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§ 1. Einleitung 
Die Kristalloptik handelt von den „Taten und Leiden" 

des Lichts in Kristallen. Kristalle sind Körper, deren 
Atome r e g e l m ä ß i g , in einem „ R a u m g i t t e r " , 
angeordnet sind: das gibt dem Gebiete sein eigentüm-
liches Gepräge. Das Licht aber, das wir bald im elektro-
magnetischen Wellen-, bald im Korpuskelbilde zu sehen 
uns gewöhnt haben, erscheint uns hier so rein wie sonst 
selten als Wellenbewegung; die Kristalloptik ist der 
feinste Prüfstein jeder Wellentheorie des Lichts. 

Genau genommen hätten wir die Vorstellung durchzu-
führen, daß das einfallende Licht die Partikeln des 
Kristallgitters zum Mitschwingen erregt und daß die be-
obachtbaren Tatsachen sich als Uberlagerung der ein-
fallenden und aller sekundären „ E l e m e n t a r -
w e l l e n " deuten lassen. So werden wir tatsächlich im 
letzten Teile verfahren — aber dieser Teil wird kurz 
sein, einmal, weil die umständlichen Summationen und 
sonstigen mathematischen Hilfsmittel sich einer elemen-
taren Darstellung größtenteils entziehen, hauptsächlich 
aber, weil in den meisten Fällen ein einfacheres Vor-
gehen zum Ziele führt . Denn ebenso wie die geometrische 
Optik von der Wellenoptik die Erlaubnis erhält, inner-
halb gewisser Grenzen mit ihren „Lichtstrahlen" und 
deren Spiegelungen, Brechungen und Schnittpunkten 
Geometrie zu treiben — und sie erzielt damit z. B. bei 
der Durchrechnung von Linsensystemen die erstaunlichsten 
Erfolge, obwohl doch jedermann weiß, daß es so etwas 
wie einzelne Lichtstrahlen gar nicht gibt! —, ebenso ge-
stattet die Gitteroptik, gegebenenfalls von dem atomaren 
Feinbau des Kristalls völlig abzusehen. 

W a n n das geschehen darf, hängt von dem Größen-
verhältnis der Lichtwellenlängen zum gegenseitigen Ab-
stände der Kristallpartikeln ab. Dieser liegt nach Aus-
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sage der Atomtheorie in der Größenordnung der 
Angströmeinheiten (1 Ä = 10~8 cm). Arbeitet man mit 
Röntgenlicht, dessen Wellenlängen gleichfalls um 1 Ä 
liegen, so muß jedes Kristallatom als Einzelwesen be-
handelt werden; liegt eins im Wellenberg des Lichts, so 
sein Nachbar im gleichen Augenblick keineswegs mehr. 
Hier ist eine Verwischung der atomaren Unterschiede un-
zulässig, die gitteroptische Darstellung unvermeidbar. 
Das sichtbare Licht anderseits, um das es sich im folgen-
den allein handeln wird, hat Wellenlängen zwischen 
etwa 4000 Ä im Violett und 7200 Ä im Rot. Sie sind 
so viel größer als der mittlere Partikelabstand, daß man 
in der Kristalloptik des Sichtbaren, das ultraviolette und 
ultrarote Nachbargebiet einbegriffen, von den Einzel-
atomen absehen, die Atome sozusagen über den Raum 
verschmieren darf. Bei dieser Einebnung aber geht zu-
nächst die Vorstellung der regelmäßigen Anordnung der 
Partikeln verloren, und man schafft summarisch und for-
mal dadurch Ersatz, daß man den Kristall als zwar 
„homogenen", d. h. in den kleinsten Bereichen gleich-
artigen, aber „ a n i s o t r o p e n " Körper auffaßt , d. h. 
ihn in den verschiedenen Richtungen mit verschiedenen 
physikalischen Eigenschaften begabt, insonderheit ihm 
verschiedene Werte der Lichtgeschwindigkeit in den ein-
zelnen Richtungen zuschreibt1). 

Man könnte die leitenden Gedanken der Kristalloptik 
also darstellen, indem man von den Grundgleichungen 
der elektromagnetischen Lichttheorie, den M a x w e l l -
s c h e n G l e i c h u n g e n , ausgeht und auf den Fall der 
anisotropen Körper spezialisiert. Was man hierbei an 
formaler Glätte gewinnt, verliert man an geschichtlichem 
Verständnis und an Anschaulichkeit. Die Kristalloptik, 
anschaulich, formenschön und farbenfreudig wie kaum 

1) I s o t r o p e F e s t k ö r p e r k a n n m a n durch e inse i t igen D r u d e a n i s o t r o p 
machen. D a r a u f b e r u h t e ine technisch wicht ige M e t h o d e z u r Messung inne re r 
S p a n n u n g e n , die v ie le Ähn l i chke i t en mi t d e r K r i s t a l l o p t i k a u f w e i s t . S. z . B. 
L . F ö p p 1 u n d H . N e u b e r , Fes t igke i t s lehre mi t t e l s S p a n n u n g s o p t i k , 
M ü n c h e n - B e r l i n 1935. — G. M e s m e r , S p a n n u n g s o p t i k , Ber l in 1939. 
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ein anderes Gebiet der Physik, wäre ein Musterbeispiel 
für den Unsegen solch rein deduktiver Behandlungsweise. 
Wir werden im Gegenteil mit einfachen Versuchen be-
ginnen, denselben wie O l a f R ö m e r s Lehrer E r a s -
m u s B a r t h o l i n u s vor bald 300 Jahren (1669). Wir 
werden sie zuerst mit Hi l fe der gleichen einfachen theo-
retischen Hilfsmittel deuten, wie H u y g c n s es bald 
darauf getan hat (1678), und wir werden diese Hilfs-
mittel weiterbilden wie F r e s n e l (1788 bis 1827), die 
bedeutendste Persönlichkeit der klassischen Wellentheorie. 
Dann erst, in § 12 und 13, werden wir die so gewonnene 
Übersicht in die elektromagnetische Gesamttheorie ein-
bauen. 

Vorausschicken aber wollen wir, um später nicht unter-
brechen zu müssen, einen kurzen Überblick über die 
K r i s t a l l s y s t e m e . 

§ 2. Kristallsysteme'' 
Durch die geordneten Partikeln des Kristalls kann man 

in sehr verschiedener Weise Ebenen hindurchlegen, sogen. 
„ N e t z e b e n e n", auf denen Partikeln liegen. Natür -
lich muß auch die Kristalloberfläche als eine partikel-
besetzte Ebene zu diesen Netzebenen gehören, und wenn 
wir, wie in § 1 vorgeschlagen, von dem Feinbau zunächst 
ganz absehen, bleibt als einfachstes makroskopisches 
Kennzeichen der atomaren Regelmäßigkeit und der Un-
gleichwertigkeit der einzelnen Kristallrichtungen die An-
ordnung der natürlichen Begrenzungsflächen übrig. Diese 
Anordnung zeigt eine größere oder geringere Symmetrie, 
und man teilt nach ihr rein stereometrisch alle möglichen 
Kristallpolyeder in 32 „ K l a s s e n" ein. Jeder Klasse 
ist ein bestimmtes Koordinatensystem (,,A c h s e n -
s y s t e m", „ A c h s e n k r e u z") angemessen (wie immer 
in der Physik; dem Plattenkondensator sind kartesische, 
dem Kugelkondensator sind Polarkoordinaten „ange-

l ) Vgl. hierzu W. B r u h n s , Kristal lographie, neubearb. v. P. R a m -
d o h r Sammlung Gösdien Bd. 210, Berlin 1944. Neuauf lage in Vorbereitung. 
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messen"): die Klassen, die auf das gleiche Achsenkreut 
bezogen werden, faßt man zu einem „ K r i s t a 11 -
s y s t e m " zusammen. Man unterscheidet deren sechs 
oder auch sieben. 

1. Wir machen uns an einem Kristallsystem mittlerer 
Symmetrie die wichtigsten Begriffe klar, mit denen wir 
im folgenden zu arbeiten haben. Fig. 1 stellt einen 

A r a g o n i t kristall dar. Wir 
können 3 verschiedene Ebenen 
durch diesen Kristall legen, die 
ihn in zwei s p i e g e l b i l d -
l i c h g l e i c h e T e i l e te'len; 
eine horizontale, die durch die 
Achsen a und b bestimmt ist, 
und zwei vertikale, eine durch 

, a. und c, eine durch b und c. 
Solche Ebenen heißen „ S y m -
m e t r i e e b e n e n" . 

Drehen wir den Kristall um 
die Achse c, so brauchen wir 
nicht um 360° zu drehen, bis 
er wieder mit sich selbst 
zur Deckung kommt: es ge-
nügt eine Drehung um 180°. 

Geraden a und b. Derartige 
Geraden nennt man „ S y m m e t r i e a c h s e n", und 
zwar nennt man Symmetrieachsen 2-, 3-, 4-, 6-zählig, 

. ^ . 360° 360° 360° 360° 
je nachdem schon eine Drehung um — - — , — ^ — , — - — — 

den Kristall in die Deckstellung bringt. Der Aragonit 
hat also drei zweizählige Symmetrieachsen, die auf den 
drei Symmetrieebenen senkrecht stehen. Verallge-
meinernd versteht man unter Symmetrieachse keine be-
stimmte Gerade, sondern nur eine bestimmte R i c h -
t u n g ; jede Gerade parallel dieser Richtung führt die 
Bezeichnung Achse. Das erscheint durchaus sinnvoll, 
wenn man sich der atomaren Ordnung erinnert, die eine 

Fig. 1. Aragonit 

Dasselbe gilt für die 
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R i c h t u n g , nicht aber eine G e r a d e auszeichnet. 
Der Kristall hat ferner ein „ Z e n t r u m d e r S y m -
m e t r i e " , d. h. einen Punkt in seinem Innern, in Fig. 1 
den Schnittpunkt der drei Achsen, mit der Eigenschaft, 
daß jede durch ihn gelegte Gerade auf beiden Seiten 
von ihm in gleicher Entfernung gleichwertige Kristall-
flächen trifft. 

Fassen wir Symmetrieebenen, Symmetrieachsen und 
das Symmetriezentrum unter dem Namen „ S y m -
m e t r i e e l e m e n t e " zusammen, so können wir sagen: 
Die Symmetrieelemente des Aragonits sind drei aufein-
ander senkrechte Symmetrieebenen, drei sich unter 
rechten Winkeln schneidende Symmetrieachsen (die 
Schnittlinien der Symmetrieebenen!) und das Zentrum 
der Symmetrie. Alle Kristalle mit den genannten Sym-
metrieelementen gehören zum „ r h o m b i s c h e n 
S y s t e m". "Will man die bei ihnen möglichen Kristall-
flächen analytisch-geometrisch festlegen, so wählt man 
die drei Symmetrieachsen zu Koordinatenachsen. Diese 
drei Achsen sind n i c h t g l e i c h w e r t i g , nicht ver-
tauschbar: wird z. B. eine von zwei Flächen senkrecht 
geschnitten, wie die b-Achse in Fig. 1, so gilt das für 
die anderen Achsen nicht. 

2. Es gibt Kristalle von höherer und solche von ge-
ringerer Symmetrie als die des rhombischen Systems. Wir 
besprechen zunächst die letzteren. 

/f\ Durch den G i p s kristall Fig. 2 kann man 
f / \ nur e i n e Ebene legen, die ihn in spiegelbild-

/ / / \ lieh gleiche Teile teilt. Sie liegt parallel zur 
/ / / \ Fläche b. Es ist auch nur eine zweizählige 
v~4—( b \ Symmetrieachse vorhanden, die auf der Sym-
\ \ \ I metrieebene senkrecht steht und die man als 
\ \ \ / eine der Koordinatenachsen wählt (während 
\ \ \J die beiden anderen in die Ebene b fallen, 
\ 1 / ohne einen Rechten miteinander zu bilden). 

H / Außerdem gibt es ein Zentrum der Symmetrie. 
Fig. i . Gips Kristalle mit diesen Symmetrieelementen ge-
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hören zum „m o n o k l i n e n o d e r m o n o s y m m e -
t r i s c h e n S y s t e m". Erwähnt sei außer dem Gips der 
optisch wichtige G l i m m e r (vgl. S. 77). 

Das „ t r i k l i n e o d e r a s y m m e t r i s c h e 
S y s t e m " endlich besitzt weder eine Symmetrieebene 
noch eine Symmetrieachse, sondern nur das Zentrum der 
Symmetrie. Seine Flächen werden auf drei ungleich-
wertige, windschief zueinander gelegene Achsen bezogen. 

3. Mehr Symmetrieelemente als das rhombische besitzen 
das „ t e t r a g o n a l e", das „h e x a g o n a 1 e" und 
das „ r e g u l ä r e S y s t e m " ; mit diesen sechs sind 
dann die Kristallsysteme erschöpft, es sei denn, daß man 
das hexagonale System nochmals unterteilt (s. N r . 5). 

Fig. 3 und 4 stellen 

Stellung unter ihnen ein, weil die vier anderen auf ihr senk-
recht stehen, und wird daher als „ H a u p t s y m m e t r i e -
e b e n e " bezeichnet, die vier anderen als „ N e b e n -
s y m m e t r i e e b e n e n". Senkrecht zur Hauptsym-
metrieebene steht die (hier also vertikale) „ H a u p t -
s y m m e t r i e a c h s e", die vierzählig ist, senkrecht zu 
jeder der vier übrigen Symmetrieebenen je eine zwei-
zählige „ N e b e n a c h s e", so daß es im ganzen fünf 
Symmetrieachsen gibt. Dazu das Zentrum der Sym-
metrie. Die Hauptachse wird eine der Koordinaten-
achsen, zwei untereinander gleichwertige in der Horizon-

t e t r a g o n a l e K r i s t a l l -
t y p e n dar. Es gibt hier 
eine horizontale Symme-
trieebene und vier verti-
kale, von denen zwei 
durch gegenüberliegende 
Kanten und zwei durch 
gegenüberliegende Flä-
chenmitten laufen, im gan-
zen also fünf . Die hori-
zontale Symmetrieebene 
nimmt eine einzigartige 

Fig. 3 Fig. 3 Fig. 4 
Tetragonale Kr i s ta lkypen 
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talebene vervollständigen das rechtwinklige Koordinaten-
kreuz. 

4. Zum h e x a g o n a l e n S y s t e m gehören die 
wichtigsten der uns später beschäftigenden Kristalle, vor 
allem K a l k s p a t und Q u a r z . Die Symmetrieele-
mente ähneln denen des tetragona-
len Systems. So zeigt ein Blick auf 
den hexagonalen Kristall Fig. 5, daß 
wieder eine horizontale Hauptsym-
metrieebene existiert und diesmal 
s e c h s darauf senkrechte Neben-
symmterieebenen, drei durch gegen-
überliegende Kanten, drei durch 
gegenüberliegende Flächenmitten. „ F;s- ' ., 
S i i ° . * i > i Hexagonale Pyramide 
benkrecht zu jeder der sieben 
Symmetrieebenen steht eine Symmetrieachse; senkrecht 
zur Hauptsymmetrieebene die sechszählige H a u p t -
a c h s e , senkrecht zu den sechs anderen, also in der 
horizontalen Hauptsymmetriebene liegend, sechs zwei-
zählige Nebenachsen. Koordinatenkreuz: Hauptachse und 
drei gleichwertige horizontale Nebenachsen unter 60°. 
Auch das Symmetriezentrum ist vorhanden. 

5. Wir wiederholen in Fig. 6 die Pyramide der vorigen 
Figur und lassen an ihr die nicht schraffierten Flächen 
auf Kosten der schraffierten wachsen, bis diese ver-

Fig. 6 Fig. 7 
Entstehung des Rhomboeders aus der hexagonalen Pyramide 

schwunden sind. Dann entsteht der in Fig. 7 darge-
stellte Kristall, ein „R h o m b o e d e r", wie es die natür-
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liehen Spaltungsstücke des K a l k s p a t s zeigen. Wir können 
das Verfahren, durch das wir es gewonnen haben, auch 
so kennzeichnen: wir haben an der Pyramide Fig. 6 die 
Hauptsymmetrieebene und die drei durch die Pyramiden-
kanten laufenden Nebensymmetrieebenen wegfal len, un-
wirksam werden lassen. D a s Rhomboeder zeigt also eine 
geringere Symmetrie als die P y r a m i d e : es behält von den 
Symmetrieebenen noch drei, von den Symmetrieachsen 
vier, nämlich die vertikale Hauptachse , die die beiden 
s tumpfen Rhomboederecken verbindet, und drei darauf 
senkrechte Nebenachsen. Dieses Verfahren, gewisse Sym-
metrieelemente for t fa l l en zu lassen, kann man bei den 
Kristal len jedes Systems anwenden. M a n erhält dann 
immer Formen, die weniger Flächen haben als die, aus 
denen sie hergeleitet sind, und die m a n im Gegensatz zu 
diesen, den „ V o l l f l ä c h n e r n " oder den „ H o -
1 o e d e r n " , „ H a l b f l ä c h n e r " oder „ H e m i e d e r " 
nennt. W i r sagen a l so : D a s Rhomboeder gehört zu einer 
Hemiedrie des hexagonalen Systems, und da es die wich-
tigste F o r m dieser Hemiedrie ist, nennen wir sie nach ihm 
„ r h o m b o e d r i s c h e H e m i e d r i e " . In ihr kristalli-
siert der K a l k s p a t , in einer ihrer Unterabtei lungen der 
T u r m a 1 i n. O f t weist m a n den K a l k s p a t in ein 
eigenes, siebentes Kristal lsystem ein, das „ t r i g o n a 1 e" , 
mit einer dreizähligen Hauptachse , das nach dem Rhom-
boeder als seiner wichtigsten Gestalt auch das „r h o m -
b o e d r i s c h e " genannt wird. Ihm gehören dann auch 
der gleich zu nennende Q u a r z und der Zinnober an. 

Das Kalkspatrhomboeder hat sechs stumpfe Kanten, wo zwei 
Flädien unter 105° 5', und sechs spitze, wo zwei Flächen unter 
74° 55' zusammenstoßen. Die Hauptachse verbindet bei einem 
regelmäßig ausgebildeten Rhomboeder die beiden Ecken, wo 
drei stumpfe Kanten zusammenlaufen. Sonst kann man sie als 
die von der stumpfen Ecke ausgehende Gerade definieren, die 
mit den drei dort zusammenstoßenden Flächen gleiche Winkel 
(von 45° 23,5') bildet. 

6. Lassen wir bei hemiedrischen Formen nochmals ge-
wisse Symmetrieelemente fort fa l len, so entstehen die sog. 
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„ t e t a r t o e d r i s c h e n". Z. B. gehört der Q u a r z 
und der Z i n n o b e r zu einer Tetartoedrie des hexago-
nalen Systems. Fig. 8 und 9 zeigen Formen, wie sie 
beim Quarz vorkommen. 
Beide sind „ e n a n t i o -
m o r p h", d. h. sie haben 
zwar dieselben Flächen, eine 
kann aber durch Drehung 
nicht in die andere überge-
führt werden; vielmehr ver-
hält sich eine zur anderen wie 
die rechte Hand zur linken. 

7. Die holoedrischen For-
men des r e g u l ä r e n 
S y s t e m s , als bekannteste 
W ü r f e l und O k t a e d e r , haben neun Symmetrie-
ebenen, dreizehn Symmetrieachsen und das Zentrum 
der Symmetrie und werden auf drei 
einander stehende g l e i c h w e r t i g e 
zogen. Regulär kristallisieren z. B. 
S t e i n s a l z , S y l v i n , F l u ß s p a t , 
viele Metalle wie Gold, Silber, Kupfer, Eisen. Doch wird 
sich herausstellen (§ 12), daß für die Kristalloptik des 
sichtbaren (nicht die des Röntgen-) Lichts das reguläre 
System von geringer Wichtigkeit ist. 

. Fig. 8 
Linksquarz 

Fig. 9 
Reditsquarz 

senkrecht zu-
Achsen be-
D i a m a n t , 

A l a u n und 

I. T e i l 

Doppelbrechung und Polarisation 
§ 3. Erste Grundtatsache: Doppelbrechung 

Wir knüpfen wieder an § 1 an und beschreiben den 
grundlegenden Versuch: wir lassen ein schmales Licht-
bündel auf das in Fig. 7 dargestellte Kalkspatrhomboeder 
auffallen, das auch B a r t h o l i n u s zu seiner Ent-
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deckung gedient hat1) und das die gesuchte Erscheinung, 
die erste der beiden Grundtatsachen aller Kristalloptik, 
besonders deutlich zeigt, die „ D o p p e l b r e c h u n g"2). 

Doppelbrechung heißt: ein einfallendes Lichtbündel 
wird doppelt gebrochen, bei der Brechung in zwei Teile 
zerlegt. Lassen wir es beispielsweise (Fig. 10) in Rich-

such am einfachsten so anstellen, daß ich senkrecht 
durch den Kristall nach einer kleinen hellen Öff-
nung in einem Schirm sehe: dann erblicke ich zwei Bilder 
der Öffnung. Oder ich suche durch den Kalkspat hin-
durch Schrift zu lesen und beobachte Verdopplung der 
Buchstaben. 

Der Strahl O, der bei senkrechtem Einfall ungebrochen 
weitergeht, verhält sich hier und wie ich sonst den Ver-
such abändern möge, im Kristall wie in einem isotropen 
Medium. Wir nennen ihn deshalb den „r a d i u s o r d i-
n a r i u s", den „ g e w ö h n l i c h e n " oder den 
„ o r d e n t l i c h e n " S t r a h l . E dagegen folgt offen-
bar nicht dem Snelliusschen Brechungsgesetze; er wird bei. 

1) Die Schrift des E r a s m u s B a r t h o l i n u s ist in deutsdier Uber-
setzung, „Versuche mit dem doppeltbrechenden isländischen Kris tal l" , Ieidit 
zugänglich in O s t w a l d s Klassikern der exakten Wissenschaften, N r . 205. 

2) Vorzügliche Kris ta l lpräpara te liefern z. B. die Optischen Werkstät ten 
von Dr . S t e e g und R e u t e r , Homburg v. d. H . Hie r auch ebenso wie 
bei C a r l Z e i ß Jena u. a. eine handliche optische Bank mit genauer 
Beschreibung aller einschlägigen Versudie. 

A tung AB senkrecht auf eine 
Rhomboederfläche auftref-
fen, so spaltet es sich in 
zwei, von denen eins, O, un-
abgelenkt durch den Kristall 
hindurchgeht, während das 
andere, E, beim Eintritt in 
die Richtung BC gebrochen 
wird und bei C dem ersten 

>ß Bündel parallel austritt. Je-

Fig. 10 
Doppelbrechung im Kalkspat 

,q des Bündel hat die halbe 
Intensität des ursprüng-
lichen. Ich kann den Ver-
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senkrechtem Einfall abgelenkt. Daher der Name 
„ r a d i u s e x t r a o r d i n a r i u s", „ u n g e w ö h n -
l i c h e r", „ a u ß e r o r d e n t l i c h e r " S t r a h l . 

Um die Frage zu beantworten, nach welcher Seite der 
außerordentliche Strahl abgelenkt wird, drehen wir den 
Kristall um ABO als Achse und beobachten, daß sich 
dabei BCE mit dem Kristall um ABO herumdreht. BC 
liegt also im Kristall fest, und zwar in der schraffierten 
Ebene, die die Kristallachse 
KtK2 und das Einfallslot AB 
enthält. Jede Ebene durch die 
Achse wird „ H a u p t s c h n i t t " 
genannt, und speziell der zu 
AB gehörige Hauptschnitt ist 
die Ebene durch die Achse und 
AB, die Papierebene in Figur 
10. Ich kann demnach sagen: 
d e r a u ß e r o r d e n t l i c h e 
S t r a h l i s t in s e i n e m 
H a u p t s c h n i t t a b g e -
l e n k t , nach der stumpfen Rhomboederkante K^D hin. 

Noch einmal eigens herausgezeichnet stellt sich der 
Vorgang so dar, wie es die Fig. 11 angibt. 

§ 4. Die Strahlenfläche einachsiger Kristalle 
Wir können den Grundversuch mannigfach abwan-

deln, schon am Kalkspat durch Änderung der Einfalls-
richtung, ganz zu schweigen von der "Wahl anderer 
Kristalle, andersfarbigen Lichts usw. Wie man die Fülle 
der Möglichkeiten einheitlich und einfach überschauen 
kann — Sinn und Ziel jeder physikalischen Theorie — hat 
H u y g e n s in dem berühmten fünften Kapitel seiner 
„Abhandlung über das Licht" gezeigt1) (1678 der Pariser 
Akademie mitgeteilt, 1690 veröffentlicht, vgl. § 1). Er 
benützt dabei die Fläche, die man heute „ S t r a h l e n -

Fig. u 
Strahlenverlauf im Hauptschnitt 

1) C h r . H u y g e n s , Abhandlung über das Lidit , 
Klassikern der exakten Wissenschaften, N r . 20. 

O s t w a l d s 
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g e s c h w i n d i g k e i t s - " oder kürzer „ S t r a h l e n -
f l ä c h e " nennt1); es ist die, bis zu der sich eine von 
einem Punkt ausgehende Lichterregung in einer be-
stimmten Zeit fortgepflanzt hat. Sie ist beim isotropen 
Körper, bei dem alle Richtungen gleichwertig sind, eine 
Kugel, und in einer Figur, die sich noch heute in allen 
Lehrbüchern der Physik findet, gibt H u y g e n s an, wie 
man mit Hilfe solcher Strahlenflächen-Kugeln zu einem 
Lichtbündel, das auf die Grenze G zweier isotroper Me-
dien I und II auffällt, das gebrochene Bündel kon-
struieren kann. 

den Mittelpunkt von AC, eine mit dem Radius 
AD 

EF = . Die gemeinsame Tangentialebene CFD ist 

die neue Strahlenfläche, AD die Richtung der gebrochenen 
Strahlen. 

Will man dieselbe Konstruktion am Kalkspat durch-
führen, so muß dessen Strahlenfläche bekannt sein. 
H u y g e n s hat ihre Form erraten; wir nützen seine 
geniale Annahme, ohne uns vorerst um den Nachweis zu 
sorgen, daß sie aus den Grundgleichungen der elektro-

Flg. 12. Brediung im isotropen Medium 

AB (Fig. 12) sei ein 
Stück der als eben 
angenommenen, auf 
dem Papier senkrecht 
stehenden Strahlen-
fläche (die „Wellen-
front") des auffallen-
den Lichts. Während 
sich B bis C fort-
pflanzt, hat sich um 
A im Medium II eine 
Elementarwelle mit 
dem Radius AD aus-
gebreitet und um E, 

1) Bisweilen audi „W e 11 e n f 1 ä c h e". 
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Fig . 13. S t rah lenf l äd ie eines negat iv 
einachsigen Kr i s t a l l s 

magnetischen Theorie ab-
geleitet werden kann (s. 
S. 64). Die Fläche be-
steht nach H u y g e n s , 
wie in Fig. 13 schema-
tisch angedeutet ist, aus 
zwei Schalen, einer Ku-
gel (schraffiert) und 
einem abgeplatteten Ro-
tationsellipsoid (von der 
Form einer Pomeranze), 
das die Kugel um-
hüllt und in der Kristallhauptachse K^K^ berührt. 
Im Kalkspat pflanzen sich also im allgemeinen nach 
jeder Richtung zwei Strahlen mit verschiedenen Ge-
schwindigkeiten fort; einer — ihm entspricht die Kugel — 
nach allen Richtungen mit der gleichen: der verhält sich 
im Kristall wie in einem isotropen Medium, befolgt also 
das Snelliussche Brechungsgesetz und war der, den wir 
den ordentlichen Strahl nannten. Der andere, außer-
ordentliche, dem das Ellipsoid entspricht, pflanzt sich 
nach verschiedenen Richtungen verschieden schnell fort, am 
langsamsten in Richtung der Achse, und zwar hier ebenso 
schnell wie der ordentliche, nach allen anderen Richtungen 
schneller als dieser, gleich schnell in Richtungen, die mit 
der Achse einen gleichen Winkel bilden (weil das Ellipsoid 
ein R o t a t i o n s ellipsoid ist), am schnellsten senkrecht 
zur Achse. Die beiden Extremwerte der Geschwindig-
keit, den o in Richtung der Achse und den e senkrecht 
dazu, nennen wir die „ H a u p t l i c h t g e s c h w i n -
d i g k e i t e n" des Kristalls. 

Alle Kristalle, die wie der Kalkspat nur e i n e Rich-
tung aufweisen, in der sich beide Strahlen gleich schnell 
fortpflanzen, heißen „ e i n a c h s i g e K r i s t a l l e". 
Hier können wieder zwei Fälle eintreten. Entweder ist 
wie beim Kalkspat der außerordentliche Strahl schneller 
als der ordentliche; dann umschließt bei der Strahlen-

B u c h w a 1 d , K r i s t s l l o p t i k 2 
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fläche das Ellipsoid die .Kugel. Solche Kristalle nennen 
wir nach B r e w s t e r (1818) „ n e g a t i v e i n -
a c h s i g " . Bei den „ p o s i t i v e i n a c h s i g e n " da-
gegen ist der ordentliche Strahl der schnellere: die Kugel 
umschließt das Rotationsellipsoid, das dann kein abge-
plattetes, sondern ein verlängertes ist (Form einer 
Zitrone), und berührt es in der Achse (Fig. 14). Diese 
Flächen ändern sich mit Wellenlänge und Temperatur. 

D i e K r i s t a l l e 
d e s h e x a g o n a l e n 
u n d d e s t e t r a -
g o n a l e n S y s t e m s 
s i n d e i n a c h s i g , in 
ihrer Mehrzahl negativ 
einachsig. Hierher ge-
hören der Kalkspat, Na-
tronsalpeter, Turmalin, 
Beryll, Smaragd, Korund, 
Rubin, Saphir, Apatit. 

Einachsig positiv sind 
unter anderem Quarz, 
Eis, Zinnober, Zirkon, 
Rutil, Zinnstein. 

Die Doppelbrechung 
Fig. 14. Strahlenflädie eines positiv 

einadisigen Kristalls 

beim Kalkspat ist stark, wenn auch nicht so stark wie in 
Fig. 15 der Deutlichkeit halber angenommen ist. "Während 
etwa beim Beryll das Verhältnis der beiden Hauptlicht-
geschwindigkeiten 1,003 ist, beim Zinnstein 1,048, beträgt 
es beim Kalkspat immerhin 1,116, ein Grund, weshalb er 
sich zu den einführenden Versuchen so gut eignet. 

Die Kenntnis der Strahlenfläche ermöglicht es, die 
H u y g e n s sehe Konstruktion der gebrochenen Strahlen 
am Kalkspat für einige typische Fälle durchzuführen. 

1. Fall. Wir wählen als ersten den in § 3 behandelten, 
wo das L i c h t s e n k r e c h t a u f e i n e R h o m -
b o e d e r f l ä c h e auffiel, und geben in Fig. 15 den aus 
Fig. 11 bekannten Hauptschnitt wieder, nur daß wir 
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diesmal die Rhom-
boederfläche,durch 
die das Licht ein-
tritt, horizontal ge-
legt haben. BB ist 
ein Stück Strahlen-
fläche des ankom-
menden Lichts. 
Jeden Punkt von 
BB sehen wir mit 
H u y g e n s alsAus-
gangspunkt von 
Elemeritarwellen 

an, konstruieren al-
so, um jeden Punkt 
die zweischalige Strahlenfläche des Kalkspats, wobei wir 
beachten müssen, daß die Achse der Strahlenfläche parallel 
der Kristallachse K1K2 gezeichnet wird. Die ordent-
lichen Elementarstrahlen breiten sich in einer gewissen 
Zeit bis auf die Oberfläche aller Kugeln aus: die neue 
Front des ordentlichen Strahls ist also die Einhüllende 
aller dieser Kugeln, die Richtung der ordentlichen Strah-
len ist durch BO bestimmt. Die außerordentlichen Ele-
mentarstrahlen haben sich auf die Oberfläche aller 
Ellipsoide ausgebreitet, ihre neue Front ist die Ein-
hüllende EE aller dieser Ellipsoide, und die neue 
Strahlenrichtung BEC wird gefunden, indem das Zen-
trum B jeder Strahlenfläche mit dem zugehörigen Be-
rührungspunkt E der Einhüllenden verbunden wird. Wir 
kommen also durch diese Konstruktion zu demselben 
Resultat, das wir früher als Ergebnis des Versuchs hin-
gestellt hatten: der o. Strahl geht ungebrochen weiter, 
der a.o. wird trotz des senkrechten Einfalls auf die 
stumpfe Rhomboederkannte KXD hin abgelenkt. 

Wäre der Kristall weniger dick, ginge er beispielsweise nur 
bis zu der punktierten Linie, so würde er den o. und den a.o. 
Strahl weniger weit voneinander trennen. 

V 

R h o m b o e d e r f l ä d i e 
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Nun müssen wir auf eine Tatsache hinweisen, die in 
der Folge von größter Wichtigkeit sein wird. BO ist 
die Richtung des o. Strahls und BO ist auch die Richtung 
der o. „ W e l l e n n o r m a l e " , wenn wir darunter die 
Senkrechte auf der Wellenfront OO, der Einhüllenden 
aller o. Strahlenflächen, verstehen. Beim o. Strahle fällt 
also wie in allen isotropen Körpern Strahl- und Nor-
malenrichtung zusammen: Dagegen steht die a.o. Strah-
lenrichtung BE nicht senkrecht auf der a.o. "Wellenfront 
EE; S t r a h l u n d N o r m a l e s t i m m e n b e i m 
a.o. L i c h t i. a l l g . n i c h t ü b e r e i n (weil i. allg. 
die Tangentialebene an einem Ellipsoid nicht auf dem 

s e t z e n . Dann haben, wenn wir die' Strahlen -
flächen richtig mit vertikaler Achse in den Kristall ein-
zeichnen (Fig. 17), alle Elementarkugeln und alle Elemen-

Radiusvektor senkrecht steht). 
Die a.o. Front wird abgetrieben 
wie ein Flugzeug bei Seitenwind. 

Fig. 16. Rhomboeder mit 
abgeschliffenen Edten 

2. Fall. Wir wählen als 
Grenzfläche eine senkrecht zur 
Achse liegende, wie wir sie etwa 
durch Abschleifen der stumpfen 
Rhomboederecken erhalten (Fig. 
16), und lassen das Licht senk-
recht darauf auffallen, den 
K r i s t a l l a l s o i n R i c h -
t u n g d e r A c h s e d u r c h -

Fig. 17. Das Lidit geht in Riditung der Adise 
nindurdi 

tarellipsoide die 
gleiche Einhül-
lende, einen Un-
terschied zwi-
schen a.o. und o. 
Wellenfront gibt 
e>s nicht, es findet 
keine Doppel-
brechung statt. 
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f 
B 

Z3 
E E 

Fig. 18. Das Licht geht senkrecht zur 
Ach sc hindurch. Senkrechte Inzidenz 

In Richtung der Achse geht also das Licht durch den 
Kristall wie durch ein isotropes Medium. Daher auch 
der Name „ A c h s e d e r I s o t r o p i e " für diese 
Richtung. 

3. Fall. Schließlich er-
örtern wir den bei zahl-
reichen Versuchen vorlie-
genden Fall ( s . z . B . S. 28, 
68 ff.), daß die Kristall-
achse in der Oberfläche 
liegt („achsenparallel ge-
schnittener Kristall") und 
daß das Licht auf die 
Grenzfläche senkrecht auf-
fällt. In Fig. 18 steht die 
Achse senkrecht auf der 
Papierebene. (Läge sie 
in der Papierebene, so 
käme dasselbe heraus.) Der Schnitt der Papierebene 
mit den beiden Schalen der Strahlenfläche besteht also 
aus zwei Kreisen (das Ellipsoid ist ein R o t a t i o n s -
ellipsoid!) mit den Hauptlichtgeschwindigkeiten o und e 
als Radien. Die Zeichnung lehrt, daß sich o. und a.o. 
Front unabgelenkt in derselben Richtung fortpflanzen 
und, wenn die Austritts- der Eintrittsfläche parallel ist, 
auch in gleicher Richtung wieder austreten. Die a.o. 
Front ist schneller als die ordentliche und gewinnt vor ihr 
einen um so größeren Vorsprung („G a n g u n t e r -
s c h i e d") im Kristall, je dicker die Kristallplatte ist. 

Den Gangunterschied mißt man in Wellenlängen des 
X X I 

auffallenden Lichts, und man spricht von -g- , — > -y 

Plättchen, wenn nach dem Austritt die eine Welle hinter 
der anderen um eine Achtel-, eine Viertel-, eine halbe 
Wellenlänge zurück ist. 



22 Doppelbrechung und Polarisation 

§ 5. Herleitung der Strahlenfläche aus dem 
Fresnelschen Ellipsoid 

Aus der H u y g e n s sehen Strahlenfläche kann man in 
der denkbar übersichtlichsten Weise die beiden Strahlen-
geschwindigkeiten in ireend einer Richtung ablesen. Aber 
sie ist eine z w e i schalige Fläche, was analytisch eine ge-
wisse Umständlichkeit mit s'ch bringt. F r e s n e 1 hat 
erkannt, daß eine e i n schalige „K o n s t r u k t i o n s -
f l ä c h e " , ein Ellipsoid, das wir das „ F r e s n e l s c h e 
E l l i p s o i d nennen1'), das gleiche leistet, indem es ein-
deutig die Strahlenfläche herzuleiten eestattet. und da 
ähnlich'" Überlegungen an anderer Stelle wiederkehren 

(s; S. 34), zeigen wir, wie das zu ge-
schehen hat. 

Das Fresnelsche Ellipsoid einachsiger 
Kristalle ist ein Rotationsellipsoid mit 
den Hauptlichteesch windigkeiten e und o 
als Polar- und Äquatorialradius, also im 
Falle "der negativ Einachsigen wie Kalk-
spat von der Gestalt der Fie. 19. Wir 
denken es uns so in den Kristall hinein-
gelegt. daß die Rotationsachse nv't der 
KriVallachse übereinstimmt imd f 'nden 

Fig. 19. Fresnel- die beiden Strahlengeschwind'ekei'-en in 
sefces Ellipsoid vorgegebener Richtung nach der Regel: 

M a n l e g e s e n k r e c h t z u d i e s e r R i c h t u n g 
d i e D i a m e t r a l e b e n e d u r c h d a s E l l i p s o i d . 
D i e b e i d e n g e s u c h t e n S t r a h l g e s c h w i n -
d i g k e i t e n s i n d g l e i c h d e n H a l b a c h s e n 
d e r S c h n i t t e l l i p s e . 

Um zu zeigen, daß diese Vorschrift auf unsere be-
kannte Strahlenfläche zurückführt, fragen wir zunächst, 

1) Die Bezeichnung dieser Fläche und weiterer, die in engem Zusammen-
hange mit ihr stehen, ist leider alles andere als einheitlich. Man vergleiche 
die köstliche Zusammenstellung bei R o s e n b u s c h - W ü l f i n g (s. Li-
teraturangabe auf S. 4) Seite 124/125, eine wahre babylonische Sprachenver-
wirrung. 
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wie schnell sich Strahlen senkrecht: zur Achse fort-
pflanzen. L (Fig. 20) sei die Fortpflanzungsrichtung; 
die senkrecht dazu gelegte Diametralebene schneidet das 
Ellipsoid in der schraffierten Ellipse, deren Halbachsen 
o und e sind. Das sind in der Tat die beiden Strahl-

l 

geschwindigkeiten in Richtung L und, wie wir aus Fig. 20 
entnehmen, in j e d e r Richtung senkrecht. zur Achse. 
Ebenso lassen sich unsere übrigen früheren Ergebnisse 
nachprüfen: die Geschwindigkeit beider Strahlen in 
Richtung- der Achse ist o, denn die zur Achse senkrechte 
(Horizontal-)Ebene schneidet das Ellipsoid im Kreis mit 
dem Radius o. Für eine dazwischenliegende Fortpflan-
zungsrichtung Z (Fig. 21) liefert die zugehörige, in der 
Figur schraffierte Schnittfläche eine Ellipse, deren eine 
Halbachse wie bei jeder S.chnittellipse o ist — die immer 
gleiche Fortpflanzungsgeschwindigkeit des o. Strahles —, 
während die andere einen Wert m zwischen o und e 
annimmt. Daß es gerade der ist, den auch unsere be-
kannte Strahlenfläche (Fig. 13) ergibt, schließt man 
daraus, daß die gleiche Ellipse mit den Halbachsen o und 
e dem Ellipsoid wie der Strahlenfläche eigentümlich ist. 

Damit ist die Richtigkeit der Konstruktionsregel er-
wiesen. F r e s n e 1 hat das Ellipsoid aus der elastischen 
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Lichttheorie hergeleitet: es folgt gleichermaßen aus der 
elektromagnetischen (s. S. 64). 

§ 6. Zweite Grundtatsache: Polarisation 
An der ersten Versuchsanordnung, dem senkrechten 

Auftreffen eines Lichtbündels auf die Rhomboederfläche 
des Kalkspats, haben wir bisher nur e i n Ergebnis her-
vorgehoben und in den folgenden Paragraphen ausgebaut, 
das stereometrische der Doppelbrechung. Nicht minder 
wichtig ist das zweite: d i e b e i d e n a u s d e m K a l k -
s p a t a u s t r e t e n d e n L i c h t b ü n d e l u n t e r -
s c h e i d e n s i c h d a d u r c h w e s e n t l i c h v o n 
d e m e i n f a l l e n d e n n a t ü r l i c h e n u n p o l a r i -
s i e r t e n L i c h t e , d a ß b e i d e l i n e a r u n d 
s e n k r e c h t z u e i n a n d e r p o l a r i s i e r t s i n d . 
Und zwar kann man etwa durch Reflexion an einer Glas-
platte unter dem „Polarisationswinkel" zeigen, daß das o. 
Bündel senkrecht zum Hauptschnitte schwingt und damit 
auch senkrecht zur Achse der Isotropie, in Fig. 10, 11 
oder 15 also auch senkrecht zur Papierebene, das a.o. 
Bündel aber i m Hauptschnitt, also in den genannten 
Figuren i n der Papierebene. 

Wie das Licht im Kristall i n n e r n schwingt, können 
wir nicht unmittelbar prüfen, aber es liegt nahe — und 
die elektromagnetische Lichttheorie wird es bestätigen — 
vom Äußern auf das Innere rückzuschließen und auszu-
sagen: auch im Kristallinnern sind nur zwei Schwin-
gungsrichtungen möglich; das o. Bündel wählt die senk-
recht zum Hauptschnitt, das a.o. Bündel die im Haupt-
schnitt. 

Dabei wollen wir gleich den Sonderfall herausgreifen, 
daß die Fortpflanzungsrichtung mit der Achsenrichtung 
übereinstimmt (Fall 2 des § 4). Dann wird unsere Defi-
nition des Hauptschnitts unbestimmt; wir können jede 
Ebene durch die Achse als Hauptschnitt des Strahls be-
zeichnen. In der Tat ist dann auch jede Schwingungs-
richtung senkrecht zur Achse möglich. Das einfallende 
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Minna o. 

natürliche Licht kann im Kristall seine vielfach wechseln-
den Schwingungsrichtungen beibehalten und den Kristall 
als unpolarisiertes Licht durchsetzen, ein zweiter Grund 
für die Bezeichnung Achse der Isotropie. 

In allen anderen Fällen stellt jeder doppelbrechende 
Kristall einen „P o 1 a r i s a t o r" dar, wenn wir 
darunter eine Vorrichtung verstehen, die uns geradlinig 
polarisiertes Licht liefert. Allerdings treten aus der Platte 
z w e i senkrecht zueinander polarisierte Lichtbündel aus, 
die sich außerdem teilweise überlagern, wenn das ein-
fallende Lichtbündel nicht eng oder der Kristall nicht 
von beträchtlicher Dicke ist. Diesen Ubelstand kann man 
durch geeignete Prismenkombinationen beheben. 

Hierher gehört das " W o l l a s t o n s c h e P r i s m a 
(Fig. 22) (1820). (Es besteht aus zwei Kalkspatprismen I 
und II, in denen die Achsen die 
durch Pfeile angedeuteten Lagen 
haben: in I liegt sie in der Zeichen-
ebene, in II tritt sie senkrecht aus 
der Zeichenebene heraus, so daß 
für I die Zeichenebene der Haupt-
schnitt ist, während bei II der 
Hauptschnitt auf der Zeichen-
ebene senkrecht steht. Die in der 
Papierebene verlaufenden Schwin-
gungen, gekennzeichnet durch 
kleine Querstriche, liegen bei 7 im 
Hauptschnitt, gehören also hier dem a.o., in II aber dem 
o. Lichte an, weil sie hier senkrecht zum Hauptschnitt 
liegen. Die Schwingungen senkrecht zur Papierebene, 
durch Punkte gekennzeichnet, gehören umgekehrt in I 
zum o., in II zum a.o. Lichte. 

Bis zur Grenzfläche der Prismen laufen beide Bündel 
in derselben Bahn, aber mit verschiedenen Geschwindig-
keiten (3. Fall des § 4). Dann durchsetzt das in der 
Zeichenebene schwingende Bündel, in I das a.o., seine 

/ y 
in E 

Fig. 22 
Wollastonsches Prisma 
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Schwingungsebene beibehaltend II als ordentliches Bündel, 
verliert also an Geschwindigkeit (das a.o. Licht ist das 
schnellere!), wird also an der Grenzfläche dem Einfalls-
lote zugebrochen. Das Bündel dagegen, das senkrecht zur 
Zeichenebene schwingt und in 7 das ordentliche war, geht 
durch I I als a.o. hindurch. Es g e w i n n t an Geschwin-
digkeit (II ist für es „optisch dünner") und wird an 
der Grenzfläche vom Einfallslot weggebrochen. Daher 
die große räumliche Trennung der beiden Bündel bei 
dieser Prismenanordnung. 

Von den Vorrichtungen, die uns statt zweier nur e i n 
polarisiertes Lichtbündel liefern, steht das N i c o i s c h e 
P r i s m a , .der „Nicol" , an erster Stelle (1829). Es wird 
aus einem länglich ausgebildeten Kalkspatrhomboeder ge-
fertigt; ABCD in Fig. 23 stellt dessen Hauptschnitt dar, 

wie wir ihn aus Fig. 11 kennen. Nur betragen die beiden 
Winkel, deren Größe wir mit 68° eingetragen haben, beim 
natürlichen Kalkspat 71° und sind durch geeignetes 
Schleifen der Flächen AD und BC soweit verkleinert wor-
den. Das Rhomboeder wird zerschnitten, durch SS ist 
der Schnitt angedeutet, der senkrecht zu AD und BC 
und senkrecht zur Zeichenebene liegt. Die beiden so ent-
stehenden Kristallstücke werden längs derselben Schnitt-
fläche SS in der alten Lage mit Kanadabalsam wieder an-
einander gekittet. 

Ein in der Längsrichtung L einfallendes Bündel natür-
lichen Lichts spaltet sich in zwei, ein a.o., das in der 
Zeichenebene, und ein o., das senkrecht dazu schwingt. 

A B 

Fig. 23. Nicolsdies Prisma 
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Beide treffen auf die Balsamschicht auf, die für das a.o. 
ein optisch dichteres, für das o. ein optisch dünneres 
Mittel darstellt, denn die Lichtgeschwindigkeit in ihr liegt 
zwischen der großen des a.o. und der kleinen des o. Lichts. 

Für das o. Licht wäre hiernach die Möglichkeit der 
Totalreflexion gegeben, und die Abmessungen des Primas 
sind so gewählt, daß tatsächlich das o. Bündel flach genug 
auffällt, um total reflektiert zu werden. Es tr iff t dann 
auf die geschwärzte Seitenfläche und wird dort absor-
biert, oder besser: es tritt seitlich aus, was die Erwärmung 
vermindert. Das a.o. Bündel aber geht fast unabgelenkt 
durch die Balsamschicht und das zweite Kalkspatstück 
hindurch. 

Es schwingt in der Verbindungslinie der s t u m p f e n 
Ecken der parallelogrammförmigen 
Austrittsöffnung BC (Fig. 23). in 
Fig. 24 sei diese Schwingungsrich-
tung, OA die Amplitude. Die Inten-
sität ist in jeder Lichttheorie bis auf 
auf einen hier belanglosen Faktor 
gleich dem Quadrat der Amplitude, 

also gleich OA. Lasse ich dieses 
Licht auf einen zweiten Nicol, den 
„A n a l y s a t o r", auffallen, dessen 
Schwingungsrichtung /2 mit /1 den 
Winkel a bildet, so geht nur die nach 
l2 fallende Komponente von OA, d. i. 
OB = OA cos a, hindurch. Das aus 
dem Analysator austretende Licht hat also die Intensität 

2 

OA cos a. Aus diesem Ausdruck oder aus der Figur erkennt 
man, daß bei „ p a r a l l e l e n N i c o l s", d. h. wenn lx 
mit /2 zusammenfällt, das Licht den zweiten Nicol unge-
hindert durchsetzt, abgesehen von den Verlusten durch 
Reflexion und den geringen durch Absorption. In allen 
übrigen Fällen verschluckt der zweite Nicol einen Teil 
des auffallenden Lichts. Stehen und l t senkrecht auf-
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einander, sind die Nicols „g e k r e u z t", so wird OB = 0 
und hinter dem zweiten Nicol herrscht völlige Dunkel-
heit. Ersetze ich den zweiten Nicol durch einen gewöhn-
lichen Kalkspat, so zerfällt die lineare Schwingung in 
zwei Komponenten nach den beiden im Kalkspat mög-
lichen Schwingungsrichtungen. 

Große Nicoische Prismen sind heute nur schwer neu 
zu beschaffen, weil die isländische Mine, die früher ge-
nügend umfangreiche Kalkspatstücke lieferte, im wesent-
lichen erschöpft ist. Man hat daher als Ersatz vielerlei 
„ P o l a r i s a t i o n s p r i s m e n " konstruiert1). Das voll-
kommenste ist das P r i s m a v o n G l a n - T h o m p s o n 
(1881). Es besteht gleichfalls aus zwei Kalkspatstücken, 
aber sie sind weit kürzer. Es hat senkrechte Endflächen, 
gleichmäßige Polarisation über den ganzen Querschnitt, 
was die Nicols n i c h t haben, und einen recht erheblichen 
Gesichtsfeldwinkel (bis 30°). Als Kitt wird eingedicktes 
Leinöl verwandt. 

Und an dieser Stelle wollen wir auch die alten Inven-
tarstücke physikalischer Institute erwähnen, T u r m a -
1 i n p 1 a 11 e und - z a n g e . Der Turmalin ist nach § 2 

ein einachsiger Kristall. 
Lassen wir auf eine T u r -
m a 1 i n p 1 a t t e , die par-
allel der Achse geschnitten 
ist, so daß also die Achse 
in der Eintrittsfläche liegt 
(Fig. 25), natürliches Licht 
auffallen, so wird es in 
zwei senkrecht zueinander 
schwingende Bestandteile 
zerlegt; der a.o. schwingt 
im Hauptschnitt,, parallel 
zur Achse, der o. senk-Adisenparallele Turmalinplatte 

- 1) Man vergleiche z. B. den Katalog der Optischen Werkstätten B. H a 11 e 
N a c h f., Berlin-Steglitz. 
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recht dazu. Der Turmalin hat die Eigenschaft, das 
o. Bündel zu absorbieren und nur das a.d. hindurchzu-
lassen. Wir haben somit in der Turmalinplatte einen 
sehr einfachen Polarisator, müssen dafür allerdings den 
Nachteil in Kauf nehmen, daß das austretende Licht 
durch den Kristall gefärbt ist, grünlich, bräunlich, gelb-
lich, rötlich, je nach der angewandten Varietät. 

Zwei in drehbaren Fassungen hintereinander ange-
brachte derartige Turmalinplatten bilden eine „T u r m a-
1 i n z a n g e". Helligkeit beobachten wir beim Hin-
durchsehen, wenn die Schwingungsrichtungen in beiden 
parallel sind, Dunkelheit, wenn sie aufeinander senkrecht 
stehen. Turmaline als Polarisatoren besitzen nur histori-
sches Interesse und sind durch die ähnlichen „Polarisa-
tionsfilter" ersetzt (vgl. § 21). 

§ 7. Die Normalenfläche einachsiger Kristalle 
Bei allem, was wir im vorigen Paragraph über die 

Schwingungsrichtungen im Kristall mitgeteilt haben, ist 
in Ausdrucksweise und Beispielen eine Schwierigkeit um-
gangen worden, der wir jetzt ins Gesicht sehen müssen. 
Wir haben z.B. im Hinblick auf Fig. 15 gesagt, die 
Schwingungsrichtung im a.o. Bündel läge in der Papier-
ebene als dem Achse und Strahl — und Normale! — 
enthaltenden „Hauptschnitt". Aber wir haben noch nicht 
entschieden: liegt sie hier senkrecht zum Strahl? Oder 
zur Normalen, d. h. in der Wellenfront? Mit andern 
Worten: ist der Lichtvektor streng transversal zum Strahl 
oder zur Normalen? Beim o. Licht und in isotropen Kör-
pern, wo Strahl und Normale identisch sind, begegnet 
uns diese Schwierigkeit nicht. 

Nun ist schon bei den gewöhnlichen elektromagneti-
schen Wellen, wie der Name besagt, immer ein schwin-
gender elektrischer Vektor, die elektrische Feldstärke ffi, 
unlösbar mit einem schwingenden magnetischen Vektor, 
der magnetischen Feldstärke S), verbunden, und es ist 
einigermaßen willkürlich, welchen von beiden man als 
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„L i c h t v e k t o r" schlechthin bezeichnen will. (Man 
wählt ©). Ebenso nennt man willkürlich im einachsigen 
Kristall die R i c h t u n g i m H a u p t s c h n i t t , d i e 
s e n k r e c h t a u f d e r V e l l e n n o r m a l e , a l s o 
i n d e r V e l l e n f r o n t l i e g t , S c h w i n g u n g s -
r i c h t u n g d e s a. o. B ü n d e l s . Durch diese Ver-
knüpfung mit der Schwingungsrichtung gewinnen die mit 
der Wellennormale zusammenhängenden Begriffe, bisher 
stiefmütterlich behandelt, gegenüber Strahlenfläche, Strahl-
richtung usw. an Interesse. Wir wenden uns ihnen zu 
und werden das Schwergewicht der Darstellung mehr und 
mehr auf sie verlegen. 

Fig. 26 zeigt ein Stück Strahlenfläche S l von der be-
kannten ellipsoidalen Gestalt. Das von O ausgehende Licht 
soll die Strahlenfläche Sj nach der Zeit i, eine Zeiteinheit 
später die Strahlenfläche S2 erreicht haben. In dieser 
Zeiteinheit hat sich ein Flächenstück / in der Strahlen-
richtung O / parallel mit sich selbst um die Strecke vs 
fortgepflanzt, die wir naturgemäß als die „ S t r a h l -
g e s c h w i n d i g k e i t " in der Richtung O / bezeichnen. 
Die Tangentialebene T, der / angehört, hat sich hierbei 
um das Stück vn in Richtung ihrer Normalen ON fort-
bewegt. ON ist die z u m S t r a h l e O / g e h ö r i g e 
N o r m a l e , vn also die „Normalengeschwindigkeit". 
Mit ihr breitet sich eine auf der Richtung ON senkrechtc 
ebene Welle aus. Die Normalengeschwindigkeit ist nach 
Fig. 26 gleich der Strahlgeschwindigkeit vs mal dem Co-
sinus des Winkels rp zwischen Strahl und Normale, also 
höchstens gleich, i. allg. kleiner als die zugehörige Strahl-
geschwindigkeit. Sie ist wichtiger als vs; denn „Strahl" 
bezieht sich im Versuch auf ein dünnes durch Blenden 
begrenztes Lichtbündel. Bei den meisten kristalloptischen 
Versuchen aber (nicht bei unserm Grundversuch Fig. 10) 
sieht man von der Begrenzung ab und arbeitet mit par-
allelen Wellen, an denen nur die Normalengeschwindig-
keit beobachtbar ist. 

Wir trugen von einem Punkte aus die jeder Richtung 



Die Normalenfiäche einachsiger Kristalle 31 

Fig. 27. Zusammenhang von 
Strahlen- u. Normalenflädie 

zukommende Strahlengeschwindigkeit vs auf und fanden 
die Strahlenfläche; tragen wir in jeder Richtung die Nor-
malengeschwindigkeit vn auf, so entsteht die „N o r -
m a l e n g e s c h w i n d i g k e i t s " - oder „ N o r m a l e n -
f l ä c h e". Den Zusammenhang zwischen beiden machen 
wir uns an Fig. 27 klar, in der zu zwei Punkten S t und 
S2 der Strahlenfläche die zugehörigen Punkte N1 und N2 
der Normalenfläche konstruiert sind, und zwar so, daß 
wir, im Anschluß an Fig. 26, in S1 und S2 Tangenten an 
die Strahlenfläche gelegt und von O aus Senkrechte 
darauf gefällt haben. ON, und ON9 stellen dann, wie 
ein Vergleich mit Fig. 26 zeigt, die Normalengeschwin-
digkeit in diesen Richtungen dar. Derartig gefundene 
Flächen nennt der Mathematiker „ F u ß p u n k t -
f l ä c h e n " . D i e N o r m a l e n f l ä c h e i s t a l s o 
d i e F u ß p u n k t f l ä c h e d e r S t r a h l e n f l ä c h e . 

Die Strahlenfläche eines einachsigen Kristalls bestand 
aus zwei Schalen, einer Kugel und einem Ellipsoid. Die 
Normalenfläche besteht gleichfalls aus zwei Schalen, 
nämlich den Fußpunktflächen jener beiden. Ihr gehört 
mithin ebenfalls die Kugel der Strahlenfläche an — denn 
jede Kugel ist ihre eigene Fußpunktfläche — und zweitens 
als Fußpunktfläche des Ellipsoids das durch die Konstruk-
tion von Fig. 27 gefundene „O v a 1 o i d". In Fig. 28 

Fig. 26. Strahl und Normale 
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und 29 sind Strahlen- und Normalenfläche eines ein-
achsigen positiven Kristalls im Durchschnitt nebenein-
andergestellt. In Fig. 29 erkennt man die (etwas über-
trieben gezeichnete) typische Gestalt des Ovaloids. Punk-

Fig. 28. Sdinitt durch die 
Strahlenfläche eines einachsig 

positiven Kristalls 

Fig. 29. Schnitt durdi die 
Normalenf lädie eines einachsig 

positiven Kristalls 

tiert ist darin das Ellipsoid eingezeichnet, aus dem es 
entstanden ist. Die Hauptlichtgeschwindigkeiten o und e 
treten auch bei der Normalenfläche als Polar- und 
Äquatorialradius des Ovaloids auf. 

§ 8. Herleitung von Normalenfläche und 
Schwingungsrichtungen aus dem Indexellipsoid 
In § 5 haben wir die zweischalige Strahlenfläche aus 

dem einschaligen Fresnelschen Ellipsoid hergeleitet. Ähn-
lich leiten wir auch die zweischalige Normalenfläche aus 
einer einschaligen Konstruktionsfläche her, dem „I n d e x-
e l l i p s o i d " oder der „I n d i k a t r i x". Das Index-
ellipsoid hat seinen Namen vom Brechungsindex oder 
Brechungsquotienten oder der „ B r e c h z a h l " n, die uns 
aus der Optik isotroper Körper als das Verhältnis 

_ Lichtgeschwindigkeit im Vakuum 
Lichtgeschwindigkeit im Medium 

bekannt ist. Bei den anisotropen müssen wir uns nun 
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wieder entscheiden, welche der Lichtgeschwindigkeiten im 
Medium wir in den Nenner setzen wollen, Strahlen- oder 
Normalengeschwindigkeit. Bei ersterer Wahl entsteht 
eine Größe, die man „S t r a h 1 e n i n d e x" genannt hat; 
als Brechzahl schlechthin aber bezeichnen wir nach den 
Bewertungen des vorigen Paragraphen den mit der N o r -
m a l e n geschwindigkeit im Nenner. 

Wir gewinnen damit noch den Vorteil,, n statt durch 
das Verhältnis der Lichtgeschwindigkeiten durch das Ver-
hältnis -—— ausdrücken zu können (w Einfalls-, w 

sin yj ^ ^ 
Brechungswinkel). Beweis: In Fig. 30 ist die Huygenssche 
Konstruktion für das 
isotrope Medium 
(Fig. 12) mit glei-
chen Bezeichnungen 
auf das anisotrope , 
übertragen. Statt G-= 
einer Kugel ist um 
A das Ellipsoid ge-
zeichnet, bis zu dem 
sich im Kristall die _ 
a. O. Lichterregung Fig 3 0 Buchung im anisotropen Medium 
fortpflanzt, wäh-
rend sie in I, dem Vakuum, von B bis C geht. CED 
ist die neue Wellenfront, AD proportional der Normalen-, 
AE der Strahlgeschwindigkeit (vgl. Fig. 26). BC verhält 
sich zu AD wie die Lichtgeschwindigkeit im Vakuum zur 
Normalengeschwindigkeit im Medium. Bei Einführung 
von cp und y> folgt 

_ ß C AC sin (p ^_sin<p 
AD AC sin yj sin ip 

wie behauptet. Hätten wir aber AE statt AD eingesetzt, 
so wäre, da bei E i. allg. k e i n rechter Winkel auftritt, 
das Verhältnis der Lichtgeschwindigkeiten n i c h t gleich 
dem Verhältnis der beiden sinus geworden. 

Oft wählt man die Lichtgeschwindigkeit im Vakuum 
B u c h w a l d , Kristalloptik 3 
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gleich der Einheit. Dann wird die Brechzahl einfach 
gleich der reziproken Normalengeschwindigkeit. Wie diese 
ist sie richtungsabhängig, und wie die Hauptlichtgeschwin-
digkeiten o und e als Extremwerte den ganzen Verlauf der 
Normalenfläche festlegen, so die „H a u p t b r e c h u ngs-
q u o t i e n t e n " oder „H a u p t b r e c h z a h l e n " 

1 1 n0 =—, ne = — o e 
die ganze Anisotropie des Brechungsquotienten. 

Das Indexellipsoid Einachsiger ist nun ein Rotations-
ellipsoid mit den Hauptbrechzahlen ne als Polar- und n0 
als Äquatorialradius. Bei den negativ Einachsigen, wo 
e > o, ist das Reziproke ne < n0. Es hat dann die abge-
plattete Form der Fig. 31. Wir behaupten, daß folgen-

der Zusammenhang mit der 
zweischaligen Normalenfläche 
besteht: D i e G e s c h w i n -
d i g k e i t e n d e r b e i d e n 
W e 11 e n n o r m a 1 e n i n 
e i n e r R i c h t u n g s i n d 
g l e i c h d e m R e z i p r o -
k e n d e r H a l b a c h s e n 

Indexe l l i p so id^ 'nega t iv Einachsiger d e r j e n i g e n E l l i p s e , i n 
d e r d i e a u f d e r R i c h -

t u n g s e n k r e c h t e D i a m e t r a 1 e b e n e d a s 
I n d e x e l l i p s o i d s c h n e i d e t . 

Für die Achsenrichtung stimmt das offenbar: die senk-
rechte Schnittellipse wird zum Kreis, beide Normalenge-
schwindigkeiten werden zu - — = o. Ebenso sieht man es-
sofort für die Richtungen senkrecht zur Achse ein (man 
vergleiche die entsprechende Fig. 20 am Fresnelschen 
Ellipsoid); die zugehörige Schnittellipse hat die Halb-
achsen ne und n0, das jeweils Reziproke gibt wie ge-
wünscht e und o. Eine kleine Rechnung zeigt, daß es 
auch für die Zwischenrichtungen stimmt. 

Zur Richtung l, die den Winkel (p mit der Achse bildet 
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(Fig. 32), gehört eine senkrechte Schnittellipse, deren eine Halb-
achse n„ ist; das führt zur ordentlichen Hauptlichtgeschwindig-
keit o. Die andere aber ist gegeben durch1) 

,2 
ttm' 

* n 0 ' sin-
was man. ausgehend von der 
Ellipsengleichung 

x2 z2 
1 = i n<? n* 

aus der Gleichungsfolge 

n 2 + 
x2 + z2 e x2 

(*2 + z2) = n0 _ 
(cos2 cp • ne

2 + sin2 <p • n0
2) n<p2 

ableitet. Das Reziproke, 
1 rt0

2 sin2 <p + «c
2 cos2<p 

2 

Fig. 32. 
Konstrukt ion am Indexellipsoid 

sin2 q> < 
- . - + -, , „ - sm-rp + o- cos"<f, n f = V V ne _ »o 

soll, behaupten wir, gleich v v
z sein, dem Quadrat der Nor-

malengeschwindigkeit in der mit der. Achse den Winkel <p ein-
schließenden Richtung. In der Tat lautet die Gleichung des 
Meridianovals Fig. 33 (was man glauben oder nadisehen muß) 

e2 sin2<jp + os cos2??. Q.e.d. 
Man kann die Normalenfläche audi aus dem „Polarisations-

ovaloid", der Fußpunkt-
fläche des Fresnelschen El-
lipsoids, herleiten nach der 
leicht zu bestätigenden R e -
gel : D i e z u e i n e r b e -
s t i m m t e n R i c h t u n g 
g e h ö r i g e n N o r m a -
l e n g e s c h w i n d i g k e i -
t e n s i n d g l e i c h d e n 
H a l b a c h s e n d e s 
O v a l s , i n d e m d i e 

/ 0 ÁP \ 
1 V \ v e 1 

Fig. 33. Oval 

1) S. B ü r k l e n - R i n g l e b , Mathemat . Formelsammlung, Sammlung 
Göschen, Bd. 51: „Polarglaicnung der Ellipse in be iug auf den Mit te lpunkt 
al« Pol*. 
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a u f d e r R i c h t u n g s e n k r e c h t e D i a m e t r a l e b e n e 
d a s P o l a r i s a t i o n s o v a l o i d s c h n e i d e t . 

Aber nicht nur, daß das Indexellipsoid eine einfachere 
Fläche ist als die zweischalige Normalenfläche; es liefert 
uns mehr als nur die Normalengeschwindigkeiten. "Wir 
bestätigen nämlich an Fig. 32 sofort den Satz, daß die 
H a l b a c h s e n d e r S c h n i t t e l l i p s e n i c h t n u r 
i h r e r G r ö ß e n a c h ( r e z i p r o k g e n o m m e n ) 
d i e N o r m a l e n g e s c h w i n d i g k e i t e n , s o n -
d e r n a u c h i h r e r R i c h t u n g n a c h d i e S c h w i n -
g u n g s r i c h t u n g e n i n d e n b e i d e n W e l l e n 
d a r s t e l l e n. In der Fig. 32 ist der durch z und Z be-
stimmte Hauptschnitt die Papierebene. In ihr liegen 
senkrecht zur Normalenrichtung immer die Halbachsen 
n<p, die sich auf die a.o. Welle beziehen, und in ihr, und 
zwar in der Wellenfront = der Schnittellipse liegt nach 
der Entscheidung des § 6 auch die Schwingungsrichtung 
der a.o. Welle. Die immer gleichbleibenden Halbachsen 
«„ aber, die zum o. Licht gehören, liegen wie die Schwin-
gungsrichtungen der o. Welle in der Wellenfront und 
senkrecht zum Hauptschnitt . 

In dem unscheinbaren kleinen Indexellipsoid, diesem Ei 
des Kolumbus, hat man also alles in der Hand , was sich 
bei einachsigen Kristallen über Doppelbrechung und Po-
larisation aussagen läßt — eine wunderbar einfache Zu-
sammenfassung ungezählter Versuchsmöglichkeiten. Jeder 
Kristall hat sein eigenes Indexellipsoid, und bei jedem 
Kristall noch jede Farbe ihr eigenes („D i s p e r s i o n") 
und jede Temperatur1). Alle sind so in den Kristall hin-
einzulegen, daß ihre Umdrehungsachse in die Kristail-
achse fäll t . 

Der schärfste Prüfstein der Theorie ist mithin eine mög-
lichst genaue Messung der Brechzahlen in den verschie-
denen Richtungen: passen sie sich der Form des Index-
ellipsoids vollkommen an? Ist man aber einmal von der 

1) Daß audi äußere Einflüsse wie Drude und elektrisdie oder magnetisdie 
Felder das Indexellipsoid und damit die optischen Eigenschaften des Kristalls 
beeinflussen, sei nur e rwähnt . 
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Richtigkeit der Theorie überzeugt, so genügt die Messung 
der beiden Hauptbrechungsquotienten zur Konstruktion 
des Ellipsoids und damit zur Beantwortung jeder Frage 
nach Normalen-, Strahlgeschwindigkeit und Doppel-
brechung einerseits, nach den Polarisationsverhältnissen 
anderseits. 

Wie man Brechzahlen mißt, sehen wir im nächsten 
Paragraphen. 

§ 9. Die Brechzahlen 
P r i s m e n m e t h o d e . Sehr einfach gestaltet sich die 

Bestimmung der H a u p t b r e c h z a h l . Wir knüpfen 
an den Fall 3 des § 4 und seine Figur 18 an: die Kristall-
achse liegt in der Einfallsfläche und ist senkrecht zur 
Papierebene gezeichnet, die Schnitte der Strahlenfläche 
sind also zwei Kreise, das Licht fällt senkrecht auf. Lassen 
wir es jedoch (Fig. 34) schräg auffallen und schleifen wir 
den Kristall wie punktiert angedeutet zu einem Prisma 
(mit der Kristallachse parallel zur Prismenkante), so 
laufen die beiden Wellen bei jedem Einfallswinkel mit 
den Geschwindigkeiten o und 
e, d. h. mit den Brechzahlen 
«0 und ne durchs Prisma. 
Alle Formeln der Optik Iso-
troper können für den Be-
rechnungsvorgang Übernom-
menwerden, insonderheit die 
einfachste der „M e t h o d e 
d e r m i n i m a l e n A b -
l e n k u n g", bei der sich n 
aus Prismenwinkel Q und 
Ablenkungswinsel (5 zu 

. d + e sin — ^ — 

berechnet. 
Fig. 34. Das Lidit geht senkredit 

zur Achse hindurch. 
Sdiräge Inz iden t 
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Wir teilen für einige Kristalle nach der Stärke der 
Doppelbrechung geordnet die Hauptbrechzahlen für D-
Licht mit1). 

»0 ne | n0—ne 

Rutil 2,6158 2,9029 0,2871 
Kalkspat 1,6584 1,4864 0,1720 
Zinnstein 1,9966 2,0934 0,0968 
Quarz 1,5442 1,5533 0,0091 
Beryll 1,5725 1,5678 0,0047. 

(wasserhell) 
Apatit 1,6388 1,6346 0,0042 

Der mit angegebene Absolutwert \n0—ne\ ist ein Maß für 
die Stärke der Doppelbrechung. 

Schwieriger ist die Bestimmung eines Zwischenwertes 
zwischen n0 und ne zwecks Prüfung der Huygens-Fres-
nelschen Hilfsflächen (s. Schluß des vorigen §). Wir 
überlegen dazu, wie man an einem Kristallprisma b e -
l i e b i g e r Achsenlage zu einer einfallenden Welle die 
gebrochene und die austretende bestimmt und kommen 
am einfachsten mit Hilfe der bisher noch nicht herange-
zogenen „ I n d e x f 1 ä c h e" zum Ziel. Trägt man von 
einem Punkte aus nach jeder Richtung eine Strecke 
gleich dem Brechungsindex auf, der den in dieser 
Richtung fortschreitenden Lichtwellen zukommt, so be-
stimmen die Endpunkte aller dieser Strecken die Index-
fläche. Im Vakuum ist mithin die Indexfläche eine 
Kugel vom Radius 1, in einem isotropen .Medium eine 
Kugel vom Radius n, im einachsigen Kristall eine zwei-
schalige Fläche, eine Kugel vom Radius n0 und ein sie 
in der Achse berührendes Rotationsellipsoid mit den 
Halbachsen n0 und ne. 

Wir zeigen zunächst (Fig. 35), wie an der ebenen 
Grenzfläche G zweier isotroper Medien (Luft und 
Wasser) zu der im Punkte A einfallenden Normalen die 
gebrochene konstruiert wird. Wir zeichnen um A die 

1) D i e u m f a n g r e i c h s t e n A n g a b e n in d e n P h y s i k a l i s c h - c h e m i s c h e n T a b e l l e n 
Toai L a n d a l t q . B ö m i t a i n . 



Die Brechzahkn 39 

Indexfläche I für Luft, 
die wir mit der vom 
Vakuum identifizieren, 
d. h. eine Kugel vom 
Radius 1 und die II für 
Wasser, d. h. eine Ku- & 
gel vom Radius n = 
1,3335, wenn wir es 
mit D-Licht zu tun ha-
ben. Wir verlängern die 
einfallende Normale, 
bis sie in B die Fläche 
I zum zweiten Male 
schneidet, und ziehen durch B eine Parallele zum Ein-
fallslot. Diese schneidet I oberhalb der Grenzfläche in 
C, und II unterhalb der Grenzfläche in C 2 . AC, und AC2 

geben dann die Richtungen der gespiegelten und der ge-
brochenen Normalen an. Ersteres übersieht man sofort, 
letzteres, wenn man aus A ABD die Beziehung 

DB 

sin cp = — ^ ^ 

die 

Fig. 35. Darstellung der Brechung mit 
H i l f e der Indexflädie 

und aus A 
Beziehung 

EC, sin yj ---

AC2E 

DB 
n n 

entnimmt und diese bei-
den Sinus durcheinander 
dividiert. Es ergibt sich 
dann in der Tat 

sin cp 
——— = n. 
sin xp 

Die gleichen Schritte 
vollziehen wir an einem 
Prisma, sagen wir aus Fig- 36- B r e d l u ns i m P r i s m a 

Kalkspat, vom Prismenwinkel g (Fig. 36). Die Pris-
menkante steht in A senkrecht auf der Papierebene. 
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Liegt die einfallende Wellennormale QA in dieser 
Ebene, so liegen in ihr auch alle gebrochenen Wellen-
normalen, wie man sich an den Huygensschen Konstruk-
tionen des § 4 klarmacht. Um A zeichnen wir die Schnitte 
der Indexflächen beider Medien, den Kreis I vom Ra-
dius 1 für die äußere Luft und von der zweischaligen 
Indexfläche des Kalkspats nur den hier allein interes-
sierenden Schnitt I I der Papierebene mit der E l l i p s o i d -
schale dieser Indexfläche, welch letztere wir natürlich 
so gelegt haben, daß ihre Achse mit der im Kristallprisma 
übereinstimmt. Wie in Fig. 35 verlängern wir QA bis 
zum nochmaligen Schnittpunkt & mit I und ziehen durch 
B eine Parallele zum Einfallslot auf der ersten Prismen-
fläche. Trif f t sie II in C, so ist AC die Richtung der 
gebrochenen Normalen. Um zu der austretenden zu 
kommen, wiederholen wir sinngemäß die Konstruktion, 
mit AC als einfallender Normalen, dem durch C ge-
zogenen Einfallslot auf der z w e i t e n Prismenfläche 
und dessen Schnittpunkt D mit I; AD ist die Richtung 
der austretenden Welle. 

Ohne Rechnung1) übersieht man, wie unsere theoreti-
schen Grundlagen, die sich hier in der Gestalt der Index-
fläche verkörpern, durch den Versuch geprüft werden 
können. Wir messen den Einfallswinkel; dann verlangt 
die Iridexfläche «ine bestimmte Brechungsrichtung AC. 
Wir messen den Prismenwinkel g; dann verlangt die 
weitere Konstruktion (g tritt nochmals als punktierter 
Winkel BCD zwischen den Einfallsloten auf!) eine be-
stimmte Austrittsrichtung AD. Wir messen den Austritts-
winkel und sehen zu, ob er mit dem konstruierten (oder 
berechneten) übereinstimmt. 

Diese Übereinstimmung ist nach überaus genauen 
Messungen vollkommen. Z. B. ergibt am Kalkspat, wenn 
die Normale den Winkel q> mit der Kristallachse bildet, 

1) Die Rechnung etwa bei F. P o c k e 1 s , Lehrbuch der Kristal loptik, 
S. 137 f f . 
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für q> = 31°19'46" die Theorie n,„ = 1,606110, der Versuch 
1,606113 ± 1,6-10-«, 

Kir <p = 31°19'58" die Theorie nv = 1,606100, der Versuch 
1,606102 ± 1,6-10-®. 

Das ist eine Bestätigung auf mehr als 2/iooo Promille. 
T o t a l r e f l e x i o n . Fig. 35 lehrt, daß immer ein 

Punkt C2 , also ein gebrochener Strahl AC2 existiert, wenn 
das Licht vom dünneren zum dichteren Medium geht. 
Führen wir (Fig. 37) die gleiche Konstruktion für den 
umgekehrten Fall aus, daß das Licht im dichteren Me-
dium auf ein dün-
neres auftrifft, so läßt 
sich für die Einfalls-
richtung 1 noch ein 
gebrochener Strahl 1' 
finden, für die Ein-
fallsrichtung 2 tritt 
das Licht im oberen 
Medium parallel zur 
Grenzfläche streifend 
aus. Fällt das Licht 
aber noch flacher, 
etwa in Richtung 3 
auf, so wird es voll-
ständig ins untere Me-
dium zurückgeworfen, 

Luft 
TVasser 

Fig. 37. Totalreflexion 

„ t o t a l r e f l e k t i e r t " . Der Einfallswinkel z> dem die 
streifend austretenden Strahlen entsprechen, der „G r e n z-
w i n k e l d e r T o t a l r e f l e x i o n " , bestimmt sich aus 
der Gleichung 

sin 90° n = —: 
Sinz 

~ s inz 
Die Erscheinung der Totalreflexion liefert in der Messung 
von z also eine Methode zur Bestimmung von n. 
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Diese Methode ist in zahlreichen Abwandlungen von 
der Optik Isotroper auf die Kristalloptik übertragen 
worden. Bei einem (negativ) einachsigen Kristall voll-
zieht sich die Zeichnung gemäß Fig. 38. Wir beschreiben 
um O die kugelförmige Indexfläche 1 des optisch dich-
teren, isotropen ersten Mediums (man wendet z. B. <%-Mo-
nobromnaphthalin an, das für D-Licht den Brechungs-
quotienten n = 1,66102 hat) und die zweischalige II des 
Kristalls und bestimmen zwei Einfallsrichtungen l0 und le 
derart, daß die von ihren Schnittpunkten S0 und Se mit I 

auf die Grenzfläche gefällten Lote die beiden Schalen 
der Indexfläche II gerade berühren. /„ und le sind dann, 
wie der Vergleich mit Fig. 37 lehrt, die beiden Grenz-
strahlen der Totalreflexion, die in der Papierebene liegen. 

Im Räume werden sie in Erweiterung der Fig. 38 ge-
funden, indem man senkrecht zur Grenzfläche an die 
Kugel und an das Ellipsoid der Indexfläche je einen 
Tangentenzylinder legt, wie dies in Fig. 39 für die Kugel 
angedeutet ist, und jeden Punkt der Kurve S, in der ein 
derartiger Zylinder die Indexfläche I des Monobrom-

e 
Fig. 38 

Total ref lexion an einem Kristal l 
Fig. 39. Konst rukt ion eines 

Grenzstrahlenkegels 
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naphthalins schneidet, mit dem Mittelpunkt O verbindet. 
Man kommt so auf eine zweischalige Kegelfläche, die 
„ G r e n z s t r a h l e n k e g e l " (Fig. 40), deren Beobach-
tung mit einem T o t a l r e f l e k t o m e t e r wie bei den 
isotropen Körpern zur 
Bestimmung derBrech-
zahlen führt. Dodi 
muß man in den For-
meln beachten, daß 
sich die Grenzwinkel 
auf die S t r a h l e n 
als die Riditungen des 
Energiestroms, aber 
die n nach § 8 auf die 
Normalen beziehen. Fig. 40. Grenzstrahlenkegel 

Der durch die Konstruktion von Fig. 39 gefundene 
K e g e l d e r o r d e n t l i c h e n G r e n z s t r a h 1 e n , 
in Fig. 40 der äußere, ist immer ein Kreiskegel; der 
innere, der zu den außerordentlichen Brechzahlen führt, 
nur dann, wenn die Achse senkrecht auf der Grenz-
fläche steht; denn dann ist der Tangenrenzylinder an 
das (Rotations-) Ellipsoid ein K r e i s Zylinder. Sonst 
ist er ein elliptischer Kegel, wird also von einer zur 
Grenzebene para'lelen Ebene in einer Ellipse geschnitten 
(in Fig. 40 schraffiert), deren lange Achse ihr Maximum 
erreicht, wenn die Achse der Indexfläche in der Grenz-
fläche liegt. In diesem Falle rücken, wenn ich die Achse 
der Indexfläc'he in die Papierebene lege, die Punkte S„ 
und Se in Fig. 38 zusammen, und der in Fig. 40 schraf-
fierte innere elliptische Schnitt berührt den vom äußeren 
Kegel herrührenden Kreisschnitt. Strahlen innerhalb 
des inneren Kegels treten (fast) vollständig ins obere 
Medium ein, Strahlen außerhalb des äußeren werden voll-
ständig reflektiert. Von den Strahlen zwischen beiden 
Kegeln kann ein Anteil als ordentlicher Strahl in den 
Kristall eintreten, der andere wird total reflektiert. 
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§ 10. Verallgemeinerung: zweiachsige Kristalle 
Die bisher behandelten Kristalle nannten wir einachsig, 

weil sie e i n e Achse der Isotropie besaßen, e i n e Rich-
tung, in der sich das Licht wie in einem isotropen Me-
dium fortpflanzt . Die z w e i a c h s i g e n besitzen zwei 
solche Richtungen. Einachsig oder zweiachsig ist ein 
Kristall je nach dem Kristallsystem, dem er angehört. 
Einachsig sind die Kristalle des hexagonalen und des 
tetragonalen Systems mit ihrer einen ausgezeichneten 
Symmetrieachse, zweiachsig die der unsymmetrischeren 
Systeme, des rhombischen, des monoklinen und des 
triklinen. 

Es liegt nahe, die H i l f s f l ä c h e n z w e i a c h s i -
g e r K r i s t a l l e durch Verallgemeinerung aus denen 
der einachsigen herzuleiten. Der experimentelle Befund 
würde aber n i c h t richtig wiedergegeben, wenn wir etwa 
das Rotationsellipsoid der Strahlenfläche zu einem drei-
achsigen verallgemeinerten. Vielmehr hat man die Ver-
allgemeinerung an einer der Konstruktionsflächen, etwa 
an dem Fresnelschen Ellipsoid, zu vollziehen: d a s 
F r e s n e l s c h e E l l i p s o i d Z w e i a c h s i g e r i s t 
k e i n R o t a t i o n s - , s o n d e r n e i n d r e i a c h s i -
g e s E l l i p s o i d . Das Fresnelsche Ellipsoid Ein-
achsiger konstruierten wir aus den Hauptlichteeschwin-
digkeiten o und e. Jetzt konstruieren wir ein Ellipsoid 
über d r e i H a u p t l i c h t g e s c h w i n d i g k e i t e n , 
einer größten, die wir a nennen, einer mittleren b und 
einer kleinsten c als Halbachsen (Fig. 41). Die drei 
Achsen des Ellipsoids nennen wir „ o p t i s c h e S y m -
m e t r i e a c h s e n", nicht zu verwechseln mit den als-
bäld auftretenden „optischen Achsen", e ;ne Ebene durch 
je zwei Achsen „ o p t i s c h e S y m m e t r i e e b e n e". 
Beim rhombischen System fallen natürlich die drei opti-
schen Symmetrieachsen in die kristallographischen Achsen. 
Beim monosymmetrischen System muß eine mit der einen 
kristallographischen Symmetrieachse übereinstimmen, 
während sich über die andern nur aussagen läßt, daß sie 
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Fig. 41. Fresnelsdies Ellipsoid eines 
zweiachsigen Kristalls 

in der einzigen kri-
stallographischen Sym-
metrieebene liegen. Im 
asymmetrischen Sy-
stem gibt es für die 
Lage der optischen 
Symmetrieachsen keine 
Anhaltspunkte aus der 
Kristallform. 

Zur S t r a h l e n -
f l ä c h e gelangen wir 
auf dem vom § 5 her 
bekannten Wege. Wir beginnen damit, Lichtstrahlen 
zu betrachten, die in der ac-, der Papierebene, ver-
laufen. Zur vertikalen Strahlenrichtung c gehört als 
Schnittellipse die horizontale mit den Halbachsen a und 
b, a und b sind demnach die Strahlengeschwindigkeiten 
in Richtung c und sollen in Fig. 42 in Richtung c abge-
tragen werden. Zur Strahlenrichtung a gehört als 
Schnittellipse die (vertikale) mit den Halbachsen b und c. 
b und c werden mithin e 
in Fig. 42 als Strahlen- -»4, A 
geschwindigkeiten in 
Richtung a abgetragen. 
Für eine zwischen a und 
c in der Papierebene 
liegende Richtung ist 
die Schnittellipse in Fig. 
43 schraffiert. Die eine 
ihrer Achsen ist wieder 
b, die andere hat einen 
Wert « ( , zwischen a 
und c. b und mu tragen 
wir in Fig. 42 in Rich-
tung / j als Strahlenge-
schwindigkeiten ab. Las Fig. 42. Schnitt der Strahlenflädie mit 
sen Wir von der Rieh- der ac-Ebene 
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Fig. 43 

tung a zur Richtung c 
übergehen, so ist eine 
Halbachse der Schnitt-
ellipse immer gleich b, 
während die andere 
ihren Wert von a 
bis c ändert. Auf diese 
Weise finden wir die 
Strahlengeschwindigkei-
ten für alle in der ac-

Ebene verlaufenden Strahlen: Fig. 42, in der wir sie 
abtragen, stellt uns also den S c h n i t t d e r S t r a h -
l e n f l ä c h e m i t d e r « c - E b e n . e dar. Er besteht 
aus einem Kreise mit dem Radius b und einer Ellipse 
mit den Halbachsen a und c. Zwischen a und c muß 
m, den Wert b annehmen: das geschehe für die Strahlen-
richtung Br. Die Schnittellipse, auf der sie senkrecht 
steht, ist ein Kreis mit dem Radius b (Fig. 44); in der 
Richtung Br pflanzen sich demnach beide Strahlen mit 

(vgl. aber S. 52). Wir nennen sie „ S t r a h l e n -
a c h s e n " oder „B i r a d i a 1 e n". 

Zur Bestimmung des D u r c h s c h n i t t s d e r 
S t r a h l e n f l ä c h e mit der ab - E b e n e , Fig. 45, be-
trachten wir die Strahlen, die beim Fresnelschen Ellipsoid 
Fig. 46 in der «¿-(Horizontal-)Ebene verlaufen. Zur 
Richtung a gehören, wie bereits besprochen, die Strahlen-

der gleichen Geschwindig-
keit b fort. Dasselbe gilt 
für die symmetrische Rich-
tung B'r; in Fig. 42 sind 
es die Richtungen, die nach 
dem Schnittpunkt von 

Fig. 44. Biradialen 

Kreis und Ellipse hinzie-
len. In gewissem Sinne 
können wir also Br und 
B'r als die A c h s e n d e s 
K r i s t a l l s bezeichnen 
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Fig. 45. Sdinit t der Strahlenfläche mit der 
¿¿-Ebene 

geschwindlgkeiten b 
und e, zur Richtung b 
die in der Papier-
ebene liegende Ellipse 
mit den Halbachsen 
a und e; in Fig. 45, 
in der wir den ge-
suchten Schnitt dar-
stellen wollen, tragen 
wir also in Richtung 
a die Strecken b und 
c, in Richtung b die 
Strecken a und c als 
Strahlengesdiwindig-

keit ab. Auf einer 
zwischen a und b lie-
gertden Richtung l2 
(Fig. 46) steht eine 
Schnittellipse (schraffiert) senkrecht, deren eine Halbachse 
wieder c ist, wie für alle Strahlen in der «¿-Ebene, wäh-
rend die andere einen Wert m2 zwischen a und b annimmt. 
Variiert man die Richtung 
/2 zwischen a und b, so er-
gibt sich als Schnittfigur 
der Strahlenfläche mit der 
ab-Ebene die in Fig. 45 
gezeichnete: ein Kreis mit 
dem Radius c und eine 
Ellipse mit den Halbachsen 
a und b. F>e-« 

Dieselben Überlegungen stellen wir für die ¿c-Ebene 
041. Die Richtungen b und c selbst haben wir schon er-
örtert: in Richtung b haben wir a und c, in Richtung c 
haben wir a 4jnd b als Strahlengeschwindigkeiten abzu-
tragen (Fig. 47). Eine Zwischenrichtung Zs (Fig. 48) 
liefert eine Ellipse, die gleichfalls a zur einen Halbachse, 
zur anderen einen zwischen b und c liegenden Wert hat. 
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So findet man als 
S c h n i t t f i g u r 
d e r S t r a h l e n -
f l ä c h e m i t d e r 
k - E b e n e (Fig. 
47) einen Kreis 
mit dem Radius a 
und eine Ellipse 
mit den Halbach-
sen b und c. 

Stellen wir die 
drei gefundenen 

Schnitte zusam-
men, so erhalten 
wir (Fig. 49) ein 
Gerippe der Strah-

_, . . . i ..... . , , lenfläche, das den 
Fig. 47. Saimtt der Strahlenfiaaie mit der ¿c-Ebene . ' . • 

6 in Fig. 13 u. 14 
dargestellten der einachsigen Kristalle entspricht. Die 
Strahlenfläche selbst stellt sich als eine F l ä c h e 
v i e r t e r O r d n u n g dar. 
Man befreie die Anschauung 
von der Durchschneidung von 
Ellipse und Kreis in den 

/ 0 

Fig. 48 Fig. 49. Strahlenflädie eines 
zweiadisigen Kristalls 

Punkten P und sehe die Fläche als zweischalig: innen 
einen Mehlsack mit vorstehenden Zipfeln, darum eine 
zweite Hülle, die in vier nabelhaften Einsenkungen 
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bei P die Mehlsackzipfel berührt. Für keinen der 
beiden Strahlen ist die Geschwindigkeit nach allen 
Richtungen gleich, beide sind „außerordentlich". Das 
Vorhandensein eines o. Strahls ist also ein Sonderfall bei 
den Einachsigen. In welcher Weise die Strahlen ge-
brochen werden, ergibt die Huygenssche Konstruktion, die 
in derselben Weise auszuführen ist wie bei den Ein-
achsigen in § 4. 

D i e N o r m a l e n -
f l ä c h e ist die Fuß-
punktfläche der Strah-
lenfläche. Der Schnitt 
der Normalenfläche z. 
B. mit der ¿c-Ebene 
wird also gefunden, 
indem wir von Fig. 47 
ausgehend die Fuß-
punktkurven der bei-
den hier auftretenden 
Schnittkurven kon-
struieren. Der Kreis 
ist bekanntlich seine 
eigene Fußpunktkur- Fis-50- s d , n ; " d« Normaienf lädie 

° i . r . mit der ¿>c-Ebene 
ve, und ebenso wissen 
wir (S. 31), daß die Ellipse ein Oval ergibt, so daß der 
S c h n i t t d e r N o r m a 1 e n f 1 ä c h e m i t d e r 
bc- E b e n e die Gestalt von Fig. 50 hat. 

Besonderes Interesse beansprucht der S c h n i t t m i t 
d e r ac - E b e n e. In dieser Ebene lagen die beiden Bira-
dialen, und die Konstruktion des Schnitts der Normalen-
fläche ergibt (Fig. 51), daß in dieser Ebene auch die 
beiden Richtungen liegen müssen, in denen sich beide 
Wellen n o r m a l e n mit der gleichen Geschwindig-
keit fortpflanzen. Diese Richtungen Bn und B'n nennen 
wir „ B i n o r m a l e n " . Sie stimmen mit den Biradialen 
Br und B'r nicht überein, wie man an der Figur erkennt, 
in die die Ellipse der Strahlenfläche und die Biradialen 

B u c h w a l d , Kr i s ta l lop t ik 4 



50 Doppelbrechung und Polarisation 

J5; 

€ 

,3n 

punktiert eingezeichnet 
sind, bilden aber nur 
kleine Winkel mit ihnen. 

a 

Wir können zur Nor-
malenfläche auch anders 
gelangen als durch eine 
Fußpunktkonstruktion 

Fig . 51. Schni t t der N o r m a l e n f l ä c h e 
mi t der a c - E b e n e 

von der Strahlenfläche 
aus. Wie wir nämlich 
früher (S. 34) von dem 
Indexellipsoid aus, das 
ein Rotationsellipsoid mit 
den Hauptbrechungsquo-
tienten «0 und » e als 
Halbachsen war, zur 
Normalenfläche einachsi-
ger Kristalle gelangten, 

ebenso kommen wir zur Normalenfläche Zweiachsiger, aus-
gehend von einem I n d e x e l l i p s o i d , das diesmal 
kein Rotationsellipsoid ist, sondern ein d r e i a c h s i g e s 

m i t d e n d r e i H a u p t b r e c h z a h l e n = n„, 

1 1 
r = «6 u n d — = « c a l s H a l b a c h s e n , auf Grund 
t> c 

der gleichen Regel wie früher. Die Geschwindigkeiten der 
beiden Wellennormalen in einer Richtung finden wir, in-
dem wir senkrecht zu dieser Richtung eine Diametral-
ebene durch das Indexellipsoid legen. Sie sind gleich 
den reziprok genommenen Halbachsen der Schnitt-
ellipse. Die beiden Binormalen stehen also senkrecht auf 
den Kreisschnitten des Indexellipsoids, so wie die beiden 
Biradialen auf den Kreisschnitten des Fresnelschen 
Ellipsoids. 

Wie bei den einachsigen Kristallen gilt die weitere 
Tatsache, die in § 13 aus der elektromagnetischen 
Theorie folgen wird: D i e b e i d e n H a l b a c h s e n 
g e b e n n i c h t n u r i h r e r G r ö ß e n a c h (reziprok 
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genommen) d i e N o r m a l e n g e s c h w i n d i g -
k e i t e n i n d e r a u f d e r E l l i p s e s e n k r e c h t e n 
R i c h t u n g / a n , s o n d e r n a u c h i h r e r R i c h -
t u n g n a c h d i e S c h w i n g u n g s r i c h t u n g e n 
d e r b e i d e n " W e l l e n , d i e s i c h n a c h l f o r t -
p f l a n z e n . 

Ist eine bestimmte Schwingungsrichtung gegeben, so ist 
durch den in diese Richtung fallenden Radiusvektor des 
Indexellipsoids die Geschwindigkeit der Welle bestimmt, 
die nach der gegebenen Richtung schwingt. D i e L i c h t -
g e s c h w i n d i g k e i t i s t d a r n a c h e i n d e u t i g 
a b h ä n g i g v o n d e r S c h w i n g u n g s r i c h t u n g . 

Die Schwingungsrichtungen setzt man auf Grund 
der folgenden häufig anwendbaren Überlegung (vgl. 
z. B. Fig. 77) in Beziehung zu den Binormalen. 
Durch die Normale l (Fig. 52), deren Schwingungs-
richtungen ich bestimmen will, und die eine Binormale 
Bn lege ich eine Ebene E, desgleichen durch l 
und die andere Binormale B'n eine Ebene E'. Errichte 
ich im Mittelpunkt auf E ein Lot, so gehört es, da es auf 
Bn senkrecht steht, dem Kreisschnitte K, der senkrecht 
zu Bn liegt, an, hat also die Länge ni. Desgleichen hat 
ein Lot auf E' die 
Länge da es 
im Kreisschnitt K' 
senkrecht zu B'n 
liegt. Diese beiden 
Lote nb stehen aber 
auch senkrecht auf 
/, bestimmen also 
die Ebene des zu l 
gehörigen ellipti-
schen Schnitts (Fig. 
53). Aus Symme-
triegründen muß 
die lange und kurze 
Achse dieser Schnitt- Sdiwingungsrichtungen 

4* 
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ellipse den Winkel zwischen den beiden Loten und 
den zugehörigen Außenwinkel halbieren; das gleiche gilt 
für die Schwingungsrichtungen, die ja in die Richtungen 
dieser Achsen fallen. Die beiden Schwingungsrichtungen 
halbieren also die Winkel zwischen den beiden Loten auf 
E und £' , anders ausgedrückt: die eine halbiert den 
Winkel zwischen E und E' die andere steht senkrecht 
auf ihr. 

Für Wellen, die in einer der Binormalenrichtungen 
fortschreiten, wird die Schnittellipse zum Kreis. Es gibt 
für sie keine definierten Halbachsen, also keine be-
stimmten Schwingungsrichtungen: alle Schwingungsrich-
tungen sind möglich, natürliches Licht geht ungehindert 
hindurch. Durch diese Beziehung treten die Binormalen 
in nähere Verwandtschaft zu den optischen Achsen der 
einachsigen Kristalle als die Biradialen, die nur dadurch 
ausgezeichnet waren, daß sich beide Strahlen in ihnen 
mit gleicher Geschwindigkeit fortpflanzten; und so meint 
man, wenn man schlechtweg von den „ o p t i s c h e n 
A c h s e n z w e i a c h s i g e r K r i s t a l l e " spricht, die 
B i n o r m a l e n damit und nicht die Biradialen. 

Die Linie, die den spitzen Winkel zwischen den 
optischen Achsen halbiert, nennt man die „ e r s t e 
M i 11 e 11 i n i e", die darauf Senkrechte, den stumpfen 
Achsenwinkel Halbierende, „ d i e z w e i t e M i t t e l -
l i n i e". 

Erstens kann der Fall eintreten, daß die erste Mittel-
linie mit der kleinsten Achse des Fresnelschen Ellipsoids 
zusammenfällt, längs deren wir c abgetragen hatten: in 
diesem Falle (Fig. 54) nennen wir den Kristall „ p o s i -
t i v z w e i a c h s i g"; fällt dagegen die erste Mittellinie 
in die Richtung der größten (a-)Achse des Fresnelschen 
Ellipsoids, so heißt der Kristall „ n e g a t i v z w e i -
a c h s i g " (Fig. 55). 

Die Bezeichnungsweise erklärt sich so: lassen wir beim po-
sitiv zweiachsigen Kristall die Achsen durch Null-Setzen des 
spitzen Winkels zwischen ihnen zusammenfallen, so entsteht ein 
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einachsig positiver Kristal l : außen die Kugel, innen das sie in 
der Achse berührende Rotationsovaloid, vgl.Fig.29. Beim gleichen 
Verfahren entsteht aus dem negativ zweiachsigen ein negativ 
einachsiger. 

Die Frage, w i e v i e l e K o n s t a n t e n e i n e n K r i s t a l l 
i n o p t i s c h e r H i n s i c h t b e s t i m m e n , läuf t auf die 
hinaus, wieviele Konstanten zur Bestimmung einer seiner Kon-
struktionsflächen, z. B. des Fresnelschen Ellipsoids, nötig sind. 
Denn jede der Konstruktionsflächen bestimmt das optische Ver-
halten des Kristalls, soweit wir es bisher ins Auge gefaßt haben, 

Fig . 54 F ig . 55 
P o s i t i v zweiachs iger K r i s t a l l N e g a t i v zweiachs iger K r i s t a l l 

vollständig. Ein Kristall des r e g u l ä r e n S y s t e m s ist 
durch e i n e Konstante bestimmt, den Radius des zur Kugel 
ausgearteten Fresnelschen Ellipsoids, der die nach allen Seiten 
gleiche Lichtgeschwindigkeit angibt (s.Schluß von § 12). 

Zur optischen" Bestimmung eines e i n a c h s i g e n K r i -
s t a l l s sind z w e i K o n s t a n t e n nötig, die beiden H a u p t -
lichtgeschwindigkeiten, zur Bestimmung eines r h o m b i s c h e n 
K r i s t a l l s d r e i , die drei Hauptlichtgeschwindigkeiten. 

Im m o n o s y m m e t r i s c h e n S y s t e m sind v i e r K o n -
s t a n t e n erforderlich; denn während in den vorhergehenden 
Fällen die Achsenlage des Ellipsoids eindeutig durch die 
Kristallsymmetrie bestimmt war, kommt jetzt zu den drei 
Hauptlichtgeschwindigkeiten eine vierte Zahl hinzu, die die 
Lage der optischen Symmetrieachsen in bezug auf die am 
Kristall auftretenden Kanten oder Flächen charakterisiert. 
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E i n e Zahl genügt; denn von vornherein ist die Lage e i n e r 
Symmetrieachse durch die Kristallachse bestimmt und die 
Ebene der zweiten und dritten durch die kristallographische 
Symmetrieebene. Durch die Angabe des Winkels, den z. B. die 
zweite mit irgendeiner Kristallkante bildet, legen wir sie ein-
deutig fest, und sind einmal zwei optische Symmetrieachsen 
bestimmt, so ist es damit auch die dritte. 

Im a s y m m e t r i s c h e n S y s t e m sind außer den drei 
Hauptlichtgeschwindigkeiten drei Angaben über die Achsenlage 
nötig, so daß hier s e c h s u n a b h ä n g i g e o p t i s c h e 
K o n s t a n t e n auftreten. Zwei Zahlen, etwa Winkel mit 
Kristallkanten, bestimmen nämlidi die eine optische Symmetrie-
achse, und ist diese festgelegt, so genügt, wie im rhombischen 
System, e i n e weitere Zahl zur Bestimmung der beiden anderen. 

§ 11. Die konischen Refraktionen 
Eine besondere Betrachtung verdienen die singulären 

Fälle, daß sich ein Strahl in der Biradialen- oder eine 
Wellennormale in der Binormalenrichtung fortpflanzt. 
Ersterer führt zur Erscheinung der „ ä u ß e r e n k o n i -
s c h e n", letzterer zu der „ i n n e r e n k o n i s c h e n 
R e f r a k t i o n " . 

1. Äußere konische Refraktion. Wenn ich im 
Punkte S an die Strahlenfläche eine Tangentialebene lege 
und vom Mittelpunkt O aus das Lot ON darauf fälle 
(vgl. Fig. 56, die einen Teil von Fig. 26 wiederholt), so 
ist ON bekanntlich die zum Strahle OS gehörige Nor-
male und ein Maß für die Fortpflanzungsgeschwindig-
keit der Tangentialebene. Bei einer zweischaligen Strah-
lenfläche gehören zu einem Strahle Os (Fig. 57) zwei 
Normalen ON und ON'; denn der Strahl schneidet die 
Strahlenfläche in zwei Punkten S und S', und in jedem 
läßt sich eine Tangentialebene an eine Schale der 
Fläche legen. 

Pflanzt sich der S t r a h l g e r a d e i n e i n e r B i r a -
d i a l e n richtung fort (Fig. 58), so scheint das Besondere 
zunächst nur darin zu liegen, daß beide Punkte S und 
5" in einen, P, zusammenfallen und daß beide Tangen-
tialebenen im gleichen Punkte zu konstruieren sind, eine 
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an den Kreis, eine an die Ellipse, beide auf der Papier-
ebene senkrecht stehend. Eine genauere analytische 
Untersuchung ergibt aber, 

diese Ebenen zu fällenden Normalen gehören zu der einen 
Strahlenrichtung OP; es läßt sich zeigen, daß sie einen 
Kegel zweiten Grades erfüllen, in dem auch, wie aus 
Fig. 58 ersichtlich, die Biradialenrichtung selbst enthalten 
ist. Da sie verschiedene Länge haben (Fig. 58: OP + 
ON), so pflanzen sich die Tangentialebenen verschieden 
schnell fort . Einem in der Biradialenrichtung fortschrei-
tenden Strahlenbündel können mithin verschieden ge-
neigte, ebene Wellen zugehören, die beim Austritt aus 
dem Kristall wegen ihrer verschiedenen Geschwindig-
keiten verschieden gebrochen werden und im Außen-
raum, wo Strahl und Normale identisch sind, einen 
Strahlenkegel ergeben (Fig. 59). Das ist der „K e g e 1 
d e r ä u ß e r e n k o n i s c h e n R e f r a k t i o n", dei\ 
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Fig . 59 
Kegel d e r 
ä u ß e r e n k o 
n i sd ien R e -

f r a k t i o n 

H a m i l t o n aus der Theorie vorhergesagt und L l o y d 
(1833) experimentell zuerst nachgewiesen hat. 

Man stellt den Versuch 
so an, daß man zwei 
dünne, durchlochte Me-
tallfolien derart an den 
beiden Seiten einer Kri-
stallplatte anbringt (Fig. 
60), daß die Verbin-
dungslinie der Öffnun-
gen in die Richtung der 
Biradialen fällt. In einem 
Lichtkegel, den man auf 
die eine Öffnung kon-
zentriert, werden alle die 

Fig. 60. Ä u ß e r e kon isd ie Normalenrichtungen ent-
R e f r a k t i o n . halten sein, deren zueehö-

V e r s u d i s a n o r d n u n g . ~ i / . . , , 
rige Strahlen im Kristall 

längs der Biradialen laufen und die beim Austreten den 
Kegel der äußeren konischen Refraktion bilden. Dessen 
Spitze liegt in der Austrittsöffnung: sein Öffnungswinkel 
beträgt z.B. beim Gips 0°18', beim Aragonit 1°42,2'; 
einen außerordentlich großen Wert hat er beim 
Naphthalin. Hier liegen die Winkel der beiden koni-
schen Refraktionen um 13°45'. 

2. Auch die Entdeckung der inneren konischen Re-
fraktion knüpft sich an die Namen H a m i l t o n und 
L l o y d (1833). An Fig. 56 rufen wir uns nochmals ins 
Gedächtnis, daß man den zu einer Normalenrichtung ON 
gehörigen Strahl OS findet, indem man senkrecht zu ON 
eine Tangentialebene an die Strahlenfläche legt und den 
Mittelpunkt mit deren Berührungspunkt verbindet. Bei 
einer zweischaligen Strahlenfläche lassen sich senkrecht 
zu einer Normalenrichtung im allgemeinen zwei Tan-
gentialebenen an die Strahlenfläche legen (Fig. 61), an 
jede Schale eine. Ihre Abstände ON und ON' vom An-
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fangspunkt sind ein Maß fü r die beiden Normalen-
geschwindigkeiten in dieser Richtung (vgl. hierzu Fig. 26). 

Im Falle, daß d i e N o r m a l e n r i c h t u n g i n 
e i n e B i n o r m a l e fäll t , sind beide Normalenge-
schwindigkeiten gleich, beide Berührungspunkte S und S' 
(Fig. 62) liegen also auf der gleichen Tangentialebene, und 
zwar S auf der Binormalen selbst. Diese Tangential-
ebene berührt aber die Strahlenfläche n i c h t n u r i n 
z w e i P u n k t e n , sondern wie eine mathematische 
Untersuchung zeigt, i n e i n e m k l e i n e n , d i e b e -
k a n n t e t r i c h t e r f ö r m i g e E i n S e n k u n g u m -

jFig. 61 _ Fig. 62. Innere konische Refrak t ion 
Konstrukt ion der zu einer 

Normalen gehörigen Strahlen 

g e b e n d e n K r e i s e . Verbinde ich den Mit telpunkt 
mit allen Punkten dieses Kreises, so ergibt sich ein 
Kegel, der „ K e g e l d e r i n n e r e n k o n i s c h e n 
R e f r a k t i o n" ; er enthält alle die Strahlenrichtungen 
— die Richtung der Binormalen gehört auch dazu —, 
die einer in der Binormalenrichtung fortschreitenden 
ebenen Welle entsprechen. Beim Austri t t aus dem Kristall 
wird aus diesem Strahlenkegel ein auf der gemeinsamen 
Wel lenf ron t senkrecht stehender Strahlenzylinder 
(Fig. 63), von dem in Fig. 62 zwei Strahlen darstellbar 
sind, welche die durch I und II angegebene Richtung 
haben, wenn die ebene Welle den Kristall verläßt , ohne 
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gebrochen zu werden, eine 
Annahme, die auch der Fig. 
63 zugrunde gelegt ist. 

Die Beobachtung der Er-
scheinung gestaltet sich etwa 
so, daß man eine Kristall-
platte senkrecht zur Binor-
malen schneidet und ein fei-
nes Lichtbündel senkrecht 
auffallen läßt (Fig. 64). Das 
erfüllt im Kristall die Ke-
gelfläche1) und tritt als 

Fig. 63. Kegel der Fig. 64. innere Lichtzylinder, dessen Durch-
inneren konischen konische Refrakt ion . m e s s e r V O n der Plattendicke 

Retrakt ion Versuchsanordnung 1 1 . . 1 T.r • 11 
abhangt, aus der Kristall-

platte aus. Der Öffnungswinkel des Kegels ist bei einem 
bestimmten Kristall annähernd gleich dem des Kegels der 
äußeren konischen Refraktion. 

Die Entdeckung der konischen Refraktionen ist als 
„Prunkstück der älteren theoretischen Physik" be-
zeichnet worden, und als schöne Schauversuche werden 
sie gern gezeigt. Das Prunkstück hat leider einen 
Schönheitsfehler: die g e n a u in der Achsenrichtung lau-
fenden Normalen führen unendlich wenig Energie mit 
sich und können gar nicht den Lichtring der innern koni-
schen Refraktion bilden. Sie bilden vielmehr (Theorie 
von W . V o i g t 1905) einen d u n k l e n Ring, und 
der beobachtete helle entsteht aus Normalen, die den 
Achsen nahe benachbart verlaufen. Tatsächlich zeigte 
bereits 1839 der hinreichend verfeinerte Versuch (P o g -
g e n d o r f f), daß der Lichtring durch einen schmalen 
dunklen Ring unterteilt ist. Ähnliches gilt für die äußere 
konische Refraktion. Das Versagen der älteren Theorie 
beruht letzten Endes darauf, daß sie geometrisch-optisch 
und nicht wellenoptisch denkt. 

1) Bei der ä u ß e r e n konischen Refrak t ion liegt der Kegel im A u 15 e n 
bei der i n n e r n im I n n e n räum-
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§ 12. Eingliederung in die elektromagnetische 
Lichttheorie: die Normalenfläche 

Wir gehen an die schwierige Aufgabe heran, die Er-
gebnisse der Theorie, die bisher als Mitteilung hingenom-
men werden mußten, aus den elektromagnetischen Grund-
gleichungen abzuleiten. Wir haben diese deduktive Er-
gänzung unserer rein induktiven Darstellung mehrfach in 
Aussicht gestellt: 

1. bei Einführung der Strahlenfläche Einachsiger in § 4 
und des Fresnelschen Ellipsoids Einachsiger in § 5 und 
Zweiachsiger in § 10; 

2. bei Angabe der Schwingungsrichtungen im Kristall 
in den §§ 6, 8 und 10. 

Strahlenfläche und Fresnel-Ellipsoid bilden mit den 
übrigen „Hilfsflächen", der Normalenfläche (§ 7), dem 
Indexellipsoid (§ 8), dem Polarisationsellipsoid (§ 8) und 
der Indexfläche (§ 9) insofern eine Einheit, als man zu-
gleich mit e i n e r der Hilfsflächen Zweiachsiger alle 
übrigen Flächen gewonnen hat. Denn alle Flächen 
Zweiachsiger hängen zwangsläufig zusammen, und eben-
so zwangsläufig sind dann durch Gleichsetzen von zwei 
der drei Hauptlichtgeschwindigkeiten oder -brechungs-
quotienten alle Hilfsflächen Einachsiger zu gewinnen, 
z. B. das Fresnelsche R o t a t i o n s ellipsoid aus dem 
dreiachsigen. Wir werden uns darauf beschränken, die 
N o r m a l e n f l ä c h e Z w e i a c h s i g e r aus den 
Maxwellschen Gleichungen herzuleiten und sie auf Ein-
achsige zu spezialisieren (§ 12). Ein Sonderproblem aber 
bildet Punkt 2, die Frage der Schwingungsrichtungen. 
Sie gliedern wir im nächsten Paragraphen (§ 13) in die 
elektromagnetische Lichttheorie ein. 

Die Maxwellschen Gleichungen lauten in kartesischen 
Koordinaten x, y, z für ein nicht leitendes Medium: 
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1. Tr ipel 2. Tripel 
hr^_ ¿j)z_ _ a ^ = a®^ _ 

C 3i ~~ dy 3z" C dt' ~ dz dy 

J_ 9® 1/ = _ L 9^2/: = _ 
C dt dz dx C d t dz 
K = _ 1 9 ^ = _ 9 
C dt öx dy C dt öx 

Hier ist C die Lichtgeschwindigkeit im Vakuum, t die 
Zeit. £>x, ®2/, sind die Komponenten des Vektors D, 
der „ d i e l e k t r i s c h e n E r r e g u n g", $)y, S)z die 
der „m a g n e t i s c h e n F e l d s t ä r k e " $), 
die der „ e l e k t r i s c h e n F e l d s t ä r k e " (E. Die 
Magnetisierungskonstante ist gleich 1 gesetzt. 

Bei isotropen Körpern ist 2) einfach dem © propor-
t ional: 

(2) t>x = £©x, % = x>z = £ e 2 
mit e als der „ D i e l e k t r i z i t ä t s k o n s t a n t e " . Der 
einzige Unterschied bei Anisotropen ist, wie bereits 
M a x w e l l erkannt hat , daß dieser Zusammenhang all-
gemeiner anzusetzen ist, als 

(3) T>x = = e ß y , » , = e ß z 
mit den drei „ H a u p t d i e l e k t r i z i t ä t s k o n s t a n -
t e n" £(, e2, e3. Dabei ist schon ein geeignetes Achsen-
system gewählt, die „ H a u p t d i e l e k t r i z i t ä t s -
a c h s e n" , was dasselbe ist wie unsere „optischen Sym-
metrieachsen" des § 10. Andernfal ls sähe der Zusammen-
hang umständlicher aus. Statt durch die drei e kann 
man das anisotrope Medium auch durch die drei 
, ,H a u p t l i c h t g e s c h w i n d i g k e i t e n " a, b, c 
gemäß 

Ci Ci 
(4) — = <J2, — = — = c* 

e2 _ £3 
kennzeichnen. So tauchen wiederum Bekannte aus § 10 auf. 

N u n nehmen wir an, daß sich durch den Kristall ebene 
Sinuswellen for tp f lanzen können. Statt eines sin <P oder 
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cos 0 schreiben wir aber rechnerisch einfacher e''1'; denn 
das ist gleich cos <Z> + i sin 0 , und wir können uns einigen, 
etwa den reellen Teil aller später in der Rechnung auf-
tauchenden komplexen Größen immer als den physi-
kalisch gültigen anzusehen. Der Ansatz für 6, S) und 3) 
bekommt also den zeitlich wie räumlich periodischen 
Faktor, der ebene, in der durch die Richtungscosinus 
a, ß, y bestimmten Normalenrichtung fortschreitende 
Wellen wiedergibt: 

giüitg—ik(ax'''ßy -r }'Z) 

mit co als „ F r e q u e n z " ( = 2ti mal Schwingungszahl v) 
und k als „ W e 11 e n z a h 1" ( = 2n durch Wellenlänge X). 
Es gilt also 

(5) ~ — v i = Normalengeschwindigkeit v. 

An diesem Ansatz bilden wir die in den Maxwell-
schen Gleichungen (1) vorkommenden Differential-
quotienten. Zwischen ihnen bestehen nach (1) die Be-
ziehungen (bei Weglassen des immer auf beiden Seiten 
auftretenden e-Faktors): 

1. Tripel 

(6) 

2. Tripel 

= — k{ßS)z — yS)y) 

•&> = • k{yS)x — aS)z) 

T)z-w = — k(a% — ßS)x) 

S)x-ay = - k{y(£y - ß<Sz) 

l 
£ V ^ -k(a(Sz-y<£x) 

f)z-co = —k(ß<Zx — a®y) 

(I) (III) 
• a 

+ + 
•ß 

+ + 
' 7 

(II) (IV) 

•G* 
+ + 

•ß 
+ + 

•V • e , 
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Um das rechts seitlich Herangeschriebene kümmern wir 
uns vorerst nicht. 

Wir streben jetzt auf die Gleichung der Normalen-
fläche zu, die v = -<U- als Funktion der Richtungscosinus 

k 
a, ß, y enthalten wird und die Kristalleigenschaften in 
Gestalt der in den 2) steckenden ev e2, e3 oder der mit 
ihnen nach (4) gleichwertigen a, b, c. Dazu ersetzen wir 
in der allerersten Gleichung von (6) die ij-Komponenten 
aus dem zweiten Tripel: 

C 
CO 

= -*{/? ] (ß<£x-a<£v)-y (a®«-yG*) [ 

= ß 2 ( Z x - a ß ( i , j - a y £ z + y ^ x , hinzugefügt ± k2C2 

wegen a2 + ß2+y2 — 1: 

= - a(aG* + + yffi,). 

Hier wird noch ~ nach (5) durch v ersetzt und die Gc-k 
nach (3) durch die 2)-Komponenten: 

v2 « / »x , . , 
& x = ~e—a\arr + fi~r+v-r ^ , t j \ t l c2 t 3 

schließlich auch noch die e gemäß (4) durch a , b , c : 

— v2) = c ^ c w 2 ^ + + yc2D2/), 

entsprechend 

(7) T>v(b* — v2) = (gleiche Klammer), 

®z(c2 — v2) = y (gleiche Klammer). 

a 
a* — v-+ 

ß 
b2 — v2 

+ 
r 

Durch die rechts angedeuteten Rechenoperationen, d. h. 

durch Multiplikation der ersten Gleichung mit — - — r 
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usw. und durch nachherige Addition aller drei folgt links 
Null, wie man durch Ausführung der Operation (I) an 
(6) erkennt. Rechts kann aus dem gleichen Grunde die 
Klammer n i c h t gleich Null sein; vielmehr bleibt 

(8) 0 - + 7 
u, - V 2 b' 2— v 2 I, — r 

Das ist eine quadratische Gleichung für v- als Funktion 
von oc, ß, y; also gehören zu jeder Richtung z w e i v-
Werte, v und v". Tragen wir sie in Richtung <x, ß, y auf, 
so entsteht eine zweischalige Fläche; w i r b e h a u p t e n , 
d a ß es d i e a u s §10 b e k a n n t e N o r m a l e n -
f l ä c h e z w e i a c h s i g e r K r i s t a l l e i s t . 

B e w e i s : Wir konstruieren zuerst den Schnitt von 
(8) mit der xz-Ebene unter der nichts einschränkenden 
Annahme a!>b^>c und blicken da-
bei auf Fig. 51 zurück, die sich so- z 
gleich als Ergebnis wiederfinden 
wird. Liegt die Normale in der a 
x-Richtung, so ist oc = 1, ß = y = 0, b 
und als Wurzeln von (8) ergeben 
sich — man bringt (8) zweckmäßig 
rechts auf einen Nenner — 

v = b, v" = c. 
b und c tragen wir also in Fig. 65, 
die den genannten Schnitt darstellen 
soll, in der x-Richtung auf. Ent-
sprechend a und b in der z-Richtung. 

Liegt aber die Normale irgendwie in der xz-Ebene, so 
ist nur ß = 0,-und (8) wird zu 

o = «2 (¿,2 _ V2) (C2 _ V2) + y2 (d2 _ ^2) (¿2 _ „2)) 

was befriedigt wird 
1. durch die Wurzel v = b, d. h. einen Kreis mit dem 
2. durch 0 = 2 (c2 — v"2) + y 2 (a 2 — v" 2), d. h. 

Radius b, 
oc 2 c 2 + 

r b 
Fig. 65. Sd in i t t d . N o r m a l e n -

f läche mi t d e r x z - E b e n e 

V - = 
+ y-

= <X 2c 2 + y 2a 2 (« 2 + y 2 = 1!). 
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Dies aber ist, wie schon einmal in § 8 benutzt, die 
Gleichung eines Ovals mit den Halbachsen a und c. 
Zeichnen wir Kreis und Oval in Fig. 65 ein, so haben wir 
tatsächlich den einen Quadranten von Fig. 51 wieder-
gewonnen. In gleicher Weise ersteht die ganze Normalen -
fläche, und nach den Überlegungen vom Beginn dieses 
Paragraphen hat man damit alle Hilfsflächen Zwei-
achsiger wieder. 

W i r s p e z i a l i s i e r e n a u f E i n a c h s i g e . Wir 
setzten zwei Hauptlichtgeschwindigkeiten gleich, etwa die 
beiden großen a und b. Dann rutschen in Fig. 65 die 
beiden Binormalen in die z-Achse und in der xz-Ebene 
der Figur finden sich als Schnitte ein Kreis a. und ein 
Oval a, c, das innerhalb des Kreises liegt und ihn in der 
z-Achse berührt, kurzum es entsteht die alte Figur 29: 
w i r h a b e n d i e N o r m a 1 e n f 1 ä c h e e i n e s 
p o s i t i v e i n a c h s i g e n K r i s t a l l s w i e d e r -
g e f u n d e n . Ebenso finden wir die der negativ Ein-
achsigen wieder, wenn wir b = c setzen. 

Setzen wir gar a = b = c, so entsteht etwas bisher noch 
nicht Behandeltes: die zweischalige Normalenfläche de-
generiert zur einschaligen Kugel. Das ist der Fall des 
Kristallsystems, bei dem die drei aufeinander senkrechten 
Koordinatenachsen gleichwertig waren (§ 2), des höchst-
symmetrischen „regulären" Systems. Die Kristalle des 
regulären Systems verhalten sich also in dem Bereich, 
in dem unsere nicht atomistische Behandlungsweise gilt, 
wie isotrope Körper und scheiden daher aus unsern Be-
trachtungen aus — siehe die Ankündigung am Schluß 
von § 2. 

Anders sieht es bei atomistischer Betrachtungsweise aus. 
Müßte man sich doch sonst wundern, daß im Röntgengebiet die 
Durchstrahlung etwa eines Steinsalzwürfels in verschiedenen 
Richtungen so verschiedene Lauediagramme liefert. Unsere 
Kontinuumsbetrachtungen gelten nur in erster Näherung ; in 
höherer erweisen sich die regulären Kristalle bei gittertheore-
tisdier Durchrechnung als n i c h t isotrop. Beim Steinsalz z. B., 
das in der Rhombendodekaederrichtung durchstrahlt wird 
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(Fig. 66) , sol len die W e l -
len bei den Schwingungs-
richtungen (1) und (2) 
(letztere in der Papier-
ebene) je cm W e g einen 
Gangunterschied z w a r 
nicht v o n 10 3 ) . w ie im 
M a x i m a l f a l l e beim K a l k -
spat, aber v o n 10~3 A ge-
winnen. D i e Messung so 
geringer Gangunterschiede 
ist mi t verfe inerten H i l f s -
mit te ln durchaus möglich, 
aber bisher an der sich 
überlagernden Doppelbrechung durch natürl iche Spannungen 
im Kristal l gescheitert. 

§ 13. Fortsetzung: die Schwingungsrichtungen 
Die im Kristall allein möglichen Lagen der drei Vek-

toren <E, S) und 2) gegenüber der Wellennormalen, die 
durch ot, ß, y bestimmt ist, und dem „Strahl" , der in der 
Maxwellschen Theorie als Richtung der Energiefort-
pf lanzung definitionsgemäß senkrecht auf © und steht, 
werden durch Ausführung der vier Operat ionen (I) bis 
( IV) an dem Gleichungs-

Fig. 66. D u r d i s t r a h l u n g 
eines S t e i n s a l z w ü r f e l s 

system (6) des vorigen 
Paragraphen gefunden. 
(I) liefert 
« Dx + ßT)y + VT>Z = 0, 
und das drückt nach 
einer Grundregel der 
Vektorrechnung die T a t -
sache aus, daß ® auf der 
R i d i t u n g « , ß, y, d. h. der 
Wellennormalen, senk-
recht steht. W i r zeichnen 
Wellennormale, Wellen-
f ron t und in ihr 2) in eine 
Figur ein (Fig. 67). 

B u c h w a l d , Kristalloptik 

Wellennormale d,ß,y 

Sirahl 

Fig. 67. Schwingungs r i ch tungen e iner 
a . o . W e l l e im K r i s t a l l 
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Entsprechend liefert (II) ocS)x + ßS)y + yS)z = 0, d. h. 
S) liegt in der Wellenfront. (III) liefert 

S A + + f)zHz = 0, 
d. h. S) liegt senkrecht zu 2). Beide Aussagen genügen 
zum (Einzeichnen von $). 

(IV) liefert 
+ + S A = o, 

d. h. © steht senkrecht auf $). Da die ©-Richtung aber 
nach Gl. (3) des vorigen Paragraphen i. allg. nicht mit 
2) übereinstimmt, fällt © n i c h t in die Wellenfront, son-
dern in der Figur etwa punktiert nach unten, und der 
Strahl als Senkrechte auf © und i) fällt nicht mit der 
Wellennormalen zusammen. 2) ist der Vektor, den wir 
früher als „Lichtvektor" bezeichnet haben. Zweierlei be-
rechtigt ihn dazu: er ist ein e l e k t r i s c h e r Vektor, 
und er liegt in der Wellenfront, die fü r die meisten Ver-
suche von entscheidender Wichtigkeit ist. Wählen wir 
© als Lichtvektor, so herrscht strenge Transversalität für 
die Strahlrichtung, wählen wir sowohl für die Strahl-
wie fü r die Normalenrichtung. 

So haben wir eine Reihe von Aussagen früherer Ab-
schnitte aus der elektromagnetischen Theorie wiederge-
wonnen. Fig. 67 enthält aber von Beginn an eine Unbe-
stimmtheit. Wir haben 2) willkürlich in die Wellen-
front eingezeichnet: wenn aber noch die drei J)aupt-
dielektrizitätsachsen gegeben sind: wie liegt 33 zu ihnen? 
Die Antwort des § 10 war : in den Halbachsen der Ellipse, 
in der die zu oc, ß, y senkrechte Diametralebene das Index-
ellipsoid schneidet. Wir beenden den Paragraphen mit 
dem Nachweis, daß auch diese Regel von der strengen 
Theorie bestätigt wird. 

Die Gleichung des Indexellipsoids mit na, nc als 
Halbachsen, n als laufendem Radiusvektor und *>', ß', y 
als dessen Richtungscosinus ist 

1 ä'2 , ß'2 , y"2 
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W i r interessieren uns insbesondere f ü r die be iden Rich-
tungen ß', y\ die in der D iame t r a l ebene senkrecht zu 
< x , ß , y die Achsen der Schni t te l l ipse fes t legen; das sollen 
ja n a c h unserer B e h a u p t u n g die Schwingungsr ich tungen 
sein. We lche Gle ichung gilt f ü r sie? 

Erstens gilt f ü r sie 
(2) 1 = + ß'2 + y'2 

wie f ü r jede R i c h t u n g ß', y . 
Zweitens gilt 
(3) 0 = ot'oc + ß'ß + y'y 

wie f ü r jede R i c h t u n g senkrecht zu ot, ß, y. D r i t t en s s ind 
sie als Achsenr i ch tungen E x t r e m w e r t e der Gle ichung 
(1) m i t den N e b e n b e d i n g u n g e n (2) u n d (3). 

Solche „ V a r i a t i o n s p r o b l e m e m i t N e b e n -
b e d i n g u n g e n " löst m a n so, d a ß m a n erst jede der 
N e b e n b e d i n g u n g e n mi t einem „ L a g r a n g e s c h e n 
F a k t o r " mul t ip l i z ie r t , (2) m i t X, (3) m i t /u, u n d sie 
d a n n zu (1), das w i r noch mi t C 2 mul t ip l iz ie ren , a d d i e r t : 

+ fj,(<x<x' + ßß' + yy'). 
D a n n h a t m a n die en t s t andene Gle ichung nach den drei 
Va r i ab l en a, ß', y' zu d i f f e r enz i e ren u n d die D i f f e r e n t i a l -
quo t ien ten gleich N u l l zu se tzen: 

(4) 

C2 

na
2 

C2 

nir 

Tic2 

+ X ja + ßd = 0 

+ X) ß' + ßß = 0 

+ X) y' + juy = 0 

+ 

+ 
'V 

Die seitlich angedeu te te O p e r a t i o n l ie fer t un t e r Beach tung 
v o n (2) u n d (3) 

näl +P 
c i 
m 1 

C2 

+ 2X = 0. 
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C2 

Die Klammer ist nach (1) gleich = v2 (v Lichtge-
schwindigkeit im Kristall), also X = — v2, was in (4) ein-
gesetzt wird: 

— ßa R, —¡uß , — ßy 
, ß = --. r. V = • 

\ "a I \nh
2 j \n2 

Es gilt also, wenn wir nach -dem bekannten Zusammen-
hang von Hauptbrechzahlen und Hauptlichtgeschwindig-
keiten (s. S. 50 nur war damals vereinfachend C = 1 
gesetzt) noch 

C2 , C2 ,„ C 2 

- y = <*2> • y = b > ~ y = c2 

setzen, für die Achsenrichtungen unserer Schnittellipse das 
Verhältnis 

ß y == • ~J— • — • 
a2 — v2 b2 — v2 c2 — v2 

Die gleiche Beziehung erfüllen aber nach § 12, Gl. (7) die 
S-Komponenten: 

: V„ : S 2 = — : - ß : 1— . 
a2 — v2 b2 — v2 c2 — v2 

D a m i t i s t e r w i e s e n , d a ß d i e S c h w i n -
g u n g s r i c h t u n g e n i n d i e g e n a n n t e n 
A c h s e n r i c h t u n g e n f a l l e n , wie es die Regel des 
§ 10 behauptete. 

II . Teil 
Interferenzerscheinungen im polarisierten Lichte 
§ 14. Kristallplatten im parallelen polarisierten Lidite 

Meßmethoden, die kristalloptische Hilfsmittel benützen, 
und Vorlesungsversuche gehen in großer Zahl auf den 
Fall 3 des § 4 zurück, die senkrechte Durchstrahlung 
einer achsenparallel geschnittenen Kristallplatte. Seit 
§ 6 wissen wir, daß die beiden Wellen, die in der Platte 
einen Gangunterschied gewonnen haben, senkrecht zuein-
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ander schwingen. Nach dem Austritt beschreibt der 
Endpunkt des Lichtvektors also i. allg. eine Ellipse (Er-
innerung an die Mechanik: Zusammensetzung recht-
winklig zueinander verlaufender Schwingungen, L i s s a -
j o u s figuren), die auch in eine Gerade ausarten kann 
oder wenn beide Komponenten gleich sind und 1, 3, 5 . . . 
Viertelwellen Gangunterschied haben, in einen Kreis. Man 
spricht dann von „ e l l i p t i s c h p o l a r i s i e r t e m " 
Lichte, von „1 i n e a r " und von „ z i r k u l ä r p o l a r i -
s i e r t e m", und zwar von 
rechts- oder linkszirkularem, je — ~ 
nachdem der Kreis, wenn man 
der "Welle entgegensieht, im Sinne 
des Uhrzeigers oder entgegenge-
setzt durchlaufen wird. 

Beide Schwingungen können 
interferieren, wenn sie auf die-
selbe Schwingungsrichtung ge-
bracht werden und außerdem 
nicht aus natürlichem, sondern 
bereits linear polarisiertem Licht 
entstanden sind (Gesetze von 
F r e s n e l und A r a g o 1816; 
zu der zweiten Bedingung s. S. 
75). Das führ t zu der Versuchs-
anordnung, die in Fig. 68 in der 
für subjektive Beobachtung ge-
eigneten Form des „ O r t h o -
s k o p s" dargestellt ist. 

S ist ein Spiegel, der das Licht nach oben wirft, Nt der Pola-
risator, der das einfallende Licht polarisiert (§ 6), eingefügt 
zwischen zwei Sammellinsen Li und L2, von denen die erste 
bewirkt, daß möglichst viele Strahlen den unteren Nicol durdh-
setzen, während die zweite das austretende Licht wieder parallel 
macht; N 2 ist der Analysator (§ 6). Zwisdien beiden Nicols liegt 
die Kristallplatte P auf einem Glastischchen, das ebenso wie die 
beiden Nicols um eine vertikale Achse drehbar ist. Die Platte 
wird hier — und das ist das Gemeinsame aller der Fälle, die 

Fig. 68. Orthoskop 



70 Interferenzerscheinungen im polarisierten Lichte 

haben. Es kommt darauf 
üolorisator 

wir zunächst besprechen — von paral lelen Lichtstrahlen 
r e c h t w i n k l i g durchsetzt. Daher Orthoskop! Jede Stelle 
des Gesichtsfelds ist dann gleichwertig und muß in gleicher 
Hell igkeit oder Färbung erscheinen. — Mikroskopisch kleine 
Kr is ta l le kann man in einem Mikroskop untersuchen, das man 
durch Hinzufügen zweier Nicols zum Orthoskop umgestaltet 
hat („P o l a r i s a t i o n s - M i k r o s k o p e", Lieferant u. a. 
Ernst L e i t z , W e t z l a r ; W i n k e l , Gött ingen). 

Wir bringen in diesen Apparat eine parallel zur Achse 
geschnittene Platte eines einachsigen durchsichtigen 
Kristalls, wie wir sie in Fig. 25, dort allerdings auf den 
teilweise undurchsichtigen Turmalin bezogen, vor uns 

an, den Einfluß der verschie-
denen Variablen auf 
die Interferenzerschei-
nung_ herauszuschälen: 
wir können die Platte 
drehen, wir können 

. Polarisator und Ana-
<Znai!f8ttior l y s a t o r drehen, wir 

können die Farbe des 
angewandten Lichts 
variieren. Wir be-
schränken uns auf die 
ausgeprägtesten Fälle: 

Flg- 69 wir stellen zuerst die 
N i c o l s p a r a l l e l und drehen die Platte, wobei wir 
erstens monochromatisches, zweitens weißes Licht anwen-
den. Dann machen wir dasselbe bei g e k r e u z t e n 
N i c o l s . Die Art, wie wir immer verfahren, ist durch 
Fig. 69 gekennzeichnet. Wi r zerlegen die auf die Platte 
auffallende lineare Schwingung von der Amplitude h in 
zwei Komponenten z, und i2 nach den beiden in der 
Platte möglichen Schwingungsrichtungen S t parallel* zur 
Achse und S2 senkrecht dazu. Von wie von z2 geht 
durch den Analysator nur die in dessen Schwingungsrich-
tung fallende Komponente kx bzw. k2 hindurch. Deren 
Zusammenwirken wird schließlich beobachtet. 
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I. Nicols parallel 
1. M o n o c h r o m a t i s c h e s L i c h t 

W i r stellen zuerst (Fig. 70) die P la t t e so, d a ß eine ihrer 
Schwingungsrichtungen mit der gemeinsamen von Polar i -
sator und Analysa tor übereinst immt und bezeichnen das 
als „ N o r m a 1 s t e 11 u n g " der Pla t te . I n diesem Falle 
geht die ankommende Schwingung h unzerlegt durch die 
Pla t te h indurch. D i e P l a t t e h a t , w i e d i c k s i e 
a u c h s e i , ü b e r h a u p t k e i n e n E i n f l u ß a u f 
d i e E r s c h e i n u n g . % 

h 

Fig. 70. Pa ra l l e l e N i c o l s . 
N o r m a l s t e l l u n g 

N u n drehen wir die P la t te e twa bis in die Lage Fig. 71 
und f ü h r e n die Zerlegung nach dem Schema von Fig. 69 
aus bis zu k 1 und k 2 als interfer ierenden Lichtverktoren. 
Die Summe k 1 + k 2 ist geometrisch genommen immer 
konstant gleich h . Physikalisch summiert sich aber die 
W i r k u n g von k l und k 2 zu einer Gesamtampl i tude k — k t 

+ k2 nur dann , wenn beide „gleichzeitig angreifen", d. h. 
bei einem Gangunterschied von O, A , 2 X . . . . Ist die P la t te 
gerade so dick, d a ß sie den beiden Komponen ten einen 
dieser Gangunterschiede erteilt, so zeigt sie beim Drehen 
immer dieselbe Hell igkeit , die auch ohne die P la t te herr-
schen würde, natür l ich bei Vernachlässigung der Re-
flexionen. Beträgt aber der G a n g u n t e r s c h i e d - , 3 y . . . , 
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so greifen kx und k2 im entgegengesetzten Sinne an: wenn 
kl nach oben wirkt, wirkt k2 nach unten. Beide setzen 
sich dann zu einem k = \ ki — k2 | zusammen, und in der 
„ D i a g o,n a l s t e l l u n g " (Fig. 72), wo die Polarisa-
torrichtung den Winkel zwischen den Schwingungsrich-
tungen der Platte gerade halbiert und k i gleich k2 wird, 
heben sie sich ganz au f x ) . Bei einem Gangunterschiede 

von y , 3 —. . . wird also beim Drehen volle Helligkeit 

(in der Normalstellung) mit völliger Dunkelheit (in der 
Diagonalstellung) wechseln, und zwar 
wird bei einer vollen Umdrehung das 
Gesichtsfeld viermal hell und viermal 
dunkel. Beträgt der Gangunterschied 
weder genau ein Vielfaches einer gan-
zen noch einer halben Wellenlänge, so 
wechselt volle Helligkeit (Normalstel-
lung) mit mäßiger Helligkeit (Mini-

mum in der 
Diagonalstel-
lung). 

Verschiedene 
Gangunter-

schiede kann 

P o l 

A n 

Fig . 72. Para l le le Niço i s . 
Diagona l s te l lung 

F ig . 73. Kr i s t a l lke i l 

man gleichzeitig beobachten, wenn man statt der Platte 
einen K r i s t a l l k e i l anwendet, gewissermaßen eine 
Nebeneinanderstellung von verschieden dicken Platten, 
bei dem die Achse parallel der Keilkante, die Schwin-
gungsriditungen parallel und senkrecht zur Kante laufen 
(Fig. 73). In der Normalstellung erscheint der Keil über-
all gleich hell, in der Diagonalstellung zeigt er dunkle 
Streifen, die an den Stellen, wo der Gangunterschied ge-

1) M a n lese in einem Lehrbudi der Phys ik über die Zusammensetzung 
zweier gleidigeriditeter Sd iwingungen derselben Frequenz nach. Formelmäßig 
ist die resultierende A m p l i t u d e k = j ^ i ® + + 2kiko cos <p, wenn tp de» 
im Winke lmaß ausgedrückte Gangunterschied, der „ P h a s e n u n t e r -
s c h i e d " ist. 1 X entspr idi t rp = 3 6 0 ° = 2 x. 
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rade - beträgt, ganz schwarz sind. In den J 1 
2 ' 2 

Zwischenstellungen treten graue Streifen auf. 

2. W e i ß e s L i c h t 
In der Normalstellung hat die Platte nie einen Einfluß; 

in der Diagonalstellung werden diejenigen Farben ganz 
X X 

ausgelöscht, für die der Gangunterschied y , 3 -- . . . 

beträgt. Die andern Farben werden geschwächt, nur 
die nicht, für die der Gangunterschied O, X, 2 X... ist, 
Kurz: das Gesichtsfeld erscheint in einer Mischfärbung, 
die von der Dicke der Platte abhängt und in der die zu-
letzt genannten Farben überwiegen. Beim Drehen um 
360° wechselt viermal Weiß (in den Normalstellungen) 
mit viermaliger intensiver Färbung (in den Diagonal-
stellungen). Ein Keil geht von Weiß (Normalstellung) 
zu einer Farbenskala über, die in den Diagonalstellungen 
am intensivsten ist und später näher untersucht wer-
den wird. T 

II. Nicols gekreuzt 
1. M o n o c h r o m a t i s c h e s L i c h t 

Wir führen genau dieselben Operationen aus wie vor-
her und werden finden, d a ß i m m e r d a , w o b e i 
p a r a l l e l e n N i c o l s H e l l i g k e i t h e r r s c h t e , 
j e t z t D u n k e l h e i t p 0 i 
h e r r s c h t u n d u m g e -
k e h r t , u n d d a ß a n 
S t e l l e i r g e n d e i n e r 
F ä r b u n g d i e k o m p l e -
m e n t ä r e t r i t t . 

In der Normalstellung (Fig. 
74), wo die Schwingungsrich-
tungen im Plättchen mit de- -

nen der Nicols übereinstim-
men, geht h unzerlegt durch 
die Platte und wird vom Fig . 74. Gekreuzte Nicol s . 

Normal s te l lung 
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Analysator vollständig ausgelöscht, genau so als ob die 
Platte gar nicht da wäre. W i e a u c h d e r i n d e r 
P l a t t e e r r e i c h t e G a n g u n t e r s c h i e d s e i : 
d a s G e s i c h t s f e l d i s t v ö l l i g d u n k e l . In den 
anderen Stellungen bilden wir wieder die beiden Kom-
ponenten nach den Schwingungsrichtungen der Platte und 
führen diese dann auf die Analysatorrichtung zurück. In 
Fig. 75 und 76 ist dies für eine Zwischenstellung und die 
Diagonalstellung angedeutet. Geometrisch gesprochen ist 

jetzt immer die D i f f e r e n z der beiden Komponenten 
kl und k2 konstant gleich Null . Sie heben sich aber in 
ihrer Wirkung nur dann gerade auf, wenn sie gleichzeitig 
angreifen, also mit einem Gangunterschiede von O, ?., 
2 k . . . austreten. Erteilt die Platte einen dieser Gang-
unterschiede, so bleibt sie beim Drehen in jeder Lage völlig 

dunkel. Ist aber der Gangunterschied -y , 3 -y . . . , so 

ist einer der Pfeile um 180° herumzuwerfen und k^ und 
k2 wirken in der gleichen Richtung, verstärken sich also 
und erzeugen eine gewisse Helligkeit, die in der Diagonal-
stellung, wo kt und k2 ihren maximalen Wert haben, am 
größten ist, nämlich so wie sie ohne Platte wäre (ki + k2 
= h). Beim Drehen eines Plättchens, das einen dieser 

Pol Pol. 

Fig . 75. G e k r e u z t e N i ç o i s . 
A l lgemeine r Fa l l 

Fig . 76. G e k r e u z t e N i ç o i s . 
D i a g o n a l s t e l l u n g 



Kristallplatten im parallelen polarisierten Lichte 75 

Gangunterschiede hervorruft, wechselt demnach vier-
malige völ l ige Dunkelheit (in den Normalstel lungen) mit 
viermaliger völliger Hel l igkeit (in den Diagonalstel lun-
gen), umgekehrt wie bei parallelen Nicols . Bei einem 
Plättchen, das weder genau den einen noch den anderen 
Gangunterschied bewirkt, wechselt völ l ige Dunkelheit 
(Normalstel lungen) mit mäßiger Hel l igkeit (Maximum in 
den Diagonalstel lungen). 

Will man die unbekannten Schwingungsrichtungen eines Plätt-
chens bestimmen, so braucht man es demnach nur zwischen 
gekreuzte Nicols zu bringen. In den Stellungen, wo es Dunkel-
heit zeigt, liegen die Schwingungsrichtungen, die man daher 
auch „A u s l ö s c h u n g s r i c h t u n g e n " nennt, parallel den 
beiden Nicolschwingungen. 

Der Keil zeigt in der Normalstellung Dunkelheit, in der 
Diagonalstellung schwarze Streifen an den Stellen, wo bei 
parallelen Nicols helle waren, und umgekehrt. 

Hierbei sei auf die Bedeutung des Polarisators hingewiesen: 
fiele natürliches Lidit mit seinen fortwährend wechselnden 
Schwingungsrichtungen auf die Kristallplatte, so wäre die Inter-
ferenz in einem bestimmten Moment, wo die Schwingung gerade 
parallel dem Analysator stattfindet, gemäß dem Sonderfall 
„Nicols parallel", sehr wenig später, wo sie sich um 90° gedreht 
hat, gemäß dem der „gekreuzten Nicols". Der Wechsel ist so 
schnell, daß das Auge keine Interferenz, sondern nur eine 
mittlere Helligkeit wahrnimmt. 

2. " W e i ß e s L i c h t 
In der Normalste l lung bleibt die Platte dunkel. In der 

Diagonalstel lung werden diejenigen Farben ganz ausge-
löscht, bei denen der Gangunterschied O, X, 2 X ... ist, 

während die vol l erhalten bleiben, w o er — , 3 — 

beträgt. Genau umgekehrt wie bei parallelen -Nicols; 

denn dort wurden gerade die mit —, 3 — . . . ausgelöscht 

und die mit O, A, 2 A . . . am meisten begünstigt. Dement-
sprechend ist die jetzt entstehende Mischfärbung komple-
mentär zu der vorhin beobachteten; bei der Drehung wird 
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das Plättchen zwischen Schwarz und einer (komplemen-
tären) Mischfärbung wechseln, die in den Diagonal-
stellungen am intensivsten ist. Der Keil zeigt schwarz 
und eine zur vorhin beobachteten komplementäre 
Farbenskala. 

Beide Fälle (Nicols parallel und senkrecht) lassen sich 
gleichzeitig beobachten, wenn man den Analysator durch 
ein doppelbrechendes Prisma ersetzt, dessen Schwingungs-
richtungen man parallel und senkrecht zu denen des 
Polarisators einstellt. 

Bei z w e i a c h s i g e n K r i s t a l l e n kommen wenig 
neue Gesichtspunkte hinzu. Denn auch hier wird die ein-
fallende Schwingung in zwei zerlegt, die senkrecht zuein-
ander verlaufen und schließlich nach den angegebenen 
Regeln interferieren. Die Ähnlichkeit geht so weit, daß 
die meisten der beschriebenen Erscheinungen an z w e i -
achsigen Kristallen vorgeführt werden, nämlich an Gips 
und Glimmer, die dazu geeignet sind, weil sie sich wegen 
ihrer natürlichen Spaltbarkeit leicht in dünne Plättchen 
zerlegen lassen. 

Wir kennen den monosymmetrischen G i p s (Fig. 2) aus 
Nr. 2 des § 2 und wissen, daß seine einzige Symmetrie-
ebene parallel der Fläche b liegt. Erfahrungsgemäß fallen 
in diese Ebene seine optischen Achsen Bn und B'n, und 
da er auch nach dieser Ebene vollkommen spaltbar ist, 

•D>_ T liefert er Spaltungsplättchen 
wSn 7 mit den Achsen in der Ober-

^"—•n /y fläche (Fig. 77). Senkrecht hin-
—{/ durchgehende Wellen schwin-

gen nach den Richtungen I 
ig. ipsp att en u n cJ //j den Halbierenden 

d ŝ Achsenwinkels und seines Außenwinkels (s. S. 52). 
Sie erhalten den größtmöglichen Gangunterschied im Kristall; 
denn man erinnere sich an die Normalenfläche (Fig. 65 
in § 12): zu dieser Fortpflanzungsrichtung gehören die 
denkbar verschiedensten Normalengeschwindigkeiten a 
und c. Der Fall ist also ganz ähnlich dem einer ein-
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achsigen achsenparallelen Platte. Jedoch gilt die Achsen-
lage der Fig. 77 streng nur für eine bestimmte Farbe; für 
eine andere liegen die Achsen wie die Schwingungsrich-
tungen etwas anders. Infolgedessen ist die Normalstellung 
des Plättchens für jede Farbe eine andere, und es läßt 
sich im weißen Licht zwischen gekreuzten Nicols nie eine 
Stellung finden, in der das Gesichtsfeld dunkel bleibt. 
Das gehört zu den Komplikationen bei Zweiachsigen, die 
genau genommen nur in besonderen Symmetriefällen 
fehlen und bei starker Dispersion o f t deutlich hervor-
t r « 5 n - Bh M Bn 

Der G l i m m e r ist 
gleichfalls monosymme-
trisch. Bei der in der Fig. 
78 dargestellten Form / d 

Fig. 78. G l i m m e r Fig. 79. G l i m m e r p l ä t t d i e n 

liegt b parallel der Symmetrieebene; vollkommene Spalt-
barkeit existiert nach der Fläche d, was in der Figur hori-
zontale Plättdien ergäbe. Die erste Mittellinie steht nahezu 
senkrecht auf der Spältungsflädie; die Ebene der optischen 
Achsen liegt bei einigen Varietäten senkrecht zur Symme-
trieebene (Glimmer erster Art), bei anderen parallel dazu 
(Glimmer zweiter Art). Fig. 79 führ t die optischen Ver-
hältnisse in einem Spaltungsplättchen vor Augen (von 
Glimmer 1. Art, wenn wir die Orientierung von Fig. 78 
beibehalten) : die erste Mittellinie, annähernd senkrecht 
auf der Fläche d, die optischen Achsen Bn und B'n, die 
optischen Symmetrieachsen a, b, c und die Schwingungs-
richtungen I und II der beiden Wellen, die die Platte senk-
recht durchsetzt haben (s. S. 52). 
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§ 15. Gangunterschied und Interferenzfarben 

Die beiden interferierenden Weilen bekommen in der 
Platte einen Gangunterschied von 

(1) A = — (n2—nt) 

Wellenlängen, wenn d die Dicke der Platte ist, X die 
Wellenlänge des auffallenden Lichtes und nl und n2 die 
Brechungsquotienten der beiden Wellen. 

Die schnellere Welle braucht nämlich zum Durchlaufen der 
Weg d 

Platte die Zeit = — r — • , — ~ — ~pr,—» die langsamere 
Geschwindigkeit C/rc, D 

c7n2 - S i e k o m m t u m C / « 7 ~ c / « r = C ( S e k u n " 
den später an der Austrittsfläche an, und in dieser Zeit ist ihr 
die erste Welle im Außenraum schon um die Strecke ( = Zeit 

d 
mal Geschwindigkeit ^ r (»2—«i) • C = d (n2—hJ davonge-

d 
laufen, das ist in Wellenlängen gemessen (n2—«,), wie in 

(1) angegeben. 
Der Gangunterschied ist also um so größer, je kleiner 

die Wellenlänge des angewandten Lichts und je größer 
die Dicke ist und die Differenz der Brechungsquotienten. 
Die letztere ist bei einem gegebenen Kristall am größten 
in den betrachteten Fällen, daß die Durchstrahlungsrich-
tung senkrecht zur Achse oder zur Binormalenebene ist. 
Wäre die Platte so geschnitten, daß die Achse geneigt 
zur Oberfläche läge, so müßte sie dicker sein, um den 
gleichen Gangunterschied hervorzubringen; läge die Achse 
senkrecht zur Oberfläche, so träte auch bei noch so 
großer Dicke kein Gangunterschied ein. Beim Kalkspat 
ist die Differenz der Brechungsquotienten senkrecht zur 
Achse so groß, daß die Platte sehr dünn sein muß — so 
dünn, wie man es technisch kaum erreichen kann —, um 
nicht einen allzu großen Gangunterschied hervorzu-
bringen. Und allzu groß darf der Gan^unterschied nicht 
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sein, höchstens etwa 8 Wellenlängen, damit die Farben-
erscheinungen gut hervortreten. Woran liegt das? 

Vergleichen wir drei verschieden dicke Plättchen, z. B. 
aus Quarz, in der Diagonalstellung zwischen gekreuzten 
Nicols, ein ganz dünnes, eins von 0,065 mm und eins von 
1 mm Dicke! Bei dem dünnsten Plättchen kommt über-
haupt kein merklicher Gangunterschied zustande. Keine 
Farbe des Spektrums wird ganz ausgelöscht, wozu ein 
Gangunterschied von X nötig wäre (vgl. S. 75); jede wird 
nur geschwächt. Das Plättchen erscheint matt eisen-
oder Iavendelgrau. 

Bei der 0,065 mm dicken Platte ist der Gangunterschied 
gleich 1 Wellenlänge für X = 589 m/i, für D-Licht. Dieses 
wird also völlig ausgelöscht; die übrigen Farben ergeben 
ein prächtiges Indigo als Mischfarbe, das ein Spektrum 
mit einem dunklen Streifen bei 589 mfj, liefert. 

Bei dem 1 mm dicken Plättchen beträgt der Gangunter-
schied 23 Wellenlängen für A = 413 m u , 22 Wellen-
längen für 429 m / i , 21 Wellenlängen für 447 m ß , 20 
Wellenlängen für 467 m / j , usw. Da alle diese Wellen-
längen ausgelöscht werden, zeigt das austretende Licht 
spektral zerlegt eine Reihe dunkler Streifen im Spektrum, 
in unserem Falle zwölf zwischen 400 und 768 mfx, und 
erfahrungsgemäß wird das unzerlegte Licht dann vom 
Auge als weiß empfunden, als sogen. „W e i ß h ö h e r e r 
O r d n u n g", wenn über das Spektrum verteilt neun 
oder mehr dunkle Streifen auftreten. Dies ist der Grund, 
warum im allgemeinen nur dünne Platten Färbungen 
zeigen. 

Was in der Diagonalstellung zwischen gekreuzten 
Nicols geschieht, w e n n m a n d i e D i c k e d e r 
P l a t t e v o n N u l l a n f a n g e n d z u n e h m e n 
l ä ß t , macht man sich an einer einfachen Zeichnung 

klar. Dunkelheit herrscht nach (1), wenn y (n2 — «i) 
gleich einer ganzen Zahl m ist, 
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d 
X 

(«2 — «j) = m , 

d. h. bei Quarz oder Gips, wo n2 — «i im Sichtbaren ab-

gerundet QQ beträgt (im obigen Beispiel ist mit einem 

genaueren Werte gerechnet worden), wenn 
d = ?w 100 X 

oder bei Angabe des d in mm und des l in /u, wenn 
d m m = m - 0 , 1 " ^ 

ist. Das sind in einem ¿-A-Schaubild (Fig. 80) Gerade, die 
alle beim Null-
punkt anfangen 
und die bei X = 
1 ß fü r die Para-
meterwerte m = 
1 (erster dunkler 
Streifen), m = 2 
(zweiter dunkler 
Streifen) . . . die 
OrdinatenO,l, 0,2 
. . . erreichen. Je-
de Gerade gibt 
für einen der 

—Jl Streifen den Zu-
sammenhang von 
spektraler Lage 
und Plattendicke. 

Alle Streifen liegen bei ganz kleinen Dicken weit im 
Ultraviolett, bei kleinen Wellenlängen, und rücken bei 
steigender Dicke nach größeren. Der erste kommt bei 
d = 0,04 mm ins Sichtbare (Ä = 0,4 bis 0,8 fj,; in 
der Figur durch punktierte Linien herausgehoben), 
marschiert mit wachsendem d durchs Spektrum und ver-
läßt es im Rot bei einer Plattendicke von 0,08 mm. Bei 
dieser Plattendicke ist aber der zweite Streifen (m = 2) 
gerade an der violetten Grenze des Sichtbaren ange-

Fig . 80. D u n k l e S t r e i f e n im S p e k t r u m 
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kommen (dmm = 2-0,1-0,4 = 0,08) und rückt nun seiner-
seits bei steigendem d gegen das Rot vor. Aber er mar-
schiert langsamer als der erste, denn nach der Figur 
braucht man eine größere Dickenänderung, um ihn durchs 
Spektrum zu bringen als beim ersten. Bei gleichmäßiger 
Dickenänderung benötigt er also längere Zeit zum Durch-
wandern. Und so fort: immer rücken neue Streifen 
herein, ehe die allzu langsamen vorherigen hinaus sind, 
so daß die sichtbare Streifenzahl mit der Dicke wächst. 
Z. B. lehrt die Figur, daß bei d = 0,3 mm bereits vier 
Streifen im sichtbaren Spektrum liegen, der 4., 5., 6. und 7. 

Männer betreten eine Galerie, am Anfang jeder Minute einer. 
Der erste durchschreitet sie in einer, der zweite in zwei, der 
dritte in drei Minuten usw. Wieviel Männer sind jeweils in 
der Galerie? Man spiele es mit Halmasteinen durch! 

Man führt die Streifenwanderung objektiv vor, indem 
man den Kristallkeil Fig. 73 im weißen Licht in der 
Diagonalstellung zwischen gekreuzten Nicols an einer 
spaltförmigen Öffnung vorbeizieht und das austretende 
farbige Licht spektral zerlegt. 

Unzerlegt zeigt dieses Licht bei steigender Plattendicke 
zwischen gekreuzten Nicols nacheinander Farbtönungen, 
die man nach Ähnlichkeiten in der Farbfolge in „O r d -
n u n g e n" einzuteilen pflegt: 

1. Ordnung. Schwarz. Grau. Weiß. Gelb. Orange. 
Rot. 

2. „ Purpur. Blau. Grün. Orange. Rot. 
Dunkelviolettrot. 

3. „ Bläulichviolett. Grünblau. Grün. Grün-
gelb. Mattrot. Grauviolett. 

4. „ Graublau. Grünblau. Hellgrün. Fleisch-
rot. 

5. ,, Matt blaugrün. Matt fleischrot. 
In den höheren Ordnungen kehren die mattgrünen und 

mattroten Töne wieder, um schließlich in das Weiß 
höherer Ordnung überzugehen. Alle Farben lassen sich 
über diese rein qualitativen Bezeichnungen hinaus nach 

6 u c h w a 1 d , K r i s t a l l o p t i k 6 
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zwischenstaatlich vereinbarten Verfahren mit aller wün-
schenswerten Schärfe quantitativ in Farbton, Sättigung 
und Helligkeit festlegen und etwa als Kurvenzug in ein 
Farbendreieck einzeichnen. Die Abgrenzung der Ord-
nungen vollzieht man dann zweckmäßigerweise so, daß 
man eine jede mit dem Farbton des roten Spektralendes 
beginnen und enden läßt. Nur die erste beginnt mit dem 
genannten lichtschwachen „Eisen- oder Lavendelgrau" des 
Farbtons 480 m/j,. An dem Kristallkeil Fig. 73 kann man 
die ganze Farbenskala nebeneinander beobachten. An 
manchen Stellen ändern sich die Farben besonders rasch 
mit dem Gangunterschied; man spricht dann von 
„ e m p f i n d l i c h e n F a r b e n". Wohl am schönsten 
wirken die Farben der 2. Ordnung. Beliebt sind auch die 
farbenfreudigen Zusammenstellungen verschieden dicker 
Plättchen zu Treppen, Blumen, Landschaften usw. 

D i e ü b e r h a u p t mögl ichen Fa rben töne s t immen a n n ä h e r n d mi t 
denen d e r N e w t o n s c h e n I n t e r f e r e n z f a r b e n in e inem Luf tke i l 
überein , bei gekreuz ten Nico ls m i t denen im senkrecht re f lek-
t ier ten , bei para l le len Nico ls mi t denen im senkrecht d u r c h -
gehenden Lichte. D e r Gangunterschied in einer p lanpara l l e l en 2 d'c 

L u f t p l a t t e d* ist im du rchgehenden Lid i te ~ j - . Eine Kr i s ta l l -

p l a t t e h a t nach (1) den gleichen Gangunterschied , w e n n 
2d* _ J 
- ^ J-(»2—»l) 

ist oder 
2 d* 

d = , d. h. bei Q u a r z oder 
n2—»1 

Gips mi t ih rem n.2—= im Sichtbaren, w e n n sie rund 

200mal so dick ist wie d ie L u f t p l a t t e . Bei e igentümlicher Ab-
häng igke i t des » 2 — « i von / , beispielsweise bei A p o p h y 1 -
1 i t e n , k o m m e n völ l ig abweichende F a r b f o l g e n vor , eine 
interessante Frage de r Farben lehre . 

Un te r suchen w i r n icht e i n e e i n z e l n e P l a t t e , s o n -
d e r n e i n e Ü b e r l a g e r u n g m e h r e r e r , so ergeben 
sich keine neuen Schwierigkeiten, solange die Schwingungs-
r ichtungen in den einzelnen übere ins t immen. Legen w i r zwei 
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Plat ten aus gleicher Substanz derart übereinander, daß die 
Schwingungsrichtungen der schnelleren Wellen parallel liegen, 
so wirken sie wie eine Plat te von der S u m m e ihrer Dicken: 
sie wirken wie eine von der D i f f e r e n z ihrer Dicken, 
wenn sie „ g e k r e u z t " liegen, d. h. wenn die Schwingungs-
richtung der schnelleren Welle in der einen Plat te überein-
stimmt mit der Schwingungsrichtung der langsameren in der 
anderen. Denn hier macht die eine Plat te den Gangunter-
schied zum Teil rückgängig (oder wenn beide gleich dick sind, 
ganz rückgängig), den die andere hervorgerufen hat . 

Man kann diese Erscheinung benutzen, um die F a r b e n -
o r d n u n g e i n e s K r i s t a 11 p 1 ä 11 c h e n s z u b e -
s t i m m e n . Man überlagert es hierzu in der Diagonalstellung 
zwischen gekreuzten Nicols so mit dem Kristallkeil Fig. 73, 
daß sich die entsprechenden Schwingungsrichtungen in Plat te 
und Keil kreuzen. An der Stelle, wo der Keil dieselbe Dicke 
hat wie die Platte, wird dann ein schwarzer Streifen auf t re ten; 
denn hier kompensieren sich Plättchen- und Keilwirkung, und 
es tr i t t kein Gangunterschied ein. An der Stelle muß der Keil 
nach Entfernung des Plättchens dieselbe Färbung zeigen wie 
dieses allein, und es ist dann ein leichtes, die Ordnung fest-
zustellen, zu der diese Färbung gehört. 

Will man b e s t i m m e n , o b e i n K r i s t a l l p o s i t i v 
o d e r n e g a t i v ist, so kombiniert man ihn mit einer Plat te 

X 
von bekannter Doppelbrechung und wählt dazu of t ein „ — -

o d e r V i e r t e l w e l l e n p l ä t t c h e n", meist aus Glimmer, 
d. i. eine Kristallplatte (s. S. 21), die den beiden Wellen einen 
Gangunterschied von einer Viertelwellenlänge erteilt, was ge-
nau genommen natürlich nur fü r eine Farbe gilt, e twa f ü r 
das Gelb in der Mitte des Spektrums. 

X 
Das — - Plättchen sei in einer Fassung befestigt, auf der die 

Schwingungsrichtung der l a n g s a m e r e n Welle durch einen 
Pfeil markiert sei (in Fig. 79 ist es die Richtung / ) . Die un-
bekannte Plat te bringen wir etwa in der Diagonalstellung 
zwischen gekreuzte Nicols, wobei wir eine gewisse Interferenz-

färbe beobachten, und das — - Plättchen legen wir so darauf , 

d a ß die Pfeilrichtung mit der einen Schwingungsrichtung 5, 
der Pla t te koinzidiert. Wi rd dadurch die Ordnung der Inter-

6* 
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ferenzfarbe erhöht, so wirken beide Platten im gleichen Sinne: 
ist also (wie die Pfeilrichtung) die Schwingungsrichtung der 

langsameren Welle, und umgekehrt. Um über positiv oder 
negativ zu entscheiden, muß man dann noch die Achsenlage in 
der Platte kennen. 

Ist die zu untersuchende Platte so dick oder so stark doppel-
brechend, daß sie das Weiß höherer Ordnung zeigt, so genügt 

n 
•die Änderung um —- nicht zur Hervorbringung einer Inter-

4 l 
ferenzfarbe. Man ersetzt dann das -"- - Plättchen durch den 

4 
mehrfach erwähnten Kristallkeil von bekannter Lage der 
Schwingungsrichtungen. Erscheint das Gesichtsfeld weiter im 
Weiß höherer Ordnung, so stimmen die Schwingungsrichtungen 
der schnelleren Wellen in Platte und Keil überein; im anderen 
Falle treten lebhafte Interferenzfarben in der Nachbarschaft 
derjenigen Stelle des Keils auf, wo er den Gangunterschied 
in der Platte gerade kompensiert. 

Z u r g e n a u e n M e s s u n g d e s 
G a n g u n t e r s c h i e d e s wird meist 
der B a b i n e t s c h e K o m p e n s a t o r 

j j benutzt (1849; Fig. 8t), eine Zusammen-
stellung zweier Quarzkeile Ki und K-i 
zu einer planparallelen Platte. Die Lage 
der Kristallachseri in den Keilen —• im 
ersten parallel zur Keilkante AB, im 
zweiten senkrecht dazu — ist in der 
Figur angedeutet, ebenso die möglichen 
Schwingungsrichtungen x und y. Die 
senkrecht zur Achse schwingende ordent-
liche Welle ist beim Quarz als positi-
vem Kristall die schnellere. In K\ eilt 

Fl8KLpensantor also die nach x schwingende Welle der 
nach y schwingenden voraus, in K« bleibt 

sie hinter ihr zurück, d. h. die Keile wirken in entgegenge-
setztem Sinne, und die in der Figur eingezeichnete Mittelrich-
tung, deren Weg in KI ebenso lang ist wie in Ki, wird gar keinen 
Gangunterschied aufweisen. Nach rechts und links nimmt der 
Gangunterschied seinem absoluten Wert nach stetig zu. 

Bringen wir den Kompensator bei einfarbigem Licht in der 
Diagonalstellung zwischen gekreuzte Nicols, so treten an den-
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jenigen Stellen dunkle Streifen auf, wo der Gangunterschied 
O, X . . . beträgt. Ich fasse die Stelle C ins Auge, wo der dem 
Gangunterschied O entsprechende dunkle Streifen liegt und 
verschiebe den Keil K2 mikrometrisch in der Richtung x um eine 
an einer Trommel ablesbare Strecke. Dadurch wandern die 
Streifen mit, und wenn ich K2 um N Trommelteile verschoben 
habe, wird der nächste dunkle Streifen, der dem Gangunter-
schied X entspricht, an die Stelle C gerückt sein: N Skalenteile 
entsprechen also einem Ganguntersdiied X. 

Habe ich auf diese Weise den Kompensator geeicht, so kann 
ich den Ganguntersdiied in einer Kristallplatte bestimmen: ich 
lege die Platte so auf den Kompensator, daß die Schwingungs-
richtungen in beiden übereinstimmen. Dadurch rückt der dem 
Ganguntersdiied O entsprechende Streifen von C fort, und ich 
muß K2 beispielsweise um Nt Skalenteile verschieben, um ihn 
wieder nach C zurückzubringen. Nun habe ich den Ansatz: 

N Skalenteile entsprechen dem Ganguntersdiied X, 
» » » A> 

woraus das gesuchte 

folgt. 
Der K o m p e n s a t o r v o n S o l e i l - B a b i n e t („B a -

b i n e t s c h e r K o m p e n s a t o r m i t K o m p e n s a -
t i o n s p l a t t e " ) besteht aus 2 Quarzkeilen, die b e i d e die 
Achsenlage von K , (Fig. 81) haben, und einer Quarz p 1 a 11 e 
der Adisenlage von K2 . Hier erhält das ganze Gesichtsfeld den 
g l e i c h e n , durch Keilverschiebung meßbar veränderlichen 
Ganguntersdiied. 

§ 16. Einachsige Kristalle im konvergenten 
polarisierten Lichte 

Im parallelen Lichte konnten wir nur den in einer be-
stimmten Richtung erreichten Gangunterschied be-
obachten und hätten die Platte neigen müssen, wenn wir 
das Licht in einer anderen Richtung hätten hindurch-
schicken wollen. Wenden wir aber k o n v e r g e n t e s 
Licht an (Fig. 82), so haben wir gleichzeitig Normalen, 
die den Kristall in den verschiedensten Richtungen durch-
setzt haben. 
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Zum Beobachten der reizvollen Er-
scheinungen, die sich dann ergeben, 
dient das „K o n o s k o p" , das sich 
von dem aus Fig. 68 bekannten Ortho-
skop im wesentlichen nur durch die 
Hinzufügung je eines Linsensystems 
kurzer Brennweite vor und hinter der 

Fig. 82. Kristal lplat te 
im konvergenten Lichte 

Kristallplatte unterscheidet. Das erste 
läßt das parallele Licht nach einem 
Punkte im Plat teninnern konvergie-
ren, das zweite macht das aus der 
Plat te austretende divergente Licht 
wieder parallel. N u r die Mitte des 
Gesichtsfelds entspricht jetzt Normalen, 

die die Plat te senkrecht zur Oberfläche durchsetzt haben, alle 
anderen Punkte geneigten Normalenrichtungen. 

Wir gehen von einem speziellen Fall aus: wir stellen 
im homogenen Lichte die beiden Nicols gekreuzt und 
untersuchen eine s e n k r e c h t zur Achse geschliffene 
Platte eines einachsigen Kristalls. (Im parallelen Lichte 
begannen wir mit einer p a r a l l e l zur Achse ge-
schnittenen.) Ein Blick ins Konoskop zeigt dann eine 
Erscheinung, wie sie in Fig. 83 dargestellt ist: eine Reihe 
konzentrischer Ringe, die von einem schwarzen Kreuz 
durchschnitten sind, dessen Arme parallel und senkrecht 
zur Polarisatorschwingung liegen1). Eine Drehung der 
Platte ändert nichts, da alle Richtungen, die den gleichen 
Winkel mit der Achse bilden, gleichwertig sind. Ringe 
und Kreuz sollen gesondert betrachtet werden. 

1. Die Ringe. In der Mitte des Gesichtsfeldes treten 
die Normalen aus, die die Platte in Richtung der Achse 
wie ein isotropes Medium durchsetzt haben; hier herrscht 
daher bei gekreuzten Nicols Dunkelheit. Dagegen wird 
eine schräg zur Achse einfallende Normale in zwei ge-
spalten. Wir vernachlässigen, daß diese beiden räum-

1) Außergewöhnlich schöne Aufnahmen zahlreicher Interferenzerscheinungen 
im konvergenten Lichte findet man in den Tafelwerken von H . H a u s -
w a l d t , „Interferenzerscheinungen im polarisierten Lichte", Magdeburg 
1902 und 1904. 
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lieh getrennt sind und verschieden lange Wege in der 
Platte zurücklegen; wir nehmen an, sie liefen in der-
selben Bahn, freilich mit verschiedener Geschwindigkeit, 
und fragen nach ihrem Gangunterschied. Dieser wächst 
mit der Neigung gegen die Achse von Null an, ist nach 

§15 , Gl. (1) sofort als ^ ^ ^ -- (re2— »i) anzugeben 

{xp Brechungswinkel), weil als Weg in der Platte an Stelle 

Fig. 83. Senkrech t zur Achse geschni t tene p l a t t e im k o n v e r g e n t e n L ich te . 
N i c o l s g e k r e u z t 

von d einfach das größere tritt, und hat bei einem cos 
X 

gewissen Neigungswinkel den Wert — angenommen. Da 

X 
Wellen vom Gangunterschied ^ (vgl. S. 75) bei gekreuz-
ten Nicols in den Diagonalstellungen Helligkeit ergeben, 
wird der Kreis im Gesichtsfelde, der diesem Neigungs-
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winkel entspricht, teilweise hell erscheinen: der erste helle 
Ring um das dunkle Zentrum. Gehen wir zu noch ge-
neigteren Richtungen über, so wächst der Gangunterschied 
bis zum Werte X. Wellen dieser Richtung ergeben bei 
gekreuzten Nicols Dunkelheit: auf den ersten teilweise 
hellen Ring folgt also ein ganz dunkler. Und so fort: 
alle Richtungen, wo der Gangunterschied O, X, 2 X ... be-
trägt, ergeben dunkle Ringe, die dazwischenliegenden 

mit dem Gangunterschied 3 •. . Ringe, die zum 

2. Das Entstehen des schwarzen 
Kreuzes machen wir uns an den 
Fig. 84 ff. klar. K ist die Kristall-
platte, die Schwingungsrichtung 
des Polarisators soll vertikal, die 
des Analysators horizontal liegen. 
Im allgemeinen wird die vertikale 
Schwingung der einfallenden "Wel-
le L (Fig. 84) in zwei zerlegt: in 
die a.o., die in dem schraffierten 
Hauptschnitt von L liegt, und in 
die dazu senkrechte ordentliche. 
Für alle Strahlen, die den Kristall 

in der Vertikalen AB treffen (Fig. 85), ist die Vertikal-
ebene der Hauptschnitt. Das einfallende vertikal schwin-
gende Licht geht also ohne Doppelbrechung als außer-
ordentliches hindurch und wird von dem horizontal ge-
stellten Analysator ausgelöscht. So erklärt sich der 
dunkle Kreuzarm, der parallel der Polarisatorschwingung 
liegt. Für die längs der Horizontalen Ä B' einfallenden 
Strahlen dagegen (Fig. 86) ist die Horizontalebene der 
Hauptschnitt. Das ankommende, senkrecht dazu schwin-
gende Licht geht mithin ungehindert als ordentliches hin-
durch und wird von dem senkrecht dazu stehenden Analy-
sator vernichtet. So entsteht der parallel zum Analy-
sator liegende Kreuzarm. 

Teil hell sind. 
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Kurven, auf denen die Schwingungsrichtungen konstant sind, 
nennt man „Isogyren". Bei der Beobachtung treten von allen 
Isogyren nur die beiden „H a u p t i s o g y r e n " hervor; die 
erste umfaßt die Kurven, wo die Schwingungsrichtung parallel 
oder senkrecht zum Analysator, die zweite die, wo sie parallel 
oder senkrecht zum Polarisator ist. Bei einachsigen, senkrecht 
zur Achse geschliffenen Kristallen besteht jede Hauptisogyre 
aus zwei Geraden, die durch die Spur der Achse gehen. Bei 
der ersten Hauptisogyre liegen sie senkrecht und parallel zur 
Analysator-, bei der zweiten senkrecht und parallel zur Pola-
risatorrichtung. Bei gekreuzten Nicols fallen beide Haupt-
isogyren zusammen und bilden das dunkle Kreuz. 

Man kann die Interferenzfigur auch so charakterisieren: es 
wechseln Ringe, längs deren die Intensität konstant Null ist 
(Gangunterschied O, i . . •), mit solchen ab, längs deren die 
Intensität zwischen Null und voller Stärke wechselt (Gang-

unterschied " . Dies erklärt sich sofort aus unseren 

Beobachtungen im parallelen Lichte. Zwischen gekreuzten Ni-
cols erschien dort eine. Platte vom Gangunterschiede O, A . . . 
in jeder Lage dunkel, eine Platte vom Gangunterschied 
1 1 . 

3 - • • • dunkel in den Normalstellungen, hell in den Dia-
gonalstellungen. Und die verschiedenen Punkte ein und des-
selben Ringes zeigen n e b e n e i n a n d e r das, was eine Platte 

Fig. 85 Fig. 86 
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von entsprechender Dicke im parallelen Lichte beim Drehen 
n a c h e i n a n d e r zeigt. 

Die Kreuzarme bestehen unabhängig von der Platten-
dicke, während die Ringe in leicht angebbarer Weise von 
ihr abhängen: bei einer dünnen Platte ist ein größerer 
Zuwachs des Neigungswinkels nötig, um den Gangunter-
schied um X zu vergrößern; die Ringe werden also weiter 
auseinanderliegen. Und ebenso ersichtlich ist der Ein-
fluß der Stärke der Doppelbrechung: je stärker diese, 
desto enger die Ringe. An dem Kreuz wird auch nichts 
geändert, wenn wir mit weißem anstatt mit einfarbigem 
Lichte beleuchten; denn das Kreuz ist nur von der 
Schwingungsrichtung, nicht von .der Wellenlänge ab-
hängig. Aber der Ringdurchmesser ändert sich mit der 
Wellenlänge. Für das kurzwellige Violett ist schon bei 
geringerer Neigung gegen die Achse der Gangunter-
schied X und damit der erste dunkle Ring erreicht als 
für das langwellige Rot; es sei denn (vgl. Formel (1), 
Seite 78), daß n 2 — n 1 Besonderheiten hineinträgt. Jeder 
Farbe entspricht so ein besonderes Ringsystem um den 
gemeinsamen Mittelpunkt („I s o c h r o m a t e n " = 
Kurven gleicher Färbung). Im weißen Licht überlagern 
sich alle, und es entstehen bunte Ringe um ein schwarzes 
Zentrum, deren Farbenfolge oft eine Ähnlichkeit mit 
der der Newtonschen Ringe zeigt (vgl. S. 82), bisweilen 
aber auch — wenn « 2 — nx sich stark mit X ändert — 
wesentlich davon abweicht. 

Aus § 14 wissen wir, daß das Interferenzbild ins Kom-
plementäre übergeht, wenn wir die Nicols parallel stellen. 
An Stelle des dunklen Kreuzes steht dann ein helles, an 
Stelle der dunklen Ringe helle und umgekehrt, an Stelle 
der farbigen Ringe die komplementär gefärbten. Geht 
man durch Drehen eines Nicols aus der Senkrecht- in die 
Parallelstellung über, so dreht sich erst das dunkle Kreuz 
blasser werdend mit, um bei 45° zu verschwinden und 
dann als helles wieder hervorzutreten. 
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Neigen wir die Platte, so wandert das durch die 
Achsenrichtung bestimmte Zentrum der Ringe mitsamt 
dem dunklen Kreuze seitwärts und verschwindet bei 

einer gewissen Neigung aus dem Gesichtsfelde. Die 
Ringe wandern mit, werden aber aus Kreisen zu 
E l l i p s e n , bei größerer Neigung zu P a r a b e l n , 
schließlich zu H y p e r b e l n . Anstatt die Platte zu 
neigen, benutzt man besser Platten, die nicht senkrecht, 
sondern unter einem gewissen Winkel zur Achse ge-
schnitten sind. Eine parallel zur Achse geschnittene 
Platte z. B. zeigt in der Diagonalstellung gleichseitige 
Hyperbeln. 

Einen Überblick darüber, wie sich die Kurven gleichen 
Gangunterschieds mit der Plattenorientierung ändern, ge-
winnt man mit Hi l fe der „ F l ä c h e g l e i c h e n 
G a n g u n t e r s c h i e d s". Sie A 
entsteht, wenn man von einem 
Punkte O aus nach jeder Rich-
tung diejenige Strecke abträgt, 
die das Licht in dieser Richtung 
im Kristall durchlaufen muß, 
damit der Gangunterschied A 
einen gegebenen Wert annimmt1). 
Für einen einachsigen Kristall 
ist sie eine Rotationsfläche etwa 
von der Form Fig. 87; die für 
verschiedene A konstruierten Flä-
chen sind einander ähnlich, Fig. 
87 gebe z. B. die für A = 2 an. 
OA ist die Kristallachse. In die-
ser Richtung ist die Fläche un-
endlich weit von O entfernt; 
denn in Richtung der Achse 
müssen beide Strahlen einen un- Fjs-87 Fläd!e. 8 |eichen 

j l - « .. | * Gangun te r sch ieds von 
endlich weiten weg zurucklegen, e inachsigen K r i s t a l l e n 

1) E ine e i n f ä d l e ma thema t i s che B e h a n d l u n g dieser Fläche, ausgehend von 
Gl . (1) des v o r i g e n §, bei M . B o r n , O p t i k , S p r i n g e r , Berl in 1932, S. 249 ff 
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um einen Gangunterschied X zu erhalten. Senkrecht zur 
Achse ist der Gangunterschied X schon nach dem Durch-
laufen von OB erreicht. Hier kommt die Fläche dem 
Mittelpunkt am nächsten. 

In diese Flächenschar lege ich die Kristallplatte, deren 
Kurven gleichen Gangunterschieds ich bestimmen will, 
gewissermaßen hinein, wie dies in der Figur punktiert 
angedeutet ist; d. h. ich lege durch die Flächen eine Ebene 
in einem Abstände von O gleich der Plattendicke d und 
von einer solchen Neigung, daß die Achsenrichtung in 
der Platte mit der Richtung OA übereinstimmt. Es läßt 
sich dann zeigen, daß die Kurven gleichen Gangunter-
schiedes, die an der Platte auftreten, unter geringen 
Vernachlässigungen identisch sind mit den Schnittkurven 
der genannten Ebene mit den Flächen. Eine Ebene I 
senkrecht zu OA zeigt K r e i s e wie eine senkrecht zur 
Achse geschliffene Platte; eine etwas gegen OA geneigte 
Ebene II E l l i p s e n , dieselben, wie man sie an einer 
unter gleicher Neigung gegen die Achse geschnittenen 
Platte beobachten würde, usw. 

§ 17. Zweiachsige- Kristalle im konvergenten 
polarisierten Lidite 

Überwiegt im parallelen polarisierten Lichte die Ähn-
lichkeit zwischen ein- und zweiachsigen Kristallen (§ 14), 
so fällt im konvergenten der Unterschied sofort in die 
Augen, wie ein Blick auf das zweiachsige Interferenzbild 
Fig. 88 zeigt. Es rührt von einer senkrecht zur ersten 
Mittellinie geschnittenen Platte her, einer Platte also von 
der optischen Orientierung der Fig. 79, die wir im homo-
genen Lichte so zwischen gekreuzte Nicols gebracht haben,' 
daß die Achsenebene parallel zur Polarisatorschwingung 
liegt (N o r m a 1 s t e 11 u n g). In der Interferenzfigur 
ist die Spur dieser Ebene durch den horizontalen dunklen 
Kreuzarm gekennzeichnet, und die Spur der Achsen 
durch die beiden Punkte, die die Pole des Systems von 
l e m n i s k a t e n ä h n l i c h e n Kurven bilden (Lemnis-



Zweiachsige Kristalle im konvergenten polarisierten Lichte 93 

katen sind Kurven, auf denen das Produkt der Abstände 
von zwei festen Punkten konstant ist). Die Lemniskaten 
sind die Kurven gleichen Gangunterschiedes, die bei den 
einachsigen Kristallen im entsprechenden Fall Kreise 
waren; die dunklen Kreuzarme sind Isogyren. Wie in 
§ 1 6 betrachten wir beide Kurvenarten gesondert. 

Die Einführung der F l ä c h e g l e i c h e n G a n g -
u n t e r s c h i e d s erleichtert auch hier den Überblick. 

Fig. 88. S e n k r e d i t z u r ers ten M i t t e l l i n i e gesd in i t t ene P l a t t e 
im k o n v e r g e n t e n Licht . N i c o l s g e k r e u z t . N o r m a l s t e l l u n g 

Fig. 89 gibt ein Bild von ihrer Gestalt: Die Ebene der 
Binormalen Bn und B'n ist in die Zeichenebene gelegt; 
die Schnitte mit den beiden anderen optischen Symmetrie-
ebenen, die natürlich auch die Fläche gleichen Gangunter-
schieds symmetrisch teilen, sind angedeutet. Die Fläche 
besteht in großer Entfernung vom Mittelpunkt aus zwei 
Kreiszylindern mit den Binormalen als Achsen, die in 
der Nähe von O in der angedeuteten Weise zusammen-
laufen. In der Richtung senkrecht zur Binormalenebene 
kommt sie O am nächsten, weil in dieser Richtung die 
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Bh, m Bn Doppelbrechung am stärksten 
ist (vgl. S. 76). Die Flächen für 
verschiedene Körper und ver-
schiedene Farben sind einander 
nicht ähnlich wie bei den Ein-
achsigen, da ihre Gestalt von 
der Größe des Binormalenwin-
kels abhängt. 

Die an einer beliebig ge-
schnittenen Platte auftretenden 
K u r v e n g l e i c h e n G a n g -
u n t e r s c h i e d s findet man 
wieder angenähert (vgl. Fig. 
87), wenn man die Flächen 
gleichen Gangunterschieds durch 
eine Ebene von der Orientie-
rung der Plattenoberfläche 
schneidet. Man übersieht, daß 

sich in dem l-alie, wo die Platte senkrecht zur 
ersten Mittellinie geschnitten war, eine geschlossene, 
ovale Kurve gibt, wenn der Schnitt unterhalb von A, 
aber zwei getrennte Kurven um je eine Binormalenspur, 
wenn er oberhalb von A geführt wird. Den Übergang 
bildet eine Kurve von der Form einer liegenden 8. Diese 
verschiedenen Kurvenarten findet man in dem Inter-
ferenzbilde Fig. 88 gleichzeitig vertreten, getrennte Kur-
ven für die kleinen Gangunterschiede, eine beide Achsen-
spuren umschlingende für die größeren. Bei einer sehr 
dünnen Platte oder bei geringer Doppelbrechung kann 
schon die innerste Kurve beide Pole in ellipsenähnlicher 
Gestalt gleichzeitig umgeben. 

Daß die I s o g y r e n die Gestalt eines dunklen Kreuzes 
haben müssen, dessen Arme der Polarisator- und Analy-
satorschwingung parallel liegen, läßt sich durch eine ähn-
liche Überlegung veranschaulichen, wie wir sie bei den 
Einachsigen an der Hand der Fig. 85 und 86 angestellt 
haben. Die Schwingungsrichtungen einer Welle z. B., die 

Fig . 89. Fläche gleichen G a n g -
unterschieds v o n zweiachsigen 

K r i s t a l l e n 



Zweiachsige Kr i s t a l l e im konve rgen ten polar is ier ten Lichte 95 

in der Spur eines Kreuzarmes 
halbieren nach Seite 52 die Win-
kel zwischen den Geraden l und 
l', die S mit der Spur der Binor-
malen Bn und B'n verbinden. 
Das einfallende, in der Richtung 
der Achsenspuren schwingende 
Licht geht also ohne Doppelbre-
chung hindurch und wird vom 
Analysator ausgelöscht. 

Drehe ich, immer zwischen 
gekreuzten Nicols, die Platte 
in ihrer Ebene, so dreht sich 
und das sie umschlingende 

bei S austritt (Fig. 90), 

S 

l y 

Brt 

Fig. 90 

die Spur der Achsen 
Lemniskatensystem einfach 

mit. Dagegen sind die Isogyren im allgemeinen H y p e r -

Fig. 91. Senkrecht z u r ers ten M i t t e l l i n i e gesd in i t t ene P l a t t e 
im k o n v e r g e n t e n Licht . N ico l s g e k r e u z t . D i a g o n a l s t e l l u n g 

b e 1 n, deren Asymptoten mit der Polarisator- und 
Analysatorrichtung übereinstimmen, also waagerecht und 
senkrecht liegen, und deren Scheitel in die Spuren der 
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Binormalen fallen. Fig. 91 stellt die Erscheinung dar, 
wenn die Achsenebene den "Winkel zwischen Analysator 
und Polarisator gerade halbiert ( D i a g o n a l s t e l -
i u n g). Drehe ich weiter, bis sie mit der Analysator-
schwingung koinzidiert, so degenerieren die Hyperbeln 
wieder zum Kreuz. Bei parallelen Nicols treten selbst-
verständlich dieselben Erscheinungen auf, nur daß Hellig-
keit und Dunkelheit vertauscht ist. 

Von andern Plattenorientierungen erwähnen wir nur die 
s e n k r e c h t z u e i n e r B i n o r m a l e n , wie sie z. B. der 
Z u c k e r infolge seiner natürlichen Spaltbarkeit liefert. Daß 
sie annähernd kreisförmige Kurven zeigen müssen, kann man 
aus der Fläche gleichen Ganguntersdiieds Fig. 89 entnehmen. 
In der Normalstellung ist das Interferenzbild nur von e i n e r 
Isogyre durchzogen, die in die Spur der der Polarisator-
schwingung parallelen Achsenebene fällt, sozusagen also dem 
horizontalen Kreuzarme von Fig. 88 angehört. 

Welche Erscheinungen im weißen Licht auftreten, soll 
nur für den Fall der Lemniskaten angedeutet werden. Im 
weißen Licht überlagern sich die Lemniskatensysteme, 
die den einzelnen Farben angehören. Da sich die Lage 
der Achsen mit der Farbe ändert, entspricht jeder Farbe 
ein Lemniskatensystem um andere Pole, und im weißen 
Licht kann man Kurven von den eigentümlichsten Farben 
und Formen beobachten, die mit denen im monochroma-
tischen Lichte bisweilen nicht mehr die geringste Ähn-
lichkeit haben. Auch die Isogyren liegen im Gegensatz 
zu den einachsigen Kristallen für verschiedene Farben 
verschieden. 

Während sich bei a s y m m e t r i s c h e n Kristallen 
über die gegenseitige Lage der monochromatischen Lem-
niskatensysteme nichts voraussagen läßt, bestehen im 
rhombischen und monosymmetrischen System zwischen 
ihnen Beziehungen (§ 10, S. 53), die der Erscheinung im 
weißen Lichte gewisse Symmetrien aufprägen. Aus den 
verschiedenen Symmetrieverhältnissen kann man das 
Kristallsystem, aus der Entfernung der Achsenspuren den 
Achsenwinkel bestimmen. Zu letzterem Zwecke sind be-
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sondere „ A c h s e n - ^ 
w i n k e l a p p a r a t e " 

konstruiert worden. Fig. S ^ E 
92 stellt einen von W ü l - -llrMB,: 
f i n g angegebenen dar, ¿ ^ ' " S t ^ i ' 
den früher R. F u e s s in l y ^ P » " ® 
Berlin-Steglitz anfertigte. fll ,» 

"Wir teilen einige Win- I I 
kelwerte für D-Licht 

Cordierit 85° 50', J i l 
Gips (vom Mont-
martre) 58° 5', 
Glimmer (Muskowit) 
30°—50° je nach dem .i-5» 

Anhydrit (von Staß-

Baryt (künstlich) 
3 7 2 8 , Fig. 92. Adisenwinkelapparat 
Aragonit 18° 11'. 

Selbstverständlich hängen auch die Achsenwinkel von 
der Temperatur ab — siehe die Bemerkung gegen Ende 
von § 8, S. 36. An Gips pflegt man einen eindrucks-
vollen Versuch vorzuführen. Bei Zimmertemperatur 
liegen seine Binormalen in der kristallographischen Sym-
metrieebene (vgl. Fig. 77); der Binormalenwinkel nimmt 
mit steigender Temperatur ab, ist z. B. für D-Licht 50° 12' 
bei 42° C, 31°29' bei 72° C, 13° 18' bei 87° C. Erwärmen 
wir den Kristall auf 89,67° C, so ist er einachsig gewor-
den; bei weiterer Erwärmung gehen die Binormalen wie-
der auseinander, jetzt aber in einer Ebene senkrecht zur 
kristallographischen Symmetrieebene. Im konvergenten 
Lichte beobachtet man demnach an einer senkrecht zur 

' ) Tabellen im L a n d o l t - B ö r n s t e i n , s. Anm. auf S. 38. 

B u c h w a 1 d , Kr i s ta l lop t ik 7 
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ersten Mit te l l in ie geschni t tenen P l a t t e a n f a n g s das be-
k a n n t e Lemniska tensys tem u m die be iden Achsenspuren 
(Fig. 88). D i e Achsenspuren n ä h e r n sich bei E r w ä r m u n g , 
u m bei e t w a 90° C z u s a m m e n z u t r e f f e n u n d sich d a n n 
senkrecht z u r u r spüng l ichen Verb indungs l in ie w iede r zu 
t r ennen . Bei A b k ü h l u n g gehen alle Ä n d e r u n g e n in um-
gekehr te r Re ihenfo lge zu rück . 

I I I . T e i l 

Drehende und absorbierende Kristalle 
§ 18. Drehende Kristalle im parallelen polarisierten 

Lichte 
Eine senkrecht zu r Achse geschni t tene P l a t t e eines ein-

achsigen Kris ta l l s erscheint nach § 14 im para l l e len m o n o -
chromat i schen Lichte zwischen gekreuz ten Nico l s in jeder 
Lage dunke l , wei l das Licht in Achsenr i ch tung u n v e r -
ä n d e r t h indu rchgeh t wie d u r c h einen i so t ropen K ö r p e r . 
Es gibt jedoch eine G r u p p e v o n Kr is ta l len , un t e r denen 
der Q u a r z der wicht igs te ist, die in Achsenr ich tung 

Toi. du rchs t r ah l t die Schwingungsrich-
t u n g des a u f f a l l e n d e n Lichts um 
einen bes t immten W i n k e l d r e h e n . 
M a n nenn t sie „n a t ü r 1 i c h d r e -
h e n d e" 1 ) oder „ o p t i s c h a k -
t i v e " Kr is ta l le . Eine achsensenk-
rechte Q u a r z p l a t t e hell t also z w i -
schen gekreuz ten Nico l s das Ge-
sichtsfeld au f , wie ers tmal ig A r a g o 
1812 fests tel l te; denn das aust re-
t ende Licht schwingt n icht mehr in 
der Po la r i sa tor r ich tung (Fig. 93), 

F ; s - 9 3 sondern u n t e r dem W i n k e l a 

dagegen, u n d m a n m u ß den A n a l y s a t o r u m den gleichen 

1) Im Gegensa t z z u r „küns t l i chen" D r e h u n g , w ie m a n sie durch ein 
M a g n e t f e l d e rz ie len k a n n . 
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Winkel a nachdrehen, damit wieder Dunkelheit eintritt. 
Der Drehungswinkel, der sich hiernach leicht bestimmen 
läßt, hängt von der Dicke der Platte und von der Farbe 
des angewandten Lichts ab. Er ist um so größer, je 
dicker die Platte und je kürzer die Wellenlänge ist. (Er 

ist annähernd proportional zu - Eine Quarzplatte von 

1 mm Dicke z. B. dreht das der Fraunhoferschen Linie B 
entsprechende rote Licht (687 mp) um 15,75°, das gelbe 
D-Licht (589 mp) um 21,71°, das grüne £-Licht (527 mp) 
um 27,54°, das blaue G-Licht (431 mp) um 42,60°, das 
violette / / -Licht (397 mp) um 51,19°. Diese Zahlen 
gelten für jede 1 mm dicke Quarzplatte, aber die 
Drehung findet bei manchen Quarzen nach rechts statt, 
wenn man gegen den Lichtstrahl sieht, bei anderen nach 
links. Erstere nennt man „ R e c h t s"-, letztere „ L i n k s-
q u a r z e", und es hängt in eindeutiger Weise von der 
Kristallform eines Quarzes ab (vgl. Fig. 8 und 9), ob er 
zur einen oder zur andern Klasse gehört. 

Wende ich weißes Licht an, so findet im Quarz inso-
fern eine Trennung der einzelnen Farben statt, als vorher 
die Schwingungsrichtung aller gleich der des Polarisators 
war, während sie nachher für jede Farbe eine andere 
ist; fü r eine 1 mm dicke Platte aus Rechtsquarz würde 
sich das Bild 94 für die Schwingungsrichtungen der ein-
zelnen Farben ergeben, für eine aus Linksquarz Fig. 95. 
In Analogie zu der Zerlegung des weißen Lichts in einem 
Prisma, der Dispersion, ist diese Erscheinung, die „R o t a-
t i o n s p o l a r i s a t i o n", auch als „D i s p e r s i o n 
d e r P o l a r i s a t i o n s e b e n e n " oder als „ R o t a -
t i o n s d i s p e r s i o n " bezeichnet worden. 

Wechselnde Farben werden sichtbar, wenn ich den 
Analysator drehe. Stelle ich ihn senkrecht zur Schwin-
gungsrichtung des roten Lichts, so wird dieses vollständig, 
von den anderen Farben ein größerer oder geringerer An-
teil ausgelöscht, und das Gesichtsfeld erscheint in einem 
zu dem Rot annähernd komplementären Grün. Drehe 

v 
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Pol 
A TOt 

Mau 
7violett im 

Fig. 94. R o t a t i o n s d i s p e r s i o n im 
R e d i t s q u a r z 

Fig. 95. R o t a t i o n s d i s p e r s i o n im 
L i n k s q u a r z 

ich über einem Rechtsquarz rechts herum weiter, so 
kommt der Analysator senkrecht auf Gelb zu stehen und 
die grüne Färbung geht ins Bläuliche über; dann, wenn 
der Analysator senkrecht auf Grüngelb steht, aus dem 
Bläulichen ins Violette, weiter ins Rötliche und ins Gelbe. 
Kurz: d r e h e i c h ü b e r e i n e m R e c h t s q u a r z 
d e n A n a l y s a t o r n a c h r e c h t s , s o t r e t e n 
d i e F a r b e n i n d e r ü b l i c h e n s p e k t r a l e n 
R e i h e n f o l g e a u f : Grün, Blau, Violett, (Purpur), 
Rot, Orange, Gelb, Grün . . . Und ebenso ergibt sich die 
übliche Farbenfolge, wenn ich über einem Linksquarz 
den oberen Nicol nach links drehe. 

Ist die Quarzplat te gerade 3,75 mm dick, so wird Gelb um 
90° gedreht, in einer Rechtsplatte nach rechts, in einer Links-
plat te nach links, Grün entsprechend mehr, Orange weniger, 
wie dies Fig. 96 angibt, in der P die Schwingung des einfallen-
den Lichtes ist. Eine solche Plat te zeigt zwischen p a r a l l e l e n 
Nicols, wo Gelb ausgelöscht wird, ein Purpurviolet t , das man 
als „ e m p f i n d l i c h e F ä r b u n g " oder als Übergangs-
farbe zu bezeichnen pflegt (s. S. 82), weil es bei einer geringen 
Drehung des Analysators (oder des Polarisators) in Blau oder 
in Rot übergeht: in Blau, wenn der Analysator senkrecht auf 
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Orange, in Rot, wenn er 
senkrecht auf Grün zu 
stehen kommt. 

Darauf beruht die Wir-
kungsweise der S o 1 e i 1 -
s c h e n D o p p e l p l a t - 9*/ 
t e. Sie entsteht, wenn 
man die in Fig. 96 darge-
stellten Platten längs Aß ffr 'iri 
aneinanderfügt, und dient 
zur Bestimmung kleiner 
Änderungen der Polarisa-
tionsrichtung. Zwischen 
parallelen Nicols zeigen 
ihre beiden Hälften das Fig . 96. Soleiische D o p p e l p l a t t e 

empfindliche Violett. Werden aber die Schwingungsrichtungen 
insgesamt ein wenig gedreht, wie dies z. B. durch Einfügen 
einer drehenden Kristallplatte oder Zuckerlösung hinter dem 
Polarisator geschehen kann1), so erscheint die eine Hälfte blau, 
die andere rot, und mit großer Genauigkeit läßt sich der 
Winkel bestimmen, um den ich den Analysator nachdrehen 
muß, damit beide Hälften wieder das gleiche Violett zeigen. 
Wären die Platten doppelt so dick, so würde Gelb um 180° 
gedreht und das empfindliche Violett träte dann zwischen ge-
kreuzten Nicols auf. 

Stat t der Solei l-Platte wendet man zur Messung kleiner 
Drehungen wie auch sonst p0/ 
häuf ig in der Feinoptik das \A 
„ H a l b s c h a t t e n p r i n -
z i p " an : m a n läßt die eine 
H ä l f te des Gesichtsfelds un-
verändert in der Polarisa-
torrichtung schwingen (Fig . 
97), bedeckt aber die andere 
mit einer Q u a r z p l a t t e Q 
(oder in besseren Appara ten 
mit einem Nicol ) , so, daß in 
ihr die Schwingungsrichtung F ig . 97. Ha lbschat tenpr inz ip 

1) D i e Zuckerlösung ist der wichtigste der niditkris ta l l inen drehenden 
S t o f f e (Flüss igkei ten, Lösungen , D ä m p f e ) . 
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um den kleinen Winkel a, den „H a l b s c h a t t e n", gegen 
die des Polarisators gedreht ist. Steht der Analysator 
senkrecht auf der Halbierungslinie OA von a, in „H a 1 b-
s c h a t t e n s t e l l u n g", so erscheinen beide Gesichts-
feldhälften in der gleichen geringen Intensität. Die Ein-
stellung hierauf ist sehr genau, weil das Auge für Hellig-
keitsunterschiede bei kleiner Gesamtintensität besonders 
empfindlich ist. Wie oben werden bei Einfügen z. B. 
einer Zuckerlösung die Schwingungsrichtungen beider Ge-
sichtsfeldhälften gedreht, und der Drehwinkel ist durch 
Nachdrehen des Analysators in eine neue Halbschatten-
stellung sehr genau bestimmbar. 

Außer dem Quarz zeigen noch viele andere einachsige 
Kristalle Drehung der Polarisationsebene für Strahlen, 
die parallel zu ihrer Achse hindurchgehen, insonderheit 
der gleichfalls hexagonal-tetartoedrische (bzw. „trigo-
nale") Z i n n o b e r (vgl. Nr. 6 des § 2), bei dem die 
Drehung für D-Licht noch 21mal größer ist als beim 
Quarz. Auch bei einigen regulären Kristallen hat man 
optische Aktivität nachgewiesen, die hier in jeder Rich-
tung besteht, da alle Richtungen gleichwertig sind. Daß 
zweiachsige Kristalle in der Binormalenrichtung gleich-
falls optisch aktiv sein können, fand man zuerst am 
Quarz, der durch Druck zweiachsig gemacht sein 
Drehungsvermögen behielt, seitdem aber auch an ver-
schiedenen von Natur aus zweiachsigen Kristallen. 

Diese optisch aktiven Kristalle gehören ausnahmslos 
Kristallklassen ohne Symmetriezentrum und fast aus-
nahmslos solchen Unterabteilungen (Hemiedrien, Te-
tartoedrien) der betreffenden Systeme an, in denen das 
Auftreten von enantiomorphen Formen (vgl. Nr. 6 des 
§ 2) möglich ist. Einer der Formen entspricht Rechts-, 
der anderen Linksdrehung. 

§ 19. Erklärung des Drehvermögens 
Die Drehung der Polarisationsebene erklären wir mit 

F r e s n e l (1825) durch die Annahme, daß ein Licht-
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strahl bei den optisch drehenden Kristallen auch in Rich-
tung der Achse doppelt gebrochen, in zwei zerlegt wird, 
aber nicht in zwei linear, sondern in z w e i z i r k u l ä r 
p o l a r i s i e r t e , einen rechts- und einen linkszirku-
laren, die sich mit verschiedener Geschwindigkeit fort-
pflanzen. Es läßt sich rein geometrisch zeigen, daß diese 
beiden, wenn das einfallende Licht linear polarisiert war, 
sich wieder zu linear polarisiertem Lichte zusammen-

setzen, dessen Schwingungsrichtung gegen die ursprüng-
liche gedreht ist. 

Zunächst erkennen wir aus Fig. 98, daß man eine 
lineare, längs / stattfindende Schwingung in zwei gleich 
schnelle, entgegengesetzt zirkuläre (von halber Ampli-
tude) zerlegen kann. Ol kann man nämlich als Resul-
tierende ansehen von OLt und OÄ t , OII als Resultierende 
von OL2 und OR2, kurz die ganze lineare Schwingung 
als zerlegbar in zwei entgegengesetzt zirkuläre von 
gleicher Geschwindigkeit. Und umgekehrt setzen sich 

L i 
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zwei derartige zirkuläre Schwingungen zu einer linearen 
zusammen. 

Nun sei eine dieser zirkulären Schwingungen schneller 
als die andere. / (Fig. 99) sei die Schwingungsrichtung 
der ankommenden Wellen, und wir führen wieder die 
Zerlegung in zwei zirkuläre Schwingungen aus, von 
denen wir die rechte als die schnellere annehmen wollen. 
Hat die linke Schwingung nach einer Anzahl ganzer 
Umläufe den Punkt Lx erreicht, so wird die rechte etwa 
um den Bogen LiRi weiter sein, im nächsten Zeitelement 
wird die linke den Bogen Z.]Z,2, die rechte den Bogen 
R1R2 beschreiben usw. Als Resultante von OLx und ORl 
ergibt sich Ol, als Resultante von OL, und ÖR2 07 / ; 
die beiden setzen sich mithin zu einer linearen Schwin-
gung zusammen, deren Schwingungsrichtung gegen die 
ursprüngliche gedreht ist, n a c h r e c h t s g e d r e h t , 
w e n n d i e r e c h t s z i r k u l a r e , n a c h l i n k s , 
w e n n d i e l i n k s z i r k u l a r e S c h w i n g u n g d i e 
s c h n e l l e r e i s t . 

Die Formel, die den Drehwinkel a mit Plattendicke ¡7, 
Wellenlänge X und den Brechzahlen nx und n2 der beiden 
zirkulären Wellen verknüpft, ist durch einfaches Um-
schreiben der Gl. (1), § 15 zu gewinnen. Danach ist der 

Gangunterschied in Wellenlängen gemessen — (n2 — nt)< 

mithin als Phasenunterschied gemessen In • , (n2 — « j ; 
A 

denn 1 Wellenlänge entsprach der Phasenunterschied 2n, 
s. S. 72, Anm. Einem bestimmten Phasenwinkel aber, 
z. B. Lj O in Fig. 98, entspricht ein halb so großer 
Drehwinkel. Also gilt 

d , ^ a = n -j- (n2 — n 

Obgleich sich diese beiden Wellen in ihren Brechungsquo-
tienten nur sehr wenig voneinander unterscheiden, ist es be-
reits F r e s n e l gelungen beide zu trennen. 
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Man kann die Trennung schon an einem einfachen Quarz-
prisma nachweisen, das vom Licht in Achsenrichtung durch-
laufen wird: alle Spektrallinien erscheinen dann doppelt. Um 
Doppelbilder zu vermeiden, setzt man nach C o r n u (1879) 
das Prisma (Fig. 100) aus je einem rechtwinkligen aus 
Rechts- und Linksquarz von der angegebenen Achsenlage zu-
sammen. 

In Richtung senkrecht zur Achse wird ein Strahl in 
zwei linear polarisierte zerlegt, 
fast genau so wie in einem ein-
achsigen Kristall ohne Drehver-
mögen. Der Ubergang zwischen 
beiden Extremfällen — zwei zir-
kulär polarisierten Strahlen einer-
seits, zwei linear polarisierten an-
dererseits — wird dadurch gebil-
det, daß sich in den Zwischenrich-
tungen ein einfallender Lichtstrahl Achsenrichtung 
in z w e i e l l i p t i s c h p o l a -

. 1 Fie. 100. Cornuprisma 
r i s i e r t e mit entgegengesetztem 
Umlaufssinn spaltet. Die beiden Schwingungsellipsen sind 
einander ähnlich und liegen gekreuzt, mit ihren langen 
Achsen in den Richtungen, nach denen das Licht linear 
schwänge, wenn der Quarz kein Drehvermögen hätte. 
Sie werden um so gestreckter, je größer die Neigung 
gegen die Achse wird, um allmählich in Gerade überzu-
gehen. Für die Strahlenfläche des Quarzes folgt aus 
der Tatsache, daß sich auch in Richtung der Achse zwei 
verschieden schnelle Strahlen fortpflanzen, daß ihre 
beiden Schalen sich in der Achse nicht berühren können. 
Genaue Brechungsquotientenbestimmungen haben ergeben, 
daß die Kugelschale in der Nähe der Pole etwas nach 
außen, die Ellipsoidschale etwas nach innen gebogen ist, 
wie Fig. 101 dies übertrieben andeutet. Beide Strahlen-
geschwindigkeiten weichen also" von denen ab, die wir 
nach der Huygensschen Kugel-Ellipsoidkonstruktion er-
warten müßten, wenn auch nur wenig und nur in der 
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Nähe der Achse; insonderheit 
ist die Geschwindigkeit des 
ordentlichen Strahls nicht mehr 
konstant. Um einen Begriff 
von der Größe der Abweichung 
zu geben, seien einige Bre-
chungsquotienten mitgeteilt. 
Nach Huygens müßte in Rich-
tung der Achse sein 

n0 = ne = 1,5442243; 
dagegen findet man 

n0 = 1,5441884, 
Fig . 101. S t r ah l en f l äche eines » e = 1,5442602. 
d r e h e n d e n ^ e i n a d i s i g p o s i t i v e n Die Doppelbrechung kann 

man sich zusammengesetzt 
denken aus der, die vom Drehungsvermögen herrührt, 
und der gewöhnlichen Doppelbrechung anisotroper 
Kristalle. Längs der Achse ist nur der erste Teil wirk-
sam; vergrößert man die Neigung gegen die Achse, so 
tritt er mehr und mehr zurück und fällt von etwa 20° 
Neigung an gegen den zweiten Anteil nicht mehr merK-
lich ins Gewicht, so daß schon bei dieser Neigung 
die austretenden Strahlen praktisch linear schwingen. 

Bei z w e i a c h s i g e n Kristallen unterscheidet sich 
die Strahlenfläche drehender von der nicht drehender 
dadurch, daß sie aus zwei ganz getrennten Schalen be-
steht, die sich zwar in Richtung der Biradialen am 
nächsten kommen, auf ihnen aber keinen Punkt mehr 
gemeinsam haben. Die Strahlenfläche r e g u l ä r e r 
drehender Kristalle besteht aus zwei konzentrischen 
Kugelschalen. 

Die elektromagnetische Theorie mit ihrer in § 12 und 
13 entwickelten Kontinuumsauffassung der Materie ist 
nicht in der Lage, die Drehung darzustellen. Sie bedarf 
dazu atomtheoretischer oder rein formaler Zusätz-
annahmen — wie auch bei der Dispersion. Dispersion 
und Drehung werden so zu Prüfsteinen, an denen die 
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Gittertheorie ihr Mehrkönnen zu beweisen hat (s. Teil IV, 
§ 23 und 24). 

§ 20. Drehende Kristalle im konvergenten 
polarisierten Lichte 

Wenn sich der Quarz nur in der Nähe der Achse 
anders verhält als ein einachsiger nicht drehender Kristall, 
darf sich das Interferenzbild, das eine senkrecht zur 

Fig. 102. Q u a r z p l a t t e im k o n v e r g e n t e n po l a r i s i e r t en Lichte 

Achse geschnittene Quarzplatte im konvergenten polari-
sierten Lichte zeigt, auch nur in der Nähe der Achse, 
im Mittelpunkt des Gesichtsfelds, von dem in § 16 be-
handelten unterscheiden. Daß es in der Ta t so ist, zeigt 
ein Vergleich der Interferenzfigur 102, wie sie eine 
Quarzplatte zwischen gekreuzten Nicols liefert, mit der 
entsprechenden eines gewöhnlichen einachsigen Kristalls 
(Fig. 83). Der wesentliche Unterschied ist der, daß die 
Kreuzarme nicht mehr bis zum Mittelpunkte reichen; die 
Mitte erscheint hell, im weißen Licht in der Färbung, die 
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die Platte im parallelen Licht ergäbe. Die Färbung 
wechselt, wie im § 18 ausgeführt worden ist. Daß hier-
bei auch noch andere Abweichungen von den nicht 
drehenden Kristallen auftreten wie die, daß die Kurven 
gleichen Gangunterschieds in manchen Stellungen nicht 
das Aussehen von Kreisen, sondern das von Quadraten 
mit abgerundeten Ecken haben, läßt sich nur bei mathe-
matischer Behandlung des Problems begründen. 

Fig. 103. Ai rysd ie Sp i r a l en 

Ohne die Mathematik in umfangreichem Maße zu Hilfe 
zu nehmen, lassen sich auch die Interferenzbilder nicht 
deuten, die wir an Plattenkombinationen erhalten. 

X 
Schalten wir z. B. bei gekreuzten Nicols ein - - -Plättchen 

in der Diagonalstellung zwischen Polarisator und Quarz-
platte ein, mit anderen Worten: lassen wir zirkulär 
polarisiertes konvergentes Licht auffallen, so liefern, 
gleichviel welchen Rotationssinn das einfallende Licht 
hatte, L i n k s q u a r z e r e c h t s g e w u n d e n e und 
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R e c h t s q u a r z e l i n k s g e w u n d e n e S p i r a l e n 
als Interferenzbild. V i e r f a c h e S p i r a l e n sieht 
man, wenn man z^vei entgegengesetzt drehende, senk-
recht zur Achse geschnittene Quarzplatten übereinander-
legt, nach links gewundene (Fig. 103), wenn das Licht 
zuerst den Linksquarz durchsetzt, im anderen Falle 
rechtsgewundene. Nach ihrem Entdecker führen sie den 
Namen A i r y s c h e S p i r a l e n (1831). 

§ 21. Absorbierende Kristalle 
Beim Durchgang durch jeden materiellen Körper wird 

das Licht in seiner Intensität geschwächt, es wird absor-
biert. Die Absorption erstreckt sich bisweilen nur auf 
geringe Wellenlängengebiete, und wenn diese zudem im 
Ultrarot oder Ultraviolett liegen, können wir ohne wei-
teres nichts davon wahrnehmen. Wird dagegen ein Teil 
des sichtbaren Spektrums vernichtet, so zeigt der Körper 
in der Durchsicht eine Färbung, wie sie dem Zusammen-
wirken der übrigbleibenden Farben entspricht. 

In isotropen Körpern und regulären Kristallen muß 
die Färbung die gleiche sein, in welcher Richtung das 
Licht auch fortschreitet. Dagegen werden wir schließen, 
daß sich in ein- oder zweiachsigen Kristallen verschie-
dene Richtungen in bezug auf die Absorption ebenso ver-
schieden verhalten können wie in bezug auf die Fort-
pflanzungsgeschwindigkeit. Das bestätigt sich in der 
Tat. Greifen wir als Beispiel den rhombischen C o r -
d i e r i t (Fig. 104) heraus. Wir 
blicken in Richtung der Achse a 
durch ihn hindurch: er erscheint 
in der „F 1 ä c h e n f a r b e" 
graugrün. In Richtung der Achse 
b ist die Flädienfarbe gelb, in 
Richtung c indigoblau. Er zeigt a 
„T r i c h r o i s m u s " oder bes-
ser „P 1 e o c h r o i s m u s"; 
denn in einer anderen Sehridi- Fig. 104. CordUrit 
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tung ergeben sich Übergangsfarben zwischen den drei ge-
nannten Extremen, die den drei Kristallachsen angehören. 

Eine weitere Erkenntnis eröffnet sich, wenn wir das in 
Richtung a austretende graugrüne Licht in seine beiden 
Bestandteile zerlegen, den nach b und den nach c schwin-
genden. Wir können das so machen, daß wir den 
Kristall auf das Tischchen des Orthoskops legen derart, 
daß das Licht in Richtung a durch ihn hindurchgeht, und 
den oberen Nicol entfernen. Stellen wir den unteren 
Nicol so, daß seine Schwingungsrichtung einmal mit b, 
dann mit c koinzidiert, so können wir nacheinander 
beobachten, welche Färbung das nach b und welche das 
nach c schwingende Licht zeigt. G l e i c h z e i t i g 
sehen wir beide Färbungen, wenn wir das austretende 
Licht mit der sogen. „ H a i d i n g e r s c h e n L u p e " 

untersuchen. Sie besteht (Fig. 
n r r 1 105) aus' einer quadratischen 

D Öffnung D, die durch eine 
Lupe L betrachtet wird, und 

C- ,„c ,, ... , T einem zwischen Öffnung und 
r i g . 105. Haidingerscne Lupe T . T , • « 

Lupe eingefügten Kalkspat-
stück K von einer Dicke, daß die beiden Bilder der 
Öffnung, die es liefert, sich gerade berühren (Fig. 106). 

Bekanntlich rühren diese beiden Bilder von senk-
recht zueinander polarisiertem Lichte her. Die 
beiden in Fig. 106 eingezeichneten Schwingungs-
richtungen lassen wir bei der Untersuchung des 
Cordierits mit den Richtungen b und c überein-
stimmen und sehen dann das obere Quadrat in 

Fi 106 Färbung, die der Schwingung nach b ent-
spricht, der „A c h s e n f a r b e " von b, das 

untere in der Achsenfarbe von c, und da ergibt sich, daß 
die Schwingung nach b d u n k e l b l a u e s Licht liefert, 
die nach c b l a ß g e l b e s . Beide zusammen ergeben das 
erwähnte Graugrün. Analysieren wir ebenso das in Rich-
tung b austretende gelbe Licht, so zeigt es sich zusammen-
gesetzt aus dem bekannten nach c schwingenden blaß-

J 



Absorbierende Kristalle 111 

gelben Anteil und einem nach a, schwingenden b 1 a ü -
g r a u e n . In Richtung c sehen wir dann nichts Neues, 
sondern wieder den nach a schwingenden blaugrauen und 
den nach b schwingenden dunkelblauen Anteil. 

In der elektromagnetischen Lichttheorie wird die Ab-
sorption durch die Erzeugung von Leitungsströmen er-
klärt. Das erste Tripel der Maxwellschen Gleichungen 
((1) in § 12) erhält durch deren Einführung links je ein 
der Leitfähigkeit o proportionales Zusatzglied. Bei iso-
tropen Körpern oder regulären Kristallen genügt e i n o; 
bei den übrigen Kristallsystemen sind entsprechend den 
«D «2> £3 auch d r e i „ H a u p t l e i t f ä h i g k e i t e n " 
Oi> o2, a s einzuführen, die das Koordinatenkreuz der 
„ H a u p t l e i t f ä h i g k e i t s a c h s e n " festlegen wie 
die e nach § 12, Gl. (3) die Hauptdielektrizitätsachsen1). 

In das Koordinatensystem der Hauptdielektrizitäts-
achsen haben wir das Indexellipsoid eingezeichnet. Es 
ergab zu jedem Radiusvektor eindeutig die Normalen-
geschwindigkeit der nach diesem Vektor schwingenden 
Welle (sie war gleich dem Reziproken des Vektors!). 
Ebenso können wir in dem Achsenkreuz der Hauptleit-
fähigkeitsachsen eine geschlossene Oberfläche zeichnen, 
die den Zusammenhang zwischen Schwingungsrichtung 
und Absorption veranschaulicht und die gleichfalls an-
nähernd ein Ellipsoid ist, wenn wir die für die Stärke 
der Absorption charakteristische Zahl geeignet definieren 
(„A b s o r p t i o n s e l l i p s o i d"). 

Im rhombischen, mono- und asymmetrischen System ist 
das Ellipsoid dreiachsig. Im rhombischen System, das 
wir herausgegriffen haben, stimmen seine Achsen, das 
sind die Schwingungsrichtungen der größten, der 
kleinsten und einer mittleren Absorption, für alle Farben 
mit den optischen Symmetrieachsen überein. Im mono-
symmetrischen liegt eine seiner Achsen für jede Farbe in 

1) E x p e r i m e n t e l l ist bei den s t a r k a b s o r b i e r e n d e n M e t a l l e i n k r i s t a l l e n z . B. 
aus Z i n k d ie Ä n d e r u n g der L e i t f ä h i g k e i t m i t d e r R ich tung gemessen w o r d e n . 
D ie A u s f ü h r u n g e n im T e x t bez iehen sich auf sd iwach a b s o r b i e r e n d e Kr i s t a l l e , 
die a l le in d e r Beobach tung im durchgehenden Lichte zugängl ich s ind . 
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der kristallographischen Symmetrieachse, die anderen beiden 
in der kristallographischen Symmetrieebene. Diese beiden 
liegen für verschiedene Farben verschieden und stimmen 
bei derselben Farbe nicht mit den in der gleichen Ebene 
liegenden optischen Symmetrieachsen überein. Besonders 
schön zeigen den Pleochroismus hier gewisse Varietäten 
E p i d o t , die Gelb, Braun und Grün als Achsenfarben 
haben, und G l a u k o p h a n mit Hellgrüngelb, Violett 
und Ultramarin als Achsenfarben. 

Bei den asymmetrischen Kristallen läßt sich von vorn-
herein nichts über die Achsenrichtungen des Absorptions-
ellipsoids sagen. Dagegen ergibt sich aus den Symmetrie-
verhältnissen der regulären und einachsigen Kristalle, daß 
das Absorptionsellipsoid im regulären System zur Kugel 
und im hexagonalen und tetragonalen zum Rotations-
ellipsoid wird, dessen Achse in der Hauptachse liegt. 
Danach können einachsige Kristalle nur zwei extreme 
Farben ( D i c h r o i s m u s ) zeigen: eine in Richtung der 
Achse, die andere in allen Richtungen senkrecht dazu, 
die ja gleichwertig sind; oder, wenn wir wieder auf 
die Schwingungsrichtungen zurückgehen: eine, die allen 
Schwingungsrichtungen senkrecht zur Achse angehört, 
d. h. der ordentlichen Welle, wie sie auch liegen mag, die 
andere, die den Schwingungen parallel der Achse ange-
hört, d. h. der außerordentlichen Welle, wenn sie gerade 
senkrecht zur Achse geht. In dieser Richtung unter-
scheidet sie sich also wie in ihrer Geschwindigkeit so 
auch in ihrer Absorption denkbar von der ordentlichen. 
In den Zwischenrichtungen nähert sie sich in den Ab-
sorptionsverhältnissen wie in der Geschwindigkeit der 
ordentlichen, bis sie in Richtung der Achse mit ihr über-
einstimmt. 

Als Beispiel erwähnen wir noch einmal den T u r -
m a 1 i n. Die Schwingung senkrecht zur Achse, d. h. die 
ordentliche Welle wird in allen Richtungen gleich, und 
zwar sehr stark absorbiert, die außerordentliche Welle 
in Richtung der Achse genau gleich stark, so daß der 
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Turmalin in dieser Richtung fast undurchsichtig ist. Senk-
recht zur Achse wird sie weit weniger absorbiert und 
tritt hier als einzige parallel der Achse schwingend aus 
(vgl. Fig. 25). 

Wesentlich wie der Turmalin wirkt der H e r a p a -
t h i t , ein Perjodid des Chininsulfats. In Amerika wird 
er durch Einlagerung gleichgerichteter Mikrokristalle in 
Folien zu „ d i c h r o i t i s c h e n P o l a r i s a t o r e n " 
verarbeitet. Z e i ß in Jena stellt „ P o l a r i s a t i o n s -
f i l t e r " nach anderem Verfahren her. In Parallel-
stellung gehen durch zwei Zeißsche Folien 14ü/o im 
Grün, 18% im Rot hindurch, so daß sich als Färbung ein 
ziemlich reines Grau zeigt. Bei gekreuzter Stellung ist 
die Durchlässigkeit durch das ganze sichtbare Spektrum 
unter Vioo°/o. Solche Folien können in vielen Fällen die 
teureren Polarisationsprismen ersetzen. 

IV. T e i l 
Gitteroptik des sichtbaren Spektrums 

§ 22. Modell und Methode 
Wir haben bereits in § 1 darauf hingewiesen, daß es 

nur ein vorläufiges, formales, einebnendes, summarisches 
Verfahren ist, wenn wir die optische Theorie des ani-
sotropen Körpers an dem Modell eines kontinuierlich mit 
Masse erfüllten Raumes entwickeln, der in verschiedenen 
Richtungen verschiedene Dielektrizitätskonstanten oder 
Brechzahlen oder Lichtgeschwindigkeiten zuerteilt be-
kommt. Das ist eine sehr plumpe Zwangsjacke, die wir 
der lebendigen Natur überwerfen, und wir wissen aus 
vielen Erfahrungen: besser paßt sich ihr das „ G i t t e r -
m o d e 11" an, das die Körperpartikeln in der regel-
mäßigen, dreifach periodischen Anordnung des „ R a u m -
g i 11 e r s " zeigt. Für die Röntgenstrahlen mit ihrer 
Wellenlänge von der Größenordnung des Partikel-
abstands ist dieses Modell oder ein ähnliche* unvermeid-

ß u c h w a' 1 d . Kristalloptik 8 
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bar; für das sichtbare Licht mit seiner rund 1000 bis 
lOOOOmal größeren Wellenlänge genügt im allgemeinen 
die einfachere Kontinuumsvorstellung. 

Aber auch im Sichtbaren findet man bereits Erschei-
nungen, die auf die Gitterstruktur hindeuten. So kann 
man an sehr dünnen Kristallplättchen, z. B. aus Para-
toluidin, die man unterm Mikroskop in ihrem eigenen 
Dampfe wachsen sieht, im gespiegelten Lichte die Farben 
dünner Plättchen („Seifenblasenfarben") beobachten. Je 
nach seiner Dicke erscheint das Plättchen in einer andern 
Farbe, aber die Farben gehen nicht kontinuierlich inein-
ander über, sondern setzen sich in scharfen, sich allmäh-
lich vorschiebenden Trennungslinien voneinander ab. Das 
beweist den treppenförmigen Aufbau des Kristalls, die 
regelmäßigen Molekelschichten, die sich nach und nach 
ankristallisieren. Man kann solche Versuche noch ver-
feinern und aus den Interferenzfarben bis zur Feststellung 
eines elementaren Schichtabstandes kommen, dessen ganz-
zahlige Vielfache alle beobachteten Schichtdicken sind — 
sehr erstaunliche Ausmessung eines Feinbaus mit einer 
vielleicht 600mal größeren Wellenlänge. Auch die 
Streifen gleicher Dicke hat man neuerdings (S. T o -
1 a n s k y) zum gleichen Zwecke mit Erfolg herange-
zogen. 

Nach alledem wird man versuchen, die theoretische 
Kristalloptik auch des sichtbaren Spektrums auf das 
Gittermodell zu gründen, ' eine „G i t t e r o p t i k d e s 
S i c h t b a r e n " aufzubauen, eine „ L a n g w e l l e n -
o p t i k " als Gegenstück der „ R ö n t g e n o p t i k", und 
von ihr erwarten, daß sie zum mindesten dasselbe leistet, 
was die alte Kontinuumstheorie leistete, etwa die Nor-
malenfläche liefert wie die Maxwellsche Theorie in § 12 
oder die Schwingungsrichtungen im Kristall (§ 13). Wir 
werden im folgenden erörtern — und damit begeben wir 
uns von dem klassischen, gesicherten Besitzstand der ersten 
Teile in ein jüngeres, in vielfachem Aus- und Umbau 
befindliches Gebiet —, daß die neue Theorie nicht nur 
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der alten gleichwertig ist, sondern an deren Fehlstellen 
(s. S. 106), der Erklärung der Dispersion und der natür-
lichen Drehung, und in der quantitativen Verknüpfung 
optischer Konstanten mit andern Kristalleigenschaften wie 
den Elastizitätsmoduln und der spezifischen Wärme über 
sie hinausgeht. 

Begründung und entscheidende Förderung hat die 
Gitteroptik durch P. P. E w a l d 1 ) gefunden. Wenige 
Jahre nach seiner Dissertation 1912 beginnen gleich-
gerichtete Arbeiten von M. B o r n 2 ) , so daß man 
häufig von einer „ E w a l d - B o r n s c h e n G i t t e r -
t h e o r i e" spricht. Zahlreiche Beiträge von verschie-
denen Seiten folgen. Alle sind mathematisch schwierig 
und in unserem Rahmen nicht ins einzelne darstellbar. 
Wir müssen uns hier mit einer fast formellosen Veran-
schaulichung der Grundlagen und Ergebnisse begnügen. 

Das M o d e l l d e s K r i s t a l l g i t t e r s besteht aus 
einer räumlich regelmäßigen Anordnung von Atomen oder 
Ionen oder Atomgruppen, die durch Wechselwirkung an 
ihrer Stelle gehalten werden. Noch einfacher: um von 
dieser komplizierten Wechselwirkung loszukommen, stellt 
man sie als eine in die Ruhelage zurücktreibende Kraft 
dar, und statt der Atome oder ähnlichem werden nur 
Elektronen angenommen, die unter der Einwirkung dieser 
Kraft Schwingungen um die Ruhelage ausführen können 
(„O s z i l l a t o r e n", „ R e s o n a t o r e n"). Ist die 
rücktreibende Kraft proportional der Auslenkung, 
„ q u a s i e l a s t i s c h", so sind die Schwingungen sinus-
förmig; ist sie unabhängig von der Richtung der Aus-
lenkung, „ i s o t r o p e B i n d u n g", so ist die g e s a m t e 

1) P. P. E w a l d , Diss. München 1912: Dispersion und Doppelbrechung 
von Elektronengittern (Krisrallen). D e r s., Ann. d. Phys. 49, 1 und 117, 
1916. Eine kurze Monographie: P . P. E w a l d , Die Reflexion und 
Brechung des Lidits als Problem der Elektronentheorie, Berlin 1925. 

2) M. B o r n , Dynamik der Kristal lgi t ter , Berlin 1915. D e r s. in der 
Enzyklopädie der mathem. Wissenschaften, V3, Leipzig 1923. M. B o r n 
und M. G ö p p e r t - M a y e r , Dynamische Gittertheorie der Kristal le, 
Beitrag in Band 24* des Handbuchs der Physik von G e i g e r u . S c h e e l , 
Berlin 1933. 

r 
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A n i s o t r o p i e d e s K r i s t a l l s a u f d i e A n i s o -
t r o p i e d e r L a g e g e s c h o b e n . 

Um ein Bild von der Elektronenanordnung vor Augen 
zu haben, gehen wir wie in § 2 von einem Kristallsystem 
mittlerer Symmetrie aus, dem rhombischen. Bei ihm 
wurden die Kristallflächen auf ein Kreuz von drei auf-
einander senkrechten ungleichwertigen Achsen bezogen. 
Entsprechend ordnen wir die Ruhelagen der Elektronen 
in einem „ e i n f a c h e n r h o m b i s c h e n G i t t e r " 
an (Fig. 107): in rechtwinkligen kartesischen Koordinaten 

or a x 

Fig. 107. Rhombisches Gi t ter 

folgen die Partikeln einander in der x-Richtung jeweils 
im Abstände dv in der ^/-Richtung im Abstände d2, in 
der z-Richtung im Abstände d3. Durch Gleichsetzen 
zweier Abstände d oder gar aller dreier könnten wir zu 
dem einfachsten Schema eines tetragonalen oder regu-
lären Gitters übergehen, durch teilweises oder völliges 
Windschiefmachen der Achsen zu den unsymmetrischeren 
Systemen. 

In Weiterbildung dieses Modells kann man erstens die 
Elektronen wieder durch Atome oder Ionen ersetzen. 
Zweitens wird man beachten, daß in der Natur ver-
schiedene solche einfache Gitter ineinandergeschachtelt 
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sind. Selbst das häufig als erstes Beispiel herangezogene 
Steinsalz NaCl, bei dem abwechselnd Na- und Cl-Ionen 
in einem für alle Achsenrichtungen der Figur 107 gleichen 
Abstand d1 = d2 = d3 folgen, enthält eben ein ein-
faches (und nicht einmal das einfachste) Chlorgitter, 
hineingesetzt in ein gleiches Natriumgitter. Und wieviel 
verwickelter sind unsere Hauptversuchsobjekte Kalkspat 
und Quarz oder gar Gips und Glimmer! 

Drittens kann man der neuen Erkenntnis Rechnung 
tragen, daß das Atom aus einem Kern und einer räum-
lich ziemlich ausgedehnten negativen „L a d u n g s -
w ö l k e " besteht und daß solche Atome im Kristall 
dicht gepackt liegen — entgegen der Anschauung, die 
durch die üblichen Kristallmodelle aus Drähten und Holz-
kugeln vermittelt wird. So wird man den Kristall 
weniger als Punktanordnung von Elektronen denn als 
einen Körper ansehen, der von dreifach periodischen 
negativen Raumladungen lückenlos erfüllt ist1). 

Zum „Modell" rechnen wir noch die einfallende Licht-
welle, im einfachsten Falle eine ebene Sinuswelle, deren 
mathematischen Ansatz wir aus § 12 bereits kennen. Die 
Welle erregt alle Elektronen, die sie überstreicht. Sie 
erregt sie stark, wenn ihre Schwingungszahl v mit der 
Eigenschwingungszahl va der Elektronen übereinstimmt 
(„Resonanzfall"), und um so weniger, je größer der 
Unterschied von v und v0 ist. Schon die einfachsten 
mechanischen Gesetze der erzwungenen Schwingungen 
liefern als Schwingungstempo der Elektronen das der 
äußeren Welle und als die für die S t ä r k e des Mit-
schwingens entscheidende Größe den „R e s o n a n z -

f a k t o r'1 — - , der mit wachsender Annäherung an 
V(j2—v2 

die Resonanzstelle v = v0 größer und größer und für 

1) Grundlagen und Röntgenopt ik dieses Modells bei M. v . L a u e , Er-
gebnisse der exakten Naturwissenschaften 10, 133, 1931. Anwendung auf 
unsere Langweilenoptik bei G. M o 1 i e r e, Dynamische Theorie der Kristal l -
optik, Ann. d . Phys. 24, 591, 1935. 
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v — v0 sogar unendl ich wi rd . (Das wi rd durch Berück-
sichtigung der Osz i l l a to rendämpfung vermieden, die fü r 
einen weiteren Addenden im N e n n e r sorgt.) 

Das Wechselfeld der äußeren Wel le ist aber nicht 
die einzige K r a f t , die auf die Oszi l la toren wi rk t . Denn 
diese strahlen selbst bei der Schwingung wie kleine An-
tennen kugelförmige „E 1 e m e n t a r w e 11 e n " aus, und 
das gesamte Feld besteht aus dem der äußeren Welle 
und s ä m t l i c h e n Elementarwel len — das einen der 
Resonatoren erregende Feld besteht nur aus der äußeren 
Wel le und den Elementarwel len aller ü b r i g e n Reso-
na toren . Die Oszi l la toren entnehmen Energie aus dem 
Strahlungsfelde und sie geben auch Energie an das Feld 
ab; es ist ein sehr verwickeltes Zusämmenspiel des Gebens 
und Nehmens , dessen dynamische Möglichkeit ku rz in 
die Forderung gefaß t werden k a n n : d i e E l e k t r o n e n -
s c h w i n g u n g e n m ü s s e n g e r a d e d u r c h d a s 
v o n i h n e n m i t e r z e u g t e F e l d e r h a l t e n 
w e r d e n k ö n n e n . 

Dieses Gesamtmodel l der Kris ta l lopt ik , Gi t ter + 
Wellen, kann nun nach verschiedenen M e t h o d e n 
mathematisch ange faß t werden. Es zeigt sich, d a ß alle 
Methoden in ihren Ergebnissen wesentlich übereinstimmen 
u n d die w i c h t i g s t e n k r i s t a l l o p t i s c h e n 
E i g e n s c h a f t e n o h n e Z u s a t z a n n a h m e n 
h e r a u s z u r e c h n e n g e s t a t t e n . 

F a ß t m a n den Kristal l als Ladungswolke von räumlich 
dreifacher Per iodiz i tä t auf , so ist die Behandlungsweise 
noch rein kont inuumsmäßig . M a n m u ß sich vorstellen, 
daß sich die Ladungswolke unter dem E in f luß elektri-
scher Felder, z. B. des Wechselfeldes der Strahlung, ver-
schieben kann , und eine Wellenlösung der Maxwellschen 
Gleichungen suchen, die f ü r einen so beschaffenen und 
so bestrahlen Körpe r gilt (v. L a u e , M o l i è r e . Eine 
ausführl iche Kont inuumstheor ie mit räumlich periodischer 
Dielektr iz i tä tskonstante f indet sich schon 1924 bei 
E. L o h r). 
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Eine z w e i t e M e t h o d e ( B o r n a. a. O.) ver-
mischt Kontinuums- und Diskontinuumsauffassung. Die 
Kontinuumsseite wird durch die Anwendung der Max-
wellschen Gleichungen vertreten, die ja nichts vom ato-
maren Aufbau wissen, sondern mit stetig zusammen-
hängenden Stof fen rechnen. Aber die in diesen Gleichun-
gen auftretenden Körperkonstanten — das sind bei der 
üblichen erlaubten Nichtbeachtung des ß (s. § 12) die 
Dielektrizitätskonstanten e — werden aus der Diskon-
tinuumsvorstellung gedeutet, so wie das in der atomaren 
Elektrizitätslehre zu geschehen pf legt : s oder die durch 
die „Maxwellsche Beziehung" n2 — e mit ihm verknüpfte 
Brechzahl n wird aufgebaut aus den elektrischen „Mo-
menten" ( = Ladung mal [variablem] Abstand von der 
Ruhelage) sämtlicher schwingenden Körperpartikeln. 

Begrifflich am klarsten, wenn auch mit besonderen 
mathematischen Schwierigkeiten belastet, ist die d r i t t e 
r e i n m o l e k u l a r e M e t h o d e v o n E w a l d . Ohne 
unmittelbar auf die Maxwellschen Gleichungen zurück-
zugreifen, verfolgt sie das verwickelte Wellenspiel der 
Energieaufnahme und -abgabe im Resonatorengitter und 
gelangt schließlich zu makroskopisch prüfbaren Aussagen, 
indem sie die submikroskopischen Wechselfelder durch 
Mittelwertsbildungen glättet. 

Doch man ist noch einen Schritt weitergegangen. Alle 
diese Methoden sind „klassisch", insofern in ihnen nichts 
von Quanten vorkommt. Natürlich will man aber auch 
die Kristalloptik q u a n t e n t h e o r e t i s c h aufbauen 
und von dieser wiederum übergeordneten Stelle Zustim-
mung zu allem Erreichten erhalten. Das hat nach 
den neuesten und allgemeinsten Gesichtspunkten G , 
W e n t z e 1 getan1). Zum Glück wird der Gehalt der 
klassischen Theorien in entscheidenden Punkten bestätigt, 
quantitativ oder wenigstens qualitativ, einer von den hun-
dert Fällen der engen Beziehung, der „Korrespondenz" 

1) G. W e i t z e l , Kristalloptik und Wellenmechanik, Helv. Phys. Acta 6, 
89, 1933. 
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klassischer und quantischer Vorstellungsweise. Insonder-
heit kann das Bild der mitschwingungsfähigen Elektronen 
beibehalten werden, wenn man nur ihre Ladung, die man 
in der Klassik immer als Elementarladung e denkt, ge-
eignet bemißt und sich von dem Gedanken der realen 
Existenz je eines Schwingungsgebildes in je einem Gitter-
punkte frei macht. Entsprechend dem Abrücken der 
neuen Quantentheorie von räumlich-zeitlicher Anschau-
lichkeit, die man nur als ein Geländer beibehält, auf das 
man sich nicht allzu energisch stützen darf, sind es nur 
fingierte Oszillatoren, viel zahlreichere als die realen 
Oszillatoren bei E w a l d , ein mathematisches Hilfsmittel, 
ein „virtuelles Orchester", von dem man sich die kristall-
optischen Harmonien fiedeln läßt, rhythmischer und 
wohlklingender als in isotropen Körpern. 

§ 23. Dispersion und Doppelbrediung 
Eine ebene Welle E falle (Fig. 108) auf die Oberfläche 

des Kristalls und durchstreiche ihn unter Erregung sehr 
zahlreicher Elementarwellen in Richtung D. Es läßt sidi 
zeigen, daß man einen dynamisch möglichen Ansatz für 
die Elementarwellen finden kann, der dreierlei leistet. 
E r s t e n s löschen die Elementarwellen die geradeaus 
hindurchgehende Welle D durch Interferenz gerade aus. 
Diese Forderung muß man stellen; denn makroskopisch 
tritt eine solche geradeaus weitergehende Wel le nicht auf. 
Die Auslöschungsforderung ersetzt in der Gitteroptik 
die sogen. „Grenzbedingungen" der Maxwellschen 

Theorie, die das 
Verhalten der elek-
trischen und magne-
tischen Feldstärke an 
der Grenze zweier 
Medien regeln. 

Fig. 108. Wellen am Kristal lrand 

Z w e i t e n s über-
lagern sich die Ele-
mentarwellen im 
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Außenraum zu einer gespiegelten "Welle R in der von 
der Erfahrung bestätigten Richtung und Stärke, die in der 
Kontinuumsoptik durch das Spiegelungsgesetz und die 
„Fresnelschen Reflexionsformeln" festgelegt sind. Und 
d r i t t e n s erscheinen gebrochene Wellen G, gleichfalls 
im Einklang mit der Erfahrung nach dem Brechungs-
gesetze. Die Wellen D und R sind Probleme des Randes. 
Wir befassen uns nur mit dem innerkristallinen „Binnen-
problem" der Wellen G. 

Hier taucht noch vor jeder Erklärung der D o p p e l -
brechung die Frage auf: wie ist es möelich, daß eine 
Welle von der Geschwindigkeit v aus Elementarwellen 
entsteht, die allesamt mit der Vakuumlichtgeschwindigkeit 
C laufen? Denn zwischen den Elektronen ist Vakuum! 
Man muß zur Beantwortung erst den vieldeutigen Be-
griff „Lichtgeschwindigkeit" genauer fassen, v bedeutet 
„ P h a s e n g e s c h w i n d i g k e i t", d. i. der Weg, den 
ein Wellenberg oder ein Wellental oder ein dazwischen-
liegender Auslenkungswert („Phase") in der Zeiteinheit 
zurücklegt. Die Phasengeschwindigkeit ist für die Werte 
der Brechzahl, für die „optische Weglänge" Brechzahl 
mal Strecke und damit für alle Interferenzerscheinungen 
maßgebend ( n i c h t maßgebend etwa für die Ausbrei-
tungsgeschwindigkeit der Lichtsignale in den Gedanken-
versuchen der Relativitätstheorie). 

Wie schnell läuft also die ebene Welle E (Fig. 109) 
durch den Kristall, d. h. durch das Vakuum mit seinen 
„eingehängten" Netzebenen N j N2, wobei wir der 
Einfachheit halber E und alle N parallel annehmen? 
Z w i s c h e n den Netzebenen mit der Vakuum-
geschwindigkeit C — aber wir zeigen durch eine ein-
fache Überlegung, daß die Phase an jeder Netzebene, 
die sie durchstreicht, ein wenig zurückversetzt, zurück-
gehalten wird und somit in einer Sekunde nicht um die 
Strecke C, sondern nur um eine kleinere vorwärts kommt, 
die wir eben v genannt haben. Diese Zurückversetzung 

kommt dadurch zustande, daß von einer Netzebene eine 
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Fig. 109. Ebene Welle und Netzebenen 

180' 

90' 

vergleichsweise sehr schwache Elementarwelle ausgeht, die 
sich der ankommenden überlagert und durch Interferenz 
die weitergehende Phase ein kleines Stück verschiebt, im 
Normalfal le rückwärts. 

Die Kristallpartikeln führen unter der Wirkung von 
E erzwungene Schwingungen aus. Man weiß aus de-

ren Theorie, daß die 
Phase der erzwungenen 
Schwingungen mit der 
Fremdschwingung mit-
geht, solange die Fremd-
schwingungszahl v klei-
ner als die Eigenschwin-
gungszahl v0 ist, daß 
sie aber um 180° nach-
hinkt, wenn v größer 
ist als v0 (Fig. 110). 
Diese Phase wäre aber 

nur dann maßgebend für die Zusatzwelle in P (Fig. 109), 
wenn diese allein von dem eben erregten Nachbaroszillator 
A herrührte. Alle andern erregten Oszillatoren senden aber 
auch Zusatzwellen nach./5 , die wegen ihrer größeren Ent-
fernung später ankommen. Überlegungen, die ähnlich 
auch an anderen Stellen der Lichttheorie auftreten 
(„F r e s n e 1 sehe Zonenkonstruktion") lehren, daß man 
zu den genannten Nachhinkewinkeln noch solche von 
90° hinzuzählen muß, so daß unterhalb von v0 (Fig. 110) 

V0 •V 
Fig. 110. Phasen bei 

erzwungenen Schwingungen 
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ein Nachhinken um 90°, oberhalb eins von 270° heraus-
kommt, welch letzteres auch als V o r eilen um 90° be-
zeichnet werden kann. Somit ergibt sich für v < v0 eine 
Wellenüberlagerung nach Fig. 111. Die primäre Welle 
Pi kommt von links und ginge hinter der Netzebene N 

N 

mit kaum verminderter Amplitude als die punktierte 
Welle P2 weiter, käme nicht von N die sehr kleine, in 
der Figur übertrieben groß gezeichnete Sekundärwelle S 
hinzu, wie immer bei erzwungenen Schwingungen von 
der gleichen Wellenlänge wie Pt und P2, aber gegen P2 
um rund 90° nachhinkend. Die Überlagerung der Punk-
tierten P2 und S gibt die ausgezogene weitergehende 
Welle W, wiederum von gleichem A, d o c h m i t e i n e m 
g e g e n P2 e i n w e n i g z u r ü c k v e r s e t z t e n 
M a x i m u m . Dies ist die anschauliche Erklärung der 
geringeren Lichtgeschwindigkeit im Körper, v ist keine 
allerorts gleiche Körperkonstante wie in der Maxwell-
schen Kontinuumsvorstellung, sondern — charakteristisch 
für die Elektronentheorie — ein M i t t e l w e r t , sozu-
sagen von C-Schritten vorwärts und endlichen Rückver-
setzungen, ähnlich gewissen Prozessionen. Es gibt Ge-
biete der neuesten Kristallelektronik (W. K o s s e 1 und 
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Mitarbeiter), wo man dieses „Zuschalten von Sekundär-
wellen" bis in Einzelheiten verfolgen kann1). 

Zuerst sieht es so aus, als ob bei dieser Überlegung die 
Verkürzung der Wellenlänge vom Vakuumwert A0 auf 
IJn im Medium nicht herauskäme. Dem ist aber nicht 
so. Wir zeichnen (Fig. 112) als Momentbild die ausge-
zogene Welle an der Grenze von Vakuum und Kristall, 
bei der gerade in der Grenze eine Nullstelle A\ liegt, 
während die rechts benachbarte nach Durchlaufen vieler 

J 

aA? 
IsRMI 

Vakuum Kristall 

Fig. 112. Wellen Verkürzung im Kr i s t a l lg i t t e r 

Netzebenen bis A2 gekommen wäre, hätten die Sekundär-
wellen sie nicht um a zurückgesetzt. Das dazwischen: 
liegende Maximum hat erst halb so viele Netzebenen 
durcheilt wie die Nullstelle A2; also ist es nur um all 
zurückversetzt. So kommt im Kristall statt der punk-
tierten Fortsetzung die ausgezogene verkürzte Welle zu-
stande. 

In diesen Gedankengängen steckt auch bereits die Er-
klärung der D i s p e r s i o n als der Abhängigkeit der 
Brechzahl n oder der Phasengeschwindigkeit v von der 
Schwingungszahl v der ankommenden Welle. Je mehr 
sich v von kleinen Werten her der Resonanzstelle vu 
nähert, um so mehr werden die Resonatoren aufge-
schaukelt. Der „Resonanzfaktor" des vorigen § war das 
Maß dafür . Starkes Aufschaukeln aber bedeutet starke 
Sekundärwelle S, großes Rückversetzen, kleine v, große 

1) W . K o s s e i , N e u e K r i s t a l l o p t i k , O p t i k 3, 178, 1948. 
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n. Jenseits der Resonanzstelle v = v0 aber kommt das 
Vorversetzen, die vergrößerten v, die verkleinerten n, oft 
n < 1, wie man sie aus den Dispersionskurven der iso-
tropen Medien kennt, Z. B. aus den nach der Methode der 
gekreuzten Spektren selbständig aufgezeichneten von Na-
trium und anderen Alkalien. 

Wie n weitab von der Eigenschwingung v0, in den Ge-
bieten ohne merkliche Absorption, von v abhängt, lehrt 
die aus der rechnerischen Durchführung dieser Gedanken-
folge sich ergebende einfachste „D i s p e r s i o n s -
g e 1 c u n g Constans 

n2 — 1 = —i r - , v0£ — v1 

die links gewissermaßen die Mehrleistung des Mediums 
gegenüber dem Vakuum (n = 1) und rechts wesentlich 
den Resonanzfaktor enthält. 

Hat das Gebilde mehrere Eigenschwingungen vu v2 • • 
so tritt rechts eine Summe gleichgebauter Terme auf: 

n2 — 1 = 2 — ' — - (cj Konstanten), 
i vf — 

und solche Dispersionsformeln, aus den klassischen 
Theorien seit langem abgeleitet und nun gitteroptisch 
für kubische Kristalle genau so wiederzufinden, stellen 
den Versuchsbefund bei geeigneter, wenn auch meist nicht 
unmittelbar nachprüfbarer Wahl der vi mit fast voll-
kommener Genauigkeit dar. 

Figur 113 und die Tabelle geben die Messungen an 
S t e i n s a l z , wie üblich auf die Wellenlänge X und 
nicht auf die Schwingungszahl v bezogen (steigendes v-
abnehmendes X). 

Experimentelle Werte wie 
k n 

Cd 441 1,55962 
H 486 1,55338 
Na 589 1,54431 
H 656 1,54067 
K 768 1,53666 
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1,5000 

1,5500 

1,5400 

mrnju 500 600 700 800J 

Fig. II3 . Dispersion des Ste insalzes im Sichtbaren 

weichen von der von P a s c h e n angegebenen Formel 

w2 — 1 = 4 ,680137 + 
0 ,01278685 0 ,005343924 

X1 — 0 ,1219- J 2 — 0,1596- + 

. 12059,95 

_ — 6 0 2 

um weniger als 2 Einheiten der 5. Dez ima le ab. In der 
Formel sind, w ie man sieht, drei Resonanzste l len in Rech-
nung gesetzt, zwe i u l t rav io le t te bei 0 ,1219 und 0 ,1596 /i 
und eine im ferneren U l t r a ro t bei 60 //. 

Bleibt noch die Erk l ä rung der D o p p e l brechung. Das 
o o o o o o I I I den Elektronen von 

den Nachbarn zu-
o—o o—o o—o I I I gestrahl te Feld, 

a o o also auch die S t ä r -
H d f ~ ° ^ ^ l I I ke des Mitschwin-

^ o o o gens und dami t 
0 — 0 A i A w ieder die Phasen-

geschwindigkei t 
Fig . 114. Schwingungen im rechteckigen Gi t ter u n c J ¿ J e Brechzahl, 

ist verschieden, wenn die Elektronen in der xy-Ebene des 
rohmbischen Gitters F ig . 107 die in Fig . 114 in die Zeichen-
ebene gelegt ist, in der ^ -R ichtung schwingen w i e in der 

V 
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linken Hälfte der Figur oder in der ^-Richtung wie in 
der rechten Hälfte. Denn nach der Maxwellschen 
Theorie strahlt ein Dipol — man kann es an einer makro-
skopischen Antenne experimentell nachweisen — in seiner 
Schwingungsrichtung, gar nicht, maximal aber in der 
„Äquatorrichtung" senkrecht dazu. So erfolgt die 
wesentliche Zustrahlung in der linken Figurenhälfte 
durch die Nachbarn in der ^/-Richtung, in der rechten 
durch die Nachbarn in der x-Richtung. Jene sind um 
das kleinere d2 entfernt, diese um das größere dl. Also 
ist links die gesamte Zustrahlung größer, rechts kleiner, 
und dieser Unterschied, bedingt also durch die Anisotro-
pie der Lage, besorgt die Verschiedenheit der Phasenge-
schwindigkeiten, d. i. die Doppelbrechung. 

So folgt die von uns immer wieder festgestellte Ab-
hängigkeit des v von der Schwingungsrichtung (s. z. B. 
S. 51) aus der Gittertheorie. Bei E w a l d wird sowohl 
das Indexellipsoid wie die Normalenfläche im Einklang 
mit der Klassik und mit der Erfahrung wiedergefunden, 
und daß bei seinem Beispiel, dem Anhydrit C a S 0 4 , wohl 
die Größenordnung aber nicht die Zahlenwerte stimmen, 
liegt nur an der allzu großen Einfachheit des Modells. 

Verfeinert man es, so kommt man zu recht befriedi-
gender Übereinstimmung, ja man vertraut der Theorie 
so weit, daß man ein Modell für zutreffend hält, dessen 
Durchrechnung die beobachtete Doppelbrechung liefert. 
So hat H y 11 e r a a s mit Erfolg Kalomel Hg 2Cl 2 unter-
sucht, einen tetragonalen Kristall von extrem großer 
positiver Doppelbrechung, wegen stark verschiedener d 
im röntgenoptisch festgestellten Modell. Berechnung und 
Beobachtung der Hauptbrechzahlen « 0 und ne und ihrer 
Dispersion stimmen gut überein: 

X «o ne 
berechn. beob. berechn. beob. 

Li 671 1,9555 1,9556 2,6007 2,6006 
N a 589 1,9732 1,9733 2,6568 2,6559 
T1 535 1,9904 1,9908 2,7130 2,7129 
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Ähnliche Erfolge sind von H y l l e r a a s bei den beiden 
Formen des T iO s , dem Rutil und Anatas, von W. L. 
B r a g g bei Kalkspat, Aragonit, Korund erzielt wor-
den usw. 

Der wesentliche Gesichtspunkt bei der B r a g g sehen 
Überlegung am Kalkspat ist der folgende: für die Polari-
sation und damit für die Stärke des Mitschwingens 
kommen im C a C 0 3 in erster Linie die drei besonders 
leicht polarisierbaren O-Ionen in Frage. Sie liegen nach 
Ausweis der Röntgenanalyse in Ebenen senkrecht zur 
Achse an den Ecken eines gleichseitigen Dreiecks. In 
Figur 115 sind drei Nachbar-O-Ionen in die Papierebene 
gelegt; die Achse steht hier also senkrecht zur Papier-

^ ebene. Ein elektrischer Vek-
fö tor © in der Papierebene, 

senkrecht zur Achse liegend 
und damit einer o r d e n t -
l i c h e n Welle zugehörig 

\ (§ 6), polarisiert die drei 
\ Ionen durch Verschieben der 
- © £ * negativen Hülle wie gezeich-

net. Man übersieht die Wir-
V3/ t ) kung der Ionen aufeinannder: 

Fig. 115. Polarisation der O-Ionen die Polarisation von A wird 
bei e -J- Achse durch die von B und C ge-

fördert entsprechend der + - und — L a g e in diesen. Die 
in B wird durch die von A gefördert, durch die von C 
ein wenig geschwächt, so daß in summa noch eine För-
derung herauskommt. Für C gilt das Gleiche. Im ganzen 
kommt es also zu einer Verstärkung der Polarisation der 
Dreiergruppe durch die gegenseitigen Einwirkungen, also 
zu stärkerem Mitschwingen, zu einflußreicheren Sekun-
därwellen, zu einer erheblicheren. Verlangsamung der 
ordentlichen Welle. 

Liegt dagegen (Fig. 116) © in Achsenrichtung (das 
Dreieck ist perspektivisch gezeichnet, die negativen 

' • \ 
/Ó\ 

/ 
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die Sekundärwellen 8 © -
werden weniger ein- A . 
flußreidi, die a. o. \ l ) 

Hüllen senkrecht zur 
Dreiedisebene nach 
unten gezogen), han-
delt es sich also um 
die a.o. Welle, so 
wirken alle Nach-
barn aufeinanderpo-
larisationshemmend, 

A 

\ 

®c 
6 

Welle bleibt die 
schnellere, wie es die 

Fig . 116. Po la r i s a t ion der O - I o n e n 
bei (£ in der Adise 

Erfahrung zeigt. 
Zum Schluß noch eine Bestätigung unserer Grundvor-

stellungen in zugänglicheren Größenverhältnisseri. Nach 
Vorgängern wie G a r b a s s o , A s c h k i n a s s , Cl. 
S c h a e f e r hat L i n d m a n in Äbo (Finnland) Disper-
sionskurve und Doppelbrechung und darüber hinaus sogar 
die Drehung wiedergefunden, als er die Abmessungen des 
Resonatorenhaufens rund um das Milliardenfache stei-
gerte. An Stelle der Elektronen treten H e r t z s c h c 
M e t a l l r e s o n a t o r e n in Kreis- oder Kugelform 
von einigen cm Radius, auch in Spiralform, wenn es auf 
die Drehung hinauswill (§ 24). Ein isotroper Körper 
wird regellos aus Resonatoren in Wattepackung aufge-
baut, ein anisotroper aus hintereinandergestellten Papp-
scheiben mit Kugelresonatoren in der Rechtecksanordnung 
der Figur 114. Dann fallen H e r t z s c h e W e l l e n 
auf, ansteigend von vielleicht 10 bis 40 cm Länge, ein 
Bereich, der die Eigenwellenlänge der Resonatoren ent-
hält. Dabei erweist unser Gittermodell „handgreiflich" 
seine Brauchbarkeit. 

Die optische Drehung wird von der Gittertheorie ohne 
weitere Zusatzannahmen wiedergegeben, wenn man zwei 
Punkte beachtet: 

§ 24. Drehung 

B u c h v a l d , Kristalloptik 9 
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1. die schwingenden Partikeln sind miteinander ge-
koppelt, 

2. der Partikelabstand wird nicht verschwindend klein 
gegen die Wellenlänge angenommen1). 

In der Wiedergabe der Drehung geht B o r n (und gleich-
zeitig mit ihm C. W. O s e e n) über E w a l d hinaus. 

Es ist unmöglich, die hohe Theorie hier in Einzelheiten 
vorzuführen, doch läßt sich wieder ihr Grundgedanke in 
einfacher Form anschaulich machen. Der Kristall mit 
seinen sehr zahlreichen gekoppelten Atomen ist als riesige 
anisotrope „M a k r o m o l e k e l " aufzufassen. Wir 
gehen zu einer normalen Molekel über; wir wissen ja 
z. B., daß die Zuckerlösung dreht, also muß wohl, da die 
Zuckermolekeln in der Lösung regellos verteilt sind, das 
Drehvermögen bereits in dem Bau e i n e r Molekel be-
gründet sein. Die Zuckermolekel C 1 2 H2 2 O u ist uns aber 
natürlich noch viel zu umfangreich. Wir wählen eine 
Molekel von zunächst nur z w e i schwingungsfähigen 

d 

z Atomgebilden I und II (Fig. 
117) mit Ruhelagen auf der 
z-Achse im Abstände d und 
bringen die Annahme 1, die 
Koppelung, dadurch zum Aus-
druck, daß wir fordern: bei 
einer Schwingung von I in 
einer Richtung, die wir als x-
Richtung wählen, soll, das mit 
ihm gekoppelte II n i c h t nach 
x, sondern etwa mit einer 

F i g . 117 
drehenden M o l e k e l von (mindestens zwei) weiteren 

gleichzeitigen y - Komponente 
nach der Richtung s schwingen. 
Wie das modellmäßig zustande 
kommt, ist nur bei Hinzunahme 

M o d e l l e iner 

! ) E i n e genügende B e a d i t u n g dieser z w e i t e n A n n a h m e n i m m t den regu-
lären K r i s t a l l e n in der G i t t e r t h e o r i e die opt i sd ie I s o t r o p i e , v g l . F i g . 6 6 und 
die zugehör igen B e m e r k u n g e n . 
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Partnern zu verstehen, die bestimmte Vorzugsriditungen 
festlegen; bei einer zweiatomigen Molekül wären solche 
aus Symmetriegründen unmöglich. 

Nach § 19 wird das Dreh vermögen durch die ver-
schieden große Geschwindigkeit einer rechts- und einer 
linkszirkularen Welle erklärt. Nach re'chts wird gedreht, 
wenn die rechtszirkulare schneller ist (Fig. 99). Lassen 
wir also in der z-Richtung unseres Modells zuerst eine 
r e c h t s z i r k u l a r e Welle fortschreiten! In einem be-
stimmten Zeitpunkt liegt ihr Lichtvektor bei I gerade in 
der ^-Richtung, kann also mit seinem vollen Betrage an-
greifen. Und nun kommt die zweite Annahme hinein: 
bei II soll im gleichen Zeitpunkt der Lichtvektor n i c h t 
nach x weisen, weil der Partikelabstand nicht verschwin-
dend klein gegen X sein soll. Vielmehr liegt der Licht-
vektor bei II ein wenig aus der ^-Richtung heraus nach 
der y-Richtung zu gedreht, denn das entspricht der 
r e c h t s zirkulären Welle: wenn ich längs der negativen 
z-Richtung nach unten blicke, kommt erst der mehr nach 
y gedrehte Lichtvektor, später der nach x liegende in 
mein Auge, der Vektor dreht sich in der Tat beim Ent-
gegenblicken r e c h t s herum (vgl. die Definition S. 69). 
Der Lichtvektor hat durch diese Drehung eine relativ 
günstige Komponente in der für II möglichen Aus-
lenkungsrichtung s, er kann mehr Arbeit an II leisten, das 
Mitschwingen von II wird verhältnismäßig groß, und das 
gibt nach dem vorigen Paragraphen eine starke Sekundär-
welle, großen Unterschied des Mediums gegen das 
Vakuum, großes n, kleine Geschwindigkeit. 

Bei einer l i n k s zirkulären Welle aber weist der Licht-
vektor in dem Augenblicke, wo er bei I nach x liegt, bei 
II in eine Richtung, die aus der x-Richtung heraus dem s 
nicht wie vorhin zu-, sondern weggedreht ist. So ka,nn 
er nur mit kleinerer Komponente angreifen als vorhin: 
geringeres Aufschaukeln, geringeres Mitwirken des Me-
diums, kleineres n, größere Geschwindigkeit. Die ver-
schiedenen Geschwindigkeiten der entgegengesetzt zirku-

9 * 
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laren Wellen bedingen Drehung, in unserem Beispiele 
nach links. 

Das Modell bietet offensichtlich Verallgemeinerungs-
möglichkeiten. Die Fortpflanzungsrichtung braucht nicht 
in der Verbindungslinie von I und II zu liegen, s muß 
nicht gerade in die xy-Ebene fallen — wenn es nur nicht 
mit x übereinstimmt! — die Partikelzahl kann vermehrt 
werden: immer ist der Erfolg der gleiche. Diese erfreu-
lich leistungsfähige Modellvorstellung stammt von "W. 
K u h n 1 ) und hat vor allem in seiner und seiner Mit-
arbeiter H a n d Brauchbarkeit und Erweiterungsfähigkeit 
in zahlreichen physikalischen und chemischen Anwen-
dungen dargetan. 

Wir gehen von der Einzelmolekel zur Makromolekel, 
dem Kristall, zurück und wählen als Beispiel das N a -
t r i u m c h l o r a t NaC10 3 , das als erstes eine quanti-

tative Behandlung er-
fahren hat ( H e r -
m a n n 1923), weil 
es regulär ist, also 
eine sich überlagern-
de Doppelbrechung 
die Rechnung nicht 
stört, und weil es in 
Lösung n i c h t dreht, 
also ein Drehvermö-
gen nur der genü-
gend unsymmetri-
schen Partikelanord-
nung im Raumgitter, 
nicht der Einzelmo-
lekel verdankt. 

Fig. 118 gibt eine 
der durch Röntgen-

o o 

H 

O v 
Fig. 118. Basiszel le im N a t r i u m c h l o r a t 

) ao.~ 

l ) Z u r E i n f ü h r u n g gee igne t : W . K u h n , M o d e l l m ä ß i g e B e d e u t u n g der 
opt i schen A k t i v i t ä t , N a t u r w i s s e n s c h a f t e n 19, 854, 1931. 
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analyse bestimmten Basiszellen, aus denen es aufgebaut ist. 
Beim N a C l säßen die Na-Ionen in den Ecken des großen 
Würfels und in dessen Flächenmitten, von den Cl-Ionen 
eins in der Würfelmitte, die übrigen in den Kantenmitten. 
Beim N a C l O j sind je ein Na- und ein C l0 3 - Ion in der 
angedeuteten Reihefolge auf den Diagonalen der kleinen 
Würfel einander genähert, je um ein Sechstel dieser Diago-
nalenlänge. So rückt der Kristall in eine niedrigere Sym-
metrieklasse des regulären Systems, die niedrigste, ohne 
Symmetrieebene. Dafür gewinnen aber die C103-Ionen 
als die fürs Sichtbare entscheidenden Resonatoren wind-
schiefe Vorzugsrichtungen auf benachbarte Na-Par tner zu, 
ähnlich wie wir sie in dem einfachen Modell der Figur 117 
als Folge einer „Koppelung" voraussetzen mußten. 

Um die schraubenförmige Anordnung dieser Vorzugs-
richtungen noch augenfälliger zu machen, ist in dem 
Modell Fig. 119 die Würfeldiagnole senkrecht gestellt. 
Drei kleine Würfel von den achten der Fig. 118 sind als 
kleine Drahtgestelle zu sehen und als Holzkugeln drei 
der Vertikalachse benachbarte 
ClOj-Ionen in der symmetri-
schen Lage, wie sie die Cl-
Ionen im Steinsalz inne hätten. 
Durch sie sind drei horizontale 
(Oktaeder-) Ebenen gelegt, 
dreieckige weiße Bleche, außer-
dem kleine Vertikalbleche, 
deren Oberkanten, allesamt 
nach oben aus den Horizontal-
ebenen heraustretend, die Vor-
zugsrichtungen auf die nächsten 
Na-Par tner hin angeben. Die 
Schraubung um die Mittelachse 
ist deutlich. Die G i t t e r -
s t r u k t u r ist es, die diese 
Sdiraubung und damit die op-
tische Drehung mit sich bringt. Fig. 119. Sdiraubenstruktur 

des Natr iumdilorats 
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In der älteren Theorie waren Sonderannahmen nötig, z. B. 
die, daß die mitschwingungsfähigen Elektronen sich nidit 
geradlinig, sondern auf Schraubenlinien zu bewegen 
hätten. 

Daß Schraubenstruktur optische Drehung ergeben kann, 
ist seit langem bekannt. R e u s c h ist es bereits 1869 ge-
lungen, durch Aufeinanderpacken einer größeren Zahl 
von Glimmerlamellen (12 bis 36) gleicher geringer Dicke 
im Versuch eine Drehung ohne Doppelbrechung zu er-
zielen. (Solche Präparate sind heute im Handel zu 
haben.) Er schichtete sie so übereinander, daß die Spur 

der Achsenebene, die Schwingungsrichtung der lang-
sameren Welle in einem Plättchen immer um 120° gegen 
die des darunterliegenden gedreht war, und beobachtete, 
je nachdem dieser "Winkel im entgegengesetzten Sinne des 
Uhrzeigers (Fig. 120) oder im Sinne des Uhrzeigers 
(Fig. 121) genommen wurde, Drehung der Schwingungs-
richtung nach links oder rechts. Rechnerisch ergibt sich 
das durch elementare Komponentenzerlegungen und -Zu-
sammenfassungen im Sinne des § 14. 

Besser noch als beim Natriumchlorat ist später bei 
andern drehenden Kristallen Rechnung und Versuch in 
Einklang gebracht worden. Dazu gehört unser Hauptver-
treter, der Q u a r z , bei dem H y 11er a a s 1927 Dreh-
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vermögen wie Doppelbrechung berechnet hat. An ihm 
ist auch die bisher genaueste experimentelle Bestätigung 
der Gittertheorie drehender Kristalle gewonnen worden 
(S z i v e s s y und M ü n s t e r 1934). 

Somit sind wesentliche Probleme der Gitteroptik nicht 
nur in den Grundzügen gelöst, sondern bis zur Angabe 
von Zahlenwerten gefördert. Andere, wie das der Ab-
sorption, harren noch einer befriedigenden Theorie. Im 
ganzen gesehen bleibt noch sehr viel zu tun. Eine ge-
kürzte Übersicht wie diese entgeht kaum der Gefahr einer 
allzu großen Glättung. 
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