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so daß also ©/iß endlich von der Ordnung 2, ®/U unendlich ist1). 
4. Die abelsche Gruppe © der ganzen Zahlen bezüglich der ge-

wöhnlichen Addition besitzt z. B. die Untergruppe § aller geraden 
Zahlen. Es gilt die Zerlegung 

© = § + ! © , 
so daß also ©/§ wieder endlich von der Ordnung 2 ist2). Wir 
kommen in 2, § 2 ausführlich auf diese und analog gebildete 
Untergruppen von sowie deren Faktorgruppen zu sprechen. 

III. Determinantenfreie lineare Algebra 

§ 10. Linearformcn, Vektoren, Matrizen 
Es sei K ein beliebiger Körper, der Grundkörper, in dem 

wir lineare Algebra im Sinne von § 5, 1) [46] treiben wollen, 
und den wir für den Rest von 1 fest zugrunde legen. 

Zur Vereinfachung der Ausdrucksweise verabreden wir, daß in 
III und IV alle mit a, b, c, a, ß, y und evtl. angehängten Indizes 
bezeichneten Elemente solche aus K sein sollen, ohne daß dies 
immer ausdrücklich gesagt wird. Ebenso sollen xv . .., xn, wenn 
zum Funktionsbegriff i. S. d. An. übergegangen wird, Elemente 
aus K sein. 

Ehe wir uns der eigentlichen Aufgabe, wie sie in § 5, 1) 
formuliert ist, zuwenden, sollen in diesem Paragraphen 
einige Begriffe eingeführt werden, die zwar an sich entbehr-
lich wären, durch deren Verwendung sich aber die folgenden 
Entwicklungen in der Schreib- und Redeweise außerordent-
lich vereinfachen. 

a) Linearformen 
Zunächst führen wir für ganze rationale Funktionen von 

xlt..., x„, wie sie auf den linken Seiten des zu behandelnden 
J) Bezüglich U ist hier der auf die Primzahl 2 bezüglicheTeil des Funda-

mentalsatzes der Arithmetik von der eindeutigen Zerlegbarkeit der rationalen 
Zahlen in Primzahlpotenzen vorausgesetzt, den wir in ä, § 1 systematisch be-
handeln werden. 

2) Hierbei ist der auf die Primzahl 2 bezügliche Fall des Satzes 13 von 2, 
§ 1 vorausgesetzt, daß sich nämlich jede ganze Zahl g eindeutig in die Form 
g = 2q + r setzen läßt, wo q und r ganze Zahlen sind und 0 ^ r < 2 ist. § be-
steht dann aus den g mit r — Q, l,p aus den g mit r = 1. — Natürlich bedeutet 
1$ hier, daß 1 zu den Elementen von ® zu a d d i e r e n ist. 
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Gleichungssystems § 5, (1) auftreten, eine besondere Be-
nennung ein: 

Definition 22. Ein Element von K [xv ..., xn]: dessen Nor-
n 

maldarstellung &kXk ist. heißt eine L i n e a r f o r m von 
k = i 

x^.-.jXn oder auch l i n e a r und homogen in x¡, .. ,,xn. 
Die Bedeutung von linear wurde schon in § 5 bei (1) erklärt, 

Form oder homogen soll besagen, daß auch der in Satz 11 [31] 
mit a0 o bezeichnete Koeffizient der Normaldarstellung Null 
ist. — Unter Linearform schlechthin verstehen wir, wo nichts 
anderes aus dem Zusammenhang hervorgeht, stets eine solche der 
n Unbestimmten xlt..., xn. 

Von großer Wichtigkeit für alles weitere sind nun die 
beiden folgenden Definitionen: 

Definition 23. Eine Linearform / heißt l i n e a r e s K o m -
p o s i t u m oder l i n e a r a b h ä n g i g von den Linearformen 

m 
/u ..., fm, wenn clt ...,cm derart existieren, daß / = J£c¿/; ist. 

i = 1 
Anderenfalls heißt f l i n e a r u n a b h ä n g i g von fu ..., fm. 

n 
Die Nullform 0 = ¿ 0a¡t ist hiernach sicher lineares Komposi-

k= 1 
tum jedes Systems f v . . . , fm von Linearformen, indem clt..., em 

= 0 gewählt werden. Dies berücksichtigend definieren wir weiter: 

Definition 24. Die Linearformen fx,..., fm heißen l i n e a r 
a b h ä n g i g , wenn cv ..., cm, die nicht sämtlich Null sind, 

m 
derart existieren, daß X ciii = 0 ist- Anderenfalls heißen 

i= i 
flt..., fm l i n e a r u n a b h ä n g i g . 

Hiernach ist speziell (m = 1) jede Linearform / =# 0 linear 
unabhängig, während die Form 0 linear abhängig ist. 

Die beiden in Def. 23 und 24 eingeführten, wohl zu unter-
scheidenden Begriffe linear (un-)abhängig von und linear 
{un-)abhängig stehen nun in folgenden Relationen zuein-

5* 
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ander, deren einfacher Beweis dem Leser überlassen bleiben 
darf1): 

Satz 38 . a) Ist f von fv . . f m linear abhängig, so sind 
f , f i , . . . , f m linear abhängig. 

b) Ist f von / ] , . . . , fm linear unabhängig und sind fv . . f m 

linear unabhängig, so sind f , fv ..., fm linear unabhängig. 
a' ) Sind f , fu . . ., fm linear abhängig, und zwar so, daß f in 

einer Relation cf + e ^ -)- b cmfm = 0 einen Koeffi-
zienten c 4= 0 hat (was speziell der Fall ist, wenn /-,,. . ., fm 

linear unabhängig sind), so ist f von fv ..., fm linear abhängig. 
b') Sind f , f v . . . , fm linear unabhängig, so ist f von fv ...,fm 

linear unabhängig, und es sind auch fx,..., fm linear unab-
hängig. 

Aus b ' ) ergeben sich durch wiederholte Anwendung die 
beiden einander bedingenden Tatsachen: 

Satz 39 . Mit fv ..., fm, f m +1 • • •> fm +1 sind auch / l 5 . . ., fm 

linear unabhängig. Mit fv . .., fm sind auch fv ..., fm, fm+1,..., 
fm + i linear abhängig. 

In gewisser Analogie dazu gelten die folgenden beiden 
einander bedingenden Tatsachen: 

n n + l 
Satz 40 . Es sei /,• = 21 aik xk, (Ji = a-nc Xk (i = 1 , . . . , m). 

k = 1 k = 1 
Dann sind mit fv . .., fm auch g},.. ., gm linear unabhängig 
und mit gx,..., gm auch fv . .., fm linear abhängig. 

Beweis. Es sei K f ^ , . . . , xn] = Kre. Dann sind die </,- solche 
Elemente (linear, aber keine Formen!) aus KB[a;n+i, . . . , %n+i\, 
deren Funktionswerte für das System ( 0 , . . . . 0) der Unbe-
stimmten xn+1,.. .,xn + i die Elemente /,• aus Kn sind. Nach 
dem Einsetzungsprinzip [39] folgt also aus einer Relation 

m m 
2 £i(Ji = 0 auch die Relation Cift = 0 für die Funk-

¿ = i ¿=1 
tionswerte. 

L) Man mache sich vor allem klar, daß dazu die Körpere igeuschaf t [§1 , (7 ) ] 
wesentlich benutzt wird, so daß schon diese für das Folgende grundlegenden 
Tatsachen in Integritätsbereichen nicht allgemein richtig sind. (Vgl. Punkt 2 
in der Anm. 1 [461 zu § 5.) 
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Wir untersuchen nun im Anschluß an Satz 38, b) die 
Frage, ob man zu m linear unabhängigen Linearformen 
/],..., fm stets noch eine weitere von ihnen linear unab-
hängige Linearform fm+1 finden kann, so daß also auch noch 
fi, • • fm, fm + i linear unabhängig sind. Dieses ist nicht 
unbegrenzt möglich; vielmehr gilt : 

Satz 41. Es gibt höchstens n linear unabhängige Linear-
formen von n Unbestimmten xv ..., xn\ oder also: Mehr als n 
Linearformen von n Unbestimmten sind stets linear abhängig. 

Beweis. Nach Satz 39 genügt es zu zeigen, daß n + 1 
Linearformen von n Unbestimmten stets linear abhängig 
sind. Diesen Nachweis führen wir durch vollständige In-
duktion nach n. Fü r n —- 1 ist die Behauptung trivialerweise 
richtig. Denn ist / ' = a' x, /" = a" x, so sind entweder f = 0 
und f" = 0, oder es besteht die Beziehung a" f — a' / " = 0 
mit a'-)= 0 oder a" 4= 0; und in beiden Fällen sind / ' , / " 
linear abhängig. 

Wir nehmen nunmehr an, daß je n (oder mehr) Linear-
formen von n — 1 Unbestimmten stets linear abhängig sind, 
und zeigen, daß dann auch n + 1 vorgelegte Linearformen 
von n Unbestimmten 

fi = aü Xj^-r- [- ain x„ (i = 1,...,»-}- 1) 

linear abhängig sind. Dazu bilden wir durch formales Ein-
setzen des Wertes xn = 0 die n + 1 Linearformen 

g ( = aa x1 -l b au „^ x„_t (i = l,...,n+ 1) 

von den n — 1 Unbestimmten x1,..., xn_v Nach der In-
duktionsannahme sind sie linear abhängig, d. h. es besteht 
eine Beziehung 

9' = e'i öi f- 9n+1 = 0, 
in der nicht alle c[ = 0 sind und daher ohne Einschränkung 
c ^ , =|= 0 angenommen werden kann. Weiter sind nach der 
Induktionsannahme aber auch schon die n Linearformen 
gv ..., gn linear abhängig, d. h. es besteht eine weitere Be-
ziehung 
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g" = c? 0 H 1- c'n Qu = 0, 
in der ebenfalls nicht alle c'( = 0 sind. Wir bilden nun mit 
den so bestimmten c[ bzw. c" die entsprechenden linearen 
Komposita der /,-, d. h. die beiden Linearformen von n Un-
bestimmten 

/' = c'l fl + • ' " + c'n fn + ch+1 fn+l > 
r = «1*/i + • • • + < £ / « , 

so daß also die beiden Linearformen g' = 0, g" = 0 durch 
Einsetzen des Wertes xn = 0 aus /',/" hervorgehen. Aus 
diesem Grunde haben diese die besondere Gestalt 

f = d Xji j f d Xn. 
Ist hierin a" = 0, also /" = 0, so sind schon /-,,. . . , /„ linear 
abhängig, da ja nicht alle c'l = 0 sind. Ist aber a" =f= 0, so 
entnehmen wir aus 

a" f — a' / " = 0, 
also 

(a" d - t f ei) U+---+ /„ + a"c'n+1fn+l = 0 
wegen a" =|= 0, c'n+14= 0, daß fv . . f n , /„+1 linear abhängig 
sind. 

Daß es wirblich n linear unabhängige Linearformen von n Un-
bestimmten gibt, zeigt das spezielle System der n Linearformen 
«u ..., xn; denn wegen der Eindeutigkeit in Satz 11 [31] ist nur 
dann c^ + • • • + cnxn = 0, wenn ct, .. ., cn = 0 sind. 

Nach Satz 41 gibt es in jeder (endlichen oder unendlichen) 
Menge von Linearformen unter den linear unabhängigen 
Teilsystemen . . . , /s solche von maximaler Anzahl r, und 
zwar ist dabei r ^ n. Von besonderer Wichtigkeit werden 
nun Linearformenmengen mit der in folgender Definition ge-
forderten Eigenschaft sein: 

Definition 25. Eine Linearformenmenge M, die mit irgend-
welchen Linearformen immer auch alle deren lineare Komposita 
enthält, heißt ein L inear formenmodul . 

Die Maximalanzahl r linear unabhängiger Linearformen 
aus M heißt der Rang von M. 
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Ein linear unabhängiges Teilsystem flt. . ., /s aus M, von 
dem alle Linearformen aus M linear abhängig sind, so daß 
also M aus der Gesamtheit aller linearen Komposita von 
/],..., fs besteht, heißt eine Basis von M. 

Solche Teilsysteme gibt es wirklich immer. Nach Satz 38, a') 
gilt nämlich: 

Satz 42. Ein linear unabhängiges Teilsystem . . ., fr aus 
M von der maximalen Anzahl r ist auch eine Basis von M. 

Wir werden gleich sehen, daß auch die Umkehrung dieser 
Aussage richtig ist. Zuvor beweisen wir: 

Satz 43. Die Menge M aller linearen Komposita gegebener 
m Linearformen flt..., fm von n Unbestimmten xv ...,£„ 
bildet einen Linearformenmodul-, man sagt kurz, flt...,fm 
erzeugen den Modul M. Der Rang r von M genügt neben der 
nach Satz 41 bestehenden Ungleichung r ^ n auch noch der 
Ungleichung r m. 

Beweis, a) Das Erfülltsein der in Def. 25 geforderten 
m 

Eigenschaft erkennt man folgendermaßen: Aus gn = 21 ch fi 
l i = 1 

(k = 1,..., T) und g = £bkgk folgt 

i 
9 = 2 k — 1 (

m \ m j L \ 

Heuft) = 2 L £ 6 » c h /, i = l / i = l \Jfe = l / 

Die dabei verwendete R e g e l ü b e r die V e r t a u s c h u n g der 
S u m m a t i o n s f o lge , die auf die Additionsgesetze § 1, (1), (3), (5) 
zurückgeht, werden wir im folgenden häufig anzuwenden haben. 
Wegen ihrer Gültigkeit dürfen wir ohne Mißverständnis die 
Klammern bei derartigen Umformungen fortlassen. 

b) Zum Nachweis der Ungleichung r ^ m ordnen wir 
jedem Linearformensystem 

m 
gk = 2 cHU (k = l , . . i ) 

» = i 
aus M das Linearformensystem 

m 
hk=£ CjeiVi (k = 1,..., I) 

i = 1 
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von m neuen Unbestimmten yv ..., ym zu. Für l > m sind 
die fix nach Satz 41 linear abhängig, d. h. es besteht eine 
Beziehung 

Jlhht = 0, 
k = 1 

in der nicht alle 6^ = 0 sind. Nach dem Einsetzungsprinzip, 
angewandt im Integritätsbereich Kn[f / i , . . . , ym] über Kn = 
Kf^j,..., x„\ mit Ersetzung der yl durch die / f, folgt daraus 
die entsprechende Beziehung 

k hgk = 0, 
k = 1 

also die lineare Abhängigkeit der gn für l > m, d. h. die Be-
hauptung r iS m. 

Nunmehr können wir die angekündigte Umkehrung von 
Satz 42 folgern: 

Satz 44. Jede Basis eines Linearformenmoduls M vom Rang 
r besteht aus genau r Linearformen flt .. ., fr, ist also auch ein 
linear unabhängiges Teilsystem aus M von der maximalen 
Anzahl r. 

Beweis. Für eine Basis / l 5 . . . , fs von M ist einerseits nach 
Def. 25 jedenfalls s ^ r, andererseits nach Satz 43 auch 
r s, zusammengenommen also s = r. 

Eine Basis von M ist nach Satz 38, a) ein m a x i m a l e s linear 
unabhängiges Teilsystem in dem Sinne, daß bei Hinzufügung 
irgendeiner weiteren Linearform aus M ein linear abhängiges Teil-
system entsteht. Da wir durch Satz 43 festgestellt haben, daß 
diese schwächere Maximalität die stärkere Maximalität der A n -
z a h l nach zur Folge hat, können wir fortan bei einer Basis von M 
unmißverständlich auch von einem Maximalsystem linear unab-
hängiger Linearformen aus M reden. 

Wir heben weiter im Anschluß an Def. 25 und Satz 44 die 
folgende wichtige Tatsache hervor: 

Satz 45. Die lineare Komposition der Linearformen eines 
Linearformenmoduls M durch eine Basis von M ist jeweils nur 
auf eine einzige Art möglich. 
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Beweis. Das ist eine unmittelbare Folge aus (und ersicht-
lich sogar gleichbedeutend mit) der linearen Unabhängigkeit 

r r 
einer Basis f l y . . . , f r von M. Aus 2} Cih = d . h . 

r i = 1 i = 1 
2 (Cj — c'i) fi = 0 folgt nämlich nach Def. 24 gerade 

i = 1 
c, — c\ = 0, d. h. et = 4 (i = 1 , . . . , r). 

Wir bemerken schließlich, daß wir im trivialen Falle des nur 
aus der Nullform bestehenden Linearformenmoduls M = 0 gemäß 
Def. 25 auch r = 0 zu verstehen haben. Eine Basis von M existiert 
in diesem Falle nicht; zur Vereinheitlichung der Ausdrucksweise 
wollen wir dann sagen, M besitze eine Basis aus r = 0 Linearformen. 

b) Vektoren 

Nach der bei der Konstruktion von K [ a i ; . . . , xn~\ aus K 
in § 4, c) und d) zugrunde gelegten Auffassung sind speziell 

n 
Linearformen £ akxk formal nichts anderes, als Systeme 

k= 1 
( « ! , . . . , an) von Elementen, die den sich aus § 4, ( l a )—(3 a) 
ergebenden Unterscheidungs- und Verknüpfungsregeln un-
terworfen sind, und wobei für die speziellen Systeme 
(e, 0 , . . ., 0 ) , . . . , (0 , . . ., 0, e) die abkürzenden Bezeichnun-
gen xv . . x „ eingeführt sind. Ohne Einführung dieser Be-
zeichnungen lauten die Gesetze §4 , ( la)—(3a) , soweit sie 
sich auf die jetzt allein zu betrachtenden Linearformen und 
auf Elemente des Grundkörpers beziehen, folgendermaßen: 

(1) ( f l j , . . ., an) = (a[,. . ., a,n) dann und nur dann, 
wenn dk = a'k fü r k = 1 , . . ., n, 

(2) ( « ! , . . . , an) + (6j , . . ., 6») = K ., an + &„), 

(3) a(«], . . . , an) = (aav . . ., aan). 

Nun hat man es in der linearen Algebra außer mit den K o e f f i -
zientensystemen von Linearformen auch mit Systemen von n 
Elementen des Grundkörpers zu tun, die für die U n b e s t i m m t e n 
iCj, . . ., Xn in Linearformen einzusetzen sind, und hat dann diese 
Elementsysteme häufig nach (1) zu unterscheiden, sowie die 
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rechts in (2) und (3) stehenden Bildungen aus ihnen vorzunehmen. 
Man könnte das zwar nach dem eben Bemerkten so ausdrücken, 
daß man jene einzusetzenden Elementsysteme als Koeffizienten-
systeme von Linearformen ansieht, sie demgemäß wie diese Linear-
formen unterscheidet und die in (2) und (3) rechts stehenden Bil-
dungen für sie durch die links stehenden Verknüpfungen mit diesen 
Linearformen zur Ausführung bringt. Die hierbei zu verwendende 
Aus drucks weise würde aber sehr umständlich werden; sie ist über-
dies auch insofern unschön, als man bei dem Ausdruck Linear-
form gewohnheitsmäßig an die Möglichkeit der Ersetzung der Un-
bestimmten durch Elemente des Grundkörpers denkt, wovon bei 
den letztgenannten „Hilfslinearformen" natürlich nicht die Rede 
ist. Es ist daher zweckmäßiger, für die Anwendung der formalen 
Regeln (1)—(3) auf andere Art eine kurze Aus drucks weise zu 
ermöglichen. 

Definition 26. Den TJnterscheidungs- und Verknüpfungs-
regeln (1)—(3) unterworfene Systeme von n Elementen heißen 
w-gl iedr ige V e k t o r e n . IVir bezeichnen sie mit den ihren 
Gliedern entsprechenden kleinen deutschen Buchstaben. 

Es wird also z. B. bezeichnet: (av . . ., a„) mit a, (a^,..., atn) 
mit aj, usw. Unter Vektoren schlechthin verstehen wir, wo nichts 
anderes aus dem Zusammenhang hervorgeht, stets M-gliedrige. 

Durch (2) ist natürlich zwangsläufig auch die Substraktion für 
Vektoren unbeschränkt und eindeutig erklärt, und zwar nach der 
zu (2) analogen Formel 

(%,..., an) — (blt..., b„) = («! — &!,..., a„ — bn), 
entweder weil für die Verknüpfung (2) die Gesetze § 1, (1), (3), 
(6) stimmen, oder einfach vermöge der formalen Identität mit den 
Linearformen. Der hiernach sich als Nullvektor ergebende, der 
Nullform entsprechende Vektor (0 , . . . , 0) darf wieder mit 0 be-
zeichnet werden. 

Auf Grund der formalen Übereinstimmung von Vektoren 
und Linearformen sind die in Def. 23—25 eingeführten Be-
griffe sinngemäß auch für Vektoren als erklärt anzusehen, 
und es bestehen dann auch die Analoga der Sätze 38—45 in 
sinngemäßer Formulierung für Vektoren. 

Ausführlich geschrieben bedeuten nach Def. 23, 24 die Aussagen 
,,a ist von a t , . . . , am linear abhängig" bzw. „a^ . . . , am sind 
linear abhängig" das Bestehen von Relationen 
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m m 
(4) 2 ciaik = cik bzw. (5) 2 ctOve = 0 für k = 1, . . ., n, 

i = l i = l 
wobei in den letzteren mindestens ein c» 4= 0 ist. 

Die speziellen » linear unabhängigen Vektoren (e, 0, . . . , 0), 
. . . , ( 0 , . . . , 0, e), die den Linearformen a ^ , . . x n entsprechen, 
nennt man auch die n Einheitsvektoren und bezeichnet sie mit 
ev . . cn. Sie bilden eine Basis des Moduls a l ler w-gliedrigen 
Vektoren (der somit den Rang n hat); denn es besteht für jeden 

n 
Vektor a die Darstellung 2 ej; durch diese Einheitsvektoren. 

k = 1 
Durch Einführung dieser Darstellungen kommt man natürlich 
(bis auf den Bezeichnungsunterschied zwischen e¡c und xt) auf den 
Linearformenstandpunkt zurück. 

Während die bisherigen Festsetzungen über Vektoren 
formal mit denen über Linearformen übereinstimmen, treffen 
wir schließlich eine letzte Festsetzung, die über den Linear-
formenstandpunkt hinausgeht: 

Definition 27 . Unter dem i n n e r e n P r o d u k t ab zweier 
n 

Vektoren a und 6 werde das Element 2 aiclk verstanden. 
k = 1 

Im Gegensatz zu (3) sind also beim inneren Produkt be ide 
Faktoren Vektoren, während das Ergebnis dieser inneren Produkt-
bildung kein Vektor, sondern ein Element des Grundkörpers ist. — 

Speziell gilt atjc = ak, ekek- = j ® * ~ j , uO = 0. 

Satz 46 . Für die innere Produktbildung von Vektoren gelten 
die Regeln: 

ab = ba, c(ab) = (ca) b = a(eb), (a + b) c = ac + bc. 

Beweis. Das folgt nach Def. 26, 27 unmittelbar aus den 
Gesetzen § 1, (1)—(5). 

Natürlich folgt aus der letzten dieser Regeln durch wiederholte 
Anwendung noch die allgemeinere Formel 

(m \ m 
2 c = 2 QiC. ¿ = 1 / i = 1 
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n in m n 
die ausführlich geschrieben in £ 2 1 <HJcCk = 2 2 'HkCk, d.h. 

* = 1 i = 1 i = 1 t = 1 
in die im Beweis von Satz 43 erwähnte Regel von der Ver-
tauschung der Summationsfolge, übergeht und von der wir haupt-
sächlich Gebrauch zu machen haben werden (Satz 47). 

Da von der Körpereigenschaft [§ 1, (7)] des Grundbereichs 
K beim inneren Produkt kein Gebrauch gemacht ist, gelten 
die letzten Entwicklungen auch für Vektoren des Integritäts-
bereiches K[ icx , . . . , xny). Von solchen Vektoren brauchen 
wir lediglich den Vektor £ der Unbestimmten. 

Wir bezeichnen unter Verwendung dieses Vektors eine Linear-
form / ( % , . . . , xn) auch mit /(j) und treffen bezüglich der Möglich-
keit, j auch als Vektor des Grundbereichs aufzufassen, sowie der 
hierauf bezüglichen Zeichen = und = die entsprechenden Fest-
setzungen wie im Anschluß an Satz 12 [41]. 

Nach Def. 27 besteht für jede Linearform f(xx,..., xn) 
n 

= 2 «jA auch die Darstellung /( j) = a j als inneres Pro-
k = l 

dukt. Diese Darstellung führt auf Grund der Formeln des 
Satzes 46 zu einer außerordentlich einfachen Gestaltung des 
Rechnens mit den Funktionswerten einer Linearform. Wir 
heben insbesondere, im Anschluß an die Bemerkung hinter 
Satz 46, folgende Tatsache hervor: 

Satz 47. Ist /(j) eine Linearform, so gilt für ein lineares 
m 

Kompositum j = 2 ciE; von £j,..., Jm die Formel 
i= 1 

m 
/(s) = 2 altii), i = 1 

d. h. der Funktionswert von f für ein lineares Kompositum von 
m Vektoren ist das entsprechende lineare Kompositum der m 
Funktionswerte für jene Vektoren. 

Beweis. Ist / ( j) = a j, so ist nach Satz 46 
l) Solchen Vektoren würden dann Linearformen / ( ^ des Integritätf»-

bereiches K n [ l 1 ( $ n ] über Kn = Kix^..., xn] entsprechen; wir brauchen 
jedoch für unsere Zwecke diese Auffassung nicht (vgl. die Ausführungen vor 
Def. 26). 
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m m m in m 
KUcth) = aderti) = JMctit) = 2ciaii) = 2 
i = l i = 1 ¿=1 i = l 1=1 
An Tatsachen und Rechnungen, wie sie in Satz 47 und seinem 

Beweise vorkommen, wurde bei den Ausführungen vor Def. 26 
vornehmlich gedacht. Im Hinblick auf Satz 47 liegt die Zweck-
mäßigkeit der Einführung der Vektoren auf der Hand. 

Wir heben schließlich, anschließend an die Ausführungen des 
§ 4 noch hervor, daß für Linearformen der formale Funktions-
begriff der Algebra mit dem Funktionsbegriff i. S. d. An. zu-
sammenfäll t . Auf Grund des nachstehenden Satzes ist nämlich 
die fragliche Bedingung § 2, (e') beim Übergang zu den Linear-
formen i. S. d. An. erfüll t : 

Satz 48. Für Linearformen / und g über K ist die Relation 

Ks) - 9(i) 
mit der Relation 

/(S) = S(i) tür alle S a u s K 
gleichbedeutend. 

Beweis, a) Daß aus der ersten Relation die letztere folgt, ist 
klar. 

b) Ist / ( j ) = g(%) fü r alle j aus K, so ist speziell /(e^) = g(ejc) 
(k = 1 , . . . , «). Da nun, wenn / ( j ) = a j ist, gilt j(ek) = atk = a 
folgt das Übereinstimmen entsprechender Koeffizienten von / 
und g, d. h. / ( j ) = g{j). 

c) Matrizen 

In den Koeffizientensystemen auf den linken Seiten line-
arer Gleichungssysteme treten uns Systeme von m w-glie-
drigen Vektoren entgegen, die wir zu einem (mw)-gliedrigen 
Vektor zusammengefaßt denken können. Diesen (mw)-
gliedrigen Vektor können wir uns auch aus den n m-gliedri-
gen Vektoren, die je durch die Koeffizienten einer festen 
Unbestimmten gebildet werden, durch andersartige Zu-
sammenfassung entstanden denken. Es empfiehlt sich für 
diese beiden Zusammenfassungsprozesse, sowie umgekehrt 
für die Zerlegung eines (mw)-gliedrigen Vektors auf eine 
dieser beiden Weisen eine besondere Ausdrucksweise einzu-
führen. Wir definieren in diesem Sinne: 
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Definition 28. Ein (mn)-gliedriger Vektor, insofern er als 
durch Zusammenfassung von m n-gliedrigen bzw. n m-glie-
drigen Vektoren in ein rechteckiges Schema 

an aln 
J, kurz (aikj = 1 , ' ^ 

ßmi &mn } 
n, 

entstanden gedacht wird, heißt eine (m,w)-reihige Matr ix . 
Die waagerechten bzw. senkrechten zusammensetzenden Vek-
toren heißen die Zeilen bzw. Spal ten der Matrix. Wir be-
zeichnen Matrizen auch durch die ihren Gliedern entsprechen-
den großen Buchstaben. 

Es wird also z. B. bezeichnet: (o«) mit A, (aa) mit A , . . . ; die 
dem (mn)-gliedrigen Nullvektor entsprechende (m, n)-reihige Null-
matrix darf wieder mit 0 bezeichnet werden. — Den Zusatz (m, n)-
re ih ig lassen wir auch fort, wo die Zahlen in und n aus dem Zu-
sammenhang hervorgehen. 

Der Begriff (m, n)-reihige M a t r i x ist gemäß Def. 28 enger 
als der Begriff (m«)-gl iedriger V e k t o r , etwa in demselben 
Sinne, wie „die in Faktoren zerlegte ganze Zahl l = IM" ein 
engerer Begriff als „die ganze Zahl Z" ist. Die Unterscheidungs-
und Verknüpfungsregeln für Matrizen, nämlich analog zu (1), 
(2), (3) 

Q') iaik)= d a n n u n d n _ u r d a n n ' w e n n a « = 1 /i = 1 . . m \ (2') (<Hk) + (hk) = {<Hk + hk) fi l. _ i „I 
(3') a(aik) = (aalk) )\K-i,...,nj 
lassen das allerdings nicht hervortreten. Die Einengung liegt viel-
mehr in dem dem (mw)-gliedrigen Vektor übergelegten rechteckigen 
Schema, durch das eine begriffliche Zusammenfassung je der in 
einer Zeile bzw. Spalte stehenden Glieder gefordert wird. 

Es ist allgemein üblich, den Index i immer für die Nume-
rierung der Zeilen, k für die der Spalten zu verwenden. 
Demgemäß wäre bei vorgelegtem (m, w)-reihigen (a^) unter 
(aki) die durch Vertauschung der Zeilen und Spalten ent-
stehende (n, m)-reihige Matrix 

ian • • • • aml \ 

ain . . . . amn / 
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zu verstehen; denn in dieser numeriert eben der erste Index 
die Spalten, der zweite die Zeilen. 

Definition 29. Die aus einer (m, n)-reihigen Matrix (ailc) 
durch Vertauschung ihrer Zeilen und Spalten entstehende 
(n, m)-reihige Matrix (a^) heißt die t r a n s p o n i e r t e zu (aik). 
Bei Verwendung der Bezeichnung A für (a¡t) wird {aM) mit AI 
bezeichnet. 

Außer den Verknüpfungen (2') und (3') benutzt man im sog. 
Matrizenkalkül noch eine weitere, außerordentlich wichtige Ver-
knüpfung zweier Matrizen zu einer neuen Matrix, dem sog. Ma-
trizenprodukt, das sich aber erst innerhalb der Menge aller Ma-
trizen (nicht nur der mit festem m und n) erklären läßt. Diese Ma-
trizenpro duktbildung enthält zwar die innere Produktbildung für 
Vektoren als Spezialfall1), läuft aber nicht einfach auf das innere 
Produkt der den Matrizen entsprechenden Vektoren hinaus. Wenn 
auch der so zustande kommende sog. M a t r i z e n k a l k ü l von 
größter Bedeutung für die lineare Algebra ist, insbesondere in 
noch viel weiterem Maße als die Vektorschreibweise zur Über-
sichtlichkeit der Entwicklungen und Resultate der linearen Algebra 
beiträgt, müssen wir doch im begrenzten Rahmen unserer Dar-
stellung von einem weiteren Eingehen darauf absehen und auf 
umfangreichere Werke verweisen2). 

§ 11. Inhomogene und homogene lineare 
Gleichungssysteme 

Wir beginnen jetzt mit der systematischen Behandlung 
der in § 5, (1) formulierten Aufgabe. Neben dem eigentlich 
zu untersuchenden linearen Gleichungssystem 

n 
(J) fi(x1,...,xn)=£aikxt: = ai (i = l,...,m) 

4 = 1 

betrachten wir selbständig das lineare Gleichungssystem 
J) Vom Standpunkte des Matrizenproduktes sind die beiden Faktoren des 

inneren Vektorproduktes eine (1, n)-reihige und eine (n, l)-reihige Matrix und 
das Ergebnis eine (1, l)-reihige Matrix, also formal, aber nicht begrifflich ein 
Element des Grundkörpers. 

2) Z. B. Lit.-Verz. 2—10, 13, 14, 16, 17, 20, 23. Siehe auch 3, 1, § 10, 
Aufg. 3, sowie zahlreiche weitere Aufgaben zu den nachfolgenden Paragra-
phen von 1 und 2. 
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n 
(H) f f a , . . . , X n ) = 2 at&k = 0 (i = 1 , . . ., m). 

k = 1 

Mail nennt (H) das (J) zugeordnete homogene Gleichungs-
system, während (J) inhomogen heißt. 

In dieser gegensätzlichen Benennung von (J) und (H) ist 
schon zum Ausdruck gebracht, daß wir (H) nicht, wie es 
zunächst naturgemäß zu sein scheint, als den f o r m a l mit 
(H) identischen Spezialfall von (J), wo alle at = 0 sind, an-
sehen wollen. Wir treffen vielmehr mit Rücksicht auf eine 
glatte Formulierung der herzuleitenden Resultate die (H) 
von diesem Spezialfall von (J) m e t h o d i s c h unterscheidende 
Festsetzung, daß der stets eine Lösung von (H) bildende 
Nullvektor £ = 0 (die sog. identische Lösung) n i c h t als 
Lösung von (H) gerechnet werden soll. Speziell wird also 
(H) unlösbar genannt, wenn außer dem Nullvektor keine 
Lösung existiert. Dagegen sehen wir den Nullvektor sehr 
wohl als Lösung für den genannten Spezialfall von (J) an. 

Unter der Matrix von (J) und (H) verstehen wir die (m, n)-
reihige Matrix A = (aik). 

Mittels der in § 10 entwickelten Begriffe läßt sich das Bestehen 
von (J) bzw. (H) für ein System xx, .. ., xn auch so ausdrücken, 
daß die Spalten von A durch lineare Komposition mit den Koeffi-
zienten xlt.. ., xn den durch die rechten Seiten von (J) gebildeten 
Vektor a bzw. den Nullvektor ergeben. Nach obiger Verabredung 
ist also insbesondere die Lösbarkeit von (H) mit der linearen Ab-
hängigkeit der Spalten von A gleichbedeutend. (Vgl. die Formeln 
§ 10, (4), (5) [75], die sich allerdings in diesem Sinne auf die Glei-
chungssysteme mit der Matrix A' beziehen.) Die Aufgabe der 
linearen Algebra § 5, (1) kann demnach auch dahin formuliert 
werden, daß alle Möglichkeiten, aus einem vorgegebenen Vektoren-
system einen vorgegebenen Vektor linear zu komponieren, und 
speziell alle linearen Abhängigkeiten eines vorgegebenen Vektoren-
systems gefunden werden sollen. Bs empfiehlt sich, diese im fol-
genden häufig benutzte Auffassungsweise gegenwärtig zu behalten. 

Wir werden schließlich neben (J) und (H) auch noch das 
mit der transponierten Matrix A' = (aki) gebildete transpo-
nierte homogene Gleichungssystem 
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m 
(H') fk{;x'lt ...,x'm) = 2 aitx'i = 0 (k = 1 , . . w ) 

i = 1 
zu betrachten haben. 

Die selbständige Betrachtung von (H) neben dem ur-
sprünglich allein zu untersuchenden Gleichungssystem (J) 
wird durch den folgenden Satz gerechtfertigt: 

Satz 49. Ist (J) lösbar, so erhält man alle übrigen Lösungen 
von (J), wenn man zu irgendeiner festen Lösung von (J) 

alle Lösungen von (H) addiert, also in der Form 

Beweis, a) Nach Satz 47 [76] folgt aus /¿(^0 )) = au /¿( jH) = 0, 
daß /¿(jW + E h ) = /,.(Ei,0)) + MEh) = <H + 0 = «,• ist. Also 
sind alle TCj = xjj^ + j 7 / Lösungen von (J). 

b) Ist i h j ) = au /,•($>) = au so folgt ebenso — $ > ) 
= 0. Also ist, falls TCj 4= ist, i j — = i B Lösung von 
(H), d. h. es ist wirklich jede von j^0 ' verschiedene Lösung 
l j v o n (J) von der Form ^ = + i H . 

Nach Satz 49 reduziert sich die Aufgabe der linearen 
Algebra auf die folgenden beiden Teilaufgaben: 

J) Bestimmung e i n e r Lösung von (J), 
H) Bestimmung a l l e r Lösungen von (H). 

Was einerseits H) betr iff t , so gilt : 
Satz 50. Falls (H) lösbar ist, bilden die Lösungen von (H) 

einen Vektormodul, den L ö s u n g s m o d u l v o n (H). 
Beweis. Gemäß Def. 25 [70] ist zu zeigen, daß mit be-

liebigen Lösungen j j , . . ., j s auch jedes ihrer linearen Kom-
posita eine Lösung von (H) ist. Aus /j(£j) = 0 (i = 1 , . . ., m\ 
j = l , . . . , s) folgt aber nach Satz 47 

l) In der Tat steht in der i - ten Zeile und i - t en Spalte dieses ausgeschrieben 
gedachten Gleichungssystems der Koeffizient a ^ und n i c h t a ^ , wie man auf 
den ersten Blick glauben möchte! — Es sei jedoch für das Folgende empfohlen, 
sich die Gleichungen von (H') n e b e n e i n a n d e r und jede einzelne Gleichung 
v o n o b e n n a c h u n t e n geschrieben vorzustellen, so wie es der Entstehung 
von (H') aus der Matrix A entspricht. 

(i H a s s e , Höhere Algebra 
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/ ¿ ( i ; <VSi) = 2 Cjfiil,) = h e , 0 = 0 (t = 1 , . . . , m). j=i j=i 7=1 
Falls (H) lösbar ist, hat nach Satz 41 [69], Def. 25 [70] 

und Satz 44 [72] der Lösungsmodul von (H) einen Rang s mit 
l S s i n und besteht aus der Gesamtheit aller linearen 
Komposita irgendeiner seiner Basen, die ihrerseits aus genau 
s linear unabhängigen Vektoren besteht; nach Satz 45 [72] 
sind überdies die Darstellungen der Lösungen durch eine 
solche Basis eindeutig. 

Falls (H) unlösbar ist, d. h. nur die identische Lösung £ — 0 
besitzt, gilt gemäß der Bemerkung und Verabredung nach Satz 45 
[73] Entsprechendes mit s = 0. Daß dieser Fall eintreten kann, 
zeigt etwa das nur aus einer Gleichung in nur einer Unbestimmten 
x bestehende Gleichungssystem a x = 0 mit a 4= 0. 

Demnach reduziert sich die Aufgabe H) auf die Bestim-
mung des Ranges s mit 0 s ^ n, sowie einer Basis £j,..., js 
des Lösungsmoduls von (H). Für diese Bildungen führen 
wir die folgenden kurzen Bezeichnungen ein: 

Definition 30. Der Rang des Lösungsmoduls von (H) heißt 
der L ö s u n g s r a n g von (H). Jede Basis des Lösungsmoduls 
heißt ein F u n d a m e n t a l l ö s u n g s s y s t e m von (H). 

Was andererseits J) betrifft, so besteht folgende not-
wendige Lösbarkeitsbedingung, von der sich dann später 
(Satz53 [92]) herausstellen wird, daß sie auch hinreichend 
ist: 

Satz 51. Damit (J) lösbar ist, ist notwendig, daß mit jeder 
m 

linearen Abhängigkeit x'i fi = 0 zwischen den Linearformen 
i = l m 

links auch die entsprechende Relation 2j = 0 für die 
i = 1 

rechten Seiten besteht. 

Beweis. Ist (J) lösbar, existiert also ein Vektor £ derart, 
daß die Funktionswerte / , ( j ) = a{ werden, so folgt aus 

m m 
£ x'ifi = 0 nach dem Einsetzungsprinzip auch £ x\ = 0. 
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m 
Da eine lineare Abhängigkeit 2 1 x ih — 0 der Linearformen ft 

i = 1 
nach § 10 gleichbedeutend ist mit der entsprechenden linearen 

m 
Abhängigkeit x'fii = 0 zwischen den zugeordneten Vektoren aj, 

¿ = i 
d. h. den Zeilen von A, und da diese wiederum nur ein anderer 
Ausdruck für die Tatsache ist, daß j ' Lösung von (H') ist, so folgt: 

Zusatz 1. Die Bedingung von Satz 51 kann auch dahin ausge-
sprochen werden, daß für jede Lösung j ' von (H') gelten muß j 'a = 0. 

Daraus ergibt sich dann nach Satz 46 [75] noch weiter: 
Zusatz 2. Die Bedingung von Satz 51 kann auch dahin ausge-

sprochen werden, daß für die Lösungen eines Fundamentallösungs-
systems von (H') gelten muß = 0. 

Diese Zusätze rechtfertigen die Einführung von (H') in den 
Kreis unserer Betrachtungen, da durch sie, neben der Verkettung 
von (J) mit (Ii) in Satz 49, (J) auch mit (H') verkettet ist. 

Die zu behandelnden Aufgaben J) und H) können jetzt 
ausführlicher so formuliert werden: 

J*) Entscheidung Hier die Lösbarkeit von (J) und Be-
stimmung einer Lösung im Löslarkeitsfalle, 

H*) Bestimmung des Lösungsranges und eines Fundamental-
lösungssystems von (H). 

§ 12. Äquivalente lineare Gleichungssysteme 

Wir entwickeln in diesem Paragraphen ein konstruktives 
Verfahren, das es gestattet, ein beliebig vorgegebenes (in-
homogenes oder homogenes) lineares Gleichungssystem in 
ein anderes von besonderer Gestalt mit derselben Lösungs-
gesamtheit zu transformieren, aus dem sich dann die Lö-
sungen der am Schluß von § 11 herausgestellten Aufgaben 
J*) und H*) in einfacher Weise ergeben werden. 

Dazu definieren wir: 
Definition 81. Zwei lineare Gleichungssysteme heißen 

ä q u i v a l e n t , wenn sie dieselbe Lösungsgesamtheit haben. 
6» 
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Das ist natürlich eine Äqualenzrelation im Sinne von § 2, (I). 
Wir brauchen hier jedoch die ihr entsprechende Klasseneinteilung 
nicht. Diese wird erst im Matrizenkalkül von Bedeutung, wo sich 
die Äquivalenz durch rechnerische Beziehungen zwischen den 
Matrizen der Gleichungssysteme beschreiben läßt (vgl. 3, 1, § 12, 
A.ufg. 1—3). 

Unsere Aufgabe besteht dann darin, zu (J) bzw. (H) ein 
äquivalentes Gleichungssystem (J) bzw. (H) zu konstruieren, 
dessen Lösungsgesamtheit sich in einfacher Weise bestimmen 
läßt. Dabei werden wir uns vor allem auf den folgenden 
Hilfssatz stützen. 

Hilfssatz. Wird in einem linearen Gleichungssystem ent-
weder 

(a) die Reihenfolge der Gleichungen geändert 
oder 

(b) die linke und rechte Seite einer Gleichung mit einer Kon-
stanten c =(= 0 multipliziert 
oder 

(c) zu der linken und rechten Seite einer Gleichung das 
c-fache der entsprechenden Seite einer anderen Gleichung 
addiert, 
so geht das Gleichungssystem in ein äquivalentes über, und die 
beiden auf den linken Seiten stehenden Linearformensysteme 
erzeugen im Sinne von Satz 43 [71] denselben Linearformen-
modul. 

Beweis. Hinsichtlich (a) ist die Behauptung klar. Hinsicht-
lich (b) und (c) können wir uns dann auf den Fall beschrän-
ken, daß die erste Gleichung mit c multipliziert bzw. zur 
ersten Gleichung das c-fache der zweiten addiert werden 
soll, und schließen so: Ist 

9i = c/i > = cai nrit e=t= 0 
bzw. 

9i=fi + ch > h = ai + ca2 
sowie 

9i = fi , h = «i (i = 2 , . . ., m), 
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so gilt einerseits f ü r jeden Vektor 5, der den Gleichungen 
/¿(j) = (i = 1 , . . . , m) genügt, nach dem Einsetzungs-
prinzip auch gi(jc) = bt (i = 1 , . . . , m) und ist andererseits 
jedes (ji ein lineares Kompos i tum der /,-. Umgekehrt gilt dann 
aber auch 

fi=~^9i > m i t — = # 0 
bzw. 

fi=9i— <h=h — ch 
sowie 

fi = 9i . «< = h (i = 2, . . . , m), 
so daß wie eben einerseits f ü r jede Lösung 5 der Gleichungen 
9i(t) = h ii = ! > • • • . m) a u c h /¿(E) = cii{i = 1 , . . . , m) gilt 
und andererseits jedes /,• ein lineares Komposi tum der gt ist. 

Nach diesen Vorbereitungen kommen wir nunmehr zum 
Beweis unseres Haup tsa tzes : 

Satz 52. Genügt (J ) der notwendigen Lösbarkeitsbedingung 
aus Satz 51 [82], so läßt sich (J) in ein äquivalentes Gleichungs-
system (J) von der Gestalt 

9l(t) = XH + Kki + lxki + l + + h nxn = h 
92(1) = xk, + h,k, + lxk, + i + + \nxn = \ 

(J) 
gAi) = xkr + K,kr+lxkr + l H h Knxn = in 

transformieren. Dabei gilt: 
(1) r ist die Maximalanzahl linear unabhängiger unter den 

linken Seiten f l t . . ., fm von (J), 
(2) glt..., gT sind linear unabhängig und bilden eine Basis 

des von fv . . ., fm erzeugten Linearformenmoduls, 

(3) 1 ^ k1<k2<---<kr^n. 

Beweis. Wir führen das vorgelegte Gleichungssystem 

/i(E) = a.uxi + h <hnxn = «1 
(J) 

tm{E) = amixi " ' ' amnxn = am 
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durch Operationen der Form (a), (b), (c) aus dem Hilfssatz 
schrittweise in äquivalente Gleichungssysteme über, bis wir 
schließlich, nach dem r-ten Schritt, eines von der angegebenen 
Gestalt erhalten. 

Erster Schritt. Sofern nicht alle f{ = 0, d. h. nicht alle 
aik = 0 sind1), sei kx der kleinste Index k, fü r den mindestens 
ein aik =j= 0 ist, etwa aitkl 4= 0; dabei gilt natürlich 1 ^ ^ ^ ti. 
Dann ändern wir (gemäß (a)) die Reihenfolge der Gleichungen 
so, daß die te Gleichung /¡ ,( j) = a i t an die erste Stelle 
kommt, und dividieren diese Gleichung (gemäß (b)) durch 

Wir erhalten so an der ersten Stelle eine Gleichung der 
Gestalt 

0l(s) = X*1 + + A + l + • • • + h nXn = ii. 

Anschließend subtrahieren wir (gemäß (c)) von den übrigen 
Gleichungen / , ( j ) = at (i =(= ij) jeweils das «¿¿.-fache dieser 
neuen ersten Gleichung, so daß in jenen Gleichungen dann 
auch noch der k^ te Koeffizient verschwindet (während alle 
vorherigen Koeffizienten bereits nach der Wahl von k1 ver-
schwanden). Damit haben wir ein zu (J) äquivalentes Glei-
chungssystem (Jx) von der folgenden Gestalt gewonnen: 

!/l(E) = + b h lcl + i%k1 + i + h \ n X n = \ 

TO - + 1 + • • • + *» = 4 1 ' 

(Jl) 

TO- + = 

mit 1 kx ^ n. 

j-ter Schritt ( j 2). Angenommen, wir haben in j — 1 
Schritten durch Operationen der Formen (a), (b), (c) bereits 
ein zu (J) äquivalentes Gleichungssystem (J ;-_i) der folgen-
den Gestalt gewonnen: 

Bezüglich dieses Falles siehe die Bemerkung 4 am Schluß dieses Para-
graphen. 
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?l(E) = X*1 + &!,*.+! 3*1+1 + + hnXn = &i 

9j-i(E) = i + ^ j - i . ^ i + i ^ . i + i H h V i . = 

mit 1 ^ /q < k2 < • • • < j w. 

Dann konstruieren wir ein zu (J^-j) äquivalentes Glei-
chungssystem (J,) ganz entsprechend wie im ersten Schritt: 
Sofern noch Gleichungen mit f h ^ =j= 0 hinter der (j—l)-ten 
vorhanden sind, d. h. j 5 m ist und nicht alle = 0 
sind, sei /c,- der kleinste Index k, für den mindestens ein 
a{i]~l) 4= 0 ist, etwa j=0; dabei gilt wegen der Gestalt von 
(Jj— i) < kj g n. Dann ändern wir (gemäß (a)) die Reihen-
folge der letzten m — j + 1 Gleichungen = a(^r> 

so ab, daß die ij-te Gleichung (5) = an 
die j-te Stelle des ganzen Gleichungssystems kommt, und 
dividieren diese Gleichung (gemäß (b)) durch aJJ^K Wir 
erhalten so an der j-ten Stelle eine Gleichung der Gestalt 

9i(E) = x
k j + h.ti + 1% + 1 + ' *" + h«xn = V 

Anschließend subtrahieren wir (gemäß (c)) von den übrigen 
Gleichungen /^-1)(E)==ai'-1> =f= h) jeweils das a^"1)-fache 
der neuen j-ten Gleichung, so daß in diesen Gleichungen 
dann auch noch der kr-te Koeffizient verschwindet 
(während alle vorherigen Koeffizienten bereits nach der 
Wahl von kj verschwanden). Damit haben wir ein zu (J;-i) 
und daher auch zu (J) äquivalentes Gleichungssystem (Jj) 
von der folgenden Gestalt gewonnen: 
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ffl(s) = + Kkl+l^ + l + + hnXn = \ 

9i(t) = x k j + bj,kj + 1 afy+H h bjnxn = bf 

W f & i i l ) - « f t 1 > t , + 1 V + - + = + x 

TO - «S2t,+1 + 1 + - + = a2? 
mit 1 ^ < k2 < • • • < ^ n. 

r-<er Schritt. Dieses Verfahren der schrittweisen Umfor-
mungen setzen wir fort, solange das möglich ist; das ist der 
Fall, solange noch nicht erfaßte Gleichungen mit f f =(= 0 
übrig sind. Der letzte mögliche Schritt sei der r-te. Diese 
Zahl r bestimmt sich demnach dadurch, daß nach dem r-ten 
Schritt entweder alle Gleichungen erfaßt sind, also r = m ist, 
oder aber in den noch nicht erfaßten Gleichungen (also für 
i = r + 1, . . ., m) /<r> = 0 ist, d. h. alle = 0 sind. Da 
die in jedem einzelnen Schritt vorgenommene Wahl des 
Index it und Abänderung der Reihenfolge der Gleichungen 
mit Willkürlichkeiten behaftet, also das ganze Transforma-
tionsverfahren nicht durch das Gleichungssystem (J) allein 
eindeutig festgelegt ist, hängt auch die Zahl r zunächst nicht 
allein von (J), sondern auch noch von der Wahl des Ver-
fahrens ab. Es wird sich jedoch zeigen, daß r in Wahrheit 
allein durch das Gleichungssystem (J) eindeutig bestimmt ist. 

Nach dem r-ten Schritt haben wir demnach ein zu (J) 
äquivalentes Gleichungssystem (Jr) der folgenden Gestalt 
gewonnen: 
?i(E) = + &i,*1 + i&i1+i + + h nxn = ^ 

gv(E) = Xkr + br,kr + 1Xkr + 1 + b brnXn = 

(Jr) / & ( £ ) = 0 = 

TO -
m i t 1 ^ k 1 < k 2 < - • • <kr ^ n. 

0 = <> 
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Das Teilsystem 
?i(E) = h 

(J) 
?r(i) = br 

von (Jr) hat die im Satz angegebene Gestalt und besitzt die 
Eigenschaft (3). Wir zeigen zunächst, daß es auch die Eigen-
schaften (2) und (1) besitzt. 

Wenn eine Relation 
x'i9i H 1- x'r9r = 0 

besteht, so gilt insbesondere für die Koeffizienten der xk. 

xi = 0 
xihk2+xi = ° 

x'lblkr H + + 4 = 0, 
und daraus folgt der Reihe nach x[ = 0 , . . ., x'r — 0. Die 
Linearformen glt..., gr sind somit linear unabhängig. Da 
sie zusammen mit den Nullformen • • •, f1-̂  aus dem 
Linearformensystem /-,,..., fm durch wiederholte Anwendung 
der Operationen (a), (b), (c) hervorgegangen sind, erzeugen 
sie nach dem Hilfssatz denselben Linearformenmodul M 
wie / j , . . . , fm und bilden darin wegen ihrer linearen Unab-
hängigkeit nach Def. 25 [70] eine Basis. Damit ist die Eigen-
schaft (2) nachgewiesen und im Hinblick auf Satz 44 [72] 
zugleich gezeigt, daß die Zahl r der Rang von M ist und so-
mit tatsächlich nur von dem Gleichungssystem (J) und nicht 
auch noch von den Willkürlichkeiten des Transformations-
verfahrens abhängt. Schließlich erzeugt nach Satz 38, a') 
[68] und Satz 43 [71] bereits ein Maximalsystem linear un-
abhängiger unter den Linearformen / l 5 . . . , fm den Modul 
M, bildet somit nach Def. 25 eine Basis von M und hat 
daher nach Satz 44 die Anzahl r; und das bedeutet die 
die Eigenschaft (1). 

Es bleibt noch zu beweisen, daß das durch Weglassen der 
m — r letzten Gleichungen 
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(N) / i r ) ( E ) = 0 = (» = r + l , . . . , f » ) 

aus (Jr) entstehende Teilsystem (J) mit (Jr) und daher auch 
mit (J) äquivalent ist. Für r = m, wo gar keine Gleichungen 
wegzulassen sind, also (J) mit (Jr) zusammenfällt, ist das 
trivialerweise richtig. Für / < m zeigen wir: Wenn (J) — wie 
im Satz vorausgesetzt — die notwendige Lösbarkeitsbedin-
gung aus Satz 51 [82] erfüllt, dann sind in (N) mit den linken 
auch die rechten Seiten 

« f = 0 (t = r + 1 , . . . , m), 
also die m — r letzten Gleichungen (N) von (Jr) identisch 
erfüllt und daher die Lösungen des Teilsystems (J) in der 
Tat auch Lösungen des vollen Systems (Jr). 

Bei den Operationen (a), (b), (c) aus dem Hilfssatz geht 
nämlich ein Gleichungssystem jeweils in ein neues über, 
dessen linke Seiten linear aus den linken Seiten des Aus-
gangssystems komponiert sind und dessen rechte Seiten sich 
in gleicher Weise linear aus den rechten Seiten des Ausgangs-
systems zusammensetzen. Da das System (Jr) durch wieder-
holte Anwendung von Operationen (a), (b), (c) aus dem 
System (J) hervorgegangen ist, sind daher nach Satz 43 [71] 
die linken Seiten von (Jr) linear aus / l t . . . , fm komponiert 
und, da die im Beweis von Satz 43 angewendete Begel 
über die Vertauschung der Summationsfolge ebenso wie für 
Linearformen f( auch für Körperelemente a{ gültig ist, sind 
die rechten Seiten in gleicher Weise linear aus ax,..., am 
zusammengesetzt. Insbesondere sind also die d p in gleicher 
Weise linear aus am zusammengesetzt wie die fp aus 
flt..., fm- Da aber die fip = 0 sind, besagt die notwendige 
Lösbarkeitsbedingung aus Satz 51 [82], daß auch die a^p = 0 
sind, wie behauptet. 

Damit ist der Beweis von Satz 52 zum Abschluß gebracht. 
Wir haben in diesem Beweis das vorgelegte Gleichungs-
system (J) in ein äquivalentes von der besonderen Gestalt 
(J) transformiert, von dem wir im folgenden § 13 zeigen 
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werden, daß es stets lösbar ist und wie man seine Lösungs-
gesamtheit bestimmen kann. Zuvor wollen wir an den Be-
weis noch einige Bemerkungen anknüpfen: 

1. Über die in Satz 52 formulierte E x i s t e n z a u s s a g e 
hinaus liefert der Beweis zugleich ein k o n s t r u k t i v e s V e r -
f a h r e n aus endlich vielen (nämlich r ^ Min (m, n)) Schritten, 
durch das man jedes vorgelegte lineare Gleichungssystem (J ) 
in ein äquivalentes von der einfacheren Gestalt ( J ) über-
führen kann. 

2. Die Prüfung, ob ein vorgelegtes lineares Gleichungs-
system ( J ) die notwendige Lösbarkeitsbedingung aus Satz 51 
[82] erfüllt, würde im allgemeinen unendlich viele Schritte 
erfordern, da j a bei unendlichem Grundkörper unendlich viele 
Möglichkeiten linearer Abhängigkeit der Linearformen auf 
den linken Seiten durchzuprobieren wären. Für die Lösung 
der Aufgaben J * ) , H*) aus § 11 ist man aber auf diese Prüfung 
gar nicht angewiesen. Wendet man nämlich das beschriebene 
Verfahren auf ein vorgelegtes lineares Gleichungssystem ( J ) 
an, von dem nicht feststeht, ob die notwendige Lösbarkeits-
bedingung aus Satz 51 erfüllt ist, so gibt es für das 
nach r Schritten resultierende zu ( J ) äquivalente System 
( J r ) mit den m — r letzten Gleichungen (N) nur die folgenden 
beiden Möglichkeiten: 

a) Es sind, wie im vorstehenden Beweis, in (N) alle rechten 
Seiten = 0 — hierunter zählen wir auch den Fall r = m, 
in dem gar keine afp mehr existieren. Dann ist ( J ) wie oben 
zu dem Teilsystem ( J ) von ( J r ) äquivalent, und für dieses 
Teilsystem ist die notwendige Lösbarkeitsbedingung aus 
Satz 51 trivialerweise erfüllt, da seine linken Seiten ja linear 
unabhängig sind. 

b) Es ist in (N) mindestens eine rechte Seite afp =j= 0. 
Dann ist ( J r ) und damit auch ( J ) unlösbar. 

3. Das ( J ) zugeordnete homogene lineare Gleichungssystem 
(H) ist mit dem ( J ) zugeordneten homogenen linearen Glei-
chungssystem (H) äquivalent. Denn wendet man das be-
schriebene Verfahren auf (H) an, so ergibt sich gerade (H). 
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4. Der triviale Fall, daß in (J) alle linken Seiten /« = 0 sind, 
ordnet sich dem beschriebenen Verfahren folgendermaßen unter: 
Hier hat (J) von vornherein schon die im allgemeinen Fall nach r 
Schritten resultierende Endgestalt (J r). Demnach ist sinngemäß 
r = 0 zu setzen und das Teilsystem (J) aus r = 0 Gleichungen als 
identisch erfüllt anzusehen. Die beiden Möglichkeiten aus Be-
merkung 2 stellen sich hier wie folgt dar: 

a) Es sind alle rechten Seiten at = 0. Dann ist (J) mit (J) äqui-
valent und identisch erfüllt. 

b) Es ist mindestens ein a, #= 0. Dann ist (J) unlösbar. 

§ 13. Lösbarkeit und Lösungen linearer Gleichungs-
systeme 

Wir wenden jetzt den Satz 52 [85] zur Lösung der beiden 
am Schluß von § 11 formulierten Aufgaben J*) und H*) an. 

Die Aufgabe J*) wird durch den Beweis des folgenden 
Satzes gelöst: 

Satz 53. Das Gleichungssystem (J) ist stets lösbar; d. h. die 
notwendige Lösbarkeitsbedingung für (J) aus Satz 51 [82] ist 
auch hinreichend. 

Beweis. Die Lösbarkeit des Gleichungssystems (J) folgt 
aus seiner besonderen Gestalt, wie sie in der Eigenschaft (3) 
aus Satz 52 zum Ausdruck kommt. 

Man wähle nämlich, um eine Lösung zu konstruieren, zu-
nächst die n — k r Unbestimmten xn,...,%+1 (soweit sie 
überhaupt vorkommen, d. h. kr < w ist) ganz beliebig. Dann 
läßt sich Xi-r (eindeutig) so bestimmen, daß die letzte Glei-
chung gr(j) = hr erfüllt ist, wie auch die übrigen Xk gewählt 
werden mögen. Danach wähle man weiter die kr — ÄV-i — 1 
Unbestimmten xkr _ x , . . . , Xkr _ 1 +1 (soweit sie überhaupt 
vorkommen, d. h. kr—i<kr — 1 ist) ganz beliebig. Dann 
läßt sich ZkT_x (eindeutig) so bestimmen, daß auch die zweit-
letzte Gleichung'grr_i(£) = &r_i erfüllt ist, wie auch die noch 
nicht festgelegten x^ gewählt werden mögen. So fahre man 
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fort, bis schließlich auch bestimmt ist, und wähle dann 
noch die K1 — 1 Unbestimmten XKx—I, . . .,x± (soweit sie 
überhaupt vorkommen, d. h. k t > 1 ist) ganz beliebig. Der 
damit vollständig festgelegte Vektor j ist eine Lösung von(J) . 

Diesem Lösungsverfahren ordnet sich auch der am Schluß von 
§ 12 in der Bemerkung 4 aufgeführte triviale Fall r = 0 unter, 
indem dann alle Unbestimmten » j ganz beliebig gewählt werden 
können, d. h. j e d e r Vektor x Lösung von (J) ist. 

Nach Satz 53 können wir ergänzend zu der Bemerkung 2 
am Schluß von § 12 feststellen: 

Zusatz. Notwendig und hinreichend für die Lösbarkeit des 
inhomogenen linearen Gleichungssystems (J) — und daher 
gleichbedeutend mit der Lösbarkeitsbedingung aus Satz 51 
[82] — ist, daß bei der im Beweis zu Satz 52 [85] beschriebenen 
Transformation nach dem r-ten Schritt nicht nur die linken, 
sondern auch die rechten Seiten der letzten m — r Gleichungen 
zum Verschwinden kommen. 

Im Hinblick auf die Bemerkung 1 am Schluß von § 12 ist 
damit die Aufgabe J*), bei einem vorgelegten inhomogenen 
linearen Gleichungssystem (J) über die Lösbarkeit zu ent-
scheiden und gegebenenfalls eine Lösung zu bestimmen, 
durch ein konstruktives, in endlich vielen Schritten durch-
führbares Verfahren gelöst. 

Dieses Verfahren liefert zudem nicht nur, wie in der Aufgabe 
J*) verlangt, eine Lösung von (J), sondern sogar al le Lösungen 
von (J), indem man für die ganz beliebig zu wählenden von den 
x/cj verschiedenen x& jeweils nicht nur ein, sondern nacheinander 
al le Elemente des Grundkörpers einsetzt (vgl. den anschließenden 
Beweis von Satz 54 für den homogenen Fall). Wir wollen jedoch 
hierauf nicht genauer eingehen, da sich die Lösungsgesamtheit 
von (J) auf dem bisher eingeschlagenen, durch Satz 49 [81] be-
stimmten Wege, nämlich durch getrennte Behandlung der Auf-
gaben J) und H), in übersichtlicherer Form darstellt. 

Die Aufgabe H*) wird durch den Beweis des folgenden 
Satzes gelöst: 

Satz 54. Der Lösungsrang von (H) ist s = n — r, wo r der 
Rang des von fv . . ., fm erzeugten Linearformenmoduls ist; 
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oder also: Jedes Fundamentallösungssystem von (H) besteht 
aus s = m — r Vektoren, wo r die Maximalanzahl linear un-
abhängiger unter ..., fm ist. 

Beweis. Wir betrachten das (J) zugeordnete homogene 
lineare Gleichungssystem (H), das nach der Bemerkung 3 am 
Schluß von § 12 zu (H) äquivalent ist, und konstruieren alle 
Lösungen von (H) ebenso, wie wir im Beweis des vorigen 
Satzes eine Lösung von (J) konstruierten, indem wir nämlich 
die von xnv . . . , xkr verschiedenen unter den Unbestimmten 
x^,..xn ganz beliebig wählen und xj-^...., der Reihe 
nach so bestimmen, daß eine Gleichung von (H) nach der 
anderen erfüllt wird. Der Lösungsrang s = n — r ergibt sich 
dabei als die Anzahl der von den xjCj verschiedenen, frei wähl-
baren xk. Das erkennt man im einzelnen folgendermaßen. 

Für jeden Lösungsvektor % von (H) ergibt sich xkr aus der 
letzten Gleichung von (H) als lineares Kompositum der 
n—kr Unbestimmten Xkr +1,..., xn mit durch (H) eindeutig 
festgelegten Koeffizienten: 

%lcr — br,kr +1 ®fcr + i • " " brn%n 
(bzw. xicr = 0, falls kr = n ist). Ebenso ergibt sich x!Cf_1 aus 
der zweitletzten Gleichung von (H) zunächst als lineares 
Kompositum der n —fer Unbestimmten +i, ..., x„ 
mit durch (H) eindeutig festgelegten Koeffizienten: 

X*T_1
 = ,kr_t + i + i — """ bT_ljnxn. 

Da aber hierin x%r seinerseits lineares Kompositum von 
iCj;r+1, mit durch (H) eindeutig festgelegten Koeffi-
zienten ist, ergibt sich nach Satz 43 [71] durch Einsetzen x*T 

als lineares Kompositum der x% mit kr_v k =f= kr, mit durch 
(H) eindeutig festgelegten Koeffizienten (bzw. z* = 0, falls 
keine solchen Xk vorhanden sind, d. h. kr = n, k, _j = n — 1 
ist). Fährt man so fort, so erhält man schließlich für jeden 
Lösungsvektor von (H) die T Unbestimmton . .XJC der 



§ 13. Lösbarkeit und Lösungen linearer Gleichungssysteme 95 

Reihe nach als lineare Komposita der übrigen n — r Unbe-
stimmten X/c mit durch (H) eindeutig festgelegten Koeffi-
zienten (bzw. Xkr = 0 , . . . , = 0, falls keine weiteren 
Xk vorhanden sind, d. h. r = n ist). 

Um uns einfacher ausdrücken zu können, bezeichnen wir 
im folgenden die n — r von x^,..., Xkr verschiedenen unter 
den Unbestimmten a ^ , . . . , xn mit £fcr + 1 , . . . , '£kn- Dann 
liefert das eben beschriebene Verfahren r durch (H) ein-
deutig festgelegte Linearformen h^ . . .,hr von n — r Un-
bestimmten % , . . . , X]cn derart, daß für jeden Lösungs-
vektor j von (H) gilt: 

Xki = \{xkr + 1, . . ., Xkn) = C-i,r + lxkr + 1 H b CinXkn 

%kT — + • • •j xk„) = Cr,r + + 1 ~b " ' ' ~b Crn£kn-

(Dabei ist im Falle r = n sinngemäß = 0 , . . . , Jw = 0 zu 
verstehen.) 

Setzt man umgekehrt für Xkr + 1 5 . . . , xkn beliebige und für 
afc , . . X k r die sich dann aus den Linearformen \ , . . . , h T 
ergebenden Werte ein, so erhält man nach dem Einsetzungs-
prinzip auch stets einen Lösungsvektor £ von (H). Der Lö-
sungsmodul von (H) ist demnach identisch mit der Gesamt-
heit der Vektoren von der erhaltenen Form. Diese Vektoren 
5 sind nach Satz 47 [76] gerade die sämtlichen linearen 
Komposita der folgenden s = n — r speziellen Vektoren 
(deren Komponenten wir der Einfachheit halber auf die 
Reihenfolge x^,..xkn statt xv ..., xn der Unbestimmten 
bezogen angeben): 

cr + l = (cl,r+i, • • Cr,r+1, 6, 0, . . ., 0) 

Cn — (cln , . . ., Crn , 0, . . ., 0, e), 
nämlich 

l = x * r + 1 <V+i H Yxkn c 
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Die s = n—r Vektoren cr + 1 , . . . , cn sind nach Satz40 [68] 
linear unabhängig, da bereits die aus ihren n — r (in der 
angegebenen Reihenfolge) letzten Komponenten gebildeten 
Vektoren ersichtlich linear unabhängig sind. Sie bilden daher 
eine Basis des Lösungsmoduls von (H), d. h. ein Fundamen-
tallösungssystem von (H) und damit auch von (H). Somit 
ist Satz 54 bewiesen. 

Wir wollen noch kurz darauf eingehen, wie sich die beiden 
Grenzfälle r = 0 und r = n diesem Lösungsverfahren unterordnen. 

Ist r = 0, so besteht das Gleichungssystem (H) aus r = 0 
Gleichungen. Dann ist j e d e r Vektor j Lösung von (H). — In 
diesem Falle ist das Teilsystem x . . . , x/cr (und damit auch das 
Linealformensystem . . ., hr) leer und besteht das Teilsystem 
Xkr+V • • X]cn aus allen Unbestimmten xx,..., xn. Dann ist das 
obige Fundamentallösungssystem cr + 1 , . . . , cn gerade das System 
der s = n — r = n Einheitsvektoren. 

Ist dagegen r = n, so besteht das Gleichungssystem (H) aus 
t — 7i Gleichungen, die der Reihe nach eindeutig xn — 0, . . . , % = () 
bestimmen. Dann ist j = 0 die einzige Lösung, d. h. (H) ist im 
Sinne der in § 11 getroffenen Festsetzung unlösbar. — In diesem 
Falle besteht das Teilsystem x ^ , . . . , x t r aus allen Unbestimmten 
x1}..., Xn, während das Teilsystem x/cr+1, • • xkn leer ist. Dann 
sind, wie gesagt, = 0, . . ., hT = 0 zu verstehen, und das obige 
Fundamentallösungssystem ist leer, d. h. bestellt aus s = n — r 
= 0 Vektoren. 

Damit ist auch die Aufgabe H*), bei einem vorgelegten 
homogenen linearen Gleichungssystem (H) den Lösungsrang 
und ein Fundamentallösungssystem zu bestimmen, durch 
ein konstruktives, in endlich vielen Schritten durchführbares 
Verfahren gelöst. 

Wir wollen nun zum Schluß noch einige zusätzliche Fest-
stellungen über die bei der Lösung von (J) bzw. (H) auf-
getretenen Anzahlen r und s treffen und damit gleichzeitig 
das transponierte homogene Gleichungssystem (H') wieder 
in den Kreis der Untersuchungen einbeziehen. 
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Satz 54 besagt, daß der Lösungsrang des Gleichungs-
systems (H) um so größer ist, je weniger linear unabhängige 
Zeilen seine Matrix A hat, je mehr lineare Abhängigkeiten 
also zwischen diesen Zeilen bestehen, oder, da eine lineare 
Abhängigkeit zwischen den Zeilen von A mit einer Lösung 
von (H') gleichbedeutend ist, je größer die Lösungsgesamtheit 
von (H') ist. Es ist daher eine Eelation zwischen den Lö-
sungsrängen von (H) und (H') zu vermuten, die sich nach 
Satz 54 auch als Eelation zwischen den Maximalanzahlen 
linear unabhängiger Zeilen bzw. Spalten von A aussprechen 
lassen muß. Wir beweisen nun in der Tat die beiden folgenden 
Tatsachen: 

Satz 55. Die Maximalanzahl r linear unabhängiger Zeilen 
einer Matrix A ist gleich der Maximalanzahl r' linear unab-
hängiger Spalten von A. 

Satz 56. Zwischen den Lösungsrängen s eines homogenen 
linearen Gleichungssystems (H) von m Gleichungen und s' 
seines transponierten (H') von m' Gleichungen besteht die Re-
lation 

m + s = m' + s'. 
Dabei haben wir der Symmetrie halber ausnahmsweise m' für 

die sonst mit n bezeichnete Anzahl der Spalten geschrieben. 
Beweise. 1) (Satz 55) Es seien r und r' die im Satz genannten 

Maximalanzahlen für die (m, m')-reihige Matrix A. 
a) Ist A = 0, so ist die Aussage des Satzes trivial, da dann 

r = 0 und r' = 0 ist (vgl. Bemerkung 4 am Schluß von § 12). 
b) Ist A =)= 0, so dürfen wir ohne Einschränkung die Zeilen 

so geordnet annehmen, daß a X ) . . . , a r ein Maximalsystem 
linear unabhängiger Zeilen ist. Ist nun zunächst r < m, 
so sind nach Satz 38, a') [68] die letzten m — r Zeilen 
a r + 1 , . . . , am von den ersten r Zeilen d j , . . . , a r linear ab-
hängig, d. h. es bestehen m — r Relationen der Form 

T 

d) = Cijüi ( j ' = r + l , . . . , m) 
i= 1 

zwischen den Zeilen. Diese besagen, daß die m —r nach 
Satz 40 [68] linear unabhängigen Vektoren 

7 H a s s e , Höhere Algebra 
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( c r + l . l ! • • •> c r + l . r ' e> • • •> 

( Cmi i • . •) Cmr i 0 , . . 0 , e) 

Lösungen des 4 zugeordneten transponierten homogenen 
Gleichungssystems (H') sind. Nach Satz 54, angewandt auf 
(H'), ist somit der Lösungsrang m —r' von (H') mindestens 
m — r, d. h. m — r' S: m — r, also r' ^ r. Ist aber r = w, 
so gilt r' ^ r bereits nach Satz 41 [69], da die Spalten von 
A ja m-gliedrige Vektoren sind. Durch die entsprechenden 
Betrachtungen über die transponierte Matrix A' folgt ebenso 
r ^ f . Zusammen gilt also r = r'. 

2) (Satz 56) Nach Satz 54, 55 gilt s = m' — r,s' = m — r, 
d. h. m + s = m' + s' ( = m + m' — r). 

Durch Satz 55 wird die nach Satz 41 [69] richtige Tatsache, daß 
in einer (m, m')-reihigen Matrix A für die Maximalanzahl r linear 
unabhängiger Zeilen nicht nur r g m, sondern auch r g m' gilt, 
in helles Licht gestellt. Denn nach Satz 55 geht die „nicht-selbst-
verständliche" Ungleichung 0 g r ^ t n ' zwischen einer Zeilen-
und einer Spaltenanzahl in die „selbstverständliche" Ungleichung 
0 ¡¿ r ¡0, m zwischen zwei Spaltenanzahlen über. 

Durch Satz 56 wird der „Kreis" unserer Betrachtungen über 
(J), (H), (H') geschlossen: Durch Satz 49 [81] ist (J) mit (H), 
durch Satz 56 (H) mit (H') und durch Satz 51 [82], 53 (und deren 
Zusätze) (H') mit (J) verkettet. 

§ 14. Der Fall m = n 

Es ist für die Betrachtungen in IV und auch für die Anwen-
dungen von Interesse, die in Satz 49—56 [81—97] gewonnenen 
Resultate über Lösbarkeit und Lösungen linearer Gleichungs-
systeme auf den Fall zu spezialisieren, daß die Anzahl m der 
Gleichungen mit der Anzahl n der Unbekannten übereinstimmt, 
daß also A eine («, «)-reihige Matrix ist. Da aber nach den Resul-
taten des vorigen Paragraphen die Anzahlen m und n allein für die 
Lösungsgesamtheit von (H) (und damit nach Satz 49 [81] auch für 
die von (J)) so gut wie nichts besagen, vielmehr diese sich erst 
durch Hinzunahme der dortigen Anzahl r bestimmt, haben wir 
ohne eine feste Annahme über r keine besonderen Resultate zu 
erwarten. Wir wollen daher außer der Spezialisierung m = n noch 
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die weitere einführen, daß nur zwischen dem Grenzfall r = m = n 
und dem Fall 0 ^ r < m = « (ohne weitere Unterscheidungen 
im letzteren Falle) unterschieden wird1). 

Wir treffen demgemäß, vorläufig nur der kürzeren Ausdrucks-
weise halber, die folgende, erst durch die Entwicklungen in IV in 
ihrer vollen Bedeutung verständlich werdende Festsetzung: 

Definition 32. Eine (n, n)-reihige Matrix A heiße regulär oder 
singulär, je nachdem, ob für sie der Fall r — n oder der Fall 
0 si r < w vorliegt, wo r die Bedeutung aus §§ 12, 13 hat. 

Der in Satz 54—56 [93—97] enthaltene Tatsachenkomplex 
über (H) liefert dann hier, zusammengefaßt, unmittelbar fol-
gendes Resultat: 

Satz (54, 55, 56) a. IstA eine (w, n)-reihige Matrix, so sind ent-
weder sowohl ihre Zeilen als auch ihre Spalten linear unabhängig 
oder sowohl ihre Zeilen als auch ihre Spalten linear abhängig, d. h. 
es sind die A zugehörigen Qleichungssysteme (H) und (H') entweder 
beide unlösbar oder beide lösbar, und zwar gilt das erstere oder das 
letztere, je nachdem, A regulär oder singulär ist. 

Ferner liefert der in Satz 49 [81], 51 [82], 53 [92] enthaltene 
Tatsachenkomplex über (J) hier, zusammengefaßt, folgendes Re-
sultat : 

Satz (49,51,53) a. Das Gleichungssystem (J) mit (n, n)-reihiger 
Matrix A ist genau dann für jeden beliebigen Vektor a rechts und 
genau dann sogar eindeutig lösbar, wenn A regulär ist. 

Beweis, a) Es sei A regulär. 
1. Dann ist (J) nach Satz 53 [92] für beliebiges a lösbar, weil 

(H') nach Satz (54, 55, 56) a unlösbar ist, also die einschränkende 
Bedingung von Satz 51 (Zusätze) [83] für a fortfällt. 

2. Ferner ist dann (J) nach Satz 49 [81] eindeutig auflösbar, 
weil (H) nach Satz (54, 55, 56) a unlösbar ist. 

b) Es sei A singulär. 
1. Dann existiert nach Satz (54, 55, 56)a eine Lösung j'(=f= 0) 

von (H'). Ist darin =|= 0, also %'ti = x- 4= 0, so ist (J) nach 
Satz 51, Zusatz 1 [83] für den Vektor a = ej unlösbar, also nicht 
für jeden beliebigen Vektor a lösbar. 

2. Ferner ist (J) nach Satz 49 [81], wenn überhaupt, dann nicht 
eindeutig lösbar, weil (H) nach Satz (54, 55, 56) a lösbar ist. 

1) Der andere Grenzfall r — 0 verlohnt seiner Trivialität halber keiner be-
sonderen Hervorhebung. 

7 * 
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Die beiden erhaltenen Sätze ergeben noch durch Elimination 
der A l t e r n a t i v e (d. h. der k o n t r a d i k t o r i s c h entgegengesetzten 
Aussagen) , ,A ist regulär" oder ,,A ist singulär": 

Zusatz. Es besteht die A l t e r n a t i v e : Entweder ist (J) einschrän-
kungslos und eindeutig lösbar, oder es sind (H) und (H') lösbar. 

Für den ersten Fall dieser Alternative, d. h. für reguläres A, 
können wir schließlich eine über die Resultate von § 13 hinaus-
gehende, elegante Aussage betreffend die Abhängigkeit der dann 
stets vorhandenen, eindeutig bestimmten Lösung j von (J) von 
dem rechtsstehenden Vektor a machen. Wir bezeichnen in diesem 
Zusammenhang a mit j* und beweisen: 

Satz 57. Ist A = (atjc) eine (n, n)-rdhige reguläre Matrix, so 
existiert eine eindeutig bestimmte (n, n)-reihige Matrix A* derart, 
daß die stets vorhandene und eindeutig bestimmte Lösung j des 
Gleichungssystems 

n 
(J) JS<HkXk = x\ (i = 1, . . ., n) 

k = 1 
mit der Matrix A in ihrer Abhängigkeit von den rechtsstehenden x\ 
durch die Formeln 

(3*) 2 ? o & * f = »« (» = 1 «) 
i-= l 

mit der Matrix A* gegeben wird. A* ist ebenfalls regulär, und es gilt 
(4*)* = A, d. h. das den Formeln (Q*) entsprechende Gleichungs-
system 

n 
(J*) j ; a*h x% = xi (i = 1 , . . ., n) 

k = 1 
mit der Matrix A* für die Unbekannten x% mit den rechten Seiten 
Xi wird durch die dem Gleichungssystem (J) entsprechenden Formeln 

n 
(3) ¿jaikxk = X* (»' = 1, . . ., n) 

k = 1 
mit der Matrix A gelöst. 

Beweis1). a) Sind die n Vektoren a*k = (a*k,..., ajj.) die Lösun-
gen von (J) für die speziellen rechten Seiten e^ (k = 1, . . . , n), so 

*) Der Leser setze in diesem Beweise, wie im Satz geschehen, zum besseren 
Verständnis des Zusammenhangs vor jedes (J), (J*) das Wort G l e i c h u n g s -
s y s t e m , vor jedes (£f), (0*) das Wort F o r m e l n . 
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folgt nach Satz 47 [76] sofort, daß das lineare Kompositum 
n 

E = £ x % a*k einei a ls° die Lösung von (J) für das entsprechende 
k = 1 n 

lineare Kompositum £* = £ x t tk ist. Die Darstellung von j 
k= 1 

durch die a*t geht aber, ausführlich geschrieben, in (Q*) über. 
Es existiert daher eine (n, n)-reihige Matrix A* mit der im ersten 
Teil des Satzes genannten Eigenschaft. 

b) Ist A* = (flijc) eine weitere Matrix mit dieser Eigenschaft, 
so daß also (Q*) und das mit A* gebildete (g*) für alle £* jeweils 
dasselbe j rechts liefern, so folgt speziell für £* = e^, daß die fc-ten 
Spalten ä*ic und a i s von A * u n d 4 * übereinstimmen (/c = 1, ...,w), 
und daraus A* = A*, d. h. die eindeutige Bestimmtheit von A* 
durch die im ersten Teil des Satzes genannte Eigenschaft. 

c) Wird umgekehrt j irgendwie gewählt und j* dazu so be-
stimmt, daß (Q) besteht, so muß nach a) auch (Q*) bestehen (weil 
eben dann j die Lösung von (J) für das so bestimmte j* ist). 
Anders ausgedrückt, es liefert (Q) für jedes beliebige j eine Lösung 
von (J*). Dessen Matrix A* ist also nach Satz (49, 51, 53)a regu-
lär, und ferner (X*)* = A. 

Im Hinblick auf die charakteristische Eigenschaft der Matrix 
A* aus Satz 57 definieren wir noch: 

Definition 33. Die nach Satz 57 durch eine (n, n)-reihige reguläre 
Matrix A eindeutig bestimmte Matrix A* heißt die l ö s e n d e Ma-
t r i x von A. 

§ 15. Die Tragweite der determinantenfreien 
linearen Algebra 

Durch die Resultate aus §§ 11—13 haben wir die Aufgabe der 
linearen Algebra § 5, (1) in theoretischer wie praktischer Hinsicht 
vollständig gelöst. 

In t h e o r e t i s c h e r Hinsicht haben wir für das Gleichungssystem 
(J) eine notwendige und hinreichende Lösbarkeitsbedingung 
(Satz 51 [82], 53 [92]) sowie eine genaue Kenntnis der Struktur 
der Lösungsgesamtheit (Satz 49 [81] verbunden mit Satz 50 [81], 
54 [93]) gewonnen. 

In p r a k t i s c h er Hinsicht haben wir aus endlich vielen Schritten 
bestehende, konstruktive Verfahren zur Entscheidung über die 
Lösbarkeit (Beweis von Satz 52 [85], Zusatz zu Satz 53 [93]) 
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sowie zur Bestimmung der Lösungsgesamtheit (Beweis von Satz 52 
[85], 53 [92], 54 [93]) des Gleichungssystems (J) entwickelt. 

Diese Bemerkungen beziehen sich auch auf den in § 14 behan-
delten Spezialfall. Insbesondere wird über die dortige Alternative 
dadurch entschieden, ob das Transformationsverfahren aus § 12 
erst nach n Schritten oder schon früher zum Abschluß kommt, 
und die n Spalten der lösenden Matrix werden durch Auflösung 
der speziellen Gleichungssysteme (J) mit den n Einheitsvektoren 
als rechten Seiten gewonnen. 

Trotz aller dieser Errungenschaften bleibt in theoretischer 
wie praktischer Hinsicht noch etwas zu wünschen übrig. 

In t h e o r e t i s c h e r Hinsicht ist der Beweis von Satz 55 [97] 
insofern unbefriedigend, als er keine tiefere Einsicht in den wahren 
Grund für das Übereinstimmen der Maximalanzahlen linear unab-
hängiger Zeilen und Spalten einer Matrix liefert. Man würde sich 
eine neue, in den Zeilen und Spalten symmetrische Definition 
dieser Anzahl wünschen, aus der sich ihre beiden bisherigen Be-
deutungen durch ein und dieselbe Schlußweise folgern lassen. 

In p r a k t i s c h e r Hinsicht sind die entwickelten Verfahren inso-
fern unbefriedigend, als sie mit Willkürlichkeiten behaftet sind 
und weder die Lösbarkeitsentscheidung noch die Lösungsgesamt-
heit in geschlossener Form liefern. Man würde sich dafür Formeln 
wünschen, die nur aus den Koeffizienten und rechten Seiten des 
Gleichungssystems in einheitlicher Form aufgebaut sind. 

Diese Wünsche werden nun durch die Determinantenlehre 
erfüllt. 

Der Grund, weswegen wir hier, von dem bis zur ersten Auflage 
dieses Bändchens fast immer üblichen Wege abweichend, nicht 
von vornherein diese Determinantenlehre zur Herleitung aller bis-
herigen Resultate verwendet haben, ist ein doppelter. Einerseits 
erscheint bei der eben angedeuteten Behandlungsart der an die 
Spitze gestellte Determinantenbegriff als etwas Fremdartiges, in 
gar keiner Beziehung zu dem zu lösenden Problem Stehendes, so 
daß die mit ihm gewonnenen Resultate überraschend wirken und 
aus ihrem Sinnzusammenhang gelöst erscheinen, während die von 
uns eingeschlagene Methode dem Problem durchaus angepaßt ist 
und die Zusammenhangsfäden zwischen den Sätzen 49—-56 in 
voller Klarheit hervortreten läßt. Andererseits aber hat der ent-
wickelte d e t e r m i n a n t e n f r e i e S ä t z e k o m p l e x der l i n e a r e n 
A l g e b r a in neuerer Zeit ein besonderes Interesse gewonnen, da er 
allein es ist, der sich mit allen seinen Beweisen fast wörtlich auf 
die entsprechenden Probleme für u n e n d l i c h v i e l e G l e i c h u n g e n 
m i t u n e n d l i c h v i e l e n U n b e k a n n t e n und auf die damit eng 
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zusammenhängende Theorie der l inearen I n t e g r a l g l e i c h u n -
gen übertragen läßt, während der Begriff der Determinante sich 
dort, abgesehen von Spezialfällen, als zu eng erweist. Im übrigen 
ist die Schönheit und Geschlossenheit der determinantenfreien 
Theorie, wie sie vorstehend entwickelt wurde, Rechtfertigung 
genug für ihre gesonderte Behandlung. 

IY. Lineare Algebra mit Determinanten 
§ 16. Permutationsgruppen 

In den Beweisen des vorigen Abschnitts haben wir mehr-
fach Umordnungen der Zeilen oder Spalten einer Matrix 
vorgenommen. Der in diesem Abschnitt einzuführende 
Determinantenbegriff beruht nun in sachlicher Hinsicht auf 
solchen Umordnungen, oder genauer auf gewissen dabei 
vorliegenden Verhältnissen. Wir müssen uns daher, ehe wir 
an die Entwicklung der Determinantenlehre gehen, zuvor 
mit diesen Verhältnissen vertraut machen. 

Der Begriff Umordnung oder Permutation ist rein mengen-
theoretisch. E r geht davon aus, daß jede Menge zu sich 
selbst gleichmächtig ist [§ 2, (II)], also sich zum mindesten 
auf eine Weise eineindeutig sich selbst zuordnen läßt (in-
dem nämlich jedes Element sich selbst zugeordnet wird), 
und entsteht durch Betrachtung i r g e n d e i n e r derartigen 
Zuordnung: 

Definition 34. Unter einer P e r m u t a t i o n einer Menge M 
versteht man irgendeine eineindeutige Zuordnung mit be-
stimmter Zuordnungsrichtung von M zu sich selbst, unter A u s -
f ü h r u n g oder A n w e n d u n g der Permutation das Ersetzen 
der Elemente von M durch die ihnen zugeordneten. 

Wir unterscheiden Permutationen nach Def. 34 sinngemäß ver-
möge der ihnen zugrunde liegenden Zuordnungen unter Berück-
sichtigung der Zuordnungsrichtung, nennen also zwei Permuta-
tionen dann und nur dann gleich, wenn jedem Element bei beiden 
dasselbe Element zugeordnet ist. Natürlich können wir zur ein-
deutigen Beschreibung einer Permutation sowohl die Mitteilung 
der sämtlichen Zuordnungen als auch die der sämtlichen, bei ihrer 


