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Es ist für die moderne Entwicklung der Algebra charakte-
ristisch, daß die oben genannten Hilfsmittel zu selbständigen um-
fangreichen Theorien Anlaß gegeben haben, die gegenüber der 
vorstehend angeführten Grundaufgabe der k lass ischen Algebra 
immer mehr in den Mittelpunkt des Interesses getreten sind. So 
ist denn in moderner Auffassung die Algebra nicht mehr bloß die 
Lehre von der Auflösung der Gleichungen, sondern die Lehre 
von den fo rma len Rechenbere ichen , wie Körpern, Gruppen 
u.a., und ihre H a u p t a u f g a b e ist die Gewinnung von Einsichten 
in die S t r u k t u r solcher Bereiche (siehe dazu S. 24). Im be-
schränkten Rahmen der vorliegenden Bändchen ist es uns jedoch 
nicht möglich, diesen allgemeineren, modernen Gesichtspunkt in 
den Vordergrund zu stellen. Wir nehmen daher die vorstehend aus-
gesprochene Grundaufgabe der klassischen Algebra als wegwei-
senden Leitfaden und abgrenzenden Rahmen für unsere Dar-
legungen, werden aber dabei in der Tat, vor allem in 2, auch zu 
strukturellen Aussagen im Sinne der modernen Algebra geführt 
werden. 

I. Ringe, Körper, Integritätsbereiche 
§ 1. Definition der Hinge, Körper, Integritätsbereiche 
Als das formal-charakteristische, von der inhaltlichen Be-

deutung der Zeichen als Zahlen befreite an den drei elemen-
taren Rechenoperationen Addition, Substraktion, Multipli-
kation — die vierte, Division, ziehen wir erst später hinzu — 
ist folgender Tatbestand anzusehen: 

(a) Es liegt eine Menge B von unterschiedenen Ele-
menten in irgendeiner endlichen Anzahl (mindestens zwei) 
oder in unendlicher Anzahl vor. 

Wir verwenden Buchstaben a,b,... und kompliziertere 
Zeichen (z. B. die späterhin erklärten Zeichen a + b, ab,...), 
um die Resultate logischer Setzungen von Elementen aus B 
mitzuteilen, und sagen dann auch einfach, a,l,... seien 
Elemente aus B. Auf Grund der in (a) geforderten Unter-
schiedenheit steht für je zwei solche logische Setzungen 
a, b fest, ob es sich um dasselbe oder um verschiedene Ele-
mente aus B handelt, was wir durch die Bezeichnungen 
a = b bzw. a + 6 angeben. 
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(b) Für je zwei in bestimmter Reihenfolge gegebene, nicht 
notwendig verschiedene Elemente a, b aus B sind zwei V e r -
k n ü p f u n g e n definiert, d. h. jedem geordneten Elementpaar 
a, b aus B ist irgendwie ein Element c (erste Verknüpfung) und 
ein Element d (zweite Verknüpfung) aus B zugeordnet. 

(а) und (b) sind z. B . realisiert, wenn B die Menge aller 
geraden, oder aller ganzen, oder aller rationalen, oder aller 
reellen, oder aller komplexen Zahlen, oder aller positiven von 
einer dieser Zahlsorten (mit Ausnahme der letztgenannten) 
ist und als Verknüpfungen die Addition (c = a -f- 6) und 
Multiplikation (d = ab) gewählt werden. In Anlehnung an 
diese als Ausgangspunkt unserer Abstraktion anzusehenden 
Spezialfälle wollen wir die beiden Verknüpfungen in (b) 
auch allgemein Addition und Multiplikation, die dem Paar 
a, b zugeordneten Elemente c und d Summe und Produkt 
nennen und c = a b, d = ab schreiben, obwohl natürlich 
die rein formale Forderung (b) (und ebenso auch die gleich 
folgende Forderung (c) an unsere Verknüpfungen) keinerlei 
Anlaß zu der inhaltlichen Annahme gibt, daß diese Ver-
knüpfungen, wenn B eine Zahlenmenge ist, mit der gewöhn-
lichen Addition und Multiplikation übereinstimmen. 

(c) Die in (b) genannten beiden Verknüpfungen genügen für 
beliebige Elemente aus B den Gesetzen: 

(1) a + b = b + a, (2) ab = ba 
( k o m m u t a t i v e s G e s e t z ) ; 

(3) (a + b) + c = a + (6 + c), (4) (ab)e = a{bc) 
( a s s o z i a t i v e s G e s e t z ) ; 

(5) (a + b) c = ac + bc 
( d i s t r i b u t i v e s G e s e t z ) ; 

(б) Zu jedem geordneten Elementpaar a, c aus B existiert 
ein eindeutig bestimmtes Element b aus B derart, daß 
a+b = c ist 

( G e s e t z der u n b e s c h r ä n k t e n und e i n d e u t i g e n 
S u b t r a k t i o n ) . 
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Wie schon in der beigefügten Benennung des Gesetzes (6) 
zum Ausdruck gebracht ist, bezeichnet man die nach (6) in 
B unbeschränkt und eindeutig ausführbare Operation der 
Bestimmung von b aus a -f- b = c als Subtraktion und führt 
daher in sinngemäßer Fortsetzung der unter (b) verwendeten 
Terminologie die Bezeichnung b = c — a (Differenz) ein. 

Definition 1. Wenn für eine Menge B die unter (a), (b), (c) 
aufgeführten Tatsachen realisiert sind, heißt B ein R ing be-
züglich der Verknüpfungen (b). 

Den letzten Zusatz muß man machen, weil eine Menge B 
ä priori bezüglich je zweier verschiedenartig erklärter Verknüp-
fungen, also in mehrfacher Weise Ring sein kann (siehe dazu 
3,1, § 1, Aufg. 4, 5). Unter einem Ring B schlechthin versteht man 
immer die Menge B mit Einschluß der für sie definierten Ver-
knüpfungen. — Wir bezeichnen Ringe stets mit großen griechi-
schen, Elemente aus Ringen mit kleinen lateinischen oder grie-
chischen Buchstaben1). 

Wir beweisen nun zunächst einige in Ringen gültige Tat-
sachen. 

Satz 1. In jedem Ring B existiert ein eindeutig bestimmtes 
Element 0, das N u l l e l e m e n t oder Nu l l von B heißt, mit der 
Eigenschaft 

a + 0 = a für alle a aus B. 
Beweis. Nach (6) existieren in B zu den Elementen a,b, ... 

von B je die Differenzen a — a,b — b,b — a,.. ., für die 
nach ihrer Erklärung gilt 

a + (a — a) = a, b + (b — b) = b, a + (6 — a) = b,.... 
Vermöge der ersten und dritten dieser Relationen hat 

man, nun unter Beachtung von (1) und (3), 
6 + (a — a) = [a + (b — a)] + (« — «) 

= [a + (« — + (& — a) = a + (& — a) = 
Der Vergleich mit der zweiten jener Relationen ergibt dann, 
zufolge der Eindeutigkeit in (6), 

a — a = b —b. 
*) Die Buchstaben i, k, l, m, n, pt q, r, s; i, x, )., v, q, a behalten wir 

jedoch für gewöhnliche ganze Zahlen, z. B. Indizes und Exponenten, vor. 
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Also sind alle Differenzen a — a,b — b,... dasselbe Ele-
ment 0 von B. Dieses hat die im Satz genannte Eigenschaft 
und ist nach (6) sogar schon durch eine einzige der Forde-
rungen a -f- 0 = a eindeutig bestimmt. 

Satz 2. Es gilt Oc = 0 für jedes c aus B. 
Beweis. Nach (5) und Satz 1 ist für beliebiges c aus B 

Oc = (0 + 0) c = Oc + Oc, 
also nach (6) und Satz 1 schließlich Oc = 0. 

Wir ziehen jetzt die bisher noch unberücksichtigte Divi-
sion in den Kreis unserer Betrachtungen, indem wir den 
unter (c) genannten Forderungen (1)—(6) noch die folgende 
anreihen: 

(7) Zu jedem, geordneten Elementpaar a, c aus B, in dem 
« + 0 ist, existiert ein eindeutig bestimmtes Element b aus B 
derart, daß ab = c ist 

(Gesetz der u n b e s c h r ä n k t e n und e i n d e u t i g e n 
Division). 

Analog wie oben bei der Subtraktion bezeichnet man auch 
hier, wenn (7) in B erfüllt ist, die in B bis auf die Einschrän-
kung a 4= 0 unbeschränkt und eindeutig ausführbare Ope-
ration der Bestimmung von b aus ab = c als Division und 

führt die Bezeichnung b = — (Quotient) ein. 
a 

Die in (7) gemachte Einschränkung a 4= 0 ist keine willkür-
liche Festsetzung, sondern notwendig, wenn (a), (b), (c) und (7) 
widerspruchsfrei nebeneinander bestehen sollen. Ohne diese Ein-
schränkung folgte nämlich, wenn c ein beliebiges Element aus B 
ist, aus der Existenz eines b, so daß Ob = c ist, nach Satz 2, daß 
c = 0 wäre. Es enthielte also B nur das eine Element 0 im Wider-
spruch zu (a). Betreffs der hierdurch nahegelegten Frage, ob die 
Forderungen (a), (b), (c), (7) in der vorliegenden Gestalt wider-
spruchsfrei sind, sei bemerkt , daß ein Widerspruch in (a), (b), (c), 
(7) einen Widerspruch im System der rationalen Zahlen zur Folge 
hät te , das ja allen jenen Forderungen genügt. 

Es sei noch bemerkt , daß die in der Einschränkung a 4= 0 in 
(7) bestehende Unsymmetrie der sonst bezüglich Addition und 
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Multiplikation symmetrischen Tafel der Forderungen (1) und (2), 
(3) und (4), (6) und (7) natürlich auf die Unsymmetrie des einzigen 
beide Operationen verbindenden Gesetzes (5) zurückgehen muß, 
wie ja auch die obige Begründung jener Einschränkung (Beweis 
von Satz 2) zeigt. 

Definition 2. Gilt in einem Ringe B außer (a), (b), (e) 
auch noch (7), so heißt B ein K ö r p e r bezüglich der Verknüp-
fungen (b). 

Analog zu Satz 1 gilt in Körpern außerdem: 
Satz 3. In jedem Körper K existiert ein eindeutig be-

stimmtes Element e =f= 0, das E i n s e l e m e n t oder E i n s von 
K heißt, mit der Eigenschaft 

ae = a für alle a aus K. 

Beweis. Der Beweis wird, zunächst für die wegen (a) sicher 
vorhandenen « 4 = 0 aus K, unter Verwendung von (7) statt 
(6) ganz analog wie bei S a t z l geführt. Daß ferner ae = a 
auch für a = 0 gilt, ist nach Satz 2 klar. Aus e = 0 schließ-
lich würde folgen a = ae = «0 = 0 für jedes a aus K, im 
Widerspruch zu (a). 

Außer Ringen und Körpern braucht man in der Algebra 
noch einen weiteren derartigen Begriff, der logisch zwischen 
jenen beiden steht, den des Integritätsbereiches. Dieser ent-
steht aus dem Ringbegriff, wenn man nur einen Teil der zum 
Körperbegriff führenden Zusatzforderung (7) stellt, nämlich 
aus dieser einerseits die unbeschränkte Existenz des Quo-
tienten wegläßt, also nur die Eindeutigkeit der Division, 
falls sie überhaupt ausführbar ist, fordert: 

(7a) Aus ab = ab' und a =4= 0 folgt b — b' ( E i n d e u t i g -
k e i t de r Div is ion) , 
andererseits aber doch die Existenz der speziellen Quotienten 

—, , . . . , wo a, b,... 4= 0 sind, fordert, was nach dem Vor-
a b 

hergehenden auf die Forderung der Gültigkeit des Analogons 
zu Satz 3 hinausläuft: 
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(7 b) Es existiert ein Element e in B derart, daß ae = a für 
alle a aus B ist (Ex i s t enz des E inse l emen te s ) . 

Definition 3. Gelten in einem Ringe B außer (a), (b), (c) 
auch noch (7 a) und (7b), so heißt B ein I n t e g r i t ä t s b e r e i c h 
bezüglich der Verknüpfungen (b). 

Jeder Körper ist ein Integritätsbereich, weil ja (7 a) und 
(7 b) aus (7) gefolgert werden können, und jeder Integritäts-
bereich ist nach Def. 3 ein Ring. 

Ringe, Körper, Integritätsbereiche nennen wir auch ge-
meinsam Bereiche1) und die in ihnen erklärten Verknüp-
fungen Addition, Substraktion, Multiplikation, ev. Division 
die drei ersten bzw. vier elementaren Rechenoperationen. 

In Integritätsbereichen (also speziell in Körpern), die uns 
im folgenden hauptsächlich interessieren werden, gilt auch 
die Umkehrung von Satz 2: 

Satz 4. Ist das Produkt zweier Elemente eines Integritäts-
bereiches Null, so ist mindestens einer der Faktoren Null, d. h. 
aus ab = 0, a=|= 0 folgt 6 = 0 . 

Beweis. Sei ab = 0, a 4= 0. Da nach Satz 2 aO = 0, also 
hier ab = aO ist, folgt nach (7a) b = 0. 

Das Bestehen von Satz 4 ist übrigens nicht nur, wie eben 
gezeigt, Folge aus (7 a), sondern auch umgekehrt. Denn gilt 
das Analogon zu Satz 4 in einem Ringe und besteht für ein 
a 4= 0 die Gleichung ab = ab', d. h. a(b — b') = 0, so folgt 
l—V = 0 , d .h . b = V. 

Zusatz zu Definition 3. Man kann die Forderungen (7 a), 
(7 b) der Def. 3 auch durch die Forderungen ersetzen, daß die 
Analoga zu Satz 3 und Satz 4 in B gelten sollen. 

Es bedarf wohl nur des Hinweises, daß aus den Gesetzen (a), 
(b), (c) für Ringe alle allgemeinen Rechenregeln der elementaren 
Algebra für die Addition, Subtraktion und Multiplikation, insbe-
sondere die sog. Klammerauflösungsformeln, und, wenn man (7) 
hinzunimmt, auch die allgemeinen Formeln der Bruchrechnung 

') B e r e i c h bedeutet zwar hiernach dasselbe wie R i n g ; jedoch ist der 
neutrale Ausdruck B e r e i c h im angegebenen Sinne geläufiger, während man 
H i n g gewöhnlich nur dort anwendet, wo wirklich kein Integritätsbereich 
vorliegt. 
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durch einfache Schlüsse hergeleitet werden können. Die nähere 
Ausführung darf dem Leser überlassen bleiben. 

Man verwendet beim Rechnen in einem Bereich B zweckmäßig 
folgende abkürzenden Bezeichnungen: 

— a f ü r 0 — a, 
. . . , (— 2)a, (— 1) a, Oa, 1 a, 2a, . . . für . . . — (a + ä), — a, 0, o, 
a + a,. .. (ganze Vielfache von ä), 

. . . , a~2 , a - 1 , a°, a1, a2, . . . fü r . . . , - — , — , e, a, aa, . . . 
aa a 

(ganze Potenzen von a) 

( a - 1 , a - 2 , . . . natürlich nur, soweit eindeutig erklärt, also z. B. 
wenn B ein Körper und a 4= 0 ist). Aus (1)—(7) und Satz 1—4 
ergeben sich dann mittels der Definition der Rechenoperationen 
im Bereich der ganzen Zahlen leicht die Tatsachen 

(m + n) a = m a + n a, am + n = am an, (am)n — amn, 
(m n)e = (rae) (n e), em = e, mO = 0, 0 m = 0 

für ganze Zahlen m, n, soweit die darin vorkommenden Elemente 
einen eindeutigen Sinn auf Grund des Vorhergehenden haben. 

Beispiele 
1. Auf Grund der vorstehenden Ausführungen dürfen wir als 

aus den Elementen bekannt hinstellen: 

S a t z ö - D i e { ¡ Z 2 u n } Z M ™ 

bilden einen j ^ j , wenn als Verknüpfungen 

die gewöhnliche Addition und Multiplikation zugrunde gelegt werden. 
Die Zählen 0 und 1 sind Null- und Einselement von V und P. 

2. Ferner bilden auch alle reellen, sowie auch alle komplexen 
Zahlen einen Körper bezüglich der gewöhnlichen Addition und 
Multiplikation. 

3. Die geraden Zahlen bilden einen Ring, aber keinen Integri-
tätsbereich, weil f ü r sie (7 b) nicht gilt. Ringe, in denen (7 b) gilt, 
aber (7 a) nicht, werden wir in 2, § 2 kennenlernen. Als Beispiel 
eines Integritätsbereiches, der kein Körper ist, dient schon 

4. Der folgende Körper mag als Beispiel einerseits f ü r einen 
solchen genannt werden, dessen Elemente keine Zahlen sind, 
andererseits fü r einen mit nur endlich vielen Elementen: 
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Für zwei Elemente 0 und e werden zwei Verknüpfungsopera-
tionen durch die Festsetzungen 

0 + 0 = 0 00 = 0 
0 + e = e + 0 = e 0e = eO = 0 
e + e = 0 e e = e 

erklärt. Man bestätigt leicht die Richtigkeit von (1)—(7). Wir 
haben also einen Körper, der lediglich aus seinem Null- und Eins-
element besteht. Daß dieser Körper kein uninteressanter Aus-
nahmefall ist, zeigen die Ergebnisse von 2, § 20, wonach endliche 
Körper existieren, deren Elementzahl eine beliebige Primzahl-
potenz ist. Siehe auch schon § 2, Beispiel 5 [25]. 

§ 2. Teilbereiche, Kongruenzrelationen, Isomorphie 

In § 1 wird mit der Forderung (a) von einer Menge u n t e r -
schiedener E l e m e n t e , der G r u n d g e g e b e n h e i t der 
Mengenlehre, ausgegangen, die dann durch Hinzunahme der 
Forderungen (b), (c) usw. zu der G r u n d g e g e b e n h e i t der 
Algebra d. h. zum Bereich, wird. Es ist daher verständlich, 
daß für das Studium unserer Bereiche u. a. auch Begriffe und 
Tatsachen heranzuziehen sind, die allein aus (a) folgen, also 
der Mengenlehre angehören, und von denen dann zu unter-
suchen ist, wie sie bei Hinzunahme von (b), (c) usw. für das 
Studium von Bereichen nutzbar gemacht werden können. 
Wir müssen uns hier darauf beschränken, die heranzuzie-
henden mengentheoretischen Grundlagen vom sog. na iven 
S t a n d p u n k t aus kurz zusammenzustellen, ohne auf die in 
neuerer Zeit durch die Paradoxien der Mengenlehre ent-
standenen begrifflichen Schwierigkeiten einzugehen, die man 
durch ein entsprechendes ax ioma t i s ches Vorgehen be-
heben kann, wie es in § 1 für Bereiche, gestützt auf den Men-
genbegriff, durchgeführt wurde. Wir verzichten also ins-
besondere auf eine naiv nicht in befriedigender Weise zu 
gebende Präzisierung des Begriffs der Menge. 

1. Teilmengen 
Es sei M eine Menge, worunter wir stets, wie in § 1, (a), eine 

M e n g e u n t e r s c h i e d e n e r E l e m e n t e verstehen. Eine Menge 
heißt Teilmenge von M oder in M enthalten, wenn jedes Element 
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von Mj auch in M vorkommt. Wir rechnen die Menge M selbst, 
sowie die kein Element enthaltende leere Menge (Nullmenge) eben-
falls als Teilmengen von M. Alle anderen Teilmengen von M heißen 
echt oder eigentlich. 

Liegen Teilmengen Mj, M 2 , . . . einer Menge M in irgendeiner 
endlichen oder unendlichen Anzahl vor, so gibt es dazu zwei be-
st immte Teilmengen von M, ihren Durchschnitt A und ihre Ver-
einigungsmenge E. Der Durchschnit t A besteht aus allen und nur 
den Elementen von M, die s o w o h l in a l s a u c h in M 2 , . . . 
enthalten sind. Er kann auch die Nullmenge sein. Die Vereini-
gungsmenge E besteht aus allen und nur den Elementen von M, 
die e n t w e d e r in M t o d e r in M 2 , . . . enthalten sind. E läßt sich 
auch erklären als Durchschnit t aller M1; M 2 , . . . enthaltenden 
Teilmengen von M und ist in diesem Sinne die e n g s t e M 2 , . . . 
enthaltende Teilmenge von M. Ebenso läßt sich A erklären als 
Vereinigungsmenge aller in Mj, M 2 , . . . enthaltenen Teilmengen 
von M und ist in diesem Sinne die w e i t e s t e in M 2 , . . . ent-
haltene Teilmenge von M. 

2. Äquivalenzrelationen und Klasseneinteilungen 
Für die Algebra von besonderer Wichtigkeit sind Zerlegungen 

einer Menge M in e l e m e n t f r e m d e Teilmengen, d. h. Darstellun-
gen von M als Vereinigungsmenge von Teilmengen, von denen je 
zwei die Nullmenge zum Durchschnit t haben. S o l c h e Z e r l e -
g u n g e n v o n M n e n n e n w i r Klasseneinteilungen von M u n d d i e 
b e t r . T e i l m e n g e n a u c h Klassen. Liegt eine solche Klassenein-
teilung vor, und setzt man zwischen je zwei in best immter Reihen-
folge gegebene Elemente a, 6 aus M das Zeichen •—• oder das 
Zeichen <-{«< je nachdem a in derselben Teilmenge wie b vorkommt 
oder nicht, so bestehen offenbar die Tatsachen: 

(a) a ~ a (Gesetz der R e f l e x i v i t ä t ) , 
(ß) aus ar^j b folgt a (Gesetz der S y m m e t r i e ) , 
(y) aus a < ~ b, c folgt c (Gesetz der T r a n s i t i v i t ä t ) . 

Für das Bestehen dieser Tatsachen, gleichgültig welche B e -
d e u t u n g dabei den Zeichen *~~> zukommt, führen wir eine 
besondere Ausdrucksweise ein: 

(I) Wenn zwischen je zwei in bestimmter Reihenfolge gegebene 
Elemente von M eines und nur eines von zwei Zeichen • — i n 
solcher Weise gesetzt ist, daß die Bedingungen (a), (ß), (y) bestehen, 
so sagt man, daß eine Ä q u i v a l e n z r e l a t i o n ~ in M erklärt sei. 
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Es gilt dann also: 
(A) Jede Klasseneinteilung von M führt zu einer Äquivalenz-

relation in M, indem zwischen Elemente aus einer Klassen, zwischen 
Elemente aus verschiedenen Klassen gesetzt wird. 

Nicht nur in der Algebra, sondern in fast jeder mathematischen 
Disziplin hat man außerordentlich häufig die Umkehrung dieser 
Tatsache zu benutzen, die wir daher hier ausführlich begründen 
wollen. 

(B) Jede Äquivalenzrelation in M entspringt gemäß (A) aus einer 
und nur einer Klasseneinteilung von M. 

Beweis, a) Wenn eine Äquivalenzrelation in M vorliegt, so kann 
eine Teilmenge Mx von M die Eigenschaft E haben, daß ein Ele-
ment c aus M derart existiert, daß Mx aus allen und nur den Ele-
menten d von M besteht, für die c ~ d ist. Wir nennen dann für 
den Augenblick Mx eine E-Teilmenge von M, die durch c erzeugt 
ist. Jedes Element c aus M erzeugt eine B-Teilmenge, aber natür-
lich kann dieselbe JB-Teilmenge i. a. durch verschiedene Elemente 
erzeugt sein. Wir betrachten nun die sämtlichen E-Teilmengen 
von M und zeigen, daß diese die Klassen einer Klasseneinteilung 
von M sind, aus der die betrachtete Äquivalenzrelation im Sinne 
von (A) entspringt. 

Erstens sind verschiedene ^-Teilmengen Mx, M2 von M element-
fremd. Wäre nämlich das Element a in Mi und M2 enthalten, und 
ist Mj durch Cj, M2 durch c2 erzeugt, so wäre a, c 2 ~ a, also 
nach (ß), (y) auch c2. Ist dann ein Element aus Mt, d2 ein 
Element aus M2, also dlt c 2 ~ d2, so folgte wiederum aus (ß), 
(y) auch d2, c 2 ~ dv so daß d2 auch in M^ d1 auch in M2 ent-
halten wäre. Es wären also dann gegen die Annahme Mx und M2 
identisch. 

Zweitens ist die Vereinigungsmenge aller E-Teilmengen die 
Menge M, d. h. jedes Element a aus M kommt wirklich in einer 
E-Teilmenge vor. Denn nach (a) kommt a in der durch a erzeugten 
E-Teilmenge vor. 

Hiernach sind also die E-Teilmengen von M die Klassen einer 
Klasseneinteilung von M. Daß die betrachtete Äquivalenzrelation 
im Sinne von (A) aus ihr entspringt, folgt so: 

Erstens steht zwischen zwei Elementen a, b derselben B-Teil-
menge Mj das Zeichen Denn ist Mx durch c erzeugt, so ist 
e ~ a, c<~ b, also nach (ß), (y) auch b. 

Zweitens steht zwischen zwei Elementen a, b verschiedener 
E-Teilmengen Mj, M2 von M das Zeichen r^j. Wäre nämlich a—• b, 
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und ist Mj durch clt M2 durch c2 erzeugt, so folgte aus cr—• a, 
nach (ß), (y) auch c2 und daraus wie oben ein Wider-

spruch gegen die Verschiedenheit von Mx und M2. 
b) Daß eine Äquivalenzrelation nicht aus zwei verschiedenen 

Klasseneinteilungen von M entspringen kann, folgt daraus, daß 
die ein Element a enthaltende Klasse notwendig aus allen und nur 
den b mit a.—• b bestehen muß, also durch die Äquivalenzrelation 
eindeutig (als die durch a erzeugte E-Teilmenge von M) bestimmt 
ist. 

Liegt eine Klasseneinteilung von M vor, so heißt jede Teilmenge 
von M, die aus jeder Klasse ein und nur ein Element enthält, ein 
vollständiges Repräsentantensystem für diese Klasseneinteilung. 

Die einfachste Äquivalenzrelation ist die log ische I d e n t i -
t ä t , d. i. die in § 1 unter (a) durch die Zeichen = , =|= definierte 
Relation. Die zu ihr gehörige Klasseneinteilung ist die Einteilung 
von M in seine unterschiedenen Elemente selbst. 

3. Gleichmächtigkeit und Kardinalzahlen 
Man kann aus einer Menge M dadurch eine neue Menge M' her-

leiten, daß man die Elemente von M irgendwie durch neue Ele-
mente ersetzt, nur so, daß alle Unterschiedenheiten der Elemente 
von M erhalten bleiben (etwa indem man das Element a durch 
den „Gedanken an das Element a " ersetzt). Setzt man dann 
zwischen je zwei Elemente a aus M und a' aus M' das Zeichen 

oder das Zeichen i e nachdem a' bei dieser Ersetzung 
aus a entsteht oder nicht, so bestehen offenbar die Tatsachen: 

(<5) zu jedem a aus M existiert ein a' aus M' mit a *—¡- a', 
(ö') zu jedem a' aus M' existiert ein a aus M mit a <—»• a', 
(E) wenn a > a', b •«—> V und a = b gilt, ist a' = V, 
(e') wenn a > a', b <—>• V und a' = V gilt, ist a = J. 

Für das Bestehen dieser Tatsachen bei zwei vorliegenden Mengen 
M und M', gleichgültig welche B e d e u t u n g dabei den Zeichen 
• < — z u k o m m t , führen wir eine besondere Ausdrucksweise 
ein: 

( II) Wenn zwischen je ein Element a einer Menge M und a' einer 
Menge M' eins und nur eins von zwei Zeichen < — s o l c h e r 
Weise gesetzt ist, daß die Bedingungen (<5), (<5'), («), (e') bestehen, so 
sagt man, daß eine ein ein deut ige Zuordnung — > z wisch enM 
und M' vorliege. Ist eine solche zwischen M und M' möglich, so nennt 
man M und M' g l e i c h m ä c h t i g . 

2 H a s s e , Höhere Algebra 
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Die Gleichmächtigkeit ist ersichtlich eine Äquivalenzrelation 
im Sinne von (I). Für zwei endliche Mengen M und M' ist die 
Gleichmächtigkeit offenbar mit dem Übereinstimmen der An-
zahlen der Elemente von M und M' gleichbedeutend. Die durch 
ein endliches M gemäß (B) erzeugte Klasse gleichmächtiger 
Mengen ist also die Gesamtheit aller Mengen gleicher Element-
anzahl wie M. Diese Klasse kann direkt zur eindeutigen Charakte-
risierung dieser Anzahl dienen1). Daher nennt man nach C a n t o r 
allgemein die Klassen, die der Äquivalenzrelation (II) gemäß (B) 
in der Menge aller Mengen entsprechen, also je die Gesamtheiten 
aller zu einer Menge gleichmächtigen Mengen Kardinalzahlen 
(Mächtigkeiten). Sie geben die Verallgemeinerung des Anzahl-
begriffs auf unendliche Mengen. Durch die Zusammenfassung je 
aller gleichmächtigen Mengen in eine logische Einheit (die Klasse) 
wird eben von jeder speziellen Bedeutung der Elemente der Einzel-
mengen abstrahiert und allein die für den Anzahlbegriff charak-
teristische G e s a m t h e i t [(<5), (<5')] der Elemente nebst ihren 
U n t e r s c h i e d e n h e i t e n [(s), (e')] ins Auge gefaßt. 

Als Repräsentant einer endlichen Kardinalzahl n kann etwa 
die Menge der natürlichen Zahlen 1, 2 , . . . , n dienen. Als weitere, 
für uns wichtige Kardinalzahl nennen wir noch die durch die 
Menge aller natürlichen Zahlen 1, 2 , . . . repräsentierte. Mengen 
dieser Kardinalzahl, also solche, die mit der Menge der natürlichen 
Zahlen gleichmächtig sind, deren Elemente also durch I n d i -
z i e rung : a v a 2 , . . . den natürlichen Zahlen eindeutig zugeordnet 
werden können, heißen abzählbar. 

Die Menge aller reellen Zahlen ist ein Beispiel dafür, daß nicht 
jede unendliche Menge abzählbar ist2). 

Wir wenden nunmehr die im vorstehenden auseinander-
gesetzten Begriffe der Mengenlehre zur Einführung einiger 
wichtiger entsprechender Begriffe für Bereiche an. 

1) Diesen Gedanken hat R. D e d e k i n d (Was sind und was sollen die 
Zahlen?, Braunschweig 1887) tatsächlich zur Definition der natürlichen Zahlen 
als Anzahlen endlicher Mengen benutzt. 

2) Läge eine Abzählung a l t a3, . . . der als Dezimalbrüche (unter Vermei-
dung der Periode 00 . . .) geschriebenen reellen Zahlen vor, so könnte man 
leicht einen (ebensolchen) Dezimalbruch a bilden, der von a„ a2, . . . ver-
schieden, also doch nicht mit abgezählt wäre. Man wähle nämlich für jedes 
11 = 1, 2, . . . die n-te Ziffer von a hinter dem Komma verschieden von der 
n-ten Ziffer von a n hinter dem Komma (Cantorsch es D i a g o n a l v e r f a h r e n ) . 
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1. Teilbereiche 
Aus dem Begriff Teilmenge entspringt unmittelbar: 
Definition 4. Bilden die Elemente einer Teilmenge Bj eines 

Bereiches B bezüglich derselben Verknüpfungen, wie sie in B 
zugrunde liegen, einen 1. Ring, 2. Körper, 3. Integritätsbereich, 
so heißt Bx ein 1. Te i l r ing , 2. T e i l k ö r p e r , 3. Te i l i n t e -
g r i t ä t s b e r e i c h von B und B ein E r w e i t e r u n g s - B e r e i c h 
(-Ring, - K ö r p e r , - I n t e g r i t ä t s b e r e i c h ) von Bj. 

Zur Entscheidung darüber, ob eine Teilmenge eines 
I n t e g r i t ä t s b e r e i c h e s B Teilring, Teilkörper, Teilintegri-
tätsbereich von B ist, braucht man nicht alle in § 1 aufge-
führten Bedingungen zu prüfen, sondern nur die in fol-
gendem Satz genannten: 

Satz 6. Eine aus mindestens zwei Elementen bestehende 
Teilmenge Bx eines Integritätsbereiches B ist dann und nur 
dann 1. Teilring von B ,wenn die ersten drei elementaren Rechen-
operationen, wie sie innerhalb B definiert sind, angewandt auf 
die Elemente von Bx stets wieder Elemente von Bx ergeben, 
2. Teilkörper von B, wenn zudem die vierte Rechenoperation 
{Division) für Elemente aus Bx (bei von Null verschiedenem 
Nenner) stets ausfuhrbar ist und immer Elemente von Bj ergibt, 
3. Teilintegritätsbereich von B, wenn Bx Teilring von B ist und 
das Einselement von B enthält. 

Beweis, a) Daß diese Bedingungen notwendig sind, ist nach 
Def. 1—4 klar. 

b) Sind diese Bedingungen erfüllt, so stimmen die folgenden 
Bedingungen des § 1 für Bj: (a), (b), die Existenz in (6), ev. 
die Existenz in (7) bzw. (7 b). Andererseits sind die übrigen 
nach § 1 erforderlichen Bedingungen, nämlich (1)—(5), die 
Eindeutigkeit in (6), ev. die Eindeutigkeit in (7), (7 a), in Bj 
a fortiori erfüllt, weil sie in B gelten. 

Das Kriterium von Satz 6 läßt sich natürlich sinngemäß auch 
auf Ringe B ausdehnen. Wir werden es aber nur für die in Satz 6 
genannten Fälle brauchen. Desgleichen werden wir der einfacheren 
Redeweise halber auch den folgenden Satz 7 sowie Def. 5 nur für 
K ö r p e r formulieren, für die allein sie später zur Anwendung 
kommen. 

o* 
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Bezüglich des D u r c h s c h n i t t e s haben wir für Körper: 
Satz 7. Sind K,, K 2 , . . . irgendwelche [endlich oder unend-

lich1) viele] Teilkörper eines Körpers K, so ist auch der Durch-
schnitt der Mengen K1; K 2 , . . . ein Teilkörper von K; dieser 
heißt der D u r c h s c h n i t t s k ö r p e r oder kurz D u r s c h n i t t 
der Körper Kx, K 2 , . . . . 

Beweis. Daß der Durchschnitt mindestens zwei Elemente 
enthält, folgt daraus, daß alle Klt K 2 , . . . die beiden ver-
schiedenen Elemente 0 und e von K gemeinsam enthalten, 
weil sie Teilkörper von K sind. Dann ergibt sich die Be-
hauptung ohne weiteres aus Satz 6. 

Für die V e r e i n i g u n g s m e n g e gilt aber ein entsprechen-
der Satz nicht. Denn ist ax in K1: a2 in K2, so braucht z. B. 
ÖJ + a2 in keinem der Körper K1; K 2 , . . . enthalten zu sein. 
Dagegen läßt sich ein dem Vereinigungsmengenbegriff ana-
loger dadurch einführen, daß wir die auf S. 15 angegebene 
Zurückführung der Vereinigungsmenge auf einen Durch-
schnitt für die Verallgemeinerung zugrunde legen. 

Definition 5. Sind Kl5 K 2 , . . . irgendwelche (endlich oder 
unendlich viele) Teilkörper eines Körpers K, so heißt der Durch-
schnitt aller Kj, K 2 , . . . als Teilkörper enthaltenden Teilkörper 
vonKdas K o m p o s i t u m von K^ K 2 , . . . oder der aus KVK2,... 
k o m p o n i e r t e Körpe r . 

Daß dieser Durchschnitt überhaupt gebildet werden kann, folgt 
daraus, daß zum mindesten ein zu seiner Bildung zugrunde zu 
legender Körper, nämlich K, existiert. 

Das Kompositum von K1; K 2 , . . . enthält die Vereinigungs-
menge der Mengen Kx, K2,. . . , ist aber i. a. weiter. Es ist der 
engste Kt, K2, . . . als Teilkörper enthaltende Teilkörper von K, 
ebenso wie der Durchschnitt von Kj, K2,. . . der w e i t e s t e in Kx, 
K j , . . . als Teilkörper enthaltene Teilkörper von K ist. 

2. Kongruenzrelationen und Restklassenringe 
Indem wir für den Fall eines Bere iches B zu den Be-

dingungen (a), (ß), (y) für eine Äquivalenzrelation in der 
') Die Numerierung soll hier und in der folgenden Def. 5 nicht besagen, 

daß höchstens abzählbar viele gemeint sind. 
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Menge B noch zwei in naturgemäßer Weise gebildete For-
derungen über das Verhalten der Äquivalenzrelation zu den 
beiden Verknüpfungen von B hinzufügen, definieren wir: 

Definition 6. Erfüllt eine Äquivalenzrelation = in einem 
Bereiche B neben (a), (ß), (y) noch die Bedingungen: 

(1) aus a1 == bv a2 = b2 folgt ax + a2 = + b2, 
(2) aus a1 = bv a2 = \ folgt a1 a2 = \ b2, 

so nennen wir sie eine K o n g r u e n z r e l a t i o n in B und die 
ihr entsprechenden Klassen die R e s t k l a s s e n inB nach ihr1). 

Wir legen jetzt in § 1, (a) die Menge B der Restklassen 
nach einer Kongruenzrelation = in B zugrunde. Dazu ist zu 
fordern, daß mindestens zwei solche Restklassen vorhanden 
sind, daß also nicht alle Elemente von B einander kongruent 
sind. Sind dann r und s zwei Restklassen und bildet man alle 
Summen a -f- b bzw. Produkte ab von je einem Elemente a 
aus r und b aus s, so folgt aus (1) und (2), daß diese alle 
wieder je einer bestimmten Restklasse t bzw. u aus B ange-
hören. Durch die Festsetzungen r + s = t bzw. rs = u, die 
man kurz als e l emen twe i se Addition bzw. Multiplikation 
der Restklassen bezeichnen kann, wird also § 1, (b) reali-
siert. Wir beweisen nun, daß dann auch § 1, (c) realisiert 
ist, d. h.: 

Satz 8. Liegt in einem Bereiche B eine Kongruenzrelation 
= vor, bei der nicht alle Elemente von B einander kongruent 
sind, und definiert man in der Menge B der Restklassen nach 
ihr zwei Verknüpfungen durch elementweise Addition bzw. 
Multiplikation, so ist B ein Ring bezüglich dieser Verknüp-
fungen; B heißt der R e s t k l a s s e n r i n g von B nach der Kon-
gruenzrelation =. 

Beweis. Das Erfülltsein von § 1, (1)—(5) ist eine unmittel-
bare Folge des Bestehens dieser Gesetze im Bereiche B. Sind 
ferner a bzw. c Elemente aus den Restklassen r bzw. t, so 

^ Die Menge M aller a = 0 bei einer Kongruenzrelation in B ist genau das, 
was man unter Ideal in B verstellt. Dieser Begriff ist für die Teilbarkeit«-
lehre (siehe § 2) in allgemeinen Bereichen grundlegend (vgl. E. N o e t h e r , 
Idealtheorie in Ringbereichen, Math. Ann. 83 [1921]). 
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folgt aus § 1, (6) die Existenz eines b, so daß a + b = c ist. 
Ist dann s die Restklasse, der b angehört, so gilt nach (1) 
und unserer Additionsfestsetzung r + s = t. Diese Rest-
klasse s ist schließlich auch die einzige Lösung von r + s = t. 
Denn ist auch r + s' = t und b' ein Element aus s', so ist 
a + b = a + V, weil beide Seiten derselben Restklasse t 
angehören. Daraus und aus der nach (a) sicher richtigen 
Relation ( — a ) = (—a) kann aber nach (1) auf b = b', 
d. h. s = s' geschlossen werden. In B ist also die Subtraktion 
unbeschränkt und eindeutig ausführbar, d. h. § 1, (6) erfüllt. 

Es sei noch bemerkt, daß, wenn B ein Integritätsbereich ist, 
B nicht notwendig auch Integritätsbereich zu sein braucht, weil 
zwar § 1 , (7b), aber nicht notwendig § 1 , (7a) in B erfüllt ist 
(siehe 2, Satz 28). Der Fall, daß B sogar ein Körper ist, ist un-
interessant, weil es dann nur triviale Restklasseneinteilungen in B 
gibt (siehe 3, 1, § 2 Aufg. 10). 

3. Isomorphie und Bereichtypen 

Wir fügen für den Fall zweier B e r e i c h e B und B' auch 
den Bedingungen (d), (Ö'j, (e), (e') für die Gleichmächtigkeit 
der beiden Mengen B und B' zwei in naturgemäßer Weise 
gebildete Forderungen über das Verhalten der eineindeutigen 
Zuordnung zu den beiden Verknüpfungen von B und B' 
hinzu. In dieser Hinsicht beweisen wir zunächst: 

Satz 9. Die folgende Festsetzung liefert eine Äquivalenz-
relation in der Menge aller Bereiche: Es sei B ^ B' dann und 
nur dann, wenn erstens B und B' gleichmächtig sind, und wenn 
man zweitens die eineindeutige Zuordnung zwischen den Ele-
menten a,b,... von B und a', V,... von B' so wählen kann, 
daß die folgenden Bedingungen bestehen: 

(3) wenn a <—^ a', b <—> b' ist, ist a-\- b <—> a' + 6', 
(4) wenn a<—>a',b-(—>b' ist, ist ab <—>a'b'. 
Beweis. Es ist unmittelbar ersichtlich, daß die für die 

Gleichmächtigkeit erfüllten Bedingungen (a), (ß), (y) auch bei 
Hinzunahme der Forderungen (3) und (4) bestehenbleiben. 
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Ebenso sieht man ohne weiteres: 
Zusatz zu Satz 9. Betrachtet man nur die Erweiterungs-

lereiche eines festen Bereichs B0, so gilt Entsprechendes zu 
Satz 9 auch dann noch, wenn man den Bedingungen (3), (4) 
die weitere Bedingung hinzufügt, daß die Elemente a0 von B0 

bei der eineindeutigen Zuordnung zwischen B und B' sich selbst 
entsprechen sollen: 

(5) a0 <—> a0 für alle a0 aus B0. 
Auf Grund von Satz 9 definieren wir nun: 
Definition 7. Eine eineindeutige Zuordnung zwischen zwei 

Bereichen B und B' mit den Eigenschaften (3), (4) heißt ein 
Isomorphismus zwischen B und B', und B und B' selbst 
heißen dann isomorph. Die in Satz 9 genannte Äquivalenz-
relation B säB' für Bereiche heißt I somorphie , die ihr ent-
sprechenden Klassen die Typen der Bereiche. 

Auf Grund des Zusatzes zu Satz 9 definieren wir ferner 
analog: 

Zusatz zu Definition 7. Ein Isomorphismus zwischen zwei 
Erweiterungsbereichen B und B' eines Bereichs B0 mit der 
Eigenschaft (5) heißt ein I somorphismus bzgl. B0, und B 
und B' heißen dann isomorph, bzgl. B0. Die im Zusatz zu 
Satz 9 genannte Äquivalenzrelation für Erweiterungsbereiche 
von B0 heißt I somorphie bzgl. B0, die ihr entsprechenden 
Klassen die E r w e i t e r u n g s t y p e n bzgl. B0. 

Die in Satz 9 für die Relation B ^ B' geforderten Bedingungen 
besagen, daß beim Übergang von B zu B' oder von B' zu B durch 
die betr. Zuordnung erstens nach (<5), (<5') jedem Element von B 
eines von B' entspricht und umgekeht, oder, kurz gesagt, die Ge-
samtheit der Elemente erhalten bleibt, zweitens nach (e), (E') ver-
schiedenen Elementen von B verschiedene von B' entsprechen und 
umgekehrt, oder, kurz gesagt, die Unterschicdenheit der Elemente 
erhalten bleibt, und drittens nach (3) bzw. (4) jede Additions-
bzw. Multiplikationsverknüpfung in B in die für die entsprechenden 
Elemente aus B' übergeht und umgekehrt, oder, kurz gesagt, die 
Verknüpfungen Addition und Multiplikation erhalten bleiben. Nun 
sind nach § 1 die vorliegende G e s a m t h e i t B von Elementen inkl. 
ihrer U n t e r s c h i e d e n h e i t e n [§ 1, (a)] und die Art, wie die Ver -
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k n ü p f u n g e n Addition und Multiplikation für sie erklärt sind 
[§ (b)]i das einzige, was bei Absehen von der Bedeutung der 
Elemente als charakteristisch für den B e r e i c h B übrigbleibt. 
Demgemäß ist jede von der Bedeutung der Elemente von B unab-
hängige Aussage über sie, wie sie ja von dem in der Einleitung for-
mulierten abstrakten Standpunkt aus allein interessiert, lediglich 
mit den Relationen = , 4= und den Verknüpfungen Addition und 
Multiplikation, auf die ja nach § 1 auch die Subtraktion und Divi-
sion zurückführbar sind, gebildet und bleibt somit, wenn man 
durch die betr. Zuordnung von B zu B' übergeht, in obigem Sinne 
erhalten und ebenso umgekehrt beim Übergang von B' zu B. In 
dem angegebenen Umfange sind mithin, kurz gesagt, die Bereiche 
B und B' gar n i c h t zu u n t e r s c h e i d e n . Daher ist es also von 
unserem Standpunkt aus ganz einerlei, ob man solche Aussagen 
über B oder B' macht. 

Weiter geht für zwei bzgl. B0 isomorphe Erweiterungsbereiche 
B und B' von B0 jede allein auf Gleichheit, Unterschiedenheit und 
die vier elementaren Rechenoperationen gegründete Aussage, die 
Elemente von B mit solchen des Teilbereichs B0 in Beziehung 
setzt, in eine richtige Aussage über, wenn man die ersteren Ele-
mente durch die ihnen zugeordneten aus B' ersetzt und ebenso um-
gekehrt bei entsprechendem Übergang von B' zu B. Kurz gesagt 
sind also die Erweiterungsbereiche B und B' in dem angegebenen 
Umfange von B0 aus n i c h t zu u n t e r s c h e i d e n . Daher ist es 
also wieder einerlei, ob man solche Aussagen über B oder B' 
macht. 

Dadurch, daß hiernach die Algebra sich beim Studium von 
Bereichen schlechthin nur für solche Aussagen interessiert, die 
allen Bereichen eines Typus gemeinsam sind, und beim Studium 
der Erweiterungsbereiche eines festen Bereichs B0 nur für solche 
Aussagen, die allen Bereichen eines Erweiterungstypus von B0 
gemeinsam sind, rechtfertigen sich die in Def. 7 und Zusatz zu 
Def. 7 eingeführten Bezeichnungen Typus und Erweiterungstypus 
in Hinsicht auf die gewöhnliche Bedeutung des Wortes „Typus". 
Von Aussagen der genannten Art sagt man auch, sie betreffen die 
Struktur der Bereiche. Die Gewinnung solcher Aussagen wurde am 
Schluß der Einleitung als Hauptaufgabe der modernen Algebra 
hingestellt. 

Wenn es nach diesen Ausführungen scheint, als ob in der 
Algebra ein Unterschied zwischen isomorphen Bereichen über-
haupt nicht zu machen sei, so bedarf das einer Einschränkung. 
Während es zwar gleichgültig ist, ob man die in der Einleitung 
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formulierte Grundaufgabe der Algebra in einem Bereiche B oder 
in einem zu B isomorphen Bereiche B' behandelt, ist eine Unter-
scheidung isomorpher Bereiche B und B' natürlich dann geboten, 
wenn beide Bereiche Teilbereiche eines anderen Bereiches B* sind, 
also ihre Elemente auf Grund der Unterschiedenheit der Elemente 
von B* (für Betrachtungen innerhalb B*) zu unterscheiden sind 
(vgl. die Beispiele auf S. 37 und S. 56). 

Es sei noch bemerkt, daß nach den obigen Ausführungen die 
spezielle Eigenschaft, Körper bzw. Integritätsbereich zu sein, 
gleichzeitig allen Bereichen eines Typus zukommt, so daß man 
neben den allgemeinen Ringtypen speziell von Körpertypen und 
Integritätsbereichtypen reden kann. 

Beispiele 
1. Jeder Bereich B ist Teil- und Erweiterungsbereich von sich 

selbst. Jeder andere Teil- bzw. Erweiterungsbereich von B heißt 
echt oder eigentlich. 

2. Aus den Beispielen 1—3 von § 1 ergeben sich ohne nähere 
Ausführung verständliche Beispiele für Teil- und Erweiterungs-
bereiche. 

3. Sind Kx, K2 Teilkörper von K, so ist dann und nur dann ihr 
Durchschnitt mit und ihr Kompositum mit l<2 identisch, wenn 
Kj Teilkörper von K2 ist. Das ist leicht aus Satz 7 und Def. 5 zu 
entnehmen. 

4. Weitere Beispiele für Teil- und Erweiterungsbereiche sowie 
auch für Isomorphie von Bereichen werden uns in §§ 3, 4 ein-
gehend beschäftigen. 

5. Die Einteilung der ganzen Zahlen in gerade und unge-
rade liefert gemäß (A) eine Äquivalenzrelation, die sich leicht 
als Kongruenzrelation für den Integritätsbereich T (Satz 5 [13]) 
erweist. Der zugehörige Restklassenring ist isomorph mit dem in 
§ 1, Beispiel 4 genannten Körper, also ein Restklassenkörper. 

6. Weitere Beispiele für Kongruenzrelationen und Restklassen-
ringe werden uns in 2, § 2 eingehend beschäftigen. 

§ 3. Der Quotientenkörper eines Integritätsbereiches 

Es ist für uns von Wichtigkeit nachzuweisen, daß jeder 
Integritätsbereich durch Hinzunahme aller aus seinen Ele-
menten zu bildenden „Quotienten" zu einem Körper er-
weitert werden kann. Wir zeigen nämlich: 
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Satz 10. Zu jedem, Integritätsbereich I existiert ein Erweite-
rungskörper K, dessen sämtliche Elemente sich als Quotienten 
von Elementen aus I darstellen lassen. Der Erweiterungstypus 
von K bzgl. I ist durch diese Forderung eindeutig bestimmt. 

Beweis1). 
a) Eindeutigkeitsnachweis 

Ist K ein Körper der im Satz genannten Art, so enthält er 

als Körper auch umgekehrt alle Quotienten von Elemen-
b 

ten a, b (b 4= 0) aus I, d. h. besteht aus der Gesamtheit aller 
dieser (natürlich nicht notwendig sämtlich verschiedenen) 
Quotienten. Nach den Gesetzen § 1, (1)—(7) für Körper be-
stehen dann die folgenden Tatsachen in K: 

(1) ~ = dann und nur dann, wenn ab' = a'b, 
b b 

(2) -f ^ = a A + «2&1 
bx b2 \b2, 

(3) 

(4) 

«1 «2 = «1«2 
h M 2 ' 

a1 a2 at b2— a2b1 

h &2 hh 

(5) = wenn £ * 0 , d . h . a2+0(nebenbv b2 =t= 0). 
V b2 b2 

Ist nun K ein weiterer Körper der im Satz genannten Art 
und ordnet man jedem Element a von K auf Grund einer 

beliebigen seiner Darstellungen als Quotient ~ von Ele-

menten aus 1 das durch denselben Quotienten dargestellte 
') Wir legen hier, wie auch bei dem entsprechenden Beweis zu Satz 11 in § 4 

den Nachdruck auf das logische Gerüst des Beweises. Die Bestätigung der bei 
den einzelnen Schritten angeführten Tatsachen ist auf Grund von §§ 1, 2 
stets leicht zu erbringen. Wir begnügen uns fast durchweg mit dem Hinweis 
auf die heranzuziehenden Stellen aus §§ 1, 2 und überlassen die nähere Aus-
führung dem Leser. 
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Element a von K zu, so ist das nach dem Bemerkten 
und (1) eine eineindeutige Zuordnung [§ 2, ((5), (<5'), (s), (e')] 
zwischen den sämtlichen Elementen von K und K, die nach 
(2) und (3) den Bedingungen § 2, (3) und (4) genügt und 
ferner ersichtlich auch die Bedingung § 2, (5) bzgl. I als 
Grundbereich erfüllt. Also ist dann K s ^ K bzgl. !. Damit 
ist der Nachweis für die eindeutige Bestimmtheit des Er-
weiterungstypus von K bzgl. I erbracht. 

b) Vorbemerkungen zum Existenznachweis 
Der Nachweis der Existenz eines Körpers K der im Satz ge-

nannten Art kann prinzipiell nur durch Konstruktion von K, d.h. 
durch Angabe seiner Elemente und ihrer Verknüpfungen geführt 
werden. Hierbei dürfen wir natürlich nicht schon mit den Quo-
tienten operieren, da diese erst auf Grund der Existenz von K 
einen Sinn haben. Wir entziehen daher für die Konstruktion dem 
Bruchstrich in die Bedeutung eines Divisionszeichens, sehen 

vielmehr lediglich als geordnetes Elementpaar aus I an und 

schreiben dafür (a, i), um Verwechslungen mit den ev. schon teil-

weise in 1 definierten Q u o t i e n t e n z u vermeiden. Aus (1)—(3) 

entnehmen wir dann die nötigen Richtlinien für die Angabe der 
Elemente von K und ihrer Verknüpfungen. 

c) Konstruktion eines zu K isomorphen Körpers K' 
In der Menge M aller geordneten Elementpaare (a, b) aus I, 

bei denen b #= 0 ist, definieren wir eine Äquivalenzrelation 
durch die Festsetzung: 

(1') (a, b) ~ («', b') dann und nur dann, wenn ab' = a' b. 
Man bestätigt leicht das Erfülltsein von § 2, (a), (ß), (y), 
so daß wirklich eine Äquivalenzrelation im Sinne von § 2, 
(I) vorliegt. 
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Auf Grund von (1') zerfällt M in Klassen. Diese Klassen 
sehen wir als Menge K' unterschiedener Elemente an. Die 
durch (a, b) erzeugte Klasse werde mit [a, b} bezeichnet. 

D a nach (1') und dem Analogon zu Satz 3 [11] {0, e} 4= {e, e} 
gilt, ist § 1, (a) in K' realisiert. 

Wir definieren weiter in K' zwei Verknüpfungen Addition 
und Multiplikation durch die Fes t se tzungen: 

(2') {av &,} + {a2, b2} = {a^ + a 2 \ , 2 } , 
(3') {«!, &,} {a2, b2} = {a,^, 61fc2}. 

Da nach Satz 4 [12] mi t und b2 auch \ b2 4= 0 ist, sind 
die rechten Seiten in (2') und (3') wirklich bes t immte Klassen 
aus K'. 

Ferner sind diese, zunächst mittels einzelner Kepräsen-
tan ten (a^ bj) und (a2, b2) der Klassen links getroffenen Fest-
setzungen unabhängig von der Auswahl dieser Repräsen-
tan ten innerhalb ihrer Klassen. Man bestä t ig t nämlich 
leicht, daß sich nur der Repräsen tan t , nicht die Klasse 
rechts änder t , wenn m a n links (av b{) und (a2, b2) durch 
äquivalente (a[, &i) u n d (a'2, b'2) ersetzt . Somit ist vermöge 
(2') und (3') auch § 1, (b) in K' realisiert. 

Schließlich befriedigen die in (2') und (3') definierten Ver-
knüpfungen die Gesetze § 1, (1)—(7). F ü r § 1, (1)—(5) folgt 
das leicht, aus dem Erfüll tsein jener Gesetze in I, fü r § 1, (6) 
und (7) zeigt man ebenso auf Grund der Gültigkeit von 
§ 1, (6) und (7a) in I, daß Differenz u n d Quotient in K' ein-
deutig bes t immt u n d durch 

(4') {«!, & J — {a2, Z>2} = { a ^ — a2\, btb2}, 

(5') ( - » 4 1 = b2, a2~b}], wenn {a2, b2) 4= 0, 
iö2' 2/ 

stets gegeben sind. Die im Falle (5') zu stellende Bedingung 
{a2, J2} #= 0 bedeute t a2 4= 0, weil nach (2') oder (4') die 
Klasse {0, e} Nullelement von K' ist u n d nach (1') aus 
{«, b] = {0, e} folgt a = 0. 

Somit ist K' ein Körper bezüglich der Verknüpfungen (2') 
und (3'). 
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d) Konstruktion von K 

Der Körper K' enthält die Teilmenge 1' der speziellen 
Klassen {a, e}, die nach (2')—(4') und Satz 6 [19] ein Teil-
integritätsbereich von K' und weiter nach (1')—(3') und Def. 7 
[23] vermöge der Zuordnung {«, e} a zu I isomorph ist. 
Wir können nun aus K' eine Menge K dadurch bilden, daß 
wir die zu I' gehörigen Elemente {a, e] von K' je durch die 
ihnen zugeordneten Elemente a von I ersetzen, die nicht 
zu I' gehörigen Elemente von K' dagegen beibehalten. Dann 
wird also K eine K' eineindeutig zugeordnete Menge unter-
schiedener Elemente. Weiter können wir in K zwei Verknüp-
fungen Addition und Multiplikation, die den Gesetzen § 1, 
(1)—(7) genügen und die für die Teilmenge 1 mit den in I 
bereits bestehenden Verknüpfungen identisch sind, dadurch 
eindeutig erklären, daß wir auf die für die zugeordneten 
Elemente von K' definierten Verknüpfungen zurückgehen, 
m. a. W. die Bedingungen (3) und (4) von Satz 9 [22] zu-
grunde legen. Dann wird also K ein zu K' isomorpher Erweite-
rungskörper von I. 

Dieser Körper K hat nun die im Satz genannte Eigenschaft. 
Da nämlich nach (3') oder (5') jedes Element {a, 6} von K' 

eine Darstellung (a, 6} = j-f' e-j als Quotient zweier Elemente 
{ 6 , ej 

von 1' besitzt — (es ist {6, e} 4= 0 wegen Z> =|= 0) —, folgt 

für das zugeordnete Element von K die Darstellung-^- als 
Quotient zweier Elemente von I. " 

Damit ist Satz 10 bewiesen. 
Die Eindeutigkeitsaussage von Satz 10 kann noch etwas ver-

schärft werden, nämlich durch den folgenden Zusatz, dessen 
Existenzaussage nach Satz 6 [19] und (2)—(5) auf der Hand liegt: 

Zusatz. Innerhalb eines beliebigen Erweiterungskörpers K* von 1 
gibt es einen und nur einen Repräsentanten des in Satz 10 genannten 
Erweiterungstypus, nämlich den Körper K, der durch die in K* ge-
bildeten Quotienten von Elementen aus I gebildet wird. 

Beweis. Wird im vorhergehenden Beweis unter a) die Voraus-
setzung hinzugefügt, daß K und K beide Teilkörper eines und 
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desselben Erweiterungskörpers K* von I sind, so folgt dort sogar 

K = K, weil dann die Quotienten ~ in K und K eine und die-

selbe, durch K* festgelegte Bedeutung haben. 
Im Hinblick auf die Ausführungen nach Def. 7 [23f.] ist es 

daher gerechtfertigt, isomorphe Erweiterungskörper von I des in 
Satz 10 genannten Typus nicht zu unterscheiden und mit dem 
b e s t i m m t e n Artikel zu definieren: 

Definition 8. Der in Satz 10 genannte Körper K heißt der 
Q u o t i e n t e n k ö r p e r des Integritätsbereiches I. 

Beispiele 
1. Ist 1 schon selbst ein Körper, so ist sein Quotientenkörper 

mit I identisch, und umgekehrt. 
2. Der Quotientenkörper des in Satz 5 genannten Integritäts-

bereiches T ist der ebendort genannte Körper P. In der Tat geht 
das unter c) benutzte Konstruktionsverfahren für I = r in die be-
kannte Konstruktion der rationalen Zahlen aus den ganzen Zahlen 
über. 

3. Vgl. § 4, Def. 10 [38]. 

§ 4. Der Integritätsbereich der ganzen rationalen Funk-
tionen von n Unbestimmten über I und der Körper der 

rationalen Funktionen von n Unbestimmten über K 

Der in der Algebra zu verwendende Begriff der ganzen 
rationalen und der rationalen Funktion ist von dem in der 
Analysis üblichen grundsätzlich verschieden. 

In der Analysis definiert man die Funktionen als Zuordnungen 
von Funktionswerten zu den Elementen einer Argumentmenge. 
Dementsprechend würde im Sinne der Analysis (i.S.d.An.) von 
einer Funktion / von n Veränderlichen über einem Integritäts-
bereich I zu reden sein, wenn jedem geordneten Elementsystem 

..., xn aus I ein Element / ( x l t . . . , x„) aus I zugeordnet ist, und 
speziell von einer ganzen rationalen Funktion (g.r.Fkt.), wenn 
jene Zuordnung für alle xv ..., x„ aus I in ein- und demselben, auf 
xv ..., xn und feste Elemente aus I anzuwendenden Rechenver-
fahren besteht, das aus endlich vielen Additionen, Subtraktionen 
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und Multiplikationen, wie sie ja in 1 definiert sind, zusammen-
gesetzt ist. Entsprechend wäre unter Hinzunahme auch der Divi-
sion eine rationale Funktion (r.Fkt.) i.S.d.An. von n Veränder-
lichen über einem Körper K zu erklären, wobei allerdings wegen 
des Nichtdefiniertseins der Division durch 0 bei einem gegebenen 
Rechenverfahren unter Umständen nicht jedes System xv ..., x„ 
aus K als Argumentsystem zulässig ist; das wird nachher noch zu 
präzisieren sein. Es ist ohne weiteres ersichtlich, daß die g. r. Fkt. 
bzw. r. Fkt. i. S. d. An. von n Veränderlichen über I bzw. K jeden-
falls je einen R ing bilden, wenn man die Verknüpfungen durch 
Addition und Multiplikation je aller (definierten) Funktionswerte 
erklärt. 

In der Algebra kommt man aus einem später (nach Satz 12 [40]) 
näher auszuführenden Grunde mit diesem Funktionsbegriff, der 
die Zuordnung als das Primäre, die Art der Zuordnung, d. h. im 
Falle der rationalen Funktionen das Rechenverfahren als das Se-
kundäre hinstellt, nicht aus. Man muß vielmehr umgekehrt für 
die dort allein zu betrachtenden rationalen Funktionen den Re-
chenausdruck als das Primäre, die durch ihn gelieferte Zuordnung 
als das Sekundäre ansehen1). Dem letzteren Standpunkte ent-
spricht es, wenn wir im folgenden eine Theorie der III >Z>2) • • •> 
ganzen rationalen bzw. rationalen Rechenausdrücke über I bzw. 
K entwickeln, die wir dann der formalen Analogie halber, wie 
üblich, auch g. r. bzw. r. Fkt. von xlt..., xn über I bzw. K nennen, 
und wenn wir dabei, um ein Zurückfallen in den Zuordnungsstand-
punkt auszuschließen, den xv .. ,,x„ vorläufig die Bedeutung von 
Veränderlichen in 1 bzw. K entziehen, sie vielmehr als feste Ele-
mente außerhalb 1 bzw. K, sog. Unbestimmte2), einführen. 

Zu dem Bereich der ganzen rationalen Funktionen von 
xv ..., xn über einem Integritätsbereich I im Sinne der Al-
gebra gelangen wir durch eine, zu der in § 3 ganz analoge, 
abstrakte Konstruktion, indem wir beweisen: 

Satz 11. Zu jedem Integritätsbereich I existiert ein Erweite-
rungsintegritätslereich In mit der Eigenschaft: 

Es existieren n Elemente i i <) XJI Vfh In derart, daß sich 
jedes Element VOn I n eindeutig in der Form 

x) Das ist also derjenige, vom Standpunkte der Analysis primitivere Funk-
tionsbegriff, der historisch dem genannten, modernen Funktionsbegriff i. S. 
d. An. vorausgegangen ist. Unsere nachstehenden Entwicklungen zeigen, daß 
vom Standpunkte der Algebra umgekehrt jener in der Analysis primitivere 
Funktionsbegriff der tiefergehende ist. 

a) Siehe zu dieser Bezeichnung die Erläuterung hinter Def. 9 [37]. 
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oo 

2 knBlkl---Xnknl) 
i-! k n = 0 

darstellen läßt, wo die akl kn Elemente aus 1 sind, unter 
denen nur endlich viele von Null verschiedene vorkommen. 

Der Erweiterungstypus von I« bzgl. I ist durch diese For-
derung eindeutig bestimmt. 

Beweis2). Wir führen den Beweis zunächst für n = 1, und 
zwar in vollständiger Analogie zum Beweis von Satz 10 in 
§ 3 . 

a) Eindeutigkeitsnachweis 

Ist ein Integritätsbereich der im Satz genannten Art 
für n = 1 und x das im Satz mit xl bezeichnete Element aus 

so enthält als Integritätsbereich auch umgekehrt alle 
CO 

Ausdrücke £aicXk , wo die an Elemente aus I sind, von denen 
k = 0 

nur endlich viele + 0 sind, d. h. I1 besteht aus der Gesamt-
heit aller dieser Ausdrücke. Wegen der Eindeutigkeitsforde-
rung des Satzes und nach den Gesetzen § 1, (1)—(6) für 
Ringe bestehen dann folgende Tatsachen in : 

00 OC 

(1) £akxk = £a'kxk dann und nur dann, wenn 
k = 0 k = 0 

ak = a'k für alle k, 
CO 00 00 

(2) 2 aicX* + £ hx* = £ {ak + bk) xk , 
k = 0 k = 0 i = 0 

(3) £akxk £bkxk = £ (£axi„) xk , 
£ = 0 & = 0 fc = 0 A, fi = 0 

' ) Die Bedeutung des Summenzeichens H mit angefügten Angaben über 
den Summationsbereich darf als bekannt vorausgesetzt werden. — Daß wir 
hier für die in "Wahrheit endlichen Summen formal unendliche Summen mit 
nur endlich vielen Summanden # 0 setzen, wobei natürlich stillschweigend 
unter einer Summe von unendlich vielen Nullen wieder Null verstanden ist, 
geschieht lediglich aus bezeichnungstechnischen Gründen. Sonst würden 
nämlich die Formulierung der Eindeutigkeit unserer Darstellungen, sowie 
später die Formeln für das Rechnen mit so dargestellten Elementen ziemlich 
kompliziert. 

*) Vgl. die Anm. 1 [26] zum Beweis von Satz 10. 
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(4) J akx* — J hex* = J {ak — . 
fc = 0 k = 0 ¡6 = 0 

Ist nun Tj ein weiterer Integritätsbereich dieser Art, x das 
im Satz mit x1 bezeichnete Element für ll5 und ordnet man 

CO CO 

einem Element £aic%k von immer das Element £ akXk 

k=0 k=0 
von I] zu, so erschließt man aus (1)—(3) ganz entsprechend 
wie in § 3, a), daß auf Grund dieser Zuordnung ^ bzgl. 1 
ist, also die eindeutige Bestimmtheit des Erweiterungstypus 
von Ij bzgl. I. 

b) Vorbemerkungen zum Existenznachweis 
Der Nachweis der Existenz eines Integritätsbereiches der 

im Satz genannten Art kann prinzipiell nur durch Konstruktion 
von d.h. durch Angabe seiner Elemente und ihrer Verknüp-
fungen geführt werden. Hierbei dürfen wir natürlich nicht schon 

CO 

mit dem Element x und den Summendarstellungen akxk ope-
k= o 

rieren, da diese erst auf Grund der Existenz von einen Sinn 
haben. Wir entziehen daher für die Konstruktion dem x die Be-
deutung eines Elementes, das mit den Elementen von 1 zusammen 
den drei ersten elementaren Rechenoperationen unterworfen 

CO 

werden kann, und somit den Ausdrücken J£aicXk die Bedeutung 
k = 0 

von Rechenausdrücken, sehen diese vielmehr lediglich als geord-
nete Systeme (a0, a t , . . . ) von Elementen aus I an. Aus (1)—(3) 
entnehmen wir dann die nötigen Richtlinien für die Angabe der 
Elemente von Ii und ihrer Verknüpfungen. 
c) Konstruktion eines zu isomorphen Integritätsiereiches Ii 

Wir sehen die Menge Ii aller geordneten Elementsysteme 
(ia0, av ...) von je abzählbar unendlich vielen Elementen 
aus I, wobei aber jedesmal nur endlich viele a* 4= 0 sein 
sollen, als Menge unterschiedener Elemente an, haben also: 

(1') (a0, ...) = (aö, a[,...) dann und nur dann, wenn 
(ix = «j für alle k. 

Wegen (0, 0 , . . . ) =)= (e, 0 , . . . ) ist dann § 1, (a) in 
realisiert. 

3 Hasse, Höhere Algebra 
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Wir definieren weiter in I, zwei Verknüpfungen Addition 
und Multiplikation durch die Festsetzungen: 

(2') (a0, av . . . ) + K • • •) = K + K % + K • • •). 

(3') (a0, av . . . ) (60, 6 X , . . . ) 
= («A» a o h + a i K a<A + a i h + a26o> • • •)• 

Man überzeugt sich leicht, daß die rechten Seiten in (2') 
und (3') wieder nur endlich viele Glieder #= 0 haben, also zu 

gehören, so daß § 1, (b) vermöge (2') und (3') realisiert ist. 
Ferner befriedigen die in (2') und (3') definierten Ver-

knüpfungen die Gesetze § 1, (1)—(6). Für § 1, (1)—(5) folgt 
das leicht aus dem Erfülltsein jener Gesetze in I, für § 1, (6) 
zeigt man ebenso auf Grund der Gültigkeit von § 1, (6) in I, 
daß die Differenz in eindeutig bestimmt und stets durch 

(4') (a0, « ! , . . . ) — (K •• •) = (oo — &0) % — .) 
gegeben ist. 

Näherer Ausführung bedarf jedoch der Nachweis, daß das 
Gesetz § 1, (7 a) in Ii gilt, an dessen Stelle nach dem Zusatz 
zu Def. 3 [12] auch der Nachweis treten darf, daß das Ana-
logon zu Satz 4 [12] in Ii richtig ist. Da sich als Nullelement 
von Ii aus (2') oder (4') das Element (0, 0 , . . . ) ergibt, be-
deutet die Voraussetzung 

(a0, . . . ) (60, . . . ) = 0, 
daß alle Glieder dieses nach (3') zu bildenden Produkt-
systems Null sind. Wäre nun (a0, au ...)=(= 0, (&0, hlt ...)=)= 0, 
so daß also ein letztes a„ 4= 0 und ein letztes bß + 0 exi-
stierte, so folgte für das (v + ju)-te Glied 
ao?>ti+v + b «v-ifyi+i + avbß + «Wifyi-i + b av+uK 
des Produktsystems nach Wahl von av und daß es gleich 
dyb/t, also wegen der Gültigkeit von Satz 4 in I von Null ver-
schieden wäre, im Widerspruch zu der Voraussetzung. Somit 
gilt das Analogon zu Satz 4 in 

Schließlich gilt auch §1, (7b), d .h . das Analogon zu 
Satz 3 [11] in Ii, weil nach (3') das Element (e, 0 , 0 , . . . ) 
Einselement von Ii ist. 

Somit ist Ii ein Integritätsbereich bezüglich der Ver-
knüpfungen (2') und (3'). 
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d ) Konstruktion von 

Der Integritätsbereich Ii enthält die Teilmenge I' der 
speziellen Elemente (a, 0 , 0 , . . . ) , die nach (2')—(4') und 
Satz 6 [19] ein Teilintegritätsbereich von Ii und weiter nach 
nach (1')—(3') und Def. 7 [23] vermöge der Zuordnung 
(a, 0, 0 , . . . ) <—> a zu 1 isomorph ist. Ganz entsprechend 
wie in § 3, d) kann man dann einen zu !( isomorphen 
Erweiterungsintegritätsbereich von I herleiten, indem man 
die Elemente von 1' durch die ihnen zugeordneten von I 
ersetzt. 

Dieser Integritätsbereich hat nun die im Satz genannte 
Eigenschaft. Bezeichnet nämlich x das spezielle Element 
(0, e, 0, 0 , . . . ) von so daß also nach (3') gilt 

= e = (e, 0, 0 , . . .), x1 = x = (0, e, 0, 0 , . . . ) , 
z 2 = ( 0 , 0 , e , 0, 0 , . . . ) , . . . , 

und ist ( a 0 , « ! , . . . ) irgendein Element von so ist nach 
(2') und (3') 

(a0, a v . . . ) = (a,0, 0 , 0 , . . .) x° + ( a l t 0, 0 , . . . ) s H . 
Da x nicht zum Teilbereich I' von gehört, bleibt es beim 
Übergang zu Ij erhalten, und es besteht demnach für das 

CO 
zugeordnete Element von It die Darstellung 

k = 0 

Diese Darstellung ist schließlich eindeutig. Denn aus 
00 00 

£ a k X k = J £ a ' k x k folgt durch Übergang zum isomorphen 
£ = 0 k = o 
zunächst (a0, . . . ) = (a'0, a ' t , . . . ) und daraus nach (1') 
aic = a'h für alle k. 

Damit ist Satz 11 für n = 1 bewiesen. Zum Beweise für 
beliebiges n stehen folgende zwei Wege zur Verfügung: 

Entweder kann man den gesuchten Integritätsbereich l„ 
sukzessive konstruieren. Bezeichnet man dazu den zu irgend-
einem Integritätsbereich 1 nach dem schon bewiesenen Teil 
des Satzes vorhandenen Integritätsbereich mit l[a], so 
bilde man sukzessive 

•l = 1 [>l]> (2 = ' l f e L •••.!» = K J • 
3 * 
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Dann lassen sich die Behauptungen des Satzes für \n sämt-
lich durch vollständige Induktion bezüglich n beweisen. 

Oder man übertrage die Entwicklungen des vorstehenden 
Beweises für n = 1 sinngemäß auf beliebiges n, was ohne 
weiteres möglich ist. An Stelle von (1)—(3) tri t t dabei: 

00 

"(la) 2 4 " 
kls..kn= 0 co 

= 2 < kn4* • • • 

dann und nur dann, wenn a* = ai,---,kn für alle 
Systeme (fe^ . . . , lcn), 

00 

(2 a) 2 ah i B a i « . . . a i « 
Ä'i kn = 0 

oo 
+ 2 K kn s f ' • • • 4 n 

kit...t kn=0 
00 

= 2 0*! kn + h , kn) • • • xn"> 
k„...,kn = 0 

00 

(3 a) 2 akl k n x ^ . . . x l n 
k1,...,kn = 0 

CO 

ki kn= 0 
CO OO 00 

= 2 ( 2 2 i n ^ f i fn)xl'- • • xnn^ 
k1,...,kn = 0 Äu/j1=0 ?n>Pn = 0 

+ = >n+ßn = kn 

und daraus ist die zu treffende Wahl der Elemente 
von In 

[nämlich alle in ein w-dimensionales Schema geordneten 
Systeme (fcl5. . ., kn = 0 , 1 , . . . ) von Elementen aus 
I mit nur endlich vielen 4= 0] und der Verknüpfungen für 
sie ohne weiteres ersichtlich. 

Die nähere Ausführung darf auf Grund dieser Hinweise 
für beide Wege dem Leser überlassen bleiben. 

Während der erste Weg neben dem Vorzug des Auskommens 
mit den rechnerisch einfachen Entwicklungen des ausgeführten 
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Beweises für n = 1 insofern auch theoretisch von Bedeutung ist, 
als manche Sätze über \n nur durch vollständige Induktion be-
züglich n, also durch Zurückgehen auf die angegebene rekursive 
Konstruktion von \n beweisbar sind (vgl. z. B. 2, Satz 49 [41]), 
ist der zweite Weg deshalb befriedigender, weil er einmal die be-
sondere Behandlung des Falles n = 1 entbehrlich macht, dann 
aber auch im Gegensatz zum ersten einer wichtigen Eigenschaft 
von ln gerecht wird, nämlich der S y m m e t r i e in xlt..., xn, d. h. 
der aus Satz 11 ohne weiteres ersichtlichen Tatsache, daß \n in 
sich übergeht, wenn die Rollen der Elemente xv ..., xn irgendwie 
vertauscht werden. 

Anders als in §3, Satz 10, Zusatz [29] können hier zwar innerhalb 
eines beliebigen Erweiterungsintegritätsbereiches I* mehrere ver-
schiedene Repräsentanten des in Satz 11 genannten Erweiterungs-
typus vorhanden sein (z. B. wenn I* = I [®j,..., x„, xn+1, ..., xn+m] 
ist, alle 1 [a^,, . . . , xin], wo . . ., in irgendwelche n verschiedenen 
Ziffern aus der Reihe 1 , . . . , « + m sind); aber offenbar ist jeder 
solche Repräsentant innerhalb 1* durch die Angabe derjenigen 
Elemente aus 1*, die die Rolle von a ^ , . . . , xn haben, eindeutig be-
stimmt, nämlich als die Gesamtheit der Ausdrücke der in Satz 11 
genannten Form in diesen Elementen. 

Im Hinblick auf die Ausführungen nach Def. 7 ist es daher 
wieder gerechtfertigt, mit dem b e s t i m m t e n Artikel zu definieren: 

Definition 9. Der in Satz 11 genannte Integritätsbereich \n 
heißt der I n t e g r i t ä t s b e r e i c h der g a n z e n r a t i o n a l e n 
F u n k t i o n e n der n U n b e s t i m m t 611 3/j, » . ., Xn über 1. Er 
werde mit \[xx, . . xn], seine Elemente auch kurz mit 
f ( x l t . . . , xn),... oder noch kürzer mit / , . . . bezeichnet. 

Die eindeutigen Darstellungen dieser Elemente in der Form 
von Safe 11 nennen wir ihre N o r m a l d a r s t e l l u n g e n und 
die darin auftretenden Elemente aiclt...,icn aus 1 die K o e f f i -
z i e n t e n dieser Darstellungen. 

Die Bezeichnung Unbestimmte für die xt erläutern wir dahin, 
daß jedes einzelne der Xi von I aus keiner anderen B e s t i m m u n g 

00 

fähig ist, als der negativen, daß keine Gleichung 2 j a k x \ = 0 (mit 
*=o 

nur endlich vielen Koeffizienten a& 0) besteht, außer der tri-
vialen, wo alle ak = 0 sind. Die xt sind also weder Elemente von I, 
noch genügen sie algebraischen Gleichungen in I (siehe §5 [47] 
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und 2, Def. 21 [54]). S t e in i t z (Lit.-Verz. 21) nennt sie daher 
bzgl. I transzendente Elemente. Übrigens sind die xt wegen ( la) 
auch nicht untereinander durch positive Bestimmungen (alge-
braische Gleichungen) verknüpft. Steinitz nennt sie daher genauer 
ein System bzgl. I algebraisch unabhängiger Elemente. 

I [xv . . ., xn] ist stets ein echter Erweiterungsbereich von I, 
da infolge der Eindeutigkeit der Normaldarstellungen z. B. die 
Elemente xv . . ., xn nicht zu I gehören. 

I [xv . . ., xn~\ ist in keinem Falle ein Körper (auch nicht, wenn 
I ein Körper ist). Auf Grund der obigen sukzessiven Konstruktion 
genügt es, das für 1 [x] zu beweisen. In I [x] existiert aber sicher 

e °° nicht der Quotient—, weil für jedes/(®) = ^JaicXk aus I [a;] gilt x k= o 
00 

x)(x) = 2Jakxk+1 

k = o 
= 0 + a0x + a^x* + . . . =j= e + Ox + Ox2 + . . . = e. 

Um auch die zu Beginn dieses Paragraphen schon ge-
nannten rationalen Rechenausdrücke in xv .. ., xn einzu-
beziehen, erweitern wir I . . . , xn] zum Quotientenkörper. 
Da hierbei insbesondere der Teilbereich 1 zum Quotienten-
körper erweitert wird, genügt es, von vornherein von einem 
Körper K und dem zugeordneten Integritätsbereich 
K ^ , . . . , xn] auszugehen: 

Definition 10. Ist K ein Körper, so heißt der Quotienten-
Jcörper des Integritätsbereiches K [ x ^ . . . , x„] der K ö r p e r der 
r a t i o n a l e n F u n k t i o n e n der n U n b e s t i m m t e n xv ..., x„ 
über K. Er werde mit K (xx,..., xn), seine Elemente auch kurz 
mit 9? ..., xn), •. • oder noch kürzer mit <p, . .. bezeichnet. 

Aus den im vorstehenden vom algebraischen Standpunkt 
aus definierten ganzen rationalen bzw. rationalen Funk-
tionen über I bzw. K lassen sich nun die ganzen rationalen 
bzw. rationalen Funktionen i. S. d. An. über I bzw. K da-
durch herleiten, daß man den bisherigen Unbestimmten 
xv ..., xn die Bedeutung von Elementen aus 1 bzw. K beilegt. 
Wir definieren zunächst für I . . . , xn]: 

Definition 11. Unter der einem Element f von I [x1, . . ., xn] 
z u g e o r d n e t e n ganzen r a t i o n a l e n F u n k t i o n i. S. d. An. 
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verstehen wir diejenige Funktion i. S. d. An. über I, die ent-
steht, wenn man jedem Elementsystem «2/j, . . ., XJI CLXiS 1 das 
durch die Normaldarstellung von / gelieferte Element von I als 
Funktionswert zuordnet. 

Wir bezeichnen für den Augenblick den zu Beginn dieses 
Paragraphen erwähnten Ring der ganzen rationalen Funk-
tionen i. S. d. An. von xu . . . , Xn über I mit I ..., xn] 
und beweisen die folgende, für den Übergang von I [ a ^ , . . x n \ 
zu I [aij , . . ,,x„\ grundlegende Tatsache, die wir Einsetzungs-
prinzip nennen: 

Satz 12. Beim Ubergang von B = I [xv . . ., xn] zu 
B' = 1 [ x j , . . . , xn] durch die in Def. 11 erklärte Zuordnung 
sind die Bedingungen § 2, (ö), (6'), (e), (3), (4), (5) erfüllt, 
dagegen nicht immer (e'). Jener Übergang liefert also die Ge-
samtheit der Elemente von I [a^,..., xn] aus der Gesamtheit 
derjenigen von I ..., xn], und es bleiben bei ihm die Gleich-
heit und alle Verknüpfungsbeziehungen, dagegen nicht immer 
die Unterschiedenheit der Elemente von 1 ..., xn] erhalten. 
Dann und nur dann, wenn auch § 2, (e') erfüllt ist, gilt auf 
Grund jener Zuordnung I [a^,..., xn] ^ I ..., xn]. 

Beweis, a) Das Erfülltsein von § 2, (ö), (s) liegt natürlich 
in der eindeutigen und für jedes Element aUS I \x~i, . . ., Xn\ 
anwendbaren Zuordnungsvorschrift von Def. 11. 

b) Das Erfülltsein von § 2, (3), (4), (5) ist leicht aus den 
obigen Formeln (2 a), (3 a) zu entnehmen, die die Normal-
darstellung der Summe und des Produkts zweier Elemente 
von I [x^ ..., xn] aus denen der Summanden bzw. Faktoren 
unter alleiniger Anwendung der in 1 [a^, . . . , xn\ gültigen 
Gesetze § 1, (1)—(5) berechnen. Denn weil diese Gesetze 
auch in 1 gültig sind, dürfen jene Umformungen auch vor-
genommen werden, wenn xx,..., xn Elemente aus 1 sind. 

c) Um das Erfülltsein von § 2, (<5') einzusehen, ist zu 
zeigen, daß auch umgekehrt jede ganze rationale Funktion 
i. S. d. An. von xv ..., xn über 1 einem Element f von 
I [a ;x , . . . , xn] gemäß Def. 11 zugeordnet ist. Nun liefert jedes 
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auf xv ..., x„ und feste Elemente aus I anzuwendende, 
aus endlich vielen Additionen, Subtraktionen und Multipli-
kationen bestellende Rechenverfahren, wenn man zunächst 

..., xn als Unbestimmte, also als Elemente aus I . . . , xn] 
auffaßt, ein Element / aus I [xy,..., xn], einfach weil im 
Integritätsbereich I \xx,..., xn] jene Operation unbeschränkt 
ausführbar sind. Nach dem unter b) schon Bewiesenen blei-
ben ferner beim Übergang von I [a;1, . . . , x„] ZU I [iEj, . . Xn] 
durch unsere Zuordnung alle Verknüpfungsbeziehungen er-
halten. Wendet man das auf diejenige Verknüpfungsbe-
ziehung an, die das Element / durch die Elemente 
und die festen Elemente aus I ausdrückt, so folgt, daß die 
durch jenes Rechenverfahren gelieferten Funktionswerte die-
selben sind, wie die durch die Normaldarstellung von / ge-
lieferten, daß also die betr. ganze rationale Funktion i. S. d. 
An. mit der / zugeordneten identisch ist. 

d) § 2, (V) ist z. B. nicht erfüllt, wenn für I der nur aus 0 
und e bestehende Körper K (§ 1, Beispiel 4) gewählt wird. 
Denn dann ist den beiden verschiedenen Elementen x + x2 

und 0 von K[x] dieselbe Funktion 0 i.S.d. An. zugeordnet, 
weil ja auch x -¡- x2 für alle x aus K (d.h. für x = 0 und 
x = e) Null ist. 

Wir werden im übrigen in 2, Satz 49 [41] und 3, 1, § 4, Aufg. 7, 8 
sowie § 1, Aufg. 9 sehen, daß § 2, (Y) dann und nur dann erfüllt 
ist, wenn 1 unendlich viele Elemente besitzt, daß also für unend-
liches I gilt I [xv ..x„] I [x1:..., xn] bzgl. I, für endliches 1 
aber nicht. 

In der nach d) vorhandenen Möglichkeit liegt der Grund, wes-
wegen man in der Algebra mit dem auf Zuordnung gestützten 
und demgemäß die Funktionen nach ihren F u n k t i o n s w e r t e n 
unterscheidenden Funktionsbegriff nicht auskommt, sondern den 
auseinandergesetzten formalen Funktionsbegriff braucht, der eine 
feinere Unterscheidung der Funktionen vermöge ihrer Rechen-
ausdrücke liefert. Wenn auch diese Notwendigkeit nach dem 
unter d) Bemerkten tatsächlich nur für endliche Integritäts-
bereiche vorliegt, so sprechen natürlich weiterhin methodische 
Gesichtspunkte dafür, von den in § 1 gegebenen Grundlagen aus-
gehend den Rechenausdruck als den durch ihn gelieferten 
F u n k t i o n s w e r t e n übergeordnet anzusehen. 
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Wir haben im vorhergehenden absichtlich nicht in der Be-
zeichnung, sondern nur im Text unterschieden, ob xv ..., x„ 
als Unbestimmte oder als Elemente aus I gemeint sind, um 
den im folgenden oft auszuführenden Übergang von der 
ersten zur zweiten Bedeutung der xv ..., x„ nicht immer 
mit einem Bezeichnungswechsel verbinden zu müssen. Auf 
Grund von Satz 12 ist es weiterhin hinsichtlich der V e r -
k n ü p f u n g e n angängig, auch die Bezeichnung f(xv . .., x„) 
der Elemente von I \x1, ..., xn~\ unverändert für die zuge-
ordneten Funktionswerte zu verwenden. Wir wollen daher 
fortan / ( % , . . . , x„) auch zur Bezeichnung des / zugeordneten 
Funktionswertes für das Elementsystem X-^) . . .) clUS 1 
gebrauchen und einen solchen F u n k t i o n s w e r t dann der 
kürzeren Ausdrucksweise halber auch einfach eine ganze 
rationale F u n k t i o n von xlt..., xn über I nennen; dagegen 
soll die Bezeichnung / (ohne Argumente) für das Element 
von . . x n ] vorbehalten bleiben. [f(xv ..., x„) ist hier-
nach nicht auch Zeichen für die / zugeordnete Funktion i. S. 
d.An., sondern nur für einen einzelnen Wert dieser Funk-
tion, die selbst erst durch die Gesamtheit aller Funktions-
werte / ( % , . . . , xn) gebildet wird.] Wir müssen dann nur 
irgendwie einen Bezeichungsunterschied für die folgenden 
beiden ganz verschiedenartigen G l e i c h h e i t s a u s s a g e n ein-
führen : 
f(xv ..., xn) = g(xlt..., xn) als Elemente von 1 . . . , xn], 
/(%,..., xn) = gfa,..., xn) als Funktionswert für das Ele-

mentsystem . . .j Xn aus i. 
Daher setzen wir weiter fest, daß fortan zur Bezeichnung 
der ersteren dieser beiden Aussagen das Zeichen = (Gegen-
teil =i=) verwendet werden soll1). Auf Grund obiger Verabre-
dung können und wollen wir aber die Schreibweise f = g 
gleichbedeutend mit . . x n ) = g{x^.. xn) verwenden. 

x) Die Relation f(zlt..., x^) g(xlt xn) hat dann zwar die Relation: 
xn) = ff («i , . . .» %n) für a l l e xlt . . x n aus l 

zur Folge, aber nach obigem nicht notwendig umgekehrt. Das Zeichen = hat 
also i. a. eine weitergehende Bedeutung, als die häufig darunter verstandene: 
gleich für a l l e xu...t xn. — Eine Verwechslung der hier gemeinten Relation 
= mit einer Kongruenzrelation im Sinne von Def. 6 [21] wird durch den Zu-
sammenhang ausgeschlossen. 
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Nach diesen Festsetzungen geht aus der gewählten Be-
zeichnung stets unzweideutig hervor, welche der beiden 
möglichen Auffassungen der xv .. ,,xn in einer Gleichheits-
oder Ungleichheitsrelation vorliegt. 

Wir vollziehen nun schließlich den Übergang von den 
Elementen von K f o , . . . , xn) zu den rationalen Funktionen 
i. S. d. An. durch folgende Definition: 

Definition 12. Unter der einem Element <p vonK(x^,..., xn) 
z u g e o r d n e t e n r a t i o n a l e n F u n k t i o n i. S. d. An. ver-
stehen wir diejenige Funktion i. 8. d. An. über K, die entsteht, 
wenn jedem Elementsystem ..., xn aus K, für das mindestens 

eine Darstellung von <p als Quotient zweier Elemente aus 

K f ^ j , . . . , xn] mit g(xlt..., xn) #= 0 existiert, als Funktions-

wert der Quotient r- der Funktionswerte von f und g 
9\XU ) xn) 

zugeordnet wird. 
Analog zu Satz 12 gilt dann hier das Einsetzungsprinzip: 
Satz 13. Für den Körper K(xv ..., x„) und den Ring 

K(£J, ..., xn) der rationalen Funktionen i. S. d. An. von 
Xy, ..., xn über K gilt vermöge der in Def. 12 erklärten Zu-
ordnung entsprechendes wie in Satz 12, nur daß hier die ev. 
Nichtgültigkeit von § 2, (e') stets auch die Nichtgültigkeit von 
§ 2, (ö) zur Folge hat. 

Beweis, a) Um das Erfülltsein von § 2, (e) zu beweisen, ist 
zu zeigen, daß die einem Element q> von K(a;1,..., xn) nach 
Def. 12 zugeordnete Funktion i. S. d. An. unabhängig von 
der speziellen Wahl der (der Bedingung von Def. 12 genügen-
den) Quotientendarstellungallein durch <p bestimmt ist. 

Sind nun und zwei (dieser Bedingung genügende) Quo-
tientendarstellungen von <p, so folgt aus der dann nach §3, (1) 
bestehenden Relation fg' = f' g nach Satz 12, daß auch 
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f(xl! • • Xn) g' (x 1, • • Xn) = /'(%, • • •) xn) (j(Xi, • • Xn) 

ist, woraus sich unter der Annahme von Def. 12 über g 
J , ftP 1> • • •> I \X1> • • •> Mi und g weiter - j - 1 = — ~ f- ergibt. 

g ( x l t , . . , xn) g { x j , . . . , xn) 

b) Durch Zurückgehen auf die Formeln § 3, (2) und (3) 
und Anwendung von Satz 12 ergibt sich ebenso das Erfüllt-
sein von § 2, (3), (4), (5). 

c) Das Erfülltsein von § 2, (6') folgt dann entsprechend 
wie im Beweis zu Satz 12 unter c); siehe dazu die Präzi-
sierung und Anleitung in 3, 1, § 5, Aufg. 1. 

d) Daß § 2, (e') nicht notwendig erfüllt ist, zeigt dasselbe 
Beispiel wie oben. Es tritt das offenbar dann und nur dann 
ein, wenn mindestens ein Element g in K . . x n ] derart 
existiert, daß zwar g 4= 0, aber doch g ( x 1 , . . . , xn) = 0 für 
a l le x 1 , . . . , xn aus K ist. Ist nun einerseits dies der Fall, so g 

hat das Element — aus K ( x 1 , . . . , xn) die Eigenschaft, daß 

zu ihm für k e i n Elementsystem ..., x„ aus K eine Quo-
tientendarstellung existiert, deren Nenner einen von Null 

verschiedenen Funktionswert hat; denn nach § 3, (1) ist 

seine allgemeinste Quotientendarstellung, wo / ein beliebiges 
ß 

Element 3>US Kfä/Jj • • •) #71 ] ist. Also existiert dann zu — 

keine zugeordnete Funktion i. S. d. An., indem die Def. 12 
des Funktionswertes für j e d e s xly . . . , x n aus K versagt. 
Existiert andererseits kein g der angegebenen Art in 

K f ^ , . . . , xn], so läßt sich dem Quotienten mindestens 

für ein Elementsystem X . . Xn cLUS K ein Funktionswert 
gemäß Def. 12 zuordnen. 

Auf Grund von Satz 13 übertragen sich die im Anschluß 
an Satz 12 gemachten Bemerkungen über I [as j , . . . , Xn\ sinn-
gemäß auch auf K ( x x , . . . , x„). Es sollen daher unsere Bezeich-
nungsfestsetzungen auch für die Elemente VOI1 . . Xn) 
Gültigkeit haben. 
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§ 5. Ausführliche Formulierung der Grundauigabe 
der Algebra 

Mittels der im vorhergehenden auseinandergesetzten Be-
griffe wollen wir jetzt eine genaue Formulierung der in der 
Einleitung genannten Grundaufgabe der Algebra geben. 

Eine mittels der vier elementaren Rechenoperationen ge-
bildete „Gleichung" zwischen bekannten und unbekannten 
Elementen eines Körpers K, wie sie in der Formulierung der 
Einleitung gemeint ist, entsteht, wenn zwei auf die Unbe-
kannten xu...,xn und vorgegebene (bekannte) Elemente 
von K anzuwendende Rechenverfahren vorliegen und gefragt 
wird, für welche Elementsysteme ZC^i • • tCfi clUS K beide Ver-
fahren dasselbe Ergebnis liefern. Hierbei haben also die Un-
bekannten . . . , x„ zunächst den Charakter von Unbe-
stimmten, und die vorliegenden Rechenverfahren sind zwei 
Elemente <p und <p' von K ^ , . . . , xn). Die in der „Gleichung" 
liegende Frage bezieht sich dann, in gewisser Analogie zu 
den letzten Entwicklungen von § 4, auf die Ersetzung der 
Unbestimmten xv . . ., xn durch Elementsysteme xv . . ., xn 
aus K und geht dahin, für welche solchen Elementsysteme 
die Gleichung (p(xv . . x n ) = ^'(^n • • •> xn) besteht. 

Da das Hinschreiben einer solchen „Gleichung" als F o r -
d e r u n g oder F r a g e logisch einen ganz anderen Sinn hat als 
die gewöhnlich ebenso bezeichnete T a t s a c h e des Bestehens 
der Gleichung, wollen wir für die Forderungsgleichheit ein 
besonderes Zeichen = (Gegenteil ) einführen, also die 
eben genannte Frage mit 

^p(x1, . . ., x„) = cp'ix^ .. ., x„) 
bezeichnen. 

Die Gleichung <p(xlt..., x„) = <p'(xlt. . ., xn) ist nun zu-
nächst nach dem Einsetzungsprinzip, angewandt auf die 
Verknüpfungsbeziehung <p — <p' = y>, gleichbedeutend mit 
einer Gleichung der Form . . x„) 0, wo ip wieder 
ein Element von K ^ , . . . , x„) ist. 
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Ehe wir diese Gleichung weiter reduzieren, müssen wir uns mit 
dem folgenden Umstand auseinandersetzen: Einerseits besteht das 
zu y führende Rechenverfahren im Sinne der gestellten Aufgabe 
(das gemäß y> = <p — <p' aus den beiden ursprünglich gegebenen, 
zu <p und rp' führenden zusammengesetzt ist) genauer betrachtet 
in einer Kette von Einzeloperationen, deren jede eine Addition, 
Substraktion, Multiplikation oder Division von je zwei Elementen 
ist, deren jedes entweder ein Element aus K oder eines der xv..., xn 

oder ein Resultat einer der vorhergehenden Operationen ist. Ande-
rerseits läßt sich y> als Element von Kfo^, . . . , xn) in der einfachen 

Form eines Quotienten — zweier Elemente aus K f ^ , . . . , in 

Normaldarstellung darstellen. Nach dem Einsetzungsprinzip hat 
es dabei auf das Resultat der Einsetzung eines Elementsystems 
x • • %n aus K keinen Einfluß, ob man diese Einsetzung vor der 
Ausführung des Verfahrens stattfinden läßt (ob man also, wie es 
dem Sinn der Aufgabe entspricht, von vornherein mit den . . . , xn 

als Elementen aus K losrechnet), oder ob man erst nach der Aus-
führung des Verfahrens, in eine Quotientendarstellung — einsetzt, 

so lange man nur so lche E i n s e t z u n g e n b e t r a c h t e t , für 
die weder der N e n n e r g noch e iner der s u k z e s s i v e bei 
dem R e c h e n v e r f a h r e n a u f t r e t e n d e n Nenner Null wird. 
Es ist nun keineswegs von vornherein sicher, daß der Nenner g 
genau für diejenigen Elementsysteme aus K nicht Null wird, für 
die keiner der sukzessiven Nenner des Verfahrens Null wird, die 
also im S inne der g e s t e l l t e n A u f g a b e zuläss ig sind. Doch 
läßt sich zeigen, daß es unter allen Quotientendarstellungen von 
y> (mindestens) eine mit dieser Eigenschaft gibt (siehe dafür 
3 ,1 , § 5, Aufg. 1). Eine solche, der Aufgabe naturgemäß angepaßte 

Quotientendarstellung yi = — sei im folgenden zugrunde gelegt. 

Vermöge einer Quotientendarstellung y> = — (der eben 

näher charakterisierten Art) reduziert sich nun nach § 3 
und dem Einsetzungsprinzip die Lösung der Gleichung 
y)(xv . . . , xn) = 0 weiter darauf, alle diejenigen Lösungen 
von / ( « ! , . . . , xn) = 0 zu bestimmen, die zudem Lösungen 
von g(xlt. . ., xn) ' 0 sind. Da man nun die Lösungen der 
letzteren Ungleichung kennt, wenn man die der Gleichung 
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g(xv ..., xn) = 0 kennt, reduziert sich die Aufgabe auf die 
Behandlung von Gleichungen der Form 

f{xlt. . .,Xn) = 0, 
wo / ein Element aus . . . , xn\ ist. 

Obwohl man nun im Prinzip die gemeinsamen Lösungen 
einer Anzahl von Gleichungen beherrscht, wenn man die 
Lösungen jeder Einzelgleichung kennt, ist es doch sowohl 
von theoretischen als auch von praktischen Gesichtspunkten 
aus zweckmäßig, solche Oleichungssysteme als Ganzes zu be-
handeln. Somit formulieren wir als die uns zum Leitfaden 
dienende Aufgabe der Algebra: 

Es seienK ein Körper und flt.. ,,fmElemente aus ..., Xn\. 
Es sollen Methoden zur Gewinnung aller Lösungen des Olei-
chungssyslems 

/,•(%, . . Xn) = 0 (i = 1, . . ., m) 
entwickelt werden1). 

Eine systematisch vollendete Theorie zur Lösung dieser 
Aufgabe in ihrer vollen Allgemeinheit würde den Rahmen 
dieser Darstellung übersteigen. Daher sollen uns hier nur 
die beiden nachstehenden, für den allgemeinen Fall grund-
legenden Spezialfälle beschäftigen: 

1) Die Elemente flt..., fm sind l i n e a r , d .h . in ihrer 
Normaldarstellung (Def. 9 [38]) sind höchstens die n + 1 
Koeffizienten 

ao,..., o , ßi.o,..., o , • • «o o. i 
von Null verschieden. Dann handelt es sich also um ein 
Gleichungssystem, das in der Form 

n 
(1) = 1, - .-,*») 

k = 1 
') Es sei auf die beiden folgenden, naheliegenden Verallgemeinerungen 

dieser Aufgabe hingewiesen: 
1. die Anzahl der Gleichungen und Unbekannten wird auch als abzählbar un-

endlich zugelassen, 
2. an Stelle des Körpers K wird ein Integritätsbereich (oder auch nur ein Ring) 

zugrunde gelegt, 
mit denen man sich in neuerer Zeit ebenfalls beschäftigt hat . 
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geschrieben werden kann, wo die aik und a( Elemente aus K 
sind. Ein Gleichungssystem der Form (1) heißt ein lineares 
Oleichungssystem in K. 

2) Es ist m = n = 1. Dann handelt es sich also um eine 
einzelne Gleichung der Form 

k = 0 
wo die dk Elemente aus K sind, von denen nur endlich viele 
4= 0 sind. Von dem trivialen Falle, wo alle = 0 sind und 
somit jedes x aus K Lösung der Gleichung ist, darf abgesehen 
werden. Dann existiert also ein letztes av 4= 0. Der so be-
stimmte Index r heißt der G r a d des links stehenden Ele-
mentes aus K[cc]. Der Fall r = 0 ist ebenfalls trivial, weil 
dann wegen der Annahme a0 4= 0 kein x aus K Lösung der 
Gleichung ist. Somit ist eine Gleichung der Form 

(2) ¿akx* = 0 (ar 4= 0, r £ 1) 
jfc = 0 

zu behandeln. Eine Gleichung der Form (2) heißt eine alge-
braische Gleichung r-ten Grades in K. 

In 1, I I I und IV werden wir die Teilaufgabe 1), in 2 die 
Teilaufgabe 2) behandeln. 

n . Gruppen 

§ 6. Definition der Gruppen 

Man redet von einer Gruppe, wenn folgender Tatbestand 
realisiert ist: 

(a) Es liegt eine Menge © von u n t e r s c h i e d e n e n E l e -
m e n t e n in irgendeiner endlichen oder unendlichen Anzahl vor. 

Vgl. die Bemerkungen zu § 1, (a). Anders als dort wird hier 
nicht gefordert, daß © mindestens zwei verschiedene Elemente 
besitzt. Wir bezeichnen Gruppen mit großen deutschen, Elemente 
aus Gruppen mit großen lateinischen Buchstaben. 


