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so daB also &/} endlich von der Ordnung 2, ®/11 unendlich ist?).

4. Die abelsche Gruppe & der ganzen Zahlen beziiglich der ge-
wohnlichen Addition besitzt z. B. die Untergruppe $ aller geraden
Zahlen. Es gilt die Zerlegung

®=9+19,
so daB also /9 wieder endlich von der Ordnung 2 ist?). Wir
kommen in 2, §2 ausfiihrlich auf diese und analog gebildete
Untergruppen von ®, sowie deren Faktorgruppen zu sprechen.

II1. Determinantenireie lineare Algebra

§ 10. Linearformen, Vektoren, Matrizen

Es sei K ein beliebiger Korper, der Grundkirper, in dem
wir lineare Algebra im Sinne von § 5, 1) [46] treiben wollen,
und den wir fiir den Rest von 1 fest zugrunde legen.

Zur Vereinfachung der Ausdrucksweise verabreden wir, da in
IIT und IV alle mit a, b, ¢, a, B, ¥ und evtl. angehiangten Indizes
bezeichneten Elemente solche aus K sein sollen, ohne daf dies
immer ausdriicklich gesagt wird. Ebenso sollen z, . . ., 2z, wenn
zum Funktionsbegriff i. 8. d. An. iibergegangen wird, Elemente
aus K sein.

Ehe wir uns der eigentlichen Aufgabe, wie sie in §5, 1)
formuliert ist, zuwenden, sollen in diesem Paragraphen
einige Begriffe eingefithrt werden, die zwar an sich entbehr-
lich wiren, durch deren Verwendung sich aber die folgenden
Entwicklungen in der Schreib- und Redeweise auBerordent-
lich vereinfachen.

a) Linearformen

Zunichst fithren wir fiir ganze rationale Funktionen von
Xy, -+ - ., Ta, wie sie auf den linken Seiten des zu behandelnden

1) Beziiglich U ist hier der auf die Primzahl 2 beziiglicheTeil des Funda-
mentalsatzes der Arithmetik von der eindeutigen Zerlegbarkeit der rationalen
Zahlen in Primzahlpotenzen vorausgesetzt, den wir in 2, § 1 systematisch be-
handeln werden.

%) Hierbei ist der auf die Primzahl 2 beziigliche Fall des Satzes 13 von 2,
§ 1 vorausgesetzt, daB sich ndmlich jede ganze Zahl g eindeutig in die Form
g = 2¢q + rsetzen laBt, wo ¢ und » ganze Zahlen sind und 0 < r < 2 ist. § be-
steht dann aus den ¢ mit # = 0, 1§ aus den g mit » = 1. — Natiirlich bedeutet
19 hier, da8 1 zu den Elementen von $ zu addieren ist.
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Gleichungssystems §5, (1) auftreten, eine besondere Be-
nennung ein:

Definition 22. Ein Element von K[xy, . . ., 24], dessen Nor-
n
maldarstellung X agzx ist, heift eine Linearform won
k=1

.sZn oder auch linear und homogen n z,, . . ., Zn.

Die Bedeutung von linear wurde schon in § 5 bei (1) erklirt,
Form oder homogen soll besagen, daf auch der in Satz 11 [31]
mit @y, . . ., o bezeichnete Koeffizient der Normaldarstellung Null
ist. — Unter Linearform schlechthin verstehen wir, wo nichts
anderes aus dem Zusammenhang hervorgeht, stets eine solche der
n Unbestimmten z,, ..., Zn.

Von groBer Wichtigkeit fiir alles weitere sind nun die
beiden folgenden Definitionen:

- Definition 23. Eine Linearform f heifif lineares Kom-
positum oder linear abhingig von den I/mearformen

Frs <oy frms WENR Cyy <oy Cm derart existieren, dafS | = Zc,f, 18t.
iTh

Anderenfalls heifit f linear unabhéngig von /,, ..., fm.

n
Die Nullform 0 = 3 0z ist hiernach sicher lineares Komposi-

tum jedes Systems f,, . .., f» von Linearformen, indem ¢,, . . ., ¢m
= 0 gewdhlt werden. Dies beriicksichtigend definieren wir weiter:

Definition 24. Die Linearformen fy, . . ., fm heifien linear
abhangig, wenn ¢, .. ,cm, die nicht simtlich Null sind,

derart existieren, daf 2 ¢if; = 0 ast. Anderenfalls heifen

fir .+« fm linear una,bhanglg

Hiernach ist speziell (m = 1) jede Linearform f== 0 linear
unabhingig, wihrend die Form O linear abhéngig ist.

Die beiden in Def. 23 und 24 eingefiihrten, wohl zu unter-
scheidenden Begriffe linear (un-)abhingig von und linear
(un-)abhingtg stehen nun in folgenden Relationen zuein-

5%
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ander, deren einfacher Beweis dem Leser iiberlassen bleiben
darf!):

Satz 38. a) Ist f von [y, ..., [m linear abhingig, so sind
fs fis - - s [m linear abhingig.

b) Ist f von fy, . . ., [m linear unabhingig und sind f,, . . ., fm
linear unabhingig, so sind f, fy, . . ., fm linear unabhingiq.

a')Sind 1. f1, . . ., m linear abhdngig, und zwar so, dafi f in
einer Relation cf + ¢;f; + « -+ + emfm = 0 einen  Koeffi-
zienten ¢ & 0 hat (was speziell der Fall ist, wenn f,, .. ., [m
linear unabhingig sind), so ist f von fy, . . ., fm linear abhdnguy.

b)Sindf, fi, . . ., fm linear unabhingig, soist fvon fy, ..., fm
linear unabhingig, und es sind auch f,, .. ., fm linear unab-
hangig.

Aus b') ergeben sich durch wiederholte Anwendung die
beiden einander bedingenden Tatsachen:

Satz 39. Mit fy, ..., fms fmvare - o fmersind auch fy, . . . fm
linear unabhdngrg. Mitf,, . . ., fm sind auch fy, ... fmy frusas -
fm+ 1 linear abhdngig.

In gewisser Analogie dazu gelten die folgenden beiden
einander bedingenden Tatsachen:

n+1
Satz 40. Es ser f,_ Za,k T, §i = Zalkxk (i=1,...,m).

Dann sind mat f, . . ., fm auch G5 - - - gm linear unabhingtg
und mit gy, . . ., gm auch fy, . . ., fm linear abhingrg.

Bewets. Es sei K[y, . . ., 2x] = K. Dann sind die g; solche
Elemente (linear, aber keine Formen!) aus Kn[xnﬂ, . an],
deren Funktionswerte fiir das System (0, . .., 0) der Unbe-
stimmten z, .q, . . ., Zn +, die Elemente f; aus Kn sind. Nach
dem Einsetzungsprinzip [39] folgt also aus einer Relation

2 ¢;g; = 0 auch die Relation 20,]‘, = 0 firr die Funk-

t=1 i=1
tionswerte.

1) Man mache sich vor allem klar, da dazu die K6rpereigeuschaft [§1,(7)]
wesentlich benutzt wird, so daB schon diese fiir das Folgende grundlegenden
Tatsachen in Integritdtsbereichen nicht allgemein richtig sind. (Vgl. Punkt 2
in der Anm. 1 [46] zu § 5.)
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Wir untersuchen nun im AnsehluB an Satz 38, b) die
Frage, ob man zu m linear unabhéngigen Linearformen

f1s - - -» fm stets noch eine weitere von ihnen linear unab-
héngige Linearform f,, ,, finden kann, so daB also auch noch
f1» « « «s fms fm+, linear unabhingig sind. Dieses ist nicht

unbegrenzt moglich; vielmehr gilt:

Satz 41. Es gibt hichstens n linear unabhingige Linear-
formen von n Unbestimmien x, . . ., Tn; oder also: Mehr als n
Linearformen von n Unbestimmien sind stets linear abhingig.

Bewers. Nach Satz 39 geniigt es zu zeigen, daB n 4+ 1
Linearformen von n Unbestimmten stets linear abhingig
sind. Diesen Nachweis filhren wir durch vollstindige In-
duktion nach n. Fiir n = 1 ist die Behauptung trivialerweise
richtig. Dennist /' = &'z, f'* = &'’ 2, so sind entweder " = 0
und f* = 0, oder es besteht die Beziehung o”’f —a'f" = 0
mit o’ 5= 0 oder 4 3= 0; und in beiden Féllen sind f, f”
linear abhingig.

Wir nehmen nunmehr an, da je n (oder mehr) Linear-
formen von n — 1 Unbestimmten stets linear abhéngig sind,
und zeigen, daB dann auch % - 1 vorgelegte Linearformen
von n Unbestimmten

fi= iy @, - -+ o gy Tn t=1,..,n+1)

linear abhingig sind. Dazu bilden wir durch formales Ein-
setzen des Wertes 2, = 0 die n -+ 1 Linearformen

gi= Q&+ -+ A4 p1 Tny (i=1,..,n+1)
von den # —1 Unbestimmten ,,...,z,,. Nach der In-

duktionsannahme sind sie linear abhéngig, d. h. es besteht
eine Beziehung

g =ch+ -+ tpr1gn1 =0,

in der nicht alle ¢; = 0 sind und daher ohne Einschrinkung
¢n+q = 0 angenommen werden kann. Weiter sind nach der
Induktionsannahme aber auch schon die n Linearformen
15 « - - §n linear abhingig, d. h. es besteht eine weitere Be-
ziehung
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g” =ci’ gl+ ...+C;L'gn=0,
in der ebenfalls nicht alle ¢; = 0 sind. Wir bilden nun mit
den so bestimmten ¢; bzw. ¢; die entsprechenden linearen
Komposita der f;, d. h. die beiden Linearformen von n Un-
bestimmten

f=cht+- -+ c;z fa + epia frsrs
["=¢dh + + Cn s
so daB also die beiden Linearformen ¢° = 0, ¢ = 0 durch

Einsetzen des Wertes x, =0 aus f,f’ hervorgehen. Aus
diesem Grunde haben diese die besondere Gestalt

f’ — ar xn, f” — an Zn.

Ist hierin o™ = 0, also f* = 0, so sind schon f,, . . ., f» linear
abhdngig, da ja nicht alle ¢f = 0 sind. Ist aber a” 3= 0, so
entnehmen wir aus

al' '’ —al fll — 0’
also

(@ eg—a'cy) fit- (@ ep—acy) fn+ & Cpi1fnsn =0

wegen a”’ =£ 0, ¢pyq == 0, daB f, . . ., fr, {4+, linear abhingig
sind.

DaB es wirklich » linear unabhingige Linearformen von #» Un-
bestimmten gibt, zeigt das spezielle System der n Linearformen
%1y - « .y T denn wegen der Eindeutigkeit in Satz 11 [31] ist nur
dann ¢,#;, + -+ - + ¢p%p = 0, wenn ¢y, .. ., ¢p = 0 sind.

Nach Satz 41 gibt es in jeder (endlichen oder unendlichen)
Menge von Linearformen unter den linear unabhingigen
Teilsystemen f,, . . ., f; solche von maximaler Anzahl r, und
zwar ist dabei r £ n. Von besonderer Wichtigkeit werden
nun Linearformenmengen mit der in folgender Definition ge-
forderten Eigenschaft sein:

Definition 26. Eine Linearformenmenge M, die mit trgend-
welchen Linearformen tmmer auch alle deren lineare Komposita
enthdlt, heifit ein Linearformenmodul.

Die Maximalanzahl r linear unabhingiger Linearformen
aus M heifit der Rang von M.
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Ein linear unabhingiges Teilsystem fy, . .., fs aus M, von
dem alle Linearformen aus M linear abhingig sind, so daf
also M aus der Gesamtheit aller linearen Komposzta V0N
fis + « o [s besteht, hetfit eine Basis von M.

Solche Teilsysteme gibt es wirklich immer. Nach Satz 38, a’)
gilt namlich:

Satz 42. Ein linear unabhingiges Tellsystem fi, . . ., fr aus
M won der maximalen Anzahl v ist auch eine Basis von

Wir werden gleich sehen, dal auch die Umkehrung dieser
Aussage richtig ist. Zuvor beweisen wir:

Satz 43. Die Menge M aller linearen Komposita gegebener
m Linearformen f,, ..., fm von n Unbestimmien x,, ..., Zn
bildet einen Lamearformenmodul; man sagt kwrz, fi, ... [m
erzeugen den Modul M. Der Rang r von M geniigt neben der
nach Satz 41 bestehenden Ungleichung v < n auch noch der
Ungleichung r £ m.

Bewets. a) Das Erfiilltsein der in Def. 25 gei‘ordertén

Eigenschaft erkennt man folgendermaﬁen Aus g = 2 cri i
k=1..,0)und g = 2 bx gr folgt

=3 [bk (51”’“ f)] =z [( 2 b o) f,] .

Die dabei verwendete Regel iiber die Vertauschung der
Summationsfolge, die auf die Additionsgesetze § 1, (1), (3), (5)
zuriickgeht, werden wir im folgenden haufig anzuwenden haben.
Wegen ihrer Giiltigkeit diirfen wir ohne MiBverstindnis die
Klammern bei derartigen Umformungen fortlassen.

b) Zum Nachweis der Ungleichung r < m ordnen wir
jedem Linearformensystem

m
g =_2710m'fi *k=1,..,0
=
aus M das Linearformensystem

m
he E_Z;clciyi (k = 1, .y l)
o=



72 III. Determinantenfreie lineare Algebra

von m neuen Unbestimmten y,, . . ., ym zu. Fiir I > m sind
die hz nach Satz 41 linear abhingig, d.h. es besteht eine
Beziehung

!
2 by =0,
r=1

in der nicht alle bz = 0 sind. Nach dem Einsetzungsprinzip,
angewandt im Integritatsbereich Ka[yy, . . ., ym] iiber K, =
K[z, - . ., z»] mit Ersetzung der y, durch die f,, folgt daraus
die entsprechende Beziehung

!
2 bkgk = 07
E=1
also die lineare Abhingigkeit der gx fiir I > m, d. h. die Be-
hauptung » < m.
Nunmehr kénnen wir die angekiindigte Umkehrung von
Satz 42 folgern:

Satz 44. Jede Basis eines Linearformenmoduls M vom Rang
r besteht aus genaw r Linearformen f,, . . ., fr, ist also auch ein
linear unabhingiges Teilsystem aus M von der maximalen
Anzahl r.

Bewess. Fiir eine Basis fi, . . ., fs von M ist einerseits nach
Def. 25 jedenfalls s < r, andererseits nach Satz 43 auch
r £ s, zusammengenommen also s = 7.

Eine Basis von M ist nach Satz 38, a) ein maximales linear
unabhingiges Teilsystem in dem Sinne, daB bei Hinzufiigung
irgendeiner weiteren Linearform aus M ein linear abhingiges Teil-
system entsteht. Da wir durch Satz 43 festgestellt haben, daB
diese schwichere Maximalitit die stirkere Maximalitit der An-
zahl nach zur Folge hat, kénnen wir fortan bei einer Basis von M
unmiBverstindlich auch von einem Maximalsystem linear unab-
hingiger Linearformen aus M reden.

Wir heben weiter im Anschlul an Def. 25 und Satz 44 die
folgende wichtige Tatsache hervor:

Satz 45, Die lineare Komposition der Linearformen eines
Linearformenmoduls M durch eine Basis von M st jeweils nur
auf eine einzige Art miglich.
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Beweis. Das ist eine unmittelbare Folge aus (und ersicht-
lich sogar gleichbedeutend mit) der 1inearen Una,bhangigkeit

einer Basis f,,...,fr von M. Aus Zc,f, )_,‘e,f,, d. h.
i=1

2(0,—0,) fi =0 folgt ndmlich nach Def 24 gerade
c,—c—O dh o¢=c¢ (t=1,...,1).

Wir bemerken schlieBlich, daB wir im trivialen Falle des nur
aus der Nullform bestehenden Linearformenmoduls M = 0 gemi8
Def. 25 auch r = 0 zu verstehen haben. Eine Basis von M existiert
in diesem Falle nicht; zur Vereinheitlichung der Ausdrucksweise
wollen wir dann sagen, M besitze eine Basis aus r = 0 Linearformen.

b) Vektoren

Nach der bei der Konstruktion von K[z, ..., 2,] aus K
in §4, ¢) und d) zugrunde gelegten Auffassung sind speziell

Linearformen Zaka:k formal nichts anderes, als Systeme

(ag, - - ., an) von Elementen die den sich aus § 4, (1a)—(3a)
ergebenden Unterscheldungs- und Verknupfungsregeln un-
terworfen sind, und wobei fiir die speziellen Systeme
(¢,0,...,0),...,(0,...,0,e) die abkiirzenden Bezeichnun-
gen zy, . . ., Zp eingefithrt sind. Ohne Einfithrung dieser Be-
zeichnungen lauten die Gesetze §4, (1a)—(3a), soweit sie
sich auf die jetzt allein zu betrachtenden Linearformen und
auf Elemente des Grundkorpers beziehen, folgendermaBen:

(1) (ay, ..., an) = (a3, - .., a,) dann und nur dann,

wenn ax = ay firk=1,...,n,
@) (@y, <.y an) + (By, - . o, ba) = (a4 + byy - - -y Gn + bp),
(3) alay, . . ., an) = (aay, . . ., a@n).

Nun hat man es in der linearen Algebra auBler mit den Koeffi-
zientensystemen von Linearformen auch mit Systemen von n
Elementen des Grundkérpers zu tun, die fiir die Unbestimmten
@y, . . ., Tn in Linearformen einzusetzen sind, und hat dann diese
Elementsysteme héufig nach (1) zu unterscheiden, sowie die
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rechts in (2) und (3) stehenden Bildungen aus ihnen vorzunehmen.
Man konnte das zwar nach dem eben Bemerkten so ausdriicken,
daB man jene einzusetzenden Elementsysteme als Koeffizienten-
systeme von Linearformen ansieht, sie demgema8 wie diese Linear-
formen unterscheidet und die in (2) und (3) rechts stehenden Bil-
dungen fiir sie durch die links stehenden Verkniipfungen mit diesen
Linearformen zur Ausfithrung bringt. Die hierbei zu verwendende
Ausdrucksweise wiirde aber sehr umstindlich werden; sie ist iiber-
dies auch insofern unschén, als man bei dem Ausdruck Linear-
form gewohnheitsmiBig an die Moglichkeit der Ersetzung der Un-
bestimmten durch Elemente des Grundkérpers denkt, wovon bei
den letztgenannten ,,Hilfslinearformen* natiirlich nicht die Rede
ist. Es ist daher zweckméBiger, fiir die Anwendung der formalen
Regeln (1)—(3) auf andere Art eine kurze Ausdrucksweise zu
ermoglichen.

Definition 26. Den Unferscheidungs- und Verkniipfungs-
regeln (1)—(3) unterworfene Systeme von n Elementen heiffen
n-gliedrige Vektoren. Wir bezeichnen sie mit den ihren
Gliedern entsprechenden kletnen deutschen Buchstaben.

Es wird also z. B. bezeichnet: (ay, . . ., a5) mit a, (@, . « ., Gin)
mit a;, usw. Unter Vekloren schlechthin verstehen wir, wo nichts
anderes aus dem Zusammenhang hervorgeht, stets n-gliedrige.

Durch (2) ist natiirlich zwangslaufig auch die Substraktion fiir
Vektoren unbesehrinkt und eindeutig erklirt, und zwar nach der
zu (2) analogen Formel

@ - e @n)—(Bpy ey bn) = (@, — by oy O — ba),
entweder weil fiir die Verkniipfung (2) die Gesetze §1, (1), (3),
(6) stimmen, oder einfach vermége der formalen Identitit mit den
Linearformen. Der hiernach sich als Nullvekior ergebende, der
Nullform entsprechende Vektor (0, ..., 0) darf wieder mit 0 be-~
zeichnet werden.

Auf Grund der formalen Ubereinstimmung von Vektoren
und Linearformen sind die in Def. 23—25 eingefiihrten Be-
griffe sinngemif auch fiir Vektoren als erklart anzusehen,
und es bestehen dann auch die Analoga der Sitze 38—45 in
sinngeméBer Formulierung fiir Vektoren.

Ausfiihrlich geschrieben bedeuten nach Def. 23, 24 die Aussagen
0 ist von ay, ..., an linear abhangig** bzw. ,a,,..., a, sind
linear abhingig* das Bestehen von Relationen
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" m
4) Xeamp=oar bzw. B) Jeaap=0 fir k=1,...,n
i=1 i=1

wobei in den letzteren mindestens ein ¢; & 0 ist.
Die speziellen n linear unabhingigen Vektorem (e, 0, ..., 0),
»(0,...,0,¢), die den Linearformen =, ..., 2, entsprechen,
nennt man auch die #n Einheitsvekioren und bezeichnet sie mit
5, .. . Cq. Sie bilden eine Basis des Moduls aller n-gliedrigen
Vektoren (der somit den Rang # hat); denn es besteht fiir jeden

Vektor a die Darstellung 2 ag ex durch diese Einheitsvektoren.

Durch Einfiihrung dleser Darstellungen kommt man natiirlich
(bis auf den Bezewhnungsunterschled zwischen ex und zx) auf den
Linearformenstandpunkt zuriick.

Wihrend die bisherigen Festsetzungen iiber Vektoren
formal mit denen iiber Linearformen iibereinstimmen, treffen
wir schlieBlich eine letzte Festsetzung, die iiber den Linear-
formenstandpunkt hinausgeht:

Definition 27. Unier dem inneren Produkt ab zweter

n
Vektoren a und b werde das Element 3 axby verstanden.
k=1
Im Gegensatz zu (3) sind also beim inneren Produkt beide
Faktoren Vektoren, wiahrend das Ergebnis dieser inneren Produkt-
bildung kein Vektor, sondern ein Element des Grundkorpers ist. —
Speziell gilt aeg = ag, exerr = § & 00 E=F 1 00
POZel g1t aek = Gk, Cxee’ = Ofiirkzlzk’}’ -

Satz 46. Fir die innere Produktbildung von Vekloren gelten
die Regeln:

ab = ba, ¢(ab) = (ca) b = a(ch), (a + b) ¢ = ac -+ be.

Beweis. Das folgt nach Def. 26, 27 unmittelbar aus den
Gesetzen §1, (1)—(b).

Natiirlich folgt aus der letzten dieser Regeln durch wiederholte
Anwendung noch die allgemeinere Formel

(Za,)c—-Zaic,

i=1
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die ausfiihrlich geschrieben in 2 2 ey = 2 2 am ¢k, d. h.
=14i=1 i=1%Fk

in die im Beweis von Satz 43 erwidhnte Regel von der Ver-

tauschung der Summationsfolge, iibergeht und von der wir haupt-

sachlich Gebrauch zu machen haben werden (Satz 47).

Da von der Korpereigenschaft [§ 1, (7)] des Grundbereichs
K beim inneren Produkt kein Gebrauch gemacht ist, gelten
die letzten Entwicklungen auch fiir Vektoren des Integritits-
bereiches K[z, ..., Z»]*). Von solchen Vektoren brauchen
wir lediglich den Vektor z der Unbestimmten.

Wir bezeichnen unter Verwendung dieses Vektors eine Linear-
form f(z,, . . ., ») auch mit f(zr) und treffen beziiglich der Moglich-
keit, ¢ auch als Vektor des Grundbereichs aufzufassen, sowie der
hierauf beziiglichen Zeichen = und = die entsprechenden Fest-
setzungen wie im Anschluf an Satz 12 [41].

Nach Def. 27 besteht fiir jede Linearform f(z,, ..., z)
= )7:“ axxy auch die Darstellung f(r) = ag als inneres Pro-

E=1

dukt. Diese Darstellung fiihrt auf Grund der Formeln des
Satzes 46 zu einer auBerordentlich einfachen Gestaltung des
Rechnens mit den Funktionswerten einer Linearform. Wir
heben insbesondere, im AnschluB an die Bemerkung hinter
Satz 46, folgende Tatsache hervor:

Satz 47, Ist f(x) esne Linearform, so gilt fiir ein lineares

Kompositum ¢ = X ¢;L; YON Ly, - . ., Lm die Formel
i=1

1) = 2 ez,

d.h. der Funktionswert von f fiir ein lineares Kompositum von
m Vektoren st das entsprechende lineare Kompositum der m
Funktionswerte fiir jene Vektoren.

Beweis. Ist f(r) = ar, so ist nach Satz 46
') Solchen Vektoren wiirden dann Linearformenf(§,, ..., &,) des Integritats-

bereiches K,[&,,..., &,] Uber K, = K[z,,..., z,] entsprechen; wir brauchen

jedoch fiir unsere Zwecke diese Auffassung nicht (vgl. die Ausfithrungen vor
Def. 26).
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ffé? L) = ‘11_(57’: ¢:%:) =i é;a(ci?ii) =i énr;ci(a z) =i=2m;cif(&)-

An Tatsachen und Rechnungen, wie sie in Satz 47 und seinem
Beweise vorkommen, wurde bei den Ausfithrungen vor Def. 26
vornehmlich gedacht. Im Hinblick auf Satz 47 liegt die Zweck-
mifBigkeit der Einfiihrung der Vektoren auf der Hand.

Wir heben schlieBlich, anschlieBend an die Ausfiihrungen des
§ 4 noch hervor, daB fiir Linearformen der formale Funktions-
begriff der Algebra mit dem Funktionsbegriff i. 8. d. An. zu-
sammenfillt, Auf Grund des nachstehenden Satzes ist namlich
die fragliche Bedingung §2, (¢') beim Ubergang zu den Linear-
formen i. S. d. An. erfiillt:

Satz 48, Fir Linearformen f und g uber K ist die Relation

f(x) = g(v)

() = 9(x) far alle g aus K

mit der Relation

gletchbedeutend.
. Beweis. a) Dal aus der ersten Relation die letztere folgt, ist
ar.

b) Ist f(x) = g(x) fiir alle ¢ aus K, so ist speziell f(ex) = g(ex)
k=1,...,n). Danun, wenn f(z) = ag ist, gilt /(ex) = aex = a,
folgt das Ubereinstimmen entsprechender Koetfiizienten von f
und g, d. h. f(x) = g(x)-

¢) Matrizen

In den Koeffizientensystemen auf den linken Seiten line-
arer Gleichungssysteme treten uns Systeme von m n-glie-
drigen Vektoren entgegen, die wir zu einem (mn)-gliedrigen
Vektor zusammengefalt denken koénnen. Diesen (mn)-
gliedrigen Vektor konnen wir uns auch aus den »n m-gliedri-
gen Vektoren, die je durch die Koeffizienten einer festen
Unbestimmten gebildet werden, durch andersartige Zu-
sammenfassung entstanden denken. Es empfiehlt sich fiir
diese beiden Zusammenfassungsprozesse, sowie umgekehrt
fir die Zerlegung eines (mn)-gliedrigen Vektors auf eine
dieser beiden Weisen eine besondere Ausdrucksweise einzu-
fithren. Wir definieren in diesem Sinne:
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Definition 28. Ein (mn)-gliedriger Vektor, insofern er als
durch Zusammenfassung von m n-gliedrigen bzw. n m-glie-
drigen Vekioren in ein rechteckiges Schema

Qg ovenns Gy i1 "
yeoo

............ , kurz (“ik) (k:l,...,n)’

entstanden gedacht wird, heift eine (m,n)-reihige Matrix.
Die waagerechien bzw. senkrechten zusammensetzenden Vek-
foren hevflen die Zeilen bzw. Spalten der Matriz. Wir be-
zeichnen Matrizen auch durch die thren Gliedern entsprechen-
den grofien Buchstaben.

Es wird also z. B. bezeichnet: (as) mit 4, (azx) mit A, .. .; die
dem (mn)-gliedrigen Nullvektor entsprechende (m, n)-reihige Null-
matriz darf wieder mit 0 bezeichnet werden. — Den Zusatz (m, n)-
reihig lassen wir auch fort, wo die Zahlen m und » aus dem Zu-
sammenhang hervorgehen.

Der Begriff (m, n)-reihige Matrix ist gema8 Def. 28 enger
als der Begriff (mn)-gliedriger Vektor, etwa in demselben
Sinne, wie ,,die in Faktoren zerlegte ganze Zahl [ = mn‘ ein
engerer Begriff als ,,die ganze Zahl I* ist. Die Unterscheidungs-
und Verkniipfungsregeln fiir Matrizen, ndmlich analog zu (1),
@), (3)

(1) (asx) = (@iz) dannund nur dann, wenn ag= ay, i—1 m
(@) (aix) + (bix) = (ex + bix) (k; 1, ooey 'n)’
(8) a(asx) = (aas) e
lassen das allerdings nicht hervortreten. Die Einengung liegt viel-
mehr in dem dem (mn)-gliedrigen Vektor iibergelegten rechteckigen
Schema, durch das eine begriffliche Zusammenfassung je der in
einer Zeile bzw. Spalte stehenden Glieder gefordert wird.

Es ist allgemein iiblich, den Index ¢ immer fiir die Nume-
rierung der Zeilen, k fiir die der Spalten zu verwenden.
DemgemiB wire bei vorgelegtem (m, n)-reihigen (a;) unter
(ax;) die durch Vertauschung der Zeilen und Spalten ent-
stehende (n, m)-reihige Matrix
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zu verstehen; denn in dieser numeriert eben der erste Index
die Spalten, der zweite die Zeilen.

Definition 29. Die aus emer (m, n)-reihigen Matriz (a;y)
durch Vertauschung ihrer Zeilen und Spalten entstehende
(m, m)-reshige Matriz (ay;) hetfit die transponierte zu (a;z).
Bei Verwendung der Bezeichnung A fiir (agy) wird (az;) mit A’
bezeichnet.

AuBer den Verkniipfungen (2’) und (3") benutzt man im sog.
Matrizenkalkiil noch eine weitere, auBerordentlich wichtige Ver-
kniipfung zweier Matrizen zu einer neuen Matrix, dem sog. Ma-
trizenprodukt, das sich aber erst innerhalb der Menge aller Ma-
trizen (nicht nur der mit festem m und ») erkliren lagt. Diese Ma-
trizenproduktbildung enthilt zwar die innere Produktbildung fiir
Vektoren als Spezialfall?), 1duft aber nicht einfach auf das innere
Produkt der den Matrizen entsprechenden Vektoren hinaus. Wenn
auch der so zustande kommende sog. Matrizenkalkil von
groBter Bedeutung fiir die lineare Algebra ist, insbesondere in
noch viel weiterem MaBe als die Vektorschreibweise zur Uber-
sichtlichkeit der Entwicklungen und Resultate der linearen Algebra
beitrigt, miissen wir doch im begrenzten Rahmen unserer Dar-
stellung von einem weiteren Eingehen darauf absehen und auf
umfangreichere Werke verweisen?).

§ 11. Inhomegene und homogene lineare
Gleichungssysteme

Wir beginnen jetzt mit der systematischen Behandlung
der in § 5, (1) formulierten Aufgabe. Neben dem eigentlich
zu untersuchenden linearen Gleichungssystem

J) i@y -« s Zn) Eké‘laikxk =g (C=1,...,m)

betrachten wir selbstindig das lineare Gleichungssystem

1) Vom Standpunkte des Matrizenproduktes sind die beiden Faktoren des
inneren Vektorproduktes eine (1, n)-rethige und eine (n, 1)-reihige Matrix und
das Ergebnis eine (1, 1)-reihige Matrix, also formal, aber nicht begrifflich cin
Element des Grundkdrpers.

2) Z. B. Lit.-Verz. 2—10, 13, 14, 16, 17, 20, 23. Siehe auch 3, 1, § 10,
Aufg. 3, sowie zahlreiche weitere Aufgaben zu den nachfolgenden Paragra-
phen von 1 und 2.



80 III. Determinantenfreie lineare Algebra

(H) fi@y, .o s xn)Ekgn:laika?k =0 (=1,...,m).

Man nennt (H) das (J) zugeordnete homogene Gleichungs-
system, wahrend (J) tnhomogen heiBit.

In dieser gegensitzlichen Benennung von (J) und (H) ist
schon zum Ausdruck gebracht, daB wir (H) nicht, wie es
zunichst naturgemif zu sein scheint, als den formal mit
(H) identischen Spezialfall von (J), wo alle a; = 0 sind, an-
sehen wollen. Wir treffen vielmehr mit Riicksicht auf eine
glatte Formulierung der herzuleitenden Resultate die (H)
von diesem Spezialfall von (J) methodisch unterscheidende
Festsetzung, daB der stets eine Ldsung von (H) bildende
Nullvektor ¢ = 0 (die sog. identische Lisung) nicht als
Losung von (H) gerechnet werden soll. Speziell wird also
(H) unlisbar genannt, wenn auBer dem Nullvektor keine
Liosung existiert. Dagegen sehen wir den Nullvektor sehr
wohl als Losung fiir den genannten Spezialfall von (J) an.

Unter der Matriz von (J) und (H) verstehen wir die (m, n)-
reihige Matrix 4 = (a;).

Mittels der in § 10 entwickelten Begriffe 148t sich das Bestehen
von (J) bzw. (H) fiir ein System z,, . . ., , auch so ausdriicken,
daB die Spalten von 4 durch lineare Komposition mit den Koeffi-
zienten z, . . ., Z, den durch die rechten Seiten von (J) gebildeten
Vektor a bzw. den Nullvektor ergeben. Nach obiger Verabredung
ist also insbesondere die Lésbarkeit von (H) mit der linearen Ab-
héngigkeit der Spalten von 4 gleichbedeutend. (Vgl. die Formeln
§ 10, (4), (5) [75], die sich allerdings in diesem Sinne auf die Glei-
chungssysteme mit der Matrix 4’ beziehen.) Die Aufgabe der
linearen Algebra §5, (1) kann demnach auch dahin formuliert
werden, daf alle Moglichkeiten, aus einem vorgegebenen Vektoren-
system einen vorgegebenen Vektor linear zu komponieren, und
speziell alle linearen Abhingigkeiten eines vorgegebenen Vektoren-
systems gefunden werden sollen. Es empfiehlt sich, diese im fol-
genden haufig benutzte Auffassungsweise gegenwirtig zu behalten.

Wir werden schlieBSlich neben (J) und (H) auch noch das
mit der transponierten Matrix A" = (a;;) gebildete transpo-
nierte homogene Gleichungssystem
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m
H) fley, - o am) = T apzy =0 ) k=1,...,m)

zu betrachten haben.

Die selbstindige Betrachtung von (H) neben dem ur-
spriinglich allein zu untersuchenden Gleichungssystem (J)
wird durch den folgenden Satz gerechtfertigt:

Satz 49. Ist (J) losbar, so erhdlt man alle ibrigen Lisungen
ts von (J), wenn man zu irgendeiner festen Losung ¢ von (J)
alle Losungen tg von (H) addiert, also in der Form

P+
big
Bewezs a) Nach Satz47[76]folgt aus f,(r®) = a;, fi(z;) =0,

da /() + xH) = 1i(z%) + fi(ty) = @i+ 0 = a; ist. Also
sind alle ¢, = ¢ + r,; Losungen von (J).

b) Ist fi(x,) = aa £i(x§?) = as, so folgt ebenso fi(x, — 1)
= 0. Also ist, falls ¢, =+ ¢ ist, ¢, — r{¥ = r,, Losung von
(H), d. h. es ist wirklich jede von g verschiedene Lisung
t, von (J) von der Form g, =tV + .

Nach Satz 49 reduziert sich die Aufgabe der linearen
Algebra auf die folgenden beiden Teilaufgaben:

J) Bestimmung einer Losung von (J),
H) Bestimmung aller Losungen von (H).

Was einerseits H) betrifft, so gilt:

Satz 50. Falls (H) lisbar ist, bilden die Lisungen von (H)
ewnen Vektormodul, den Losungsmodul von (H).

Beweis. Gemif Def. 25 [70] ist zu zeigen, daB mit be-
liebigen Lésungen gy, . . ., r; auch jedes ihrer linearen Kom-
posita eine Losung von (H) ist. Aus fi(r;) =0( = 1,.

9 =1,...,5) folgt aber nach Satz 47

1) In der Tat steht in der i-ten Zeile und k-ten Spalte dieses ausgeschrieben
gedachten Gleichungssystems der Koeffizient ag; und nicht a;z, wie man auf
den ersten Blick glauben mochte! — Es sei jedoch fiir das Folgende empfohlen,
sich die Gleichungen von (H') nebeneinander und jedc einzelne Gleichung
von oben nach unten geschrieben vorzustellen, so wie es der Entstehung
von (H') aus der Matrix 4 entspricht.

6 Hasse, Hohere Algebra
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f X eity) = Zeifi(ty) = 2 ¢0=0 t=1,...,m).
j=1 i=1 j=1

Falls (H) lgsbar ist, hat nach Satz 41 [69], Def. 25 [70]
und Satz 44 [72] der Lésungsmodul von (H) einen Rang s mit
1 £ s £ n und besteht aus der Gesamtheit aller linearen
Komposita irgendeiner seiner Basen, die ihrerseits aus genau
s linear unabhéingigen Vektoren besteht; nach Satz 45 [72]
sind iiberdies die Darstellungen der Losungen durch eine
solche Basis eindeutig.

Falls (H) unlosbar ist, d. h. nur die identische Lésung r =0
besitzt, gilt gemal der Bemerkung und Verabredung nach Satz 45
[73] Entsprechendes mit s = 0. Daf8 dieser Fall eintreten kann,
zeigt etwa das nur aus einer Gleichung in nur einer Unbestimmten
z bestehende Gleichungssystem az = 0 mit a 5= 0.

Demnach reduziert sich die Aufgabe H) auf die Bestim-
mung des Ranges s mit 0 = s < n, sowie einer Basis g;,..., L
des Liosungsmoduls von (H). Fir diese Bildungen fiithren
wir die folgenden kurzen Bezeichnungen ein:

Definition 30. Der Rang des Lisungsmoduls von (H) heifit
der Losungsrang von (H). Jede Basts des Losungsmoduls
heift ein Fundamentallosungssystem von (H).

Was andererseits J) betrifft, so besteht folgende not-
wendige Losbarkeitsbedingung, von der sich dann spiter
(Satz b3 [92]) herausstellen wird, daB sie auch hinreichend
ist:

Satz 51. Damit (J) l()'sbar ist, st notwendig, daff mit jeder
linearen Abhdngigkedt 2 xz fi=0 zwzschen den Linearformen

links auch die entsprechende Relation Z,‘x ia; =0 fiir die
=1
rechien Seiten besteht. =

Bewess. Ist (J) lsbar, existiert also ein Vektor g derart,
daB die Funktionswerte f;(g) = a; werden, so folgt aus

2 z5f; = 0 nach dem Einsetzungsprinzip auch 2 zia; = 0.
i=1
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m
Da eine lineare Abhingigkeit 3 xif; = 0 der Linearformen f;
i=1
nach §10 gleichbedeutend ist mit der entsprechenden linearen
Abhanglgkext 2,‘ #50; = 0 zwischen den zugeordneten Vektoren ay,

d. h. den Zellen von A, und da diese wiederum nur ein anderer
Ausdruck fiir die Tatsache ist, daf} ¢’ Losung von (H) ist, so folgt:

Zusatz 1. Die Bedingung von Saiz 51 kann auch dahin ausge-
sprochen werden, daf3 fir jede Losung ¢’ von (H’) gelten muf r’a = 0.

Daraus ergibt sich dann nach Satz 46 [75] noch weiter:

Zusatz 2, Die Bedingung von Saiz 51 kann auch dahin ausge-
sprochen werden, daf fiir die Lisungen t; eines Fundamentalldsungs-
systems von (H') gelten muff r,a =0

Diese Zusitze rechtfertigen die Einfilhrung von (H’) in den
Kreis unserer Betrachtungen, da durch sie, neben der Verkettung
von (J) mit (H) in Satz 49, (J) auch mit (H’) verkettet ist.

Die zu behandelnden Aufgaben J) und H) konnen jetzt
ausfiihrlicher so formuliert werden:

J*) Enischeidung iiber die Losbarkeit von (J) und Be-
stimmung ewner Losung vm Losbarkeitsfalle,

B*) Bestimmung des Lisungsranges und eines Fundamental-
losungssystems von (H).

§ 12. Aquivalente lineare Gleichungssysteme

Wir entwickeln in diesem Paragraphen ein konstruktives
Verfahren, das es gestattet, ein beliebig vorgegebenes (in-
homogenes oder homogenes) lineares Gleichungssystem in
ein anderes von besonderer Gestalt mit derselben Lésungs-
gesamtheit zu transformieren, aus dem sich dann die Lo-
sungen der am Schlul von §11 herausgestellten Aufgaben
J*) und H*) in einfacher Weise ergeben werden.

Dazu definieren wir:

Definition 31. Zwei lineare Gleichungssysteme heilfien
dquivalent, wenn sie dieselbe Lisungsgesamiheit haben.

6*
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Das ist natiirlich eine Aqualenzrelation im Sinne von §2, (I).
Wir brauchen hier jedoch die ihr entsprechende Klasseneinteilung
nicht. Diese wird erst im Matrizenkalkiil von Bedeutung, wo sich
die Aquivalenz durch rechnerische Beziehungen zwischen den
Matrizen der Gleichungssysteme beschreiben 1at (vgl. 3, 1, § 12,
Aufg. 1—3).

Unsere Aufgabe besteht dann darin, zu (J) bzw. (H) ein
dquivalentes Gleichungssystem (J) bzw. (H) zu konstruieren,
dessen Losungsgesamtheit sich in einfacher Weise bestimmen
1aBt. Dabei werden wir uns vor allem auf den folgenden
Hilfssatz stiitzen.

Hilfssatz. Wird in einem linearen Gleichungssystem ent-
weder

(a) dve Reihenfolge der Gleichungen gedndert
oder

(b) die linke und rechle Seite einer Gleichung mit einer Kon-
stanten ¢ = 0 multvpliziert
oder

(c) zu der linken und rechten Seile einer Gleichung das
c-fache der enisprechenden Seite einer anderen Gleichung
addiert,
so geht das Gleichungssystem in ein dquivalentes iiber, und die
beiden auf den linken Seiten stehenden Linearformensysteme
erzeugen tm Sinne von Satz 43 [71] denselben Linearformen-
modul.

Bewers. Hinsichtlich (a) ist die Behauptung klar. Hinsicht-
lich (b) und (¢) konnen wir uns dann auf den Fall beschrin-
ken, daB die erste Gleichung mit ¢ multipliziert bzw. zur
ersten Gleichung das c-fache der zweiten addiert werden
soll, und schlieBen so: Ist

91 =¢h , b =ca, mit ¢=0
bzw.
n=h+cls, by=a,4cay
sowie
gi =1 y bi=ua; (i=2,...,m),
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50 gilt einerseits fiir jeden Vektor g, der den Gleichungen
f{g) =a; (1 =1,...,m) geniigt, nach dem Einsetzungs-
prinzip auch g,(g) =b;(t=1,...,m) und ist andererseits
jedes g; ein lineares Komposxtum der fi- Umgekehrt gilt dann
aber auch

1 1 !
f1=791 s a1=?b1 mltT:G:O
bzw.
. h=0—¢g, a=>0—cb
sowie

fi=9: , 4 =b; (6=2,...,m),

so daB wie eben einerseits fiir jede Losung ¢ der Gleichungen

9x) =b; 1 =1,...,m) amch f(r) = a; 0 =1, ..., m) gilt

und andererseits jedes f; ein lineares Kompositum der ¢; ist.

Nach diesen Vorbereitungen kommen wir nunmehr zum
Beweis unseres Hauptsatzes:

Satz 52. Geniigt (J) der notwendigen Lisbarkeitsbedingung
aus Satz b1 [82], so lGft sich (J) tn esn dquivalentes Gleschungs-

system (J) von der Gestalt

AT =24, + b g1 @rarr F oo + binZn = by
_ D= A L A + byny = by
() e
gf(g) = zk'. + bf,kr+lzkf+1 + R + brnzn = bn

transformieren. Dabei gult:

(1) r ist die Maximalanzahl linear unabhingiger unter den
linken Seiten f,, . . ., fm von (J),

(2) 91y - - -, gr stnd linear unabhingig und bilden eine Basis
des von fy, . . ., fm erzeugten Linearformenmoduls,

(3) 1= k1<k2<"’<kr§ n.
Bewers. Wir fithren das vorgelegte Gleichungssystem
AE) =aua + -+ 12T =
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durch Operationen der Form (a), (b), (c) aus dem Hilfssatz
schrittweise in dquivalente Gleichungssysteme iiber, bis wir
schlieBlich, nach dem r-ten Schritt, eines von der angegebenen
Gestalt erhalten.

Eyrster Schritt. Sofern nicht alle f; = 0, d. h. nicht alle
a;; = 0sind?), sei k, der kleinste Index , fiir den mindestens
ein ag, =& O ist, etwa ay,;, == 0; dabei gilt natiirlich1 £ &, < n.
Dann dndern wir (gemal3 (a)) die Reihenfolge der Gleichungen
so, daB die 4,-te Gleichung f;(r) = a;, an die erste Stelle
kommt, und dividieren diese Gleichung (gemaf (b)) durch
@i k,- WIr erhalten so an der ersten Stelle eine Gleichung der
Gestalt

Gu(8) = @y + by by 11k 41+ ¢ - -+ Bin@a = by,

AnschlieBend subtrahieren wir (gemi8 (c)) von den iibrigen
Gleichungen f,(z) = a; (¢ F=1%,) jeweils das a;,-fache dieser
neuen ersten Gleichung, so daf in jenen Gleichungen dann
auch noch der k;-te Koeffizient verschwindet (wihrend alle
vorherigen Koeffizienten bereits nach der Wahl von %, ver-
schwanden). Damit haben wir ein zu (J) dquivalentes Glei-
chungssystem (J;) von der folgenden Gestalt gewonnen:

B =ak, + by, k1 @rr + o bin2e =0y

— 1 =~ 40
() = “(21,)1c1+1xk1+1 + oot af) 20 = 0

(J) e
1 — 1 | 1 = Q1
() = A 1Ty et a), = af)

mit 1 2k, £ n.

j-ter Schritt (j = 2). Angenommen, wir haben in j —1
Schritten durch Operationen der Formen (a), (b), (¢) bereits
ein zu (J) dquivalentes Gleichungssystem (J;_,) der folgen-
den Gestalt gewonnen:

1) Beziiglich dieses Falles siehe die Bemerkung 4 am SchluB dieses Para-
graphen.
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95-1(2) = @k;_y+ bjmy ey g +1%k;_y+1 + + - o+ bjog, nln =Dy,

j—1 = (j-1) e i—1) = g1
GffD@= af) s, T =0
(-1 _ -1 -1 = G-
D () = aghkj)_1+1xkj_1+1+ Y )

mit 12k <ky<<---<kjyZn

Dann konstruieren wir ein zu (J;-;) dquivalentes Glei-
chungssystem (J;) ganz entsprechend wie im ersten Schritt:
Sofern noch Gleichungen mit fY~1<=0 hinter der (j—1)-ten
vorhanden sind, d.h. j < m ist und nicht alle a{~" =0
sind, sei k; der kleinste Index k, fiir den mindestens ein
ali-1 == 0 ist, etwa ag;jl):i:O; dabei gilt wegen der Gestalt von
(dj=1) kj—y <k; < n. Dann dndern wir (gemé0 (a)) die Reihen-
folge der letzten m — j -+ 1 Gleichungen f¥~1)(r) = a{-V
so ab, dal die 47te Gleichung fg‘l) (x) = ag“l) an
die j-te Stelle des ganzen Gleichungssystems kommt, und
dividieren diese Gleichung (gemif (b)) durch a@fjf,;jl). Wir
erhalten so an der j-ten Stelle eine Gleichung der Gestalt

Gi(E) = Tyt By By g e by, = by

AnschlieBend subtrahieren wir (gemé8 (c)) von den iibrigen
Gleichungen f9-1(g)=af-1 (i = ;) jeweils das agc;l)-fache

der neuen j-ten Gleichung, so daB in diesen Gleichungen
dann auch noch der k;-te Koeffizient verschwindet
(wihrend alle vorherigen Koeffizienten bereits nach der
Wahl von k; verschwanden). Damit haben wir ein zu (J;_,)
und daher auch zu (J) dquivalentes Gleichungssystem (J;)
von der folgenden Gestalt gewonnen:
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B(E) = T, + b @y oo +binza =5
gi(x) = Ti; + bj,kj+1 Trif1 4t b;’nzn =
i) 1Y = j @ NN}
(Jy) /,(QI(Z) = a,;]_)l_l’kj_l_l wkj+v+"'+aj7+1,nmn— aj-f’-1
() = a%),kjﬂ U R +adz =

mit 1 Sk <k <---<k=<mn

r-ter Schritt. Dieses Verfahren der schrittweisen Umfor-
mungen setzen wir fort, solange das moglich ist; das ist der
Fall, solange noch nicht erfaBte Gleichungen mit £’ =0
tibrig sind. Der letzte mogliche Schritt sei der r-te. Diese
Zahl r bestimmt sich demnach dadurch, daB nach dem r-ten
Schritt entweder alle Gleichungen erfaBt sind, also 7 = m ist,
oder aber in den noch nicht erfalten Gleichungen (also fiir
t=r41,...,m) [ =0 ist, d. h. alle a{ =0 sind. Da
die in jedem einzelnen Schritt vorgenommene Wahl des
Index 4. und Abanderung der Reihenfolge der Gleichungen
mit Willkiirlichkeiten behaftet, also das ganze Transforma-
tionsverfahren nicht durch das Gleichungssystem (J) allein
eindeutig festgelegt ist, hingt auch die Zahl r zunéchst nicht
allein von (J), sondern auch noch von der Wahl des Ver-
fahrens ab. Es wird sich jedoch zeigen, daB r in Wahrheit
allein durch das Gleichungssystem (J) eindeutig bestimmt ist.

Nach dem r-ten Schritt haben wir demnach em zu (J)
dquivalentes Gleichungssystem (J,) der folgenden Gestalt

gewonnen:

7(%) Exk1+b1'k1+1zk]+1+ cenee e by, = b,

g(r) = Tk, + brgys1 @41+ 00 beny = br
(3 19, (2) = bz

fs:;)(g) = 0= agb)

mitl < ky <ky,<<---<k £ n
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Das Teilsystem

@
gx) = by

von (Jr) hat die im Satz angegebene Gestalt und besitzt die
Eigenschaft (3). Wir zeigen zunichst, daB es auch die Eigen-
schaften (2) und (1) besitzt.

Wenn eine Relation

T+ o+ 20 =0

besteht, so gl]t msbesondere fiir die Koeffizienten der T,
G=1.

’ ’ '
xlblkr + cee + xr——lbr—lykr -+ X, = 0,

und daraus folgt der Reihe nach z; =0,...,z; = 0. Die
Linearformen g¢,, .. ., gr sind somit linear unabhingig. Da
sie zusammen mit den Nullformen /) ,,..., {0 aus dem
Linearformensystem f;, ..., fm durch wiederholte Anwendung
der Operationen (a), (b), (¢) hervorgegangen sind, erzeugen
sie nach dem Hilfssatz denselben Linearformenmodul M
wie fy, . . ., fm und bilden darin wegen ihrer linearen Unab-
hingigkeit nach Def. 25 [70] eine Basis. Damit ist die Eigen-
schaft (2) nachgewiesen und im Hinblick auf Satz 44 [72]
zugleich gezeigt, daB die Zahl r der Rang von M ist und so-
mit tatséchlich nur von dem Gleichungssystem (J) und nicht
auch noch von den Willkiirlichkeiten des Transformations-
verfahrens abhiéingt. Schliefilich erzeugt nach Satz 38, a’)
[68] und Satz 43 [71] bereits ein Maximalsystem linear un-
abhingiger unter den Linearformen f,,..., f den Modul
M, bildet somit nach Def. 25 eine Basis von M und hat
daher nach Satz 44 die Anzahl r; und das bedeutet die
die Eigenschaft (1).

Es bleibt noch zu beweisen, daf das durch Weglassen der
m —r letzten Gleichungen
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N P@=0=d G=r+l...m

aus (J;) entstehende Teilsystem (J) mit (J,) und daher auch
mit (J) dquivalent ist. Fiir » = m, wo gar keine Gleichungen

wegzulassen sind, also (J) mit (J;) zusammenfillt, ist das
trivialerweise richtig. Fiir r << m zeigen wir: Wenn (J) — wie
im Satz vorausgesetzt — die notwendige Liosbarkeitsbedin-
gung aus Satz 51 [82] erfiillt, dann sind in (N) mit den linken
auch die rechten Seiten

dN =0 (@=r+1,...,m),

also die m —r letzten Gleichungen (N) von (J;) identisch

erfiillt und daher die Losungen des Teilsystems (J) in der
Tat auch Losungen des vollen Systems (J;).

Bei den Operationen (a), (b), (¢) aus dem Hilfssatz geht
namlich ein Gleichungssystem jeweils in ein neues iiber,
dessen linke Seiten linear aus den linken Seiten des Aus-
gangssystems komponiert sind und dessen rechte Seiten sich
1n gleicher Weise linear aus den rechten Seiten des Ausgangs-
systems zusammensetzen. Da das System (J;) durch wieder-
holte Anwendung von Operationen (a), (b), (¢) aus dem
System (J) hervorgegangen ist, sind daher nach Satz 43 [71]
die linken Seiten von (J,) linear aus f,, ..., fm komponiert
und, da die im Beweis von Satz 43 angewendete Regel
iiber die Vertauschung der Summationsfolge ebenso wie fiir
Linearformen f; auch fiir Korperelemente g; giiltig ist, sind
die rechten Seiten in gleicher Weise linear aus a,,..., an
zusammengesetzt. Insbesondere sind also die a{” in gleicher

Weise linear aus ay, . . ., @ zusammengesetzt wie die ) aus
fis « - - m. Da aber die fg’) = 0 sind, besagt die notwendige
Losbarkeitsbedingung aus Satz 51 [82], daB auch die a{” =0
sind, wie behauptet.

Damit ist der Beweis von Satz 52 zum Abschiuf gebracht.
Wir haben in diesem Beweis das vorgelegte Gleichungs-
system (J) in ein dquivalentes von der besonderen Gestalt

(J) transformiert, von dem wir im folgenden §13 zeigen
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werden, daB es stets 16sbar ist und wie man seine Liosungs-
gesamtheit bestimmen kann. Zuvor wollen wir an den Be-
weis noch einige Bemerkungen ankniipfen:

1. Uber die in Satz 52 formulierte Existenzaussage
hinaus liefert der Beweis zugleich ein konstruktives Ver-
fahren aus endlich vielen (ndmlich r < Min (m, n)) Schritten,
durch das man jedes vorgelegte lineare Gleichungssystem (J)
in ein dquivalentes von der einfacheren Gestalt (J) iiber-
fithren kann.

2. Die Pritfung, ob ein vorgelegtes lineares Gleichungs-
system (J) die notwendige Losbarkeitsbedingung aus Satz 51
[82] ertiillt, wiirde im allgemeinen unendlich viele Schritte
erfordern, da ja bei unendlichem Grundkérper unendlich viele
Moglichkeiten linearer Abhéingigkeit der Linearformen auf
den linken Seiten durchzuprobieren waren, Fiir die Lésung
der Aufgaben J*), H*) aus § 11 ist man aber auf diese Priifung
gar nicht angewiesen. Wendet man ndmlich das beschriebene
Verfahren auf ein vorgelegtes lineares Gleichungssystem (J)
an, von dem nicht feststeht, ob die notwendige Losbarkeits-
bedingung aus Satz 51 erfilllt ist, so gibt es fiir das
nach r Schritten resultierende zu (J) dquivalente System
(J-) mit den m — r letzten Gleichungen (N) nur die folgenden
beiden Moglichkeiten:

a) Es sind, wie im vorstehenden Beweis, in () alle rechten
Seiten a{” = 0 — hierunter zihlen wir auch den Fall r —=m
in dem gar keine a{” mehr existieren. Dann ist (J) wie oben
zu dem Teilsystem (J) von (J;) dquivalent, und fiir dieses
Teilsystem ist die notwendige Losbarkeitsbedingung aus
Satz b1 trivialerweise erfiillt, da seine linken Seiten ja linear
unabhéngig sind.

b) Es ist in (N) mindestens eine rechte Seite ai” == 0.
Dann ist (J,) und damit auch (J) unlésbar.

3. Das (J) zugeordnete homogene lineare Glelchungssystem
(H) ist mit dem (J) zugeordneten homogenen linearen Glei-
chungssystem (H) dquivalent. Denn wendet man das be-
schriebene Verfahren auf (H) an, so ergibt sich gerade (H).
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4. Der triviale Fall, da8 in (J) alle linken Seiten f; = 0 sind,
ordnet sich dem beschriebenen Verfahren folgendermafen unter:
Hier hat (J) von vornherein schon die im allgemeinen Fall nach r
Schritten resultierende Endgestalt (J,). Demnach ist sinngemi8

7 = 0 zu setzen und das Teilsystem (J) aus =0 Gleichungen als
identisch erfilllt anzusehen. Die beiden Moglichkeiten aus Be-
merkung 2 stellen sich hier wie folgt dar:

a) Es sind alle rechten Seiten a; — 0. Dann ist (J) mit (J) dqui-
valent und identisch erfiillt.
b) Es ist mindestens ein a; = 0. Dann ist (J) unlosbar.

§ 13. Losbarkeit und Losungen linearer Gleichungs-
systeme

Wir wenden jetzt den Satz 52 [85] zur Losung der beiden
am SchluB von § 11 formulierten Aufgaben J*) und H*) an.

Die Aufgabe J*) wird durch den Beweis des folgenden
Satzes gelost:

Satz 53. Das Gleichungssystem (J) st stets losbar; d. h. die
notwendige Losbarkettsbedingung fiir (J) aus Satz 51 [82] 1st
auch hinreichend.

Beweis. Die Losbarkeit des Gleichungssystems (J) folgt
aus seiner besonderen Gestalt, wie sie in der Eigenschaft (3)
aus Satz b2 zum Ausdruck kommt.

Man wihle ndmlich, um eine Lésung zu konstruieren, zu-
nichst die » — & Unbestimmten zy, . .., zx, +1 (s0Weit sie
iiberhaupt vorkommen, d. h. k» < n ist) ganz beliebig. Dann
1aBt sich zp, (eindeutig) so bestimmen, daB die letzte Glei-
chung ¢,(r) = b, erfiillt ist, wie auch die iibrigen zx gewahlt
werden mogen. Danach wahle man weiter die kr — k,_1 —1
Unbestimmten 2x, _;,..., T _;+1 (soweit sie iiberhaupt
vorkommen, d.h. k-1 <k, —1 ist) ganz beliebig. Dann
148t sich zy,_, (eindeutig) so bestimmen, da} auch die zweit-
letzte Gleichung ‘g, 1(x) = b,_1 erfiillt ist, wie auch die noch
nicht festgelegten zx gewdhlt werden mégen. So fahre man
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fort, bis schlieBlich auch z, bestimmt ist, und wihle dann
noch die k; —1 Unbestimmten zx 1, ...,2; (soweit sie
iiberhaupt vorkommen, d. h. k; > 1 ist) ganz beliebig. Der
damit vollstandig festgelegte Vektor g ist eine Losung von(dJ).

Diesem Lisungsverfahren ordnet sich auch der am SchluB von
§ 12 in der Bemerkung 4 aufgefiihrte triviale Fall r = 0 unter,
indem dann alle Unbestimmten z; ganz beliebig gewahit werden
konnen, d. h. jeder Vektor ¢ Losung von (J) ist.

Nach Satz 53 konnen wir ergénzend zu der Bemerkung 2
am Schluf von § 12 feststellen:

Zusatz. Notwendig und hinreichend fiir die Losbarkeit des
wmhomogenen linearen Gleichungssystems (J) — und daher
gletchbedeutend mit der Ldsbarkeitsbedingung aus Safz 51
[82] — ist, daf3 bes der tm Beweis zu Satz 52 [85] beschriebenen
Transformation nach dem r-ten Schritt nicht nur die linken,
sondern auch die rechien Seiten der letzten m — r (leichungen
zum Verschwinden kommen.

Im Hinblick auf die Bemerkung 1 am Schluf von § 12 ist
damit die Aufgabe J*), bei einem vorgelegten inhomogenen
linearen Gleichungssystem (J) iiber die Losbarkeit zu ent-
scheiden und gegebenenfalls eine Losung zu bestimmen,
durch ein konstruktives, in endlich vielen Schritten durch-
fithrbares Verfahren geldst.

Dieses Verfahren liefert zudem nicht nur, wie in der Aufgabe
J*} verlangt, eine Losung von (J), sondern sogar alle Losungen
von (J), indem man fiir die ganz beliebig zu wahlenden von den
Tk verschiedenen zy jeweils nicht nur ein, sondern nacheinander
alle Elemente des Grundkérpers einsetzt (vgl. den anschliefenden
Beweis von Satz 54 fiir den homogenen Fall). Wir wollen jedoch
hierauf nicht genauer eingehen, da sich die Lgsungsgesamtheit
von (J) auf dem bisher eingeschlagenen, durch Satz 49 [81] be-
stimmten Wege, namlich durch getrennte Behandlung der Auf-
gaben J) und H), in iibersichtlicherer Form darstellt.

Die Aufgabe H*) wird durch den Beweis des folgenden
Satzes gelost:

Satz b4. Der Lisungsrang von (H) ist s =n —r, wo r der
Rang des von [y, ..., fm erzeugten Linearformenmoduls 1ist;
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oder also: Jedes Fundamentallosungssystem von (H) bestehi
aus s = m —r Vekloren, wo r die Maximalanzahl linear un-
abhingiger unter f,, . . ., fm 1st.

Beweis. Wir betrachten das (J) zugeordnete homogene

lineare Gleichungssystem (H), das nach der Bemerkung 3 am
SchluB von § 12 zu (H) dquivalent ist, und konstruieren alle

Lésungen von (H) ebenso, wie wir im Beweis des vorigen

Satzes eine Losung von (J) konstruierten, indem wir nimlich
die von zg,, . . ., 7y, verschiedenen unter den Unbestimmten

Ty, ..., Tn ganz beliebig wihlen und zy, . . ., 2%, der Reihe

nach so bestimmen, daB eine Gleichung von (H) nach der
anderen erfilllt wird. Der Lésungsrang s = n — r ergibt sich
dabei als die Anzahl der von den xx, verschiedenen, frei wihl-

baren zx. Das erkennt man im einzelnen folgendermalen.
* Fiir jeden Losungsvektor ¢ von (H) ergibt sich z, aus der
letzten Gleichung von (H) als lineares Kompositum der

n —k; Unbestimmten 2, 4.1, . . ., Z» mit durch (ﬁ) eindeutig
festgelegten Koeffizienten:
Tk, = "“br, Ep+1 Thy+ ——bmwn

(bzw. 2y, = 0, falls kr = n ist). Ebenso ergibt sich z;__ aus

der zweltletzten Gleichung von (H) zunichst als hneares
Komp0s1tum der n — 1k, - Unbestimmten Tp, _+1y o s Tn

mit durch (H) eindentig festgelevten Koeffizienten:

T, _, = '—br—1,k,_1+1 Tky _q+1 0" — b _1,n Tn.

Da aber hierin zy, seinerseits lineares Kompositum von
Thp41s - » To mit durch (H) eindeutig festgelegten Koeffi-
zienten ist, ergibt sich nach Satz43 [71] durch Einsetzen Te,
als lineares Kompositum der zx mit k> k,_;, k == k-, mit durch
(H) eindeutig festgelegten Koeffizienten (bzw. 2, _, =0, falls
keine solchen 2 vorhanden sind, d. h. &, =n, %k, _; =n—1
ist). Fahrt man so fort, so erhilt man schlieflich fiir jeden
Lésungsvektor von (H) die » Unbestimmten Thepy « + oy Ty der
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Reihe nach als lineare Komposita der iibrigen n — r Unbe-

stimmten z; mit durch (H) eindeutig festgelegten Koeffi-
zienten (bzw. @, =0,..., Ty, = 0, falls keine weiteren

2 vorhanden sind, d. h. r = n ist).

Um uns einfacher ausdriicken zu kénnen, bezeichnen wir
im folgenden die n — r von Trys o or Ty verschiedenen unter
den Unbestimmten z,..., 2, mit Te, y 5 o o By Dann

liefert das eben beschriebene Verfahren 7 durch (H) ein-
deutig festgelegte Linearformen k..., k von n —7 Un-

bestimmten zx_ ,..., 2, derart, daB fiir jeden Ldsungs-
P41 n ] g

vektor ¢ von (H) gilt:

xkl = hl(xk,+1a R wk'n) = 01,r+1mkr+1 4 e + c1n$kn

Ty = he(@, , s o ooy Thg) = Crypra @, o0 o Oy,
(Dabei ist im Falle r = n sinngemi »;, = 0,...,k =0 zn
verstehen.)

Setzt man umgekehrt fiir @y, , ,, . . ., 7, beliebige und fiir
Tk, . . ., 3%, die sich dann aus den Linearformen hy, ..., &,
ergebenden Werte ein, so erhalt man nach dem Einsetzungs-
prinzip auch stets einen Losungsvektor ¢y von (H). Der Lo-

sungsmodul von (H) ist demnach identisch mit der Gesamt-
heit der Vektoren von der erhaltenen Form. Diese Vektoren
r sind nach Satz 47 [76] gerade die siamtlichen linearen
Komposita der folgenden s =mn —r speziellen Vektoren
(deren Komponenten wir der Einfachheit halber auf die
Reihenfolge Thps v oy Ty statt 2,, . .., z» der Unbestimmten

bezogen angeben):
Cryy = (cl,r+1’ e oo Orrt1, 6 Oa L) O)

namlich
T =a7kr+1 Creq + "'+xlcn Cne
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Die s = n — r Vektoren ¢, 4, . . ., ¢» sind nach Satz 40 [68]
linear unabhéngig, da bereits die aus ihren » — 7 (in der
angegebenen Reihenfolge) letzten Komponenten gebildeten
Vektoren ersichtlich linear unabhéngig sind. Sie bilden daher

eine Basis des Losungsmoduls von (H), d. h. ein Fundamen-

tallosungssystem von (H) und damit auch von (H). Somit
ist Satz 54 bewiesen.

Wir wollen noch kurz darauf eingehen, wie sich die beiden
Grenzfille r = 0 und r = » diesem Lésungsverfahren unterordnen.

Ist # = 0, so besteht das Gleichungssystem (H) aus 7 =0
Gleichungen. Dann ist jeder Vektor r Losung von (H). — In
diesem Falle ist das Teilsystem Bheyy - - o1 Tk (und damit auch das
Linearformensystem %, ..., i) leer und besteht das Teilsystem
w"r+1 - Tk, BUS allen Unbestlmmten Zyy « « o, Tp. Dann ist das
obige Fundamentallosungssystem Cr11, - - - O gerade das System
der s = n — 7 = n Einheitsvektoren.

Ist dagegen r = n, so besteht das Gleichungssystem (H) aus
r = n Gleichungen, die der Reihe nach eindeutig z, = 0, ce By = 0
bestimmen. Dann ist £ = 0 die einzige Losung, d. h. (H) ist im
Sinne der in § 11 getroffenen Festsetzung unlésbar. — In diesem
Falle besteht das Teilsystem Tpys o+ oy Tk, BUS allen Unbestimmten
Ty, . . ., %p, wihrend das Teilsystem 2, e Ty leer ist. Dann
sind, wie gesagt, by = 0, ..., by = 0 zu verstehen, und das obige
Fundamentallosungssystem ist leer, d. h. besteht aus s = n —r
=0 Vektoren.

Damit ist auch die Aufgabe H*), bei einem vorgelegten
homogenen linearen Gleichungssystem (H) den Lésungsrang
und ein Fundamentalldsungssystem zu bestimmen, durch
ein konstruktives, in endlich vielen Schritten durchfiihrbares
Verfahren gelost.

Wir wollen nun zum SchluB noch einige zusétzliche Fest-
stellungen iiber die bei der Losung von (J) bzw. (H) auf-
getretenen Anzahlen r und s treffen und damit gleichzeitig
das transponierte homogene Gleichungssystem (H') wieder
in den Kreis der Untersuchungen einbeziehen.
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Satz 54 besagt, daB der Losungsrang des Gleichungs-
systems (H) um so grofer ist, je weniger linear unabhingige
Zeilen seine Matrix 4 hat, je mehr lineare Abhingigkeiten
also zwischen diesen Zeilen bestehen, oder, da eine lineare
Abhangigkeit zwischen den Zeilen von A mit einer Lésung
von (H') gleichbedeutend ist, je groBer die Losungsgesamtheit
von (H') ist. Es ist daher eine Relation zwischen den L&-
sungsrangen von (H) und (H') zu vermuten, die sich nach
Satz 54 auch als Relation zwischen den Maximalanzahlen
linear unabhéngiger Zeilen bzw. Spalten von A aussprechen
lassen muB. Wir beweisen nun in der Tat die beiden folgenden
Tatsachen:

Satz b5. Die Maximalanzahl r linear unabhingiger Zeilen
evner Matriz A ist gleich der Maximalanzahl v linear unab-
hingiger Spalten von A.

Satz 56. Zwischen den Lisungsringen s eines homogenen
linearen Gleichungssystems (H) von m Gleichungen und s
seines transponierten (H') von m’ Gleichungen besteht die Re-

lation
m-t+s=m-+¢.

Dabei haben wir der Symmetrie halber ausnahmsweise m’ fiir
die sonst mit n bezeichnete Anzahl der Spalten geschrieben.

Beweise. 1) (Satz 55) Es seien r und »* die im Satz genannten
Maximalanzahlen fiir die (m, m’)-reihige Matrix 4.

a) Ist A = 0, so ist die Aussage des Satzes trivial, da dann
r = Qund 7 = 0ist (vgl. Bemerkung 4 am Schlu} von § 12).

b) Ist A == 0, so diirfen wir ohne Einschrinkung die Zeilen
so geordnet annehmen, daB a, ..., a, ein Maximalsystem
linear unabhéngiger Zeilen ist. Ist nun zundchst r << m,
so sind nach Satz 38, a’) [68] die letzten m —r Zeilen
Op 415 - - - O vOn den ersten r Zeilen qy, ..., ar linear ab-
hingig, d.h. es bestehen m — r Relationen der Form

ay =i§;c,~,a,- G=r+1,..,m)

zwischen den Zeilen. Diese besagen, daf die m — r nach
Satz 40 [68] linear unabhingigen Vektoren

7 Hasse, Hohere Algebra



98 II1. Determinantenfreie lineare Algebra

(—le yooey —Clmr ,0,...,0,6)

Losungen des A zugeordneten transponierten homogenen
Gleichungssystems (H') sind. Nach Satz 54, angewandt auf
(H’), ist somit der Losungsrang m — »* von (H') mindestens
m—r,dh m—r = m—r, also < r. Ist aber r = m,
so gilt " < r bereits nach Satz 41 [69], da die Spalten von
A ja m-gliedrige Vektoren sind. Durch die entsprechenden
Betrachtungen iiber die transponierte Matrix A’ folgt ebenso
r < 1. Zusammen gilt also r = r’.

2) (Satz 56) Nach Satz 54,55 gilt s =m' — 7,8 =m —7,
dh mt+s=m+4s(=m+m —r).

Durch Satz 55 wird die nach Satz 41 [69] richtige Tatsache, dal
in einer (m, m’)-reihigen Matrix 4 fiir die Maximalanzahl r linear
unabhéngiger Zeilen nicht nur r < m, sondern auch r < m’ gilt,
in helles Licht gestellt. Denn nach Satz 55 geht die ,,nicht-selbst-
verstindliche** Ungleichung 0 < r < m’ zwischen einer Zeilen-
und einer Spaltenanzahlin die,,selbstverstindliche* Ungleichung
0 < r < m zwischen zwei Spaltenanzahlen iiber.

Durch Satz 56 wird der ,,Kreis* unserer Betrachtungen iiber
(J), (H), (H’) geschlossen: Durch Satz 49 [81] ist (J) mit (H),
durch Satz 56 (H) mit (H’) und durch Satz 51 [82], 53 (und deren
Zusétze) (H’) mit (J) verkettet.

§14. Der Fallm =n

Es ist fiir die Betrachtungen in IV und auch fiir die Anwen-
dungen von Interesse, die in Satz 49—56 [81—97] gewonnenen
Resultate iiber Losbarkeit und Loésungen linearer Gleichungs-
systeme auf den Fall zu spezialisieren, daf die Anzahl m der
Gleichungen mit der Anzahl #» der Unbekannten iibereinstimmt,
daB also A eine (n, n)-reihige Matrix ist. Da aber nach den Resul-
taten des vorigen Paragraphen die Anzahlen m und # allein fiir die
Lisungsgesamtheit von (H) (und damit nach Satz 49 [81] auch fiir
die von (J)) so gut wie nichts besagen, vielmehr diese sich erst
durch Hinzunahme der dortigen Anzahl r bestimmt, haben wir
ohne eine feste Annahme iiber r keine besonderen Resultate zu
erwarten. Wir wollen daher auBer der Spezialisierung m = % noch
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die weitere einfiihren, daf nur zwischen dem Grenzfallr = m = n
und dem Fall 0 < r < m = n (ohne weitere Unterscheidungen
im letzteren Falle) unterschieden wird?).

Wir treffen demgemiB, vorldufig nur der kiirzeren Ausdrucks-
weise halber, die folgende, erst durch die Entwicklungen in IV in
ihrer vollen Bedeutung verstindlich werdende Festsetzung:

Definition 82. Eine (n, n)-rethige Matriz A heifle regulir oder
singulir, je nachdem, ob fur sie der Fall r = n oder der Fall
0 < r < n vorliegt, wo r die Bedeutung aus §§ 12, 13 hat.

Der in Satz 54—56 [93—97] enthaltene Tatsachenkomplex
iiber (H) liefert dann hier, zusammengefaft, unmittelbar fol-
gendes Resultat:

Satz (54, 65, 56) a. Ist A eine (n,n)-rechige Matriz, so sind ent-
weder sowohl ihre Zeilen als auch thre Spalten linear unabhingig
oder sowohl thre Zeilen als auch thre Spalten linear abhingig, d. h.
es sind die A zugehirigen Gleichungssysteme (H) und (H') entweder
betde unlisbar oder berde losbar, und zwar gill das erstere oder das
letatere, je nachdem A requldr oder singuldr ist.

Ferner liefert der in Satz 49 [81], 51 [82], 53 [92] enthaltene
Tatsachenkomplex iiber (J) hier, zusammengefafit, folgendes Re-
sultat:

Satz (49, 61, 88) a. Das Gleichungssystem (J) mit (n, n)-reihiger
Matriz A ist genau dann fir jeden beliebigen Vektor a rechis und
genau dann sogar esndeutiqg lisbar, wenn A regular ist.

Bewets. a) Es sei A4 regulér.

1. Dann ist (J) nach Satz 53 [92] fiir beliebiges a losbar, weil
(H’) nach Satz (54, 55, 56)a unlésbar ist, also die einschrankende
Bedingung von Satz 51 (Zusatze) [83] fiir a fortfallt.

2. Ferner ist dann (J) nach Satz 49 [81] eindeutig auflésbar,
weil (H) nach Satz (54, 55, 56)a unlésbar ist.

b) Es sei A singulir.

1. Dann existiert nach Satz (54, 55, 56)a eine Losung ¢’(+= 0)
von (H"). Ist darin z} = 0, also t’e; = z; = 0, so ist (J) nach
Satz 51, Zusatz 1 [83] fiir den Vektor a = e; unlgsbar, also nicht
fiir jeden beliebigen Vektor a ldsbar.

2. Ferner ist (J) nach Satz 49 [81], wenn iiberhaupt, dann nicht
eindeutig losbar, weil (H) nach Satz (54, 55, 56)a losbar ist.

!) Der andere Grenzfall » = 0 verlohnt seiner Tnvmhtat halber keiner be-
sonderen Hervorhebung.

7=
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Die beiden erhaltenen Sitze ergeben noch durch Elimination
derAlternative(d.h.derkontradiktorisch entgegengesetzten
Aussagen) ,,A ist reguldr‘ oder ,,4 ist singuldr*:

Zusatz, Es besteht die Alternative: Enfweder ist (J) einschrin-
kungslos und eindeutig losbar, oder es sind (H) und (H’) lisbar.

Fiir den ersten Fall dieser Alternative, d. h. fiir regulires 4,
kénnen wir schlieBlich eine iiber die Resultate von §13 hinaus-
gehende, elegante Aussage betreffend die Abhingigkeit der dann
stets vorhandenen, eindeutig bestimmten Lésung r von (J) von
dem rechtsstehenden Vektor a machen. Wir bezeichnen in diesem
Zusammenhang a mit £* und beweisen:

Satz 57. Ist A = (ai) eine (n, n)-reshige requlire Matriz, so
existiert etne etndeutig bestimmte (n, n)-rethige Matriz A* derart,
daf} die stets vorhandene und eindeutrg bestimmie Losung ¢ des
Gleichungssystems

n
)] kz‘lamzk=z: t=1...,n)

mat der Matrix A in shrer Abhingigkeit von den rechisstehenden
durch die Formeln

n
3" Skt = (=1
mit der Matriz A* gegeben wird. A* ist ebenfalls requldr, und es gilt

(A¥)* = A, d. h. das den Formeln (J*) entsprechende Gleichungs-
system '

n
(7% Sapap=a  (i=1,...m)
k=1

mit der Matriz A* fir die Unbekannten zi mit den rechten Seiten
x; wird durch die dem Gleichungssystem (J) entsprechenden Formeln

n
(3 kglaikxk =z (=1...n)
mit der Matriz A geldst.
Beweist). a) Sind die n Vektoren a*y = (af, ..., ajy) die Losun-
gen von (J) fiir die speziellen rechten Seiten e (k =1, ..., n), so

1) Der Leser setze in diesem Beweise, wie im Satz geschehen, zum besseren
Verstindnis des Zusammenhangs vor jedes (J), (J*) das Wort Gleichungs-
system, vor jedes (), (3*) das Wort Formeln.
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folgt nach Satz47 [76] sofort, daB das lineare Kompositum
n

Tt = X xf a*y eine, also die Lb’sung von (J) fiir das entsprechende
=1

lineare Kompositum z* = sz ex ist. Die Darstellung von g

durch die a¥y geht aber, ausfuhrhch geschrieben, in (*) itber.
Es existiert daher eine (n, n)-reihige Matrix A* mit der im ersten
Teil des Satzes genannten Eigenschaft.

b) Ist A* = (@},) eine weitere Matrix mit dieser Eigenschaft,
so daB also (§*) und das mit 4* gebildete (§*) fiir alle r* jeweils
dasselbe g rechts liefern, so folgt speziell fiir £* = ex, daBl die k-ten
Spalten a*y und a*y von A*und A* iibereinstimmen (k =1, ...,n),
und daraus 4* = A*, d. h. die eindeutige Bestimmtheit von 4*
durch die im ersten Teil des Satzes genannte Eigenschaft.

¢) Wird umgekehrt ¢ irgendwie gewahlt und ¢* dazu so be-
stimmt, daB (§) besteht, so muB nach a) auch (§*) bestehen (weil
eben dann ¢ die Lésung von (J) fiir das so bestimmte r* ist).
Anders ausgedriickt, es liefert (J) fiir jedes beliebige r eine Lésung
von (J*). Dessen Matrix 4* ist also nach Satz (49, 51, 53)a regu-
lir, und ferner (4*)* = A.

Im Hinblick auf die charakteristische Eigenschaft der Matrix
A* aus Satz 57 definieren wir noch:

Definition 83. Die nach Satz 57 durch eine (n, n)-rethige reguldre
Matriz A eindeutig bestimmie Matriz A* heifit die l16sende Ma-
trix von A.

§ 15. Die Tragweite der determinantenfreien
linearen Algebra

Durch die Resultate aus §§ 11—13 haben wir die Aufgabe der
linearen Algebra §5, (1) in theoretischer wie praktischer Hinsicht
vollstindig geldst.

Intheoretischer Hinsicht haben wir fiir das Gleichungssystem
(J) eine notwendige und hinreichende Lésbarkeitshedingung
(Satz 51 [82], 53 [92]) sowie eine genaue Kenntnis der Struktur
der Losungsgesamtheit (Satz 49 [81] verbunden mit Satz 50 [81],
54 [93]) gewonnen.

Inpraktischer Hinsicht haben wir aus endlich vielen Schritten
bestehende, konstruktive Verfahren zur Entscheidung iiber die
Losbarkeit (Beweis von Satz 52 [85], Zusatz zu Satz 53 [93])
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sowie zur Bestimmung der Losungsgesamtheit (Beweis von Satz 52
185], 63 [92], 64 [93]) des Gleichungssystems (J) entwickelt.

Diese Bemerkungen beziehen sich auch auf den in § 14 behan-
delten Spezialfall. Insbesondere wird itber die dortige Alternative
dadurch entschieden, ob das Transformationsverfahren aus § 12
erst nach n Schritten oder schon frither zum Abschluf kommt,
und die n Spalten der l6senden Matrix werden durch Auflésung
der speziellen Gleichungssysteme (J) mit den » Einheitsvektoren
als rechten Seiten gewonnen.

Trotz aller dieser Errungenschaften bleibt in theoretischer
wie praktischer Hinsicht noch etwas zu wiinschen iibrig.

In theoretischer Hinsicht ist der Beweis von Satz 55 [97]
insofern unbefriedigend, als er keine tiefere Einsicht in den wahren
Grund fiir das Ubereinstimmen der Maximalanzahlen linear unab-
hiingiger Zeilen und Spalten einer Matrix liefert. Man wiirde sich
eine neue, in den Zeilen und Spalten symmetrische Definition
dieser Anzahl wiinschen, aus der sich ihre beiden bisherigen Be-
deutungen durch ein und dieselbe SchluBweise folgern lassen.

In praktischer Hinsicht sind die entwickelten Verfahren inso-
fern unbefriedigend, als sie mit Willkiirlichkeiten behaftet sind
und weder die Ldsbarkeitsentscheidung noch die Lisungsgesamt-
heit in geschlossener Form liefern. Man wiirde sich dafiir Formeln
wiinschen, die nur aus den Koeffizienten und rechten Seiten des
Gleichungssystems in einheitlicher Form aufgebaut sind.

Diese Wiinsche werden nun durch die Deferminantenlehre
erfiillt.

Der Grund, weswegen wir hier, von dem bis zur ersten Auflage
dieses Biandchens fast immer iiblichen Wege abweichend, nicht
von vornherein diese Determinantenlehre zur Herleitung aller bis-
herigen Resultate verwendet haben, ist ein doppelter. Einerseits
erscheint bei der eben angedeuteten Behandlungsart der an die
Spitze gestellte Determinantenbegriff als etwas Fremdartiges, in
gar keiner Beziehung zu dem zu losenden Problem Stehendes, so
daB die mit ihm gewonnenen Resultate iiberraschend wirken und
aus ihrem Sinnzusammenhang geldst erscheinen, wihrend die von
uns eingeschlagene Methode dem Problem durchaus angepaf8t ist
und die Zusammenhangsfaden zwischen den Sitzen 49—b56 in
voller Klarheit hervortreten 1aBt. Andererseits aber hat der ent-
wickelte determinantenfreie Sitzekomplex der linearen
Algebra in neuerer Zeit ein besonderes Interesse gewonnen, da er
allein es ist, der sich mit allen seinen Beweisen fast wortlich auf
die entsprechenden Probleme fiir unendlich viele Gleichungen
mit unendlich vielen Unbekannten und auf die damit eng
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zusammenhéngende Theorie der linearen Integralgleichun-
gen iibertragen laBt, wihrend der Begriff der Determinante sich
dort, abgesehen von Spezialfillen, als zu eng erweist. Im iibrigen
ist die Schonheit und Geschlossenheit der determinantenfreien
Theorie, wie sie vorstehend entwickelt wurde, Rechtfertigung
genug fiir ihre gesonderte Behandlung.

IV. Lineare Algebra mit Determinanten
§ 16. Permutationsgruppen

In den Beweisen des vorigen Abschnitts haben wir mehr-
fach Umordnungen der Zeilen oder Spalten einer Matrix
vorgenommen. Der in diesem Abschnitt einzufithrende
Determinantenbegriff beruht nun in sachlicher Hinsicht auf
solchen Umordnungen, oder genauer auf gewissen dabei
vorliegenden Verhiltnissen. Wir miissen uns daher, ehe wir
an die Entwicklung der Determinantenlehre gehen, zuvor
mit diesen Verhiltnissen vertraut machen.

Der Begriff Umordnung oder Permutation ist rein mengen-
theoretisch. Er geht davon aus, daf jede Menge zu sich
selbst gleichmachtig ist [§ 2, (I1)], also sich zum mindesten
auf eine Weise eineindeutig sich selbst zuordnen 1a8t (in-
dem nidmlich jedes Element sich selbst zugeordnet wird),
und entsteht durch Betrachtung irgendeiner derartigen
Zuordnung:

Definition 34. Unter einer Permutation einer Menge M
versteht man irgendeine eineindeutige Zuordnung mit be-
stimmier Zuordnungsrichtung von M 2y sich selbst, unter Aus-
fiithrung oder Anwendung der Permutation das Erselzen
der Elemente von M durch die ihnen zugeordneten.

Wir unterscheiden Permutationen nach Def. 34 sinngemifl ver-
moge der ihnen zugrunde liegenden Zuordnungen unter Beriick-
sichtigung der Zuordnungsrichtung, nennen also zwei Permuta-
tionen dann und nur dann gleich, wenn jedem Element bei beiden
dasselbe Element zugeordnet ist. Natiirlich kénnen wir zur ein-
deutigen Beschreibung einer Permutation sowohl die Mitteilung
der samtlichen Zuordnungen als auch die der simtlichen, bei ihrer



