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Es ist fiir die moderne Entwicklung der Algebra charakte-
ristisch, daB die oben genannten Hilfsmittel zu selbstdndigen um-
fangreichen Theorien AnlaB gegeben haben, die gegeniiber der
vorstehend angefithrten Grundaufgabe der klassischen Algebra
immer mehr in den Mittelpunkt des Interesses getreten sind. So
ist denn in moderner Auffassung die Algebra nicht mehr bloB die
Lehre von der Auflésung der Gleichungen, sondern die Lehre
von den formalen Rechenbereichen, wie Kérpern, Gruppen
u.a., und ihre Hauptaufgabe ist die Gewinnung von Einsichten
in die Struktur solcher Bereiche (sieche dazu S.24). Im be-
schrinkten Rahmen der vorliegenden Béndchen ist es uns jedoch
nicht moglich, diesen allgemeineren, modernen Gesichtspunkt in
den Vordergrund zu stellen. Wir nehmen daher die vorstehend aus-
gesprochene Grundaufgabe der klassischen Algebra als wegwei-
senden Leitfaden und abgrenzenden Rahmen fiir unsere Dar-
legungen, werden aber dabei in der Tat, vor allem in 2, auch zu
strukturellen Aussagen im Sinne der modernen Algebra gefiihrt
werden.

I. Ringe, Korper, Integrititsbereiche
§ 1. Definition der Ringe, Korper, Integritiitshereiche

Als das formal-charakteristische, von der inhaltlichen Be-
deutung der Zeichen als Zahlen befreite an den drei elemen-
taren Rechenoperationen Addition, Substraktion, Multipli-
kation — die vierte, Division, ziehen wir erst spater hinzu —
ist folgender Tatbestand anzusehen:

(a) Es liegt etne Menge B vonunterschiedenen Ele-
menten i irgendeiner endlichen Anzahl (mindestens zwes)
oder vn unendlicher Anzahl vor.

Wir verwenden Buchstaben a, b, ... und kompliziertere
Zeichen (z. B. die spaterhin erklirten Zeichen a 4 b, ab, . . .),
um die Resultate logischer Setzungen von Elementen aus B
mitzuteilen, und sagen dann auch einfach, a, b, ... seien
Elemente aus B. Auf Grund der in (a) geforderten Unter-
schiedenheit steht fiir je zwei solche logische Setzungen
a, b fest, ob es sich um dasselbe oder um verschiedene Ele-
mente aus B handelt, was wir durch die Bezeichnungen
a =b bzw. a & b angeben.
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(b) Fiir je zwei in bestimmter Rethenfolge gegebene, nichi
notwendig verschiedene Elemente a,b aus B sind zwei Ver-
kniipfungen definiert, d. h. jedem geordneten Elementpaar
a, b aus B 1st irgendwie ein Element ¢ (erste Verkniipfung) und
ein Element d (zweite Verkniipfung) aus B zugeordnet.

(a) und (b) sind z. B. realisiert, wenn B die Menge aller
geraden, oder aller ganzen, oder aller rationalen, oder aller
reellen, oder aller komplexen Zahlen, oder aller positiven von
einer dieser Zahlsorten (mit Ausnahme der letztgenannten)
ist und als Verkniipfungen die Addition (¢ = a 4 b) und
Multiplikation (4 = ab) gewihlt werden. In Anlehnung an
diese als Ausgangspunkt unserer Abstraktion anzusehenden
Spezialfalle wollen wir die beiden Verkniipfungen in (b)
auch allgemein Addition und Mulliplikation, die dem Paar
a, b zugeordneten Elemente ¢ und d Summe und Produkt
nennen und ¢ = a + b, d = ab schreiben, obwohl natiirlich
die rein formale Forderung (b) (und ebenso auch die gleich
folgende Forderung (c) an unsere Verkniipfungen) keinerlei
AnlaB zu der inhaltlichen Annahme gibt, dall diese Ver-
kniipfungen, wenn B eine Zahlenmenge ist, mit der gewdhn-
lichen Addition und Multiplikation iibereinstimmen.

(¢) Die in (b) genannien beiden Verkniipfungen geniigen fir

beliebige Elemente aus B den Gesefzen:

1N at+bdb=0bb+a (2) ab=ba

(kommutatives Gesetz);
@) e+d)te=a+G+c)y @ (abe = albe)
(assoziatives Gesetz);
(B) (@ + b)e =ac—+ be
(distributives Gesetz);

(8) Zu jedem geordneten Elementpaar a,c aus B existier
ewn ewndeutig besttmmies Element b aus B derart, daf
a--b=c st

(Gesetz der unbeschrinkten und eindeutigen

Subtraktion).
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‘Wie schon in der beigefiigten Benennung des Gesetzes (6)
zum Ausdruck gebracht ist, bezeichnet man die nach (6) in
B unbeschrankt und eindeutig ausfithrbare Operation der
Bestimmung von b aus a -- b = ¢ als Subtraktion und fithrt
daher in sinngemiBer Fortsetzung der unter (b) verwendeten
Terminologie die Bezeichnung b = ¢ — a (Differenz) ein.

Definition 1. Wenn fiir etne Menge B die unter (a), (b), (c)
aufgefithrten Tatsachen realisiert sind, heifit B ein Ring be-
ziiglich der Verkniipfungen (b).

Den letzten Zusatz muf man machen, weil eine Menge B
a priori beziiglich je zweier verschiedenartig erklarter Verkniip-
fungen, also in mehrfacher Weise Ring sein kann (siehe dazu
3,1, §1, Aufg. 4, 5). Unter einem Ring B schlechthin versteht man
immer die Menge B mit EinschluB der fiir sie definierten Ver-
kniipfungen. — Wir bezeichnen Ringe stets mit grofien griechi-
schen, Elemente ans Ringen mit kleinen lateinischen oder grie-
chischen Buchstaben?).

Wir beweisen nun zunichst einige in Ringen giiltige Tat-
sachen.

Satz 1. In jedem Ring B existiert ein eindeutig bestimmies
Element 0, das Nullelement oder Null von B heifft, mit der
Eigenschaft

a+ 0 = a fir alle a aus B.

Beweis. Nach (6) existieren in B zu den Elementen q,b, ...
von B je die Differenzen ¢ —a,b —b,b —a,.. ., fir die
nach ihrer Erklarung gilt

at+@—a)y=a, b+ b —0b)=ba+{b—a)=0,....

Vermige der ersten und dritten dieser Relationen hat
man, nun unter Beachtung von (1) und (3),

b+ (a—a)=la+ (b —a)]+ (a—0a)

=lat+@—a)+®b—a)=a+ (b—a)=0.
Der Vergleich mit der zweiten jener Relationen ergibt dann,
zufolge der Eindeutigkeit in (6),
a—a="5b—h

1) Die Buchstaben ¢, &, I, m, n, p, ¢, 7, 8; ¢, %, 4, u, v, g, ¢ behalten wir
jedoch fiir gewdhnliche ganze Zahlen, z. B. Indizes und Exponenten, vor.
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Also sind alle Differenzen a —a,b — b, ... dasselbe Ele-
ment 0 von B. Dieses hat die im Satz genannte Eigenschaft
und ist nach (6) sogar schon durch eine einzige der Forde-
rungen a -+ 0 = a eindeutig bestimmt.

Satz 2. Es ¢ilt Oc = 0 fir jedes ¢ aus B.
Bewets. Nach (5) und Satz 1 ist fiir beliebiges ¢ aus B

Oc = (0+ 0) ¢ = Oc + Oc,

also nach (6) und Satz 1 schlieBlich Oc = 0.

Wir ziehen jetzt die bisher noch unberiicksichtigte Divi-
sion in den Kreis unserer Betrachtungen, indem wir den
unter (¢) genannten Forderungen (1)—(6) noch die folgende
anreihen;

(7) Zu jedem geordneten Elementpaar a,c aus B, in dem
a =+ 0 st, existiert ein eindeutig bestimmies Element b aus B
derart, daf ab = ¢ st

(Gesetz der unbeschréankten und eindeutigen
Division).

Analog wie oben bei der Subtraktion bezeichnet man auch
hier, wenn (7) in B erfiillt ist, die in B bis auf die Einschrin-
kung a + 0 unbeschrinkt und eindeutig ausfiihrbare Ope-
ration der Bestimmung von b aus ab = ¢ als Division und

fiihrt die Bezeichnung b =%(Quotient) ein.

Die in (7) gemachte Einschrinkung a 4 0 ist keine willkiir-
liche Festsetzung, sondern notwendig, wenn (a), (b), (c) und (7)
widerspruchsfrei nebeneinander bestehen sollen. Ohne diese Ein-
schrinkung folgte ndmlich, wenn ¢ ein beliebiges Element aus B
ist, aus der Existenz eines b, so dafi 0b = ¢ ist, nach Satz 2, da}
¢ = 0 wire. Es enthielte also B nur das eine Element 0 im Wider-
spruch zu (a). Betreffs der hierdurch nahegelegten Frage, ob die
Forderungen (a), (b), (¢), (7) in der vorliegenden Gestalt wider-
spruchsfrei sind, sei bemerkt, daB ein Widerspruch in (a), (b), (c),
(7) einen Widerspruch im System der rationalen Zahlen zur Folge
hatte, das ja allen jenen Forderungen geniigt.

Es sei noch bemerkt, daB die in der Einschrinkung a = 0 in
(7) bestehende Unsymmetrie der sonst beziiglich Addition und



§ 1. Definition der Ringe, Koérper, Integritidtsbereiche 11

Multiplikation symmetrischen Tafel der Forderungen (1) und (2),
(3) und (4), (6) und (7) natiirlich auf die Unsymmetrie des einzigen
beide Operationen verbindenden Gesetzes (5) zuriickgehen mus,
wie ja auch die obige Begriindung jener Einschrinkung (Beweis
von Satz 2) zeigt.

Definition 2. Gilt in einem Ringe B aufer (a), (b), (c)
auch noch (7), so heift B ein Korper beziiglich der Verkniip-
fungen (b).

Analog zu Satz 1 gilt in Kérpern auBerdem:

Satz 3. In jedem Korper K ewistiert ein eindeuiiq be-
stimmtes Element e &= 0, das Einselement oder Eins von
K heifit, mit der Eigenschaft

ae = a fir alle a aus K.

Beweis. Der Beweis wird, zunichst fiir die wegen (a) sicher
vorhandenen « = 0 aus K, unter Verwendung von (7) statt
(6) ganz analog wie bei Satz 1 gefiihrt. Dall ferner ae =«
auch fiir a = 0 gilt, ist nach Satz 2 klar. Aus e = 0 schlief-
lich wiirde folgen a4 = ae = a0 = 0 fiir jedes a aus K, im
Widerspruch zu (a).

AuBer Ringen und Korpern braucht man in der Algebra
noch einen weiteren derartigen Begriff, der logisch zwischen
jenen beiden steht, den des Integritdtsbereiches. Dieser ent-
steht aus dem Ringbegriff, wenn man nur einen Teil der zum
Korperbegriff fiihrenden Zusatzforderung (7) stellt, ndmlich
aus dieser einerseits die unbeschrinkte Existenz des Quo-
tienten wegliBt, also nur die Eindeutigkeit der Division,
falls sie itberhaupt ausfiihrbar ist, fordert:

(7a) Aus ab = ab’ und a = 0 folgt b =¥ (Eindeutig-
keit der Division),
andererseits aber doch die Existenz der speziellen Quotienten
a b
a’b’’
hergehenden auf die Forderung der Giiltigkeit des Analogons
zu Satz 3 hinausliuft:

.., woa,b,...=* 0sind, fordert, was nach dem Vor-
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(7b) Es existiert ein Element ¢ in B derart, daff ae = a fir
alle @ aus B ist (Existenz des Einselementes).

Definition 3. Gelten in einem Ringe B aufer (a), (b), (c)
auch noch (7a) und (7b), so heift B ein Integritdtsbereich
beziiglich der Verkniipfungen (b).

Jeder Korper ist ein Integritdtsbereich, weil ja (7a) und
{(7b) aus (7) gefolgert werden konnen, und jeder Integritits-
bereich ist nach Def. 3 ein Ring.

Ringe, Korper, Integritdtsbereiche nennen wir auch ge-
meinsam Bereiche') und die in ihnen erklirten Verkniip-
fungen Addition, Substraktion, Multiplikation, ev. Division
die drev ersten bzw. vier elementaren Rechenoperationen.

In Integrititsbereichen (also speziell in Korpern), die uns
im folgenden hauptséichlich interessieren werden, gilt auch
die Umkehrung von Satz 2:

Satz 4. Ist das Produkt zweier Elemente eines Integritils-
bereiches Null, so ist mindestens einer der Faktoren Null, d. h.
aus ab =0,a+ 0 folgt b = 0.

Bewets. Sei ab = 0, a % 0. Da nach Satz 2 a0 = 0, also
hier ab = a0 ist, folgt nach (7a) b = 0.

Das Bestehen von Satz 4 ist {ibrigens nicht nur, wie eben
gezeigt, Folge aus (7a), sondern auch umgekehrt. Denn gilt
das Analogon zu Satz 4 in einem Ringe und besteht fiir ein
@ =+ 0 die Gleichung ab = ad’, d. h. a(b —¥’) = 0, so folgt
b—b =0,dh b="V.

Zusatz zu Definition 3. A an kann die Forderungen (7a),
(7b) der Def. 3 auch durch die Forderungen ersefzen, daf die
Analoga zu Satz 3 und Satz 4 in B gelten sollen.

Es bedarf wohl nur des Hinweises, daB aus den Gesetzen (a),
(b), (c) fiir Ringe alle allgemeinen Rechenregeln der elementaren
Algebra fiir die Addition, Subtraktion und Multiplikation, insbe-
sondere die sog. Klammerauflésungsformeln, und, wenn man (7)
hinzunimmt, auch die allgemeinen Formeln der Bruchrechnung

') Bereich bedeutet zwar hicrnach dasselbe wie Ring; jedoch ist der
neutrale Ausdruck Bereich im angegebenen Sinne geliufiger, wihrend man
Ring gewohnlich nur dort anwendet, wo wirklich kein Integrititsbereich
vorliegt.
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durch einfache Schliisse hergeleitet werden konnen. Die nihere
Ausfiithrung darf dem Leser iiberlassen bleiben.

Man verwendet beim Rechnen in einem Bereich B zweckmifig
folgende abkiirzenden Bezeichnungen:

—a fiir 0 —a,

oy (—2)a,(—1) a, Oa, 1a, 2a,.. . fir... —(a+ a),—a,0,a,
ata,... (ganze Vielfache von a),
a2 e a0 al, a?,y ... fir ...,-i,i,e, a, aa, ...
as’ a

(ganze Potenzen von a)

(a=1, a2, ... natiirlich nur, soweit eindeutig erkliart, also z. B.
wenn B ein Korper und a % 0 ist). Aus (1)—(7) und Satz 1—4
ergeben sich dann mittels der Definition der Rechenopérationen
im Bereich der ganzen Zahlen leicht die Tatsachen
(m+nya=ma+4 na, a®*" = qma®, (a™)* = a™",
(mn)e = (me)(ne), e =¢, m0 =0, 0m =0

fiir ganze Zahlen m, n, soweit die darin vorkommenden Elemente
einen eindeutigen Sinn auf Grund des Vorhergehenden haben.

Beispiele

1. Auf Grund der vorstehenden Ausfithrungen diirfen wir als
aus den Elementen bekannt hinstellen:

. ganzen
Satz 5. Die { ationalen }Zahlen
Integrititsbereich T
Korper P

die gewdhnliche Addition und Multiplikation zugrunde gelegt werden.
Die Zahlen 0 und 1 sind Null- und Einselement von ' und P.

2. Ferner bilden auch alle reellen, sowie auch alle komplexen
Zahlen einen Korper beziiglich der gewéhnlichen Addition und
Multiplikation.

3. Die geraden Zahlen bilden einen Ring, aber keinen Integri-
titsbereich, weil fiir sie (7b) nicht gilt. Ringe, in denen (7b) gilt,
aber (7a) nicht, werden wir in 2, § 2 kennenlernen. Als Beispiel
eines Integrititsbereiches, der kein Korper ist, dient schon T.

4. Der folgende Korper mag als Beispiel einerseits fiir einen
solchen genannt werden, dessen Elemente keine Zahlen sind,
andererseits fiir einen mit nur endlich vielen Elementen:

bilden etnen { }, wenn als Verkniipfungen
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Fiir zwei Elemente 0 und ¢ werden zwei Verkniipfungsopera-
tionen durch die Festsetzungen

0+0=0 00=20
O0+e=e¢e+0=c¢ 0e=¢e0=0
et+¢e=20 ce=e

erklirt. Man bestitigt leicht die Richtigkeit von (1)—(7). Wir
haben also einen Korper, der lediglich aus seinem Null- und Eins-
element besteht. Dall dieser Korper kein uninteressanter Aus-
nahmefall ist, zeigen die Ergebnisse von 2, § 20, wonach endliche
Korper existieren, deren Elementzahl eine beliebige Primzahl-
potenz ist. Siehe auch schon §2, Beispiel 5 [25].

§ 2. Teilbereiche, Kongruenzrelationen, Isomorphie

In § 1 wird mit der Forderung (a) von einer Menge unter-
schiedener Elemente, der Grundgegebenheit der
Mengenlehre, ausgegangen, die dann durch Hinzunahme der
Forderungen (b), (c) usw. zu der Grundgegebenheit der
Algebra d. h. zZum Bereich, wird. Es ist daher verstandlich,
dal fiir das Studium unserer Bereiche u. a. auch Begriffe und
Tatsachen heranzuziehen sind, die allein aus (a) folgen, also
der Mengenlehre angehéren, und von denen dann zu unter-
suchen ist, wie sie bei Hinzunahme von (b), (c) usw. fiir das
Studium von Bereichen nutzbar gemacht werden kénnen.
Wir miissen uns hier darauf beschrinken, die heranzuzie-
henden mengentheoretischen Grundlagen vom sog. naiven
Standpunkt aus kurz zusammenzustellen, ohne auf die in
neuerer Zeit durch die Paradoxien der Mengenlehre ent-
standenen begritflichen Schwierigkeiten einzugehen, die man
durch ein entsprechendes axiomatisches Vorgehen be-
heben kann, wie es in § 1 fiir Bereiche, gestiitzt auf den Men-
genbegriff, durchgefithrt wurde. Wir verzichten also ins-
besondere auf eine naiv nicht in befriedigender Weise zu
gebende Prizisierung des Begriffs der Menge.

1. Teilmengen

Es sei M eine Menge, worunter wir stets, wie in § 1, (a), eine
Menge unterschiedener Elemente verstehen. Eine Menge M,
heiBt Terlmenge von M oder in M enthalten, wenn jedes Element
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von M, auch in M vorkommt. Wir rechnen die Menge M selbst,
sowie die kein Element enthaltende leere Menge (Nullmenge) eben-
falls als Teilmengen von M. Alle anderen Teilmengen von M heifien
echt oder eigentlich.

Liegen Teilmengen M;, M,, ... einer Menge M in irgendeiner
endlichen oder unendlichen Anzahl vor, so gibt es dazu zwei be-
stimmte Teilmengen von M, ihren Durchschnité A und ihre Ver-
etnigungsmenge E. Der Durchschnitt A besteht aus allen und nur
den Elementen von M, die sowohl in M; als auch in M,,.
enthalten sind. Er kann auch die Nullmenge sein. Die Vereini-
gungsmenge E besteht aus allen und nur den Elementen von M,
die entweder in M; oder in M,, ... enthalten sind. E lafit sich
auch erkliren als Durchschnitt aller M;, M,,... enthaltenden
Teilmengen von M und ist in diesem Sinne die engste M, M,, ...
enthaltende Teilmenge von M. Ebenso laB8t sich A erkliren als
Vereinigungsmenge aller in M,;, M,, ... enthaltenen Teilmengen
von M und ist in diesem Sinne die weiteste in My, M,, ... ent-
haltene Teilmenge von M.

2, Aquivalenzrelationen und Klasseneinteilungen

Fiir die Algebra von besonderer Wichtigkeit sind Zerlegungen
einer Menge M in elementfremde Teilmengen, d. h. Darstellun-
gen von M als Vereinigungsmenge von Teilmengen, von denen je
zwei die Nullmenge zum Durchschnitt haben. Solche Zerle-
gungen von M nennen wir Klasseneinteslungen von M und die
betr. Teilmengen auch Klassen. Liegt eine solche Klassenein-
teilung vor, und setzt man zwischen je zwei in bestimmter Reihen-
folge gegebene Elemente a,b aus M das Zeichen ~ oder das
Zeichen ~v jenachdem a in derselben Teilmenge wie b vorkommt
oder nicht, so bestehen offenbar die Tatsachen:

(a) a~ a (Gesetz der Reflexivitit),
(B) aus a~ b folgt b~ a (Gesetz der Symmetrie),
(y) aus a~ b, b~ ¢ folgt a~ ¢ (Gesetz der Transitivitit).

Fiir das Bestehen dieser Tatsachen, gleichgiiltiz welche Be-
deutung dabei den Zeichen ~, ~v zukommt, fiihren wir eine
besondere Ausdrucksweise ein:

(I) Wenn zwischen je zwei tn_bestimmier Rethenjolge gegebene
Elemente von M eines und nur etnes von zwer Zeichen ~, ~v in
solcher Weise gesetzt ist, daf3 die Bedingungen (a), (B), (¥) bestehen,
so sagt man, daf} eine Aquivalenzrelation ~ in' M erkldrt sei.
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Es gilt dann also:

(A) Jede Klasseneinteilung von M fihrt 2u einer Aquivalenz-
relation in M, tndem zwischen Elemente aus etner Klasse~, zwischen
Elemente aus verschiedenen Klassen ~|v gesetzt wird.

Nicht nur in der Algebra, sondern in fast jeder mathematischen
Disziplin hat man auBerordentlich hiufig die Umkehrung dieser
Tatsache zu benutzen, die wir daher hier ausfiihrlich begriinden
wollen.

(B) Jede Aquivalenzrelation tn M entspringt gemdfs (A) aus einer
und nur einer Klasseneinteilung von M.

Beweis. a) Wenn eine Aquivalenzrelation in M vorliegt, so kann
eine Teilmenge M, von M die Eigenschaft E haben, daf ein Ele-
ment ¢ aus M derart existiert, da8 M, aus allen und nur den Ele-
menten d von M besteht, fiir die ¢~ d ist. Wir nennen dann fiir
den Augenblick M, eine E-Teilmenge von M, die durch ¢ erzeugt
ist. Jedes Element ¢ aus M erzeugt eine E-Teilmenge, aber natiir-
lich kann dieselbe E-Teilmenge i. a. durch verschiedene Elemente
erzeugt sein. Wir betrachten nun die simtlichen E-Teilmengen
von M und zeigen, daB diese die Klassen einer Klasseneinteilung
von M sind, aus der die betrachtete Aquivalenzrelation im Sinne
von (A) entspringt.

Erstens sind verschiedene E-Teilmengen M,, M, von M element-
fremd. Ware ndmlich das Element @ in M; und M, enthalten, und
ist M, durch ¢;, M, durch ¢, erzeugt, so wire ¢;~ a, ¢,~ a, also
nach (B), (y) auch ¢;~ ¢,. Ist dann d, ein Element aus My, d, ein
Element aus M,, also ¢;~ d,, ¢;~ d,, so folgte wiederum aus (),
(y) auch ¢, ~ d,, ¢, ~ d;, so daB d, auch in M,, d, auch in M, ent-
halten wire. Es wiren also dann gegen die Annahme M, und M,
identisch.

Zweitens ist die Vereinigungsmenge aller E-Teilmengen die
Menge M, d. h. jedes Element a aus M kommt wirklich in einer
E-Teilmenge vor. Denn nach (a) kommta in der durch a erzeugten
E-Teilmenge vor.

Hiernach sind also die E-Teilmengen von M die Klassen einer
Klasseneinteilung von M. Dafi die betrachtete Aquivalenzrelation
im Sinne von (A) aus ihr entspringt, folgt so:

Erstens steht zwischen zwei Elementen a, b derselben E-Teil-
menge M; das Zeichen ~. Denn ist M, durch ¢ erzeugt, so ist
e~ a, c~ b, also nach (f), (p) auch a~b.

Zweitens steht zwischen zwei Elementen a, b verschiedener
E-Teilmengen M,, M, von M das Zeichen ~~. Wire nimlich a~ b,
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und ist M, durch ¢;, M, durch ¢, erzeugt, so folgte aus ¢, ~ a,
¢y~ b nach (B), (y) auch ¢;~ ¢, und daraus wie oben ein Wider-
spruch gegen die Verschiedenheit von M; und M,.

b) DaB eine Aquivalenzrelation nicht aus zwei verschiedenen
Klasseneinteilungen von M entspringen kann, folgt daraus, daf
die ein Element a enthaltende Klasse notwendig aus allen und nur
den b mit a~ b bestehen muf, also durch die Aquivalenzrelation
eindeutig (als die durch a erzeugte E-Teilmenge von M) bestimmt
ist.

Liegt eine Klasseneinteilung von M vor, so heifit jede Teilmenge
von M, die aus jeder Klasse ein und nur ein Element enthilt, ein
vollstindiges Reprisentantensystem fiir diese Klasseneinteilung.

Die einfachste Aquivalenzrelation ist die logische Identi-
tdt, d.i. die in §1 unter (a) durch die Zeichen =, & definierte
Relation. Die zu 1hr gehorige Klasseneinteilung ist die Einteilung
von M in seine unterschiedenen Elemente selbst.

3. Gleichmiichtigkeit und Kardinalzahlen

Man kann aus einer Menge M dadurch eine neue Menge M’ her-
leiten, daf man die Elemente von M irgendwie durch neue Ele-
mente ersetzt, nur so, daB alle Unterschiedenheiten der Elemente
von M erhalten bleiben (etwa indem man das Element a durch
den ,,Gedanken an das Element a‘ ersetzt). Setzt man dann
zwischen je zwei Elemente ¢ aus M und a’ aus M’ das Zeichen
<— oder das Zeichen <], je nachdem a’ bei dieser Ersetzung
aus a entsteht oder nicht, so bestehen offenbar die Tatsachen:

(6) zu jedem a aus M ewxistiert ein a’ aus M” mit @ < a’,
(8") zu jedem a’ aus M’ existiert ein a aus M mit a «— a’,
(&) wenn a <—a’, b<—b und a = b qilt, ista’ = b’,
(") wenn a<—>a’, b<«—>b und a’ = b qili, 7st a = .

Fiir das Bestehen dieser Tatsachen bei zwei vorliegenden Mengen
M und M’, gleichgiiltig welche Bedeutung dabei den Zeichen
> <|> zukommt, fiihren wir eine besondere Ausdrucksweise
ein:
(IT) Wenn zwischen je ein Element a einer Menge M und o’ einer
Menge M’ eins und nur eins von zwei Zeichen <—>, <—|— tn solcher
Weise gesetzt ist, dafi die Bedingungen (8), (8"), (), (&’) bestehen, so
sagt man, daf} etneeineindeutige Zuordnung <—>zwischenM
und M’ vorliege. Ist eine solche zwischen M und M” miglich, so nennt
man M und M’ gleichmachtig.

2 Hasse, Hohere Algebra
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Die Gleichmichtigkeit ist ersichtlich eine Aquivalenzrelation
im Sinne von (I). Fiir zwei endliche Mengen M und M’ ist die
Gleichmichtigkeit offenbar mit dem Ubereinstimmen der An-
zahlen der Elemente von M und M’ gleichbedeutend. Die durch
ein endliches M gemid (B) erzeugte Klasse gleichmichtiger
Mengen ist also die Gesamtheit aller Mengen gleicher Element-
anzahl wie M. Diese Klasse kann direkt zur eindeutigen Charakte-
risierung dieser Anzahl dienen!). Daher nennt man nach Cantor
allgemein die Klassen, die der Aquivalenzrelation (II) gemiB (B)
in der Menge aller Mengen entsprechen, also je die Gesamtheiten
aller zu einer Menge gleichmichtigen Mengen Kardinalzahlen
(Madchtigkeiten). Sie geben die Verallgemeinerung des Anzahl-
begriffs auf unendliche Mengen. Durch die Zusammenfassung je
aller gleichmichtigen Mengen in eine logische Einheit (die Klasse)
wird eben von jeder speziellen Bedeutung der Elemente der Einzel-
mengen abstrahiert und allein die fiir den Anzahlbegriff charak-
teristische Gesamtheit [(6), (6")] der Elemente nebst ihren
Unterschiedenheiten [(¢), (¢/)] ins Auge gefaBt.

Als Reprisentant einer endlichen Kardinalzahl » kann etwa
die Menge der natiirlichen Zahlen 1, 2, . .., n dienen. Als weitere,
fiir uns wichtige Kardinalzahl nennen wir noch die durch die
Menge aller natiirlichen Zahlen 1, 2, ... repriasentierte. Mengen
dieser Kardinalzahl, also solche, die mit der Menge der natiirlichen
Zahlen gleichmichtig sind, deren Elemente also durch Indi-
zierung: a;, a,, . . . den natiirlichen Zahlen eindeutig zugeordnet
werden konnen, heifien abzdhlbar.

Die Menge aller reellen Zahlen ist ein Beispiel dafiir, daf nicht
jede unendliche Menge abzdhlbar ist2).

Wir wenden nunmehr die im vorstehenden auseinander-
gesetzten Begriffe der Mengenlehre zur Einfithrung einiger
wichtiger entsprechender Begriffe fiir Bereiche an.

1) Djesen Gedanken hat R.Dedekind (Was sind und was sollen die
Zahlen ?, Braunschweig 1887) tatsichlich zur Definition der natiirlichen Zahlen
als Anzahlen endlicher Mengen benutzt.

) Lige eine Abzihlung a;, a;, ... der als Dezimalbriiche (unter Vermei-
dung der Periode 00...) geschriebenen reellen Zahlen vor, so konnte man
leicht einen (ebensolchen) Dezimalbruch a bilden, der von a,, @, ... ver-
schieden, also doch nicht mit abgezihlt wire. Man wihle nimlich fiir jedes
n=1,2,... dic n-te Ziffer von ¢ hinter dem Komma verschieden von der
n-ten Ziffer von ap hinter dem Komma (CantorschesDiagonalverfahren).
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1. Teilbereiche

Aus dem Begriff Teilmenge entspringt unmittelbar:

Definition 4. Bilden die Elemente einer Teilmenge B, eines
Bereiches B beziiglich derselben Verkniipfungen, wie sie in B
zugrunde liegen, einen 1. Ring, 2. Korper, 3. Integrititsbereich,
so heifit By etn 1. Teilring, 2. Teilkérper, 3. Teilinte-
gritdtsbereich von B und B ein Erweiterungs-Bereich
(-Ring, -Korper, -Integritdtsbereich) von B,.

Zur Entscheidung daritber, ob eine Teilmenge B, eines
Integritiatsbereiches B Teilring, Teilkorper, Teilintegri-
tatsbereich von B ist, braucht man nicht alle in §1 aufge-
fithrten Bedingungen zu priifen, sondern nur die in fol-
gendem Satz genannten:

Satz 6. Eine aus mindestens zwer Elementen bestehende
Teilmenge B, eines Integrititsbereiches B 1st dann und nur
dann 1. Teilring von B, wenn die ersten drei elementaren Rechen-
operationen, wie ste innerhald B definiert sind, angewandt auf
die Elemente von B, stefs wieder Elemente von B, ergeben,
2. Tedkorper von B, wenn zudem die vierle Rechenoperation
(Division) fiir Elemente aus B, (bei von Null verschiedenem
Nenner) stets ausfithrbar st und immer Elemente von B, ergibt,
3. Teslintegrititsbereich von B, wenn B, Tetlring von B 1st und
das Einselement von B enthdlt.

Bewers. a) Da} diese Bedingungen notwendig sind, ist nach
Def. 1—4 klar.

b) Sind diese Bedingungen erfiillt, so stimmen die folgenden
Bedingungen des §1 fiir B;: (a), (b), die Existenz in (6), ev.
die Existenz in (7) bzw. (7b). Andererseits sind die iibrigen
nach § 1 erforderlichen Bedingungen, nimlich (1)—(b), die
Eindeutigkeit in (6), ev. die Eindeutigkeit in (7), (7a), in B,
a fortiori erfiillt, weil sie in B gelten.

Das Kriterium von Satz 6 1a8t sich natiirlich sinngemi auch
auf Ringe B ausdehnen. Wir werden es aber nur fiir die in Satz 6
genannten Fille brauchen. Desgleichen werden wir der einfacheren
Redeweise halber auch den folgenden Satz 7 sowie Def. 5 nur fiir
Korper formulieren, fir die allein sie spiater zur Anwendung
kommen.

Q%
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Beziiglich des Durchschnittes haben wir fir Korper:

Satz 7. Sind K, K,, . .. irgendwelche [endlich oder unend-
lich) viele] Teilkorper esnes Korpers K, so 1st auch der Durch-
schnitt der Mengen Ky, K,, . .. ein Teldkorper von K; dieser
heift der Durchschnittskérper oder kurz Durschnitt
der Korper Ki,K,, .. ..

Beweis. Dafl der Durchschnitt mindestens zwei Elemente
enthilt, folgt daraus, daB alle K;,K,, ... die beiden ver-
schiedenen Elemente 0 und ¢ von K gemeinsam enthalten,
weil sie Teitkérper von K sind. Dann ergibt sich die Be-
hauptung ohne weiteres aus Satz 6.

Fiir die Vereinigungsmenge gilt aber ein entsprechen-
der Satz nicht. Denn ist a, in Ky, a, in K,, so braucht z. B.
a, + a, in keinem der Korper K;,K,, . . . enthalten zu sein.
Dagegen 146t sich ein dem Vereinigungsmengenbegriff ana-
loger dadurch einfithren, daB wir die auf S. 15 angegebene
Zuriickfithrung der Vereinigungsmengs auf einen Durch-
schnitt fiir die Verallgemeinerung zugrunde legen.

Definition 5. Sind K, K,, ... irgendwelche (endlich oder
unendlich viele) Teilkorper eines KorpersK, so heifit der Durch-
schuitt aller K, K,, . . . als Teilkorper enthaltenden Tedkorper
vonKdas KomypositumvonK,, Ky, . . . oder der ausK,K,, ...
komponierte Kérper.

Daf dieser Durchschnitt iiberhaupt gebildet werden kann, folgt
daraus, daff zum mindesten ein zu seiner Bildung zugrunde zu
legender Kdorper, namlich K, existiert.

Das Kompositum von K, K,, ... enthdlt die Vereinigungs-
menge der Mengen K, K,, ..., ist aber i. a. weiter. Es ist der
engste K, K,, ... als Teilkérper enthaltende Teilkorper von K,
ebenso wie der Durchschnitt von K, K,, ... der weiteste in K,
Ky, . . . als Teilkérper enthaltene Teilkorper von K ist.

2. Kongruenzrelationen und Restklassenringe

Indem wir fiir den Fall eines Bereiches B zu den Be-
dingungen (), (B), (y) fiir eine Aquivalenzrelation in der

1) Die Numerierung soll hier und in der folgenden Def. 5 nicht besagen,
daB hochstens abzihlbar viele gemeint sind.
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Menge B noch zwei in naturgemaBer Weise gebildete For-
derungen iiber das Verhalten der Aquivalenzrelation zu den
beiden Verkniipfungen von B hinzufiigen, definieren wir:

Definition 6. Erfillt eine Aquivalenzrelation = in einem
Bereiche B neben (), (8), (y) noch die Bedingungen:

(1) aus a; = by, a, = b, folgt a; + a,= b; + b,,

(2) aus a; = by, a,= b, folgt a, a;= b by,
so mennen wir sie eme Kongruenzrelation in B und die
thr entsprechenden Klassen die Restklassen in B nach ihr?).

Wir legen jetzt in §1, (a) die Menge B der Restklassen
nach einer Kongruenzrelation = in B zugrunde. Dazu ist zu
fordern, daBl mindestens zwei solche Restklassen vorhanden
sind, daB also nicht alle Elemente von B einander kongruent
sind. Sind dann r und s zwei Restklassen und bildet man alle
Summen ¢ - b bzw. Produkte ab von je einem Elemente a
aus r und b aus s, so folgt aus (1) und (2), daB diese alle

wieder je einer bestimmten Restklasse ¢ bzw. u aus B ange-
héren, Durch die Festsetzungen r 4 s = ¢ bzw. rs = u, die
man kurz als elementweise Addition bzw. Multiplikation
der Restklassen bezeichnen kann, wird also § 1, (b) reali-
siert. Wir beweisen nun, da8 dann auch §1, (c) realisiert
ist, d. h.:

Satz 8. Liegt in einem Bereiche B eine Kongruenzrelation
= vor, bes der nicht alle Elemente von B einander kongruent
sind, und definiert man in der Menge B der Restklassen nach
thr zwer Verkniipfungen durch elementweise Addition bzw.
Multiplikalion, so ist B ein Ring beziiglich dieser Verkniip-
fungen; B heift der Restklassenring von B nach der Kon-
gruenzrelation =.

Beweis. Das Erfiilltsein von § 1, (1)—(5) ist eine unmittel-
bare Folge des Bestehens dieser Gesetze im Bereiche B. Sind
ferner a bzw. ¢ Elemente aus den Restklassen r bzw. ¢, so

1y Die Menge M aller @ = 0 bei einer Kongruenzrelation in B ist genau das,
was man unter Ideal in B versteht. Dieser Begriff ist fiir dle Teilbarkeits-

lehre (siche 2, § 2) in allgemeinen Bereichen grundlegend (vgl. E. Noether,
Idealtheorie in Ringbereichen, Math. Ann. 83 [1921]).
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folgt aus § 1, (6) die Existenz eines b, so dall a + b = ¢ ist.
Ist dann s die Restklasse, der b angehort, so gilt nach (1)
und unserer Additionsfestsetzung r -+ s = {. Diese Rest-
klasse s ist schlieBlich auch die einzige Losung vonr 4 s = ¢.
Denn ist auch r 4- ' = ¢ und & ein Element aus s, so ist
a-+b=a-+ ¥, weil beide Seiten derselben Restklasse ¢
angehoren. Daraus und aus der nach («) sicher richtigen
Relation (—a)= (—a) kann aber nach (1) auf b=V,
d. h. s = s’ geschlossen werden. In B ist also die Subtraktion
unbeschréankt und eindeutig ausfiihrbar, d. h. § 1, (6) erfiiilt.

3 Es sei noch bemerkt, daB, wenn B ein Integritidtsbereich ist,
B nicht notwendig auch Integritéitsbereich zu sein braucht, weil
zwar § 1, (7b), aber nicht notwendig §1, (7a) in B erfiillt ist
(siehe 2, Satz 28). Der Fall, daB B sogar ein Kérper ist, ist un-
interessant, weil es dann nur triviale Restklasseneinteilungen in B
gibt (siehe 3, 1, §2 Aufg. 10).

3. Isomorphie und Bereichtypen

Wir fiigen fiir den Fall zweier Bereiche B und B’ auch
den Bedingungen (d), (6'), (¢), (¢') fir die Gleichméchtigkeit
der beiden Mengen B und B’ zwei in naturgemaBer Weise
gebildete Forderungen iiber das Verhalten der eineindeutigen
Zuordnung zu den beiden Verkniipfungen von B und B’
hinzu. In dieser Hinsicht beweisen wir zunéchst:

Satz 9. Die folgende Festselzung liefert eine Aquivalenz-
relation in der Menge aller Bereiche: Es sei B =~ B’ dann und
nur dann, wenn erstens B und B’ gleichmdchitg sind, und wenn
man zweilens die eineindeutige Zuordnung zwischen den Ele-
menten a,b,...von B und o',V ... von B’ so wihlen kann,
daf} die folgenden Bedingumgen bestehen:

(8) wenn a<—>a', b<—b ist, st a+ b<—a' -+ ¥,
(4) wenn g <«—>a’,b<«—b" st, ist ab<—a'l.
Beweis. Es ist unmittelbar ersichtlich, daf die fiir die

Gleichmichtigkeit erfiillten Bedingungen (), (), () auch bei
Hinzunabme der Forderungen (3) und (4) bestehenbleiben.
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Ebenso sieht man ohne weiteres:

Zusatz zu Satz 9. Betrachiet man nur die Erweiterungs-
bereiche eines festen Bereichs By, so gilt Entsprechendes zu
Satz 9 auch dann noch, wenn man den Bedingungen (3), (4)
die westere Bedingung hinzufiigt, daf8 die Elemente a, von
bei der eineindeutrgen Zuordnung zwischen B und B’ siwch selbst
entsprechen sollen:

(5) ag<—> a, fiir alle a, aus B,
Auf Grund von Satz 9 definieren wir nun:

Definition 7. Eine eineindeutige Zuordnung zwischen zwes
Bereichen B und B’ mit den Eigenschaften (3), (4) heift ein
Isomorphismus zwischen B und B’, und B und B’ selbst
heifien dann isomorph. Die in Salz 9 genannte Aquivalenz-
relation B = B’ fiir Bereiche heifff Isomorphie, die thr ent-
sprechenden Klassen die Typen der Bereiche.

Auf Grund des Zusatzes zu Satz 9 definieren wir ferner
analog:

Zusatz zu Definition 7. Ein Isomorphismus zwischen zwer
Erweiterungsbereichen B und B’ eines Bereichs By mit der
Eugenschaft (5) heifit ein Isomorphismus bzgl. By, und B
und B’ hetfen dann isomorph. bzgl B, Die vm Zusaiz zu
Satz9 genannte Aquivalenzrelation fiir E1 weiterungsbereiche
von By hetft Isomorphie bzgl. By, die ihr entsprechenden
Klassen die Erweiterungstypen bzgl. B,.

Die in Satz 9 fiir die Relation B ~ B’ geforderten Bedingungen
besagen, daBl beim Ubergang von B zu B’ oder von B” zu B durch
die betr. Zuordnung erstens nach (6), (6") jedem Element von B
eines von B’ entspricht und umgekeht, oder, kurz gesagt, die Ge-
samthest der Elemente erhalten bleibt, zweitens nach (e), (¢’) ver-
schiedenen Elementen von B verschiedene von B’ entsprechen und
umgekehrt, oder, kurz gesagt, die Unferschicdenhest der Elemente
erhalten bleibt, und drittens nach (3) bzw. (4) jede Additions-
bzw. Multiplikationsverkniipfung in B in die fiir die entsprechenden
Elemente aus B’ iibergeht und umgekehrt, oder, kurz gesagt, die
Verkniipfungen Addition und Multiplikation erhalten bleiben. Nun
sind nach § 1 die vorliegende Gesamtheit B von Elementen inkl.
ihrer Unterschiedenheiten [§1, (a)] und die Art, wie die Ver-
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knipfungen Addition und Multiplikation fir sie erklirt sind
[§1, (b)], das einzige, was bei Absehen von der Bedeutung der
Elemente als charakteristisch fiir den Bereich B iibrigbleibt.
Demgeméil8 ist jede von der Bedeutung der Elemente von B unab-
hingige Aussage iiber sie, wie sie ja von dem in der Einleitung for-
mulierten abstrakten Standpunkt aus allein interessiert, lediglich
mit den Relationen =, 3= und den Verkniipfungen Addition und
Multiplikation, auf die ja nach § 1 auch die Subtraktion und Divi-
sion zuriickfiihrbar sind, gebildet und bleibt somit, wenn man
durch die betr. Zuordnung von B zu B’ iibergeht, in obigem Sinne
erhalten und ebenso umgekehrt beim Ubergang von B” zu B. In
dem angegebenen Umfange sind mithin, kurz gesagt, die Bereiche
B und B’ gar nicht zu unterscheiden. Daher ist es also von
unserem Standpunkt aus ganz einerlei, ob man solche Aussagen
itber B oder B’ macht.

Weiter geht fiir zwei bzgl. B, isomorphe Erweiterungsbereiche
B und B’ von B, jede allein auf Gleichheit, Unterschiedenheit und
die vier elementaren Rechenoperationen gegriindete Aussage, die
Elemente von B mit solchen des Teilbereichs B, in Beziehung
setzt, in eine richtige Aussage iiber, wenn man die ersteren Ele-
mente durch die ihnen zugeordneten aus B” ersetzt und ebenso um-
gekehrt bei entsprechendem Ubergang von B’ zu B. Kurz gesagt
sind also die Erweiterungsbereiche B und B’ in dem angegebenen
Umfange von By aus nicht zu unterscheiden. Daher ist es
also wieder einerlei, ob man solche Aussagen iitber B oder B’
macht.

Dadurch, daf hiernach die Algebra sich beim Studium von
Bereichen schlechthin nur fiir solche Aussagen interessiert, die
allen Bereichen eines Typus gemeinsam sind, und beim Studium
der Erweiterungsbereiche eines festen Bereichs By nur fiir solche
Aussagen, die allen Bereichen eines Erweiterungstypus von B,
gemeinsam sind, rechtfertigen sich die in Def. 7 und Zusatz zu
Def. 7 eingefithrten Bezeichnungen Typus und Erweiterungstypus
in Hinsicht auf die gewéhnliche Bedeutung des Wortes ,,Typus‘.
Von Aussagen der genannten Art sagt man auch, sie betrefien die
Struktur der Bereiche. Die Gewinnung solcher Aussagen wurde am
Schluf der Einleitung als Hauptaufgabe der modernen Algebra
hingestellt.

Wenn es nach diesen Ausfiihrungen scheint, als ob in der
Algebra ein Unterschied zwischen isomorphen Bereichen iiber-
haupt nicht zu machen sei, so bedarf das einer Einschrinkung.
Wihrend es zwar gleichgiiltig ist, ob man die in der Einleitung
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formulierte Grundaufgabe der Algebra in einem Bereiche B oder
in einem zu B isomorphen Bereiche B’ behandelt, ist eine Unter-
scheidung isomorpher Bereiche B und B’ natiirlich dann geboten,
wenn beide Bereiche Teilbereiche eines anderen Bereiches B* sind,
also ihre Elemente auf Grund der Unterschiedenheit der Elemente
von B* (fiir Betrachtungen innerhalb B*) zu unterscheiden sind
(vgl. die Beispiele auf S.37 und 8. 56).

Es sei noch bemerkt, daB nach den obigen Ausfithrungen die
spezielle Eigenschaft, Korper bzw. Integritatsbereich zu sein,
gleichzeitig allen Bereichen eines Typus zukommt, so daf man
neben den allgemeinen Ringlypen speziell von Korpertypen und
Integritdtsbereschtypen reden kann.

Beispiele

1. Jeder Bereich B ist Teil- und Erweiterungsbereich von sich
selbst. Jeder andere Teil- bzw, Erweiterungsbereich von B heifit
echt oder eigentlich.

2. Aus den Beispielen 1—3 von §1 ergeben sich ohne néhere
Ausfiihrung verstindliche Beispiele fiir Teil- und Erweiterungs-
bereiche.

3. Sind K, K, Teilkérper von K, so ist dann und nur dann ihr
Durchschnitt mit K; und ihr Kompositum mit K, identisch, wenn
K, Teilkorper von K, ist. Das ist leicht aus Satz 7 und Def. 5 zu
entnehmen.

4. Weitere Beispiele fiir Teil- und Erweiterungsbereiche sowie
auch fiir Isomorphie von Bereichen werden uns in §§ 3, 4 ein-
gehend beschiftigen.

5. Die Einteilung der ganzen Zahlen in gerade und unge-
rade liefert gemdB (A) eine Aquivalenzrelation, die sich leicht
als Kongruenzrelation fiir den Integritdtsbereich " (Satz 5 [13])
erweist. Der zugehorige Restklassenring ist isomorph mit dem in
§ 1, Beispiel 4 genannten Kéorper, also ein Restklassenkorper.

6. Weitere Beispiele fitr Kongruenzrelationen und Restklassen-
ringe werden uns in 2, § 2 eingehend beschéftigen.

§ 3. Der Quotientenkorper eines Integrititshereiches

Es ist fiir uns von Wichtigkeit nachzuweisen, daf jeder
Integritiatsbereich durch Hinzunahme aller aus seinen Ele-
menten zu bildenden ,,Quotienten* zu einem Korper er-
weitert werden kann. Wir zeigen nimlich:
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Satz 10. Zu jedem Integrititsbereich | existiert ein Erweite-
rungskorper K, dessen similiche Elemente sich als Quotienten
von Elementen aus | darstellen lassen. Der Erweiterungstypus
von K bzgl. | ist durch diese Forderung eindeutiq bestimmd.

Beweis?).

a) Ewmdeutigkertsnachweis

Ist K ein Korper der im Satz genannten Art, so enthilt er

als Korper auch umgekehrt alle Quotienten —Z’— von Elemen-

ten a, b (b == 0) aus |, d. h. besteht aus der Gesamtheit aller
dieser (natiirlich nicht notwendig simtlich verschiedenen)
Quotienten. Nach den Gesetzen § 1, (1)—(7) fiir Kérper be-
stehen dann die folgenden Tatsachen in K:

1 % - E; dann und nur dann, wenn ab’ =a’b,.

b
. @ a. by 0,0
oy Yy g G0y Ge0;
2 W M
40y _ 0y
®) 3,7, = %5,
8 Gy Uy by— by
O30 5,

®) % /% _ U gonn %10 d b a,+ 0 (nebenby, b, +0).
b/ by ashy b,

Tst nun K ein weiterer Korper der im Satz genannten Art
und ordnet man jedem Element o von K auf Grund einer

beliebigen seiner Darstellungen als Quotient % von Ele-

menten aus | das durch denselben Quotienten dargestellte

') Wir legen hier, wie auch bei dem entsprechenden Beweis zu Satz 11in § 4
den Nachdruck auf das logische Geriist des Beweises. Die Bestitigung der bei
den einzelnen Schritten angefiihrten Tatsachen ist auf Grund von §§ 1,2
stets leicht zu erbringen. Wir begniigen uns fast durchweg mit dem Hinweis
auf die heranzuziechenden Stellen aus §§ 1, 2 und iiberlassen die nihere Aus-
fithrung dem Leser.
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Element o von K zu, so ist das nach dem Bemerkten
und (1) eine eineindeutige Zuordnung [§ 2, (4), (¢"), (&), (¢")]
zwischen den samtlichen Elementen von K und K, die nach
(2) und (3) den Bedingungen §2, (3) und (4) geniigt und
ferner ersichtlich auch die Bedingung §2, (0) bzgl. | als
Grundbereich erfiillt. Also ist dann K =K bzgl. |. Damit
ist der Nachweis fiir die eindeutige Bestimmtheit des Er-
weiterungstypus von K bzgl. | erbracht.

b) Vorbemerkungen zum Existenznachweis

Der Nachweis der Existenz eines Korpers K der im Satz ge-
nannten Art kann prinzipiell nur durch Konstruktion von K, d.h.
durch Angabe seiner Elemente und ihrer Verkniipfungen gefiihrt
werden. Hierbei diirfen wir natiirlich nicht schon mit den Quo-

tienten % operieren, da diese erst auf Grund der Existenz von K

einen Sinn haben. Wir entziehen daher fiir die Konstruktion dem

Bruchstrich in%die Bedeutung eines Divisionszeichens, sehen
vielmehr %lediglich als geordnetes Elementpaar aus | an und

schreiben dafiir (a, b), um Verwechslungen mit den ev. schon teil-

weise in | definierten Quotienten—g— zu vermeiden. Aus (1)—(3)

entnehmen wir dann die nétigen Richtlinien fiir die Angabe der
Elemente von K und ihrer Verkniipfungen.

¢) Konstruktion eines zu K isomorphen Kirpers K

In der Menge M aller geordneten Elementpaare (a, b) aus |,
bei denen b =+ 0 ist, definieren wir eine Aquivalenzrelation
durch die Festsetzung:

1) (a, b))~ (a’, b’) dann und nur dann, wenn ad’ = a’b.

Man bestitigt leicht das Erfiilltsein von §2, («), (), (¥),
so daB wirklich eine Aquivalenzrelation im Sinne von § 2,
(T) vorliegt.
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Auf Grund von (1’) zerfillt M in Klassen. Diese Klassen
sehen wir als Menge K’ unterschiedener Elemente an. Die
durch (a, b) erzeugte Klasse werde mit {a, b} bezeichnet.

Danach (1) und dem Analogon zu Satz 3 [11]{0, €} == {e, ¢}
gilt, ist § 1, (a) in K* realisiert.

Wir definieren weiter in K’ zwei Verkniipfungen Addition
und Multiplikation durch die Festsetzungen:

(2) {av bl} + {az’ bz} = {albz + a5b,, b1b2}v

(3) {ay, by} {as, by} = {ayaq, by by}.

Da nach Satz 4 [12] mit b; und b, auch b, b, = 0 ist, sind
die rechten Seiten in (2') und (3) wirklich bestimmte Klassen
aus K’.

Ferner sind diese, zunidchst mittels einzelner Reprisen-
tanten (a,, b;) und (az, b,) der Klassen links getroffenen Fest-
setzungen unabhingig von der Auswahl dieser Repréisen-
tanten innerhalb ihrer Klassen. Man bestitigt ndmlich
leicht, daf sich nur der Repriisentant, nicht die Klasse
rechts dndert, wenn man links (a;, b;) und (a,, b,) durch
aquivalente (a;, b7) und (ay, b;) ersetzt. Somit ist vermoge
(2) und (3') auch § 1, (b) in K realisiert.

SchlieBlich befriedigen die in (2) und (3') definierten Ver-
kniipfungen die Gesetze § 1, (1)—(7). Fiir §1, (1)—(5) folgt
das leicht aus dem Erfiilltsein jener Gesetze in I, fiir § 1, (6)
und (7) zeigt man ebenso auf Grund der Gultlgkelt von
§1, (6) und (7a) in I, daB Differenz und Quotient in K’ ein-
deutig bestimmt und durch

(#) {an, b1} — {a, Do} = {a,b; — asby, by by},
%) o b} _ = {a, by, a,b,}, wenn {ay, by} =+ 0,
{02, b}

stets gegeben sind. Die im Falle (5') zu stellende Bedingung
Oy, b} = 0 bedeutet a, = 0, weil nach (2') oder (4') die

lasse {0, e} Nullelement von K’ ist und nach (1) aus
{a, b} = {0 e} folgt a = 0.

Somit ist K’ ein Kérper beziiglich der Verkniipfungen (2')
und (3').
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d) Konstruktion von K

Der Korper K’ enthilt die Teilmenge I’ der speziellen
Klassen {a, ¢}, die nach (2')—(4') und Satz 6 [19] ein Teil-
1ntegr1tatsberelch von K’ und weiter nach (1')—(3") und Def.7
(23] vermoge der Zuordnung {a, e} <> a zu | isomorph ist.
Wir kénnen nun aus K’ eine Menge K dadurch bilden, daB
wir die zu I gehorigen Elemente {a, ¢} von K’ je durch die
ihnen zugeordneten Elemente a von | ersetzen, die nicht
zu | gehorigen Elemente von K’ dagegen beibehalten. Dann
wird also K eine K’ eineindeutig zugeordnete Menge unter-
schiedener Elemente. Weiter kénnen wir in K zwei Verkniip-
fungen Addition und Multiplikation, die den Gesetzen §1,
(1)—(7) geniigen und die fiir die Teilmenge | mit den in |
bereits bestehenden Verkniipfungen identisch sind, dadurch
eindeutig erkliren, daB wir auf die fiir die zugeordneten
Elemente von K’ definierten Verkniipfungen zuriickgehen,
m. a. W. die Bedingungen (3) und (4) von Satz 9 [22] zu-
grunde legen. Dann wird also K ein zuK’ isomorpher Erweite-
rungskorper von |,

Dieser KérperK hat nun die im Satz genannte Eigenschaft.
Da namlich nach (3') oder (5’) jedes Element {a, b} von K’

eine Darstellung {a,b} = m als Quotient zweier Elemente

von I besitzt — (es ist {b, e} & 0 wegen b & 0) —, folgt

fir das zugeordnete Element von K die Darstellung— als
Quotient zweier Elemente von I.
Damit ist Satz 10 bewiesen.

Die Eindeutigkeitsaussage von Satz 10 kann noch etwas ver-
scharft werden, niamlich durch den folgenden Zusatz, dessen
Existenzaussage nach Satz 6 [19] und (2)—(5) auf der Hand liegt:

Zusatz. Innerhald eines beliebigen Erweiterungskirpers K* von |
qibt es etnen und nur etnen Reprdsentanten des in Satz 10 genannten
Erweiterungstypus, ndmlich den Korper K, der durch die in K* ge-
bildeten Quotienten von Elementen aus | gebildet wird.

Beweis. Wird im vorhergehenden Beweis unter a) die Voraus-
setzung hinzugefiigt, daB K und K beide Teilkorper eines und
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desselben Erweiterungskorpers K* von I sind, so folgt dort sogar

K = K, weil dann die Quotienten —g— in Kund K eine und die-

selbe, durch K* festgelegte Bedeutung haben.

Im Hinblick auf die Ausfithrungen nach Def. 7 [231.] ist es
daher gerechtfertigt, isomorphe Erweiterungskorper von | des in
Satz 10 genannten Typus nicht zu unterscheiden und mit dem
bestimmten Artikel zu definieren:

Definition 8. Der in Satz 10 genannte Korper K heifit der
Quotientenkorper des Inlegritilshereiches 1.

Beispiele

1. Ist | schon selbst ein Korper, so ist sein Quotientenkérper
mit | identisch, und umgekehrt.

2. Der Quotientenkérper des in Satz 5 genannten Integritits-
bereiches I ist der ebendort genannte Kérper P. In der Tat geht
das unter ¢) benutzte Konstruktionsverfahren fiir [ = TI' in die be-
kannte Konstruktion der rationalen Zahlen aus den ganzen Zahlen
iiber.

3. Vgl. § 4, Det. 10 [38].

§ 4. Der Integritiitshereich der ganzen rationalen Funk-
tionen von n Unbestimmten iiber | und der Korper der
rationalen Funktionen von n Unbestimmten iiber K

Der in der Algebra zu verwendende Begriff der ganzen
rationalen und der rationalen Funktion ist von dem in der
Analysis iiblichen grundsétzlich verschieden.

In der Analysis definiert man die Funktionen als Zuordnungen
von Funktionswerten zu den Elementen einer Argumentmenge.
Dementsprechend wiirde im Sinne der Analysis (i.S.d.An.) von
einer Funktion f von n Verdnderlichen iiber einem Integritats-
bereich | zu reden sein, wenn jedem geordneten Elementsystem
%y, .. ., Zp aus | ein Element f(x,, . . ., #,) aus | zugeordnet ist, und
speziell von einer ganzen rationalen Funktion (g.r.Fkt.), wenn
jene Zuordnung fiir alle 2y, . . ., &, aus | in ein- und demselben, anf
Zy, ..., Tp und feste Elemente aus | anzuwendenden Rechenver-
fahren besteht, das aus endlich vielen Additionen, Subtraktionen
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und Multiplikationen, wie sie ja in | definiert sind, zusammen-
gesetzt ist. Entsprechend wire unter Hinzunahme auch der Divi-
sion eine rationale Funktion (r.Fkt.) i.S.d. An. von n Verinder-
lichen {iber einem Korper K zu erkldren, wobei allerdings wegen
des Nichtdefiniertseins der Division durch O bei einem gegebenen
Rechenverfahren unter Umstdnden nicht jedes System z,, .. ., 2,
aus K als Argumentsystem zuléssig ist; das wird nachher noch zu
prézisieren sein. Es ist ohne weiteres ersichtlich, da die g. r. Fkt.
bzw. 1. Fkt. i. 8. d. An. von n Verinderlichen iiber | bzw. K jeden-
falls je einen Ring bilden, wenn man die Verkniipfungen durch
Addition und Multiplikation je aller (definierten) Funktionswerte
erklart. :

In der Algebra kommt man aus einem spéater (nach Satz 12 [407)
néher auszufithrenden Grunde mit diesem Funktionsbegriff, der
die Zuordnung als das Primire, die Art der Zuordnung, d. h. im
Falle der rationalen Funktionen das Rechenverfahren als das Se-
kundére hinstellt, nicht aus. Man muf vielmehr umgekehrt fiir
die dort allein zu betrachtenden rationalen Funktionen den Re-
chenausdruck als das Primére, die durch ihn gelieferte Zuordnung
als das Sekundire ansehenl). Dem letzteren Standpunkte ent-
spricht es, wenn wir im folgenden eine Theorie der in =, .. ., z;
ganzen rationalen bzw. rationalen Rechenausdriicke iiber | bzw.
K entwickeln, die wir dann der formalen Analogie halber, wie
iiblich, auch g. r. bzw. r. Fkt. von @,, . . ., 2, iiber | bzw. K nennen,
und wenn wir dabei, um ein Zuriickfallen in den Zuordnungsstand-
punkt auszuschliefen, den =y, . . ., 2, vorldufig die Bedeutung von
Verinderlichen in 1 bzw. K entziehen, sie vielmehr als feste Ele-
mente auferhalb | bzw. K, sog. Unbestimmie?), einfiihren.

Zu dem Bereich der ganzen rationalen Funktionen von
Zy, . . ., &p Uber einem Integritdtshereich | im Sinne der Al-
gebra gelangen wir durch eine, zu der in § 3 ganz analoge,
abstrakte Konstruktion, indem wir beweisen:

Satz 11. Zu jedem Integritiisbereich | existiert ein Erweite-
rungsintegrititsbereich 1, mit der Eigenschaft:

Es existieren n Elemente x,, . . ., @n 0 |y derart, daf sich
jedes Element von l, eindeutiq in der Form

') Das ist also derjenige, vom Standpunkte der Analysis primitivere Funk-
tionsbegriff, der historisch dem genannten, modernen Funktionsbegriff i. S.
d. An. vorausgegangen ist. Unsere nachstehenden Entwicklungen zeigen, da8
vom Standpunkte der Algebra umgekehrt jener in der Analysis primitivere
Funktionshegriff der tiefergehende ist.

2) Siehe zu dieser Bezeichnung die Erlduterung hinter Def. 9 [37].
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a
2 Gk, k&R Zake 1)
N S
darstellen lifit, wo die ag,, .. &, Elemente aus | sind, unter
denen nur endlich viele von Null verschiedene vorkommen.
Der Erweiterungstypus von ln begl. | ist durch diese For-
derung eindeutig bestimmd.

Beweis?). Wir fithren den Beweis zunichst fiir n = 1, und
zwar in vollstindiger Analogie zum Beweis von Satz 10 in

§ 3.

a) Eindeutigkeitsnachweis

Ist I, ein Integrititsbereich der im Satz genannten Art
fir » = 1 und « das im Satz mit x, bezeichnete Element aus
I}, so enthilt |, als Integrititsbereich auch umgekehrt alle

Ausdriicke 3 azz*, wo die ax Elemente aus [ sind, von denen
k=0

nur endlich viele == 0 sind, d. h. I, besteht aus der Gesamt-

heit aller dieser Ausdriicke. Wegen der Eindeutigkeitsforde-

rung des Satzes und nach den Gesetzen §1, (1)—(6) fiir

Ringe bestehen dann folgende Tatsachen in I, :

s o] o
(1) I axa* = Jazz* dann und nur dann, wenn
k=0 E=0

ar = ay, Tir alle k,

(2) Zakx" —+ Zbkwk Z(dk + by) 2k,

(8) Xapat Zbpa*t = 3 (2‘1,1 ) TF
k=0 k=0 k=01+;;—£

1} Die Bedeutung des Summenzeichens X mit angefiigten Angaben iiber
den Summationsbereich darf als bekannt vorausgesetzt werden. — DaB wir
hier fiir die in Wahrheit endlichen Summen formal unendliche Summen mit
nur endlich vielen Summanden = 0 setzen, wobei natiirlich stillschweigend
unter einer Summe von unendlich vielen Nullen wieder Null verstanden ist,
geschieht lediglich aus bezeichnungstechnischen Griinden. Sonst wiirden
nimlich die Formulierung der Eindeutigkeit unserer Darstellungen, sowle
spater die Formeln fiir das Rechnen mit so dargestellten Elementen ziemlich
kompliziert.

%) Vgl die Anm. 1 [26] zum Beweis von Satz 10.
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Z(ak—bk)zk.
k=0

) Sapck — 3beak —
k=0

k=0
Ist nun [, ein weiterer Integrititsbereich dieser Art, Z das
im Satz mit z, bezeichnete Element fiir I;, und ordnet man

o] o«
einem Element X azz* von [, immer das Element X oz x*
- k=0 k=0
von |, zu, so erschlieBt man aus (1)—(3) ganz entsprechend
wie in § 3, a), daB auf Grund dieser Zuordnung |; ~ I, bzgl. |
ist, also die eindeutige Bestimmtheit des Erweiterungstypus
von |; bzgl. I.

b) Vorbemerkungen zum Existenznachwess
Der Nachweis der Existenz eines Integrititsbereiches I, der
im Satz genannten Art kann prinzipiell nur durch Konstruktion
von [, d.h. durch Angabe seiner Elemente und ihrer Verkniip-
fungen gefiibrt werden. Hierbei diirfen wir natiirlich nicht schon

=]
mit dem Element  und den Summendarstellungen 3 axx* ope-
k=0

rieren, da diese erst auf Grund der Existenz von I; einen Sinn
haben. Wir entziehen daher fiir die Konstruktion dem % die Be-
deutung eines Elementes, das mit den Elementen von | zusammen
den drei ersten elementaren Rechenoperationen unterworfen

o0
werden kann, und somit den Ausdriicken 3 axz* die Bedeutung

¥=0
von Rechenansdriicken, sehen diese vielmehr lediglich als geord-
nete Systeme (@, gy, . . .) von Elementen aus | an. Aus (1)—(3)
entnehmen wir dann die nétigen Richtlinien fiir die Angabe der
Elemente von I, und ibrer Verkniipfungen.

¢) Konstruktion eines zu |, isomorphen Integrititsbereiches 1

Wir sehen die Menge |} aller geordneten Elementsysteme
(@ @y, . . .) von je abzahlbar unendlich vielen Elementen
aus |, wobei aber jedesmal nur endlich viele az == 0 sein
sollen, als Menge unterschiedener Elemente an, haben also:

') (g, &y, - - .) = (ag, a1, - . .) dann und nur dann, wenn
ar = ay, tir alle k.

Wegen (0,0,...) =+ (¢,0,...) ist dann §1, (a) in ||
vealisiert.

8 Hasse, Hohere Algebra
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Wir definieren weiter in |; zwei Verkniipfungen Addition
und Multiplikation durch die Festsetzungen:

(2) (agpay, . ..)+ (B by, . . ) = (ag + by, @ + by, .. 2,

() (agy agy . . Y (bgy byy . - )

= (agbg, @yby 4 a1 by, gy + a0y + a5bg, . . ).

Man iiberzeugt sich leicht, dal die rechten Seiten in (2')
und (3') wieder nur endlich viele Glieder = 0 haben, also zu
1] gehoren, so da § 1, (b) vermége (2') und (3') realisiert ist.

Ferner befriedigen die in (2') und (3') definierten Ver-
kniipfungen die Gesetze § 1, (1)—(6). Fur §1, (1)—(5) folgt
das leicht aus dem Erfiilltsein jener Gesetze in |, fiir § 1, (6)
zeigt man ebenso auf Grund der Giiltigkeit von § 1, (6)in I,
daB die Differenz in |, eindeutig bestimmt und stets durch

(4) (a9 01,-.-) —(Bg, b5 .. ) = (g — by 8y — by, .. .)
gegeben ist,

Néaherer Ausfithrung bedarf jedoch der Nachweis, daB das
Gesetz § 1, (7a) in | gilt, an dessen Stelle nach dem Zusatz
zu Def. 3 [12] auch der Nachweis treten darf, daf das Ana-
logon zu Satz 4 [12] in I; richtig ist. Da sich als Nullelement
von [; aus (2') oder (4') das Element (0, 0, . . .) ergibt, be-
deutet die Voraussetzung

(ag, Ay, .. ) (bgy By, .. ) =0,
daB alle Glieder dieses nach (3') zu bildenden Produkt-
systems Null sind. Wire nun (ag, @y, . . .) = 0, (b, by, . . .) 50,
so daB also ein letztes a, &= 0 und ein letztes b, =|= 0 exi-
stierte, so folgte fiir das (v 4 p)-te Glied
Gobusy + < oo+ Gy bysy + @by + Gya by A by
des Produktsystems nach Wahl von a, und by, daB es glelch
a,by, also wegen der Giiltigkeit von Satz 4 in | von Null ver-
schieden wire, im Widerspruch zu der Voraussetzung. Somit
gilt das Analogon zu Satz 4 in ;.

SchiieBlich gilt auch §1, (7b), d. h. das Analogon zu
Satz 8 [11] in 1, weil nach (3') das Element (¢, 0,0,...)
Einselement von I; ist.

Somit ist I; ein Integrititsbereich beziiglich der Ver-
kniipfungen (2') und (3).
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d) Konstruktion von |,

Der Integritatsbereich I; enthilt die Teilmenge I’ der
speziellen Elemente (a,0,0,...), die nach (2')—(4’) und
Satz 6 [19] ein Teilintegritatsbereich von |; und weiter nach
nach (1')—(3') und Def. 7 [23] vermige der Zuordnung
(a,0,0,...)<«—a zu | isomorph ist. Ganz entsprechend
wie in §3 d) kann man dann einen zu l; isomorphen
Erweiterungsintegrititsbereich I, von | herleiten, indem man
die Elemente von I’ durch die ihnen zugeordneten von |
ersetzt.

Dieser Integritatsbereich I; hat nun die im Satz genannte
Eigenschaft. Bezeichnet namlich z das spezielle Element
(0,¢,0,0,...) von I;, so dafl also nach (3') gilt

z°=e=(e,0,0,...)z1—-x—-(0e,OO Js
=(0,0,¢0,0,. ),...,
und ist (ag, ay, - - .) irgendeln Element von |, so ist nach
{2} und (3)

(g @y - - -) = (20, 0,0,...)2°+ (2,,0,0,.. ) 2" +
Da x nlcht zum Tellberelch I’ von I gehdrt, bleibt es belm
Ubergang zu I, erhalten, und es besteht demnach fiir das

zugeordnete Element von I, die Darstellung Zakzk.
E=0
Diese Darstellung ist schlieBlich eindeutig. Denn aus

2 ap ek = 2 akz’f folgt durch Ubergang zum isomorphen |;
E=0

zunéchst (ao, @, ...) =(ag ay,...) und daraus nach (1')
ar = ay, fiir alle .

Damit ist Satz 11 fiir n = 1 bewiesen. Zum Beweise fiir
beliebiges » stehen folgende zwei Wege zur Verfiigung:

Entweder kann man den gesuchten Integrititsbereich I,
sukzessive konstruieren. Bezeichnet man dazu den zu irgend-
einem Integrititsbereich | nach dem schon bewiesenen Teil
des Satzes vorhandenen Integrititsbereich I, miv 1[z], so
bilde man sukzessive

L =1[z,] fo = 1i[z], - o la = Loy [%a].

9%
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Dann lassen sich die Behauptungen des Satzes fiir [, sdmt-
lich durch vollstindige Induktion beziiglich # beweisen.
Oder man iibertrage die Entwicklungen des vorstehenden
Beweises fiir » = 1 sinngeméf auf beliebiges n, was ohne
weiteres moglich ist. An Stelle von (1)—(3) tritt dabei:

=]
(la) 3 ay,  pezh...afn
koo kp=0 [

= ! L k
= 2 G, kT Ty
Fiyeens p=10
dann und nur dann, wWenn @ag,...k, = Q... k, fUr alle
Systeme (ky, . . ., ka),

0

(28) I k.. kp@h. .. akn
koo kp=0
© . .
+ 2 bi,. kg Xl xin
Eiyeory kp=0
< . .
= X (@hy.otn + Dby vn) 2EL 2R,
kyoonkn=0
© . .
(Ba) X ar,.. wa%y... @kn
Froeunkp=0
© . )
Py br,,..., kn®yt . . . Tyt
kiyeonskn="0
= 2 2. 2 ai,..., ;'nb!‘lx-n,lln)a;ﬂ- .. xnn’

Frpees k=0 A,iy=0  Igoup=0
Mt m=k ntun=kn

und daraus ist die zu treffende Wahl der Elemente von I,
[ndmlich alle in ein n-dimensionales Schema geordneten
Systeme a,....k, By, . . ., ko = 0,1,...) von Elementen aus
| mit nur endlich vielen = 0] und der Verkniipfungen fiir
sie ohne weiteres ersichtlich.

Die nihere Ausfithrung darf auf Grund dieser Hinweise
fiir beide Wege dem Leser iiberlassen bleiben.

Wihrend der erste Weg neben dem Vorzug des Auskommens
mit den rechnerisch einfachen Entwicklungen des ausgefithrten
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Beweises fiir » = 1 insofern auch theoretisch von Bedeutung ist,
als manche Satze iiber I, nur durch vollstindige Induktion be-
ziiglich », also durch Zuriickgehen auf die angegebene rekursive
Konstruktion von I, beweisbar sind (vgl. z. B. 2, Satz 49 [41}),
ist der zweite Weg deshalb befriedigender, weil er einmal die be-
sondere Behandlung des Falles » = 1 entbehrlich macht, dann
aber auch im Gegensatz zum ersten einer wichtigen Eigenschaft
von |, gerecht wird, ndmlich der Symmetrie in z,, .. ., Z,, d. h.
der aus Satz 11 ohne weiteres ersichtlichen Tatsache, da8 I, in
sich iibergeht, wenn die Rollen der Elemente z;, . . ., 2, irgendwie
vertauscht werden.

Anders als in §3, Satz10, Zusatz [29]konnen hier zwar innerhalb
eines beliebigen Erweiterungsintegrititsbereiches I1* mehrere ver-
schiedene Reprisentanten des in Satz 11 genannten Erweiterungs-
typus vorhanden sein (z.B. wenn I* = 1 [z, ..., Zp, Tp 4, ..., Tugm]
ist, alle | [z, . . ., @i,], WO %y, . . ., i irgendwelche % verschiedenen
Ziffern aus der Reihe 1, ..., n + m sind); aber offenbar ist jeder
solche Reprisentant innerhalb 1* durch die Angabe derjenigen
Elemente aus 1*, die die Rolle von z,, . . ., x, haben, eindeutig be-
stimmt, ndmlich als die Gesamtheit der Ausdriicke der in Satz 11
genannten Form in diesen Elementen.

Im Hinblick auf die Ausfiihrungen nach Def. 7 ist es daher
wieder gerechtfertigt, mit dem bestimmten Artikel zu definieren:

Definition 9. Der in Satz 11 genannte Integritilsbereich ln
heifft der Integritdtsbereich der ganzen rationalen
Funktionen der » Unbestimmten z,, .. ., z, iber |. Er
werde mit [z, . . ., za], seine Elemente auch kurz mait
f(#Zsy - « o Zn), - . . oder moch kiirzer mit f, . .. bezeichnet.

Die eindeutigen Darstellungen dieser Elemenie in der Form
von Satz 11 nennen wir thre Normaldarstellungen und
die darin aufiretenden Elemente ay,,..., x, aus | die Koeffi-
zienten dieser Darstellungen.

Die Bezeichnung Unbestimmie fiir die x; erliutern wir dahin,
daB jedes einzelne der z; von | aus keiner anderen Bestimmung

.9
féhig ist, als der negativen, daB keine Gleichung S agaf = 0 (mit

nur endlich vielen Koeffizienten ay -5 0) besteh?, auller der tri-
vialen, wo alle ax = 0 sind. Die ; sind also weder Elemente von |,
noch geniigen sie algebraischen Gleichungen in | (siehe §5 [47]
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und 2, Def. 21 [54]). Steinitz (Lit.-Verz. 21) nennt sie daher
bzgl. | transzendente Elemente. Ubrigens sind die x; wegen (la)
auch nicht untereinander durch positive Bestimmungen (alge-
braische Gleichungen) verkniipit. Steinitz nennt sie daher genauer
ein System bzgl. | algebraisch unabhdngiger Elemente.

[z, - .., #,] ist stets ein echter Erweiterungsbereich von I,
da infolge der Findeutigkeit der Normaldarstellungen z. B. die
Elemente z,, ..., z, nicht zu | gehoren.

I [y, ..., %] ist in keinem Falle ein Korper (auch nicht, wenn
| ein Korper ist). Auf Grund der obigen sukzessiven Konstruktion
geniigt es, das fiir | [z] zu beweisen. In | [2] existiert aber sicher

[os]
nicht der Quotient —‘%, weil fiir jedes f(z) = 3 apz* aus | [x] gilt
k=0

[es]
zf () =k2(‘]akz’° +1

=0+apr+a2*°+...5e4+ 04 0224 ... =c¢.

Um auch die zu Beginn dieses Paragraphen schon ge-
nannten rationalen Rechenausdriicke in z,, ..., z, einzu-
beziehen, erweitern wir [ [z, . . ., ] zum Quotientenkorper.
Da hierbei insbesondere der Teilbereich [ zum Quotienten-
kérper erweitert wird, geniigt es, von vornherein von einem
Korper K und dem zugeordneten Integritéitsbereich
K[y, .. ., 2] auszugehen:

Definition 10. Ist K ein Kirper, so heifit der Quotienten-
korper des Integrilatsbereiches K[xy,...,25] der Korper der
rationalenFunktionendern Unbestimmtenz,, ..., z,
tiber K. Er werde mit K (24, . . ., Za), seine Elemente auch kurz
mit @ (%, .« . ., Tn), - . . oder noch kiirzer mit @, . . . bezeichnet.

Aus den im vorstehenden vom algebraischen Standpunkt
aus definierten ganzen rationalen bzw. rationalen Funk-
tionen iiber | bzw. K lassen sich nun die ganzen rationalen
bzw. rationalen Funktionen i. S. d. An. iiber | bzw. K da-
durch herleiten, daf man den bisherigen Unbestimmien
2y, - .« ., Tn die Bedeutung von Elementen aus | bzw. K beilegt.
Wir definieren zunachst fiir [z, ..., #a]:

Definition 11. Unter der einem Element f von | [y, . . ., %]
zugeordnetenganzenrationalen Funktioni. S. d. An.
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verstehen wir diejenige Funklion . S. d. An. dber |, die ent-
steht, wenn man jedem - Elementsystem ., ..., 2o aus | das
durch die Normaldarstellung von f gelieferte Element von | als
Funktionswert zuordnet.

Wir bezeichnen fiir den Augenblick den zu Beginn dieses
Paragraphen erwidhnten Ring der ganzen rationalen Funk-

tionen i. S. d. An. von ,,..., 2 tiber | mit | [z,, ..., 2]
und beweisen die folgende, fiir den Ubergang von|l [z, . . ., %]
| [, . . ., Z»] grundlegende Tatsache, die wir Einsetzungs-

prinzip nennen:

Satz 12. Beim Ubergang von B =1{z, ..., z:] zu
B =1[zy,...,2n] durch die in Def. 11 erklirte Zuordnung
sind die Bedingungen §2, (8), (9"), (¢), (3), (4), (B) erfiillt,
dagegen nicht vmmer (¢'). Jener Ubergang liefert also die Ge-
samiheit der Elemente von | [z, ..., 2,] aus der Gesamtheit
derjenigen von | {2, . . ., 22], und es bleiben bei ihm die Gleich-
heit und alle Verkniipfungsbeziehungen, dagegen nicht immer
die Unlerschiedenheit der Elemente von 1 [2,, . . ., Ta] erhalien.
Dann und nur dann, wenn auch § 2, () erfiillt ist, gilt auf

Grund jener Zuordnung | {zy, .. ., 2a] 21 [2y, . . ., 2a].

Beweis. a) Das Erfiilltsein von § 2, (d), (¢) liegt natiirlich
in der eindeutigen und fiir jedes Element aus I [z, . . ., Za]
anwendbaren Zuordnungsvorschrift von Def. 11.

b) Das Erfiilltsein von § 2, (8), (4), (b) ist leicht aus den
obigen Formeln (2a), (3a) zu entnehmen, die die Normal-
darstellung der Summe und des Produkts zweier Elemente
von | [zy, . . ., #n] aus denen der Summanden bzw. Faktoren
unter alleiniger Anwendung der in 1 [z, ..., z.] giiltigen
Gesetze §1, (1)—(B) berechnen. Denn weil diese Gesetze
auch in | giiltig sind, diirfen jene Umformungen auch vor-
genommen werden, wenn z;, . . ., #» Elemente aus | sind.

¢) Um das Erfiilltsein von §2, (') einzusehen, ist zu
zeigen, dafl auch umgekehrt jede ganze rationale Funktion
i. S. d. An. von z,...,%s liber | einem Element f von
I [#,, ..., 2z] gemaB Def. 11 zugeordnet ist. Nun liefert jedes
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auf z,...,2, und feste Elemente aus | anzuwendende,
aus endlich vielen Additionen, Subtraktionen und Multipli-
kationen bestehende Rechenverfahren, wenn man zunichst
Ty, « « -, Tn als Unbestimmte, also als Elemente aus [z, . . ., za]
auffafit, ein Element f aus I[z,,.. ., z,], einfach weil im
Integrititsbereich [ [z, . . ., z»] jene Operation unbeschrinkt
ausfithrbar sind. Nach dem unter b) schon Bewiesenen blei-
ben ferner beim Ubergang von [{z,, . . ., 2,] zu I [zy, . . ., Za]
durch unsere Zuordnung alle Verkniipfungsbeziehungen er-
halten. Wendet man das auf diejenige Verkniipfungsbe-
ziehung an, die das Element f durch die Elemente z, . . ., z»
und die festen Elemente aus | ausdriickt, so folgt, daB die
durch jenes Rechenverfahren gelieferten Funktionswerte die-
selben sind, wie die durch die Normaldarstellung von f ge-
lieferten, daf also die betr. ganze rationale Funktion i. S. d.
An. mit der f zugeordneten identisch ist.

d) § 2, (¢') ist z. B. nicht erfiillt, wenn fiir | der nur aus 0
und e bestehende Kérper K (§ 1, Beispiel 4) gewéhlt wird.
Denn dann ist den beiden verschiedenen Elementen z -+ 2
und 0 von K[z] dieselbe Funktion O i.S.d.An. zugeordnet,
weil ja auch z -+ 22 fiir alle z aus K (d.h. fiir z =0 und
z = ¢) Null ist.

Wir werden im iibrigen in 2, Satz 49 [41Jund 8, 1, § 4, Aufg. 7,8
sowie § 1, Aufg. 9 sehen, daB §2, (¢/) dann und nur dann erfiillt
ist, wenn | unendlich viele Elemente besitzt, daB also fiir unend-
liches | gilt 1 {,, ..., 2p] = | {2, ..., Zx] bzgl. |, fiir endliches |
aber nicht.

In der nach d) vorhandenen Moglichkeit liegt der Grund, wes-
wegen man in der Algebra mit dem auf Zuordnung gestiitzten
und demgemiB die Funktionen nach ihren Funktionswerten
unterscheidenden Funktionsbegriff nicht auskommt, sondern den
auseinandergesetzten formalen Funktionsbegriff braucht, der eine
feinere Unterscheidung der Funktionen vermoge ihrer Rechen-
ausdriicke liefert. Wenn auch diese Notwendigkeit nach dem
unter d) Bemerkten tatsichlich nur fiir endliche Integritits-
bereiche vorliegt, so sprechen natiirlich weiterhin methodische
Gesichtspunkte dafiir, von den in § 1 gegebenen Grundlagen aus-
gehend den Rechenausdruck als den durch ihn gelieferten
Funktionswerten iibergeordnet anzusehen.
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‘Wir haben im vorhergehenden absichtlich nicht in der Be-
zeichnung, sondern nur im Text unterschieden, ob 2, . . .,
als Unbestimmte oder als Elemente aus | gemeint sind, um
den im folgenden oft auszufithrenden Ubergang von der
ersten zur zweiten Bedeutung der =z, ..., 2, nicht immer
mit einem Bezeichnungswechsel verbinden zu miissen. Auf
Grund von Satz 12 ist es weiterhin hinsichtlich der Ver-
kniipfungen angéngig, auch die Bezeichnung f(z, . . ., Za)
der Elemente von I{z,, ..., z-] unverdndert fir die zuge-
ordneten Funktionswerte zu verwenden. Wir wollen daher
fortan f(z;, . . ., z») auch zur Bezeichnung des f zugeordneten
Funktionswertes fiir das Elementsystem zj,..., &, aus |
gebrauchen und einen solchen Funktionswert dann der
kiirzeren Ausdrucksweise halber auch einfach eine ganze
rationale Funktion von x,, .. ., 2, iiber | nennen; dagegen
soll die Bezeichnung f (ohne Argumente) fiir das Element
von Iz, ..., za] vorbehalten bleiben. [f(z,, . . ., z,) ist hier-
nach nicht auch Zeichen fiir die f zugeordnete Funktion i.S.
d.An., sondern nur fiir einen einzelnen Wert dieser Funk-
tion, die selbst erst durch die Gesamtheit aller Funktions-
werte f(xy, ..., zn) gebildet wird.] Wir miissen dann nur
irgendwie einen Bezeichungsunterschied fiir die folgenden
beiden ganz verschiedenartigen Gleichheitsaussagen ein-
fiihren:
fxy, . . o 20) = glzy, . . ., zn) als Elemente von I{zy, ..., 2x],
f(@y . o @) = g(®y, . . ., Tn) als Funktionswert fiir das Ele-

mentsystem , ..., 2, aus |
Daher setzen wir weiter fest, daB fortan zur Bezeichnung
der ersteren dieser beiden Aussagen das Zeichen = (Gegen-
teil =) verwendet werden soll®). Auf Grund obiger Verabre-
dung kénnen und wollen wir aber die Schreibweise f = ¢
gleichbedeutend mit f(z,, . . ., @») = ¢(y, . . ., 2») verwenden.

1) Die Relation f(z,,..., ) = ¢(z,, ..., vn) hat dann zwar die Relation:
f(xy, .- Zn) = g{Zy,..., Tp) fir alle z,,..., zy aus |
zur Folge, aber nach obigem nicht notwendig umgekehrt. Das Zeichen = hat
also i. a. cine weitergehende Bedeutung, als die hiufig darunter verstandene:
gleich fiir alle z;,..., zp. — Eine Verwechslung der hier gemeinten Relation
= mit einer Kongruenzrelation im Sinne von Def. 6 [21) wird durch den Zu-
sammenhang ausgeschlossen.
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Nach diesen Festsetzungen geht aus der gewihlten Be-
zeichnung stets unzweideutig hervor, welche der beiden
moglichen Auffassungen der z,, ..., Z» in einer Gleichheits-
oder Ungleichheitsrelation vorliegt.

Wir vollziehen nun schlieBlich den Ubergang von den
Elementen von K(zy, .. ., #») zu den rationalen Funktionen
i. S. d. An. durch folgende Definition:

Definition 12, Unter der esnem Element ¢ vonK(zy, . . ., Tn)
zugeordneten rationalen Funktion i.S.d. An. ver-
stehen wir diejenige Funktion 3. S. d. An. iiber K, die enisteht,
wenn jedem Elementsystem zy, . . . &n QUS K, fiir das mindestens

eine Darstellung 1 von @ als Quotient zweter Elemente aus

Klzy, . .., za] mit g(@y, - . ., 2n) = O existiert, als Funktions-
Zyy e n a@

———————" der Funktionswerte von f und g
T

werl der Quotient

zugeordnet wird.
Analog zu Satz 12 gilt dann hier das Einselzungsprinzip:

Satz 13. Fir den Korper K(zy, ..., 2.) und den Ring

K(z,, ..., xn) der rationalen Funktionen 4.8.d. An. wvon
Ty, - . . Tn Uber K gilt vermdge der in Def. 12 erklirten Zu-

ordnung enisprechendes wie wn Salz 12, nur daf hier die ev.
Nichtgiltigkeit von § 2, () stets auch die Nichigiiliegkeit von
§ 2, (0) zur Folge hat.

Bewers. a) Um das Erfiilltsein von § 2, (¢) zu beweisen, ist
zu zeigen, daB die einem Element ¢ von K(zy, . . ., z») nach
Def. 12 zugeordnete Funktion i. S. d. An. unabhingig von
der speziellen Wahl der (der Bedingung von Def.12 geniigen-

den) Quotientendarstellung%allein durch ¢ bestimmt ist.

Sind nun L und f, zwei (dieser Bedingung geniigende) Quo-

tientendarstellungen von g, so folgt aus der dann nach §3, (1)
bestehenden Relation fg’ =/ ¢ nach Satz12, daB auch
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@ o @) (T oo o Zn) = F (2, - - ., Zn) (24, - - -, Tn)
ist, woraus sich unter der Annahme von Def. 12 iiber ¢
[@ - 2Zn) (@0 Tn)
g(&yy o Zn)  G(®y - -y Tn)

b) Durch Zuriickgehen auf die Formeln §3, (2) und (3)
und Anwendung von Satz 12 ergibt sich ebenso das Erfiillt-
sein von § 2, (3), (4), (5).

¢) Das Erfiilltsein von § 2, (6') folgt dann entsprechend
wie im Beweis zu Satz 12 unter c); siehe dazu die Prézi-
sierung und Anleitung in 3, 1, § 5, Aufg. 1.

d) Da8 § 2, (¢') nicht notwendig erfiillt ist, zeigt dasselbe
Beispiel wie oben. Es tritt das offenbar dann und nur dann
ein, wenn mindestens ein Element ¢ in K[z, . . ., z,] derart
existiert, da8 zwar ¢ + 0, aber doch g(zy, ..., zs) = 0 fiir
alle z,, . . ., 2, aus K ist. Ist nun einerseits dies der Fall, so

hat das Element % aus K(z,, ..., z,) die Eigenschaft, da8

zu ihm fiir kein Elementsystem x,, . . ., Z» aus K eine Quo-
tientendarstellung existiert, deren Nenner einen von Null

und ¢° weiter ergibt.

verschiedenen Funktionswert hat; denn nach § 3, (1) ist—z—
seine allgemeinste Quotientendarstellung, wo f ein beliebiges

. . e
Element aus K[z, ..., z,] ist. Also existiert dann zu —

keine zugeordnete Kunktion i. S. d. An., indem die Def. 12
des Funktionswertes fiir jedes z,,..., 2, aus K versagt.
Existiert andererseits kein ¢ der angegebenen Art in

Kiz, ..., 2], so 1aBt sich dem Quotienten 1 mindestens

fiir ein Elementsystem z,, .. ., z, aus K ein Funktionswert
gemiB Def. 12 zuordnen.

Auf Grund von Satz 13 iibertragen sich die im AnschluB
an Satz 12 gemachten Bemerkungen iiber I[z;, . . ., 2] sinn-
gemi auch aufK(z;, . . ., 2,). Es sollen daher unsere Bezeich-
nungsfestsetzungen auch fiir die Elemente von K(zy, . . ., z)
Giiltigkeit haben.
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§ 5. Ausfiihrliche Formulierung der Grundaufgabe
der Algebra

Mittels der im vorhergehenden auseinandergesetzten Be-
griffe wollen wir jetzt eine genaue Formulierung der in der
Kinleitung genannten Grundaufgabe der Algebra geben.

Eine mittels der vier elementaren Rechenoperationen ge-
bildete ,,Gleichung*‘ zwischen bekannten und unbekannten
Elementen eines Korpers K, wie sie in der Formulierung der
Einleitung gemeint ist, entsteht, wenn zwei auf die Unbe-
kannten x,, ..., 2, und vorgegebene (bekannte) Elemente
von K anzuwendende Rechenverfahren vorliegen und gefragt
wird, fiir welche Elementsysteme x;, . . ., 2, aus K beide Ver-
fahren dasselbe Ergebnis liefern. Hierbei haben also die Un-
bekannten z,, ..., 2, zunichst den Charakter von Unbe-
stimmten, und die vorliegenden Rechenverfahren sind zwei
Elemente ¢ und ¢’ vonK(z,, . . ., #5). Die in der ,,Gleichung**
liegende Frage bezieht sich dann, in gewisser Analogie zu
den letzten Entwicklungen von §4, auf die Ersetzung der
Unbestimmten z,, . . ., z, durch Elementsysteme z,, ..., Za
aus K und geht dahin, fiir welche solchen Elementsysteme
die Gleichung ¢(x;, .. ., Zn) = ¢'(2y, . . ., Zn) besteht.

Da das Hinschreiben einer solchen ,,Gleichung® als For-
derung oder Frage logisch einen ganz anderen Sinn hat als
die gewGhnlich ebenso bezeichnete Tatsache des Bestehens
der Gleichung, wollen wir fiir die Forderungsgleichheit ein
besonderes Zeichen == (Gegenteil ==) einfiihren, also die
eben genannte Frage mit

@@y ) = @@y, .0y Tn)
bezeichnen.

Die Gleichung ¢(zy, ..., 2n) = ¢'(y, . . ., 2») ist nun zu-
nachst nach dem Einsetzungsprinzip, angewandt auf die
Verkniipfungsbeziehung ¢ — ¢* = v, gleichbedeutend mit
einer Gleichung der Form (g, ..., #,) == 0, wo o wieder
ein Element von K(z,, ..., z,) ist.
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Ehe wir diese Gleichung weiter reduzieren, miissen wir uns mit
dem folgenden Umstand auseinandersetzen: Einerseits besteht das
zu y fithrende Rechenverfahren im Sinne der gestellten Aufgabe
(das gemédB p = @ — ¢’ aus den beiden urspriinglich gegebenen,
zu @ und ¢’ fithrenden zusammengesetzt ist) genauer betrachtet
in einer Kette von Einzeloperationen, deren jede eine Addition,
Substraktion, Multiplikation oder Division von je zwei Elementen
ist, deren jedes entweder ein Element aus K oder eines der 2y, . ., z,
oder ein Resultat einer der vorhergehenden Operationen ist. Ande-
rerseits 1468t sich ¢ als Element von K(z,, . . ., z,) in der einfachen

Form eines Quotienten—f- zweier Elemente aus K[z, ..., 2;] in

Normaldarstellung darstellen. Nach dem Einsetzungsprinzip hat
es dabei auf das Resultat der Einsetzung eines Elementsystems
215 « -« Zp 308 K keinen EinfluB, ob man diese Einsetzung vor der
Ausfithrung des Verfahrens stattfinden 148t (ob man also, wie es
dem Sinn der Aufgabe entspricht, von vornherein mit den z,, ..., z,
als Elementen aus K losrechnet), oder ob man erst nach der Aus-

fithrung des Verfahrens, in eine Quotientendarstellung 1 einsetzt,

solange man nur solche Einsetzungen betrachtet, fiir
die weder der Nenner g noch einer der sukzessive bei
dem Rechenverfahren auftretenden Nenner Null wird.
Es ist nun keineswegs von vornherein sicher, daB der Nenner ¢
genau fiir diejenigen Elementsysteme aus K nicht Null wird, fir
die keiner der sukzessiven Nenner des Verfahrens Null wird, die
also im Sinne der gestellten Aufgabe zulidssig sind. Doch
136t sich zeigen, daB es unter allen Quotientendarstellungen von
v (mindestens) eine mit dieser Eigenschaft gibt (siehe dafiir
3,1, § 5, Aufg. 1). Eine solche, der Aufgabe naturgemafl angepafite

Quotientendarstellung ¢ = 7 sei im folgenden zugrunde gelegt.

Vermoge einer Quotientendarstellung = s (der eben

ndher charakterisierten Art) reduziert sich nun nach §3
und dem Einsetzungsprinzip die Losung der Gleichung
w(Zy, . . ., @n) = 0 weiter darauf, alle diejemigen Loésungen
von f(z, ..., %x) =0 zu bestimmen, die zudem Losungen
von ¢(%, ..., Zx) ~0sind. Da man nun die Losungen der
letzteren Ungleichung kennt, wenn man die der Gleichung
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g(Zy, . . ., 2n) = 0 kennt, reduziert sich die Aufgabe auf die
Behandlung von Gleichungen der Form

flz, . . ., 20) =0,
wo f ein Element aus K[z,, . . ., z,] ist.

Obwohl man nun im Prinzip die gemeinsamen Losungen
einer Anzahl von Gleichungen beherrscht, wenn man die
Losungen jeder Einzelgleichung kennt, ist es doch sowohl
von theoretischen als auch von praktischen Gesichtspunkten
aus zweckmaBig, solche Gleichungssysteme als Ganzes zu be-
handeln. Somit formulieren wir als die uns zum Leitfaden
dienende Aufgabe der Algebra:

EsseienK ein Korper undf,, . . ., fm Elemente ausK[z,, ...,z ].
Es sollen Methoden zur Gewinnung aller Losungen des Gler-
chungssystems

fi(xlw--,xn)z.o (7/=1,,m)

entwickell werden?).

Eine systematisch vollendete Theorie zur Lisung dieser
Aufgabe in ihrer vollen Allgemeinheit wiirde den Rahmen
dieser Darstellung iibersteigen. Daher sollen uns hier nur
die beiden nachstehenden, fiir den allgemeinen Fall grund-
legenden Spezialfille beschiftigen:

1) Die Elemente f,,..., fn sind linear, d.h. in ihrer
Normaldarstellung (Def. 9 [38]) sind hochstens die n 4 1
Koeffizienten

9,...,0, ®1,0,..., 05+ -+ @0,..,0,1

von Null verschieden. Dann handelt es sich also um ein
Gleichungssystem, das in der Form

n

@ Sagty=a; (G=1,...,m)
F=1

') Es sei auf die beiden folgenden, naheliegenden Verallgemeinerungen

dieser Aufgabe hingewiesen:

1. die Anzahl der Gleichungen und Unbekannten wird auch als abzihlbar un-
endlich zugelassen,

2. an Stelle des Korpers K wird ein Integrititsbereich (oder auch nur ein Ring)
zugrunde gelegt,

mit denen man sich in neuerer Zeit ebenfalls beschiftigt hat.
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geschrieben werden kann, wo die a;; und a; Elemente aus K
sind. Ein Gleichungssystem der Form (1) heiBt ein lineares
Gleichungssystem in K.

2) Es ist m = n = 1. Dann handelt es sich also um eine
einzelne Gleichung der Form

apzkb=0,

E=0
wo die ar Elemente aus K sind, von denen nur endlich viele
= 0 sind. Von dem trivialen Falle, wo alle a;z = 0 sind und
somit jedes z aus K Losung der Gleichung ist, darf abgesehen
werden. Dann existiert also ein letztes a, = 0. Der so be-
stimmte Index r heilt der Grad des links stehenden Ele-
mentes aus K[z]. Der Fall r = 0 ist ebenfalls trivial, weil
dann wegen der Annahme a, = 0 kein = aus K Losung der
(leichung ist. Somit ist eine Gleichung der Form

@) Sazt=0 (440, r=1)
k=0

zu behandeln. Eine Gleichung der Form (2) heiBt eine alge-
braische Gleichung r-ten Grades in K.

In 1, IIT und IV werden wir die Teilaufgabe 1), in 2 die
Teilaufgabe 2) behandeln.

II. Gruppen
§ 6. Definition der Gruppen

Man redet von einer Gruppe, wenn folgender Tatbestand
realisiert ist:

(a) Es liegt eine Menge & von unterschiedenen Ele-
menten in trgendeiner endlichen oder unendlichen Anzahl vor.

Vgl. die Bemerkungen zu §1, (a). Anders als dort wird hier
nicht gefordert, da & mindestens zwei verschiedene Elemente
besitzt. Wir bezeichnen Gruppen mit grofen deutschen, Elemente
aus Gruppen mit groBen lateinischen Buchstaben.



