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§ 1. Einleitung

Die Kristalloptik handelt von den , Taten und Leiden
des Lichts in Kristallen. Kristalle sind Korper, deren
Atome regelmiflig, in einem ,Raumgitter”,
angeordnet sind: das gibt dem Gebiete sein eigentiim-
liches Geprige. Das Licht aber, das wir bald.im elektro-
magnetischen Wellen-, bald im Korpuskelbilde zu sehen
uns gewohnt haben, erscheint uns hier so rein wie sonst
selten als Wellenbewegung; die Kristalloptik ist der
feinste Priifstein jeder Wellentheorie des Lichts.

Genau genommen hitten wir die Vorstellung durchzu-
filhren, daf das einfallende Licht die Partikeln des
Kristallgitters zum Mitschwingen erregt und dafl die be-
obachtbaren Tatsachen sich als Uberlagerung der ein-
fallenden wund aller sekundiren ,Elementar-
wellen® deuten lassen. So werden wir tatsichlich im
letzten Teile verfahren — aber dieser Teil wird kurz
sein, einmal, weil die umstindlichen Summationen und
sonstigen mathematischen Hilfsmittel sich einer elemen-
taren Darstellung gréfitenteils entziehen, hauptsichlich
aber, weil in den meisten Fillen ein einfacheres Vor-
gehen zum Ziele fithrt. Denn ebenso wie die geometrische
Optik von der Wellenoptik die Erlaubnis erhilt, inner-
halb gewisser Grenzen mit ihren ,Lichtstrahlen” und
deren Spiegelungen, Brechungen und Schnittpunkten
Geometrie zu treiben — und sie erzielt damit z. B. bei
der Durchrechnung von Linsensystemen die erstaunlichsten
Erfolge, obwohl doch jedermann weify, dafl es so etwas
wie einzelne Lichtstrahlen gar nicht gibt! —, ebenso ge-
stattet die Girtteroptik, gegebenenfalls von dem atomaren
Feinbau des Kristalls vollig abzusehen.

Wann das geschehen darf, hingt von dem Groflen-
verhiltnis der Lichtwellenlingen zum gegenseitigen Ab-
stande der Kristallpartikeln ab. Dieser liegt nach Aus-
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sage der Atomtheorie in der Groflenordnung der
Angstromeinheiten (1 A = 108 cm). Arbeitet man mit
Rontgenlicht, dessen Wellenlingen gleichfalls um 1A
liegen, so mufl jedes Kristallatom als Einzelwesen be-
handelt werden; liegt eins im Wellenberg des Lichts, so
sein Nachbar im gleichen Augenblick keineswegs mehr.
Hier ist eine Verwischung der atomaren Unterschiede un-
zuldssig, die gitteroptische Darstellung unvermeidbar.
Das sichtbare Licht anderseits, um das es sich im folgen-
den allein handeln wird, hat Wellenlingen zwischen
etwa 4000 A im Violett und 7200 A im Rot. Sie sind
so viel grofler als der mittlere Partikelabstand, daff man
in der Kristalloptik des Sichtbaren, das ultraviolette und
ultrarote Nachbargebiet einbegriffen, von den Einzel-
atomen absehen, die Atome sozusagen iiber den Raum
verschmieren darf. Bei dieser Einebnung aber geht zu-
nichst die Vorstellung der regelmifigen Anordnung der
Partikeln verloren, und man schafft summarisch und for-
mal dadurch Ersatz, daf man den Kristall als zwar
»homogenen®, d.h. in den kleinsten Bereichen gleich-
artigen, aber ,anisotropen® Kérper auffafie, d.h.
ihn in den verschiedenen Richtungen mit verschiedenen
physikalischen Eigenschaften begabt, insonderheit thm
verschiedene Werte der Lichtgeschwindigkeit in den ein-
zelnen Richtungen zuschreibtt).

Man kénnte die leitenden Gedanken der Kristalloptik
also darstellen, indem man von den Grundgleichungen
der elektromagnetischen Lichttheorie, den Maxwell-
schen Gleichungen, ausgeht und auf den Fall der
anisotropen Korper spezialisiert. Was man hierbei an
formaler Glitte gewinnt, verliert man an geschichtlichem
Verstindnis und an Anschaulichkeit. Die Kristalloptik,
anschaulich, formenschtén und farbenfreudig wie kaum

1) Isotrope Festkdrpér kann man durch einseitigen Drudk anisotrop
machen. Darauf beruht eine technisch wichtige Methode zur Messung innerer
Spannungen, die viele Ahnlichkeiten mit der Kristalloptik aufweist. S. z. B.

Féoppl und H. Neuber, Festigkeitslehre mittels Spannungsoptik,
Miinchen-Berlin 1935. — G. Mesmer, Spannungsoptik, Berlin 1939.
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cin anderes Gebiet der Physik, wire ein Musterbeispiel
fiir den Unsegen solch rein deduktiver Behandlungsweise.
Wir werden 1m Gegenteil mit einfachen Versuchen be-
ginnen, denselben wie Olaf Rémers Lehrer Eras-
musBartholinus vor bald 300 Jahren (1669). Wir
werden sie zuerst mit Hilfe der gleichen einfachen theo-
retischen Hilfsmittel deuten, wie Huygens es bald
darauf getan hat (1678), und wir werden diese Hilfs-
mittel weiterbilden wie Fresnel (1788 bis 1827), dic
bedeutendste Persdnlichkeit der klassischen Wellentheorie.
Dann erst, in § 12 und 13, werden wir die so gewonnene
Ubersicht in die elektromagnetische Gesamttheorie ein-
bauen.

Vorausschicken aber wollen wir, um spiter nicht unter-
brechen zu miissen, einen kurzen Uberblick iiber die
Kristallsysteme.

§ 2. KristallsystemeV

Durch die geordneten Partikeln des Kristalls kann man
in sehr verschiedener Weise Ebenen hindurchlegen, sogen.
wNetzebenen®, auf denen Partikeln liegen. Natiir-
lich mufl auch die Kristalloberfliche als eine partikel-
besetzte Ebene zu diesen Netzebenen gehoren, und wenn
wir, wie in §1 vorgeschlagen, von dem Feinbau zunichst
ganz absehen, bleibt als einfachstes makroskopisches
Kennzeichen der atomaren Regelmifligkeit und der Un-
gleichwertigkeit der einzelnen Kristallrichtungen die An-
ordnung der natiirlichen Begrenzungsflichen iibrig. Diese
Anordnung zeigt eine groflere oder geringere Symmetrie,
und man teilt nach ihr rein stereometrisch alle moglichen
Kristallpolyeder in 32 ,Klassen“ ein. Jeder Klasse
ist ein bestimmtes Koordinatensystem (,,Achsen-
system®, ,Achsenkreuz“) angemessen (wie immer
in der Physik; dem Plaitenkondensator sind kartesische,
dem XKugelkondensator sind Polarkoordinaten ,,ange-

1) Vgl. hierzu W, Bru hns, Kristallographie, neubearb. v. P. Ram -
d o hr Sammlung Géschen Bd. 210, Berlin 1944. Neuauflage in Vorbereitung.
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messen®): die Klassen, die auf das gleiche Achsenkreuxz
bezogen werden, faflt man zu einem ,Kristall-
system® zusammen. Man unterscheidet deren sechs
oder auch sieben.

1. Wir machen uns an einem Kristallsystem mittlerer
Symmetrie die wichtigsten Begriffe klar, mit denen wir
im folgenden zu arbeiten haben. Fig. 1 stellt einen

Aragonitkristall dar. Wir

konnen 3 verschiedene Ebenen

durch diesen Kristall legen, die
ihn in zwei spiegelbild-
lichgleiche Teile te'len;
eine horizontale, die durch die

Achsen a und 5 bestimmt ist,

und zwei vertikale, eine durch
p @ und ¢, eine durch 4 und .

Solche Ebenen heiflen ,,Sym -

metrieebenen®.

Drehen wir den Kristall um
die Achse ¢, so brauchen wir
nicht um 360° zu drehen, bis
er wieder mit sich selbst
zur Deckung kommt: es ge-
niigt eine Drehung um 180°.

Dasselbe gilt fiir die Geraden 4 und b, Derartige
Geraden nennt man ,Symmetrieachsen® und
zwar nennt man Symmetrieachsen 2-, 3-, 4-, 6-zihlig,
360° 360° 360° 360°
2 3 46

den Kristall in die Deckstellung bringt. Der Aragonit
hat also drei zweizihlige Symmetrieachsen, die auf den
drei Symmetrieebenen senkrecht stehen.  Verallge-
meinernd versteht man unter Symmetrieachse keine be-
stimmte Gerade, sondern nur einc bestimmte Rich-
tung; jede Gerade parallel dieser Richtung fiihrt die
Bezeichnung Achse. Das erscheint durchaus sinnvoll,
wenn man sich der atomaren Ordnung erinnert, die eine

Fig. 1. Aragonit

je nachdem schon eine Drehung um
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Richtung, nicht aber eine Gerade auszeichnet.
Der Kristall hat ferner ein ,Zentrum der Sym-
metrie¥ d.h, einen Punkt in seinem Innern, in Fig. 1
den Schnittpunkt der drei Achsen, mit der Eigenschaft,
dafl jede durch ihn gelegte Gerade auf beiden Seiten
von ithm in gleicher Entfernung gleichwertige Kristall-
flichen trifft.

Fassen wir Symmetrieebenen, Symmetrieachsen und
das Symmetriezentrum unter dem Namen ,Sym-
metrieelemente“ zusammen, so kdnnen wir sagen:
Die Symmetrieelemente des Aragonits sind drei aufein-
ander senkrechte Symmetrieebenen, drei sich unter
rechten Winkeln schneidende Symmetrieachsen (die
Schnittlinien der Symmetrieebenen!) und das Zentrum
der Symmetrie. Alle Kristalle mit den genannten Sym-
metrieelementen  gehdren zum ,rhombischen
System®. Will man die bei ihnen méglichen Kristall-
flichen analytisch-geometrisch festlegen, so wihlt man
die drei Symmetrieachsen zu Koordinatenachsen. Diese
drei Achsen sind nicht gleichwertig, nicht ver-
tauschbar: wird z.B. eine von zwei Flichen senkrecht
geschnitten, wie die 5-Achse in Fig.1, so gilt das fiir
-die anderen Achsen nicht.

2. Es gibt Kristalle von hoherer und solche von ge-
ringerer Symmetrie als die des rhombischen Systems. Wir
besprechen zunichst die letzteren.

Durch den Gipskristall Fig.2 kann man
nur eine Ebene legen, die ihn in spiegelbild-
lich gleiche Teile teilt. Sie liegt parallel zur
Fliche 5. Es ist auch nur eine zweizihlige
Symmetrieachse vorhanden, die auf der Sym-
metrieebene senkrecht steht und die man als
eine der Koordinatenachsen wihlt (wihrend
die beiden anderen in die Ebene & fallen,
ohne einen Rechten miteinander zu bilden).
Auflerdem gibt es ein Zentrum der Symmetrie.

Fig. 2. Gips Kristalle mit diesen Symmetrieelementen ge-
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h8ren zum ,monoklinen oder monosymme-
trischen System®. Erwihnt sei aufler dem Gips der
optisch wichtige Glimmer (vgl. S. 77).

Das Strikline oder asymmetrische
System' endlich besitzt weder eine Symmetrieebene
noch eine Symmetrieachse, sondern nur das Zentrum der
Symmetrie, Seine Flichen werden auf drei ungleich-
wertige, windschief zueinander gelegene Achsen bezogen.

3. Mehr Symmetrieelemente als das rhombische besitzen

das ,tetragonale”, das ,hexagonale* und
das ,regulire System®; mit diesen sechs sind
dann die Kristallsysteme erschdpft, es sei denn, dafl man
das hexagonale System nochmals unterteilt (s. Nr. 5).
Fig. 3 und 4 stellen
: tetragonale Kristall-
i typen dar. Es gibt hier
|

eine horizontale Symme-
trieebene und vier verti-
<~ 1 | kale, von denen zwei
| durch gegeniiberliegende
i Kanten und zwei durch
! gegeniiberliegende  Fli-
; chenmittenlaufen,imgan-
zen also fiinf. Die hori-
zontale Symmetrieebene
nimmt eine einzigartige
Stellung unter ihnen ein, weil die vier anderen auf ihr senk-
recht stehen, und wird daher als ,Hauptsymmetrie-
ebene® bezeichnet, die vier anderen als ,,Neben-
symmetrieebenen® Senkrecht zur Hauptsym-
metrieebene steht die (hier also vertikale) ,Haupt-
symmetrieachse, die vierzihlig ist, senkrecht zu
jeder der vier ibrigen Symmetrieebenen je eine zwei-
zihlige ,Nebenachse® so dafl es im ganzen fiinf
Symmetrieachsen gibt. Dazu das Zentrum der Sym-
metrie. Die Hauptachse wird eine der Koordinaten-
achsen, zwei untereinander gleichwertige in der Horizon-

R SRR

Fig. 3 Fig. 4
Tetragonale Kristalltypen
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talebene vervollstindigen das rechtwinklige Koordinaten-
kreuz,

4, Zum hexagonalen System gehdren die
wichtigsten der uns spiter beschiftigenden Kristalle, vor
allem Kalkspat und Quarz Die Symmetrieele-

mente Zhneln denen des tetragona-
len Systems. So zeigt ein Blick auf
den hexagonalen Kristall Fig. 5, daff
wieder eine horizontale Hauptsym-
metrieebene existiert und diesmal

sechs darauf senkrechte Neben-
symmterieebenen, drei durch gegen-
iiberliegende Kanten, drei durch
gegentiberliegende  Flichenmitten. Hig. S amid
Senkrecht zu jeder der sieben onoe YRAmCe
Symmetrieebenen steht eine Symmetrieachse; senkrecht
zur Hauptsymmetrieebene die sechszihlige Haupt-
achse, senkrecht zu den sechs anderen, also in der
horizontalen Hauptsymmetriebene liegend, sechs zwei-
zihlige Nebenachsen. Koordinatenkreuz: Hauptachse und
drei gleichwertige horizontale Nebenachsen unter 60°.
Auch das Symmetriezentrum ist vorhanden.

5. Wir wiederholen in Fig. 6 die Pyramide der vorigen
Figur und lassen an ihr die nicht schraffierten Flichen
auf Kosten der schraffierten wachsen, bis diese ver-

Fig. 6 Fig. 7
Entstehung des Rhomboeders aus der hexagonalen Pyramide

schwunden sind. Dann entsteht der in Fig, 7 darge-
stellte Kristall, ein ,Rhomboeder”, wie es die natiir-
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lichen Spaltungsstiicke des Kalkspats zeigen. Wir kénnen
das Verfahren, durch das wir es gewonnen haben, auch
so kennzeichnen: wir haben an der Pyramide Fig. 6 die
Hauptsymmetrieebene und die drei durch die Pyramiden-
kanten laufenden Nebensymmetricebenen wegfallen, un-
wirksam werden lassen. Das Rhomboeder zeigt also eine
geringere Symmetrie als die Pyramide: es behilt von den
Symmetrieebenen noch drei, von den Symmetrieachsen
vier, nimlich die vertikale Hauptachse, die die beiden
stumpfen Rhomboederecken verbindet, und drei darauf
senkrechte Nebenachsen. Dieses Verfahren, gewisse Sym-
metrieelemente fortfallen zu lassen, kann man bei den
Kristallen jedes Systems anwenden. Man erhilt dann
immer Formen, die weniger Flichen haben als die, aus
denen sie hergeleitet sind, und die man im Gegensatz zu
diesen, den ,,Vollflichnern® oder den ,Ho-
loedern®, ,Halbflichner® oder ,Hemieder”
nennt. Wir sagen also: Das Rhomboeder gehort zu einer
Hemiedrie des hexagonalen Systems, und da es die wich-
tigste Form dieser Hemiedrie ist, nennen wir sie nach ihm
osshomboedrische Hemiedrie®“ In ithr kristalli-
siert der Kalkspat, in einer ihrer Unterabteilungen der
Turmalin. Oft weist man den Kalkspat in cin
eigenes, siebentes Kristallsystem ein, das ,trigonale®,
mit einer dreizihligen Hauptachse, das nach dem Rhom-
boeder als seiner wichtigsten Gestalt auch das ,rhom -
boedrische® genannt wird. Thm gehdren dann auch
der gleich zu nennende Quarz und der Zinnober an.

Das Kalkspatrhomboeder hat sechs stumpfe Kanten, wo zwei
Flichen unter 105° 5/, und sechs spitze, wo zwei Flichen unter
74° 55 zusammenstoflen. Die Hauptachse verbindet bei einem
regelmiflig ausgebildeten Rhomboeder die beiden Edken, wo
drei stumpfe Kanten zusammenlaufen. Sonst kann man sie als
die von der stumpfen Edke ausgehende Gerade definieren, die
mit den drei dort zusammenstofienden Flichen gleiche Winkel
(von 45° 23,5’} bildet.

6. Lassen wir bei hemiedrischen Formen nochmals ge-
wisse Symmetrieelemente fortfallen, so entstehen die sog.
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stetartoedrischen. Z.B., gehdrt der Quarz

und der Zinnober zu einer Tetartoedrie des hexago-

nalen Systems. Fig. 8 und 9 zeigen Formen, wie sie

beim Quarz vorkommen.

Beide sind ,enantio-

morph® d.h. sie haben

zwar dieselben Flichen, eine

kann aber durch Drehung

nicht in die andere iiberge-

fithrt werden; vielmehr ver- | A

hilt sich eine zur anderen wie

die rechte Hand zur linken.
7. Die holoedrischen For-

men des reguliren

Systems, als bekannteste

Wiirfel und Oktaeder, haben neun Symmetrie-

ebenen, dreizehn Symmetrieachsen und das Zentrum

der Symmetrie und werden auf drei senkrecht zu-

einander stehende gleichwertige Achsen be-

zogen.  Reguldr kristallisieren 2z.B. Diamant,

Steinsalz, Sylvin, Flufispat, Alaun und

viele Metalle wie Gold, Silber, Kupfer, Eisen. Doch wird

sich herausstellen (§12), daf fiir die Kristalloptik des

sichtbaren (nicht die des Rontgen-) Lichts das regulire

System von geringer Wichtigkeit ist,

Fig. 8 Fig. 9
Linksquarz Rechtsquarz

I. Teil

Doppelbrechung und Polarisation
§ 3. Erste Grundtatsache: Doppelbrechung

Wir kniipfen wieder an §1 an und beschreiben den
grundlegenden Versuch: wir lassen ein schmales Licht-
biindel auf das in Fig. 7 dargestellte Kalkspatrhomboeder
auffallen, das auch Bartholinus zu seiner Ent-
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deckung gedient hat') und das die gesuchte Erscheinung,
die erste der beiden Grundtatsachen aller Kristalloptik,
besonders deutlich zeigt, die ,Doppelbrechung™).

Doppelbrechung heifit: ein einfallendes Lichtbiindel
wird doppelt gebrochen, bei der Brechung in zwei Teile
zerlegt. Lassen wir es beispielsweise . (Fig. 10) in Rich-
tung AB senkrecht auf eine
Rhomboederfliche auftref-
fen, so spaltet es sich in
zwei, von denen eins, O, un-
abgelenkt durch den Kristall
hindurchgeht, wibrend das
andere, E, beim Eintritt in
die Richtung BC gebrochen
wird und bei C dem ersten
B Biindel parallel austritt. Je-
. des Biindel hat die halbe

ig. 10 iti Ging-

T e
such am einfachsten so anstellen, dafl ich senkrecht
durch den Kristall nach einer kleinen hellen Off-
nung in einem Schirm sehe: dann erblicke ich zwei Bilder
der Offnung. Oder ich suche durch den Kalkspat hin-
durch Schrift zu lesen und beobachte Verdopplung der
Buchstaben.

Der Strahl O, der bei senkrechtem Einfall ungebrochen
weitergeht, verhilt sich hier und wie ich sonst den Ver-
such abindern moge, im Kiristall wie in einem isotropen
Medium. Wir nennen ihn deshalb den ,radius ordi-
narius, den ,gewodhnlichen* oder den
sordentlichen” Strahl. E dagegen folgt offen-
bar nicht dem Snelliusschen Brechungsgesetze; er wird bei.

1) Die Schrift des Erasmus Bartholinus ist in deutscher Uber-
setzung, ,Versuche mit dem doppeltbrechenden islindischen Kristall®, leicht
zuginglich in Ostwalds Klassikern der exakten Wissenschaften, Nr. 205,

2) Vorziigliche Kristallpriparate liefern z. B. die Optischen Werkstitten
von Dr. Steeg und Reuter, Homburg v.d. H. Hier auch ebenso wie
bei Carl Zeifl Jena u.a. eine handliche optische Bank mit genauer
Beschreibung aller einschligigen Versuche,
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senkrechtem Einfall abgelenkt. Daher der Name
stadius extraordinarius“, ,ungewdhn-
licher*, ,auflerordentlicher® Strahl

Um die Frage zu beantworten, nach welcher Seite der
auflerordentliche Strahl abgelenkt wird, drehen wir den
Kristall um ABO als Achse und beobachten, daf sich
dabei BCE mit dem Kristall um A4ABO herumdreht. BC
liegt also im Kristall fest, und zwar in der schraffierten
Ebene, die die Kristallachse
K,K, und das Einfallslot AB D
enthilt. Jede Ebene durch die
Achse wird ,,Hauptschnitt

genannt, und speziell der zu ~E
AB gehdrige Hauptschnite ist 4 B ——>0
die Ebene durch die Achse und

AB, die Papierebene in Figur

10. Ich kann demnach sagen: 24

der auflerordentliche .

Strahl i . . Fig. 11 .
tra 15t Jin SeInem Sahlenverlauf im Hauptschnitt

Hauptschnitt abge- .

lenkt, nach der stumpfen Rhomboederkante KD hin.
Noch einmal ecigens herausgezeichnet stellt sich der

Vorgang so dar, wie es die Fig. 11 angibt.

§ 4. Die Strahlenfliche einachsiger Kristalle

Wir koénnen den Grundversuch mannigfach abwan-
deln, schon am Kalkspat durch Anderung der Einfalls-
richtung, ganz zu schweigen von der Wahl anderer
Kristalle, andersfarbigen Lichts usw. Wie man die Fiille
der Mbglichkeiten einheitlich und einfach iiberschauen
kann — Sinn und Ziel jeder physikalischen Theorie — hat
Huygens in dem beriihmten fiinften Kapitel seiner
,,Abhandlung iiber das Licht“ gezeigt!) (1678 der Pariser
Akademie mitgeteilt, 1690 verdffentlicht, vgl. §1). Er
bentitzt dabei die Fliche, die man heute ,Strahlen-

1) Chr. Huygens, Abhandlung iiber das Licht, in Ostwalds
Klassikern der exakten Wissenschaften, Nr. 20.
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geschwindigkeits- oder kiirzer ,Strahlen-
fliche™ nennt!); es ist die, bis zu der sich eine von
einem Punkt ausgehende Lichterregung in einer be-
stimmten Zeit fortgepflanzt hat. Sie ist beim isotropen
Korper, bei dem alle Richtungen gleichwertig sind, eine
Kugel, und in einer Figur, die sich noch heute in allen
Lehrbiichern der Physik findet, gibt Huygens an, wie
man mit Hilfe solcher Strahlenflichen- Kugeln zu einem
Lichtbiindel, das auf die Grenze G zweier isotroper Me-
dien I und 11 auffillt, das gebrochene Biindel kon-
struieren kann.

AB (Fig. 12) sei ein
Stiick der als eben
angenommenen, auf
dem Papier senkrecht
stehenden  Strahlen-
fliche (die ,,Wellen-
front“) des auffallen-
den Lichts. Wihrend
sich B bis C fort-
pflanzt, hat sich um
A im Medium II eine
Elementarwelle mit
dem Radius AD aus-
gebreitet und um E,
den Mittelpunkt von AC, eine mit dem Radius

Fig. 12, Brechung im isotropen Medium

D . .
EF = 442— Die gemeinsame Tangentialebene CFD ist

die neue Strahlenfliche, AD die Richtung der gebrochenen
Strahlen.

Will man dieselbe Konstruktion am Kalkspat durch-
fiihren, so muf dessen Strahlenfliche bekannt sein.
Huygens hat ihre Form erraten; wir niitzen seine
geniale Annahme, ohne uns vorerst um den Nachweis zu
sorgen, dafl sie aus den Grundgleichungen der elektro-

1) Bisweilen auch ,Wellenfliache“.
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/=

magnetischen Theorie ab- K,
S. 64). Die Fliche be-
steht nach Huygens,
wie in Fig. 13 schema- I
tisch angedeutet ist, aus #
gel  (schraffiert) und W‘|‘|||\‘|||“|
einem abgeplatteten Ro- K
tationsellipsoid (von der . i .
Form einer Pomeranzc) Fig. 13. Strahlqnfla&lerietnes negativ

’ einachsigen Kristalls
hiillt und in der Kristallhauptachse KK, berihrt.
Im Kalkspat pflanzen sich also .im allgemeinen nach
jeder Richtung zwei Strahlen mit verschiedenen Ge-
.schwindigkeiten fort; einer — ihm entspricht die Kugel —
im Kiristall wie in einem isotropen Medium, befolgt also
das Snelliussche Brechungsgesetz und war der, den wir
den ordentlichen Strahl nannten. Der andere, aufler-
ordentliche, dem das Ellipsoid entspricht, pflanzt sich
langsamsten in Richtung der Achse, und zwar hier ebenso
schnell wie der ordentliche, nach allen anderen Richtungen
‘schneller als dieser, gleich schnell in Richtungen, die mit
der Achse einen gleichen Winkel bilden (weil das Ellipsoid
zur ‘Achse. Die beiden Extremwerte der Geschwindig-
keit, den o in Richtung der Achse und den e senkrecht
dazu, nennen wir die ,Hauptlichtgeschwin-
digkeiten® des Kristalls.
tung aufweisen, in der sich beide Strahlen gleich schnell
fortpflanzen, heiflen ,einachsige Kristalle“
Hier konnen wieder zwei Fille eintreten. Entweder ist
wie beim Kalkspat der auflerordentliche Strahl schneller

geleitet werden kann (s. 7o
\“ \\||||||||.

zwei Schalen, einer Ku-
das die ‘Kugel um-
nach allen Richtungen mit der gleichen: der verhilt sich
nach verschiedenen Richtungen verschieden schnell fort, am
ein Rotationsellipsoid ist), am schnellsten senkrecht

Alle Kristalle, die wie der Kalkspat nur eine Rich-
als der ordentliche; dann umschlieft bei der Strahlen-

Buchwald, Kristalloptik 2
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fliche das Ellipsoid die Kugel. Solche Kristalle nennen
wir nach Brewster (1818) ,negativ ein-
achsig”. Bei den ,positiv einachsigen® da-
gegen ist der ordentliche Strahl der schnellere: die Kugel
umschlieft das Rotationsellipsoid, das dann kein abge-
plattetes, sondern ein verlingertes ist (Form einer
Zitrone), und beriihrt es in der Achse (Fig. 14). Diese
Flichen indern sich mit Wellenlinge und Temperatur.
_ Die Kristalle
| des hexagonalen
und des tetra-
gonalen Systems
sind einachsig, in
ihrer Mehrzahl negativ
einachsig. Hierher ge-
_horen der Kalkspat, Na-
tronsalpeter, Turmalin,
Beryll, Smaragd, Korund,
Rubin, Saphir, Apatit.
Einachsig positiv sind
unter anderem Quarz,
Eis, Zinnober, Zirkon,
Fig. 14. Strahlenfliche eines positiv Rutil, Zinnstein,
einachsigen Kristalls Die Doppelbrechung
beim Kalkspat ist stark, wenn auch mnicht so stark wie in
Fig. 15 der Deutlichkeit halber angenommen ist. Wihrend
etwa beim Beryll das Verhiltnis der beiden Hauptlicht-
geschwindigkeiten 1,003 ist, beim Zinnstein 1,048, betrigt
es beim Kalkspat immerhin 1,116, ein Grund, weshalb er
sich zu den einfiihrenden Versuchen so gut eignet.

Die Kenntnis der Strahlenfliche erméglicht es, die
Huygenssche Konstruktion der gebrochenen Strahlen
am Kalkspat fiir einige typische Fille durchzufiihren.

1. Fall. Wir wihlen als ersten den in § 3 behandelten,
wo das Licht senkrecht auf eine Rhom-
boederfliche auffiel, und geben in Fig. 15 den aus
Fig. 11. bekannten Hauptschnitt wieder, nur dafl wir
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diesmal die Rhom-
boederfliche,durch
die das Licht ein-
trite, horizontal ge-
legt haben. BB ist
ein Stiick Strahlen-
fliche des ankom-
menden Lichts.
Jeden Punkt von
BB sehen wir mit

4
Huygens als Aus- %
gangspunkt  von 4 4
Elementarwellen 2o a.o.
an, konstruieren al- Fig. 15. Das Licht fillt senkrecht auf eine

. B Rhomboederflich
s0, um jedén Punkt omboederiiache

die zweischalige Strahlenfliche des Kalkspats, wobei wir
beachten miissen; daff die Achse der Strahlenfliche parallel
der Kristallachse K,K, gezeichnet wird. - Die ordent-
lichen Elementarstrahlen breiten sich in einer gewissen
Zeit bis auf die Oberfliche aller Kugeln aus: die neue
Front des ordentlichen Strahls ist also die Einhiillende
aller dieser Kugeln, die Richtung der ordentlichen Strah-
len ist durch BO bestimmt. Die auflerordentlichen Ele-
mentarstrahlen haben sich auf die  Oberfliche aller
Ellipsoide ausgebreitet, ihre neue Front ist die Ein-
hiillende EE aller dieser Ellipsoide, und die neue
Strahlenrichtung BEC wird gefunden, indem das Zen-
trum B jeder Strahlenfliche mit dem zugehorigen Be-
rihrungspunkt E der Einhiillenden verbunden wird. Wir
kommen also durch diese Konstruktion zu demselben
Resultat, das wir frither als Ergebnis des Versuchs hin-
gestellt hatten: der o. Strahl geht ungebrochen weiter,
der a.0. wird trotz des senkrechten Einfalls auf Wie
stumpfe Rhomboederkannte K;D hin abgelenkt.

Wire der Kristall weniger dick, ginge er beispielsweise nur
bis zu der punktierten Linie, so wiirde er den o, und den a.0.
Strahl weniger weit voneinander trennen.

Vad
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Nun miissen wir auf eine Tatsache hinweisen, die in
der Folge von grofiter Wichtigkeit sein wird. BO ist
die Richtung des o. Strahls und BO ist auch die Richtung
der 0. ,2Wellennormale“, wenn wir darunter die
Senkrechte auf der Wellenfront OO, der Einhiillenden
aller o. Strahlenflichen, verstehen. Beim o. Strahle fillt
also wie in allen isotropen Korpern Strahl- und Nor-
malenrichtung zusammen. Dagegen steht die a.o. Strah-
lenrichtung BE nicht senkrecht auf der a.o. Wellenfront
EE; Strahl und Normale stimmen beim
a0. Licht i. allg. nicht tiberein (weil i. allg.
die Tangentialebene an einem Ellipsoid nicht auf dem

Radiusvektor senkrecht steht).

Die a.0. Front wird abgetrieben

wie ein Flugzeug bei Seitenwind.

2, Fall. Wir wihlen als

Grenzfliche eine senkrecht zur

Achse liegende, wie wir sie etwa

durch Abschleifen der stumpfen

Rhomboederecken erhalten (Fig.

16), und lassen das Licht senk-

A recht dalrimf l auffallen, d}f;-n
'g. 16, Jnpomboecer mit K rigtg also in Rich-
abgeschliffenen Ecken tung der Achse durch-
setzen. Dann haben, wenn wir die  Strahlen-
flichen richtig mit vertikaler Achse in den Kristall ein-
zeichnen (Fig. 17), alle Elementarkugeln und alle Elemen-
tarellipsoide die

TB JYB gleiche  Einhiil-

lende, einen Un-

terschied  zwi-
schen a.0. und o.
Wellenfront gibt
es nicht, es findet

Fig. 17. Das Lidt ieht in Richtung der Achse ll){:elg}fungDOIs)g,etlt_
ln Ul'

chse
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In Richtung der Achse geht also das Licht durch den
Kristall wie durch ein isotropes Medium. Daher auch
der Name ,,Achse der Isotropie“ fiir diese
Richtung.

3. Fall. Schliefllich er-
ortern wir den bei zahl- \
reichen Versuchen vorlie- B B
genden Fall (s.z.B.S.28,
68 ff.), dafl die Kristall- \0 0
?chse in }:icr Obtlslrfll'a'.chc
iegt (yachsenparallel ge- ;
schnittener Kr]?stall“) ugnd 5 E
dafl das Licht auf die
Grenzfliche senkrecht auf- N7
fille. In Fig. 18 steht die
Achse senkrecht auf der Fig. 18. Das Licht geht senkrecht zur
Papicrebene. (Liige sie Adse hindurch. Senkrechte Inzidenz
in der Papicrebene, so
kime dasselbe heraus.) Der Schnitt der Papierebene
mit den beiden Schalen der Strahlenfliche besteht also
aus zwei Kreisen (das Ellipsoid ist ein Rotations-
ellipsoid!) mit den Hauptlichtgeschwindigkeiten o und e
als Radien. Die Zeichnung lehrt, daf8 sich o. und a.o.
Front unabgelenkt in derselben Richtung fortpflanzen
und, wenn die Austritts- der Eintrittsfliche parallel ist,
auch in gleicher Richtung wieder austreten. Die a.o.
Front ist schneller als die ordentliche und gewinnt vor ihr
einen um so grofleren Vorsprung (,Gangunter-
schied*) im Kristall, je dicker die Kristallplatte ist.

Den Gangunterschied miffit man in Wellenlingen des

/)
auffallenden Lichts, und man spricht von 3 i'—-, %

Plittchen, wenn nach dem Austritt die eine Welle hinter
der anderen um eine Achtel-, eine Viertel-, eine halbe
Wellenlinge zuriick ist.
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§ 5. Herleitung der Strahlenfliiche aus dem
Fresnelschen Ellipsoid

Aus der Huy gen sschen Strahlenfliche kann man in
der denkbar iibersichtlichsten Weise die beiden Strahlen-
geschwindigkeiten in ireend einer Richtung ablesen. Aber
sie ist eine z w e i schalige Fliche, was analytisch eine ge-
wisse Umstindlichkeit mit sich bringt. Fresnel hat
erkannt, daff eine einschalige ,Konstruktions-
fliche”, ein Ellipsoid, das wir das ,Fresnelsche
Ellipsoid nennen!), das gleiche leistet, indem es ein-
deutiz die Strahlenfliche herzuleiten eestattet. und da
dhnliche Uberlegungen an anderer Stelle wiederkehren
(s-S. 34), zeigen wir, wie das zu ge-
schehen hat.

Das Fresnelsche Ellipsoid einachsiger
Kristalle ist ein Rotationsellipsoid mit
den Hauptlichtezeschwindigkeiten e und o
als Polar- und Aquatorialradius, also im
Falle der negativ Einachsigen wie Kalk-
spat von der Gestalt der Fig.19. Wir
denken es uns so in den Kristall hinein-
gelegt. dafl die Rorarionsachse ‘mit der
Krisrallachse iibereinstimmt vnd f'nden
Fig. 19. Fresnel-- - die beiden Strahlengeschwindigkeiten in
sches Ellipsoid  yorgegebener Richtung nach der Regel:

Man lege senkrechtzu dieser Richtung
die Diametralebene durch das Ellipsoid.
Die beiden gesuchten Strahlgeschwin-
digkeiten sind gleich den Halbachsen
der Schnittellipse.

Um zu zeigen, dafl diese Vorschrift auf unsere be-
kannte Strahlenfliche zuriickfithrt, fragen wir zunichst,

1) Die Bezeichnung dieser Fliche und weiterer, die in engem Zusammen-
hange mit ihr stehen, ist lerder alles andere als einheitlich. Man vergleiche
die késtliche Zusammenstellung bei Rosenbusch-Wilfing (s. Li-
teraturangabe auf S, 4) Seite 124/125, eine wahre babylonische Sprachenver-
wirrung.
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wie schnell sich Strahlen senkrecht zur Achse fort-
pflanzen. L (Fig. 20) sei die Fortpflanzungsrichtung;
die senkrecht dazu gelegte Diametralebene schneidet das
Ellipsoid in der schraffierten Ellipse, deren Halbachsen
o und ¢ sind. Das sind in der Tat die beiden Strahl-

Fig. 20 Fig. 21
Konstruktionen am Fresnelschen Ellipsoid

geschwindigkeiten in Richtung L und, wie wir aus Fig. 20
entnehmen, in jeder Richtung senkrecht. zur Achse.
Ebenso lassen sich unsere iibrigen fritheren Ergebnisse
nachpriifen: die Geschwindigkeit beider Strahlen in
Richtung. der Achse ist o, denn die zur Achse senkrechte
(Horizontal-)Ebene schneidet das Ellipsoid im Kreis mit
dem Radius o, Fiir eine dazwischenliegende Fortpflan-
zungsrichtung [ (Fig. 21) liefert die zugehdrige, in der
Figur schraffierte Schnittfliche eine Ellipse, deren eine
Halbachse wie bei jeder Schnittellipse o ist — die immer
gleiche Fortpflanzungsgeschwindigkeit des o, Strahles —,
wihrend die andere einen Wert m zwischen o und e
annimmt. Dafl es gerade der ist, den auch unsere be-
kannte Strahlenfliche (Fig.13) ergibt, schlieft man
daraus, dafl die gleiche Ellipse mit den Halbachsen o und
e dem Ellipsoid wie der Strahlenfliche eigentiimlich ist.

Damit ist die Richtigkeit der Konstruktionsregel er-
wiesen. Fresnel hat das Ellipsoid aus der elastischen
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Lichttheorie her%leleitet: es folgt gleichermaflen aus der
elektromagnetischen (s. S. 64).

§ 6. Zweite Grundtatsache: Polarisation

An der ersten Versuchsanordnung, dem senkrechten
Auftreffen eines Lichtbiindels auf die Rhomboederfliche
des Kalkspats, haben wir bisher nur ein Ergebnis her-
vorgehoben und in den folgenden Paragraphen ausgebaut,
das stereometrische der Doppelbrechung. Nicht minder
wichtig ist das zweite: diebeiden ausdem Kalk-
spat austretenden Lichtbiindel unter-
scheiden sich dadurch wesentlich von
dem einfallenden natiirlichen unpolari-
sierten Lichte, dafl beide linear und
senkrecht zueinander polarisiert sind.
Und zwar kann man etwa durch Reflexion an einer Glas-
platte unter dem ,,Polarisationswinkel* zeigen, dafl das o.
Biindel senkrecht zum Hauptschnitte schwingt und damit
auch senkrecht zur Achse der Isotropie, in Fig. 10, 11
oder 15 also auch senkrecht zur Papierebene, das a.o.
Biindel aber im Hauptschnitt, also in den genannten
Figuren in der Papierebene.

Wie das Licht im Kristallinnern schwingt, kénnen
wir nicht unmittelbar priifen, aber es liegt nahe — und
die elektromagnetische Lichttheorie wird es bestitigen —
vom Auflern auf das Innere riickzuschliefen und auszu-
sagen: auch im Kristallinnern sind nur zwei Schwin-
gungsrichtungen méglich; das o. Biindel wihlt die senk-
recht zum Hauptschnitt, das a.o. Biindel die im Haupt-
schnitt.

Dabei wollen wir gleich den Sonderfall herausgreifen,
dafl die Fortpflanzungsrichtung mit der Achsenrichtung
iibereinstimmt (Fall 2 des § 4). Dann wird unsere Defi-
nition des Hauptschnitts unbestimmt; wir kénnen jede
Ebene durch die Achse als Hauptschnitt des Strahls be-
zeichnen. In der Tat ist dann auch jede Schwingungs-
richtung senkrecht zur Achse moglich. Das einfallende
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natiirliche Licht kann im Kristall seine vielfach wechseln-
den Schwingungsrichtungen beibehalten und den Kristall
als unpolarisiertes Licht durchsetzen, ein zweiter Grund
fiir die Bezeichnung Achse der Isotropie. -

In allen anderen Fillen stellt jeder doppelbrechende
Kristall einen ,Polarisator® dar, wenn wir
darunter eine Vorrichtung verstehen, die uns geradlinig
polarisiertes Licht liefert. Allerdings treten aus der Platte
z wel senkrecht zueinander polarisierte Lichtbiindel aus,
die sich auflerdem teilweise iiberlagern, wenn das ein-
fallende Lichtbiindel nicht eng oder der Kristall nicht
von betrachtlicher Dicke ist. Diesen Ubelstand kann man
durch geeignete Prismenkombinationen beheben,

Hierher gehort das Wollastonsche Prisma
(Fig. 22) (1820). €s besteht aus zwei Kalkspatprismen 7
und I/, in denen die Achsen die v
durch Pfeile angedeuteten Lagen ind 70",
haben: in 7 liegt sie in der Zeichen-
ebene, in I/ tritt sie senkrecht aus y 1
der Zeichenebene heraus, so daf = e
fiir I die Zeichenebene der Haupt- | —
schnitt ist, wihrend bei II der I
Hauptschnitt auf der Zeichen- rd
ebene senkrecht steht. Die in der . a.o.
Papierebene verlaufenden Schwin- mﬂﬁ‘rﬂ"' o
gungen, gekennzeichnet durch
kleine Querstriche, liegen bei 7 im
Hauptschnitt, gehoren also hier dem a.o., in IT aber dem
o. Lichte an, weil sie hier senkrecht zum Hauptschnitt
liegen. Die Schwingungen senkrecht zur Papierebene,
durch Punkte gekennzeichnet, gehdren umgekehrt in 7
zum o., in I/ zum a.o. Lichte.

_ Bis zur Grenzfliche der Prismen laufen beide Biindel
in derselben Bahn, aber mit verschiedenen Geschwindig-
keiten (3. Fall des § 4). Dann durchsetzt das in der
Zeichenebene schwingende Biindel, in 7 das a.o., seine

Fig. 22
Wollastonsches Prisma
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Schwingungsebene beibehaltend I7 als ordentliches Biindel,
verliert also an Geschwindigkeit (das a.o. Licht ist das
schnellere!), wird also an der Grenzfliche dem Einfalls-
lote zugebrochen. Das Biindel dagegen, das senkrecht zur
Zeichenebene schwingt und in I das ordentliche war, geht
durch 77 als a.o. hindurch. Es gewinnt an Geschwin-
digkeit (/I ist fiir es ,,optisch diinner’) und wird an
der Grenzfliche vom Einfallslot weggebrochen, Daher
die grofle riumliche Trennung der beiden Biindel bei
dieser Prismenanordnung.

Von den Vorrichtungen, die uns statt zweier nur ein
polarisiertes Lichtbiindel liefern, steht das Nicolsche
Prisma, der ,,Nicol, an erster Stelle (1829). Es wird
aus einem linglich ausgebildeten Kalkspatrhomboeder ge-
fertigt; ABCD in Fig. 23 stellt dessen Hauptschnitt dar,

4 B
65° - .

(A
‘D
Fig. 23. Nicolsches Prisma

wie wir ihn aus Fig. 11 kennen. Nur betragen die beiden
Winkel, deren Grifie wir mit 68° eingetragen haben, beim
natiirlichen Kalkspat 71° und sind durch geeignetes
Schleifen der Flichen AD und BC soweit verkleinert wor-
den. Das Rhomboeder wird zerschnitten, durch SS ist
der Schnitt angedeutet, der senkrecht zu AD und BC
und senkrecht zur Zeichenebene liegt. Die beiden so ent-
stehenden Kristallstiicke werden lings derselben Schnitt-
fliche SS in der alten Lage mit Kanadabalsam wieder an-
einander gekittet.

Ein in der Linegsrichtung L einfallendes Biindel natiir-
lichen Lichts spaltet sich in zwel, ein a.o., das in der
Zeichenebene, und ein o., das senkrecht dazu schwingt.
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Beide treffen auf die Balsamschicht auf, die fiir das a.o.
ein optisch dichteres, fiir das o. ein optisch diinneres
Mittel darstellt, denn die Lichtgeschwindigkeit in ihr liegt
zwischen der groflen des a.o. und der kleinen des o. Lichts.

Fiir das o. Licht wire hiernach die Moéglichkeit der
Totalreflexion gegeben, und die Abmessungen des Primas
sind so gewihlt, dafl tatsichlich das o. Biindel flach genug
auffillt, um total reflektiert zu werden, Es trifft dann
auf die geschwirzte Seitenfliche und wird dort absor-
biert, oder besser: es tritt seitlich aus, was die Erwirmung
vermindert, Das a.o. Biindel aber geht fast unabgelenkt
durch die Balsamschicht und das zweite Kalkspatstiick
hindurch,

Es schwingt in der Verbindungslinie der stumpfen
Ecken der parallelogrammf{drmigen
Austrittsdéffnung BC (Fig. 23). /; in
Fig. 24 sei diese Schwingungsrich- A
tung, OA die Amplitude, Die Inten-
sitit ist in jeder Lichttheorie bis auf
auf einen hier belanglosen Faktor
gleich dem Quadrat der Amplitude,

s
also gleich OA. Lasse ich dieses
Licht auf einen zweiten Nicol, den
sAnalysator®, auffallen, dessen
Schwingungsrichtung /, mit /; den Z,

Winkel a bildet; so geht nur die nach 7
Iy fallende Komponente von O4, d.1i. Fie. 24
OB =0A cos a, hindurch. Das aus e

dem Analysator austretende Licht hat also die Intensitit
- 2

OA cos a. Aus diesem Ausdruck oder aus der Figur erkennt
man, dafl bei ,parallelen Nicols*, d.h. wenn I,
mit [, zusammenfillt, das Licht den zweiten Nicol unge-
hindert durchsetzt, abgeschen von den Verlusten durch
Reflexion und den geringen durch Absorption. In allen
iibrigen Fillen verschluckt der zweite Nicol einen Teil
des auffallenden Lichts. Stehen /; und /; senkrecht auf-
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einander, sind die Nicols ,gekreuzt® so wird OB=0
und hinter dem zweiten Nicol herrscht véllige Dunkel-
heit. Ersetze ich den zweiten Nicol durch einen gew&hn-
lichen Kalkspat, so zerfillt die lineare Schwingung in
zwei Komponenten nach den beiden im Kalkspat mog-
lichen Schwingungsrichtungen.

Grofle Nicolsche Prismen sind heute nur schwer neu
zu beschaffen, weil die islindische Mine, die frither ge-
niigend umfangreiche Kalkspatstiicke lieferte, im wesent-
lichen erschépft ist. Man hat daher als Ersatz vielerlei
sPolarisationsprismen’ konstruiert!), Das voll-
kommenste ist das Prismavon Glan-Thompson
(1881). Es besteht gleichfalls aus zwei Kalkspatstiicken,
aber sie sind weit kiirzer. Es hat senkrechte Endflichen,
gleichmifige Polarisation iiber den ganzen Querschnitt,
was die Nicols nicht haben, und einen recht erheblichén
Gesichtsfeldwinkel (bis 30°). Als Kitt wird eingedicktes
Leintl verwandt.

Und an dieser Stelle wollen wir auch die aiten Inven-
tarstiicke physikalischer Institute erwihnen, Turma-
linplatte und -zange. Der Turmalin ist nach § 2
\ ein einachsiger Kristall.
Lassen wir auf eine Tur -
Achse malinplatte, die par-
a9’ allel der Achse geschnitten
ist, so daf} also die Achse
<—JH L« in der Eintrittsfliche liegt

F; (Fig. 25), natiirliches Licht
auffallen, so wird es in
zwei senkrecht zueinander
schwingende Bestandteile
zerlegt; der a.o0. schwingt

Fig. 25 im Hauptschnitt,, parallel
Adchsenparallele Turmalinplatte zur Achse, der o. senk-

- 1) Man vergleiche z. B. den Katalog der Optischen Werkstitten B. Halle
N a ¢ hf., Berlin-Steglitz.
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recht dazu. Der Turmalin hat die Eigenschaft, das
o. Biindel zu absorbieren und nur das a.d. hindurchzu-
lassen. Wir haben somit in der Turmalinplatte einen
sehr einfachen Polarisator, miissen dafiir allerdings den
Nachteil in Kauf nehmen, daff das austretende Licht
durch den Kristall gefirbt ist, griinlich, briunlich, gelb-
lich, rétlich, je nach der angewandten Varietit. '

Zwel in drehbaren Fassungen hintereinander ange-
brachte derartige Turmalinplatten bilden eine ,,T urm a-
linzange®“, Helligkeit beobachten wir beim Hin-
durchsehen, wenn die Schwingungsrichtungen in beiden
parallel sind, Dunkelheit, wenn sie aufeinander senkrecht
stehen, Turmaline als Polarisatoren besitzen nur histori-
sches Interesse und sind durch die #hnlichen ,,Polarisa-
tionsfilter ersetzt (vgl. § 21).

§ 7. Die Normalenfliche einachsiger Kristalle

Bei allem, was wir im vorigen Paragraph iiber die
Schwingungsrichtungen im Kristall mitgeteilt haben, ist
in Ausdrucksweise und Beispielen eine Schwierigkeit um-
gangen worden, der wir jetzt ins Gesicht sehen miissen.
Wir haben z.B. im Hinblick auf Fig.15 gesagt, die
Schwingungsrichtung im a.o. Biindel lige in der Papier-
ebene als dem Achse und Strahl — und Normale! —
enthaltenden ,,Hauptschnitt'. Aber wir haben noch nicht
entschieden: liegt sie hier senkrecht zum Strahl? Oder
zur Normalen, d.h, in der Wellenfront? Mit andern
Worten: ist der Lichtvektor streng transversal zum Strahi
oder zur Normalen? Beim o. Licht und in isotropen Kot-
pern, wo Strahl und Normale identisch sind, begegnet
uns diese Schwierigkeit nicht.

Nun ist schon bei den gewdhnlichen elektromagneti-
schen Wellen, wie der Name besagt, immer ein schwin-
gender elektrischer Vektor, die elektrische Feldstirke €,
unldsbar mit einem schwingenden magnetischen Vektor,
der magnetischen Feldstirke $, verbunden, und es ist
einigermaflen willkiirlich, welchen von beiden man als
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sLichtvektor® schlechthin bezeichnen will. (Man
wihlt €). Ebenso nennt man willkiirlich im einachsigen
Kristall die Richtung im Hauptschnite, die
senkrecht auf der Wellennormale, also
in der Wellenfront liegt, Schwingungs-
richtung des a.0. Biindels. Durch diese Ver-
kntipfung mit der Schwingungsrichtung gewinnen die mit
der Wellennormale zusammenhingenden Begriffe, bisher
stiefmiitterlich behandelt, gegeniiber Strahlenfliche, Strahl-
richtung usw. an Interesse. Wir wenden uns ihnen zu
und werden das Schwergewicht der Darstellung mehr und
mehr auf sie verlegen.

Fig. 26 zeigt ein Stiick Strahlenfliche §, von der be-
kannten ellipsoidalen Gestalt. Das von O ausgehende Licht
soll die Strahlenfliche §, nach der Zeit ¢, cine Zeiteinheit
spiater die Strahlenfliche S, erreicht haben. In dieser
Zeiteinheit hat sich ein Flichenstiick f in der Strahlen-
richtung O f parallel mit sich selbst um die Strecke v,
fortgepflanzt, die wir naturgemifi als die ,Strahl-
geschwindigkeit®in der Richtung Of bezeichnen.
Die Tangentialebene 7', der f angehdrt, hat sich hierbei
um das Stiick v, in Richtung ihrer Normalen ON fort-
bewegt. ON ist die zum Strahle Of gehorige
Normale, v, also die ,,Normalengeschwindigkeit“.
Mit ihr breitet sich eine auf der Richtung ON senkrechte
ebene Welle aus. Die Normalengeschwindigkeit ist nach
Fig. 26 gleich der Strahlgeschwindigkeit vs mal dem co-
sinus des Winkels ¢ zwischen Strahl und Normale, also
hdchstens gleich, i. allg. kleiner als die zugehdrige Strahl-
geschwindigkeit. Sie ist wichtiger als v;; denn ,,Strahl”
bezieht sich im Versuch auf ein diinnes durch Blenden
begrenztes Lichtbiindel. Bei den meisten kristalloptischen
Versuchen aber (nicht bei unserm Grundversuch Fig. 10)
sicht man von der Begrenzung ab und arbeitet mit par-
allelen Wellen, an denen nur die Normalengeschwindig-
keit beobachtbar ist.

Wir trugen von einem Punkte aus die jeder Richtung
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0

Fig. 26. Strahl und Normale Fig. 27. Zusammenhang von
Strahlen- u. Normalenfliche

zukommende Strahlengeschwindigkeit v; auf und fanden
die Strahlenfliche; tragen wir in jeder Richtung die Nor-
malengeschwindigkeit v, auf, so entsteht die ,,Nor-
malengeschwindigkeits™ oder ,Normalen-
fliche*. Den Zusammenhang zwischen beiden machen
wir uns an Fig. 27 klar, in der zu zwei Punkten §, und
S, der Strahlenfliche die zugehdrigen Punkte N; und N,
der Normalenfliche konstruiert sind, und zwar so, daff
wir, im Anschluff an Fig. 26, in S; und S, Tangenten an
die Strahlenfliche gelegt und von O aus Senkrechte
darauf gefillt haben. ON, und ON, stellen dann, wie
ein Vergleich mit Fig. 26 zeigt, die Normalengeschwin-
digkeit in diesen Richtungen dar. Derartig gefundene
Flichen nennt der Mathematiker ,Fufipunkt-
flichen . Die Normalenfliche ist also
die Fuflpunktfliche der Strahlenfliche.

Die Strahlenfliche eines einachsigen Kristalls bestand
aus zwei Schalen, einer Kugel und einem Ellipsoid. Die
Normalenfliche besteht gleichfalls aus zwei Schalen,
nimlich den Fufipunktflichen jener beiden. TIhr gehort
mithin ebenfalls die Kugel der Strahlenfliche an — denn
jede Kugel ist ihre eigene Fuflpunktfliche — und zweitens
als Fuflpunktfliche des Ellipsoids das durch die Konstruk-
tion von Fig. 27 gefundene ,,Ovaloid®. In Fig. 28
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und 29 sind Strahlen- und Normalenfliche eines ein-
achsigen positiven Kristalls im Durchschnitt nebenein-
andergestellt. In Fig. 29 erkennt man die (etwas iiber-
trieben gezeichnete) typische Gestalt des Ovaloids. Punk-

Fii. 28. Schnitt durch die Fig. 29. Schnitt durch die
Strahlenfliche eines einachsig Normalenfliche eines einachsig
positiven Kristalls positiven Kristalls

tiert ist darin das Ellipsoid eingezeichnet, aus dem es
entstanden ist. Die Hauptlichtgeschwindigkeiten o und e
treten auch bei der Normalenfliche als Polar- und
Kquatorialradius des Ovaloids auf. :

. § 8. Herleitung von Normalenfliche und
Schwingungsrichtungen aus dem Indexellipsoid

In § 5 haben wir die zweischalige Strahlenfliche aus
dem einschaligen Fresnelschen Ellipsoid hergeleiter. Ahn-
lich leiten wir auch die zweischalige Normalenfliche aus
einer einschaligen Konstruktionsfliche her, dem ,,Ind e x-
ellipsoid® oder der ,,Indikatrix’. Das Index-
ellipsoid hat seinen Namen vom Brechungsindex oder
Brechungsquotienten oder der ,Brechzahl® »n, die uns
aus der Optik isotroper Korper als das Verhiltnis

_ Lichtgeschwindigkeit im Vakuum
" Lichtgeschwindigkeit im Medium -
bekannt ist. Bei den anisotropen miissen wir uns nun
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wieder entscheiden, welche der Lichtgeschwindigkeiten im
Medium wir in den Nenner setzenn wollen, Strahlen- oder
Normalengeschwindigkeit. Bei ersterer Wahl entsteht
eine Grofle, die man ,Strahlenindex" genannt hat;
als Brechzahl schlechthin aber bezeichnen wir nach den
Bewertungen des vorigen Paragraphen den mit der Nor -
m al e n geschwindigkeit im Nenner.

Wir gewinnen damit noch den Vorteil, » statt durch
das Verhiltnis der Lichtgeschwindigkeiten durch das Ver-
sin
sin
Brechungswinkel). Beweis: In Fig. 30 ist die Huygenssche
Konstruktion fiir das
isotrope  Medium
(Fig. 12) mit glei- B
chen Bezeichnungen
auf das anisotrope 7
iibertragen.  Statt @ T P C
einer Kugel ist um A v
A das Ellipsoid ge-
zeichnet, bis zu dem
sich im Kristall die D
2. 0. Llchterregung Fig. 30. Brechung im anisotropen Medium
fortpflanzt,  wih- )
rend sie in /, dem Vakuum, von B bis C gelit. CED
ist die neue Wellenfront, AD proportional der Normalen-,
AE der Strahlgeschwindigkeit (vgl. Fig. 26), BC verhil:
sich zu AD wie die Lichtgeschwindigkeit im Vakuum zur
Normalengeschwindigkeit im Medium. Bei Einfithrung
von @ und y folgt

n _BC ACsing _sing
TAD  ACsiny  siny
wie behauptet. Hitten wir aber AE statt AD eingesetzt,
so wire, da bei E i. allg. kein rechter Winkel auftritt,
das Verhiltnis der Lichtgeschwindigkeiten nicht gleich
dem Verhiltnis der beiden sinus geworden. ,
Oft wihlt man die Lichtgeschwindigkeit im Vakuum

P susdriicken zu kénnen (p Einfalls-, v

hiltnis

Buchwald, Kristalloptik 3
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gleich der Einheit. Dann wird die Brechzahl einfach
gleich der reziproken Normalengeschwindigkeit. Wie diese
ist sie richtungsabhingig, und wie die Hauptlichtgeschwin-
digkeiten o und e als Extremwerte den ganzen Verlauf der
Normalenfliche festlegen, so die ,Hauptbrechungs-
quotienten® oder ,Hauptbrechzahlen"

ny =*1—, Neg = —1~

(4] e

die ganze Anisotropie des Brechungsquotienten.

Das Indexellipsoid Einachsiger ist nun ein Rotations-
ellipsoid mit den Hauptbrechzahlen 7, als Polar- und n,
als Aquatorialradius, Bei den negativ Einachsigen, wo
e > o, ist das Reziproke 7, < n, Es hat dann die abge-
plattete Form der Fig.31. Wir behaupten, daff folgen-
der Zusammenhang mit der
zweischaligen Normalenfliche
besteht: Die Geschwin-
-\ digkeiten der beiden
Wellennormalen in
einer Richtung sind
gleich dem Rezipro-
- ken der Halbachsen

ipsoid igativ Einachsiger d €T j €N Elli i
Indexellipsoid negativ Einachsiger jenigen pse 1n
der die auf der Rich-
tung senkrechte Diametralebene das
Indexellipsoid schneidet.

Fiir die Achsenrichtung stimmt das offenbar: die senk-

rechte Schnittellipse wird zum Kreis, beide Normalenge-

Y 1 .
schwindigkeiten werden zu —=o Ebenso sieht man es

(]
sofort fiir die Richtungen senkrecht zur Achse ein (man
vergleiche die entsprechende Fig.20 am Fresnelschen
Ellipsoid); die zugehdrige Schnittellipse hat die Halb-
achsen 7, und 7, das jeweils Reziproke gibt wie ge-
wiinscht ¢ und o. FEine kleine Rechnung zeigt, dafl es

auch fiir die Zwischenrichtungen stimmt. )
Zur Richtung I, die den Winkel ¢ mit der Achse bildet



Normalenfliche und Schwingungsrichtungen 35

(Fig. 32, gehort eine senkrechte Schnittellipse, deren eine Halb-
achse 7, ist; das fithrt zur ordentlichen Hauptlichtgeschwindig-
keit 0. Die andere ng aber ist gegeben durch?)
2,2
ne? = o’ e
? Tnylsin? @ + n2cost @,
was man. ausgehend von der
Ellipsengleichung
x? 22
2o T =g
ot ng
aus der Gleichungsfolge
nt+ 22n% =ntnl

x® 2
. 2 2 .
2 22 e + PR _ Fig.32. o
(x® + 2%) = n2nt Konstruktion am Indexellipsoi

(cos? @ n,? + sin? p+n,?) np? = ny2n,?
ableitet. Das Reziproke,

1 ne2sinf +nlcos?p sin®@ cosiep . o e
gt — 5t gt =—n—eg—+ nt 2 sin’p -+ o0® cos*g,
soll, behaupten wir, gleich vg?® sein, dem Quadrat der Nor-
malengeschwindigkeit in der mit der Achse den Winkel ¢ ein-
schliefenden Richtung. In der Tat lautet die Gleichung des
Meridianovals Fig. 33 (was man glauben oder nachsehen mufl)

ve? = e?sinp + o2 cos?p. Q.e.d.

Man kann die Normalenfliche auch aus dem ,Polarisations-
ovaloid“, der Fuflpunkt- :
fliche des Fresnelschen El-
lipsoids, herleiten nach der
leicht zu bestitigenden Re--
gel: Die zu einer be- 5
stimmten Richtung e
gehdrigen Norma-
lengeschwindigkei-
ten sind gleich den
Halbachsen des
Ovals, in dem die Fig. 33, Oval

S

¥

1) S, Biirklen-Ringl!eb, Mathemat, Formelsammlung, Sammlung
G]b'sche;l, Bd. 51: ,.Polarglciéung der Ellipse in bexug auf den Mittelpunkt
ale Pol®.

3*



36 Doppelbrechung und Polarisation

auf der Richtungsenkrechte Diametralebene
das Polarisationsovaloid schneidet.

Aber nicht nur, dafl das Indexellipsoid eine einfachere
Fliche ist als die zweischalige Normalenfliche; es liefert
uns mehr als nur die Normalengeschwindigkeiten, Wir
bestitigen nimlich an Fig. 32 sofort den Satz, dafl die
Halbachsen der Schnittellipse nichtnur
ihrer Grdofle nach (reziprok genommen)
die Normalengeschwindigkeiten, son-
dernauchihrerRichtungnachdieSchwin-
gungsrichtungen in den beiden Wellen
darstellen. In der Fig. 32 ist der durch z und / be-
stimmte Hauptschnitt die Papierebene. In ihr liegen
senkrecht zur Normalenrichtung immer die Halbachsen
ne, die sich auf die a.0. Welle beziehen, und in ihr, und
zwar in der Wellenfront = der Schnittellipse liegt nach
der Entscheidung des § 6 auch die Schwingungsrichtung
der a.0. Welle. Die immer gleichbleibenden Halbachsen
nq aber, die zum o. Licht gehoren, liegen wie die Schwin-
gungsrichtungen der o, Welle in der Wellenfront und
senkrecht zum Hauptschnitt.

In dem unscheinbaren kleinen Indexellipsoid, diesem Ei
des Kolumbus, hat man also alles in der Hand, was sich
bei einachsigen Kristallen iiber Doppelbrechung und Po-
larisation aussagen liflt — eine wunderbar einfache Zu-
sammenfassung ungezihlter Versuchsmiglichkeiten. Jeder
Kristall hat sein eigenes Indexellipsoid, und bei jedem
Kristall noch jede Farbe ihr eigenes (,,Dispersion®)
und jede Temperaturt). Alle sind so in den Kristall hin-
einzulegen, dafl thre Umdrehungsachse in die Kristail-
achse fallt,

Der schiirfste Priifstein der Theorie isc mithin eine mog-
lichst genaue Messung der Brechzahlen in den verschie-
denen Richtungen: passen sie sich der Form des Index-
ellipsoids vollkommen an? = Ist man aber einmal von der

1) Dafl auch iuflere Einfliisse wie Druck und elektrische oder magnetische

Felder das Indexellipsoid und damit die optischen Eigenschaften des Kristalls
beeinflussen, sei nur erwihnt.
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Richtigkeit der Theorie iiberzeugt, so geniigt die Messung
der beiden Hauptbrechungsquotienten zur Konstruktion
des Ellipsoids und damit zur Beantwortung jeder Frage
nach Normalen-, Strahlgeschwindigkeit und Doppel-
brechung einerseits, nach den Polarisationsverhiltnissen
anderseits.

Wie man Brechzahlen mifit, sehen wir im nichsten
Paragraphen.

§ 9. Die Brechzahlen

Prismenmethode. Sehr einfach gestaltet sich die
Bestimmung der Hauptbrechzahl. Wit kniipfen
an den Fal% 3 des § 4 und seine Figur 18 an: die Kristall-
achse liegt in der Einfallsfliche und ist senkrecht zur
Papierebene gezeichnet, die Schnitte der Strahlenfliche
sind also zwei Kreise, das Licht fillt senkrecht auf. Lassen
wir es jedoch (Fig. 34) schrig auffallen und schleifen wir
den Kiristall wie punktiert angedeuter zu einem Prisma
(mit der Kiristallachse parallel zur Prismenkante), so
laufen die beiden Wellen bei jedem Einfallswinkel mic
den Geschwindigkeiten o und
e, d. h. mit den Brechzahlen
ng und n, durchs Prisma.
Alle Formeln der Optik Iso-
troper kénnen fiir den Be-
rechnungsvorgang iibernom-
menwerden, insonderheit die
einfachste der ,Methode
der minimalen Ab-
lenkung® bei der sich =
aus Prismenwinkel o und , .
Ablenkungswinsel § zu L

Lo
. dto VLN
sin - TN
2 AY
n—=-————-— KavVs
sin —E Fig. 34. Das Licht geht senkrecht

zur Achse hindurch,
berechnet. Schrige Inzidenz
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Wir teilen fiir einige Kristalle nach der Stirke der
Doppelbrechung geordnet die Hauptbrechzahlen fiir D-
Licht mitt).

1y N Ing—ne|
Rutil 2,6158 2,9029 0,2871
Kalkspat 1,6584 1,4864 0,1720
Zinnstein 1,9966 2,0934 0,0968
Quarz 1,5442 1,5533 0,0091
Beryll 1,5725 1,5678 0,0047.
(wasserhell) :
Apatit 1,6388 1,6346 0,0042

Der mit angegebene Absolutwert |ny—n,| ist ein Mafd fiir
die Stirke der Doppelbrechung.

Schwieriger ist die Bestimmung eines Zwischenwertes
zwischen n, und n, zwecks Priifung der Huygens-Fres-
nelschen Hilfsflichen (s. Schlufl des vorigen §). Wir
iberlegen dazu, wie man an einem Kristallprisma be-
liebiger Achsenlage zu einer einfallenden Welle die
gebrochene und die austretende bestimmt und kommen
am einfachsten mit Hilfe der bisher noch nicht herange-
zogenen ,Indexfliche” zum Ziel. Trigt man von
einem Punkte aus nach jeder Richtung eine Strecke
gleich dem Brechungsindex auf, der den in dieser
Richtung fortschreitenden Lichtwellen zukommt, so be-
stimmen die Endpunkte aller dieser Strecken die Index-
fliche. Im Vakuum ist mithin die Indexfliche eine
Kugel vom Radius 1, in einem isotropen Medium eine
Kugel vom Radius 7, im einachsigen Kristall eine zwei-
schalige Fliche, eine Kugel vom Radius 7, und ein sie
in der Achse beriihrendes Rotationsellipsoid mit den
Halbachsen 7, und ..

Wir zeigen zunichst (Fig. 35), wie an der ebenen
Grenzfliche G zweier isotroper Medien (Luft und
Wasser) zu der im Punkte A einfallenden Normalen die
gebrochene konstruiert wird. Wir zeichnen um A die

1) Die umfangreichsten Angaben in deﬂ Physikalisch-chemischen Tabellen
vorn Landolt u. Bdrostaein,
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Indexfliche I fiir Luft,
die wir mit der vom
Vakuum identifizieren,
d.h. eine Kugel vom
Radius 1 und die I7 fiir
Wasser, d.h. eine Ku-&
gel vom Radius n =
1,3335, wenn wir es
mit D-Licht zu tun ha-
ben. Wir verlingern die
einfallende  Normale, ) o . _
bis sie in B dic Fliche 6% By hadvettire = ™
schneidet, und ziehen durch B eine Parallele zum Ein-
fallslot. Diese schneidet I oberhalb der Grenzfliche in
C, und I unterhalb der Grenzfliche in C,. AC, und AC,
geben dann die Richtungen der gespiegelten und der ge-
brochenen Normalen an. Ersteres iibersieht man sofort,
letzteres, wenn man aus A ABD die Beziehung

. DB

sin @ = —1
und aus A AC,E die
Beziehung

Luft

Wasser

v
K4

sin 1 = EC, _ DB
Y= n
entnimmt und diese bei-
den Sinus durcheinander
dividiert, Es ergibt sich
dann in der Tat
sin
.—(p =n
sin
Die gleichen Schritte
vollziehen wir an einem - .
Prisma, sagen wir aus Fig. 36. Brechung im Prisma
Kalkspat, vom Prismenwinkel o (Fig.36). Die Pris-
menkante steht in A senkrecht auf der Papierebene.
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Liegt die einfallende Wellennormale QA in dieser
Ebene, so liegen in ihr auch alle gebrochenen Wellen-
normalen, wie man sich an den Huygensschen Konstruk-
tionen des § 4 klarmacht. Um A zeichnen wir die Schnitte
der Indexflichen beider Medien, den Kreis / vom Ra-
dius 1 fiir die duflere Luft und von der zweischaligen
Indexfliche des Kalkspats nur den hier allein interes-
sierenden Schnitt /I der Papierebene mit der Ellipsoid-
schale dieser Indexfliche, welch letztere wir natiirlich
so gelegt haben, daf} ihre Achse mit der im Kristallprisma
Ubereinstimmt. Wie in Fig. 35 verlingern wir QA bis
zum nochmaligen Schnittpunkt B mit / und ziehen durch
B eine Parallele zum Einfallslot auf der ersten Prismen-
fliche. Trifft sie II in C, so ist AC die Richtung der
gebrochenen Normalen. Um zu der austretenden zu
kommen, wiederholen wir sinngemiff die Konstruktion,
mit AC als einfallender Normalen, dem durch C ge-
zogenen Einfallslot auf der zweiten Prismenfliche
und dessen Schnittpunkt D mit /; AD ist die Richtung
der austretenden Welle.

Ohne Rechnung!) iibersiecht man, wie unsere theoreti-
schen Grundlagen, die sich hier in der Gestalt der Index-
fliche verkorpern, durch den Versuch gepriift werden
konnen. Wir messen den Einfallswinkel; dann verlangt
die Indexfliche eine bestimmte Brechungsrichtung AC.
Wir messen den Prismenwinkel p; dann verlangt die
weitere Konstruktion (¢ tritt nochmals als punktierter
Winkel BCD zwischen den Einfallsloten auf!) eine be-
stimmte Austrittsrichtung AD. Wir messen den Austritts-
winkel und sehen zu, ob er mit dem konstruierten (oder
berechneten) iibereinstimmit.

Diese Ubereinstimmung ist nach iiberaus genauen
Messungen vollkommen. Z. B. ergibt am Kalkspat, wenn
die Normale den Winkel ¢ mit der Kristallachse bildet,

1) Dfie Rechnung etwa bei F. Pockels, Lehrbuch der Kristalloptik,
S. 137 ff.
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fiir = 31019'46” die Theorie n, = 1,606110, der Versuch
1,606113 * 1,610,
vir @ = 31019'58” die Theorie 2, = 1,606100, der Versuch
1,606102 * 1,6 108,
Das ist eine Bestitigung auf mehr als 2/1000 Promille.

Totalreflexion. Fig 35 lehrt, dafl immer ein
Punkt C,, also ein gebrochener Strahl AC, existiert, weun
das Licht vom diinneren zum dichteren Medium geht.
Fiithren wir (Fig. 37) die gleiche Konstruktion fiir den
umgekehrten Fall aus, dafl das Licht im dichteren Me-
dium auf ein diin-
neres auftrifft, so lif}c
sich fiir die Einfalls-
richtung 7 noch ein
gebrochener Strahl 1’
finden, fiir die Ein-
fallsrichtung 2 erist
das Licht im oberen
Medium parallel zur
Grenzfliche streifend
aus. Fillt das Licht
aber noch flacher,
etwa in Richtung 3
auf, so wird es voll-
stindig ins untere Me-
dium zuriickgeworfen,
wtotal reflektiert”. Der Einfallswinkel y, dem die
streifend austretenden Strahlen entsprechen, der ,,Gren z-
winkelder Totalreflexion®, bestimmt sich aus
der Gleichung

Fig. 37. Totalreflexion

sin 900
sin ¥
1

~ sing
Die Erscheinung der Totalreflexion liefert in der Messung
von y also eine Methode zur Bestimmung von n.
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Diese Methode ist in zahlreichen Abwandlungen von
der Optik Isotroper auf die Kristalloptik iibertragen
worden. Bel einem (negativ) einachsigen Kristall voll-
zieht sich die Zeichnung gemif} Fig. 38. Wir beschreiben
um O die kugelférmige Indexfliche I des optisch dich-
teren, isotropen ersten Mediums (man wendet z. B. «-Mo-
nobromnaphthalin an, das fiir D-Licht den Brechungs-
quotienten # = 1,66102 hat) und die zweischalige I7 des
Kristalls und bestimmen zwei Einfallsrichtungen /;, und /.
derart, daf§ die von ihren Schnittpunkten §, und S, mit /

Cahl S w Sra
v

[}
1
MO
S P
21T
’1\. : 7 N
A 1 ' \
IR L1 S
O RV B
A
0
(/]
e
Fig. 38 Fig. 39. Konstruktion eines
Totalreflexion an einem Kristall Grenzstrahlenkegels

auf die Grenzfliche gefillten Lote die beiden Schalen
der.Indexfliche II gerade beriihren. [/, und /; sind dann,
wie der Vergleich mit Fig. 37 lehrt, die beiden Grenz-
strahlen der Totalreflexion, die in der Papierebene liegen.

Im Raume werden sie in Erweiterung der Fig. 38 ge-
funden, indem man senkrecht zur Grenzfliche an die
Kugel und an das Ellipsoid der Indexfliche je einen
Tangentenzylinder legt, wie dies in Fig. 39 fiir die Kugel
angedeutet ist, und jeden Punkt der Kurve S, in der ein
derartiger Zylinder die Indexfliche I des Monobrom-
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naphthalins schneidet, mit dem Mittelpunkt O verbindet.
Man kommt so auf eine zweischalige Kegelfliche, dic
wGrenzstrahlenkegel“ (Fig. 40), deren Beobach-
tung mit einem Totalreflektometer wie bei den
isotropen Korpern zur
Bestimmung derBrech-
zahlen fithrt. Dodh
mufl man in den For-
meln beachten, daff
sich die Grenzwinkel
auf die Strahlen
als die Richtungen des
Energiestroms, aber
die 7 nach § 8 auf die
Normalen beziehen.
Der durch die Konstruktion von Fig.39 gefundene
Kegel der ordentlichen Grenzstrahlen,
in Fig. 40 der iuflere, ist immer ein Kreiskegel; der
innere, der zu den auflerordentlichen Brechzahlen fiihrt,
nur dann, wenn die Achse senkrecht auf der Grenz-
fliche steht; denn dann ist der Tangentenzylinder an
das (Rotations-) Ellipsoid ein Kreiszylinder. Sonst
ist er ein elliptischer Kegel, wird also von einer zur
Grenzebene paral'lelen Ebene in einer Ellipse geschnitten
(in Fig. 40 schraffiert), deren lange Achse ihr Maximum
erreicht, wenn die Achse der Indexfliche in der Grenz-
fliche liegt. In diesem Falle riicken, wenn ich die Achs:
der Indexfliche in die Papierebene lege, die Punkte §,
und S. in Fig. 38 zusammen, und der in Fig. 40 schraf-
fierte innere elliptische Schnitt berithrt den vom #ufleren
Kegel herrithrenden Kreisschnitt. Strahlen dinnerhalb
des inneren Kegels treten (fast) vollstindig ins obere
Medium ein, Strahlen auflerhalb des dufleren werden voll-
stindig reflektiert. Von den Strahlen zwischen beiden
Kegeln kann ein Anteil als ordentlicher Strahl in den
Kristall eintreten, der andere wird votal reflektiert.

Fig. 40. Grenzstrahlenkegel
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§ 10. Verallgemeinerung: zweiachsige Kristalle

Die bisher behandelten Kristalle nannten wir einachsig,
weil sie eine Achse der Isotropie besaﬁen, eine Rich-
tung, in der sich das Licht wie in einem isotropen Me-
dium fortpflanzt. Die zweiachsigen besitzen zwei
solche Richtungen. Einachsig oder zweiachsig ist ein
Kristall je nach dem Kristallsystem, dem er angehért.
Einachsig sind die Kristalle des hexagonalen und -des
tetragonalen Systems mit ihrer einen ausgezeichneten
Symmetrieachse, zweiachsig die der unsymmetrischeren
Systeme, des rhombischen, des monoklinen und des
triklinen. '

Es liegt nahe, die Hilfsflichen zweiachsi-
ger Kristalle durch Verallgemeinerung aus denen
der einachsigen herzuleiten, Der experimentelle Befund
wiirde aber nich t richtig wiedergegeben, wenn wir etwa
das Rotationsellipsoid der Strahlenfliche zu einem drei-
achsigen verallgemeinerten. Vielmehr hat man die Ver-
allgemeinerung an einer der Konstruktionsflichen, etwa
an dem- Fresnelschen Ellipsoid, zu vollziehen: das
Fresnelsche Ellipsoid Zweiachsiger ist
kein Rotations-. sondern ein dreiachsi-
ges Ellipsoid. Das Fresnelsche Ellipsoid Ein-
achsiger konstruierten wir aus den Hauptlichtgeschwin-
digkeiten o und e. Jetzt konstruieren wir ein Ellipsoid
iber drei Hauptlichtgeschwindigkeiten,
einer groﬁten, die wir a nennen, einer mittleren 4 und
einer kleinsten ¢ als Ha,lbachsen (Fig. 41). Die drei
Achsen des Elllpsmds nennen wir yoptische Sym-
metrieachsen®, nicht zu vcrwechscln mit den als-
bald auftretenden ,,optischen Achsen®, e‘ne Ebene durch
je zwei Achsen ,optische Symmetrieebene®
Beim rhombischen System fallen natiirlich die drei opti-
schen Symmetrieachsen in die krlstallographlschen Achsen.
Beim monosymmetrischen System muf} eine mit der einen
kristallographischen =~ Symmetrieachse iibereinstimmen,
wihrend sich iiber die andern nur aussagen lifit, dafl sie
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in der einzigen kri- /
stallographischen Sym-
metrieebene liegen. Im
asymmetrischen  Sy-

stem gibt es fiir die

Lage der optischen "
Symmetrieachsenkeine
Anhaltspunkteaus der
Kristallform.

Zur Strahlen-
flache gelangenwir Fig. 41. Fresnelsches Ellipsoid eines
auf dem vom §5 her zweiachsigen Kristalls
bekannten Wege. Wir beginnen damit, Lichtstrahlen
zu betrachten, die in der ac-, der Papierebene, ver-
laufen. Zur vertikalen Strahlenrichtung ¢ gehort als
Schnittellipse die horizontale mit den Halbachsen « und
b, a und b sind demnach die Strahlengeschwindigkeiten
in Richtung ¢ und sollen in Fig. 42 in Richtung ¢ abge-
tragen werden. Zur Strahlenrichtung a4 gehort als
Schnittellipse die (vertikale) mit den Halbachsen % und c.
bund ¢ wcxiden m}iltihin ¢
in Fig. 42 als Strahlen- 5
geschwindigkeiten  in Br Br
Richtung a abgetragen.
Fiir eine zwischen a4 und

¢ in der Papierebene A
liegende Richtung /; ist

die Schnittellipse in Fig.

43 schraffiert. Die eine >a

ihrer Achsen ist wieder
b, die andere hat einen
Wert m,, zwischen a
und c¢. b und m,, tragen
wir in Fig. 42 in Rich-
tung [ als Strahlenge-
SChW“.ldlgkeltcn ab. I'.'as— Fig. 42. Schnitt der Strahlenfliche mit
sen wir /; von der Rich- der ac-Ebene
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tung a zur Richtung ¢
7 {ibergehen, so ist eine

Halbachse der Schnitt-

ellipse immer gleich 5,

wihrend die andere

thren Wert m, von a

bis ¢ dndert. Auf diese

Weise finden wir die

Fig. 43 Strahlengeschwindigkei-
ten fiir alle in der ac-
Ebene verlaufenden Strahlen: Fig. 42, in der wir sie
abtragen, stellt uns also den Schnitt der Strah-
lenfliche mit der ac-Ebene dar. Er besteht
aus einem Kreise mit dem Radius 5 und einer Ellipse
mit den Halbachsen 2 und ¢. Zwischen 2 und ¢ mufl
m, den Wert 4 annehmen: das geschehe fiir die Strahlen-
richtung Br. Die Schnittellipse, auf der sie senkrecht
steht, ist ein Kreis mit dem Radius & (Fig. 44); in der
Richtung Br pflanzen sich demnach beide Strahlen mit
Br r der gleichen Geschwindig-
I keit & fort. Dasselbe gilt
> fiir die symmetrische Rich-
o tung B’7; in Fig. 42 sind
es die Richtungen, die nach
e e\ dem Schnittpunkt  von
Kreis und Ellipse hinzie-
len. In gewissem Sinne
kénnen wir also Br und
B'r als die Achsen des
Kristalls bezeichnen
(vgl. aber S. 52). Wir nennen sie ,Strahlen-
achsen“ oder ,Biradialen®,

Zur Bestimmung des Durchschnitts der
Strahlenfliche mit der ab-Ebene, Fig. 45, be-
trachten wir die Strahlen, die beim Fresnelschen Ellipsoid
Fig. 46 in der ab-(Horizontal-)Ebene verlaufen. Zur
Richtung & gehdren, wie bereits besprochen, die Strahlen-

Fig. 44. Biradialen
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geschwindigkeiten & b
und ¢, zur Richtung &

die in der Papier-
ebene liegende Ellipse
mit den Halbachsen
a und e; in Fig. 45,
in der wir den ge- ¢
suchten Schnitt dar-
stellen wollen, tragen

wir also in Richtung
a die Strecken 5 und
¢, in Richtung & die
Strecken 4 und ¢ als
Strahlengeschwindig-
keit ab. Auf einer
zwischen « und 5 lie-
genden Richtung [2 Fig. 45. Schnitt de; S‘t’rahlenfl'a'che mit der

(Fig. 46) steht ecine @b-Ebene

Schnittellipse (schraffiert) senkrecht, deren eine Halbachse
wieder ¢ ist, wie fiir alle Strahlen in der ab-Ebene, wih-
rend die andere einen Wert m, zwischen 4 und & annimmt,
Variiert man die Richtung
I, zwischen a und &, so er-
gibt sich als Schnittfigur
der Strahlenfliche mit der
ab-Ebene die in Fig. 45
gezeichnete: ein Kreis mit
dem -Radius ¢ und eine
Ellipse mit den Halbachsen >

a und b. Fig. 46

Dieselben Uberlegungen stellen wir fiir die bc-Ebene
an. Die Richtungen b und c¢ selbst haben wir schon er-
ortert: in Richtung & haben wir # und ¢, in Richtung ¢
haben wir a und & als Strahlengeschwindigkeiten abzu-
tragen’ (Fig. 47). Eine Zwischenrichtung [; (Fig. 48)
lietert eine Ellipse, die gleichfalls 2 zur einen Halbachse,
zur anderen einen zwischen b und ¢ liegenden Wert hat.
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e So findet man als
Schnittfigur
der Strahlen-

fliche mit der
bc-Ebene (Fig.
47) einen Kreis
mit dem Radius a
und eine Ellipse
mit den Halbach-
bsen b und c.
Stellen wir die
drei  gefundenen
Schnitte zusam-
men, so erhalten
wir (Fig. 49) ein
Gerippe der Strah-

Fig. 47. Schnitt der Strahlenfliche mit der bc-Eben lenﬂaChe’ das den
‘in Fig. 13 u. 14

dargestellten der cinachsigen Kristalle entspricht. Die
Strahlenfliche selbst stellt sich als eine Fliche
vierter Ordnung dar.
von der Durchschneidung von ,
Ellipse und XKreis in den
”l |I| I

Fig. 48 Fig. 49. Stra.hlenf]ad:e eines

zweiadhsigen Kristalls

Man befreie die Anschauung

Punkten P und sehe die Fliche als zweischalig: innen
einen Mehlsack mit vorstehenden Zipfeln, darum eine
zweite Hiille, die in vier nabelhaften Einsenkungen
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bei P die Mehlsackzipfel beriihrt. Fiir keinen der
beiden Strahlen ist die Geschwindigkeit nach allen
Richtungen gleich, beide sind ,auflerordentlich“. Das
Vorhandensein eines o. Strahls ist also ein Sonderfall bei
den Einachsigen. In welcher Weise die Strahlen ge-
brochen werden, ergibt die Huygenssche Konstruktion, die
in derselben Weise auszufiihren ist wie bei den Ein-
achsigen in § 4. .

DieNormalen- ;
fliche ist die Fufi-
punktfliche der Strah-
lenfliche, Der Schnitt
der Normalenfliche z.
B. mit der bc-Ebene
wird also gefunden,
indem wir von Fig. 47
ausgehend die Fufi-
punktkurven der bei-
den hier auftretenden
Schnittkurven  kon-
struieren. Der Kreis
ist bekanntlich seine
eigcne Fuﬁpunktkur— Fig. 50. Sd'miltt dber gormalenflﬁ&e
ve, und ebenso wissen e der pemhene
wir (S. 31), dafl die Ellipse ein Oval ergibt, so daff der
Schnitt der Normalenfliche mit der
bc-Ebene die Gestalt von Fig. 50 hat.

Besonderes Interesse beansprucht der Schnitt mit
der ac-Ebene. In dieser Ebene lagen die beiden Bira-
dialen, und die Konstruktion des Schnitts der Normalen-
fliche ergibt (Fig. 51), dafl in dieser Ebene auch die
beiden Richtungen liegen miissen, in denen sich beide
Wellennormalen mit der gleichen Geschwindig-
keit fortpflanzen. Diese Richtungen Bz und B'n nennen
wir ,Binormalen®. Sie stimmen mit den Biradialen
Br und B’r nicht iiberein, wie man an der Figur erkennt,
in die die Ellipse der Strahlenfliche und die Biradialen

Buchwald, Kristalloptik 4




50 Doppelbrechung und Polarisation

punktiert eingezeichnet
sind, bilden aber nur
kleine Winkel mit ihnen.
Wir koénnen zur Nor-
malenfliche auch anders
gelangen als durch eine
Fuflpunktkonstruktion
von der Strahlenfliche
aus. Wie wir nimlich
frither (S. 34) von dem
Indexellipsoid aus, das
ein Rotationsellipsoid mit
den Hauptbrechungsquo-
tienten 7, und n, als
Halbachsen war, zur

Fig. 51 Squnies der Noemalenfliche  Normalenfliche einachsi-

ger Kristalle gelangten,
ebenso kommen wir zur Normalenfliche Zweiachsiger, aus-
gehend von einem Indexellipsoid, das diesmal
kein Rotationsellipsoid ist, sondern ein dreiachsiges

mit den drei Hauptbrechzahlen ";1; = g
1 1
"’ =nbund~c~ =ncals Halbachsen, auf Grund

der gleichen Regel wie frither. Die Geschwindigkeiten der
beiden Wellennormalen in einer Richtung finden wir, in-
dem wir senkrecht zu dieser Richtung eine Diametral-
ebene durch das Indexellipsoid legen. Sie sind gleich
den reziprok genommenen Halbachsen der Schnitt-
ellipse. Die beiden Binormalen stehen also senkrecht auf
den Kreisschnitten des Indexellipsoids, so wie die beiden
Biradialen auf den Kreisschnitten des Fresnelschen
Ellipsoids.

Wie bei den einachsigen Kristallen gilt die weitere
Tatsache, die in § 13 aus der elektromagnetischen
Theorie folgen wird: Die beiden Halbachsen
geben nicht nurihrer Gréfle nach (reziprok
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genommen) die Normalengeschwindig-
keiteninderaufderEllipsesenkrechten
Richtung / an, sondern auch ihrer Rich-
tung nach die Schwingungsrichtungen
der beiden Wellen, die sich nach ! fort-
pflanzen.

Ist eine bestimmte Schwingungsrichtung gegeben, so ist
durch den in diese Richtung fallenden Radiusvektor des
Indexellipsoids die Geschwindigkeit der Welle bestimmt,
die nach der gegebenen Richtung schwingt. Die Licht-
geschwindigkeit ist darnach eindeutig
abhingig vonder Schwingungsrichtung.

Die Schwingungsrichtungen setzt man auf Grund
der folgenden hidufig anwendbaren Uberlegung (vgl.
z. B. Fig. 77) in Beziechung zu den Binormalen.
Durch die Normale [ (Fig.52), deren Schwingungs-
richtungen ich bestimmen will, und die eine Binormale
Bn lege ich eine Ebene E, desgleichen durch [
und die andere Binormale B’z eine Ebene E’. Errichte
ich im Mittelpunkt auf E ein Lot, so gehort es, da es auf
Bn senkrecht steht, dem Kreisschnitte K, der senkrecht
zu Bn liegt, an, hat also die Linge n;. Desgleichen hat
ein Lot auf E die
Linge np, da es
im Kreisschnitt K’
senkrecht zu B'n
liegt. Diese beiden
Lote n; stehen aber
auch senkrecht auf
I, bestimmen also
die Ebene des zu /
gehorigen  ellipti-
schen Schnitts (Fig.
53). Aus Symme-
:lriclgriindend 1(muﬁ

ielange und kurze . "
AchsedieserSchnitt-  Sheimgensridonszen

K¢
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ellipse den Winkel zwischen den beiden Loten #; und
den zugehdrigen Auflenwinkel halbieren; das gleiche gilt
fiir die Schwingungsrichtungen, die ja in die Richtungen
dieser Achsen fallen. Die beiden Schwingungsrichtungen
halbieren also die Winkel zwischen den beiden Loten auf
E und E’, anders ausgedriickt: die eine halbiert den
Wingfl zwischen E und E’ die andere steht senkrecht
auf thr,

Fir Wellen, die in einer der Binormalenrichtungen
fortschreiten, wird die Schnittellipse zum Kreis. Es gibt
fir sie keine definierten Halbachsen, also keine be-
stimmten Schwingungsrichtungen: alle Schwingungsrich-
tungen sind mdglich, natiirliches Licht geht ungehindert
hindurch. Durch diese Beziehung treten die Binormalen
in nihere Verwandtschaft zu den optischen Achsen der
einachsigen Kiristalle als die Biradialen, die nur dadurch
ausgezeichnet waren, dafl sich beide Strahlen in ihnen
mit gleicher Geschwindigkeit fortpflanzten; und so meint
man, wenn man schlechtweg von den ,optischen
Achsen zweiachsiger Kristalle” spricht, die
Binormalen damit und nicht die Biradialen.

Die Linie, die den spitzen Winkel zwischen den
optischen Achsen halbiert, nennt man die ,erste
Mittellinie“ die darauf Senkrechte, den stumpfen
Achsenwinkel Halbierende, ,,die zweite Mittel-
linie“.

Erstens kann der Fall eintreten, dafl die erste Mittel-
linie mit der kleinsten Achse des Fresnelschen Ellipsoids
zusammenfillt, lings deren wir ¢ abgetragen hatten: in
diesem Falle (Fig.54) nennen wir den Kristall ,posi-
tiv zweiachsig®; fillt dagegen die erste Mittellinie
in die Richtung der grofiten (a-)Achse des Fresnelschen
Ellipsoids, so heifit der Kristall ,negativ zwei-
achsig” (Fig. 55).

Die Bezeichnungsweise erklirt sich so: lassen wir beim po-
sitiv zweiachsigen Kristall die Achsen durch Null-Setzen des
spitzen Winkels zwischen ihnen zusammenfallen, so entsteht ein
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einachsig positiver Kristall: auflen die Kugel, innen das sie in
der Achse beriihrende Rotationsovaloid, vgl.Fig.29, Beim gleichen
Verfahren entsteht aus dem negativ zweiachsigen ein negativ
einachsiger. '

Die Frage, wieviele Konstanteneinen Kristall
in optischer Hinsicht bestimmen, liuft auf die
hinaus, wieviele Konstanten zur Bestimmung einer seiner Kon-
struktionsflichen, z.B. des Fresnelschen Ellipsoids, notig sind.
Denn jede der Konstruktionsflichen bestimmt das optische Ver-
halten des Kristalls, soweit wir es bisher ins Auge gefafit haben,

Fig. 54 Fig. 55
Positiv zweiachsiger Kristall Negativ zweiachsiger Kristall

vollstindig. Ein Kristall des reguliren Systems ist
durch eine Konstante bestimmt, den Radius des zur Kugel
ausgearteten Fresnelschen Ellipsoids, der die nach allen Seiten
gleiche Lichtgeschwindigkeit angibt (s. Schlufl von § 12).

Zur optischen *Bestimmung eines einachsigen Kri-
stallssind zwei Konstanten nétig, die beiden Haupt-
lichtgeschwindigkeiten, zur Bestimmung eines rhombischen
Kristalls drei, die drei Hauptlichtgeschwindigkeiten.

ImmonosymmetrischenSystemsind vier Kon-
stantén erforderlich; denn wihrend in den vorhergehenden
Fillen die Achsenlage des Ellipsoids eindeutig durch die
Kristallsymmetrie bestimmt war, kommt jetzt zu den drei
Hauptlichtgeschwindigkeiten eine vierte Zahl hinzu, die die
Lage der optischen Symmetrieachsen in bezug auf die am
Kristall auftretenden Kanten oder Flichen dharakterisiert.
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Eine Zahl geniigt; denn von vornherein ist die Lage einer
Symmetrieachse durch die Kristallachse bestimmt und die
Ebene der zweiten und dritten durch die kristallographische
Symmetrieebene. Durch die Angabe des Winkels, den z, B. die
zweite mit irgendeiner Kristallkante bildet, legen wir sie ein-
deutig fest, und sind einmal zwei optische Symmetrieachsen
bestimmt, so ist es damit auch die dritte.

Im asymmetrischen System sind aufler den drei
Hauptlichtgeschwindigkeiten drei Angaben iiber die Achsenlage
ndtig, so dafl hier sechs unabhingige optische
Konstanten auftreten. Zwei Zahlen, etwa Winkel mit
Kristallkanten, bestimmen nimlich die eine optische Symmetrie-
achse, und ist diese festgelegt, so geniigt, wie im rhombischen
System, e i ne weitere Zahl zur Bestimmung der beiden anderen.

§ 11. Die konischen Refraktionen

Eine besondere Betrachtung verdienen die singuliren
Fille, dafl sich ein Strahl in der Biradialen- oder eine
Wellennormale in der Binormalenrichtung fortpflanzt.
Ersterer fiihrt zur Erscheinung der ,iufleren koni-
schen letzterer zu der ,inneren konischen
Refraktion®

1. AuBere konische Reifraktion. Wenn ich im
Punkte § an die Strahlenfliche eine Tangentialebene lege
und vom Mittelpunkt O aus das Lot ON darauf fille
(vgl. Fig. 56, die einen Teil von Fig.26 wiederholt), so
ist ON bekanntlich die zum Strahle OS gehérige Nor-
male und ein Maf} fiir die Fortpflanzungsgeschwindig-
keit der Tangentialebene. Bei einer zweischaligen Strah-
lenfliche gehdren zu einem Strahle Os (Fig. 57) zwei
Normalen ON und ON’; denn der Strahl schneidet die
Strahlenfliche in zwei Punkten § und §’, und in jedem
Iift sich eine Tangentialebene an eine Schale der
Fliche legen.

Pflanzt sich der StrahlgeradeineinerBira-
dialenrichtung fort (Fig. 58), so scheint das Besondere
zunichst nur darin zu liegen, dafl beide Punkte § und
S’ in einen, P, zusammenfallen und dafl beide Tangen-
tialebenen im gleichen Punkte zu konstruieren sind, eine
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Fig. 56 Fig. 57. Konstruktion der zu einem
Strahle gehérigen Normalen
an den Kreis, eine an die Ellipse, beide auf der Papier-
ebene senkrecht stehend. Eine genauere analytiscne
Untersuchung ergibt aber,
daf sich in P nichtnur
zwei,sondernunend-
lich viele Tangen-
tialebenen an die
Strahlenfliche le-
gen lassen, weil diese
bei P die erwihnte trichter-!
formige Einsenkung hat. Die
unendlich vielen, auf alle
diese Ebenen zu fillenden Normalen gehdren zu der einen
Strahlenrichtung OP; es liBt sich zeigen, dafl sie einen
Kegel zweiten Grades erfiillen, in dem auch, wie aus
Fig. 58 ersichtlich, die Biradialenrichtung selbst enthalten
ist. Da sie verschiedene Linge haben (Fig.58: OP =+
ON), so pflanzen sich die Tangentialebenen verschieden
schnell fort. Einem in der Biradialenrichtung fortschrei-
tenden Strahlenbiindel konnen mithin verschieden ge-
neigte, ebene Wellen zugehdren, die beim Austritt aus
dem Kristall wegen ihrer verschiedenen Geschwindig-
keiten verschieden gebrochen werden und im Auflen-
raum, wo Strahl und Normale identisch sind, einen
Strahlenkegel ergeben (Fig.59). Das ist der ,Kegel
der dufleren konischen Refraktion®, den

Fig. 58. Auflere konische Refraktion
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Hamilton aus der Theorie vorhergesagt und Lloyd
(1833) experimentell zuerst nachgewiesen hat.

Man stellt den Versuch
so an, dafl man zwel
diinne, durchlochte Me-
tallfolien derart an den

- beiden Seiten einer Kri-
f stallplatte anbringt (Fig.

60), dafl die Verbin-
dungslinie der Offnun-
gen in die Richtung der
Biradialen fillt. In einem
Lichtkegel, den man auf
die eine Offnung kon-

L zentriert, werden alle die
Eiud:ren ko- Fig. 60. Afuﬁere konische NOfmalC'nrlChtungen ent-
nischen Re- Refraktion, 1 -
fraktion Versuchsanordnung halten sein, deren Zugeho

rige Strahlen im Kristall
linzs der Biradialen laufen und die beim Austreten den
Kegel der dufleren konischen Refraktion bilden. Dessen
Spitze liegt in der Austrittsoffnung: sein Offnungswinkel
betrigt z.B. beim Gips 0°18’, beim Aragonit 1°42,2';
einen auBerordentlich grofflen Wert hat er beim
Naphthalin. Hier liegen die Winkel der beiden koni-
schen Refraktionen um 13°45’".

2. Auch die Entdeckung der inneren konischen Re-
fraktion kniipft sich an die Namen Hamilton und
Lloyd (1833). An Fig. 56 rufen wir uns nochmals ins
Gedichtnis, dafl man den zu einer Normalenrichtung ON
gehbrigen Strah! OS findet, indem man senkrecht zu ON
eine Tangentialebene an die Strahlenfliche legt und den
Mittelpunkt mit deren Beriihrungspunkt verbindet, Bei
einer zweischaligen Strahlenfliche lassen sich senkrecht
zu einer Normalenrichtung im allgemeinen zwei Tan-
gentialebenen an die Strahlenfliche legen (Fig.61), an
jede Schale eine. IThre Abstinde ON und ON’ vom An-
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fangspunkt sind ein Mafl fiir die beiden Normalen-
geschwindigkeiten in dieser Richtung (vgl. hierzu Fig. 26).

Im Falle, daf die Normalenrichtung in
eine Binormale fillt, sind beide Normalenge-
schwindigkeiten gleich, beide Beriihrungspunkte S und §’
(Fig. 62) liegen also auf der gleichen Tangentialebene, und
zwar § auf der Binormalen sclbst. Diese Tangential-
ebene beriihrt aber die Strahlenfliche nicht nur in
zwei Punkten, sondern wie eine mathematische
Untersuchung zeigt, in einem kleinen, die be-
kannte trichterfdrmige Einsenkung um-

0

Fig. 61 . Fig. 62. Innere konische Refraktion
Konstruktion der zu einer

Normalen gehdrigen Strahlen

gebenden Kreise. Verbinde ich den Mittelpunkt
mit allen Punkten dieses Kreises, so ergibt sich ein
Kegel, der ,Kegel der inneren konischen
Refraktion®; er enthilt alle die Strahlenrichtungen
— die Richtung der Binormalen gehdrt auch dazu —,
die einer in der Binormalenrichtung fortschreitenden
ebenen Welle entsprechen. Beim Austritt aus dem Kristall
wird aus diesem Strahlenkegel ein auf der gemeinsamen
Wellenfront  senkrecht stehender  Strahlenzylinder
(Fig. 63), von dem in Fig. 62 zwei Strahlen darstellbar
sind, welche die durch 7 und I/ angegebene Richtung
haben, wenn die ebene Welle den Kristall verlifit, ohne
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gebrochen zu werden, eine
~ Annahme, die auch der Fig.
1K 63 zugrunde gelegt ist.

i Die Beobachtung der Er-
scheinung gestaltet sich etwa

EP so, dal man eine Kristall-

platte senkrecht zur Binor-
malen schneidet und ein fei-
nes Lichtbiindel senkrecht
auffallen liflt (Fig. 64). Das
erfiilllt im Kristall die Ke-
gelfliche!) und tritt als
Fig. 63. Kegel der  Fig. 64, Innere LiChtZylinder: dessen Durch-
inneren konischen konische Refraktion. messer von der Plattendicke
Refraktion Versuchsanordnung o .

abhingt, aus der Kristall-
platte aus. Der Offnungswinkel des Kegels ist bei einem
bestimmten Kristall annihernd gleich dem des Kegels der
dufleren konischen Refraktion.

Die Entdeckung der konischen Refraktionen ist als
»Prunkstiick der ZHlteren theoretischen Physik“ be-
zeichnet worden, und als schéne Schauversuche werden
sie gern gezeigt. Das Prunkstiick hat leider einen
Schénheitsfehler: die genau in der Achsenrichtung lau-
fenden Normalen fithren unendlich wenig Energie mit
sich und konnen gar nicht den Lichtring der innern koni-
schen Refraktion bilden. Sie bilden vielmehr (Theorie
von W, Voigt 1905) einen dunklen Ring, und
der beobachtete helle entsteht aus Normalen, die den
Achsen nahe benachbart verlaufen. Tatsichlich zeigte
bereits 1839 der hinreichend verfeinerte Versuch (Pog-
gendorff), daf der Lichtring durch einen schmalen
dunklen Ring unterteilt ist. Ahnliches gilt fiir die duflere
konische Refraktion. Das Versagen der ilteren Theorie
beruht letzten Endes darauf, dafl sie geometrisch-optisch
und nicht wellenoptisch denkt.

1) Bei der iu B eren konischen Refraktion liegt der Kegel im Aufilen-,
bei der innern im Innecpraum.
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§ 12. Eingliederung in die elektromagnetische
Lichttheorie: die Normalenfliche

Wir gehen an die schwierige Aufgabe heran, die Er-
gebnisse der Theorie, die bisher als Mitteilung hingenom-
men werden mufiten, aus den elektromagnetischen Grund-
gleichungen abzuleiten. Wir haben diese deduktive Er-
ginzung unserer rein induktiven Darstellung mehrfach in
Aussicht gestellt:

1. bei Einfithrung der Strahlenfliche Einachsiger in § 4
und des Fresnelschen Ellipsoids Einachsiger in §5 und
Zweiachsiger in § 10;

2. bei Angabe der Schwingungsrichtungen im Kristall
in den §§ 6, 8 und 10.

Strahlenfliche und Fresnel-Ellipsoid bilden mit den
tibrigen ,,Hilfsflichen”, der Normalenfliche (§ 7), dem
Indexellipsoid (§ 8), dem Polarisationsellipsoid (§ 8) und
der Indexfliche (§ 9) insofern eine Einheit, als man zu-
gleich mit einer der Hilfsflichen Zweiachsiger alle
iibrigen Flichen gewonnen hat. Denn alle Flichen
Zweiachsiger hingen zwangsliufig zusammen, und eben-
so zwangsliufig sind dann durch Gleichsetzen von zwei
der drei Hauptlichtgeschwindigkeiten oder -brechungs-
quotienten alle Hilfsflichen Einachsiger zu gewinnen,
z.B. das Fresnelsche Rotationsellipsoid aus dem
dreiachsigen. Wir werden uns darauf beschrinken, die
Normalenfliche Zweiachsiger aus den
Maxwellschen Gleichungen herzuleiten und sie auf Ein-
achsige zu spezialisieren (§ 12). Ein Sonderproblem aber
bildet Punkt 2, die Frage der Schwingungsrichtungen
Sie gliedern wir im nichsten Paragraphen (§ 13) in die
elektromagnetische Lichttheorie ein.

Die Maxwellschen Glcwhungen lauten in kartesischen
Koordinaten x, y, z fiir ein nicht leitendes Medium:
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1. Tripel 2. Tripel
10D, _ 49, _ 89, 109, _ 98, o€,
C o oy oz C a3z oy
(1) i@”:&_i@_ _1_,2?‘911:&_&@_12
C ot o9z 9x C ot dx 9z
13D, 0%, 9, 1939, _a€, 3C,
C ot ox  ay C a3y dx

Hier ist C die Liclitgeschwindigkeit im Vakuum, ¢ die
Zeit. D, 9,,D, sind die Komponenten des Vektors D,
der ,dielektrischen Erregung®, 9,9, 9%, die
der ,magnetischen Feldstirke“ $, €,¢,¢C,
die der ,elektrischen Feldstirke“ € Die
Magnetisierungskonstante ist gleich 1 gesetzt,

Bei isotropen Korpern ist D einfach dem € propor-
tional:

(2) D, = &€, . i)y = &€, D, =€,
mit ¢ als der ,Dielektrizititskonstante® Der
einzige Unterschied bei Anisotropen ist, wie Dbereits
Maxwell erkannt hat, daff dieser Zusammenhang all-
gemeiner anzusetzen ist, als

(3) D, =€, Dy =1¢C, D,=¢C
mit den drei ,Hauptdielektrizititskonstan-
ten® g, &y e5. Dabel ist schon ein geeignetes Achsen-
system gewihlt, die ,,Hauptdielektrizitits-
achsen®, was dasselbe ist wie unsere ,,optischen Sym-
metrieachsen® des § 10. Andernfalls sihe der Zusammen-
hang umstindlicher aus. Statt durch die drei ¢ kann
man das anisotrope Medium auch durch die drei
wHauptlichtgeschwindigkeiten® 4, b, ¢
gemif

4) at, — =5 "=

31 &2 3

kennzeichnen. So tauchen wiederum Bekannte aus § 10 auf.

Nun nehmen wir an, dafl sich durch den Kristall ebene
Sinuswellen fortpflanzen konnen. Statt eines sin & oder

¢ _, c:



Elektromagnetische Lichttheorie: die Normalenfliche 61

cos @ schreiben wir aber rechnerisch einfacher €i?; denn
das ist gleich cos@ + isin @, und wir kdnnen uns einigen,
etwa den reellen Teil aller spiter in der Rechnung auf-
tauchenden komplexen Groflen immer als den physi-
kalisch giiltigen anzusehen. Der Ansatz fiir €, $ und D
bekommt also den zeitlich wie riumlich periodischen
Faktor, der ebene, in der durch die Richtungscosinus
a, 8,y bestimmten Normalenrichtung fortschreitende
Wellen wiedergibt:
piwtp—ik(ax+By+yz)

mit @ als ,Frequen z“ (= 25 mal Schwingungszahl )

und k-als ,,Wellenzahl“ (= 2x durch Wellenlinge 1).
Es gilt also

(5) % = ) = Normalengeschwindigkeit .

An diesem Ansatz bilden wir die in den Maxwell-
schen Gleichungen (1) vorkommenden Differential-
quotienten. Zwischen ihnen bestehen nach (1) die Be-
ziechungen (bei Weglassen des immer auf beiden Seiten
auftretenden e-Faktors):

IO Jamn

éDI'w = — k(89: — v9,) ‘a 9z
+ o+

1. Tripel —é—ﬁy'w = — k(yH; — a9,) B9y
+

% Dow=—hkahy—p9) | v 9

© a av)

é 9w = — k(y€y — C.) a6
+ o+

2. Tripel | 29,0 = — ke —38) | 5 G,
+ o+

éﬁz'w =—k(pC;—aC) | 'y €
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Um das rechts seitlich Herangeschriebene kiimmern wir
uns vorerst nicht.
Wir streben jetzt auf die Gleichung der Normalen-

. . w . . .
fliche zu, die v = ~~ als Funktion der Richtungscosinus

a, B,y enthalten wird und die Kristalleigenschaften in
Gestalt der in den D steckenden e, &5, &5 oder der mit
ihnen nach (4) gleichwertigen 4, b, c. Dazu ersétzen wir
in der allerersten Gleichung von (6) die $-Komponenten
aus dem zweiten Trlpel

2 0.~ —k{ 5(2%) (pE— a1 |

k;oC2 D, = p2€,—af€,—ayC€,+42€,, hinzugefiigt + o*C,,
wegen g2+p2+y% = 1:
2

kTa;fz’ D; = €, — a(a€; + €, +1Ey).
Hier wird noch % nach (5) durch v ersetzt und die €-
nach (3) durch die S-Komponenten-

v? ? D, D, D,

o= el tA Ty
schheﬁhch auch noch die ¢ gemaﬁ (4) durch a,b,c:

2,

Dy(a? — v2) = a(aa?D; + pH2D, + yc2D,),| . - o .
a? — v’
entsprechend , +
(7) Dy(b® —v2) = B-(gleiche Klammer), B
b2
_I_
D,(c? — v?) = y-(gleiche Klammer). 5 4 5
2 —w

Durch die rechts angedeuteten Rechenoperationen, d. h.

durch Muldiplikation der ersten Gleichung mit

a? — o2



Elektromagnetische Lichttheorie: die Normalenfliche 63

usw. und durch nachherige Addition aller drei folgt links
Null, wie man durch Ausfilhrung der Operation (I) an
(6) erkennt. Rechts kann aus dem gleichen Grunde die
Klammer nicht gleich Null sein; vielmehr bleibt
o 8 72

®) o—a‘z—v2+b2—v2+02—172 )
Das ist eine quadratische Gleichung fiir v? als Funktion
von &, B, y; also gehoren zu jeder Richtung zwei wo-
Werte, v" und v”. Tragen wir sie in Richtung «, 8, y auf,
so entsteht eine zweischalige Fliche; wir behaupten,
dafl es die aus §10 bekannte Normalen-
fliche zweiachsiger Kristalle ist.

Beweis: Wir konstruieren zuerst den Schnitt von
(8) mit der xz-Ebene unter der nichts einschrinkenden
Annahme a>>b>>c und blicken da-
bei auf Fig. 51 zuriick, die sich so- Z
gleich als Ergebnis wiederfinden :
wird. Liegt die Normale in der @ Bn
x-Richtung,soist x =1, f =y =20, b
und als Wurzeln von (8) ergeben
sich — man bringt (8) zweckmiflig
rechts auf einen Nenner —
. v =b,v = c
b und ¢ tragen wir also in Fig. 65,
die den genannten Schnitt darstellen c b
soll, in der x-Richtung auf. Ent- Fiﬁ:_‘g' Sd’."ig d. N‘;’"g‘alf“'
sprechend aund b in der z-Richtung. ¢ T O T

Liegt aber die Normale irgendwie in der xz-Ebene, so
ist nur § = 0, und (8) wird zu

0= o (b —2) (T—2) + 92 (a2 —22) (b2 —22),
was befriedigt wird

1. durch die Wurzel v" = b, d. h. einen Kreis mit dem

2. durch 0 =a2 (2 — "2} + 92 (a2 —2"2), d. h.
Radius 5,

2o 4 2,0
o ¥E YR a2 + 22 (&2 + 2 = 11).

> X
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Dies aber ist, wie schon einmal in §8 benutzt, die
Gleichung eines Ovals mit den Halbachsen 4 und c.
Zeichnen wir Kreis und Oval in Fig. 65 ein, so haben wir
tatsichlich den einen Quadranten von Fig. 51 wieder-
gewonnen. In gleicher Weise ersteht die ganze Normalen-
fliche, und nach den Uberlegungen vom Beginn dieses
Paragraphen hat man damit alle Hilfsflichen Zwei-
achsiger wieder.

Wir spezialisieren auf Einachsige. Wir
setzten zwei Hauptlichtgeschwindigkeiten gleich, etwa die
beiden groflen @ und 4. Dann rutschen in Fig. 65 die
beiden Binormalen in die z-Achse und in der xz-Ebene
der Figur finden sich als Schnitte ein Kreis 4 und ein
Oval 4, ¢, das innerhalb des Kreises liegt und ihn in der
z-Achse beriihrt, kurzum es entsteht die alte Figur 29:
wir haben die Normalenfliche eines
positiv einachsigen Kristalls wieder-
gefunden. Ebenso finden wir die der negativ Ein-
achsigen wieder, wenn wir & = ¢ setzen.

Setzen wir gar « = b = c, so entsteht etwas bisher noch
nicht Behandeltes: die zweischalige Normalenfliche de-
generiert zur einschaligen Kugel. Das ist der Fall des
Kristallsystems, bei dem die drei aufeinander senkrechten
Koordinatenachsen gleichwertig waren (§ 2), des hdchst-
symmetrischen ,reguliren® Systems. Die Kristalle des
reguliren Systems verhalten sich also in dem Bereich,
in dem unsere nicht atomistische Behandlungsweise gilt,
wie isotrope Korper und scheiden daher aus unsern Be-
trachtungen aus — siche die Ankiindigung am Schluf}
von § 2. ’

Anders sieht es bei atomistischer Betrachtungsweise aus.
Miiflte man sich doch sonst wundern, daff im Rontgengebiet die
Durdhstrahlung etwa eines Steinsalzwiirfels in verschiedenen
Richtungen so verschiedene Lauediagramme liefert. Unsere
Kontinuumsbetrachtungen gelten nur in erster Niherung; in
hoherer erweisen sich die reguliren Kristalle bei gittertheore-
tischer Durchrechnung als nicht isotrop. Beim Steinsalz z.B.,
das in der Rhombendodekaederrichtung durchstrahle wird



Fortsetzung: Die Schwingungsrichtungen 65

(Fig. 66), sollen die Wel-
len bei den Schwingungs-
richtungen (1) und (2)
(letztere in der Papier-
ebene) je cm Weg einen
Gangunterschied zwar
nicht von 103) wie im
Maximalfalle beim Kalk-
spat, aber von 10721 ge-
winnen. Die Messung so
geringer Gangunterschiede
1st mit verfeinerten Hilfs-
mitteln durchaus mdglich,
aber bisher an der sich

(1

Fig. 66. Durchstrahlung
eines Steinsalzwiirfels

tiberlagernden Doppelbrechung durch natiirliche Spannungen

im Kristall gescheitert.

§ 13. Fortsetzung: die Schwingungsrichtungen

Die im Kristall allein méglichen Lagen der drei Vek-
torén €, H und D gegeniiber der Wellennormalen, die
durch «, 8,y bestimmt ist, und dem ,,Strahl®, der in der
Maxwellschen Theorie als Richtung der Energiefort-
pflanzung. definitionsgemif senkrecht auf € und 9 steht,
werden durch Ausfihrung der vier Operationen (I) bis

(IV) an dem Gleichungs-
system (6) des vorigen
Paragraphen  gefunden.
(D) liefert

“SDI + 1331/ + YDz =0,

und das driickt nach
einer Grundregel der
Vektorrechnung die Tat-
sache aus, dafl D auf der
Richtung«, B, v, d. h. der
Wellennormalen, senk-
recht steht. Wir zeichnen
Wellennormale, Wellen-
front und in ihr D in eine
Figur ein (Fig. 67).

Buchwald, Kristalloptik

Wellennormale a, ﬂ,)/

4

Strahl

Fig. 67. Schwingungsrichtungen einer

a.0. Welle im Kristall
5
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Entsprechend liefert (II) &$, + 9, + v9, =0, d. h

$ liegt in der Wellenfront, (III) liefert

g)x©.7: + f)ygy + f)znz = 0)
d.h. $ liegt senkrecht zu D. Beide Aussagen geniigen
zum Cinzeichnen von $.

(IV) liefert

f)x('gz + f)y(‘gy + f)z@z = O)

d.h. € steht senkrecht auf $. Da die €-Richtung aber
nach Gl. (3) des vorigen Paragraphen i. allg. nicht mit
D iibereinstimmt, fillt € nichtin die Wellenfront, son-
dern in der Figur etwa punktiert nach unten, und der
Strahl als Senkrechte auf € und $ fillt nicht mit der
Wellennormalen zusammen. D ist der Vektor, den wir
frither als ,,Lichtvektor' bezeichnet haben. Zweierlei be-
rechtigt ihn dazu: er ist ein elektrischer Vektor,
und er liegt in der Wellenfront, die fiir die meisten Ver-
suche von entscheidender Wichtigkeit ist. Wixhlen wir
€ als Lichtvektor, so herrscht strenge Transversalitit fiir
die Strahlrichtung, wihlen wir $), sowohl fiir die Strahl-
wie fiir die Normalenrichtung.

So haben wir eine Reihe von Aussagen fritherer Ab-
schnitte aus der elektromagnetischen Theorie wiederge-
wonnen. Fig. 67 enthilt aber von Beginn an eine Unbe-
stimmtheit, Wir haben D willkiirlich in die Wellen-
front eingezeichnet: wenn aber noch die drei $aupt-
dielektrizititsachsen gegeben sind: wie liegt D zu ihnen?
Die Antwort des § 10 war: in den Halbachsen der Ellipse,
in der die zu &, 8, y senkrechte Diametralebene das Index-
ellipsoid schneidet. Wir beenden den Paragraphen mit
dem Nachweis, dafl auch diese Regel von der strengen
Theorie bestitigt wird.

Die Gleichung des Indexellipsoids mit 74, 7p, 7. als
Halbachsen, # als laufendem Radiusvektor und %', 8, '
als dessen Richtungscosinus ist

2 2

(1) R

2
e '7~')7+' 9 "
n- ng= . ny” ne=
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Wir interessieren uns insbesondere fiir die beiden Rich-
tungen &, 8, 9", die in der Diametralebene senkrecht zu
&, B,» die Achsen der Schnittellipse festlegen; das sollen
ja_nach unserer Behauptung die Schwingungsrichtungen
sein. Welche Gleichung gilt fiir sie?

Erstens gilt fiir sie

(2) 1—0"2+52+7'2
wie fiir jede Richtung &', 8, %',

Zweitens gilt .

(3 0=a'a+ BB +yy
wie fiir jede Richtung senkrecht zu «, 8, y. Drittens sind
sie als Achsenrichtungen Extremwerte der Gleichung
(1) mit den Nebenbedingungen (2) und (3).

Solche ,,Varlatlonsprobleme mit Neben-
bedingungen® l6st man so, dal man erst jede der
Nebenbedingungen mit einem ,Lagrangeschen
Faktor” multipliziert, (2) mit 4, (3) mit u, und sie
dann zu (1), das wir noch mit C? multiplizieren, addiert:
C2 Cz Cz Cz
= N SN o SN il 2

wa= (Frawe (T a)s e [Fd)
T (e’ T BBy
Dann hat man die entstandene Gleichung nach den drei

Variablen o', §, 7" zu differenzieren und die Differential-
quotienten glc1ch Null zu setzen:

C2

2= Tt1)ad tua=0 o

Ny i
C2 +

0 2l g =0 |
Cz +
2 —+l y'+/,¢/—0 -y
ne

Die seitlich angedeutete Operation liefert unter Beachtung
von (2) und (3)

2
2( E#+ﬂ2_c,_+y’2£_)+2;~=o

ndt
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. . ., C .
Die Klammer ist nach (1) gleich = 12 (v Lichtge-
schwindigkeit im Kristall), also 4 = — 2, was in (4) ein-
gesetzt wird:

;T ha 5 = et S 4

—_—  — B
Cz C2 o
2 —— 92 21 = — 92 2 = — g2
=) (i) )
Es gilt also, wenn wir nach.dem bekannten Zusammen-
hang von Hauptbrechzahlen und Hauptlichtgeschwindig-

keiten (s. S. 50 nur war damals vereinfachend C = 1
gesetzt) noch

C? Ce Cz

5 =4 o=b, o=

a2 ng? n2

setzen, fiir die Achsenrichtungen unserer Schnittellipse das
Verhiltnis
VR « B . v
o'y o HEog e
Die gleiche Beziehung erfiillen aber nach § 12, Gl. (7) die
D-Komponenten:
. 104 8
D,:9,:D, = R 62—7-v2
Damit ist erwiesen, dafl die Schwin-
gungsrichtungen in die genannten
Achsenrichtungen fallen, wie es die Regel des
§ 10 behauptete.

II. Teil
Interferenzerscheinungen im polarisierten Lichte
§ 14. Kristallplatten im parallelen polarisierten Lichte

MeBmethoden, die kristalloptische Hilfsmittel beniitzen,
und Vorlesungsversuche gehen in grofler Zahl auf den
Fall 3 des §4 zuriick, die senkrechte Durchstrahlung
einer achsenparalle]l geschnittenen Kristallplatte. Seit
§ 6 wissen wir, dafl die beiden Wellen, die in der Platte
einen Gangunterschied gewonnen haben, senkrecht zuein-
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ander schwingen. Nach dem Austritt beschreibt der
Endpunkt des Lichtvektors also i. allg. eine Ellipse (Er-
innerung an die Mechanik: Zusammensetzung recht-
winklig zueinander verlaufender Schwingungen, Lissa-
jous figuren), die auch in eine Gerade ausarten kann
oder wenn beide Komponenten gleich sind und.1,3,5...
Viertelwellen Gangunterschied haben, in einen Kreis. Man
spricht dann von ,elliptisch polarisiertem®
Lichte, von ,Jinear” und von ,zirkular polari-
siertem*, und zwar von
rechts- oder linkszirkularem, je
nachdem der Kreis, wenn man
der Welle entgegensieht, im Sinne
des Uhrzeigers oder entgegenge-
setzt durchlaufen wird.

Beide Schwingungen kénnen
interferieren, wenn sie auf die-
selbe Schwingungsrichtung  ge-
bracht werden und auflerdem
nicht aus natiirlichem, sondern
bereits linear polarisiertem Licht
entstanden sind (Gesetze von
Fresnel und Arago 1816;
zu der zweiten Bedingung s.S. *
75). Das fithrt zu der Versuchs-
anordnung, die in Fig. 68 in der
fir subjektive Beobachtung ge-
eigneten Form des ,,Ortho-
skops™ dargestellt ist.

§ ist ein Spiegel, der das Licht nach oben wirft, N, der Pola-
risator, der das einfallende Licht polarisiert (§ 6), eingefiigt
zwischen zwei Sammellinsen L, und L,, von denen die erste
bewirkt, dafl mdglichst viele Strahlen den unteren Nicol durch-
setzen, wihrend di¢ zweite das austretende Licht wieder parallel
macht; N, ist der Analysator (§ 6). Zwischen beiden Nicols liegt
die Kristallplatte P auf einem Glastischchen, das ebenso wie die
beiden Nicols um eine vertikale Achse drehbar ist. Die Platte
wird hier — und das ist das Gemeinsame aller der Fille, die

Fig. 68. Orthoskop
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wir zunidchst besprechen — wvon parallelen Lichtstrahlen
rechtwinklig durchsetzt. Daher Orthoskop! Jede Stelle
des Gesichtsfelds ist dann gleichwertiz und muff in gleicher
Helligkeit oder Firbung erscheinen. — Mikroskopisch kleine
Kristalle kann man in einem Mikroskop untersuchen, das man
durch Hinzufiigen zweier Nicols zum Orthoskop umgestaltet
hat (,Polarisations-Mikroskope® Lieferant u.a.
Ernst Leitz, Wetzlar; Winkel, Gottingen).

Wir bringen in diesen Apparat eine parallel zur Achse
geschnittene Platte eines einachsigen durchsichtigen
Kristalls, wie wir sie in Fig. 25, dort allerdings auf den
teilweise undurchsichtigen Turmalin bezogen, vor uns
haben. Es kommt darauf an, den Einflufl der verschie-

" Polarisator denen Variablen auf
4 die Interferenzerschei-
- nung_herauszuschilen:
" wir konnen die Platte
drehen, wir konnen
Polarisator und Ana-
Analysator |ysator drehen, wir
konnen die Farbe des
angewandten  Lichts
variieren. Wir be-
schrinken uns auf die
ausgeprigtesten Fille:
wir stellen zuerst die
Nicols parallel und drehen die Platte, wobei wir
erstens monochromatisches, zweitens weifles Licht anwen-
den, Dann machen wir dasselbe bei gekreuzten
Nicols. Die Art, wie wir immer verfahren, ist durch
Fig. 69 gekennzeichnet. Wir zerlegen die auf die Platte
auffallende lineare Schwingung von der Amplitude 4 in
zwei Komponenten i; und i, nach den beiden in der
Platte moglichen Schwingungsrichtungen S, parallel*zur
Achse und S, senkrecht dazu. Von i; wie von i, geht
durch den Analysator nur die in dessen Schwingungsrich-
tung fallende Komponente £, bzw. k, hindurch, Deren
Zusammenwirken wird schlieflich beobachtet,

Fig. €9
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L. Nicols parallel

_ 1. Monochromatisches Licht

Wir stellen zuerst (Fig. 70) die Platte so, dafl eine ihrer
Schwingungsrichtungen mit der gemeinsamen von Polari-
sator und Analysator iibereinstimmt und bezeichnen das
als ,Normalstellung*“ der Plarte. In diesem Falle
geht die ankommende Schwingung » unzerlegt durch die
Platte hindurch. Die Platte hat, wie dick sie
auch sei, iberhaupt keinen Einflufl auf
dieErscheinung.

%

~

A

Fig. 70. Parallele Nicols. Fig. 71. Parallele Nicols.
Normalstellung Allgemeiner Fall

Nun drehen wir die Platte etwa bis in die Lage Fig. 71
und fithren die Zerlegung nach dem Schema von Fig. 69
aus bis zu &, und k, als interferierenden Lichtverktoren.
Die Summe k; + k, ist geometrisch genommen immer
konstant gleich . Physikalisch summiert sich aber die
Wirkung von k, und k, zu einer Gesamtamplitude & =k,
+ k, nur dann, wenn beide ,,gleichzeitig angreifen, d. h.
bei einem Gangunterschied von O, 4,2 1. ... Ist die Platte
gerade so dick, daf sie den beiden Komponenten einen
dieser Gangunterschiede erteilt, so zeigt sie beim Drehen
immer dieselbe Helligkeit, die auch ohne die Platte herr-
schen wiirde, natiirlich bei Vernachlissigung der Re-

flexionen. Betrigt aber der Gangunterschied-;ﬁ, 3 % -
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so greifen k, und k, im entgegengesetzten Sinne an: wenn
ky nach oben wirkt, wirkt &, nach unten. Beide setzen
sich dann zu einem k = | k; — &, | zusammen, und in der,
sDiagonalstellung” (Fig.72), wo die Polarisa-
torrichtung den Winkel zwischen den Schwingungsrich-
tungen der Platte gerade halbiert und k&, gleich &, wird,
heben sie sich ganz auf?). Bei einem Gangunterschiede

von 5, 3 5 wird also beim Drehen volle Helligkeit
(in der Normalstellung) mit vélliger Dunkelheit (in der
Diagonalstellung) wechseln, und zwar
wird bei einer vollen Umdrehung das
Gesichtsfeld viermal hell und viermal
dunkel. Betrigt der Gangunterschied
weder genau ein Vielfaches einer gan-
zen noch einer halben Wellenlinge, so
wechselt volle Helligkeit (Normalstel-
lung) mit mifiger Helligkeit (Mini-

.mum in der
S / Diagonalstel-
lung).
Verschiedene
Gangunter-
schiede kann
man gleichzeitig beobachten, wenn man statt der Platte
einen Kristallkeil anwendet, gewissermaflen eine
Nebeneinanderstellung von verschieden dicken Platten,
bei dem die Achse parallel der Keilkante, die Schwin-
gungsrichtungen parallel und senkrecht zur Kante laufen
(Fig. 73). In der Normalstellung erscheint der Keil iiber-
all gleich hell, in der Diagonalstellung zeigt er dunkle
Streifen, die an den Stellen, wo der Gangunterschied ge-

Pol.
Are.

Fig. 72. Parallele Nicols. Fig. 73. Kristallkeil
Diagonalstellung

1) Man lese in einem Lehrbuch der Physik iiber die Zusammensetzung
zweier gleichgerichteter Schwingungen derselben Frequenz nach. Formelmiflig
ist die resultierende Amplitude & = Vln’ + ko2 + 2kyks cos @, wenn ¢ det
im Winkelmafl ausgedriickte Gangunterschied, der ,Phasenunter-
schied® ist. 11 entspricht ¢ = 360° = 2 a.
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radc%, 3 % ... betrdgt, ganz schwarz sind. In den

Zwischenstellungen treten graue Streifen auf,

2. Weifles Licht

In der Normalstellung hat die Platte nie einen Einfluf;
in der Diagonalstellung werden diejenigen Farben ganz

ausgeloscht, fiir die der Gangunterschied 2235
betrigt. Die andern Farben werden geschwicht, nur
die nicht, fiir die der Gangunterschied O, 1, 24... ist,
Kurz: das Gesichtsfeld erscheint in einer Mischfirbung,
die von der Dicke der Platte abhingt und in der die zu-
letzt genannten Farben iiberwiegen. Beim Drehen um
360° wechselt viermal Weif8 (in den Normalstellungen)
mit viermaliger intensiver Firbung (in den Diagonal-
stellungen). Ein Keil geht von Weif§ (Normalstellung)
zu einer Farbenskala iiber, die in den Diagonalstellungen
am intensivsten ist und spiter niher untersucht wer-
den wird.

IL. Nicols gekreuzt
1. Monochromatisches Licht

Wir fithren genau dieselben Operationen aus wie vor-
her und werden finden, dafl immer da, wo bei
parallelen Nicols Helligkeit herrschte,
jetzt Dunkelheit Pol
herrscht und umge- N
kehrt, und daf an
Stelle irgendeiner
Firbung die komple-
mentire tritt _ A

In der Normalstellung (Fig. -
74), wo die Schwingungsrich-
tungen im Plittchen mit de- Ddn.
nen doerh Nliacols ﬁliereinjtim}; '
men, geht b unzerlegt durd - .
die P%atte und wigd vom ©F 74Ngﬂ,‘;f§§ffun1:'°°h'
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Analysator vollstindig ausgeldscht, genau so als ob die
Platte gar nicht da wire. Wie auch der in der
Platte erreichte Gangunterschied sei:
das Gesichtsfeldist vollig dunkel. In den
anderen Stellungen bilden wir wieder die beiden Kom-
ponenten nach den Schwingungsrichtungen der Platte und
fithren diese dann auf die Analysatorrichtung zuriick. In
Fig. 75 und 76 ist dies fiir eine Zwischenstellung und die
Diagonalstellung angedeutet. Geometrisch gesprochen ist

Lol Pol.
Py PN

A

RN BN
/' ~

. h AN
! '
. l] 4 ]
Ll
V2 NS

k| K 4
3
Fig. 75. Gekreuzte Nicols, Fig. 76. Gekreuzte Nicols.
Allgemeiner Fall Diagonalstellung

jetzt immer die Differenz der beiden Komponenten
k; und k, konstant gleich Null. Sie heben sich aber in
ihrer Wirkung nur dann gerade auf, wenn sie gleichzeitig
angreifen, also mit einem Gangunterschiede von O, 2,
2 ... austreten. Erteilt die Platte einen dieser Gang-
unterschiede, so bleibt sie beim Drehen in jeder Lage vollig

dunkel.” Ist aber der Gangunterschied %, 3 % ... SO

ist einer der Pfeile um 180° herumzuwerfen und 4, und
k, wirken in der gleichen Richtung, verstirken sich also
und erzeugen eine gewisse Helligkeit, die in der Diagonal-
stellung, wo k; und k, ihren maximalen Wert haben, am
grofiten ist, nimlich so wie sie ohne Platte wire (b, 1+ &,
= h). Beim Drehen eines Plittchens, das einen dieser
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Gangunterschiede hervorruft, wechselt demnach vier-
malige v6llige Dunkelheit (in den Normalstellungen) mit
viermaliger vélliger Helligkeit (in den Diagonalstetlun-
gen), umgekehrt wie bei parallelen Nicols. Bei einem
Plittchen, das weder genau den einen noch den anderen
Gangunterschied bewirkt, wechselt véllige Dunkelheft
(Normalstellungen) mit mifliger Helligkeit (Maximum in
den Diagonalstellungen).

Will man die unbekannten Schwingungsrichtungen eines Plitt-
chens bestimmen, so braucht man es demnach nur zwischen
gekreuzte Nicols zu bringen. In den Stellungen, wo es Dunkel-
heit zeigt, liegen die Schwingungsrichtungen, die man daher
auch ,Ausléschungsrichtungen® nennt, parallel den
beiden Nicolschwingungen.

Der Keil zeigt in der Normalstellung Dunkelheit, in der
Diagonalstellung schwarze Streifen an- den Stellen, wo bei
parallelen Nicols helle waren, und umgekehrt.

Hierbei sei auf die Bedeutung des Polarisators hingewiesen:
fiele natiirliches Licht mit seinen fortwihrend wechselnden
Schwingungsrichtungen auf die Kristallplatte, so wire die Inter-
ferenz in einem bestimmten Moment, wo die Schwingung gerade
parallel dem Analysator stattfindet, gemifl dem Sonderfall
»Nicols parallel®, sehr wenig spiter, wo sie sich um 90° gedreht
hat, gemil dem der ,gekreuzten Nicols. Der Wechsel ist so
schnell, dafl das Auge keine Interferenz, sondern nur eine
mittlere Helligkeit wahrnimmt,

2. Weifles Licht
In der Normalstellung bleibt die Platte dunkel. In der
Diagonalstellung werden diejenigen Farben ganz ausge-
16scht, bei denen der Gangunterschied O, 1,2 1... ist,
Y
7
betrigt. Genau umgekehrt wie bei parallelen Nicols;

wihrend die voll erhalten bleiben, wo er %,' 3

denn dort wurden gerade die mit i, 3 ... ausgeldscht

A
2
und die mit O, 1,2 1... am meisten begiinstigt. Dement-
sprechend ist die jetzt entstehende Mischfirbung komple-
mentir zu der vorhin beobachteten; bei der Drehung wird
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das Plittchen zwischen Schwarz und einer (komplemen-
tiren) Mischfirbung wechseln, die in den Diagonal-
stellungen am intensivsten ist. Der Keil zeigt schwarz
und eine zur vorhin beobachteten komplementire
Farbenskala.

Beide Fille (Nicols parallel und senkrecht) lassen sich
gleichzeitig beobachten, wenn man den Analysator durch
ein doppelbrechendes Prisma ersetzt, dessen Schwingungs-
richtungen man parallel und senkrecht zu denen des
Polarisators einstellt.

Bei zweiachsigen Kristallen kommen wenig
neue Gesichtspunkte hinzu. Denn auch hier wird die ein-
fallende Schwingung in zwei zerlegt, die senkrecht zuein-
ander verlaufen und schlieflich nach den angegebenen
Regeln interferieren. Die Ahnlichkeit geht so weit, dafl
die meisten der beschriebenen Erscheinungen an zwei -
achsigen Kristallen vorgefiihrt werden, nimlich an Gips
und Glimmer, die dazu geeignet sind,'weil sie sich wegen
ihrer natiirlichen Spaltbarkeit leicht in diinne Plittchen
zerlegen lassen.

Wir kennen den monosymmetrischen G i p s (Fig. 2) aus
Nr.2 des §2 und wissen, daf seine einzige Symmetrie-
ebene parallel der Fliche & liegt. Erfahrungsgemif} fallen
in diese Ebene seine optischen Achsen Bn und B'n, und
da er auch nach dieser Ebene vollkommen spaltbar ist,

B I liefert er Spaltungsplittchen
~—=Bm—> mit den Achsen in der Ober-

------ 2 /| / fliche (Fig. 77). Senkrecht hin-

( - durchgehende Wellen schwin-

gen nach den Richtungen 7
und I, den Halbierenden
des Adhsenwinkels und seines Auflenwinkels (s. S. 52).
Sieerhalten dengrofitmdglichen Gangunterschied imKristall;
denn man erinnere sich an die Normalenfliche (Fig. 65
in §12): zu dieser Fortpflanzungsrichtung gehtren die
denkbar verschiedensten Normalengeschwmdlgkelten a
und c. Der Fall ist also ganz zhnlich dem einer ein-

Fig. 77. Gipsplittchen
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achsigen achsenparallelen Platte. Jedoch gilt die Achsén-
lage der Fig. 77 streng nur fiir eine bestimmte Farbe; fiir
eine andere liegen die Achsen wie die Schwingungsrich-
tungen etwas anders. Infolgedessen ist die Normalstellung
des Plittchens fiir jede Farbe eine andere, und es lifit
sich im weiflen Licht zwischen gekreuzten Nicols nie eine
Stellung finden, in der das Gesichtsfeld dunkel bleibt.
Das gehort zu den Komplikationen bei Zweiachsigen, die
genau genommen nur in besonderen Symmetriefillen
fehlen und bei starker Dispersion oft deutlich hervor-
treten. ,

Der Glimmer ist B M B
gleichfalls monosymme-

trisch. Bei der in der Fig. f //
78 dargestellten Form /\ a 1 /
( —1

a

b 5

- [4
Fig. 78. Glimmer Fig. 79. Glimmerplittchen

liegt & parallel der Symmetrieebens; vollkommene Spalt-
barkeit existiert nach der Fliche d, was in der Figur hori-
zontale Plittchen ergibe. Die erste Mittellinie steht nahezu
senkrecht auf der Spaltungsfliche; die Ebene der optischen
Achsen liegt bei einigen Varietiten senkrecht zur Symme-
trieebene (Glimmer erster Art), bei anderen parallel dazu
(Glimmer zweiter Art). Fig. 79 fiihrt die optischen Ver-
hiltnisse in einem Spaltungsplittchen vor Augen (von
Glimmer 1. Art, wenn wir die Orientierung von Fig. 78
beibehalten): die erste Mittellinie, annihernd senkrecht
auf der Fliche d, die optischen Achsen Bn und B'n, die
optischen Symmetrieachsen 4, b, ¢ und die Schwingungs-
richtungen I und /7 der beiden Wellen, d1c die Platte senk-
recht durchsetzt haben (s. S. 52).
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§ 15. Gangunterschied und Interferenziarben

Die beiden interferierenden Wellen bekommen in der
Platte einen Gangunterschied von

1) 4= 2 (ry—n)

Wellenlingen, wenn d die Dicke der Platte ist, 1 die .
Wellenlinge des auffallenden Lichtes und », und #n, die
Brechungsquotienten der beiden Wellen.
Die schnellere Welle braucht nimlich zum Durchlaufen der
Weg

Platte die Zeit = Geschwindigheit = Clny’ dic langsamere
d

Clng - Sie kommt um Clng — Ciny =c (ny—n,) Sekun-

den spiter an der Austrittsfliche an, und in dieser Zeit ist ihr
die erste Welle im Auflenraum schon um die Strecke (= Zeit

mal Geschwindigkeit % (ng—n,) - C = d (ny—n,) davonge-

laufen, das ist in Wellenlingen gemessen e (n;—n,), wie in
(1) angegeben.

Der Gangunterschied ist also um so grofler, je kleiner
die Wellenlinge des angewandten Lichts und je grofer
die Dicke ist und die Differenz der Brechungsquotienten.
Die letztere ist bei einem gegebenen Kristall am grofiten
in den betrachteten Fillen, daf} die Durchstrahlungsrich-
tung senkrecht zur Achse oder zur Binormalenebene ist.
Wire die Platte so geschnitten, dafl die Achse geneigt
zur Oberfliche lige, so miifite sie dicker sein, um den
gleichen Gangunterschied hervorzubringen; lige die Achse
senkrecht zur Oberfliche, so trite auch bei noch so
grofler Dicke kein Gangunterschied ein. Beim Kalkspat
st die Differenz der Brechungsquotienten senkrecht zur
Achse so groff, dafl die Platte sehr diinn sein muff — so
diinn, wie man es technisch kaum erreichen kann —, um
nicht einen allzu groflen Gangunterschied hervorzu-
bringen. Und allzu groff darf der Gangunterschied nicht
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sein, hdchstens etwa 8 Wellenlingen, damit die Farben-
erscheinungen gut hervortreten. Woran liegt das?

Vergleichen wir drei verschieden dicke Plittchen, z. B.
aus Quarz, in der Diagonalstellung zwischen gekreuzten
Nicols, ein ganz diinnes, eins von 0,065 mm und eins von
1 mm Dicke! Bei dem diinnsten Plittchen kommt iiber-
haupt kein merklicher Gangunterschied zustande, Keine
Farbe des Spektrums wird ganz ausgelscht, wozu ein
Gangunterschied von 1 nétig wire (vgl. S. 75); jede wird
nur geschwicht. Das Plittchen erscheint matt eisen-
oder lavendelgrau. '

Bei der 0,065 mm dicken Platte ist der Gangunterschied
gleich 1 Wellenkinge fiir 1 = 589 mu, fiir D-Licht. Dieszs
wird also véllig ausgeldscht; die {ibrigen Farben ergeben
ein prichtiges Indigo als Mischfarbe, das ein Spektrum
mit einem dunklen Streifen bei 589 myu liefert.

Bei dem 1 mm dicken Plittchen betrigt der Gangunter-
schied 23 Wellenlingen fiir 4 = 413mu, 22 Wellen-
lingen fiir 429 mu, 21 Wellenlingen fiir 447 mu, 20
Wellenlingen fiir 467 mu usw. Da alle diese Wellen-
lingen ausgeléscht werden, zeigt das austretende Licht
spektral zerlegt eine Reihe dunkler Streifen im Spektrum,
in unserem Falle zwolf zwischen 400 und 768 mu, und
erfahrungsgemifl wird das unzerlegte Licht dann vom
Auge als weiff empfunden, als sogen. ,,Weifl hoherer
Ordnung®, wenn iiber das Spektrum verteilt neun
oder mehr dunkle Streifen auftreten. Dies ist der Grund,
warum im allgemeinen nur diinne Platten Firbungen
zeigen. :

Was in der Diagonalstellung zwischen gekreuzten
Nicols geschieht, wenn man die Dicke der
Platte von Null anfangend zunehmen
1i8t, macht man sich an einer einfachen Zeichnung

d
klar. Dunkelheit herrscht nach (1), wenn ) (ny — n,)

gleich einer ganzen Zahl m ist,
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d
C(ny—ny) =m,

A
d. h, bei Quarz oder Gips, wo 7, — n, im Sichtbaren ab-

g(:rundet:lTl0 betrigt (im obigen Beispiel ist mit einem

genaueren' Werte gerechnet worden), wenn
d =m-100 1
oder bei Angabe des d in mm und des 1 in u, wenn
dmm = m‘O,l'l“
ist. Das sind in einem d-1-Schaubild (Fig. 80) Gerade, die
alle beim Null--

punkt ' anfangen

d und die bei 4 =

1 u fir die Para-

meterwerte m =

0,54 1 (erster dunkler
Streifen), m = 2

0.4 (zweiter dunkler
0.3- Streifen) ... die
’ Ordinaten0,1, 0,2
0,21 . erreichen. Je-
de Gerade gibt

01mm fiir einen der
.1 Streifen den Zu-

0 (] 08 11U sammenhang von
spektraler Lage
; und Plattendicke.
Alle Streifen liegen bei ganz kleinen Dicken weit im
Ultraviolett, bei kleinen Wellenlingen, und riicken bei
steigender Dicke nach grofleren. Der erste kommt bel
d = 0,04 mm ins Sichtbare (1 = 0,4 bis 0,8 u; in
der Figur durch punktierte Linien herausgehoben),
marschiert mit wachsendem d durchs Spektrum und ver-
1ift es im Rot bei einer Plattendicke von 0,08 mm. Bei
dieser Plattendicke ist aber der zweite Streifen (m = 2)
gerade an der violetten Grenze des Sichtbaren ange-

Fig. 80. Dunkle Streifen im Spektrum
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kommen (dym = 2°0,1-0,4 = 0,08) und riickt nun seiner-
seits bei steigendem d gegen das Rot vor. Aber er mar-
schiert langsamer als der erste, denn nach der Figur
braucht man eine gréflere Dickeninderung, um ihn durchs
Spektrum zu bringen als beim ersten. Bei gleichmifliger
Dickendnderung bentigt er also lingere Zeit zum Durch-
wandern. Und so fort: immer riicken neue Streifen
herein, ehe die allzu langsamen vorherigen hinaus sind,
so dafl die sichtbare Streifenzahl mit der Dicke wichsr.
Z.B. lehrt die Figur, dafl bei d = 0,3 mm bereits vier
Streifen im sichtbaren Spektrum liegen, der 4., 5., 6. und 7.

Minner betreten eine Galerie, am Anfang jeder Minute einer.
Der erste durchschreitet sie in einer, der zweite in zwei, der
dritte in drei Minuten usw. Wieviel Minner sind jeweils iu
der Galerie? Man spiele es mit Halmasteinen durch!

Man fiihrt die Streifenwanderung objektiv vor, indem
man den Kristallkeil Fig.73 im weiflen Licht in der
Diagonalstellung zwischen gekreuzten Nicols an einer
spaltférmigen Offnung vorbeizieht und das austretende
farbige Licht spektral zerlegt.

Unzerlegt zeigt dieses Licht bei steigénder Plattendicke
zwischen gekreuzten Nicols nacheinander Farbtdnungen,
die man nach Ahnlichkeiten in der Farbfolge in ,,Ord -
nungen® einzuteilen pflegt:

1. Ordnung. Schwarz. Grau. Weifl, Gelb. Orange.

Rot.

2. » Purpur. Blau. Griin, Orange. Rot
Dunkelviolettrot.

3. . Bliulichviolett. Griinblau. Griin. Griin-
gelb. Mattrot. Grauviolett.

4, ’ Graublau, Griinblau. Hellgriin. Fleisch-
rot.

5. Matt blaugriin. Mate fleischrot.

In den hoheren Ordnungen kehren die mattgriinen und
mattroten TOne wieder, um schlieflich in das Weif
hoherer Ordnung iiberzugehen. Alle Farben lassen sich
iiber diese rein qualitativen Bezeichnungen hinaus nach

Buchwald, Kristalloptik 6
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zwischenstaatlich vereinbarten Verfahren mit aller wiin-
schenswerten Schirfe quantitativ in Farbton, Sittigung
und Helligkeit festlegen und etwa als Kurvenzug in ein
Farbendreieck einzeichnen. Die Abgrenzung der Ord-
nungen vollzieht man dann zweckmifligerweise so, dafl
man eine jede mit dem Farbton des roten Spektralendes
beginnen und enden lifit. Nur die erste beginnt mit dem
genannten lichtschwachen ,,Eisen- oder Lavendelgrau® des
Farbtons 480 mu. An dem Kristallkeil Fig. 73 kann man
die ganze Farbenskala nebeneinander beobachten. An
manchen Stellen indern sich die Farben besonders rasch
mit dem Gangunterschied; man spricht dann von
sempfindlichen Farben“. Wohl am schdnstzn
wirken die Farben der 2. Ordnung. Beliebt sind auch die
farbenfreudigen Zusammenstellungen verschieden dicker
Plittchen zu Treppen, Blumen, Landschaften usw.

Die iiberhaupt méglichen Farbentdne stimmen annihernd mit
denen der Newtonschen Interferenzfarben in einem Luftkeil
iiberein, bei gekreuzten Nicols mit denen im senkrecht reflek-
tierten, bei parallelen Nicols mit denen im senkrecht durch-
gehenden Lichte. Der Gangunterschied in einer planparallelen

24+
Luftplatte d* ist im durchgehenden Lichte ;- Eine Kristall-
platte hat nach (1) den gleichen Gangunterschied, wenn

24*
‘ T e
ist oder
2d* .
d = , d.h. bei Quarz oder
ny—ny
Gips mit ihrem n,—n, :1_(1)—6 im Sichtbaren, wenn sie rund

200mal so dick ist wie die Luftplatte. Bei eigentiimlicher Ab-
hingigkeit des n,—n, von 1, beispielsweise bei Apophyl-
liten, kommen vollig abweichende Farbfolgen vor, eine
interessante Frage der Farbenlehre.

Untersuchen wir nicht eine einzelne Platte, son-
dern eine Uberlagerung mehrerer, so ergeben
sich keine neuen Schwierigkeiten, solange die Schwingungs-
richtungen in den einzelnen iibereinstimmen. Legen wir zwei
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Platten aus gleicher Substanz derart iibereinander, dafl die
Schwingungsrichtungen der schnelleren Wellen parallel liegen,
so wirken sie wie eine Platte von der Summe ihrer Dicken;
sie wirken wiec eine von der Differenz ihrer Dicken,
wenn sie ,gekreuzt® liegen, d.h. wenn die Schwingungs-
richtung der schnelleren Welle in der einen Platte iiberein-
stimmt mit der Schwingungsrichtung der langsameren in der
anderen, Denn hier macht die eine Platte den Gangunter-
schied zum Teil riickgingig (oder wenn beide gleich dick sind,
ganz riickgingig), den die andere hervorgerufen hat.

Man kann diese Erscheinung benutzen, um die Farben-
ordnung eines Kristallpldttchens zu be-
stimmen. Man iiberlagert es hierzu in der Diagonalstellung
zwischen gekreuzten Nicols so mit dem Kristallkeil Fig. 73,
dafl sich die entsprechenden Schwingungsrichtungen in Platte
und Keil kreuzen. An der Stelle, wo der Keil dieselbe Dicke
hat wie die Platte, wird dann ein schwarzer Streifen auftreten;
denn hier kompensieren sich Plittchen- und Keilwirkung, und
es tritt kein Gangunterschied ein. An der Stelle muf} der Keil
nach Entfernung des Plittchens dieselbe Firbung zeigen wie
dieses allein, und es ist dann ein leichtes, die Ordnung fest-
zustellen, zu der diese Firbung gehort.

Will man bestimmen, ob ein Kristall positiv
oder negativ ist, so kombiniert man ihn mit einer Platte

von bekannter Doppelbrechung und wihlt dazu oft ein ,,% -

oder Viertelwellenpldttchen®, meist aus Glimmer,
d. i. eine Kristallplatte (s. S. 21), die den beiden Wellen einen
Gangunterschied von einer Viertelwellenlinge erteilt, was ge-
nau genommen natiirlich nur fiir eine Farbe gilt, etwa fiir
das Gelb in der Mitte des Spektrums.

2 ce . .
Das i Plittchen sei in einer Fassung befestigt, auf der die

Schwingungsrichtung der langsameren Welle durch einen
Pfeil markiert sei (in Fig.79 ist es die Richtung 7)., Die un-
bekannte Platte bringen wir etwa in der Diagonalstellung
zwischen gekreuzte Nicols, wobei wir eine gewisse Interferenz-

farbe beobachten, und das —i—-Pliittchen legen wir so darauf,

dafl die Pfeilrichtung mit der einen Schwingungsrichtung S,
der Platte koinzidiert. Wird dadurch die Ordnung der Inter-

6
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ferenzfarbe erhdht, so wirken beide Platten im gleichen Sinne:
S, ist also (wie die Pfeilrichtung) die Schwingungsrichtung der
langsameren Welle, und umgekehrt. Um iiber positiv oder
negativ zu entscheiden, mufl man dann noch die Achsenlage in
der Platte kennen.

Ist die zu untersuchende Platte so dick oder so stark doppel-
brechend, dafl sie das Weiff hoherer Ordnung zeigt, so geniigt

-die Anderung um T nicht zur Hervorbringung einer Inter-

ferenzfarbe. Man ersetzt dann das —f;— - Plittchen durch den

mehrfach erwihnten Kristallkeil von bekannter Lage der
Schwingungsrichtungen.  Erscheint das Gesichtsfeld weiter im
Weifl hoherer Ordnung, so stimmen die Schwingungsrichtungen
der schnelleren Wellen in Platte und Keil {iberein; im anderen
Falle treten lebhafte Interferenzfarben in der Nachbarschaft
derjenigen Stelle des Keils auf, wo er den Gangunterschied
in der Platte gerade kompensiert.

Zur genauen Messung des
Gangunterschiedes wird meist
der Babinetsche Kompensator
benutzt (1849; Fig. 81), eine Zusammen-
stellung zweier Quarzkeile K1 und K2
zu einer planparallelen Platte. Die Lage
der Kristallachsen in den Keilen — im
ersten parallel zur Keilkante 4B, im
zweiten senkrecht dazu — ist in der
" Figur angedeutet, ebenso die mdglichen
Schwingungsrichtungen x und y. Die
senkrecht zur Achse schwingende ordent-
liche Welle ist beim Quarz als positi-

Fie. 81. Babinetsher  VEM Kristall die schnellere. In K1 eilt
'E‘Ko'mp:m‘:f;: ¢ also die nach x schwingende Welle der
nach yschwingenden voraus, in K, bleibt
sie hinter ihr zuriick, d.h. die Keile wirken in entgegenge-
setztem Sinne, und die in der Figur eingezeichnete Mittelrich-
tung, deren Weg in K1 ebenso lang ist wie in Ke, wird gar keinen
Gangunterschied aufweisen. Nach rechts und links nimmt der
Gangunterschied seinem absoluten Wert nach stetig zu.

Bringen wir den Kompensator bei einfarbigem Licht in der

Diagonalstellung zwischen gekreuzte Nicols, so treten an den-
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jenigen Stellen dunkle Streifen auf, wo der Gangunterschied
O, A... betrigt. Ich fasse die Stelle C ins Auge, wo der dem
Gangunterschied O entsprechende dunkle Streifen liegt und
verschiebe den Keil K, mikrometrisch in der Richtung x um eine
an einer Trommel ablesbare Strecke. Dadurch wandern die
Streifen mit, und wenn ich X, um N Trommelteile verschoben
habe, wird der nichste dunkle Streifen, der dem Gangunter-
schied 1 entspricht, an die Stelle C geriickt sein: N Skalenteile
entsprechen also einem Gangunterschied 2.

Habe ich auf diese Weise den Kompensator geeicht, so kann
ich den Gangunterschied in einer Kristallplatte bestimmen: ich
lege die Platte so auf den Kompensator, daf} die Schwingungs-
richtungen in beiden iibereinstimmen. Dadurch riikt der dem
Gangunterschied O entsprechende Streifen von C fort, und ich
mufl K, beispielsweise um N, Skalenteile verschieben, um ihn
wieder nach C zuriikzubringen. Nun habe ich den Ansatz:

N Skalenteile entsprechen dem Gangunterschied 2,
N1 » » b2 »» A’
woraus das gesuchte
— M
4=1-g
folgt.

Der Kompensator von Soleil-Babinet (,Ba-
binetscher Kompensator mit Kompensa-
tionsplatte®) besteht aus 2 Quarzkeilen, die beide die
Achsenlage von K, (Fig. 81) haben, und einer Quarzplatte
der Achsenlage von K,. Hier erhilt das ganze Gesichtsfeld den

gleichen, durch Keilverschiebung meflbar verinderlichen
Gangunterschied.

§ 16. Einachsige Kristalle im konvergenten
polarisierten Lichte

Im parallelen Lichte konnten wir nur den in einer be-
stimmten Richtung erreichten Gangunterschied be-
obachten und hidtten die Platte neigen miissen, wenn wir
das Licht in einer anderen Richtung hitten hindurch-
schicken wollen. Wenden wir aber konvergentes
Licht an (Fig. 82), so haben wir gleichzeitig Normalen,
die den Kristall in den verschiedensten Richtungen durch-
setzt haben.
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J Zum Beobachten der reizvollen Er-

scheinungen, die sich dann ergeben,
dient das , Konoskop*  das sich
\ 7 von dem aus Fig. 68 bekannten Ortho-

- skop im wesentlichen nur durch die

Hinzufiigung je eines Linsensystems

kurzer Brennweite vor und hinter der

~= Kristallplatte unterscheidet. Das erste

/ \ laflt das parallele Licht nach einem

Punkte im Platteninnern konvergie-

ren, das zweite macht das aus der

. . Platte austretende divergeate Licht

g, 82, Kriwalpfate  wieder parallel. Nur die Mitte des

Gesichtsfelds entspricht jetzt Normalen,

die die Platte senkrecht zZur Oberfliche durchsetzt haben, alle
anderen Punkte geneigten Normalenrichtungen.

Wir gehen von einem speziellen Fall aus: wir stellen
im homogenen Lichte die beiden Nicols gekreuzt und
untersuchen eine senkrecht zur Achse geschliffene
Platte eines einachsigen Kristalls. (Im parallelen Lichte
begannen wir mit einer parallel zur Achse ge-
schnittenen.) Ein Blick ins Konoskop zeigt dann eine
Erscheinung, wie sie in Fig. 83 dargestellt ist: eine Reihe
konzentrischer Ringe, die von einem schwarzen Kreuz
durchschnitten sind, ‘dessen Arme parallel und senkrecht
zur Polarisatorschwingung liegen!). Eine Drehung der
Platte dndert nichts, da alle Richtungen, die den gleichen
Winkel mit der Achse bilden, gleichwertig sind. Ringe
und Kreuz sollen gesondert betrachtet werden.

1. Die Ringe. In der Mitte des Gesichtsfeldes treten
die Normalen aus, die die Platte in Richtung der Achse
wie ein isotropes Medium durchsetzt haben; hier herrscht
daher bei gekreuzten Nicols Dunkelheit. Dagegen wird
eine schrig zur Achse einfallende Normale in zwei ge-
spalten. Wir vernachlissigen, dafl diese beiden rium-

1) Auflergewthnlich schone Aufnahmen zahlreicher Interferenzerscheinungen
im konvergenten Lichte findet man in den Tafelwerken von H. Haus-

waldt, ,Interferenzerscheinungen im polarisierten Lichte®, Magdeburg
1902 und 1904.
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lich getrennt sind und verschieden lange Wege in der
Platte zuriicklegen; wir nehmen an, sie liefen in der-
selben Bahn, freilich mit verschiedener Geschwindigkeir,
und fragen nach ihrem Gangunterschied. Dieser wichst
mit der Neigung gegen die Achse von Null an, ist nach

§15,Gl. (1) sofort als Teoow
( Brechungswinkel), weil als Weg in der Platte an Stelle

(ny — n,) anzugeben

Fig. 83. Senkrecht zur Achse geschnittene Platte im konvergenten Lichte.
Nicols gekreuzt

3 d . .
von d einfach das groflere g tritt, und hat bei einem

gewissen Neigungswinkel den Wert g— angenommen. Da
2

Wellen vom Gangunterschied 5 (vgl. S. 75) bei gekreuz-

ten Nicols in den Diagonalstellungen Helligkeit ergeben,
wird der Kreis im Gesichtsfelde, der diesem Neigungs-



83 Interferenzerscheinungen im polarisierten Lichte

winkel entspricht, teilweise hell erscheinen: der erste helle
Ring um das dunkle Zentrum. Gehen wir zu noch ge-
neigteren Richtungen iiber, so wichst der Gangunterschied
bis zum Werte 4. Wellen dieser Richtung ergeben bei
gekreuzten Nicols Dunkelheit: auf den ersten teilweise
hellen Ring folgt also ein ganz dunkler. Und so fort:
alle Richtungen, wo der Gangunterschied O, 4,2 1. .. be-
trigt, ergeben dunkle Ringe, die dazwischenliegenden

L3 ... Ringe, die zum

mit dem Gangunterschied 535
Teil hell sind.
’ I 2. Das Entstehen des schwarzen

Kreuzes machen wir uns an den
Fig. 84 ff. klar. K ist die Kristall-
platte, die ' Schwingungsrichtung
des Polarisators soll vertikal, die
des Analysators horizontal liegen.
Im allgemeinen wird die vertikale
Schwingung der einfallenden Wel-
le L (Fig. 84) in zwei zerlegt: in
die a.0., die in dem schraffierten
Hauptschnitt von L liegt, und in
" Eie 84 die dazu senkrechte ordentliche.
& Fiir alle Strahlen, die den Kristall
in. der Vertikalen AB treffen (Fig. 85), ist die Vertikal-
ebene der Hauptschnitt. Das einfallende vertikal schwin-
gende Licht geht also ohne Doppelbrechung als aufler-
ordentliches hindurch und wird von dem horizontal ge-
stellten Analysator ausgeloscht. So erklirt sich der
dunkle Kreuzarm, der parallel der Polarisatorschwingung
liegt. Fiir die lings der Horizontalen A4’ B’ einfallenden
Strahlen dagegen (Fig. 86) ist die Horizontalebene der
Hauptschnitt. Das ankommende, senkrecht dazu schwin-
gende Licht geht mithin ungehindert als ordentliches hin-
durch und wird von dem senkrecht dazu stehenden Analy-
sator vernichtet, So entsteht der parallel zum Analy-
sator liegende Kreuzarm.
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R

NP
>
7/8

Fig. 85 Fig. 86

Kurven, auf denen die Schwingungsrichtungen konstant sind,
nennt man ,Isogyren®. Bei der Beobachtyng treten von allen
Isogyren nur die beiden ,Hauptisogyren“ hervor; die
erste umfaflt die Kurven, wo die Schwingungsrichtung parallel
.oder senkrecht zum Analysator, die zweite die, wo sie parallel
oder senkrecht zum Polarisator ist. Bei einachsigen, senkrecht
zur Achse geschliffenen Kristallen besteht jede Hauptisogyre
aus zwei Geraden, die durch die Spur der Achse gehen. Bel
der ersten Hauptisogyre liegen sie senkrecht und parallel zur
Analysator-, bei der zweiten senkrecht und parallel zur Pola-
risatorrichtung. Bei gekreuzten Nicols fallen beide- Haupt-
isogyren zusammen und bilden das dunkle Kreuz.

Man kann die Interferenzfigur auch so charakterisieren: es
wechseln Ringe, lings deren die Intensitit konstant Null ist
(Gangunterschied O, 1...), mit solchen ab, lings deren die
Intensitit zwischen Null und voller Stirke wechselt (Gang-

2

)3 . .
unterschied 2535 ) Dies erklirt sich sofort aus unseren

Beobachtungen im parallelen Lichte. Zwischen gekreuzten Ni-
cols erschien dort eine.Platte vom Gangunterschiede O, 4...
in jeder Lage dunkel, eine Platte vom Gangunterschied
—2~,3772~—-... dunkel in den Normalstellungen, hell in den Dia-
gonalstellungen. Und die verschiedenen Punkte ein und des-
selben Ringes zeigen nebeneinander das, was eine Platte
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von entsprechender Dicke im parallelen Lichte beim Drehen
nacheinander zeigt.

Die Kreuzarme bestehen unabhingig von der Platten-
dicke, wihrend die Ringe in leicht angebbarer Weise von
ihr abhingen: bei einer diinnen Platte ist ein groferer
Zuwachs des Neigungswinkels notig, um den Gangunter-
schied um 1 zu vergroflern; die Ringe werden also weiter
auseinanderliegen. Und ebenso ersichtlich ist der Ein-
flufR der Stirke der Doppelbrechung: je stirker diese,
desto enger die Ringe. An dem Kreuz wird auch nichts
geindert, wenn wir mit weiflem anstatt mit einfarbigem
Lichte beleuchten; denn das Kreuz ist nur von der
Schwingungsrichtung, nicht von .der Wellenlinge ab-
hingig. Aber der Ringdurchmesser dndert sich mit der
Wellenlinge. Fiir das kurzwellige Violett ist schon bei
geringerer Neigung gegen die Achse der Gangunter-
schied 1 und damit der erste dunkle Ring erreicht als
fiir das langwellige Rot; es sei denn (vgl. Formel (1),
Seite 78), dafl ny—n,; Besonderheiten hineintrigt. Jeder
Farbe entspricht so ein besonderes Ringsystem um den
gemeinsamen Mittelpunkt (,Isochromaten® =
Kurven gleicher Firbung). Im weiflen Licht iiberlagern
sich alle, und es entstehen bunte Ringe um ein schwarzes
Zentrum, deren Farbenfolge oft eine Ahnlichkeit mit
der der Newtonschen Ringe zeigt (vgl. S. 82), bisweilen
aber auch — wenn n, — n, sich stark mit 1 indert —
wesentlich davon abweicht.

Aus § 14 wissen wir, dafl das Interferenzbild ins Kom-
plementire ibergeht, wenn wir die Nicols parallel stellen.
An Stelle des dunklen Kreuzes steht dann ein helles, an
Stelle der dunklen Ringe helle und umgekehrt, an Stelle
der farbigen Ringe die komplementir gefirbten. Geht
man durch Drehen eines Nicols aus der Senkrecht- in die
Parallelstellung iiber, so dreht sich erst das dunkle Kreuz
blasser werdend mit, um bei 45° zu verschwinden und
dann als helles wieder hervorzutreten.
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Neigen wir die Platte, so wandert das durch die
Achsenrichtung bestimmte Zentrum ‘der Ringe mitsamt
dem dunklen Kreuze seitwirts und verschwindet bei
einer gewissen Neigung aus dem Gesichtsfelde, Die
Ringe wandern mit, werden aber aus Kreisen zu
Ellipsen, bei groferer Neigung zu Parabeln,
schlieflich zu Hyperbeln. Anstatt die Platte zu
neigen, benutzt man besser Platten, die nicht senkrecht,
sondern unter einem gewissen Winkel zur Achse ge-
schnitten sind. Eine parallel zur Achse geschnittene
Platte z.B. zeigt in der Diagonalstellung gleichseitige
Hyperbeln.

Einen Uberblick dariiber, wie sich die Kurven gleichen
Gangunterschieds mit der Plattenorientierung indern, ge-
winnt man mit Hilfe der ,Fliche gleichen
Gangunterschieds”, Sie 4
entsteht, wenn man von einem
Punkte O aus nach jeder Rich-
tung diejenige Strecke abtrigt,
die das Licht in dieser Richtung
im Kristall durchlaufen mufi, 5
damit der Gangunterschied 4
einen gegebenen Wert annimmt!). _
Fiir einen einachsigen Kristall !
ist sie eine Rotationsfliche etwa : >\
von der Form Fig. 87; die fiir ©
verschiedene A konstruierten Fli-
chen sind einander zhnlich, Fig.
87 gebe z.B. die fiir 4 = 1 an.
OA ist die Kristallachse. In die-
ser Richtung ist die Fliche un-
endlich weit von O entfernt;
denn in Richtung der Achse

miissen beide Strahlen einen un-  Fig. 87 Fliche gleichen
A .. . Gangunterschieds von
endlich wéiten Weg zuriicklegen, cinachsigen Kristallen

1) Eine einfache mathematische Behandlung dieser Fliche, ausgehend von
GL (1) des vorigen §, bei M. B o r n, Optik, Springer, Berlin 1932, S. 249 ff
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um einen Gangunterschied 1 zu erhalten. Senkrecht zur
Achse ist der Gangunterschied 1 schon nach dem Durch-
laufen von OB erreicht. Hier kommt die Fliche dem
Mittelpunkt am nichsten.

In diese Flichenschar lege ich die Kristallplatte, deren
Kurven gleichen Gangunterschieds ich bestimmen will,
gewissermaflen hinein, wie dies in der Figur punktiert
angedeutet ist; d. h. ich lege durch die Flichen eine Ebene
in einem Abstande von O gleich der Plattendicke 4 und
von einer solchen Neigung, daffl die Achsenrichtung in
der Platte mit der Richtung OA iibereinstimmt. Es lific
sich dann zeigen, dafl die Kurven gleichen Gangunter-
schiedes, die an der Platte auftreten, unter geringen
Vernachlissigungen identisch sind mit den Schnittkurven
der genannten Ebene mit den Flichen. Eine Ebene /7
senkrecht zu OA zeigt Kreise wie eine senkrecht zur
Achse geschliffene Platte; ecine etwas gegen OA geneigte
Ebene /I Ellipsen, dieselben, wie man sie an einer
unter gleicher Neigung gegen die Achse geschnittenen
Platte beobachten wiirde, usw. .

§ 17. Zweiachsige Kristalle im konvergenten
polarisierten Lichte

Uberwiegt im parallelen polarisierten Lichte die Ahn-
lichkeit zwischen ein- und zweiachsigen Kristallen (§ 14),
so fillt im konvergenten der Unterschied sofort in die
Augen, wie ein Blick auf das zweiachsige Interferenzbild
Fig. 88 zeigt. Es riihrt von einer senkrecht zur ersten
Mittellinie geschnittenen Platte her, einer Platte also von
der optischen Orientierung der Fig. 79, die wir im homo-
genen Lichte so zwischen gekreuzte Nicols gebracht haben,
dafl die Achsenebene parallel zur Polarisatorschwingung
liegt (Normalstellung). In der Interferenzfigur
ist die Spur dieser Ebene durch den horizontalen dunklen
Kreuzarm gekennzeichnet, und die Spur der Achsen
durch die beiden Punkte, die die Pole des Systems von
lemniskatenihnlichen Kurven bilden (Lemnis-

'
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katen sind Kurven, auf denen das Produkt der Abstinde
von zwei festen Punkten konstant ist). Die Lemniskaten
sind die Kurven gleichen Gangunterschiedes, die bei den
cinachsigen Kristallen im entsprechenden Fall Kreise
waren; die dunklen Kreuzarme sind Isogyren. Wie in
§ 16 betrachten wir beide Kurvenarten gesondert.

Die Einfiihrung der Fliche gleichen Gang-
unterschieds erleichtert auch hier den Uberblick.

Fig. 88. Senkrecht zur ersten Mittellinie geschnittene Plarte
im konvergenten Licht. Nicols gekreuzt. Normalstellung

Fig, 89 gibt ein Bild von ihrer Gestalt: Die Ebene de
Binormalen Br und B'n ist in die Zeichenebene gelegt;
die Schnitte mit den beiden anderen optischen Symmetrie-
ebenen, die natiirlich auch die Fliche gleichen Gangunter-
schieds symmetrisch teilen, sind angedeutet. Die Fliche
besteht in grofler Entfernung vom Mittelpunkt aus zwei
Kreiszylindern mit den Binormalen als Achsen, die in
der Nihe von O in der angedeuteten Weise zusammen-
laufen. In der Richtung senkrecht zur Binormalenebene
kommt sic O am nichsten, weil in dieser Richtung die
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B M Br Doppelbrechung am stirksten

s ist (vgl. S. 76). Die Flichen fiir
verschiedene Koérper und ver-
schiedene Farben sind einander
nicht dhnlich wie bei den Ein-
achsigen, da ihre Gestalt von
der Grofle des Binormalenwin-
kels abhingt.

Die an einer beliebig ge-
schnittenen Platte auftretenden
KurvengleichenGang-
unterschieds findet man
wieder angenihert (vgl. Fig.
87), wenn man die Flichen
gleichen Gangunterschieds durch

Fig. 89. Fliche gleichen Gang- eine Ebene von der Orientie-
unterschieds von zweiachsigen rung der  Plattenoberfliche
ristaten schneidet. Man iibersieht, dafl
sich in dem Falle, wo die Platte senkrecht zur
ersten Mittellinie geschnitten war, eine geschlossene,
ovale Kurve gibt, wenn der Schnitt unterhalb von .4,
aber zwei getrennte Kurven um je eine Binormalenspur,
wenn er oberhalb von A gefilhrt wird. Den Ubergang
bildet eine Kurve von der Form einer liegenden 8. Diese
verschiedenen Kurvenarten findet man in dem Inter-
ferenzbilde Fig. 88 gleichzeitig vertreten, getrennte Kui-
ven fiir die kleinen Gangunterschiede, eine beide Achsen-
spuren umschlingende fiir die grofleren. Bei einer sehr
diinnen Platte oder bei geringer Doppelbrechung kann
schon die innerste Kurve beide Pole in ellipsenihnlicher
Gestalt gleichzeitig umgeben.

Dafl die Isogyren die Gestalt eines dunklen Kreuzes
haben miissen, dessen Arme der Polarisator- und Analy-
satorschwingung parallel liegen, 1388t sich durch eine ihn-
liche Uberlegung veranschaulichen, wie wir sie bei den
Einachsigen an der Hand der Fig. 85 und 86 angestellt
haben, Die Schwingungsrichtungen einer Welle z. B., die
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in der Spur eines Kreuzarmes bei § austritt (Fig. 90),

halbieren nach Seite 52 die Win-
kel zwischen den Geraden / und
I', die § mit der Spur der Binor-
malen Bn und B'n verbinden.
Das einfallende, in der Richtung
der Achsenspuren schwingende
Licht geht also ohne Doppelbre-
chung hindurch und wird vom
Analysator ausgeltscht.

Drehe ich, immer zwischen
gekreuzten Nicols, die Platte
in ihrer Ebene, so dreht sich

&
z 2

B

Fig. 90

die Spur der Achsen

und das sie umschlingende Lemniskatensystem einfach
mit, Dagegen sind die Isogyren im allgemeinen Hyper-

Fig. 91. Senkrecht zur ersten Mittellinie geschnittene Platte
im konvergenten Licht. Nicols gekreuzt. Diagonalstellung

beln, deren Asymptoten mit

der Polarisator- und

Analysatorrichtung tbereinstimmen, also waagerecht und
senkrecht liegen, und deren Scheitel in die Spuren der
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Binormalen fallen. Fig. 91 stellt die Erscheinung dar,
wenn die Achsenebene den Winkel zwischen Analysator
und Polarisator gerade halbiert (Diagonalstel-
iung). Drehe ich weiter, bis sie mit der Analysator-
schwingung koinzidiert, so degenerieren die Hyperbeln
wieder zum Kreuz. Bei parallelen Nicols treten selbst-
verstindlich dieselben Erscheinungen auf, nur daff Hellig-
keit und Dunkelheit vertauscht ist.

Von andern Plattenorientierungen erwihnen wir nur die
senkrecht zu einer Binormalen, wie sie z.B. der
Zucker infolge seiner natiirlichen Spaltbarkeit liefert. Daf§
'sie annihernd kreisférmige Kurven zeigen miissen, kann man
aus der Fliche gleichen Gangunterschieds Fig.89 entnehmen.
In der Normalstellung ist das Interferenzbild nur von einer
Isogyre durchzogen, die in die Spur der der Polarisator-
schwingung parallelen Achsenebene fillt, sozusagen also dem
hotrizontalen Kreuzarme von Fig. 88 angehort.

Welche Erscheinungen im weiflen Licht auftreten, soll
nur fiir den Fall der Lemniskaten angedeutet werden. Iin
weiflen Licht iiberlagern sich. die Lemniskatensysteme,
die den einzelnen Farben angehéren. Da sich die Lage
der Achsen mit der Farbe indert, entspricht jeder Farbe
ein Lemniskatensystem um andere Pole, und im weiflen
Licht kann man Kurven von den eigentiimlichsten Farben
und Formen beobachten, die mit denen im monochroma-
tischen Lichte bisweilen nicht mehr die geringste Ahn-
lichkeit haben. Auch die Isogyren liegen im Gegensatz
zu den einachsigen Kristallen fiir verschiedene Farben
verschieden,

Wihrend sich bei asymmetrischen Kristallen
iiber die gegenseitige Lage der monochromatischen Lem-
niskatensysteme nichts voraussagen lifit, bestehen im
rhombischen und monosymmetrischen System zwischen
ihnen Beziehungen (§ 10, S. 53), die der Erscheinung im
weiflen Lichte gewisse Symmetrlen aufprigen. Aus den
verschiedenen Symmetrieverhdltnissen kann man das
Kristallsystem, aus der Entfernung der Achsenspuren den
Achsenwinkel bestimmen, Zu letzterem Zwecke sind be-
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sondere ,Achsen-
winkelapparate”
konstruiert worden. Fig.
92 stellt einen von Wiil-
fing angegebenen dar,
den frither R, Fuess in
Berlin-Steglitz anfertigte.

Wir teilen einige Win-
kelwerte fiir D-Licht ,
und Zimmertemperatur ks
mitl):

Cordierit 85° 50,

Gips (vom Mont-

martre) 58° 5,

Glimmer (Muskowit)

30°—50° je nach dem

Fundort,

Anhydrit (von Staf-

furt) 43° 41,

Baryt (kiinstlich)

370 28': Fig. 92. Achsenwinkelapparart

Aragonit 18° 11",

Selbstverstindlich hingen auch die Achsenwinkel von
der Temperatur ab — siehe die Bemerkung gegen Ende
von §8, S. 36. An Gips pflegt man einen eindrudks-
vollen Versuch vorzufithren. Bei Zimmertemperatur
liegen seine Binormalen in der kristallographischen Sym-
metrieebene (vgl, Fig.77); der Binormalenwinkel nimmt
mit steigender Temperatur ab, ist z. B. fiir D-Licht 50°12°
bei 42° C, 31°29" bei 72° C, 13° 18’ bei 87° C. Erwirmen
wir den Kristall auf 89,67° C, so ist er einachsig gewor-
den; bei weiterer Erwirmung gehen die Binormalen wie-
der auseinander, jetzt aber in einer Ebene senkrecht zur
kristallographischen Symmetrieebene. Im konvergenten
Lichte beobachtet man demnach an einer senkrecht zur

") Tabellen im Landolt-Biérnstein, s. Anm, auf S, 38,
Buchwald, Kristalloptik 7
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ersten Mittellinie geschnittenen Platte anfangs das be-
kannte Lemniskatensystem um die beiden Achsenspuren
(Fig. 88). Die Achsenspuren nihern sich bei Erwirmung,
um bei etwa 90° C zusammenzutreffen und sich dann
senkrecht zur urspiinglichen Verbindungslinie wieder zu
trennen. Bei Abkiihlung gehen alle Anderungen in um-
gekehrter Reihenfolge zuriick.

III. Teil
Drehende und absorbierende Kristalle

§ 18. Drehende Kristalle im parallelen polarisierten
Lichte

Eine senkrecht zur Achse geschnittene Platte eines ein-
achsigen Kristalls erscheint nach § 14 im parallelen mono-
chromatischen Lichte zwischen gekreuzten Nicols in jeder
Lage dunkel, weil das Licht in Achsenrichtung unver-
dndert hindurchgeht wie durch einen isotropen Kérper.
Es gibt jedoch eine Gruppe von Kristallen, unter denen
der Quarz der wichtigste ist, die in Achsenrichtung
Pol. durchstrahlt die Schwingungsrich-

tung des auffallenden Lichts um
einen bestimmten Winkel drehen.
Man nennt sie ,natiirlichdre-
hende“l) oder ,optisch ak-
tive“ Kristalle. Eine achsensenk-
rechte Quarzplatte hellt also zwi-
schen gekreuzten Nicols das Ge-
< sichtsfeld auf, wie erstmalig Arago
1812 feststellte; denn das austre-
tende Licht schwingt nicht mehr in
der Polarisatorrichtung (Fig. 93),
sondern unter dem Winkel 4
dagegen, und man mufl den Analysator um den gleichen

Fig. 93

1) Im Gegensatz zur Jkiinstlichen“ Drehung, wie man sie durch ein
Magnetfeld erzielen kann, .
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Winkel ¢ nachdrehen, damit wieder Dunkelheit eintritt.
Der Drehungswinkel, der sich hiernach leicht bestimmen
1488t, hingt von der Dicke der Platte und von der Farbe
des angewandten Lichts: ab. Er ist um so gréfler, je
dicker die Platte und je kiirzer die Wellenlinge ist. (Er

ist annihernd proportional zu T Eine Quarzplatte von

1 mm Dicke z. B. dreht das der Fraunhoferschen Linie B
entsprechende rote Licht (687 mu) um 15,75°, das gelbe
D-Licht (589 mu) um 21,71°, das griine E-Licht (527 mu)
um 27,54°, das blaue G-Licht (431 my) um 42,60°, das
violette H-Licht (397 mu) um 51,19°. Diese Zahlen
gelten fiir jede 1 mm dicke Quarzplatte, aber die
Drehung findet bei manchen Quarzen nach rechts statt,
wenn man gegen den Lichtstrahl sieht, bei anderen nach
links. Erstere nennt man ,,R e ch ts“-, letztere ,,Links-
quarze“, und es hingt in eindeutiger Weise von der
Kristallform eines Quarzes ab (vgl. Fig. 8 und 9), ob er
zur einen oder zur andern Klasse gehort.

Wende ich weifles Licht an, so findet im Quarz inso-
fern eine Trennung der einzelnen Farben statt, als vorher
die Schwingungsrichtung aller gleich der des Polarisators
war, wihrend sie nachher fiir jede Farbe eine andere
ist; fiir eine 1 mm dicke Platte aus Rechtsquarz wiirde
sich das Bild 94 fiir die Schwingungsrichtungen der ein-
zelnen Farben ergeben, fiir eine aus Linksquarz Fig. 95.
In Analogie zu der Zerlegung des weiflen Lichts in einem
Prisma, der Dispersion, ist diese Erscheinung, die ,R ot a-
tionspolarisation®, auch als ,Dispersion
der Polarisationsebenen® oder als ,Rota-
tionsdispersion” bezeichnet worden.

Wechselnde Farben werden sichtbar, wenn ich den
Analysator drehe. Stelle ich ihn senkrecht zur Schwin-
gungsrichtung des roten Lichts, so wird dieses vollstindig,
von den anderen Farben ein groflerer oder geringerer An-
teil ausgeldscht, und das Gesichtsfeld erscheint in einem
zu dem Rot annihernd komplementiren Griin. Drehe

7¢
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Il ),
{4\\ rot .I( l
A grin 7 \
blaze
veolett
b
Fig. 94. Rotationsdispersion im Fig. 95. Rotationsdispersion im
Rechtsquarz Linksquarz

ich iber einem Rechtsquarz rechts herum weiter, so
kommt der Analysator senkrecht auf Gelb zu stehen und
die griine Firbung geht ins Bliuliche iiber; dann, wenn
der Analysator senkrecht auf Griingelb steht, aus dem
Bliulichen ins Violette, weiter ins Rétliche und ins Gelbe.
Kurz: drehe ich iiber einem Rechtsquarz
den Analysator nach rechts, so treten
die Farben in der iblichen spektralen
Reihenfolge auf: Griin, Blau, Violett, (Purpur),
Rot, Orange, Gelb, Griin... Und ebenso ergibt sich die
iibliche Farbenfolge, wenn ich iiber einem Linksquarz
den oberen Nicol nach links drehe.

Ist die Quarzplatte gerade 3,75 mm dick, so wird Gelb um
90° gedreht, in einer Rechtsplatte nach rechts, in einer Links-
platte nach links, Griin entsprechend mehr, Orange weniger,
wie dies Fig. 96 angibt, in der P die Schwingung des einfallen-
den Lichtes ist. Eine solche Platte zeigt zwischen parallelen
Nicols, wo Gelb ausgeloscht wird, ein Purpurviolett, das man
als ,empfindliche Fiarbung“ oder als Ubergangs-
farbe zu bezeichnen pflegt (s. S. 82), weil es bei einer geringen
Drehung des Analysators (oder des Polarisators) in Blau oder
in Rot libergeht: in Blau, wenn der Analysator senkrecht auf
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Orange, in Rot, wenn er P
senkrecht auf Griin zu
stehen kommt.

Darauf beraht die Wir-
kungsweise der Soleil-

A

schenDoppelplat- orenge
te. Sie entsteht, wenn gelb
man die in Fig. 96 darge- R
stellten Platten lings AB gren

aneinanderfiigt, und dient
zur Bestimmung kleiner Ia\tk' {@z Rec sars
Anderungen der Polarisa~

tionsrichtung.  Zwischen B

parallelen Nicols zeigen
ihre beiden Hilften das
empfindliche Violett. Werden aber die Schwingungsrichtungen
insgesamt ein wenig gedreht, wie dies z.B. durch Einfiigen
einer drehenden Kristallplatte oder Zuckerlgsung hinter dem
Polarisator geschehen kann!), so erscheint die eine Hilfte blau,
die andere rot, und mit grofler Genauigkeit lifit sich der
Winkel bestimmen, um den ich den Analysator nachdrehen
muf}, damit beide Hilften wieder das gleiche -Violett zeigen.
Wiren die Platten doppelt so did, so wiirde Gelb um 180°
gedreht und das empfindliche Violett trite dann zwischen ge-
kreuzten Nicols auf.

Statt der Soleil-Platte wendet man zur Messung kleiner
Drehungen wie auch sonst Pol.
hiufig in der Feinoptik das
»Halbschattenprin-
z1p“ an: man liflt die eine
Hilfte des Gesichtsfelds un-
verindert in der Polarisa-
torrichtung schwingen (Fig. [7]
97), bedeckt aber die andere
mit einer Quarzplatte Q
(oder in besseren Apparaten a
mit einem Nicol), so, daff in
ihr die Schwingungsriohtung Fig. 97. Halbschattenprinzip

1) Die Zudkerldsung ist der wichtitgste der nichtkristallinen drehenden
Stoffe (Flissigkeiten, Losungen, Dimpfe).

Fig. 96. Soleilsche Doppelplatte
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um den kleinen Winkel 2, den ,,Halbschatten®, gegen
die des Polarisators gedreht ist. Steht der Analysator
senkrecht auf der Halbierungslinie OA von ¢, in ,,H a1b-
schattenstellung® so erscheinen beide Gesichts-
feldhilften in der gleichen geringen Intensitit. Die Ein-
stellung hierauf ist sehr genau, weil das Auge fiir Hellig-
keitsunterschiede bei kleiner Gesamtintensitit besonders
empfindlich ist. Wie oben werden bei Einfiigen z.B.
einer Zuckerl8sung die Schwingungsrichtungen beider Ge-
sichtsfeldhilften gedreht, und der Drehwinkel ist durch
Nachdrehen des Analysators in eine neue Halbschatten-
stellung sehr genau bestimmbar.

Aufler dem Quarz zeigen noch viele andere einachsige
Kristalle Drehung der Polarisationsebene fiir Strahlen,
die parallel zu ihrer Achse hindurchgehen, insonderheit
der gleichfalls hexagonal-tetartoedrische (bzw. ,trigo-
nale) Zinnober (vgl. Nr.6 des §2), bei dem die
Drehung fiir D-Licht noch 21mal grofler ist als beim
Quarz. Auch bei einigen reguliren Kristallen hat man
optische Aktivitit nachgewiesen, die hier in jeder Rich-
tung besteht, da alle Richtungen gleichwertig sind. Daf}
zweiachsige Kristalle in der Binormalenrichtung gleich:
falls optisch aktiv sein kdnnen, fand man zuerst am
Quarz, der durch Druck zweiachsig gemacht sein
Drehungsvermdgen behielt, seitdem aber auch an ver-
schiedenen von Natur aus zweiachsigen Kristallen.

Diese optisch aktiven Kristalle gehdren ausnahmslos
Kristallklassen ohne Symmetriezentrum und fast aus-
nahmslos solchen Unterabteilungen (Hemiedrien, Te-
tartoedrien) der betreffenden Systeme an, in denen das
Auftreten von enantiomorphen Formen (vgl. Nr. 6 des
§ 2) moglich ist. Einer der Formen entspricht Rechss-,
der anderen Linksdrehung.

§ 19. Erklirung des Drehvermégens

Die Drehung der Polarisationsebene erkliren wir mit
Fresnel (1825) durch die Annahme, dafl .ein Licht-
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strahl bei den optisch drehenden Kristallen auch in Rich-
tung der Achse doppelt gebrochen, in zwei zerlegt wird,
aber nicht in zwet linear, sondern in zwei zirkular
polarisierte, einen rechts- und einen linkszirku-
laren, die sich mit verschiedener Geschwindigkeit fort-
pflanzen. Es liflt sich rein geometrisch zeigen, dafl diese
beiden, wenn das einfallende Licht linear polarisiert war,
sich wieder zu linear polarisiertem Lichte zusammen-

¢
Fig. 98. Zusammensetzung Fig. 99. Zusammensetzung
gleich schneller zirkularer verschieden schneller
Schwingungen zirkularer Schwingungen

setzen, dessen Schwingungsrichtung gegen die urspriing-
liche gedreht ist.

Zunichst erkennen wir aus Fig.98, dafl man eine
lineare, lings [ stattfindende Schwingung in zwei gleich
schnelle, entgegengesetzt zirkulare (von halber Ampli-
tude) zerlegen kann. OI kann man nimlich als Resul-
tierende ansehen von OL, und OR,, OII als Resultierende
von OL, und OR,, kurz die ganze lineare Schwingung
als zerlegbar in zwei entgegengesetzt zirkulare von
gleicher Geschwindigkeit. Und umgekehrt setzen sich
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zwel derartige zirkulare Schwingungen zu einer linearen
zusammen,

Nun sei eine dieser zirkularen Schwingungen schneller
als die andere. [ (Fig.99) sei die Schwingungsrichtung
der ankommenden Wellen, und wir fithren wieder die
Zerlegung in zwei zirkulare Schwingungen aus, von
denen wir die rechte als die schnellere annehmen wollen.
Hat die linke Schwingung nach einer Anzahl ganzer
Umliufe den Punkt L, erreicht, so wird die rechte etwa
um den Bogen LR, weiter sein, im nichsten Zeitelement
wird die linke den Bogen L,L,, die rechte den Bogen
RiR, beschreiben usw. Als Resultante von OL, und OR,
ergibt sich OI, als Resultante von OL, und OR, OIll;
die beiden setzen sich mithin zu einer linearen Schwin-
gung zusammen, deren Schwingungsrichtung gegen die
urspriingliche gedreht ist, nach rechts gedreht,
wenn die rechtszirkulare, nach links,
wenn dielinkszirkulare Schwingung die
schnellere ist.

Die Formel, die den Drehwinkel a mit Plattendicke d,
Wellenlinge 4 und den Brechzahlen 7, und 7, der beiden
zirkularen Wellen verkniipft, ist durch einfaches Um-
schreiben der Gl. (1), § 15 zu gewinnen. Danach ist der

. d
Gangunterschied in Wellenlingen gemessen - (ny — n,),

. . d )
mithin als Phasenunterschied gemessen 27 - 9 (ng — ny);

denn 1 Wellenlinge entsprach der Phasenunterschied 2z,
s. S. 72, Anm, Einem bestimmten Phasenwinkel aber,
z.B. L,OR, in Fig. 98, entspricht ein halb so grofler
Drehwinkel. Also gilt

a=a — (ny — ny).
Obgleich sich diese beiden Wellen in ihren Brechungsquo-

tienten nur sehr wenig voneinander unterscheiden, ist es be-
reits Fresnel gelungen beide zu trennen,
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Man kann die Trennung schon an einem einfachen Quarz-
prisma nachweisen, das vom Licht in Achsenrichtung durch-
{aufen wird: alle Spektrallinien erscheinen dann doppelt. Um
Doppelbilder zu vermeiden, setzt man nach Cornu (1879)
das Prisma (Fig. 100) aus je einem rechtwinkligen aus
Rechts- und Linksquarz von der angegebenen Achsenlage zu-
sammen. ]

In Richtung senkrecht zur Achse wird ein Strahl in
zwei linear polarisierte zerlegt,
fast genau so wie in einem ein-
achsigen Kristall ohne Drehver-
mogen. Der Ubergang zwischen
beiden Extremfillen — zwei zir-
kular polarisierten Strahlen einer-
seits, zwei linear polarisierten an- R L
dererseits — wird dadurch gebil-
det, dafl sich in den Zwischenrich- >
tungen ein einfallender Lichtstrahl Achsenrichtung
inzwei elliptisch pola-
risierte mit entgegengesetztem
Umlaufssinn spaltet. Die beiden Schwingungsellipsen sind
einander Zhnlich und liegen gekreuzt, mit ihren langen
Achsen in den Richtungen, nach denen das Licht linear
schwinge, wenn der Quarz kein Drehvermdgen hitte.
Sie werden um so gestreckter, je grofler die Neigung
gegen die Achse wird, um allmihlich in Gerade iiberzu-
gehen. Fiir die Strahlenfliche des Quarzes folgt aus
der Tatsache, daf sich auch in Richtung der Achse zwei
verschieden schnelle Strahlen fortpflanzen, dafl ihre
beiden Schalen sich in der Achse nicht beriihren kénnen.
Genaue Brechungsquotientenbestimmungen haben ergeben,
daff die Kugelschale in der Nihe der Pole etwas nach
auflen, die Ellipsoidschale etwas nach innen gebogen ist,
wie Fig. 101 dies iibertrieben andeutet. Beide Strablen-
geschwindigkeiten weichen also von denen ab, die wir
nach der Huygensschen Kugel-Ellipsoidkonstruktion er-
warten miifften, wenn auch nur wenig und nur in der

Fig. 100. Cornuprisma
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Nihe der Achse; insonderheit
ist die Geschwindigkeit des
ordentlichen Strahls nicht mehr
konstant. Um einen Begriff
von der Grofle der Abweichung
zu geben, seien einige Bre-
chungsquotienten mitgeteilt,
Nach Huygens miifite in Rich-
tung der Achse sein

n, = ne = 1,5442243;
dagegen findet man

n, = 1,5441884,

Fig. 101, Strahlenfliche eines ne = 1,5442602.
drehendenKei{xad)sig positiven e Doppelbrechung kann

ristalls .
man sich  zusammengesetzt
denken aus der, die vom Drehungsvermdgen herriihrt,
und der gewdhnlichen Doppelbrechung anisotroper
Kristalle. Lings der Achse ist nur der erste Teil wirk-
sam; vergroflert man die Neigung gegen die Achse, so
tritt er mehr und mehr zuriick und fillt von etwa 20°
Neigung an gegen den zweiten Anteil nicht mehr merk-
lich ins Gewicht, so daf schon bei dieser Neigung
die austretenden Strahlen praktisch linear schwingen.

Bei zweiachsigen Kristallen unterscheidet sich
die Strahlenfliche ‘drehender von der nicht drehender
dadurch, dafl sie aus zwei ganz getrennten Schalen be-
steht, die sich zwar in Richtung der Biradialen am
nichsten kommen, auf ihnen aber keinen Punkt mehr
gemeinsam haben. Die Strahlenfliche regulirer
drebender Kiristalle besteht aus zwei konzentrischen
Kugelschalen. )

Die elektromagnetische Theorie mit ihrer in § 12 und
13 entwickelten Kontinuumsauffassung der Materie ist
nicht in der Lage, die Drehung darzustellen. Sie bedarf
dazu atomtheoretischer oder rein formaler Zusatz-
annahmen — wie auch bei der Dispersion. Dispersion
und Drehung werden so zu Priifsteinen, an denen die
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Gittertheorie ihr Mehrkonnen zu beweisen hat (s. Teil 1V,
§23 und 24).

§ 20. Drehende Kristalle im konvergenten
polarisierten Lichte

Wenn sich der Quarz nur in der Nihe der Achse
anders verhilt als ein einachsiger nicht drehender Kristall,
darf sich das Interferenzbild, das eine senkrecht zur

Fig. 102. Quarzplatte im kor.vergenten polarisierten Lichte

Achse geschnittene Quarzplatte im konvergenten polari-
sierten Lichte zeigt, auch nur in der Nihe der Achse,
im Mittelpunkt des Gesichtsfelds, von dem in § 16. be-
handelten unterscheiden. Dafl es in der Tat so ist, zeigt
ein Vergleich der Interferenzfigur 102, wie sie eine
Quarzplatte zwischen gekreuzten Nicols liefert, mit der
entsprechenden eines gewdhnlichen einachsigen Kristalls
(Fig. 83). Der wesentliche Unterschied ist der, dafl die
Kreuzarme nicht mehr bis zum Mittelpunkte reichen; die
Mitte erscheint hell, im weiflen Licht in der Firbung, die
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die Platte im parallelen Licht ergibe. Die Firbung
wechselt, wie im § 18 ausgefithrt worden ist. Daf hier-
bei auch noch andere Abweichungen von den nicht
drehenden Kristallen auftreten wie die, daff die Kurven
gleichen Gangunterschieds in manchen Stellungen nicht
das Aussehen von Kreisen, sondern das von Quadraten
mit abgerundeten Ecken haben, lifit sich nur bei mathe-
matischer Behandlung des Problems begriinden,

Fig. 103. Airysche Spiralen

Ohne die Mathematik in umfangreichem MaRe zu Hilfe
zu nehmen, lassen sich auch die Interferenzbilder nicht
deuten, die wir an Plattenkombinationen erhalten.

Schalten wir z. B. bei gekreuzten Nicols ein —i— -Plittchen

in der Diagonalstellung zwischen Polarisator und Quarz-
platte ein, mit anderen Worten: lassen wir zirkular
polarisiertes konvergentes Licht auffallen, so liefern,
gleichviel welchen Rotationssinn das einfallende Licht
hatte, Linksquarze rechtsgewundene und
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Rechtsquarze linksgewundene Spiralen
als Interferenzbild. Vierfache Spiralen sieht
man, wenn man zwei entgegengesetzt drehende, senk-
recht zur Achse geschnittene Quarzplatten iibereinander-
legt, nach links gewundene (Fig.103), wenn das Licht
zuerst den Linksquarz durchsetzt, im anderen Falle
rechtsgewundene. Nach ihrem Entdecker fithren sie den
Namen Airysche Spiralen (1831).

§ 21. Absorbierende Kristalle

Beim Durchgang durch jeden materiéllen Korper wird
das Licht in seiner Intensitit geschwicht, es wird absor-
biert. Die Absorption erstreckt sich bisweilen nur auf
geringe Wellenlingengebiete, und wenn diese zudem im
Ultrarot oder Ultraviolett liegen, kdnnen wir ohne wei-
teres nichts davon wahrnehmen. Wird dagegen ein Teil
des sichtbaren Spektrums vernichtet, so zeigt der Kdrper
in der Durchsicht eine Firbung, wie sie dem Zusammen-
wirken der iibrigbleibenden Farben entspricht.

In isotropen Koérpern und reguliren Kristallen mufl
die Firbung die gleiche sein, in welcher Richtung das
Licht auch fortschreitet. Dagegen werden wir schlieflen,
dafl sich in ein- oder zweiachsigen Kristallen verschie-
dene Richtungen in bezug auf die Absorption ebenso vet-
schieden verhalten konnen wie in bezug auf die Fort-
pflanzungsgeschwindigkeit. Das bestitigt sich in der
Tat. Greifen wir als Beispiel den rhombischen Cor -
dierit (Fig. 104) heraus. Wir 4
blicken in Richtung der Achse
durch ihn hindurch: er erscheint
in der ,Flichenfarbe“
graugriin. In Richtung der Achse
b ist die Flichenfarbe gelb, in
Richtung ¢ indigoblau. Er zeigt
wIrichroismus“ oder bes-
ser ,Pleochroismus®
denn in einer anderen Sehrich- Fig. 104. Cordierit
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tung ergeben sich Ubergangsfarben zwischen den drei ge-
nannten Extremen, die den drei Kristallachsen angehéren.

FEine weitere Erkenntnis ertffnet sich, wenn wir das in
Richtung @ austretende graugriine Licht in seine beiden
Bestandteile zerlegen, den nach & und den nach ¢ schwin-
genden. Wir konnen das so machen, dafl wir den
Kristall auf das Tischchen des Orthoskops legen derart,
daf} das Licht in Richtung 4 durch ihn hindurchgeht, und
den oberen Nicol entfernen. Stellen wir den unteren
Nicol so, dafl seine Schwingungsrichtung einmal mit b,
dann mit ¢ koinzidiert, so konnen wir nacheinander
beobachten, welche Firbung das nach # und welche das
nach ¢ schwingende Licht zeigt. Gleichzeitig
schen wir beide Firbungen, wenn wir das austretende
Licht mit der sogen. ,Haidingerschen Lupc*
untersuchen, Sie besteht (Fig.

! | 105) aus einer quadratischen
A K D Offnung D, die durch eine
Lupe L betrachtet wird, und

einem zwischen Offnung und
Lupe eingefiigten Kalkspat-
stick K von einer Dicke, daff die beiden Bilder der
Offnung, die es liefert, sich gerade berithren (Fig. 106).
Bekanntlich rithren diese beiden Bilder von senk-

recht zueinander polarisiertem Lichte her. Die

beiden in Fig. 106 eingezeichneten Schwingungs-
richtungen lassen wir bei der Untersuchung des
«—5| Cordierits mit den Richtungen  und c¢ iberein-
stimmen und sehen dann das obere Quadrat in
der Firbung, die der Schwingung nach & ent-
spricht, der ,Achsenfarbe“ von b, das
untere in der Achsenfarbe von ¢, und da ergibt sich, dafl
die Schwingung nach ¥ dunkelblaues Liche liefert,
die nach cblafigelbes. Beide zusammen ergeben das
erwihnte Graugriin. Analysieren wir ebenso das in Rich-
tung b austretende gelbe Licht, so zeigt es sich zusammen-
gesetzt aus dem bekannten nach ¢ schwingenden blafi-

Fig. 105. Haidingersche Lupe

Fig. 106
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gelben Anteil und einem nach « schwingenden blau-
grauen. In Richtung ¢ sehen wir dann nichts Neues,
sondern wieder den nach a schwingenden blaugrauen und
den nach b schwingenden dunkelblauen Anteil.

In der elektromagnetischen Lichttheorie wird die Ab-
sorption durch die Erzeugung von Leitungsstrdmen et-
kldrt. Das erste Tripel der Maxwellschen Gleichungen
((1) in § 12) erhilt durch deren Einfiithrung links je ein
der Leitfihigkeit ¢ proportionales Zusatzglied. Bei iso-
tropen Korpern oder reguliren Kristallen geniigt ein o;
bei den iibrigen Kristallsystemen sind entsprechend den
€ 2,85 auch drei ,Hauptleitfihigkeiten®
0y, 03, 03 einzufithren, die das Koordinatenkreuz der
oJHauptleitfihigkeitsachsen® festlegen wie
die £ nach § 12, Gl. (3) die Hauptdielektrizititsachsen?).

In das Koordinatensystem der Hauptdielektrizitits-
achsen haben wir das Indexellipsoid eingezeichnet. Es
ergab zu jedem Radiusvektor eindeutig die Normalen-
geschwindigkeit der nach diesem Vektor schwingenden
Welle (sie war gleich dem Reziproken des Vektors!).
Ebenso konnen wir in dem Achsenkreuz der Hauptleit-
fihigkeitsachsen eine geschlossene Oberfliche zeichnen,
die den Zusammenhang zwischen Schwingungsrichtung
und Absorption veranschaulicht-und die gleichfalls an-
nihernd ein Ellipsoid ist, wenn wir die fiir die Stirke
der Absorption charakteristische Zahl geeignet definieren
(bAbsorptionsellipsoid®.

Im rhombischen, mono- und asymmetrischen System ist
das Ellipsoid dreiachsig. Im rhombischen System, das
wir herausgegriffen haben, stimmen seine Achsen, das
sind die Schwingungsrichtungen der grofiten, der
kleinsten und einer mittleren Absorption, fiir alle Farben
mit den optischen Symmetrieachsen iiberein. Im mono-
symmetrischen liegt eine seiner Achsen fiir jede Farbe in

1) Eernmentell ist bei den stark absorbierenden Metalleinkristallen z. B,
aus Zink die Anderung der Leitfihigkeit mit der Richtung gemessen worden.

Die Ausfihrungen im Text beziehen sich auf schwach absorbierende Kristalle,
dic allein der Beobachtung im durchgehenden Lichte zuginglich sind.
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der kristallographischen Symmetrieachse, die anderenbeiden
in der kristallographischen Symmetrieebene. Diese beiden
liegen fiir verschiedene Farben verschieden und stimmen
bei derselben Farbe nicht mit den in der gleichen Ebene
liegenden optischen Symmetrieachsen iiberein. Besonders
schén zeigen den Pleochroismus hier gewisse Varietiten
Epidot, die Gelb, Braun und Griin als Achsenfarben
haben, und Glaukophan mit Hellgriingelb, Violett
und Ultramarin als Achsenfarben.

Bei den asymmetrischen Kristallen lifit sich von vorn-
herein nichts tiber die Achsenrichtungen des Absorptions-
ellipsoids sagen. Dagegen ergibt sich aus den Symmetrie-
verhiltnissen der reguliren und einachsigen Kristalle, daf}
das Absorptionsellipsoid im reguliren System zur Kugel
und im hexagonalen und tetragonalen zum Rotations-
ellipsoid wird, dessen Achse in der Hauptachse liegt.
Danach konnen einachsige Kristalle nur zwei extreme
Farben (Dichroismus) zeigen: eine in Richtung der
Achse, die andere in allen Richtungen senkrecht dazu,
die ja gleichwertig sind; oder, wenn wir wieder auf
die Schwingungsrichtungen zuriickgehen: eine, die allen
Schwingungsrichtungen senkrecht zur Achse angehérr,
d. h. der ordentlichen Welle, wie sie auch liegen mag, die
andere, die den Schwingungen parallel der Achse ange-
hért, d. h. der aulerordentlichen Welle, wenn sie gerade
senkrecht zur Achse geht. In dieser Richtung unter-
scheidet sie sich also wie in ihrer Geschwindigkeit so
auch in ihrer Absorption denkbar von der ordentlichen.
In den Zwischenrichtungen nihert sie sich in den Ab-
sorptionsverhiltnissen wie in der Geschwindigkeit der
ordentlichen, bis sie in Richtung der Achse mit ihr iiber-
einstimmt.

Als Beispiel erwihnen wir noch einmal den Tur-
malin. Die Schwingung senkrecht zur Achse, d. h. die
ordentliche Welle wird in allen Richtungen gleich, und
zwar sehr stark absorbiert, die auflerordentliche Welle
in Richtung der Achse genau gleich stark, so daf der
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Turmalin in dieser Rlchtung fast undurchsichtig ist. Senk-
recht zur Achse wird sie weit weniger absorbiert und
tritt hier als einzige parallel der Achse schwingend aus
(vgl. Fig. 25).

Wesentlich wie der Turmalin wirkt der Herapa-
thit, ein Perjodid des Chininsulfats. In Amerika wird
er durch Einlagerung gleichgerichteter Mikrokristalle in
Folien zu ,,dlChl’Oll‘.lSChcn Polarlsatoren
verarbeitet. Zeifl in Jena stellt ,Polarisations-
filter“ nach anderem Verfahren her. In Parallel-
stellung gehen durch zwei Zeifische Folien 14% im
Griin, 18% im Rot hindurch, so dafl sich als Firbung ein
ziemlich reines Grau zeigt. Bei gekreuzter Stellung ist
die Durchlissigkeit durch das ganze sichtbare Spektrum
unter Y100%0, Solche Folien konnen in vielen Fillen die
teureren Polarisationsprismen ersetzen.

IV. Teil
Gitteroptik. des sichtbaren Spektrums

§ 22.. Modell und Methode

Wir haben bereits in § 1 darauf hingewiesen, dafl es
nur ein vorliufiges, formales, einebnendes, summarisches
Verfahren ist, wenn wir die optische Theorie des ani-
sotropen Korpers an dem Modell eines kontinuierlich mit
Masse erfiiliten Raumes entwickeln, der in verschiedenen
Richtungen verschiedene Dielektrizititskonstanten oder
Brechzahlen oder Lichtgeschwindigkeiten zuerteilt be-
kommt. Das ist eine sehr plumpe Zwangsjacke, die wir
der lebendigen Natur iiberwerfen, und wir wissen aus
vielen Erfahrungen: besser pafit sich ihr das ,Gitter-
modell“ an, das die Korperpartikeln in der regel-
maﬁlgen, dreifach periodischen Anordnung des »Raum-
gitters® zeigt. Fiir die Rontgenstrahlen mit ihrer
Wellenlinge von der Gréflenordnung des Partikel-
abstands ist dieses Modell oder ein hnliches unvermeid-

Buchwa'ld, Kristalloptik 8
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bar; fiir das sichtbare Licht mit seiner rund 1000 bis
10000mal groferen Wellenlinge geniigt im allgemeinen
die einfachere Kontinuumsvorstellung.

Aber auch im Sichtbaren findet man bereits Erschei-
nungen, die auf die Gitterstruktur hindeuten. So kann
man an sehr diinnen Kristallplittchen, z.B. aus Para-
toluidin, die man unterm Mikroskop in ihrem eigenen
Dampfe wachsen sieht, im gespiegelten Lichte die Farben
diinner Plittchen (,,Seifenblasenfarben) beobachten. Je
nach seiner Dicke erscheint das Plittchen in einer andern
Farbe, aber die Farben gehen nicht kontinuierlich inein-
ander iiber, sondern setzen sich in scharfen, sich allmih-
lich vorschiebenden Trennungslinien voneinander ab. Das
beweist den treppenférmigen Aufbau des Kristalls, die
regelmifigen Molekelschichten, die sich nach und nach
ankristallisieren. Man kann solche Versuche noch ver-
feinern und aus den Interferenzfarben bis zur Feststellung
eines elementaren Schichtabstandes kommen, dessen ganz-
zahlige Vielfache alle beobachteten Schichtdicken sind —
sehr erstaunliche Ausmessung eines Feinbaus mit einer
vielleicht 600mal grofleren Wellenlinge. Auch die
Streifen gleicher Dicke hat man neuerdings (S. To-
lansky) zum gleichen Zwecke mit Erfolg herange-
zogen.

Nach alledem wird man versuchen, die theoretische
Kristalloptik auch des sichtbaren Spektrums auf das
Gittermodell zu griinden, eine ,,Gitteroptik des
Sichtbaren“ aufzubauen, eine ,Langwellen-
optik® als Gegenstiick der ,Rdntgenoptik® und
von ihr erwarten, dafl sie zum mindesten dasselbe leistet,
was die alte Kontinuumstheorie leistete, etwa die Nor-
malenfliche liefert wie die Maxwellsche Theorie in §12
oder die Schwingungsrichtungen im Kristall (§13). Wir
werden im folgenden errtern — und damit begeben wir
uns von dem klassischen, gesicherten Besitzstand der ersten
Teile in ein jlingeres, in vielfachem Aus- und Umbau
befindliches Gebiet —, daff die neue Theorie nicht nur
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der alten gleichwertig ist, sondern an deren Fehlstellen
(s. S.106), der Erklirung der Dispersion und der natiir-
lichen Drehung, und in der quantitativen Verkniipfung
optischer Konstanten mit andern Kristalleigenschaften wie
den Elastizititsmoduln und der spezifischen Wirme iiber
sie hinausgeht.

Begriindung und entscheidende Forderung hat die
Gitteroptik durch P. P. Ewald?®) gefunden. Wenige
Jahre nach seiner Dissertation 1912 beginnen gleich-
gerichtete Arbeiten von M. Born?), so dafl man
biufig von einer ,Ewald-Bornschen Gitter-
theorie® spricht. Zahlreiche Beitrige von verschie-
denen Seiten folgen. Alle sind mathematisch schwierig
und in unserem Rahmen nicht ins einzelne darstellbar.
Wir miissen uns hier mit einer fast formellosen Veran-
schaulichung der Grundlagen und Ergebnisse begniigen.

Das Modell des Kristallgitters besteht aus
einer riumlich regelmifiigen Anordnung von Atomen oder
Ionen oder Atomgruppen, die durch Wechselwirkung an
ihrer Stelle gehalten werden. Noch einfacher: um von
dieser komplizierten Wechselwirkung loszukommen, stellt
man sie als eine in die Ruhelage zuriicktreibende Kraft
dar, und statt der Atome oder ihnlichem werden nur
Elektronen angenommen, die unter der Einwirkung dieser
Kraft Schwingungen um die Ruhelage ausfithren kdnnen
(5Oszillatoren“, ,Resonatoren®). Ist die
riicktreibende Kraft proportional der Auslenkung,
squasielastisch®, so sind die Schwingungen sinus-
formig; ist sie unabhingig von der Richtung der Aus-
lenkung, ,,isotropeBindung® soistdiegesamte

1) P. P. Ewald, Diss. Miinchen 1912: Dispersion und Doppelbrechung
von Elektronengittern (Krisrallen). Ders., Ann. d. Phys. 49, 1 und 117,
1916. Eine kurze Monographie: P. P. Ewald, Die Reflexion und
Brechung des Lichts als Problem der Elektronentheorie, Berlin 1925,

2) M. Born, Dynamik der Kristallgitter, Berlin 1915. Ders, in der
Enzyklopidie der mathem. Wissenschaften, V3, Leipzig 1923. M, Born
und M. Géppert-Mayer, Dynamische Gittertheorie der Kristalle,
Beitlrag in Band 24% des Handbuchs der Physik von Geigeru. Scheel,
Berlin 1933,

L
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Anisotropiedes Kristallsauf die Aniso-
tropie der Lage geschoben.

Um ein Bild von der Elektronenanordnung vor Augen
zu haben, gehen wir wie in § 2 von einem Kristallsystem
mittlerer Symmetrie aus, dem rhombischen. Bei ihm
wurden die Kristallflichen auf ein Kreuz von drei auf-
einander senkrechten ungleichwertigen Achsen bezogen.
Entsprechend ordnen wir die Ruhelagen der Elektronen
in einem ,einfachen rhombischen Gitter*
an (Fig. 107): in rechtwinkligen kartesischen Koordinaten

U X

Fig. 107. Rhombisches Gitter

folgen die Partikeln einander in der x-Richtung jeweils
im Abstande d;, in der y-Richtung im Abstande d,, in
der z-Richtung im. Abstande d;. Durch Gleichsetzen
zweier Abstinde d oder gar aller dreier kénnten wir zu
dem einfachsten Schema eines tetragonalen oder regu-
liren Gitters iibergehen, durch teilweises oder vdlliges
Windschiefmachen der Achsen zu den unsymmetrischeren
Systemen.

In Weiterbildung dieses Modells kann man erstens die
Elektronen wieder durch Atome oder Jonen ersetzen.
Zweitens wird man beachten, dafl in der Natur ver-
schiedene solche einfache Gitter ineinandergeschachtelt
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sind. Selbst das hiufig als erstes Beispiel herangezogene
Steinsalz NaCl, bei dem abwechselnd Na- und Cl-Tonen
in einem fiir alle Achsenrichtungen der Figur 107 gleichen
Abstand d; = d, = d, folgen, enthilt eben ein ein-
faches (und niche cinmal  das einfachste) Chlorgitter,
hineingesetzt in ein gleiches Natriumgitter. Und wieviel
verwickelter sind unsere Hauptversuchsobjekte Kalkspat
und Quarz oder gar Gips und Glimmer!

Drittens kann man der neuen Erkenntnis Rechnung
tragen, dafl das Atom aus einem Kern und einer rium-
lich ziemlich ausgedehnten negativen ,Ladungs-
wolke“ besteht und daf solche Atome im Kristall
dicht gepackt liegen — entgegen der Anschauung, die
durch die iiblichen Kristallmodelle aus Drihten und Holz-
kugeln vermittelt wird. So wird man den Kristall
weniger als Punktanordnung von Elektronen denn als
einen Korper ansehen, der von dreifach periodischen
negativen Raumladungen liickenlos erfiillt ist?),

Zum ,,Modell” rechnen wir noch die einfallende Licht-
welle, im einfachsten Falle eine ebene Sinuswelle, deren
mathematischen Ansatz wir aus § 12 bereits kennen. Die
Welle erregt alle Elektronen, die sie iiberstreicht. Sie
erregt sie stark, wenn ihre Schwingungszahl » mit der
Eigenschwingungszahl », der Elektronen iibereinstimmt
(,,Resonanzfall“), und um so weniger, je grofler der
Unterschied von » und w», ist. Schon die einfachsten
mechanischen Gesetze der erzwungenen Schwingungen
liefern als Schwingungstempo der- Elektronen das der
dufleren Welle und als die fiir die Stirke des Mit-
schwingens entscheidende Gréfe den ,Resonanz-
faktor® 1/2—12’ der mit wachsender Anniherung an

—y
die Resonanzostelle vy = v, grofler und grofer und fiir

1) Grundlagen und Réntgenoptik dieses Modells bei M. v. Laue, Er-
gebnisse der exakten Naturwissenschaften 10, 133, 1931. Anwendung auf
unsere Langwellenoptik bei G. Moliére, Dynamxsche Theorie der Kristall-
optik, Ann. d. Phys. 24, 591, 1935.
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» = v, sogar unendlich wird.” (Das wird durch Beriick-
sichtigung der Oszillatorendimpfung vermieden, die fiir
einen weiteren Addenden im Nenner sorgt.)

Das Wechselfeld der Hufleren Welle ist aber nicht
die einzige Kraft, die auf die Oszillatoren wirkt. Denn
diese strahlen selbst bei der Schwingung wie kleine An-
tennen kugelférmige ,,Elementarwellen® aus, und
das gesamte Feld besteht aus dem der Hufleren Welle
und simtlichen Elementarwellen — das einen der
Resonatoren erregende Feld besteht nur aus der Zufleren
Welle und den Elementarwellen aller iibrigen Reso-
natoren. Die Oszillatoren entnehmen Energie aus dem
Strablungsfelde und sie geben auch Energie an das Feld
ab; es ist ein sehr verwickeltes Zusammenspiel des Gebens
und Nehmens, dessen dynamische Mdglichkeit kurz in
die Forderung gefafit werden kann: die Elektronen-
schwingungen miissen gerade durch das
von ihnen miterzeugte Feld erhalten
werden kdnnen.

Dieses Gesamtmodell der Kristalloptik, Gitter -+
Wellen, kann nun nach verschiedenen Methoden
mathematisch angefaffit werden. Es zeigt sich, dafl alle
Methoden in ihren Ergebnissen wesentlich iibereinstimmen
und die wichtigsten kristalloptischen
Eigenschaften ohne Zusatzannahmen
herauszurechnen gestatten.

Faflt man den Kristall als Ladungswolke von riumlich
dreifacher Periodizitit auf, so ist die Behandlungsweise
noch rein kontinuumsmiflig. Man mufl sich vorstellen,
daf sich die Ladungswolke unter dem Einfluf elektri-
scher Felder, z. B. des Wechselfeldes der Strahlung, ver-
schieben kann, und eine Wellenl8sung der Maxwellschen
Gleichungen suchen, die fiir einen so beschaffenen und
so bestrahlen Korper gilt (v. Laue, Moliére. Eine
ausfithrliche Kontinuumstheorie mit riumlich periodischer
Dielektrizititskonstante findet sich schon 1924 bei
E. Lohr). :
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Eine zweite Methode (Born a.a.O.) ver-
mischt Kontinuums- und Diskontinuumsauffassung. Die
Kontinuumsseite wird durch die Anwendung der Max-
wellschen Gleichungen vertreten, die ja nichts vom ato-
maren Aufbau wissen, sondern mit stetig zusammen-
hingenden Stoffen rechnen, Aber die in diesen Gleichun-
gen auftretenden Ko&rperkonstanten — das sind bei der
iiblichen erlaubten Nichtbeachtung des u (s. §12) die
Dielektrizititskonstanten ¢ — werden aus der Diskon-
tinuumsvorstellung gedeutet, so wie das in der atomaren
Elektrizititslehre zu geschehen pflegt: ¢ oder die durch
die ,,Maxwellsche Bezichung® n2 = ¢ mit ihm verkniipfte
Brechzah! n wird aufgebaut aus den elektrischen ,,Mo-
menten” (= Ladung mal [variablem] Abstand von der
Ruhelage) simtlicher schwingenden Korperpartikeln.

Begrifflich am klarsten, wenn auch mit besonderen
mathematischen Schwierigkeiten belastet, ist die dritte
reinmolekulare Methode von Ewald. Ohne
unmittelbar auf die Maxwellschen Gleichungen zuriick-
zugreifen, verfolgt sie das verwickelte Wellenspiel der
Energieaufnahme und -abgabe im Resonatorengitter und
gelangt schliefflich zu makroskopisch priifbaren Aussagen,
indem sie die submikroskopischen Wechselfelder durch
Mittelwertsbildungen glittet.

Doch man ist noch einen Schritt weitergegangen, Alle
diese Methoden sind ,klassisch, insofern in ihnen nichts
von Quanten vorkommt. Natiirlich will man aber auch
die Kristalloptik quantentheoretisch aufbauen
und von dieser wiederum iibergeordneten Stelle Zustim-
mung zu allem Erreichten erhalten, Das hat nach
den neuesten und allgemeinsten Gesichtspunkten G.
Wentzel getan!), Zum Gliick wird der Gehalt der
klassischen Theerien in entscheidenden Punkten bestitigt,
quantitativ oder wenigstens qualitativ, einer von den hun-
dert Fillen der engen RBeziehung, der ,,Korrespondenz®

1) G. Wentzel, Kristalloptik und Wellenmechanik, Helv, Phys. Acta 6,
89, 1933.
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klassischer und quantischer Vorstellungsweise. Insonder-
heit kann das Bild der mitschwingungsfihigen Elektronen
beibehalten werden, wenn man nur ihre Ladung, die man
in der Klassik immer als Elementarladung e denkt, ge-
eignet bemifit und sich von dem Gedanken der realen
Existenz je eines Schwingungsgebildes in je einem Gitter-
punkte frei macht. Entsprechend dem Abriicken der
neuen Quantentheorie von riumlich-zeitlicher Anschau-
lichkeit, die man nur als ein Gelinder beibehilt, auf das
man sich nicht allzu energisch stiitzen darf, sind es nur
fingierte Oszillatoren, viel zahlreichere als die realen
Oszillatoren bei E w al d, ein mathematisches Hilfsmittel,
ein ,,virtuelles Orchester, von dem man sich die kristall-
optischen Harmonien fiedeln lifit, rhythmischer und
wohlklingender als in isotropen K&rpern.

§ 23. Dispersion und Doppelbrechung

Eine ebene Welle E falle (Fig. 108) auf die Oberfliche
des Kristalls und durchstreiche ihn unter Erregung sehr
zahlreicher Elementarwellen in Richtung D. Es lifit sich
zeigen, daff man einen dynamisch moglichen Ansatz fiir
die . Elementarwellen finden kann, der dreierlei leistet.
Erstens loschen die Elementarwellen die geradeaus
hindurchgehende Welle D durch Interferenz gerade aus.
Diese Forderung mufl man stellen; denn makroskopisch
tritt eine solche geradeaus weitergehende Welle nicht auf.
Die Ausldschungsforderung ersetzt in der Gitteroptik

die sogen. ,Grenzbedingungen“ der Maxwellschen
Theorie, die das

R E Verhalten der elek-

_ trischen und magne-

Vakuum tischen Feldstirke an
Kristall der Grenze zweier

Medien regeln.

Zweitens iiber-
lagern sich die Ele-
Fig. 108. Wellen am Kristallrand mentarwellen”  im

D
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Auflenraum zu einer gespiegelten Welle R in der von
der Erfahrung bestitigten Richtung und Stirke, die in der
Kontinuumsoptik durch das Spiegelungsgesetz und die
,Fresnelschen Reflexionsformeln* festgelegt sind. Und
drittens erscheinen gebrochene Wellen G, gleichfalls
im Einklang mit der Erfabrung nach dem Brechungs-
gesetze. Die Wellen D und R sind Probleme des Randes.
Wir befassen uns nur mit dem innerkristallinen ,,Binnen-
problem* der Wellen G.

Hier taucht noch vor jeder Erklirung der Doppel-
brechung die Frage auf: wie ist es mdelich, dafl eine
Welle von der Geschwindigkeit » aus Elementarwellen
entsteht, die allesamt mit der Vakuumlichtgeschwindigkeit
C laufen? Denn zwischen den Elektronen ist Vakuum!
Man mufl zur Beantwortung erst den vieldeutigen Be-
griff ,Lichtgeschwindigkeit genauer fassen. v bedeutet
wPhasengeschwindigkeit”, d.i. der Weg, den
ein Wellenberg oder ein Wellental oder ein dazwischen-
liegender Auslenkungswert (,,Phase”) in der Zeiteinheit
zuriicklegt. Die Phasengeschwindigkeit ist fiir ‘die Werte
der Brechzahl, fiir die ,,optische Weglinge* Brechzahl
mal Strecke und damit fiir alle Interferenzerscheinungen
mafigebend (nicht maflgebend etwa fiir die Ausbrei-
tungsgeschwindigkeit der Lichtsignale in den Gedanken-
versuchen der Relativititstheorie).

Wie schnell liuft also die ebene Welle E (Fig. 109)
durch den Kiristall, d.h. durch das Vakuum mit seinen
«eingehingten Netzebenen N, N,, wobei wir der
Einfachheit halber E und alle N parallel annehmen?
Zwischen den Netzebenen mit der Vakuum-
geschwindigkeit C — aber wir zeigen durch eine ein-
fache Uberlegung, dafl die Phase an jeder Netzebene,
die sie durchstreicht, ein wenig zuriickversetzt, zuriick-
gehalten wird und somit in einer Sekunde nicht um die
Strecke C, sondern nur um eine kleinere vorwirts kommt,
die wir eben » genannt haben. Diese Zuriickversetzung
kommt dadurch zustande, dafl von einer Netzebene eine
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O P <n

P
N2 o O o 0o O 0 o o o
Fig. 109. Ebene Welle und Netzebenen

vergleichsweise sehr schwache Elementarwelle ausgeht, die
sich der ankommenden iiberlagert und durch Interferenz
die weitergehende Phase ein kleines Stiick verschiebt, im
Normalfalle riickwirts.

Die Kristallpartikeln fiihren unter der Wirkung von
E erzwungene Schwingungen aus. Man weifl aus de-
180° ren Theorie, dafl die
Phase der erzwungenen
Schwingungen mit der
Fremdschwingung mit-
0° geht, solange die-Fremd-
schwingungszahl » klei-
ner als die Eigenschwin-
gungszahl », ist, dafl

/] sie aber um 180° nach-
7 -V hinkt, wenn » gréfler

Fig. 110. Phasen bei ist als Yo (Flg 110)
erzwungenen Schwingungen Diese Phase wire aber

nur dann mafigebend fiir die Zusatzwelle in P (Fig. 109),
wenn diese allein von dem eben erregten Nachbaroszillator
A herriihrte. Alle andern erregten Oszillatoren senden aber
auch Zusatzwellen nach.P, die wegen ihrer gréfleren Ent-
fernung spiter ankommen. Uberlegungen, die #hnlich
auch an anderen Stellen der Lichttheorie auftreten
(wFresnelsche Zonenkonstruktion®) lehren, daff man
zu den genannten Nachhinkewinkeln noch solche von
90° hinzuzihlen muf}, so daff unterhalb von », (Fig. 110)
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ein Nachhinken um 90°, oberhalb eins von 270° heraus-

kommt, welch letzteres auch als Voreilen um 90° be-

zeichnet werden kann. Somit ergibt sich fiir » < v, eine

Welleniiberlagerung nach Fig. 111. Die primire Welle

P, kommt von links und ginge hinter der Netzebene N
N

5

Fig. 111, Primir- und Sekundirwelle an einer Netzebene

mit kaum verminderter Amplitude als die punktierte
Welle P, weiter, kime nicht von N die sehr kleine, in
der Figur iibertrieben groff gezeichnete Sekundirwelle §
hinzu, wie immer bei erzwungenen Schwingungen von
der gleichen Wellenlinge wie P; und P,, aber gegen P,
um rund 90° nachhinkend. Die Uberlagerung der Punk-
tierten P, und S gibt die ausgezogene weitergehende
Welle W, wiederum von gleichem 4, doch mit einem
gegen P, ein wenig zuriickversetzten
Maximum. Dies ist die anschauliche Erklirung der
geringeren Lichtgeschwindigkeit im Kérper. v ist keine
allerorts gleiche K&rperkonstante wie in der Maxwell-
schen Kontinuumsvorstellung, sondern — charakteristisch
fiir die Elektronentheorie — ein Mittelwert, sozu-
sagen von C-Schritten vorwirts und endlichen Riickver-
setzungen, ihnlich gewissen Prozessionen. Es gibt Ge-
biete der neuesten Kristallelektronik (W. Kossel und
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Mitarbeiter), wo man dieses ,,Zuschalten von Sekundir-
wellen® bis in Einzelheiten verfolgen kannt).

Zuyerst sieht es so aus, als ob bei dieser Uberlegung die
Verkiirzung der Wellenlinge vom Vakuumwert A, auf
Ao/ im Medium nicht herauskime. Dem ist aber nicht
so. Wir zeichnen (Fig.112) als Momentbild die ausge-
zogene Welle an der Grenze von Vakuum und Kiristall,
bei der gerade in der Grenze eine Nullstelle Ay liegt,
wihrend die rechts benachbarte nach Durchlaufen vieler

2
A7\L /’ | ] 1\L\}A"
Vakuum Aristall

Fig. 112, Wellenverkiirzung im Kristallgitter

Netzebenen bis A, gekommen wire, hitten die Sekunditr-
wellen sie nicht um a zuriickgesetzt. Das dazwischen-
liegende Maximum hat erst halb so viele Netzebenen
durcheilt wie die Nullstelle A,; also ist es nur um 4/2
zuriickversetzt, So kommt im Kristall statt der punk-
tierten Fortsetzung die ausgezogene verkiirzte Welle zu-
stande.

In diesen Gedankengingen steckt auch bereits die Er-
klirung der Dispersion als der Abbingigkeit der
Brechzah! n oder der Phasengeschwindigkeit » von der
Schwingungszahl » der ankommenden Welle. Je mehr
sich » von kleinen Werten her der Resonanzstelle v,
nihert, um so mehr werden die Resonatoren aufge-
schaukelt. Der ,,Resonanzfaktor® des vorigen § war das
Mafl dafiir. Starkes Aufschaukeln aber bedeutet starke
Sekundirwelle S, grofles Riickversetzen, kleine v, grofle

1) W. Kossel, Neue Kristalloptik, Optik 3, 178, 1948.
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n. Jenseits der Resonanzstelle » = v, aber kommt das
Vorversetzen, die vergroflerten v, die verkleinerten n, oft
n <1, wie man sie aus den Dispersionskurven der iso-
tropen Medien kennt, z. B. aus den nach der Methode der
gekreuzten Spektren selbstindig aufgezeichneten von Na-
trium und anderen Alkalien.

Wie n weitab von der Eigenschwingung v, in den Ge-
bieten ohne merkliche Absorption, von » abhingt, lehrt
die aus der rechnerischen Durchfiihrung dieser Gedanken-
folge sich = ergebende einfachste ,Dispersions-
gleichung"

2 __ Constans
n—1=—"—"-—-,
V02 — 'V2
die links gewissermaflen die Mehrleistung des Mediums
gegeniiber dem Vakuum (7 = 1) und rechts wesentlich
den Resonanzfaktor enthilt.

Hat das Gebilde mehrere Eigenschwingungen »,, v, . . .,
so tritt rechts eine Summe gleichgebauter Terme auf: -

5 Ci
m—1= ;Z v — ¥
und . solche Dispersionsformeln, aus den klassischen
Theorien seit langem abgeleitet und nun gitteroptisch
fiir kubische Kristalle genau so wiederzufinden, stellen
den Versuchsbefund bei geeigneter, wenn auch meist nicht
unmittelbar nachpriifbarer Wahl der »; mit fast voll-
kommener Genauigkeit dar,

Figur 113 und die Tabelle geben die Messungen an
Steinsalz, wie iiblich auf die Wellenlinge i1 und
nicht auf die Schwingungszahl » bezogen (steigendes »:
abnehmendes 1).

Experimentelle Werte wie

y) n
Cd 441 1,55962
H 486 1,55338
Na 589 1,54431
H 656 1,54067
K 768 1,53666

(c: Konstanten),
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15400/

400mu 500 600 700 a0’

Fig. 113. Dispersion des Steinsalzes im Sichtbaren

weichen von der von Paschen angegebenen Formel

) 0,01278685 0,005343924
m—1 = 4680137 + = oo T 22— 0,159
© 12059,95
T =0

um weniger als 2 Einheiten der 5. Dezimale ab. In der

Formel sind, wie man sieht, drei Resonanzstellen in Rech-

nung gesetzt, zwei ultraviolette bei 0,1219 und 0,1596 1
und eine im ferneren Ultrarot bei 60 u.

Bleibt noch die Erklirung der D o p p el brechung. Das

00 o0—0 o—0 I I i denElektronen von

den Nachbarn zu-

o—o o—0 oo i I 1 gestrahlte Feld,

also auch die Stir-

y [° °=° o° i I I ke des Mitschwin-

d’L_c gens und damit

‘—771—°'_° e 1 I I wieder die Phasen-

v geschwindigkeit

Fig. 114, Schwingungen im rechteckigen Gitter ynd die Brechzahl,

ist verschieden, wenn die Elektronen in der xy-Ebene des

rohmbischen Gitters Fig. 107 die in Fig. 114 in die Zeichen-

ebene gelegt ist, in der x-Richtung schwingen wie in der
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linken Hilfte der Figur oder in der y-Richtung wie in
der rechten Hilfte. Denn nach der Maxwellschen
Theorie strahlt ein Dipol — man kann es an einer makro-
skopischen Antenne experimentell nachweisen — in seiner
Schwingungsrichtung, gar nicht, maximal aber in der
»Aquatorrichtung™  senkrecht dazu. So erfolgt die
wesentliche Zustrahlung in der linken Figurenhilfte
durch die Nachbarn in der y-Richtung, in der rechten
durch die Nachbarn in der x-Richtung. Jene sind um
das kleinere d, entfernt, diese um das groflere d;. Also
ist links die gesamte Zustrahlung gréfler, rechts kleiner,
und dieser Unterschied, bedingt also durch die Anisotro-
pie der Lage, besorgt die Verschiedenheit der Phasenge-
schwindigkeiten, d. i. die Doppelbrechung.

So folgt die von uns immer wieder festgestellte Ab-
hingigkeit des v von der Schwingungsrichtung (s. z.B.
S. 51) aus der Gittertheorie. Bei Ewald wird sowohl
das Indexellipsoid wie die Normalenfliche im Einklang
mit der Klassik und mit der Erfahrung wiedergefunden,
und daf} bei seinem Beispiel, dem Anhydrit CaSO,, wohl
die Groflenordnung aber nicht die Zahlenwerte stimmen,
liegt nur an der allzu groflen Einfachheit des Modells.

Verfeinert man es, so kommt man zu recht befriedi-
gender Ubereinstimmung, ja man vertraut der Theorie
so weit, dafl man ein Modell fiir zutreffend hilt, dessen
Durchrechnung die beobachtete Doppelbrechung liefert.
So hat Hylleraas mit Erfolg Kalomel Hg,Cl, unter-
sucht, einen tetragonalen Kristall von extrem grofler
positiver Doppelbrechung, wegen stark verschiedener d
im rontgenoptisch festgestellten Modell. Berechnung und
Beobachtung der Hauptbrechzahlen 7, und 7, und ihrer
Dispersion stimmen gut iiberein:

A N Ne
berechn. beob.  berechn. beob.
Li 671 1,9555 1,9556  2,6007 2,6006
Na 589 1,9732 1,9733  2,6568 2,6559
Tl 535 1,9904 1,9908 2,7130 2,7129
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Ahnliche Erfolge sind von Hylleraas bei den beiden
Formen des TiO,, dem Rutil und Anatas, von W. L.
Bragg bei Kalkspat, Aragonit, Korund erzielt wor-
den usw,

Der wesentliche Gesichtspunkt bei der Braggschen
Uberlegung am Kalkspat ist der folgende: fiir die Polari-
sation und damit fiir die Stirke des Mitschwingens
kommen im CaCOQOj, in erster Linie die drei besonders
leicht polarisierbaren O-Ionen in Frage. Sie liegen nach
Ausweis der Rontgenanalyse in Ebenen senkrecht zur
Achse an den Ecken eines gleichseitigen Dreiecks. In
Figur 115 sind drei Nachbar-O-Ionen in die Papierebene
gelegt; die Achse steht hier also senkrecht zur Papier-

' A ebene. Ein clektrischer Vek-
@ tor € in der Papierebene,
21 senkrecht zur Achse liegend
und damit einer ordent-
) \ lichen Welle zugehdrig
K Ig \ (§ 6), polarisiert die drei
\\ Ionen durch Verschieben der
B@---------- ®C negativen Hiille wie gezeich-
: : net. Man iibersieht die Wit-
@ kung der Ionen aufeinannder:
Fig. 115. Polarisation der O-Tonen die Polarisation von A wird
bei € - Achse durch die von B und C ge-
fordert entsprechend der +- und —-Lage in diesen. Die
in B wird durch die von A geférdert, durch die von C
ein wenig geschwicht, so daff in summa noch eine For-
derung herauskommt. Fiir C gilt das Gleiche. Im ganzen
kommt es also zu einer Verstirkung der Polarisation der
Dreiergruppe durch die gegenseitigen Einwirkungen, also
zu stirkerem Mitschwingen, zu einfluf8reicheren Sekun-
dirwellen, zu einer erheblicheren Verlangsamung der
ordentlichen Welle.

Liegt dagegen (Fig.116) € in Achsenrichtung (das

Dreieck ist perspektivisch gezeichnet, die negativen
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Hiillen senkrecht zur
Dreiecksebene nach A
unten gezogen), han- ®
delt es sich also um Pid \
die a.0. Welle, so e @ *
wirken alle Nach- ¥ .
barn aufeinander po- I \
larisationshemmend,

\
die dSekundarwellen 8 @ --------------- @C
weraen weniger ein- :
flulreich, die a.o. @ @
Welle bICIbt dl.e Fig. 116. Polarisation der O-Ionen
schnellere, wie es die bei € in der Adhse
Erfahrung zeigt.

Zum Schluf} noch eine Bestitigung unserer Grundvor-
stellungen in zuginglicheren Grofenverhiltnissen. Nach
Vorgingern wie Garbasso, Aschkinass, CL
Schaefer hat Lindman in Abo (Finnland) Disper-
sionskurve und Doppelbrechung und dariiber hinaus sogar
die Drehung wiedergefunden, als er die Abmessungen des
Resonatorenhaufens rund um das Milliardenfache stei-
gerte. An Stelle der Elektronen treten Hertzsche
Metallresonatoren in XKreis- oder Kugelform
von einigen cm Radius, auch in Spiralform, wenn es auf
die Drehung hinauswill (§24). Ein isotroper Korper
wird regellos aus Resonatoren in Wattepackung aufge-
baut, ein anisotroper aus hintereinandergestellten Papp-
scheiben mit Kugelresonatoren in der Rechtecksanordnung
der Figur 114. Dann fallen Hertzsche Wellen
auf, ansteigend von vielleicht 10 bis 40 cm Linge, ein
Bereich, der die Eigenwellenlinge der Resonatoren ent-
hilt. Dabei erweist unser Gittermodell ,handgreiflich®
seine Brauchbarkeit.

§ 24. Drehung

Die optische Drehung wird von der Gittertheorie ohne
weitere Zusatzannahmen wiedergegeben, wenn man zwel
Punkte beachtet:

Buchwald, Kristalloptik 9
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1. die schwingenden Partikeln sind miteinander ge-
koppelt,
2. der Partikelabstand wird nicht verschwindend klein
gegen die Wellenlinge angenommen?),
In der Wiedergabe der Drehung geht B or n (und gleich-
zeitig mit thm C. W. Oseen) ilber Ewald hinaus.
Es ist unméglich, die hohe Theorie hier in Einzelheiten
vorzufiihren, doch 1ifit sich wieder ihr Grundgedanke in
einfacher Form anschaulich machen. Der Kristall mit
seinen sehr zahlreichen gekoppelten Atomen ist als riesige
anisotrope ,Makromolekel® aufzufassen. Wir
gehen zu einer normalen Molekel iiber; wir wissen ja
z.B., dafl die Zuckerlosung dreht, also mufl wohl, da die
Zuckermolekeln in der Losung regellos verteilt sind, das
Drehvermégen bereits in dem Bau einer Molekel be-
griindet sein. Die Zuckermolekel C;,H,,Oyy ist uns aber
natiirlich noch viel zu umfangreich. Wir wihlen eine
Molekel von zunichst nur zwei schwingungsfihigen
Atomgebilden I und II (Fig.
117) mit Ruhelagen auf der
z-Achse im Abstande d und
bringen die Annahme 1, die
Koppelung, dadurch zum Aus-
druck, dafl wir fordern: bei
einer Schwingung von [ in
d einer Richtung, die wir als x-
Richtung wihlen, soll das mit
. ihm gekoppelte /7 nichtnach
4 - x, sondern etwa mit einer
7 X gleichzeitigen v - Komponente
nach der Richtung s schwingen.
Wie das modellmiflig zustande
Fie. 117 kommt, ist nur bei Hinzunahme
Modell einer cﬁehenden Molekel VON (mindestens ZWCi) weiteren

z

.1 Eine gentigende Beachtung dieser zweiten Annahme nimmt den regu-
liren Kristallen in der Gittertheorie die optische Isotropie, vgl. Fig. 66 und
die zugehdrigen Bemerkungen.
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Partnern zu verstehen, die bestimmte Vorzugsrichtungen
festlegen; bei einer zweiatomigen Molekiil wiren solche
aus Symmetriegriinden unmdglich.

Nach §19 wird das Drehvermégen durch die ver-
schieden grofle Geschwindigkeit einer rechts- und einer
linkszirkularen Welle erklirt. Nach rechts wird gedreht,
wenn die rechtszirkulare schneller ist (Fig, 99). Lassen
wir also in der z-Richtung unseres Modells zuerst eine
rechtszirkulare Welle fortschreiten! In einem be-
stimmten Zeitpunkt liegt ihr Lichtvektor bei I gerade in
der x-Richtung, kann also mit seinem vollen Betrage an-
greifen. Und nun kommt die zweite Annahme hinein:
bei I7 soll im gleichen Zeitpunkt der Lichtvektor nicht
nach x weisen, weil der Partikelabstand nicht verschwin-
dend klein gegen 4 sein soll. Vielmehr liegt der Licht-
vektor bei I7 ein wenig aus der x-Richtung heraus nach
der y-Richtung zu gedreht, denn das entspricht der
rech tszirkularen Welle: wenn ich lings der negativen
z-Richtung nach unten blicke, kommt erst der mehr nach
y gedrehte Lichtvektor, spiter der nach x liegende in
mein Auge, der Vektor dreht sich in der Tat beim Ent-
gegenblicken rechts herum (vgl. die Definition S. 69).
Der Lichtvektor hat durch diese Drehung eine relativ
giinstige Komponente in der fiir I/ moglichen Aus-
lenkungsrichtung s, er kann mehr Arbeit an II leisten, das
Mitschwingen von I/ wird verhiltnismifig grof}, und das
gibt nach dem vorigen Paragraphen eine starke Sekundir-
welle, groflen Unterschied des Mediums gegen das
Vakuum, grofles 7, kleine Geschwindigkeit.

Bei einer 11 n ks zirkularen Welle aber weist der Licht-
vektor in dem Augenblicke, wo er bei I nach x liegt, bei
II in eine Richtung, die aus der x-Richtung heraus dem s
nicht wie vorhin zu-, sondern weggedreht ist. So kann
er nur mit kleinerer Komponente angreifen als vorhin:
‘geringeres Aufschaukeln, geringeres Mitwirken des Me-
diums, kleineres n, groflere Geschwindigkeit. Die ver-
schiedenen Geschwindigkeiten der entgegengesetzt zirku-

9
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laren Wellen bedingen Drehung, in unserem Beispiele
nach links.

Das Modell bietet offensichtlich Verallgemeinerungs-
moglichkeiten. Die Fortpflanzungsrichtung braucht nicht
in der Verbindungslinie von I und 77 zu liegen, s muf
nicht gerade in die xy-Ebene fallen — wenn es nur nicht
mit x ibereinstimmt! — die Partikelzahl kann vermehrt
werden: immer ist der Erfolg der gleiche. Diese erfreu-
lich leistungsfihige Modellvorstellung stammt ven W.
Kuhn?) und hat vor allem in seiner und seiner Mit-
arbeiter Hand Brauchbarkeit und Erweiterungsfihigkeit
in zahlreichen physikalischen und chemischen Anwen-
dungen dargetan,

Wir gehen von der Einzelmolekel zur Makromolekel,
dem Kiristall, zuriick und wihlen als Beispiel das Na-
triumchlorat NaClO,, das als erstes cine quanti-
tative Behandlunger-
fahren hat (Her-
mann 1923), weil

% r\ es regulir ist, also
eine sich iiberlagern-

\3 de Doppelbrechung

die Rechnung nicht

store, und weil es in

1= Losung nicht dreht,
also ein Drehvermd-

gen nur der geni-

A gend unsymmetri-

o 2 schen Partikelanord-

nung im Raumgitter,

nicht der Einzelmo-

; ~ lekel verdankt.

O N @C/Q; Fig. 118 gibt eine
Fig. 118. Basiszelle im Natriumdlorat der durch Réntgcn—

1) Zur Einfihrung geeignetr: W. Kuhn, Modellmifige Bedeutung der
optischen Aktivitit, Naturwissenschaften 19, 854, 1931.
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analyse bestimmten Basiszellen, aus denen es aufgebaut ist.
Beim NaCl siflen die Na-Ionen in den Ecken des grofien
Wiirfels und in dessen Flichenmitten, von den Cl-Ionen
eins in der Wiirfelmitte, die iibrigen in den Kantenmitten.
Beim NaClO, sind je ein Na- und ein ClO4-Ton in der
angedeuteten Reihefolge auf den Diagonalen der kleinen
Wiirfel einander gendhert, je um ein Sechstel dieser Diago-
nalenlinge. So riickt der Kristall in eine niedrigere Sym-
metrieklasse des reguliren Systems, die niedrigste, ohne
Symmetrieebene. Dafiir gewinnen aber die ClOg-Ionen
als die fiirs Sichtbare entscheidenden Resonatoren wind-
schiefe Vorzugsrichtungen auf benachbarte Na-Partner zu,
dhnlich wie wir sie in dem einfachen Modell der Figur 117
als Folge einer , Koppelung® voraussetzen mufiten.

Um die schraubenférmige Anordnung dieser Vorzugs-
richtungen noch augenfilliger zu machen, ist in dem
Modell Fig. 119 die Wiirfeldiagnole senkrecht gestellt.
Drei kleine Wiirfel von den achten der Fig. 118 sind als
kleine Drahtgestelle zu sehen und als Holzkugeln drei
der Vertikalachse benachbarte _ _
ClO4-Tonen in der symmetri-
schen Lage, wie sie die Cl-
Ionen im Steinsalz inne hitten.
Durch sie sind drei horizontale
(Oktaeder-) [Ebenen gelegt,
dreieckige weifle Bleche, aufler-
dem kleine Vertikalbleche,
deren  Oberkanten, allesamt
nach oben aus den Horizontal-
ebenen heraustretend, die Vor-
zugsrichtungen auf die nichsten
Na-Partner hin angeben. Die
Schraubung um die Mittelachse
ist deutlich. Die Gitter-
sé :h ru ll; tur i;t: es, die diese Sl

raubung und damit die op- ;
tische Drehung mit sich bringpt. T 110 S
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In der dlteren Theorie waren Sonderannahmen nétig, z. B.
die, daf8 die mitschwingungsfihigen Elektronen sich nicht
Eeradlmlg, sondern auf Schraubenlinien zu bewegen
dtten, .

Dafl Schraubenstruktur optische Drehung ergeben kann,
ist seit langem bekannt. Reusch ist es bereits 1869 ge-
lungen, durch Aufeinanderpacken einer grofleren Zahl
von Glimmerlamellen (12 bis 36) gleicher geringer Dicke
im Versuch eine Drehung ohne Doppelbrechung zu er-
zielen. (Solche Priparate sind heute im Handel zu
haben.) Er schlchtete sie so iibereinander, daff die Spur

: m; rechts
Fig. 120 Fig. 121
Reuschs Glimmerkombinationen

der Achsenebene, die Schwingungsrichtung der lang-
sameren Welle in einem Plittchen immer um 120° gegen
die des darunterliegenden gedreht war, und beobachtete,
je nachdem dieser Winkel im entgegengesetzten Sinne des
Uhrzeigers (Fig. 120) oder im Sinne des Uhrzeigers
(Fig. 121) genommen wurde, Drehung der Schwingungs-
richtung nach links oder rechts. Rechnerisch ergibt sich
das durch elementare Komponentenzerlegungen und -zu-
sammenfassungen im Sinne des § 14.

Besser noch als beim Natriumchlorat ist spiter bei
andern drehenden Kristallen Rechnung und Versuch in

Einklang gebracht worden. Dazu gehort unser Hauptver-
treter, der Quarz, bei dem Hylleraas 1927 Dreh-
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vermdgen wie Doppelbrechung berechnet hat. An ihm
ist auch die bisher genaueste experimentelle Bestitigung
der Gittertheorie drehender Kristalle gewonnen worden
(Szivessy und Miinster 1934).

Somit sind wesentliche Probleme der Gitteroptik nicht
nur in den Grundziigen geldst, sondern bis zur Angabe
von Zahlenwerten gefdrdert. Andere, wie das der Ab-
sorption, harren noch einer befriedigenden Theorie. Im
Eanzen gesehen bleibt noch sehr viel zu tun. Eine ge-

iirzte Ubersicht wie diese entgeht kaum der Gefahr einer
allzu groflen Glittung.
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Sylvin 13,
Symmetrieachse,
lographische 8.
—, optische 44,
Symmetrieebene, optische

kristal-

Symmetrieelemente 9.

Symmetriezentrum 9.

Szivessy und Miinster
135.

Temperatureinflufl 36, 97.
Tetartoedrie 13.
Tetragonales System 10,

S. Tolansky 114.

Totalreflektometer 43.

Totalreflexion 41 f.

Trichroismus 109.

Trigonales System 12.

Triklines (asymmetri-
sches) System 10, 44,
54, 96, 111.

Namen- und Sachverzeichnis

Turmalin 12, 18, 112,

Turmalinplatte als Pola-
risator 28 f.

Turmalinzange 29.

Ubergangsfarbe 100.
Uberlagerung von Kri-
stallplacten 82 ff.,

108 f

Viertelwellenplittchen 21,
83

W. Voigt 58.
Vollflichner 12.

Weil hoherer

79.
Wellenfliche 16,
Wellenfront 16, 19.
Wellennormale 20.
Wellenzahl 61,

Ordnung

| G. Wentzel 119.

Wolla?onsches Prisma
Wiirfel 13.

Zentrum der Symmetrie 9.
Zinnober 12, 18, 102,
Zinnstein 18, 38.
Zirkon 18.
Zirkular polarisiertes
Liche 69, 103 ff., 131
Zucker 96, 101, 130,
Zwuachslge Kristalle
44 ff., 62 ff., 76 f.,
92 ff., 102, 106 109.



W. BRUHNS und P. RAMDOHR

Kristallographie
4. Auflage von P. Ramdohr. In Vorbereitung
(Sammlung Géschen Bd. 210) DM 2,40
W. BRUHNS und P, RAMDOHR
Petrographie

3., durchgesehene Aufl. Mit 10 Fig. 117 Seiten. 1949. DM 2,40
(Sammlung Géschen Bd. 173)

R. BRAUNS und K. F. CHUDOBA

Mineralogie

8., neubearbeitete Auflage von K. F. Chudoba
mit 125 Textfig. u. 3 Abb. auf einer Tafel, 143 S. 1943. DM 2,40
(Sammlung Géschen Bd. 29)
M. HENGLEIN

Lotrohrprobierkunde

Mineraldiagnose mit Lotrohr und Tiipfelreaktion
3., verbesserte Aufl. Mit 11 Fig. 91 Seiten. 1949. DM 2,40
(Sammlung Géschen Bd. 483)
G. MAHLER und K. MAHLER

Physikalische Formelsammlung
8., verbesserte Aufl. von K. Mahler. 1563 S. 1950. DM 2,40
(Sammlung Géschen Bd. 136)

G. MAHLER
Physikalische Aufgabensammlung

7. Auflage. 128 Seiten.. 1952, DM 2,40
(Sammlung Géschen Bd. 243)

F. SAUTER

Differentialgleichungen der Physik

2. Auflage. Mit 16 Figuren. 148 Seiten. 1950. DM 2,40
(Sammlung Géschen Bd. 1070)

_E. ASMUS
Physikalisch-Chemische Rechenaufgaben

2. Auflage., 96 Seiten. 1949, DM 2,40
(Sammlung Géschen Bd. 445)

S. VALENTINER

Vektoranalysis
7., wesentlich verdnderte Aufl. Mit 19 Fig. 138 S. 1950. DM 2,40
(Sammlung Gdschen Bd. 354)
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L. BERGMANN und CL. SCHAEFER
Lehrbuch der Experimentalphysik

zum Gebrauch bei akademischen Vorlesungen und zum
Selbststudium
1. Band: Mechanik, Akustik, Wirmelehre
2. und 3., durchgesehene Auflage
Grof3-Oktav. Mit 643 Abbildungen, 622 Seiten, 1945. DM 20,—
2. Band: Elektrizititslehre
GroB-Oktav. Mit 652 Abbild. VIII, 501 Seiten. 1950.

Ganzleinen DM 28,—
~Neben den Grundgesetzen bringt das Buch eine auBerordent-
liche Fiilie von physikalischen Tatsachen und praktischen An-
wendungen.* Archiv der elektrischen Ubertragung

CL. SCHAEFER

Einfiihrung in die theoretische Physik
: 3 Binde
1. Band: Mechanik materieller Punkte, Mechanik starrer
Korper und Mechanik der Kontinua
5., verbesserte und vermehrte Auflage.
GroB-Oktav. Mit 272 Figuren. XII, 991 Seiten. 1950.
Ganzleinen DM 54,—
2. Band: Theorie der Wirme. Molekularkinetische Theorie der
Materie
4., verbesserte und vermehrte Auflage
Mit 88 Figuren, etwa 660 Seiten; in Vorbereitung
3. Band, 1. Teil: Elektrodynamik und Optik
2., durchgesehene Auflage
GroB-Oktav. Mit 235 Figuren. VIII, 918 Seiten. 1949,
Ganzleinen DM 48,—
3. Band, 2. Teil: Quantentheorie
2., durchgesehene Auflage
GroB3-Oktav. Mit 88 Figuren. VIII, 510 Seiten. 1951.
Ganzleinen DM 40,—
»e..Ich weiB in der Tat in der ganzen Literatur kein Werk,
das in so meisterhafter Weise den angehenden Physiker mit
dem Wesen der theoretischen Physik bekannt macht.“
Max Planck

CL. SCHAEFER
Einfiihrung in die Maxwellsche Theorie der

Elektrizitit und des Magnetismus
5., verbesserte Auflage
Grof3-Oktav. Mit 33 Figuren. VIII, 142 Seiten. 1949.
Ganzleinen DM 8,—
~Der Zweck des Buches besteht darin, den Anfinger auf mog-
lichst elementare und anschauliche Weise in die Grundlagen
der Maxwelischen Theorie einzufiihren.” VDI-Zeitschrift
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SAMMLUNG GOSCHEN

Jeder Band DM 2,40

Naturwissenschaften und Technik

Mathematik

Geschichte der Mathematik. Von J. E. Hofman. I.: Von den
Anfangen bis zum Auftreten von Fermat und Descartes.
199 8. 1952, In Vorbereitung . .

Mathematische Formelsammlung. Von F ngleb 5 ver-
besserte Aufl. Mit 57 Fig. 274 8. 19

Formelsammlung zur praktischen Mathematik. "Von
G. Schulz. Durchgesehener Neudruck. Mit 10 Abb.
147 S. 1945 . .

Vierstellige Tafeln und Gegentafeln. "Far logarithmisches
und trigonometrisches Rechnen in zwei Farben. Zu-
sammengestellt von H. Schubert und R. Haussner. Neu-
druck. 1818, 1952. In Vorbereitung . .

Flinfstellige Logarithmen. Mit mehreren f._,raphlschen
Rechentafeln und haufig vorkommenden Zahlwerten.
Von A. Adler. 2. Aufl. Neudruck. Mit 1 Tafel. 127 S. 1949

Einflihrung in die Zahlentheorie. Von A. Scholz. 2. Aufl.
136S. In Vorbereitung . . . . . . . . . . . . ..

Arithmetik. Von P. B. Fischer. 2. Aufl. Neudruck. Mit
19 Abb. 1528. 1951. In Vorbereltung

Héhere Algebra. Von H. Hasse. Lmeare Glelchungen
3 verbess. Aufl. 152 S. 1951 . .

o glelchungen hoheren Grades. 3 verbess. Aufl. 6 F1g
15

Determinanten Von P. B. Flscher 4. umgearb Aufl. Neu-
druck. 116 S. 1952 . .

Gruppentheorie. Von L. Baumgartner 2. Aufl, Mit 6 Fig

15 8. 1949 .

Aufgabensammlung zur hoheren Algebra. ‘Von H. Hasse
und W. Klobe. 2., vermehrte u. verbesserte Aufl. 1952,

Mengenlehre. Von E. Kamke. 3. Aufl. Mit 6 Fig. 160 S.
1952. In Vorbereitnug . .

Elemente der Funktlonentheorie. Von K Knopp 3. Aufl,
Mit 23 Fig. 144 S. 1949

Funktionentheorie. Von K Kno 1 Grundlagen der
allgemeinen Theorie der analytischen Funktxon 7. Aufl.
Mit 8 Fig. 1398. 1949 . . .
Il.: Anwendungen und Welterfuhung ‘der allgememen
Theone 7. Aufl, Mit 7 Fig. 130S. 1949 .

Aufgabensammiung zur Funktionentheorle. Von K. Kno
{35Asuf°aben zur elementaren Funktionentheorie. 4. Aufl
II.: Aufgaben zur hoheren Funktionentheorie. 4. Aufl.
151 8. 1949 . .

Bd.
Bd.

Bd.

Bd.

Bd.
Bd.
Bd.
Bd.
Bd.
Bd.
Bd.
Bd.
Bd.
Bd.

Bd.
Bd.

Bd.
Bd.

226
51

1110

81

423
1131
47
931
932
402
837
1082
999
1109

668
703

878



Gewdhnliche Differentialgleichungen. Von G. Hohelsel
4, neubearbeitete Aufl. 129 S. 1951
Partielle Differentialgleichungen. Von G. Hoheisel. 3 neu-
bearb. Aufl. 130 8. 1952. In Vorbereitung . . Bd.
Auffabensammlung zu den gewdhnlichen und partlellen
fferentlalgleichungen. Von G. Hoheisel. 2., umgearb.
Aufl. 1952. Erscheint demnéchst . . Bd.
Differentialrechnung. Von A. Witting. 3 neubearb. Aufl.
Durchgesehener Neudruck. Mit 95 Fxg und 200 Bei-
spielen. 201 S. 1949 . . . . Bd.
Repetitorium und Aufgabensammlung zur Differential-
rechnung. Von;A. Witting. 2. Aufl, Neudruck. 122 S.
1949 . . v v v e . . . . Bd.
Integralrechnung Von A. Wlttmg 2 verbesserte Aufl.
Durchgesehener Neudruck. Mit 62 Flg und 190 Bei-

spielen. 176 S. 1949 ., . . Bd.
Repetitorium und Auigabensammlung zur lntegralrechnung

Von A. Witting. 2. Aufl, Neudruck. 121 S. 1949 Bd.
Eintiihrung in die konforme Abbildung. Von L. Bieberbach.

4. Aufl, Mit 42 Zeichnungen. 147 S. 1949 . . Bd.

Darstellende Geometrie. Von R. Haussner. 1. Teil: Ele-
mente, ebenflichige Gebilde. 6., unverianderte Aufl. Mit

f 110 Flg 207 8. 1947 . . Bd.
2. Teil: Perspektive ebener Gebllde Kegelschmtte 5.,
unveranderte Aufl. Mit 88 Fig. 168 5. 9417 . . Bd.

S lung von Aufgaben und Beisplelen zur analytischen
Geometrie der Ebene. Von R. Haussner Neudruck. Mit
22 Fig. 139 8. 1949 . . Bd.

Ebene und sphirische Trlgonometrie "Von G. Hessenberg
4, Aufl., Neudruck. 1952. In Vorbereitung . Bd.

Nichteuklidische Geometrie. Hyperbolische Geometrie der
Ebene. Von R. Baldus. 3.,verbess. Aufl. durchges. von
F.Lobell. Mit 70 Fig. 140 S. 1952. In Vorbereitung . Bd.

Vermessungskunde. Von P.Werkmeister. I.: Stiickmessung

und Nivellieren. 9. Aufl. Mit 145 Fig. 172 S. 1049 Bd.
11.: Messung von Horizontalwinkeln. Festlegung von

. Punkten im Koordinatensystem. Absteckungen. 7. Aufl.

Mit 63 Fig. 151 S. 1949 . . Bd.
111.: Trigonometrische und barometnscheHohenmessung
Tachymetrie und Topographie 6. Aufl. Mit 64 Flg

147 S. 1951. 1949. Bd.
Vektoranalysis. Von S Valentmer '1 wesenthch ver- ’
dnderte Aufl. Mit 19 Fig. 138 S. 1950 . . . . .. . . Bd.

Physik | Chemie | Aligemeine, anorganische, organische
experimentelle Chemie | Elektrochemie | Technologie

Physikalische Formelsammlung. Von G. u. K. Mahler. 8.,
verbesserte Aufl. Mit 69 Fig. 153 S. 1950. Erscheint
demnidchst . .. .. .. ... . .. .« . . Bd.

Physikalische Aufgabensammlung Von G. u. K. Mahler,

Mit den Ergebnissen. 7., verbess. Aufl. 127 S. 1952. Er-

scheint demnéchst . Bd.
DlHerentlalglelchungen der Physik Von E. Sauter. 2. Aufl.
Mit 16 Fig. 148 S. 1950 Bd.

Elnﬁihrungln dle Krlstalloptlk Von E. Buchwald. 4 , ver-
bess. Aufl. Mit 121 Fig. 138 S. 1952. Erscheint dem-
péchst, . . . . . . .. .. .. ... ... ... Bd

920
1003

1059
87
146

88
147
768

142
143

256

99
970
468

469

862
354

und

136

243
1070

619



Pllavsllullsch-cmmische Rechénaufgaben. Von E. Asmus.

Aufl. 968. 1949 . . . . . . .. Bd. 445
Vektoranalysis. Von S. Valentiner. 7., wesent!. verinderte
Aufl. Mit 19 Fig. 138 8. 1950 Bd. 354

Geschichte der Chemie. Von G. Lockemann. Bd. I: Vom
© Altertum bis zur Entdeckung des Sauerstoffs. Mit 8 Bild-
- nissen. 142 S. 1950 Bd. 264
Allgemelne und physlkallsche Chemie. Von 'W. Schuize,

I. Teil: 3., durchgesehene Aufl. Mit 22 Fig. 146 S. 1949 Bd. 71
1. Teil 3. , durchgesehene Aufl. Mit36 Fig. 160S. 1949 Bd. 698

Physlkallsch—Chemische Rechenaufgaben. Von E. Asmus,

2. Aufl. 96 S. 1949 Bd. 445
Anor anische Chemie. Von W. Klemm. 6. Aufl. Mit

bb. 184 S. 1944 . Bd. 37
Thermochemle. Von W. A, Roth 3. Aufl. Mit 16 Flg Mit

16 Fig. 109 S. 1952. In Vorbereitung . . . Bd. 1057

Stéchiometrische Aufgabensammiung. Mit den Ergebmssen
Von W. Bahrdt und R. Scheer. 5., verbess. Aufl. Mit

120 8. 1952. Erscheint demnichst . . . . . Bd. 452
Organische Chemie. Von W. Schlenk. 5., verbess. Auﬂ Mnt

17 Fig. 239 S. 1949 . Bd. 38
Analytische Chemie. Von J Hoppe Reaktlonen 5

verbesserte Aufl. 135 S. 1950 . . Bd. 247

I1.: Gang der quahtatlven Analyse 5 verbesserte Aufl.

168 S. 1850 . . Bd. 248

Elektrochemie und lhre physlkalisch-chemischen Grund-
lagen. Von A. Dassler. Bd. I: Mit 21 Abb. 149 S. 1950 Bd. 252
Bd. IT: Mit 17 Abb. 178 S. 1950 . . Bd. 253
Warenkunde. Von K. Hassak und E. Beutel. 7. Auflage
. neu bearbeitet von A. Kutzelnigg. Bd. I. Anorganische
'Waren sowie Kohle und Erdsl. Mit 19 Fig. 116 S. 1947 Bd. 222
‘Bd. II. Organische Waren. Mit 32 Fig. 143 S. 1949 Bd. 223

Die Fette und Ole. Von K. Braun. 5. vollstandig neubearb.
und verbess. Aufl. von Th. Klug. 1458. 1950 . . . . . Bd. 335
Naturwissenschaften | Biologie /| Botanik | Zoologie
Land- und Forstwirtschaft
Hormone. Von G Koller 2. Aufl. Mit 60 Abb.und 19 Tab.

187 S. 1949 . . . Bd. 1141
Geschlecht und  Geschlechtsbesti "im  Tier- und

Ptlanzenreich. Von M. Hartmann. 2. Aufl. Mit 62 Abb.

155 S. 1951. In Vorbereitung . . . . . Bd. 1127
Fortpflanzung im Tier- und Pflanzenreich. Von J Hammer- :

ling. 2., erganzte Aufl. Mit 101 Abb. 135 S. 1951 . . Bd. 1138
GrundriB der all i Mikrobiologle. Von W. Schwartz

Bd. I: Mit 17 Abb. 104 S. 1949 . . . Bd. 1155

Bd. II: Mit 12Abb. 93 S. 1949. . . . . Bd. 1157

Symbiose der Tiere mit pflanzlichen Mikroorganismen Von
P. Buchner. 2., verbesserte und vermehrte Aufl. Mit

121 Abb. 130 S. 1949 . . Bd. 1128
Entwicklungsgeschichte des Pﬂanzenrelches Von H. Heil.
2. Aufl. Mit 94 Abb. und 1 Tab. 138 S. 1950 Bd. 1137

Morphologie der Pflanzen. Von L. Geitler. 3. Auﬂ 1951 Bd. 141

Pllanzenziichtung. Von H. Kuckuck 2., durchges. Aufl.
Mit 12 Abb. 125 S. 1944 . e . e . . . . Bd.1134



Die Laubhélzer. Von W. Neger und E. Miinch. 3., durch-
- gesehene Aufl., herausgegeben von B. Huber. Mit 63 Fig.

und 7 Tab. 142 S. 1950 . . . . . . . . . . . Bd.

Vergleichende Physiologie der "Tiere. . Von K. Herfer.
1. Stoff- und Energiewechsel. 3. Aufl. Mit 64 Abb.

155 8. 1950 . . .. . ... Bd

11, Bewegung und Relzerschemungen 3. Aufl. Mit

110 Abb. 148 8. 1950 Bd.

Kulturtechnische Bodenverbesserungen Von 0. Fauser
: Allgemeines, Entwisserung, 4., neubearbeitete Aufl.

Mit 47 Abb. 122 S. 1947 . Bd.

II.: Bewdsserung, Odlandkultur Umlegung 4 " neu-

bearbeltete Aufl. Mit 67 Abb. 150 S. 1948 . .o Bd.

Geologie /| Mineralogie | Kristallographie

Geologie. Von H. Cloos. 3. Aufl. 77 Abb. 144 S. 1951 Bd.

Mineralogie. Von R. Brauns und K. F. Chudoba. 8., neu-
bearbeitete Aufl. Mit 125 Textflguren und 9 Abb. auf

einer Tafel. 143 S. 1943 . . . Bd.

Petrographie. Von W. Bruhns u. P Ramdohr 3 durch-

gesehene Aufl. Mit 10 Figuren. 117 S, 1949 . Bd.

Krllstazllographle Von W, BruhnsundP Ramdohr. 4 Aufl
5.

Einftihrung lndlel(rlstallopt\k VonE Buchwald 4 verb
Aufl, Mit 121 Fig. 138 S. 1952, Erscheint demnachst . Bd.

Lotrohrproblerkunde. Mineraldiagnose mit Létrohr und
Tupfelreaktion. Von M. Henglem 3., verbesserte Aufl.

Mit 11 Fig. 91 8. 1949 . . . Bd.

Ingenieurwissenschaften

Allgemeines /| Maschinenbau | Hoch- und Tiefbau
Elektrotechnik | Wasserbau
Technische Tabellen und Formeln. Von W. Miiller. 4., tiber-

arbeitete Aufl. Von E. Schulze. Mit 105 Fig. 152 8. 1951 Bd.

Dynamik. Von W. Miiller. 1.: Dynamik des Einzelkorpers.
2., verbesserte Aufl. Mit 70 Fig. 160 S. 1952. In Vor-

bereltung - Bd.
: Systeme von starren Korpem 2  verbess. Aufl. Mit
41 Flg 102 Seiten. 1952. In Vorbereltung .. . . .. Bd

Technlsche Thermodynamik. Von W. Nusselt.

Grundlagen 3., verb. Aufl. Mit71 Abb. 144 S. 1950 Bd.

II Theorie der Warmekraftmaschinen. Neudruck. Mit

87 Abb und 32 Zahlentafeln. 144 S, 1951 . . . . . Bd.

Festlgkeitslehre Von W. Gehler und W. Herberg.
Elastizitat, Plastizitat und Festigkeit der Baustoffe
und Bauteile. Durchgesehen und erweit. Neudruck. Mit

118 Bildern. 159 S. 1952. Erscheint demnichst . . . . Bd.

Metallkunde. Von H. Borchers. I.: Aufbau der Metalle und
Il_,gg(l)erungen Mit 2 Tab. und 90 Abb. 2. Aufl. 110 S.

11. Elgenschaften, Grundzuge dcr Form und Lustands-

Bd.

Bd.
gebung. Mit 8 Tab., 100 Abb. 2. Aufl. 154 S. 1951 Bd.

718

972
973

692

13

29
173
210
619

483

579
902
903

1084
1151

432
433



Getriebelehre. Von P. Grodzinski u. H. Polster. I.: Geo-
metrische Grundlagen. 2. Aufl. Mit 127 Fig. 1952. In
Vorbereitung . .

Die Maschinenelemente. Von E. vom Ende. 2., verbesserte
Aufl. Mit 173 Fig. und 12 Taf. 159 S. 1950 .

Das Maschinenzeichnen mit Einflihrung in das Kon-
struleren. Von W. Tochtermann.

I.: Das Maschinenzeichnen. 4. Aufl. Mit 77Taf. 156 S. 1950
II.: Ausgefiihrte Konstruktionsbeispiele. 4. Aufl. Mit
58 Taf. 130 S. 1950 . .

Die Dampfkessel und Feuerungen "einschlieBlich Hilseln-
richtungen in Theorie, Konstruktion und Berechnung.
Von W. Marcard. 2. Aufl., neubearbeitet von K. Beck.
1.: Die theoretischen Grundlagen. Wiarme, Verbrennung,
Wﬁrmeﬁbertragung. Mit 42 Abb. u. 16 Tab. 150 8. 1951
I1.: Dampfkessel. Mit 53 Abb. 147 §. 1952, In Vor-
bereltung e e e e e e e e s e e e

GieBereitechnik. Von H Jungbluth I Tell ElsenzleBerel
Mit 44 Abb. 126 S.

Autogenes Schweifien und Schneiden. Von H. Niese. 5. Auﬂ
neubearb, von A. Kiichler. Mit 71 Fig. 136 S. 1052,
In Vorbereitung . . . . . .. ... ... ..

Die wichtigsten Baustoffe des Hoch- und Tiefbaues. "Von
0. Graf. 3., verbesserte Aufl. Mit 58 Abb. 136 S. 1947

Baustoffverarbeltung und Baustellenpriifung des Betons.
Von A. Kleinlogel. 2.,neubearb. u. erweiterte Aufl. Mit
35 Abb. 126 S. 1951 .

Fenster, Tliren, Tore aus Holz und Eisen. Von W. chkop
3., liberarb. und erganzte Aufl. Mit 96 Abb. 154 8. 1949

Helzung und Liiftung. Von J. und W. Korting. I.: Das
Wesen und die Berechnung der Heizungs- und Liiftungs-
anlagen. 8., neubearb. Aufl. Mit 29 Abb.und 18 Zahlen-
tafeln. 140'S. 1951 .

I1.: Die Ausfithrung der Helzungs- u. Luftungsanlagen
8. Aufl. 1952. In Vorbereitung . . . . . .. ... ..

Die Gleichstrommaschine. Von K Humburg
I. Durchgesehener Neudruck. Mit 59 Abb. 102 S. 1949
I1. Durchgesehener Neudruck. Mit 38 Abb. 98 S. 1949

Die synchrone Maschine. Von K. Humburg. Neudruck. Mit
78 Bildern. 109 S. 1951

Transformatoren. Von W. Schafer 2. Aufl, Mit 74 Abb.
128 S. 1949 .

Die komplexe Berechnung von Wechselstromschaltungen.
Von H. H. Meinke. Mit 114 Abb. 160 S. 1949

Theoretische Grundiagen zur Berechnung der Schaltgerate.
Von F. Kesselring. 3. Aufl. Mit 92 Abb. 144 S. 1950 .

Elektromotorische Antriebe. (Grundlagen fiir die Berech-
nung.) Von A. Schwaiger. 3.,neubearb. Aufl. Mit34 Abb.
95 S, 1952. In Vorberentung .

Uberspannungen und ﬁberspannungsschutz. Von G Fruhauf
Durchges. Neudruck. Mit 98 Abb. 122 8. 1950 .

Verkehrswasserbau. Von H, Dehnert. 1.: Entwurfsgrund-
lagen, FluBregelungen. Mit 52 Textabb. 103 S. 1950
I1.: FIuBkanallsnerunaen und Schiffahrtskandle. Mit
60Textabb94s
I11.: Schleusen und Hebewerke " Mit 70 Textabb. 98 S.
1950 . . .

Wehr- und Stauanlagen. Von H Dehnert Mit 90 Abb.
Etwa 136 S. 1952. In Vorbereitung . . . . . ... ..

Bd.

Bd.

Bd.
Bd.

Bd.
Bd.

Bd.

Bd.
Bd.

Bd.
Bd.

Bd.

Bd.

Bd.
Bd.

Bd.
Bd.
Bd.
Bd.

Bd.
Bd.
Bd.
Bd.
Bd.

1061

589
590

521

1159

499
984

970
1092

342
343

257
881

1146
952
1156

827
1132
585
597
1152

965



Geisteswissenschaften

Philosophie | Psychologie
Eiigghnmg in die Philosophie. Von H. Leisegang. 145 8.

Hauptprobleme der Phllosophle. Von G.Simmel. 7 un-
verdnderte Auflage. 177 S. 1950 .

Erkenntnistheorie. 1. Allgemeine Grundlegung Von ‘G.
Kropp. 1438, 1950 . . . . . . . v v v v v v o

Die geistige Situation der “Zeit. (1931) Von K. Jaspers.
2., unveranderter Abdruck der im Sommer 1932 bear-
beiteten 5. Aufl, 232 S. 1049. . . . . . o v o v v ..

Philosophisches Worterbuch. Von M. Apel. 3., neubearb.
Aufl. 260 S. 1950

Therapeutische Psychologle. (Freud Adler Jung) Von W.
M. Kranefeldt. 2. Aufl. 152 S. 1950

Religionswissenschaﬂen

Jesus. Von M. Dibelius. 2. Aufl. Neudruck. 141 S, 1949,
Paulus Von M, Dibelius. Hrsg und zu Ende gefuhrt von
W. G. Kiimmel. 155 S. 1951 , .

Musik / Kunst

“,; m tische Modulation. Von R. Hernried. 2. Aufl. 136 S.

1950 . . . . L L e e e e e e e e e e e

Der Polyphone Satz. 1. ‘Der cantus-firmus-Satz. Von
E. Pegping 2. Aufl. 2238, 1950 . . . . . . ..

les'geg nik des Klavierspiels. Von K. Schubert. 2. Aufl.

Dle Musik des 19. Jahrhunderts. Von W. Oehlmann. 180 S.
1952, In Vorbereitung . . . . . .

Stilkunde. I. Vorzeit, Antike, Mittelalter. Von H. Welgert
2. Aufl. Mit 94 Abb. 136 S. 1952, In Vorbereitung . .
"I1. Spatmittelalter und Neuzeit. 2. Aufl. Mit 84 Abb.
147 S. 1952. In Vorbereitung e

Geschichite

Allgemeines | Vor- und Friihgeschichte | Alfertum,
Mittelalter und Neuzeit /| Kullurgeschichte

Einfiihrung in die Geschichtswissenschaft. Von P. Kirn.
2. Aufl, 121 S, 1952. Erscheint demnachst . . .

Kultur der Urzeit. Bd. I: Die vormetallischen Kulturen
(Die Steinzeiten Europas. Gleichartige Kulturen in
anderen Erdteilen.) Von F. Behn. 4. Aufl. Mit 48 Abb.
172 S. 1950 . .
Bd. II: Die alteren Metallkulturen. (Der Beginn der
Metallbenutzung. Kupfer- und Bronzezeit in Europa,
ix35g)rient und Amerika.) 4. Aufl. Mit 67 Abb. 160 S.
Bd. I1I: Die jiingeren Metallkulturen. (Das Eisen als
Kulturmetall. Hallstatt- und Laténe-Kultur in Europa.
Das erste Auftreten des Eisens in den anderen Welt-
teilen.) 4. Aufl. Mit 60 Abb. 149 S. 1950 e e

Vorgeschichte Europas. Von F. Behn. 7. Aufl. "Mit 47 Abb.
125 8. 1949 . . . . .

Bd.
Bd.
Bd.

Bd.
Bd.
Bd.

Bd.
Bd.

Bd.
Bd.
Bd.
Bd.
Bd.
Bd.

Bd.

Bd.

Bd.
Bd.

281
500
807

1000
1031
1034

1130
1160

1094
1148
1045
170
80
781

270

564

565

566
42



,Unr- und Priihzeit der Mittelmeeriinder. 1. Das dstliche
Mittelmeer. Von J. Wiesner. Mit einer Textabb. und

‘7Tafeln17781943.
II. Das westliche Mittelmeer. Mit 3 Textabb. und
7 Tafeln. 129 S. 1943

Romische Geschichte. 1. Tell Bls zur Schlacht bei Pydna
Von F, Altheim. 123 §, 1948
I1. Teil: Bis zur Begrundung des Prmzlpats ‘141 8. 1948

Zeitrect der romisch zeit, des Mittelalters und
der Neuzeif. Fiir die Jahre1—2000n Chr. Von H. Lietz-
mann. 2. Aufl. besorgt d. A. Hofmeister. 126 S. 1952.
In Vorbereitung . .

Quellenkunde der deufschen Geschichte im  Mittelalter.
(Bis zur Mitte des 15. Jahrh.) I. Einleitung. Allgemeiner
Teil. Die Zeit der Karolinger. Von K. Jacob. 5. Auftl.
118 8. 1949 . . . . . . . . Lo e e e e
I1. Die Kalserzelt (911—1250) 4. Aufl. 127, 1949 . |
111, Das Spatmittelalter (vom Interre Kgnum bis 1500).
Unter Verwendung des Nachlasses von K. Jacob. Heraus-
gegeben von F.Weden. 152 S, 1952. Erscheint demnéchst

Von den Karolingern zu den Staufern. Die altdeutsche
Kaiserzeit (900—1250). Von J. Haller. 3. Aufl. Mit
4 Karten. 141 S. 1944 .

Deutsche Geschichte im Zeitalter der Reformation, der
Gegenreformation und des 30 jidhrigen Krieges. Von
F.Hartung. 129 8. 1951 . . . . . . . . . . . . ..

Geschichte Englands. Teil I: bis 1815. Von H. Preller.
3., stark umgearbeitete Auflage. Mit 2 Karten. 135 S.
1952. In Vorbereitung . . e

Geschichte der Mathematik. 1. Von den Anfé’mgen bis zum
Auftreten von Fermat und Descartes. Von J. E. Hof-
mann. 199 S§. 1952, In Vorbereitung . . .

Geschichte der Chemie. Bd. I: Vom Altertum bis zur Ent-
deckungdesSauerstoffs Von G. Lockemann. MltBBxld-
nissen. 142 S, 1950 .

Bd.
Bd.

Bd.
Bd.

Bd.

Bd.
Bd.

Bd.

Bd.

Bd.

Bd.

Bd.

Bd.

Sprach- und Literaturwissenschaft

Indogermanisch | Germanisch

lndogermanischeSprachwissenschaft Von H. Krahe 2. Aufl.
134 S. 1948

Sanskrit-Grammatik. Von M. Mayrhofer 89 ‘s 152
in Vorbereitung .

Germanische Sprachwnssenschaﬂ Bd. 1: Emleltung und
Lautlehre. Von H. Krahe. 2. Aufl. 127 S. 1948 .
Bd. I1: Formenlehre. 2. Aufl. 140 S. 1948

Altnordisches Elementarbuch. Schrifttum, Spraéhe, Texte ®

mit Ubersetzung und Worterbuch. Von F. Ranke. 2.,
- durchgesehene Aufl. 146 ' S. 1949 . e e e e e

Deutsche Sprache und Literatur

Deutsche Wortkunde. Eine kulturgeschichtliche Betrach-

* tung des deutschen Wortschatzes. Von A, Schirmer.
3. Aufl. 109 S.1949 .

Deutsches Dichten und Dénken von der germanlschen bis
zur staufischen Zelt. (Deutsche Literaturgeschichte vom
5. bis 13. Jhdt.) Von H. Naumann. 2., verbess. Aufl
166 S. 1952. Erscheint demnichst. . .

Bd.

Bd.

Bd.
Bd.

Bd.

Bd.

Bd

1149
1150

19
677
1085

279
280

284
1065
1105

375

226

264

59
1158

238
780

1115

929

. 1121



Der Nibelunge N6t. 'In Auswahl mit kurzem Waorterbuch.

Von K, Langosch. 9., umgearbeitete Aufl. 163 S. 1952.

In Vorbereitung . . . Bd. 1
Deutsches Dichten und Denken vom Mittelalter zur Neuzeit,

(1270—1700.) Von G. Miiller. 2. Aufl. 159 S. 1949 Bd. 1086
Deutsches Dichten und Denken von der Aufklarung bis zum

Realismus. (1700—1890 ) Von K Vlétor 2. Aufl. 156 S.

1949 . . . . Bd.1096

Englische Sprache | Romanische Sprache und Literatur

Altenglisches Elementarbuch., Einfiihrung, Grammatik.

Texte mit Ubersetzung und Worterbuch. Von M. Leh-

nert, 2., verbesserte und vermehrte Aufl. 176 S. 1950 Bd. 1125
Beowuif. Eine Auswahl mit Einfithrung, teilweiser Uber~

setzung, - Anmerkungen und etymologischem Worter-

buch. Von M. Lehnert. 2., verbesserte Aufl. 135 S. 1949 Bd. 1135
Italienische Literaturgeschichte. Von K, VoBler. Unver-

#nderter Nachdruck der 1927 erschienenen 4., durch-

gesehenen und verbesserten Aufl. 148 8. 1948 . . . Bd. 125

Griechisch | Lateinisch

Geschichte der griechischen Sprache. I. Bis zum Ausgang
der klassischen Zeit. Von O. Hoffmann. 3., stark um-
gearbeitete Aufl. von A. Debrunner. 144 S. 1952, In
Vorbereitung . . ... o .. .. Bd. o111
Geschichte der griechischen Literatur. 1. Von den An-
fangen bis auf Alexander d. Gr. Von W. Nestle. 2., ver-

besserte Aufl. Neudruck. 148 S§. 1950 . . Bd. 170
11. Von Alexander d. Gr. bis zum Ausgang ‘der Antike.
2., verbesserte Aufl, 128 8. 1945 . Bd. 557

Geschichte der lateinischen Sprache. Von F. Stolz. 3 stark
umgearbeitete Aufl. von A, Debrunner. 136 S, 1952.
In Vorbereitung . . . . . . . . . . . .. .. ... Bd 492

Orientalia | Russisch

Sanskrit-Grammatik. Von M. Mayrhofer. 89 §. 1952. In
Vorbereitung . W e e e s e s v w44 . .. . Bd.1158

Hebrilsche Grammatik. 1. Band: Schrift-, Laut- und
Formenlehre I. Von G. Beer. 2., villig umgearb. Aufl.

von R. Meyer. 157 8. 1952. In Vorbereitung . . . Bd. 763
Russische Grammatik. Von E. Berneker und M. Vasmer.
6., unveranderte Aufl. 1556 S. 1947 . . . . Bd. 66

Erd- und Linderkunde
Kartenkunde. Von M. Eckert-Greifendorff. Durchgesehen

von W. Kleffner. 3. Aufl. Mit 63 Abb. 149 S. 1950 Bd. 30
Australien und Ozeanien. Von H.-J. Krug Mit 46 Skizzen.
176 S. 1952. In Vorbereitung . . . . . Bd. 319

Wirtschaftswissenschaften | Gesellschaftskunde

Allgemeine Betriebswirtschaftslehre. Von K. Mellerowicz.
3 Bde.: 7. Aufl. 1952. In Vorbereitung. . . Bd. 1008, 1153, 1154

Sozlologle. Geschichte und Hauptprobleme. Von L. anese
4, Aufl. 1518.1950. . . . .. ... .. .+ . ... Bd.o101
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