Contents

Introduction — 1

1	And the word was life —— 4				
1.1	What is life? —— 4				
1.2	The emergence of biology —— 5				
1.2.1	Motion, finalism, and self-essentiality: Aristotle —— 5				
1.2.2	Causative science: Francis Bacon — 6				
1.3	Life is what is happening —— 8				
1.3.1	The cell and the organism —— 8				
1.3.2	Inheritable instructions —— 9				
1.3.3	Wholeness and the development of organisms —— 10				
1.3.4	Hierarchical structure of life —— 11				
1.4	Toward the physics laws of life —— 13				
1.5	Schrödinger's theory of life —— 14				
1.5.1	Energy and information —— 15				
1.5.2	Negative entropy —— 16				
1.6	Life is simply what biologists' study —— 18				
1.6.1	Species —— 18				
1.6.2	The primary classifications of life —— 20				
1.6.3	Symbiotic hypothesis of the emergence of eukaryotic life —— 21				
1.6.4	The variety —— 22				
1.6.5	The outsiders —— 23				
1.7	Models and model organisms —— 24				
1.7.1	Generalizations and abstractions —— 24				
1.7.2	Helpful abstractions —— 25				
2	Energetics of living —— 29				
2.1	Special features of living systems — 29				
2.1.1	Open systems and equilibrium —— 29				
2.1.2	A bubble of life: the role of compartments —— 30				
2.2	Gibbs free energy — 32				
2.2.1	Free energy and the irreversibility of life processes — 32				
2.2.2	Gibbs free energy and coupling of processes —— 34				
2.3	The mechanisms that facilitate chemical processes in living				
	systems — 37				
2.3.1	Enzymes and catalytic cycles — 37				
2.3.2	Compartmentalization — 42				
2.4	Energy for living — 44				
2.4.1	Heat: the amount of heat produced by an organism and McCulloch's				
	concept —— 44				

2.4.2	Hidden energy —— 44		
2.4.3	Electrical forces: step by step —— 45		
2.4.4	Electron transfer at the molecular level —— 48		
2.5	Freed energy capture and storage —— 48		
2.5.1	How can the electrical energy be captured? —— 48		
2.5.2	The chemiosmotic hypothesis —— 49		
2.5.3	How can the energy of the proton gradient be utilized? —— 50		
2.5.4	ATP synthase —— 52		
2.5.5	Regulating the flow —— 55		
2.5.6	ATP balance —— 56		
2.5.7	Oxidative phosphorylation is not the only way to generate ATP, but it		
	is the most efficient —— 57		
2.6	How is stored energy used? —— 58		
2.7	Light energy and the origin of organic hydrogen in biological		
	systems —— 60		
2.8	Ecological aspects of respiration —— 62		
3	Structures: "order from order" —— 71		
3.1	System —— 71		
3.2	Aperiodic crystal: order from order —— 73		
3.2.1	From gene to protein: the consistency of information transfer —— 73		
3.2.2	The code —— 75		
3.2.3	Protein translation —— 77		
3.2.4	Regulation of information flow —— 80		
3.3	"Islands in the stream" or dynamical aspects of protein folding —— 82		
3.4	From molecular asymmetry to cell movement —— 85		
3.4.1	Asymmetry at molecular level —— 85		
3.4.2	Cytoskeleton components —— 86		
3.4.3	Cytoskeleton in action: Brownian ratchet —— 88		
3.4.4	Cytoskeleton in action: molecular motors —— 90		
3.4.5	Chemo-mechanical energy transduction and cooperativity —— 92		
3.5	Structure and function —— 93		
3.5.1	Actomyosin and contraction —— 93		
3.5.2	Tubulin and the cell shape —— 95		
3.5.3 Cytoskeleton and evolution —— 96			
3.6	Principle of structural coupling: structure as a catalyst —— 97		
4	Structures arising from fluctuations: "order from disorder" —— 103		
4.1	Stochastics and directionality —— 103		
4.2	Dissipative structures —— 104		
4.3	Nonlinearity and systems far from equilibrium —— 107		
4.4	Temporal dissipative structures —— 110		

4.5	Spatiotemporal dissipative structures —— 112					
4.5.1	Aggregation of <i>Dictyostelium discoideum</i> —— 112					
4.5.2	The Belousov-Zhabotinsky reaction —— 115					
4.6	Turing structures —— 119					
4.7	The theory of dissipative structures —— 125					
4.7.1	Ilya Prigogine's insights —— 125					
4.7.2	Function of dissipation and synergism of processes —— 126					
4.7.3	Order from order and disorder —— 127					
5	Balancing far from equilibrium: dynamics of life processes —— 133					
5.1	Theoretical basis —— 133					
5.1.1	General approach to the analysis of dynamical processes —— 133					
5.1.2	Visualizing trends toward stability —— 134					
5.1.3	Parametric regulation and a catastrophe theory —— 137					
5.2	Qualitative methods of analysis for systems of differential					
	equations —— 140					
5.2.1	The canonical model of Lotka-Volterra —— 140					
5.2.2	Types of steady states and phase portraits —— 143					
5.2.3						
5.2.4	Zones of stability —— 147					
5.2.5	Qualitative analysis of the canonical Lotka-Volterra model —— 149					
5.2.6	Limit cycle and the Anna Karenina principle —— 152					
5.2.7	Limit cycle and sustainability of the BZ reaction —— 154					
5.3	Thermodynamics of the transition between steady states —— 155					
5.4	Qualitative analysis of a spatially distributed dynamical system —— 158					
5.5	Stochastic processes —— 161					
6	Triggers and dynamical switches —— 167					
6.1	Bistability —— 167					
6.1.1	The concept of bistability —— 167					
6.1.2	Bistability in antagonistic interactions: one winner —— 169					
6.1.3	Cell heterogeneity as a trigger of structural instability —— 170					
6.2	Functional triggers —— 172					
6.2.1	Actomyosin machine and bistability —— 172					
6.2.2	Regulatory switches at the level of transcription: the Jacob and					
	Monod model —— 173					
6.3	Dynamic regulation and triggering properties of enzymatic					
	systems —— 177					
6.3.1	Cooperative dynamics —— 177					
6.3.2	Lessons from hemoglobin —— 180					
6.3.3	Substrate transport as part of enzymatic dynamics —— 183					
6.4	When a system oscillates —— 187					

6.5	Cell cycle: triggers and oscillations —— 194
6.5.1	What is the cell cycle? —— 194
6.5.2	The simplest (yet not simple) models of the eukaryotic cell cycle —— 198
6.5.3	John Tyson's model —— 200
6.5.4	The role of compartmentalization —— 203
6.6	General thoughts —— 204
7	Connectivity in biological systems —— 211
7.1	So, what does it take to be a living system? —— 211
7.2	Networks —— 212
7.3	Data and databases —— 214
7.4	Metabolic networks —— 216
7.4.1	Metabolic pathways —— 216
7.4.2	Metabolic fossils —— 219
7.4.3	Homeostatic biochemistry —— 224
7.5	Cell signaling —— 225
7.6	Protein interaction networks —— 227
7.6.1	Glycolysis in the net —— 227
7.6.2	Gene ontologies —— 228
7.6.3	Fishing for relevant functions —— 231
7.6.4	Integration of the data and predictability of the networks —— 234
7.7	Topological properties of biological networks —— 236
7.7.1	The quantitative characteristics of biological networks —— 236
7.7.2	Power law —— 238
7.7.3	Topological constraints —— 241
7.7.4	Evolution of connectivity and phase transitions —— 243
8	Multicellularity and organism development —— 250
8.1	Positional information —— 250
8.1.1	The concept of the morphogenetic gradient —— 250
8.1.2	The mechanisms —— 254
8.2	Morphogenic gradient and scaling —— 256
8.2.1	Is there a blueprint? —— 256
8.2.2	Mathematical modeling of positioning and scaling —— 260
8.3	Cell movement during development —— 264
8.3.1	The conservative aspects of metazoan development —— 264
8.3.2	Gastrulation in the chick embryo —— 266
8.4	Micromechanics of development —— 269
8.5	Dictyostelium discoideum: modeling the simplest developmental
	process —— 271
8.6	Different organisms, common mechanisms —— 277
8.7	The coevolution of development and viable multicellularity —— 281

8.7.1	The closest relatives —— 282
8.7.2	What is missing? —— 283
8.7.3	The molecular aspects of diploidy and evolution of
	multicellularity —— 285
8.7.4	Exception that proves the rule —— 286
9	Evolution —— 293
9.1	General notes on natural selection —— 293
9.1.1	Variation —— 293
9.1.2	Natural selection —— 294
9.1.3	Modularity and homologous structures —— 295
9.1.4	Organism versus species: dualism —— 296
9.2	Evolution briefly: the already familiar model, Dictyostelium
	discoideum —— 299
9.2.1	Cellularity —— 299
9.2.2	One versus many —— 299
9.2.3	Colonies: between an organism and a population —— 303
9.3	Protein universe —— 304
9.3.1	Are we there yet? —— 304
9.3.2	Genomic landscape —— 307
9.4	Populations and species —— 309
9.4.1	Biosphere and ecosystems —— 309
9.4.2	From adaptive plasticity to functional specialization —— 310
9.5	Sexual selection —— 312
9.5.1	The choice and aesthetics —— 312
9.5.2	The role of the two sexes in the selective conservation of genomic
	information —— 315
9.5.3	Hidden qualities and social evolution —— 318
9.6	Evolution of evolution —— 319
9.6.1	Uneven pace of evolution —— 319
9.6.2	Evolutionary dynamics of DNA structure —— 320
9.7	Principles of evolution and the emergence of life —— 323
9.8	Information and evolution —— 327
9.8.1	Free energy, information, and evolution —— 327
9.8.2	The essentiality of the information —— 329
9.8.3	Crosstalk between micro- and macro-information —— 330
9.9	Consciousness and concluding remarks —— 331

References — 339

Index —— 363