soll. Daraus ergibt sich dann natürlich auch der einzige noch 
nicht genannte Satz 56 [97] des § 13 über (H) und (H') 
ohne weiteres auf Grund von Satz 78. 

§ 22. Anwendung der Determinantentheorie auf lineare 
Gleichungssysteme im allgemeinen Falle 

Der angekündigte Nachweis der Sätze 53 [92] und 54 [93] 
mittels Determinanten liefert über die darin ausgesprochenen 
Behauptungen hinaus eine exp l i z i t e B e s t i m m u n g der 
L ö s u n g s g e s a m t h e i t von (J) und (H), also die voll-
ständige Lösung der beiden am Schluß von § 11 genannten 
A u f g a b e n J) und H) auf determinantentheoretische Weise. 
Es empfiehlt sich aus methodischen Gründen, hier die Be-
handlung von (H) der von (J) voranzustellen. 

1. Lösung von H) 
Die vollständige Lösung von H) ist ersichtlich in dem 

folgenden Satz enthalten: 
Satz 84. (Satz 54 [93]). Das Gleichungssystem (H) mit 

(m, n)-reihiger Matrix A vom Range g besitzt ein Fundamen-
tallösungssystem von n — g Lösungen. Ist 0 < g < n und, 
wie ohne Beschränkung angenommen werden darf, die Reihen-
folge der Gleichungen und der Unbekannten so gewählt, daß 
die aus den ersten g Zeilen und Spalten von A gebildete Unter-
determinante von Null verschieden ist, so wird ein solches 
durch die n — g letzten Zeilen der adjungierten Matrix A zu 
der (n, n)-reihigen Matrix A aus dem Beweise von Satz 78 
[137], also durch die n — g Vektoren 

(äa,..ä.in) [i = q + 1,..n) 
aus den Adjunkten 1. Ordnung jener Matrix A gebildet. 

Beweis. Für g = 0, also A = 0, ist der Satz trivial (vgl. 
Bew. zu Satz 54 [93]). Sei also g > 0, mithin A 4= 0. Bei der 
im Satz gemachten Annahme bilden dann die ersten g Zeilen 
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ein Maximalsystem linear unabhängiger Zeilen von A (§ 21, 
Hilfssatz 4 [141]). Nach Satz 38, a') [68] sind demnach 
/j,..., fm sämtlich lineare Komposita von fv ..., fe, so daß 
nach dem Einsetzungsprinzip jede Lösung g von /, (j) ' 0, 
. . . , / e( j ) = 0 auch Lösung sämtlicher Gleichungen ^ ( j ) = 0, 
. . / m ( E ) = 0 ist. Da das Umgekehrte trivialerweise gilt, 
ist also das aus den ersten q Gleichungen von (H) gebildete 
Gleichungssystem (H0) mit der (o, n)-reihigen Matrix A0 zu 
(H) äquivalent, so daß es zum Beweis genügt, (H0) an Stelle 
von (H) zugrunde zu legen. 

Ist nun einerseits q = n, also eine (o, e)-reihige Matrix, 
für die nach Voraussetzung | AQ | #= 0 ist, so ist (H0) nach 
Satz 73 [128] unlösbar, besitzt also ein Fundamentallösungs-
system von 0 = o — q = n — o Lösungen, wie behauptet. 

Ist andererseits 0 < q < n, so zeigen wir: 
a) Die genannten n — o Vektoren sind Lösungen von 

(H0). Denn nach dem erweiterten Laplaceschen Entwick-
lungssatz [§ 19, (1)], angewandt auf die Matrix A, gilt 

n 
2J üikäi'k = 0 (i = 1,..., g; i' = q + 1,..., n). 
k = 1 

b) Diese n—q Lösungen von (H0) sind l inea r u n a b -
hängig. Denn nach Satz 83 [140] ist wegen | A \ =f= 0 auch 
|A | =f= 0. Es sind also nach Satz 73 [128] die n Zeilen von 
A, also nach Satz 39 [68] auch die n — q letzten linear un-
abhängig. 

c) Aus diesen w — o Lösungen von (H0) läßt sich jede 
Lösung 5 von (H0) l inea r komponie ren . Denn das Glei-
chungssystem 

1 fl\ ** = • • 

dessen Matrix die lösende Matrix Ä* von A ist, hat wegen 
| J | + 0 nach Satz 76 [131], 83 [140] die eindeutig be-
stimmte Lösung 
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n 
x*=£aikxk (i = 1, . . ., o) 

S = 1 
X* = x( (i = Q + 1,..., n) 

mit der Matrix (.4*)* = A. Da aber £ Lösung von (H0) 
sein sollte, sind x? = 0, . . X g = 0, d. h. es bestehen die 
Formeln 

£ xt - ( n _ \ 
i »f+1 Ml"" [ - f +, - | J [ a«J - * (* = 1. • • ») • 
nach denen 5 ein lineares Kompositum unserer n — g Lö-
sungen aus a), b) ist. 

Aus a)— c) folgt, daß die im Satz genannten n — o Vek-
toren ein Fundamentallösungssystem von (H0), also auch 
von (H) bilden. 

2. Lösung von J ) 

Die vollständige Lösung von J ) ist ersichtlich in dem fol-
genden Satz enthal ten: 

Satz 85. (Satz 53 [92]). Ist für das Gleichungssystem (J) 
mit (m, n)-reihiger Matrix A vom Range Q die notwendige 
Lösbarkeitsbedingung von Satz 51 [82] erfüllt, so ist (J) lösbar. 
Ist g>0 und wird über die Reihenfolge der Gleichungen und 
der Unbekannten wieder die Annahme von Satz 84 gemacht, so 
findet man eine Lösung von (J), indem man in dem. aus den 
ersten g Gleichungen von (J) gebildeten Gleichungssystem (J0) 
die Unbekannten xe + 1,..., xn = 0 setzt (falls g > n ist) und 
dann xv ..., xe durch Auflösung des so resultierenden Glei-
chungssystems mit (g, g)-reihiger Matrix von Null verschie-
dener Determinante gemäß Satz 76, 77 [131, 133] bestimmt. 

Beweis. Falls g = 0 ist, ist der Satz trivial, weil dann in 
(J) alle linken Seiten /; = 0 und folglich nach der Voraus-
setzung auch alle rechten Seiten = 0 sind. Sei also o > 0. 
Bei der im Satz gemachten Annahme ist dann wieder nach 
§ 21, Hilfssatz 4 [141] und dem Einsetzungsprinzip wie im 
Beweis von Satz 84 das System (J0) zu (J) äquivalent. Daß 
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das im Satz beschriebene Verfahren eine Lösung von (J0) 
und somit von (J) liefert, ist ohne weiteres klar. 

Durch Satz 84 und 85 ist nach dem im § 11 Bemerkten 
die Aufgabe § 5, (1) der linearen Algebra vollständig gelöst. 

Wir leiten zum Schluß in Ergänzung zu Satz 85 noch zwei für 
die praktischen Anwendungen nützliche Regeln her, die es er-
lauben, einerseits die B e s t i m m u n g der L ö s u n g s g e s a m t h e i t 
von (J) direkt, und nicht erst gemäß Satz 49 [811 durch Berech-
nung eines Fundamentallösungssystems von (H) nach Satz 84, 
und andererseits die E n t s c h e i d u n g über die L ö s b a r k e i t von 
(J) direkt, und nicht erst gemäß Satz 51, Zusatz 2 [831 durch Be-
rechnung eines Fundamentallösungssystems von (II') nach Satz 84 
auszuführen: 

Ohne nähere Begründung klar ist1): 

Zusatz 1. Unter den Voraussetzungen von Satz 85 findet man 
die Lösungsgesamtheit von (J) im Falle g > 0 folgendermaßen: Man 
setze in dem dortigen Gleichungssystem (J0) für die Unbekannten 
xe + 1, . . ., xn irgendwelche Elemente le + 1,..., (falls g < n ist) 
und bestimme dann xlt . . ., xe durch Auflösung des so resultierenden 
Gleichungssystems 

q n 
2 aikXic = at+ JJ (— cm) |fc

 2) (t = 1, . . ., q) 

mit (g, g)-reihiger Matrix von Null verschiedener Determinante 
gemäß Satz 76, 77 [131, 133], Jedem beliebigen System |e+1, . . ., In 
entspringt so eine und nur eine Lösung von (J). 

Bezeichnen übrigens t x d i e Adjunkten zu den Elementen aik 
in jener (g, ¡?)-reihigen Matrix (atk) (i, k = 1, . . ., g) und a = | mx \ 
deren Determinante, so wird nach Satz 76 [131] unter Vertau-
schung der Summationsfolge 

(? nc-7 n 0 /y-, rt, 
xk = 2 -i* a, + £ h Z ^ f - (-aü) = a'k+ 2 a&t 

i = i « i=e+i »=i a i=e+i 

(fc = i e) 
Vgl. auch die entsprechende Bemerkung im Anschluß an Satz 53, Zusatz 

[93] über die Möglichkeit, a l l e Lösungen von (J) ohne Betrachtung von (H) 
mit Hilfe des Lösungsverfahrens aus §§ 12, 13 zu gewinnen. 

2) Im Grcnzfall q = n ist die rechtsstehende Summe leer und sinngemäß 
gleich Xull zu setzen. 

10 H a s s e , Höhere Algebra 



146 IV. Lineare Algebra mit Determinanten 

die Auflösung des fraglichen Gleichungssystems, die verbunden mit 

%k = 0 + h (k = q + 1,. . n) 
die allgemeine Lösung j j von (J) liefert. Hierbei erscheint die 
Lösung j./ von selbst in zwei Summanden j j ' und gemäß 
Satz 49 [81] zerlegt, deren erster ffl = ( a j , . . . , a*, 0 , . . 0 ) 
offenbar die in Satz 85 genannte, ! e + 1 , . . . , ! „ = 0 entsprechende, 
spezielle Lösung von (J) ist, während der zweite demnach die 
allgemeine Lösung des zugeordneten (H) darstellen muß, die hier 
in ähnlicher Weise aus n — Q Fundamentallösungen komponiert 
erscheint, wie im Beweis zu Satz 54 [93]. 

Ferner beweisen wir: 
Zusatz 2. Das Gleichungssystem (J) ist dann und nur dann 

lösbar, wenn seine (m, n)-reihige Matrix A denselben Bang hat, wie 
die aus ihr durch Anfügung der aus den rechten Seiten ( a . . ., am) 
von (J) gebildeten Spalte entstehende (m, n + 1 )-reihige Matrix Av 

Beweis, a) Ist (J) lösbar, so ist die Spalte (Oj , . . . , am) von den 
Spalten von A linear abhängig. Dann hat aber A1 nach § 21, Hilfs-
satz 3 [136] denselben Rang wie A. 

b) Ist (J) unlösbar, so ist die Spalte (a1; . . ., am) von den Spalten 
von A linear unabhängig. Ist A = 0, so ist also jene Spalte von 
Null verschieden, d. h. der Rang von Al gleich 1, während der von 
A gleich 0 ist. Ist aber A 4= 0, so bildet jene Spalte mit einem 
Maximalsystem Q linear unabhängiger Spalten zusammen nach 
Satz 38, b) [68] ein System von Q + 1 linear unabhängigen Spal-
ten. Nach Satz 78 [137] ist also der Rang von A1 größer als der 
Rang Q von A. Wenn somit A und A1 denselben Rang haben, 
muß (J) lösbar sein. 

Sch luß 

Abhängigkeit vom Grundkörper 

Zum Abschluß unserer Entwicklungen gehen wir noch 
auf die Frage ein, ob sich die Resultate von I I I und IV 
ändern, wenn von den Lösungen xv . . x n des vorgelegten 
linearen Gleichungssystems (J) nicht mehr, wie bisher 
durchweg, verlangt wird, daß sie dem Körper K angehören, 
sondern für sie irgendein Erweiterungskörper K von K zu-
grunde gelegt wird. Da das Gleichungssystem (J) dann auch 
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als eines mit Koeffizienten aus K angesehen werden kann, 
ist unsere ganze Theorie auch für K als Grundkörper durch-
führbar. Wenn sich nun hierbei auch die Lösungsgesamtheit 
von (J) gegenüber K im allgemeinen vergrößert, weil die in 
die allgemeine Lösung von (J) eingehenden, frei verfügbaren 
Elemente aus K jetzt aus dem umfangreicheren Körper K 
frei wählbar werden, so gilt doch: 

Satz 86. Die Lösbarkeit bzw. Unlösbarkeit, die eindeutige 
Lösbarkeit sowie die Anzahl n — r der in der allgemeinen 
Lösung frei verfügbaren Elemente für ein lineares Gleichungs-
system (J) in K sind invariant beim Übergang von K zu irgend-
einem Erweiterungskörper K von K als Grundkörper. 

Beweis. Ist A die Matrix von (J), A1 die in Satz 85, Zu-
satz 2 [146] genannte Matrix, und sind r und r, die Rang-
zahlen von A und Alt so ist die Lösbarkeit bzw. Unlösbar-
keit von (J) nach Satz 85, Zusatz 2 mit der Relation 

r = rx bzw. r < rv 

die eindeutige Lösbarkeit von (J) nach Satz 85, Zusatz 1 
[145], mit der Relation 

r = rj — n 

gleichbedeutend. Nun ist aber das Nullsein bzw. von Null 
verschieden sein einer Determinante unabhängig davon, ob 
ihre Glieder als Elemente von K oder K angesehen werden. 
Daher ist gemäß Def. 41 [135] der Rang einer Matrix beim 
Übergang von K zu K invariant, also wegen der selbstver-
ständlichen Invarianz von n auch die obigen Relationen, d.h. 
die Lösbarkeit bzw. Unlösbarkeit und die eindeutige Lös-
barkeit von (J), sowie die im Satz genannte Anzahl n —r. 

10* 
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Deutsches Dichten und Denken vom Mittelalter zur Neuzelt von G. Müller 
(1270 bis 1700). 3., durchgesehene Auflage. 159 Seiten. In Vor-
bereitung. (1086) 

Deutsches Dichten und Denken von der Aufklärung bis zum Realismus 
(Deutsche Literaturgeschichte von 1700—1890) von K. Vietor f . 
3., durchgesehene Auflage. 159 Seiten. 1958. (1096) 

Deutsche Heldensage von H. Schneider. 2. Auflage, bearbeitet von 
R. Wisniewski. 148 Seiten. 1964. (32) 

Der Nlbelunge Ndt in Auswahl mit kurzem Wörterbuch von K . Langosch. 
10., durchgesehene Auflage. 164 Seiten. 1956. (1) 

Kudrun und Dietrich-Epen in Auswahl mit Wörterbuch von O. L. Jiric-
zek. 6. Auflage, bearbeitet von R. Wisniewski. 173 Seiten. 1957. (10) 

Wolfram von Eschenbach. Parzival. Eine Auswahl mit Anmerkungen 
und Wörterbuch von H. Jantzen. 2. Auflage, bearbeitet von H. Kolb. 
128 Seiten. 1957. (921) 
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GEISTESWISSENSCHAFTEN 

Hartmann von Aue. Der arme Heinrich nebst einer Auswahl aus der 
„Klage", dem „Gregorius" und den Liedern (mit einem Wörter-
verzeichnis) herausgegeben von F. Maurer. 96 Seiten. 1958. (18) 

Gottfried von Strassburg in Auswahl herausgegeben von F. Maurer. 
142 Seiten. 1959. (22) 

Die deutschen Personennamen von M. Gottschald f . 2., verbesserte 
Auflage. 151 Seiten. 1955. (422) 

Althochdeutsches Elementarbuch. Grammatik und Texte von H. Nau-
mann t und W. Betz. 3., verbesserte und vermehrte Auflage. 
183 Seiten. 1962. (1111 /1111 a) 

Mittelhochdeutsche Grammatik von H. de Boor und R. Wisniewski. 3., 
verbesserte und ergänzte Auflage. 150 Seiten. 1963. (1108) 

Indogermanisch, Germanisch 
Indogermanische Sprachwissenschaft von H. Krähe. 2 Bände. 4., über-

arbeitete Auflage. 
I: E i n l e i t u n g u n d L a u t l e h r e . 110 Seiten. 1962. (59) 

II: F o r m e n l e h r e . 100 Seiten. 1963. (64) 
Gotisches Elementarbuch. Grammatik, Texte mit Übersetzung und 

Erläuterungen von H. Hempet. 3., umgearbeitete Auflage. 166 Sei-
ten. 1962. (79/79a) 

Germanische Sprachwissenschaft von H. Krähe. 2 Bände. 
I : E i n l e i t u n g u n d L a u t l e h r e . 5., überarbeitete Auflage. 

149 Seiten. 1963. (238) 
II: F o r m e n l e h r e . 4.,überarbeitete Auflage. 149 Seiten. 1961.(780) 

Altnordisches Elementarbuch. Schrift, Sprache, Texte mit Übersetzung 
und Wörterbuch von F. Ranke. 2., durchgesehene Auflage. 146 
Seiten. 1949. (1115) 

Englisch, Romanisch 
Altenglisches Elementarbuch. Einführung, Grammatik, Texte mit Über-

setzung und Wörterbuch von M. Lehnert. 5., verbesserte Auflage. 
178 Seiten. 1962. (1125) 

Historische neuenglische Laut- und Formenlehre von E. Ekwall. 3., 
durchgesehene Auflage. 150 Seiten. 1956. (735) 

Englische Phonetik von H. Mutschmann f . 2. Auflage, bearbeitet von 
G. Scherer. 127 Seiten. 1963. (601) 

Englische Literaturgeschichte von F. Schubel. 4 Bände. 
I : Die a l t - u n d m i t t e l e n g l i s c h e P e r i o d e . 163 Seiten. 1954. 

(1114) 
II: Von d e r R e n a i s s a n c e b i s z u r A u f k l ä r u n g . 160 Seiten. 

1956. (1116) 
I I I : R o m a n t i k u n d V i k t o r i a n i s m u s . 160 Seiten. 1960. (1124) 

Beowulf von M. Lehnert. Eine Auswahl mit Einführung, teilweiser 
Übersetzung, Anmerkungen und etymologischem Wörterbuch. 3., 
verbesserte Auflage. 135 Seiten. 1959. (1135) 

Shakespeare von P. Meißner f . 2. Auflage, neubearbeitet von M. Leh-
nert. 136 Seiten. 1954. (1142) 
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GEISTESWISSENSCHAFTEN 

Romanische Sprachwissenschaft von H. Lausberg. 4 Bände. 
I : E i n l e i t u n g u n d V o k a l i s m u s . 2., durchgesehene Autlage. 

211 Seiten. 1963. (128/128a) 
I I : K o n s o n a n t i s m u s . 95 Seiten. 1956. (250) 

I I I : F o r m e n l e h r e . 1. Teil. 99 Seiten. 1962. (1199) 
I I I : F o r m e n l e h r e . 2. Teil. S. 99—260. 1962. (1200/1200a) 
IV: W o r t l e h r e . In Vorbereitung. (1208) 

Griechisch, Lateinisch 
Griechische Sprachwissenschaft von W. Brandenstein. 3 Bände. 

I : E i n l e i t u n g , L a u t s y s t e m , E t y m o l o g i e . 160 Seiten. 1954. 
(117) 

I I : W o r t b i l d u n g u n d F o r m e n l e h r e . 192 Seiten. 1959. (118/ 
118a) 

I I I : S y n t a x . In Vorbereitung. (1218) 
Geschichte der griechischen Sprache. 2 Bände. 

I : Bis z u m A u s g a n g d e r k l a s s i s c h e n Z e i t von O. Hoff-
mann f . 3. Auflage, bearbeitet von A. Debrunner f . 156 Seiten. 
1953.(111) 

I I : G r u n d f r a g e n u n d G r u n d z ü g e des n a c h k l a s s i s c h e n 
G r i e c h i s c h von A. Debrunner f . 144 Seiten. 1954. (114) 

Geschichte der griechischen Literatur von W. Nestle. 2 Bände. 3. Auf-
lage, bearbeitet von W. Liebich. 
I : 144 Seiten. 1961.(70) 

I I : 149 Seiten. 1963. (557) 
Grammatik der neugriechischen Volkssprache von J. Kalitsunakis. 

3., wesentlich erweiterte und verbesserte Auflage. 196 Seiten. 1963. 
(756/756 a) 

Neugriechisch-deutsches Gesprächsbuch von J. Kalitsunakis. 2. Auflage, 
bearbeitet von A. Steinmetz. 99 Seiten. 1960. (587) 

Geschichte der lateinischen Sprache von F. Stolz. 4. Auflage von A. De-
brunner f . In Vorbereitung. (492) 

Geschichte der römischen Literatur von L. Bieler. 2 Bände. 
I : D i e L i t e r a t u r d e r R e p u b l i k . 160 Seiten. 1961. (52) 

I I : D i e L i t e r a t u r d e r K a i s e r z e i t . 133 Seiten. 1961.(866) 

Hebräisch, Sanskrit, Russisch 
Hebräische Grammatik von G. Beer f . 2 Bände. Völlig neubearbeitet 

von R. Meyer. 
I : S c h r i f t - , L a u t - u n d F o r m e n l e h r e I. 3. Auflage. Etwa 224 

Seiten. In Vorbereitung. (763/763a) 
I I : F o r m e n l e h r e II. Syntax und Flexionstabellen. 2. Auflage. 

195 Seiten. 1955. (764/764a) 
Hebräisches Textbuch zu G. Beer-R. Meyer, Hebräische Grammatik 

von R. Meyer. 170 Seiten. 1960. (769/769 a) 
Sanskrit-Grammatik von M. Mayrhofer. 89 Seiten. 1953. (1158) 
Russische Grammatik von E. Berneker f . 6., verbesserte Auflage von 

M. Vasmerf. 155 Seiten. 1961. (66) 
Slavische Sprachwissenschaft von H. Bräuer. 2 Bände. 

I : E i n l e i t u n g , L a u t l e h r e . 221 Seiten. 1961. (1191/1191a) 
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GEISTESWI SS ENSCH AFTEN 

Erd- und Länderkunde, Kartographie 
Afrika von F. Jaeger. Ein geographischer Überblick. 2 Bände. 3. Auf-

lage. 
I : Der L e b e n s r a u m . 179 Seiten, 18 Abbildungen. In Vorberei-

tung. (910) 
I I : Mensch u n d K u l t u r . 155 Seiten, 6 Abbildungen. In Vorberei-

tung. (911) 
Australien und Ozeanien von H. J. Krug. 176 Seiten, 46 Skizzen. 1953. 

(319) 
Kartographie von V. Heissler. 213 Seiten, 125 Abb., 8 Anlagen. 1962. 

(30/30 a) 

Volkswirtschaft, Statistik, Publizistik 
Allgemeine Betriebswirtschaftslehre von K. Mellerowicz. 4 Bände. 

11., durchgesehene Auflage. 
I: 224 Seiten. 1961. (1008/1008a) 

I I : 188 Seiten. 1962. (1153/U53a) 
I I I : 260 Seiten. 1963. (1154/1154a) 
IV: 209 Seiten. 1963. (1186/1186a) 

Buchhaltung und Bilanz von E. Kosiol. Etwa 114 Seiten, 29 Tafeln. 
1964. (1213) 

Geschichte der Volkswirtschaftslehre von S. Wendt. 182 Seiten. 1961. 
(1194) 

Allgemeine Volkswirtschaftslehre von A. Paulsen. 4 Bände. 
I : G r u n d l e g u n g , W i r t s c h a f t s k r e i s l a u f . 5., neubearbeitete 

Auflage. 154 Seiten. 1964. (1169) 
I I : H a u s h a l t e , U n t e r n e h m u n g e n , M a r k t f o r m e n . 5., neu-

bearbeitete Auflage. 168 Seiten, 35 Abbildungen. 1964. (1170) 
I I I : P r o d u k t i o n s f a k t o r e n . 3., neubearbeitete und ergänzte 

Auflage. 198 Seiten. 1963. (1171) 
IV: G e s a m t b e s c h ä f t i g u n g , K o n j u n k t u r e n , W a c h s t u m . 

3. Auflage. 174 Seiten. 1964.(1172) 
Allgemeine Volkswirtschaftspolitik von H. Ohm. 2 Bände. 

I: S y s t e m a t i s c h - T h e o r e t i s c h e G r u n d l e g u n g . 137 Seiten, 
6 Abbildungen. 1962. (1195) 

I I : Der v o l k s w i r t s c h a f t l i c h e G e s a m t o r g a n i s m u s a l s 
O b j e k t d e r W i r t s c h a f t s p o l i t i k . In Vorbereitung. (1196) 

Finanzwissenschaft von H. Kolms. 4 Bände. 
I: G r u n d l e g u n g , ö f f e n t l i c h e A u s g a b e n . 2., verbesserte 

Auflage. 162 Seiten. 1963. (148) 
I I : E r w e r b s e i n k ü n f t e , G e b ü h r e n u n d B e i t r ä g e , A l l -

g e m e i n e S t e u e r l e h r e . 2., verbesserte Auflage. 150 Seiten. 
1964.(391) 

I I I : B e s o n d e r e S t e u e r l e h r e . 178 Seiten. 1962. (776) 
IV: Ö f f e n t l i c h e r K r e d i t . H a u s h a l t s w e s e n . F i n a n z a u s -

g le ich . 1964. In Vorbereitung. (782) 
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G E I S T E S W I S S E N S C H A F T E N 

Finanzmathematik von M. Nicolas. 192 Seiten, 11 Tafeln, 8 Tabel len 
und 72 Beispiele. 1959. (1183/1183a) 

Industrie- und Betriebssoziologie von R. Dahrendorf. 2., umgearbei te te 
und erweiterte Auflage. 142 Seiten, 3 Figuren. 1962. (103) 

Wirtschaftssoziologie von F. Fürstenberg. 122 Seiten. 1961. (1193) 
Psychologie des Berufs- und Wirtschaftslebens von W. Moede f . 190 

Seiten, 48 Abbildungen. 1958. (851/851 a) 
Einführung In die Arbeitswissenschaft von H. H. Hilf. 164 Seiten, 57 

Abbi ldungen. 1964. (1212/1212a) 

Allgemeine Methodenlehre der Statistik von J. Pfanzagl. 2 Bände. 
I : E l e m e n t a r e M e t h o d e n u n t e r b e s o n d e r e r B e r ü c k -

s i c h t i g u n g d e r A n w e n d u n g e n i n d e n W i r t s c h a f t s -
u n d S o z i a l w i s s e n s c h a f t e n . 2. Auflage. 251 Seiten, 42 Ab-
bi ldungen. 1964. (746/746 a) 

II: H ö h e r e M e t h o d e n u n t e r b e s o n d e r e r B e r ü c k s i c h t i -
g u n g d e r A n w e n d u n g e n in N a t u r w i s s e n s c h a f t , M e -
d i z i n u n d T e c h n i k . 295 Seiten, 39 Abbildungen. 1962. 
(747/747 a) 

Zeitungslehre von E. Dovifat. 2 Bände. 4., neubearbei tete Auflage. 
I : T h e o r e t i s c h e u n d r e c h t l i c h e G r u n d l a g e n — N a c h r i c h t 

u n d M e i n u n g — S p r a c h e u n d F o r m . 149 Seiten. 1962. 
(1039) 

II: R e d a k t i o n — D i e S p a r t e n : V e r l a g u n d V e r t r i e b , 
W i r t s c h a f t u n d T e c h n i k — S i c h e r u n g d e r ö f f e n t l i c h e n 
A u f g a b e . 168 Seiten. 1962. (1040) 
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Naturwissenschaften 

Mathematik 

Geschichte der Mathematik von J. E. Hofmann. 4 Bände. 
I : Von den A n f ä n g e n b i s z u m A u f t r e t e n v o n F e r m a t 

u n d D e s c a r t e s . 2., verbesserte und vermehrte Auflage. 
251 Seiten. 1963. (226/226 a) 

I I : Von F e r m a t u n d D e s c a r t e s b i s z u r E r f i n d u n g des 
C a l c u l u s u n d b i s z u m A u s b a u d e r n e u e n M e t h o d e n . 
109 Seiten. 1957. (875) 

I I I : Von den A u s e i n a n d e r s e t z u n g e n um d e n C a l c u l u s 
b i s z u r f r a n z ö s i s c h e n R e v o l u t i o n . 107 Seiten. 1957. (882) 

IV: G e s c h i c h t e d e r M a t h e m a t i k d e r n e u e s t e n Z e i t von 
N. Stuloff. In Vorbereitung. (883) 

Mathematische Formelsammlung von F. O. Ringleb. 7., erweiterte Auf-
lage. 320 Seiten, 40 Figuren. 1960. (51/51a) 

Vierstellige Tafeln und Gegentafeln für logarithmisches und trigono-
metrisches Rechnen in zwei Farben zusammengestellt von H. Schu-
bert und R. Haussner. 3., neubearbeitete Auflage von J. Erlebach. 
158 Seiten. 1960. (81) 

Fünfstellige Logarithmen mit mehreren graphischen Rechentafeln und 
häufig vorkommenden Zahlenwerten von A. Adler. 4. Auflage, 
überarbeitet von J. Erlebach. 127 Seiten, 1 Tafel. 1962. (423) 

Arithmetik von P. B. Fischer f . 3. Auflage von H. Rohrbach. 152 Seiten, 
19 Abbildungen. 1958. (47) 

Höhere Algebra von H. Hasse. 2 Bände. 
I : L i n e a r e G l e i c h u n g e n . 5., neubearbeitete Auflage. 150 Seiten. 

1963. (931) 
I I : G l e i c h u n g e n h ö h e r e n G r a d e s . 4., durchgesehene Auflage. 

158 Seiten, 5 Figuren. 1958. (932) 
Aufgabensammlung zur höheren Algebra von H. Hasse und W. Klobe. 

3., verbesserte Auflage. 183 Seiten. 1961. (1082) 
Elementare und klassische Algebra vom modernen Standpunkt von 

W. Krull. 2 Bände. 
I: 3., erweiterte Auflage. 148 Seiten. 1963. (930) 

I I : 132 Seiten. 1959. (933) 
Lineare Programmierung von H. Langen. Etwa 200 Seiten. 1964. 

(1206/1206 a) 
Algebraische Kurven und Flächen von W. Burau. 2 Bände. 

I : A l g e b r a i s c h e K u r v e n d e r Ebene. 153 Seiten, 28 Abbil-
dungen. 1962. (435) 

I I : A l g e b r a i s c h e F l ä c h e n 3. G r a d e s und Raumkurven 3. und 
4. Grades. 162 Seiten, 17 Abbildungen. 1962. (436/436a) 

Einführung in die Zahlentheorie von A. Scholz f . Uberarbeitet und 
herausgegeben von B. Schoeneberg. 3. Auflage. 128 Seiten. 1961. 
(1131) 

Formale Logik von P. Lorenzen. 2., verbesserte Auflage. 165 Seiten. 
1962. (1176/1176a) 
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N A T U R W I S S E N S C H A F T E N 

Topologle von W. Franz. 2 Bände. 
I : A l l g e m e i n e T o p o l o g i e . 144 Seiten, 9 Figuren. 1960. (1181) 

I I : A l g e b r a i s c h e T o p o l o g i e . 130 Seiten. 1964.(1182) 
Elemente der Funktionentheorie von K. Knopp f . 6. Auflage. 144 Seiten, 

23 Figuren. 1963. (1109) 
Funktionentheorie von K. Knopp f . 2 Bände. 10. Auflage. 

I: G r u n d l a g e n d e r a l l g e m e i n e n T h e o r i e d e r a n a l y t i -
s c h e n F u n k t i o n e n . 144 Seiten, 8 Figuren. 1961. (668) 

II: A n w e n d u n g e n u n d W e i t e r f ü h r u n g d e r a l l g e m e i n e n 
T h e o r i e . 130 Seiten, 7 Figuren. 1962. (703) 

Aufgabensammlung zur Funktionentheorie von K. Knopp f . 2 Bände. 
I : A u f g a b e n z u r e l e m e n t a r e n F u n k t i o n e n t h e o r i e . 6 . A u f -

lage. 135 Seiten. 1962. (877) 
II: A u f g a b e n z u r h ö h e r e n F u n k t i o n e n t h e o r i e . 5. Auflage. 

151 Seiten. 1959. (878) 
Differential- und Integralrechnung von M. Barner. (Früher Willing). 

4 Bände. 
I : G r e n z w e r t b e g r i f f , D i f f e r e n t i a l r e c h n u n g . 2., durch-

gesehene Auflage. 176 Seiten, 39 Figuren. 1963. (86) 
Gewöhnliche Differentialgleichungen von 0. Hoheisel. 6., neubearbei te te 

und erweiterte Auflage. 128 Seiten. 1960. (920) 
Partielle Differentialgleichungen von G. Hoheisel. 4., durchgesehene 

Auflage. 128 Seiten. 1960. (1003) 
Aufgabensammlung zu den gewöhnlichen und partiellen Differential-

gleichungen von G. Hoheisel. 5., durchgesehene und verbesser te 
Auflage. 124 Seiten. 1964. (1059/I059a) 

Integralgleichungen von G. Hoheisel. 2., neubearbei te te und erweiterte 
Auflage. 112 Seiten. 1963. (1099) 

Mengenlehre von E. Kamke. 4., verbesserte Auflage. 194 Seiten, 
6 Figuren. 1962. (999/999 a) 

Gruppentheorie von L. Baumgartner. 4., neubearbei tete Auflage. 110 
Seiten, 3 Tafeln. 1964. In Vorbereitung. (837) 

Ebene und sphärische Trigonometrie von G. Hessenberg f . 5. Auflage, 
durchgesehen von H. Kneser. 172 Seiten, 60 Figuren. 1957. (99) 

Darstellende Geometrie von W. Haack. 3 Bände. 
I : D i e w i c h t i g s t e n D a r s t e l l u n g s m e t h o d e n . G r u n d - u n d 

A u f r i ß e b e n f l ä c h i g e r K ö r p e r . 4., durchgesehene u n d 
ergänzte Auflage. 113 Seiten, 120 Abbildungen. 1963. (142) 

II: K ö r p e r m i t k r u m m e n B e g r e n z u n g s f l ä c h e n . K o t i e r t e 
P r o j e k t i o n e n . 3., durchgesehene Auflage. 129 Seiten, 86 Ab-
bi ldungen. 1962. (143) 

III: A x o n o m e t r i e und P e r s p e k t i v e . 2., durchgesehene und 
ergänzte Auflage. 129 Seiten, 100 Abbildungen. 1962. (144) 

Analytische Geometrie von K. P. Grotemeyer. 2., erweiterte Auflage. 
218 Seiten, 73 Abbildungen. 1962. (65/65a) 

Nichteuklidische Geometrie. Hyperbolische Geometrie der Ebene von 
R. Boletus f . Durchgesehen und herausgegeben von F. Löbell. 4., 
verbesserte Auflage. 140 Seiten, 70 Figuren. 1964. (970) 

Differentialgeometrie von K. Strubecker ( f rüher Rothe). 3 Bände. 
I : K u r v e n t h e o r i e d e r E b e n e u n d d e s R a u m e s . 2. Auflage. 

200 Seiten, 18 Figuren. 1964. In Vorbereitung. (1113/1113a) 
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NATURWISSENSCHAFTEN 

I I : T h e o r i e der F l ä c h e n m e t r i k . 195 Seiten. 14 Figuren. 1958. 
(1179/1179a) 

I I I : T h e o r i e der F l ä c h e n k r ü m m u n g . 254 Seiten, 38 Figuren. 
1959. (1180/1180a) 

Variationsrechnung von L. Koschmieder. 2 Bände. 2., neubearbeitete 
Auflage. 
I : D a s f r e i e und g e b u n d e n e E x t r e m e i n f a c h e r G r u n d -

i n t e g r a l e . 128 Seiten, 23 Figuren. 1962. (1074) 
I I : A n w e n d u n g k l a s s i s c h e r V e r f a h r e n a u f a l l g e m e i n e 

F r a g e n des E x t r e m s . — N e u e r e u n m i t t e l b a r e 
V e r f a h r e n . In Vorbereitung. (1075) 

Einführung In die konforme Abbildung von L. Bieberbach. 5., erweiterte 
Auflage. 180 Seiten, 42 Figuren. 1956. (768/768a) 

Vektoren und Matrizen von S . Valentiner. 3. Auflage. (10., erweiterte 
Auflage der „Vektoranalysis ). Mit Anhang: Aufgaben zur Vektor-
rechnung von H. König. 206 Seiten, 35 Figuren. 1963. (354/354a) 

Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie von H. Bauer. 
2 Bände. 
I : 1964. Im Druck. (1216) 

I I : In Vorbereitung. (1217) 
Verslcherungsmathematlk von F. Böhm. 2 Bände. 

I : E l e m e n t e der V e r s i c h e r u n g s r e c h n u n g . 3., vermehrte 
und verbesserte Auflage. Durchgesehener Neudruck. 151 Seiten. 
1953. (180) 

I I : L e b e n s v e r s i c h e r u n g s m a t h e m a t i k . Einführung in die 
technischen Grundlagen der Sozialversicherung. 2., verbesserte 
und vermehrte Auflage 205 Seiten. 1953. (917/917a) 

Finanzmathematik von M. Nicolas 192 Seiten, 11 Tafeln, 8 Tabellen 
und 72 Beispiele. 1959. (1183/1183a) 

Kinematik von H. R. Müller. 171 Seiten, 75 Figuren. 1963. (584/584a) 

Physik 
Einführung In die theoretische Physik von W. Döring. 5 Bände. 

I : M e c h a n i k . 2., verbesserte Auflage. 123 Seiten, 25 Abbildungen. 
1960. (76) 

I I : D a s e l e k t r o m a g n e t i s c h e Fe ld . 2., verbesserte Auflage. 
132 Seiten, 15 Abbildungen. 1962. (77) 

I I I : O p t i k . 2., verbesserte Auflage. 117 Seiten, 32 Abbildungen. 
1963. (78) 

IV: T h e r m o d y n a m i k . 2., verbesserte Auflage. 107 Seiten, 9 Ab-
bildungen. 1964.(374) 

V: S t a t i s t i s c h e M e c h a n i k . 114 Seiten, 12 Abbildungen. 1957. 
(1017) 

Mechanik deformlerbarer Körper von M. Päsler. 199 Seiten, 48 Ab-
bildungen. 1960. (1189/1189a) 

Atomphysik von K. Bechert, Ch. Oerthsen f und A. Flammersfeld. 
7 Bände. 4., durchgesehene Auflage. 
I : A l l g e m e i n e G r u n d l a g e n . 1. Teil von A. Flammersfeld. 124 

Seiten, 35 Abbildungen. 1959. (1009) 
I I : A l l g e m e i n e G r u n d l a g e n . 2. Teil von A.Flammersfeld. 

112 Seiten, 47 Abbildungen. 1963. (1033) 
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I I I : T h e o r i e d e s A t o m b a u s . 1. Tei l von K. Bechert. 148 Seiten, 
16 Abbi ldungen. 1963. (1123/1123a) 

I V : T h e o r i e d e s A t o m b a u s . 2. Te i l von K. Bechert. 170 Seiten, 
14 Abbi ldungen. 1963. (1165/1165a) 

Differentialgleichungen der Physik von F . Sauter. 3., durchgesehene 
und ergänzte Autlage. 148 Seiten, 16 Figuren. 1958. (1070) 

Physikalische Formelsammlung von G. Mahlert. Fortgeführt von 
K. Mahler. Neubearbeitet von H.Qraewe. 11. Auf lage. 167 Seiten, 
69 Figuren. 1963. (136) 

Physikalische Aufgabensammlung von G. Mahler f . Neubearbeitet von 
H. Graewe. Mit den Ergebnissen. 12. Auf lage . 127 Seiten. 1964. (243) 

Chemie 

Geschichte der Chemie in kurzgefaßter Darstellung von G. Lockemann. 
2 Bände. 
I : V o m A l t e r t u m b i s z u r E n t d e c k u n g d e s S a u e r s t o f f s . 

2. Auf lage . 142 Seiten, 8 Bildnisse. In Vorbereitung. (264) 
I I : V o n d e r E n t d e c k u n g d e s S a u e r s t o f f s b i s z u r G e g e n -

w a r t . 151 Seiten, 16 Bildnisse. 1955. (265/265a) 
Anorganische Chemie von W. Klemm. 13., neubearbeitete und erweiterte 

Auf lage. 255 Seiten, 35 Abbildungen. 1964. (37/37 a) 
Organische Chemie von W. Schlenk. 9., erweiterte Auf lage. 273 Seiten, 

16 Abbildungen. 1963. (38/38 a) 
Physikalische Methoden In der Organischen Chemie von G. Kresze. 

2 Bände. 
I : 119 Seiten, 65 Abbildungen. 1962. (44) 

I I : 164 Seiten. 1962. (45/45a) 
Allgemeine und physikalische Chemie von W. Schulze. 2 Bände. 

I : 5., durchgesehene Auf lage. 139 Seiten, 10 Figuren. 1960. (71) 
I I : 5., verbesserte Auf lage. 178 Seiten, 37 Figuren. 1961. (698/698a) 

Einfache Versuche zur allgemeinen und physikalischen Chemie von 
E. Dehn. 371 Versuche mit 40 Abbi ldungen. 272 Seiten. 1962. 
(1201/1201 a) 

Molekülbau. Theoretische Grundlagen und Methoden der Struktur-
ermitt lung von W. Schulze. 123 Seiten, 43 Figuren. 1958. (786) 

Physikalisch-chemische Rechenaufgaben von E. Asmus. 3., verbesserte 
Auf lage . 96 Seiten. 1958. (445) 

Maßanalyse. Theorie und Praxis der klassischen und der elektroche-
mischen Titr ierverfahren von G. Jander und K. F.Jahr. 10., er-
weiterte Auf lage , mitbearbeitet von H. Knoll. 358 Seiten, 56 Figu-
ren. 1963. (221/221 a) 

Qualitative Analyse von H. Hofmann u. G. Jander. 2., durchgesehene 
und verbesserte Auf lage. 308 Seiten, 5 Abbildungen. 1963. (247/247 a ) 

Thermochemie von W. A. Roth f . 2.. verbesserte Auf lage. 109 Seiten, 
16 Figuren. 1952. (1057) 
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Stöchlometrlsche Aufgabensammlung von W. Bahrdt f und R. Scheer. 
Mit den Ergebnissen. 7., durchgesehene Auflage. 119 Seiten. 1960. 
(452) 

Elektrochemie von K. Vetter. 2 Bände. 
I : 1964. In Vorbereitung. (252) 

I I : 1964. In Vorbereitung. (253) 

Technologie 
Die Chemie der Kunststoffe von K. Hamann, un te r Mitarbei t von W. 

Funke und H. D Hermann. 143 Seiten. 1960. (1173) 
Warenkunde von K. Hassak und E. Beutel f . 2 Bände. 

I : A n o r g a n i s c h e W a r e n s o w i e K o h l e u n d E r d ö l . 8. Auf-
lage. Neubearbei te t von A. Kutzelnigg. 119 Seiten, 18 Figuren. 
1958. (222) 

I I : O r g a n i s c h e W a r e n . 8. Auflage. Vollständig neubearbe i te t 
von A. Kutzelnigg. 157 Seiten, 32 Figuren. 1959. (223) 

Die Fette und ö le von Th. Klug. 6., verbesserte Auflage. 143 Seiten. 
1961.(335) 

Die Seifenfabrikation von K. Braun f . 3 . ,neubearbe i te te und verbesserte 
Auflage von Th Klug. 116 Seiten, 18 Abbi ldungen. 1953. (336) 

Thermische Verfahrenstechnik von H. Bock. 3 Bände. 
I : E i g e i i » e h a l t e n u n d V e r h a l t e n d e r r e a l e n S t o f f e . 

164 Seiten 28 Abbildungen. 1963. (1209/1209a) 
I I : F u n k t i o n e n u n d B e r e c h n u n g d e r e l e m e n t a r e n G e r ä t e . 

In Vorberei tung (1210/1210a) 
I I I : F l i e l J b i l ü e r , i h r e F u n k t i o n u n d i h r Z u s a m m e n b a u a u s 

G e r ä t e n . In Vorbereitung. (1211/121 l a ) 
Textilindustrie von A. Blümcke. 

I : S p i n n e r e i u n d Z w i r n e r e i . 111 Seiten, 43 Abbi ldungen. 
1954. (184) 

Biologie 

Einführung in die allgemeine Biologie und ihre philosophischen Grund-
und Grenzfragen von M. Hartmann. 132 Seiten, 2 Abbi ldungen. 
1956. (96) 

Hormone von G. Koller. 2., neubearbei te te und erweiter te Auflage. 
187 Seiten, 60 Abbildungen, 19 Tabellen. 1949. (1141) 

Fortpflanzung im Tier- und Pflanzenreich von J. Hämmerling. 2., 
ergänzte Auflage. 135 Seiten. 101 Abbildungen. 1951. (1138) 

Geschlecht und Geschlechtsbestimmung im Tier- und Pflanzenreich von 
M. Hartmann. 2., verbesserte Auflage. 116 Seiten, 61 Abbildungen, 
7 Tabellen. 1951. (1127) 

Symbiose der Tiere mit pflanzlichen Mikroorganismen von P. Buchner. 
2., verbesserte und vermehr te Auflage. 130 Seiten, 121 Abbi ldungen. 
1949. (1128) 

Grundriß der Allgemeinen Mikrobiologie von W. u. A. Schwartz. 2 Bände . 
2., verbesserte und ergänzte Auflage. 
I : 147 Seiten, 25 Abbildungen. 1960. (1155) 

I I : 142 Seiten, 29 Abbi ldungen. 1961. (1157) 
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Botanik 

Entwicklungsgeschichte des Pflanzenreiches von H. Heil. 2. Auflage. 
138 Seiten, 94 Abbildungen, 1 Tabelle. 1950. (1137) 

Morphologie der Pflanzen von L. Geitler., 3., umgearbei te te Auflage. 
126 Seiten, 114 Abbildungen. 1953. (141) 

Pflanzengeographie von L. Diels f . 5., völlig neubearbei te te Auflage 
von F. Mattick. 195 Seiten, 2 Kar t en . 1958. (389/389a) 

Die Laubhölzer. Kurzgefaßte Beschreibung der in Mitteleuropa ge-
deihenden Laubbäume und Sträucher von F. W. Neger f und 
E. Münch f . 3., durchgesehene Auflage, herausgegeben von B. Hu-
ber. 143 Seiten, 63 Figuren, 7 Tabellen. 1950. (718) 

Die Nadelhölzer (Koniferen) und übrigen Gymnospermen von F. W. 
Neger f und E. Münch t. 4. Auflage, durchgesehen und ergänzt von 
B. Huber. 140Seiten, 75 Figuren, 4 Tabel len , 3 Kar ten . 1952. (355) 

Pflanzenzüchtung von H. Kuckuck. 2 Bände. 
I : G r u n d z ü g e d e r P f l a n z e n z ü c h t u n g . 3., völlig umgearbei-

te te und erweiterte Auflage. 132 Seiten, 22 Abbildungen. 1952. 
(1134) 

I I : S p e z i e l l e g a r t e n b a u l i c h e P f l a n z e n z ü c h t u n g ( Z ü c h t u n g 
von Gemüse, Obst und Blumen). 178 Seiten, 27 Abbildungen. 
1957. (1178/1178a) 

Zoologie 
Entwicklungsphysiologie der Tiere von F. Seidel. 2 Bände. 

I : Ei u n d F u r c h u n g . 126 Seiten, 29 Abbildungen. 1953.(1162) 
I I : K ö r p e r g r u n d g e s t a l t u n d O r g a n b i l d u n g . 159 Seiten, 

42 Abbildungen. 1953. (1163) 
Das Tierreich 

I : E i n z e l l e r , P r o t o z o e n von E. Reichenow. 115 Seiten. 59 
Abbildungen. 1956. (444) 

I I : S c h w ä m m e u n d H o h l t i e r e von H. J. Hannemann. 
95 Seiten, 80 Abbildungen. 1956. (442) 

I I I : W ü r m e r . Plat t - , Hohl-, Schnurwürmer , Kamptozoen, Ringel-
würmer , Prot racheaten , Bärt ierchen, Zungenwürmer von 
S. Jaeckel. 114 Seiten, 36 Abbildungen. 1955. (439) 

IV, 1: K r e b s e von H. E. Gruner und K. Deckert. 114 Seiten, 43 Ab-
bildungen. 1956. (443) 

IV, 2 : S p i n n e n t i e r e (Tri lobitomorphen, Fühlerlose) u n d T a u -
s e n d f ü ß l e r von A. Kaestner. 96 Seiten, 55 Abbildungen. 
1955. (1161) 

IV, 3 : I n s e k t e n von H. von Lengerken. 128 Seiten, 58 Abbildungen. 
1953. (594) 

V: W e i c h t i e r e . Urmollusken, Schnecken, Muscheln und Kopf-
füßer von S. Jaeckel. 92 Seiten. 34 Figuren. 1954. (440) 

V I : S t a c h e l h ä u t e r . Ten taku la ten , Binnenatmer und Pfeilwür-
mer von S. Jaeckel. 100 Seiten, 46 Abbildungen. 1955. (441) 

VI I , 1: M a n t e l t i e r e , Schädellose, Rundmäule r von Th. Haltenorth. 
In Vorbereitung. (448) 
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V I I , 2 : F i s c h e von D. Lüdemann. 130 Seiten, 65 Abbi ldungen. 
1955.(356) 

V I I , 3 : L u r c h e (Chordatiere) von K. Herter. 143 Seiten, 129 Abb i l -
dungen. 1955.(847) 

V I I , 4 : K r i e c h t i e r e (Chordatiere) von K. Herter. 200 Seiten, 42 
Abbildungen. 1960. (447/447 a ) 

V I I , 5 : V ö g e l (Chordatiere) von H.-A.Freye. 156Seiten, 69 Figuren. 
1960. (869) 

V I I , 6: S ä u g e t i e r e (Chordatiere) von Th. Haltenorth. In Vorberei-
tung. (282) 

Land- und Forstwirtschaft 
Landwirtschaftliche Tierzucht. Die Züchtung und Haltung der land-

wirtschaftl ichen Nutzt iere von H. Vogel. 139 Seiten, 11 Abbi ldun-
gen. 1952; (228) 

Kulturtechnische Bodenverbesserungen von O. Fauser. 2 Bände. 5., 
verbesserte und vermehrte Auf lage. 
I : A l l g e m e i n e s , E n t w ä s s e r u n g . 127 Seiten, 49 Abbi ldungen. 

1959. (691) 
I I : B e w ä s s e r u n g , Ö d l a n d k u l t u r , F l u r b e r e i n i g u n g . 159 

Seiten, 71 Abbildungen. 1961. (692) 
Agrikulturchemie von K. Scharrer. 2 Bände. 

I : P f l a n z e n e r n ä h r u n g . 143 Seiten. 1953. (329) 
I I : F u t t e r m i t t e l k u n d e . 192 Seiten. 1956. (330/330a) 

Geologie, Mineralogie, Kristallographie 
Geologie von F. Lotze. 2., verbesserte Auf lage. 178 Seiten, 80 Abbi l -

dungen. 1961. (13) 
Erzkunde von H.von Philipsborn. In Vorbereitung. (1207) 
Mineral- und Erzlagerstättenkunde von H. Huttenlocher . 2 Bände. 

2. Auf lage . 
1: 128 Seiten, 34 Abbildungen. In Vorbereitung. (1014) 

I i : 156 Seiten, 48 Abbildungen. In Vorbereitung. (1015/10I5a) 
Allgemeine Mineralogie. 11., erweiterte Auf lage der „Minera log ie " von 

R. Braunst, neubearbeitet von K. F. Chudoba. 152 Seiten, 143Text-
figuren, 1 Tafe l , 3 Tabellen. 1963. (29/29a) 

Spezielle Mineralogie. 11., erweiterte Auf lage der „Minera log ie " von 
R. Brauns t, bearbeitet von K. F. Chudoba. Etwa 170 Seiten, 127 
Text f i guren, 4 Tabel len. 1964. (31/31 a) 

Petrographle (Gesteinskunde) von W. Bruhns f . Neubearbeitet von 
P. Ramdohr. 5., erweiterte Auf lage. 141 Seiten, 10 Figuren. 1960. 
(173) 

Kristallographie von W. Bruhns f . 5. Auf lage, neubearbeitet von P . 
Ramdohr. 109 Seiten, 164 Abbildungen. 1958. (210) 

Einführung in die Kristalloptik von E. Buchwald. 5., verbesserte 
Auf lage . 128 Seiten, 117 Figuren. 1963. (619/619a) 

Lötrohrprobierkunde. Mineraldiagnose mit Lötrohr und Tüpfelreaktion 
von M. Henglein. 4., durchgesehene und erweiterte Auf lage . 
108 Seiten, 12 Figuren. 1962. (483) 
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Technik 
Graphische Darstellung in Wissenschaft und Technik von M. Pirani. 

3., erweiterte Auflage bearbeitet von J. Fischer unter Benutzung 
der von I. Runge besorgten 2. Auflage. 216 Seiten, 104 Abbildungen. 
1957. (728/728a) 

Technische Tabellen und Formeln von W. Müller. 5., verbesserte und 
erweiterte Auflage von E. Schulze. 165 Seiten, 114 Abbildungen, 
99 Tafeln. 1962. (579) 

Einführung in die Arbeitswissenschaft von H. H. Hilf. 164 Seiten, 57 
Abbildungen. 1964. (1212/1212a) 

Grundlagen der Straßenverkehrstechnik. Theorie der Leistungsfähigkeit 
von E. Engel. 101 Seiten, 55 Abbildungen. 1962. (1198) 

Elektrotechnik 

Grundlagen der allgemeinen Elektrotechnik von O. Mohr. 2., durchgese-
hene Auflage. 260 Seiten, 136 Bilder, 14 Tafeln. 1961. (196/196a) 

Die Gleichstrommaschine von K. Humburg. 2 Bände. 2., durchgesehene 
Auflage. 
I : 102 Seiten, 59 Abbildungen. 1956. (257) 

I I : 101 Seiten, 38 Abbildungen. 1956. (881) 
Die Synchronmaschine von W. Putz. 92 Seiten, 64 Bilder. 1962. (1146) 
Induktionsmaschinen von F. Unger. 2., erweiterte Auflage. 142 Seiten, 

49 Abbildungen. 1954. (1140) 
Die komplexe Berechnung von Wechselstromschaltungen von H. H. 

Meirtke. 3. Auflage. 180 Seiten, 120 Abbildungen. 1964. In Vor-
bereitung. (1156/1156a) 

Theoretische Grundlagen zur Berechnung der Schaltgeräte von F. Kessel-
ring. 3. Auflage. 144 Seiten, 92 Abbildungen. 1950. (711) 

Einführung in die Technik selbsttätiger Regelungen von W. zur Megede. 
2., durchgesehene Auflage. 180 Seiten, 86 Abbildungen. 1961. 
(714/714a) 

Elektromotorische Antriebe (Grundlagen für die Berechnung) von 
A. Schwaiger. 3., neubearbeitete Auflage. 96 Seiten, 34 Abbildun-
gen. 1952.(827) 

Überspannungen und Überspannungsschutz von G. Frühauf. Durch-
gesehener Neudruck. 122 Seiten, 98 Abbildungen. 1950. (1132) 

Elektrische Höchstspannungs-Schaltanlagen für Freiluft und Innen-
anordnung von G. Meiners und K.-H. Wiesenewsky. 138 Seiten, 
58 Abbildungen. 1964. (796/796a) 

Transformatoren von W. Schäfer. 4., überarbeitete und ergänzte Auf-
lage. 130 Seiten, 73 Abbildungen. 1962. (952) 
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Maschinenbau 
Metallkunde von H. Borchers. 3 Bände. 5., ergänzte und durchgesehene 

Auflage. 
I : A u f b a u d e r M e t a l l e u n d L e g i e r u n g e n . 

120 Seiten, 90 Abbildungen, 2 Tabellen. 1962. (432) 
I I : E i g e n s c h a f t e n , O r u n d z ü g e d e r F o r m - u n d Z u s t a n d s -

g e b u n g . 182 Seiten, 107 Abbildungen, 10 Tabellen. 1963. 
(433/433 a) 

I I I : D i e m e t a l l k u n d l i c h e n U n t e r s u c h u n g s m e t h o d e n von 
E. Hanke. In Vorbereitung. (434) 

Die Werkstoffe des Maschinenbaues von A. Thum t und C. M. v. Mey-
senbug. 2 Bände. 
I : E i n f ü h r u n g in d i e W e r k s t o f f p r ü f u n g . 2., neubearbeitete 

Auflage. 100 Seiten, 7 Tabellen, 56 Abbildungen. 1956. (476) 
I I : D i e K o n s t r u k t i o n s w e r k s t o f f e . 132Seiten,40Abbildungen. 

1959. (936) 
Dynamik von W. Müller. 2 Bände. 2., verbesserte Auflage. 

I : D y n a m i k d e s E i n z e l k ö r p e r s . 128 Seiten, 48 Figuren. 1952. 
(902) 

I I : S y s t e m e v o n s t a r r e n K ö r p e r n . 102 Seiten, 41 Figuren. 
1952. (903) 

Technische Schwingungslehre von L. Zipperer. 2 Bände. 2., neube-
arbeitete Auflage. 
I : A l l g e m e i n e S c h w i n g u n g s g l e i c h u n g e n , e i n f a c h e 

S c h w i n g e r . 120 Seiten, 101 Abbildungen. 1953. (953) 
I I : T o r s i o n s s c h w i n g u n g e n in M a s c h i n e n a n l a g e n . 102 Sei-

ten, 59 Abbildungen. 1955. (961/961 a) 
Werkzeugmaschinen für Metallbearbeitung von K. P. Matthes. 2 Bände. 

I : 100 Seiten, 27 Abbildungen, 11 Zahlentafeln, 1 Tafelanhang. 
1954. (561) 

I I : F e r t i g u n g s t e c h n i s c h e G r u n d l a g e n d e r n e u z e i t l i c h e n 
M e t a l l b e a r b e i t u n g . 101 Seiten, 30 Abbildungen, 5 Tafeln. 
1955. (562) 

Das Maschinenzeichnen mit Einführung In das Konstruieren von W. Toch-
termann. 2 Bände. 4. Auflage. 
I : D a s M a s c h i n e n z e i c h n e n . 156 Seiten, 75 Tafeln. 1950. (589) 

I I : A u s g e f ü h r t e K o n s t r u k t i o n s b e i s p i e l e . 130 Seiten, 58 
Tafeln. 1950. (590) 

Die Maschinenelemente von E. A. vom Ende f . 4., überarbeitete Auf-
lage. 184 Seiten, 179 Figuren, 11 Tafeln. 1963. (3/3a) 

Die Maschinen der Elsenhüttenwerke von L. Engel. 156 Seiten, 95 Ab-
bildungen. 1957. (583/583 a) 

Walzwerke von H. Sedlaczek t unter Mitarbeit von F. Fischer und 
M. Buch. 232 Seiten, 157 Abbildungen. 1958. (580/580a) 

Getriebelehre von P. Grodzinski f . 2 Bände. 3., neubearbeitete Auflage 
von G. Lechner. 

I : G e o m e t r i s c h e G r u n d l a g e n . 164 Seiten, 131 Figuren. 1960. 
(1061) 

I I : A n g e w a n d t e G e t r i e b e l e h r e . In Vorbereitung. (1062) 
Kinematik von H. R. Müller. 171 Seiten, 75 Figuren. 1963. (584/584a) 
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Gießereitechnik von H. Jungbluth. 2 Bände. 
I : E i s e n g i e ß e r e i . 126 Seiten, 44 Abbildungen. 1951. (1159) 

Die Dampfturbinen. Ihre Wirkungsweise, Berechnung und Konstruk-
tion von C. Zietemann. 3 Bände. 
I : T h e o r i e d e r D a m p f t u r b i n e n . 4. Auflage. 139 Seiten, 

48 Abbildungen. 1964. In Vorbereitung. (274) 
I I : D i e B e r e c h n u n g d e r D a m p f t u r b i n e n u n d d i e K o n -

s t r u k t i o n d e r E i n z e l t e i l e . 4., verbesserte Auflage. 132 Sei-
ten, 111 Abbildungen. 1964. In Vorbereitung. (715) 

I I I : D i e R e g e l u n g d e r D a m p f t u r b i n e n , d i e B a u a r t e n , 
T u r b i n e n f ü r S o n d e r z w e c k e , K o n d e n s a t i o n s a n l a g e n . 
3., verbesserte Auflage. 126 Seiten, 90 Abbildungen. 1956. (716) 

Verbrennungsmotoren von W. Endres. 3 Bände. 
I : Ü b e r b l i c k . M o t o r - B r e n n S t o f f e . V e r b r e n n u n g im M o t o r 

a l l g e m e i n , im O t t o - u n d D i e s e l - M o t o r . 153 Seiten, 
57 Abbildungen. 1958. (1076/1076a) 

I I : D i e h e u t i g e n T y p e n d e r V e r b r e n n u n g s k r a f t m a s c h i n e . 
In Vorbereitung. (1184) 

I I I : D i e E i n z e l t e i l e d e s V e r b r e n n u n g s m o t o r s . In Vor-
bereitung. (1185) 

Autogenes Schweißen und Schneiden von H. Niese. 5. Auflage, neu-
bearbeitet von A. Küchler. 136 Seiten, 71 Figuren. 1953. (499) 

Die elektrischen Schweißverfahren von H. Niese. 2. Auflage, neu-
bearbeitet von H. Dienst. 136 Seiten, 58 Abbildungen. 1955. (1020) 

Die Hebezeuge. Entwurf von Winden und Kranen von G. Tafel. 2., 
verbesserte Auflage. 176 Seiten, 230 Figuren. 1954. (414/414a) 

Wasserbau 

Wasserkraftanlagen von A. Ludin unter Mitarbeit von W. Borkenstein. 
2 Bände. 
I : P l a n u n g , G r u n d l a g e n u n d G r u n d z ü g e . 124 Seiten, 

60 Abbildungen. 1955. (665) 
I I : A n o r d n u n g u n d A u s b i l d u n g d e r H a u p t b a u w e r k e . 

184 Seiten, 91 Abbildungen. 1958. (666/666a) 
Verkehrswasserbau von H. Dehnert. 3 Bände. 

I : E n t w u r f s g r u n d l a g e n , F l u ß r e g e l u n g e n . 103 Seiten, 
53 Abbildungen. 1950. (585) 

I I : F l u ß k a n a l i s i e r u n g u n d S c h i f f a h r t s k a n ä l e . 94 Seiten, 
60 Abbildungen. 1950. (597) 

I I I : S c h l e u s e n u n d H e b e w e r k e . 98 Seiten, 70 Abbildungen. 
1950. (1152) 

Wehr- und Stauanlagen von H. Dehnert. 134 Seiten, 90 Abbildungen. 
1952. (965) 
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