
Axel Herold, Peter Meyer, and Frank Wiegand

4 Data Modelling

A huge pile of Lego bricks: a great deal of material that makes it possible to construct
numerous buildings. But what’s the best way to start? Do you pick out individual bricks
piece by piece in order to build a house? At the very latest, when you’re struggling to
find a red three for the third time, it might be worth thinking about whether you should
have sorted the bricks first. But what’s the best system to use? The reds in one box and
the blues in another; the same for the yellows and whites? Or is it better to sort all the
2 × 1s, 2 × 2s, and 2 × 3s together, irrespective of colour? Whichever organising system
you choose, after the bricks are sorted, you can “access” them in a more targeted way,
i.e. building becomes no trouble at all.

Fig. 4.1: Lego bricks.

Axel Herold, Berlin-Brandenburgische Akademie der Wissenschaften, Jägerstraße 22–23, 10117 Berlin,
Germany, e-mail: herold@bbaw.de
Peter Meyer, Leibniz-Institut für Deutsche Sprache, R5, 6–13, 68161 Mannheim, Germany,
e-mail: meyer@ids-mannheim.de
Frank Wiegand, Berlin-Brandenburgische Akademie der Wissenschaften, Jägerstraße 22–23, 10117
Berlin, Germany, e-mail: wiegand@bbaw.de

Note: The German version of 2016 on which this chapter is based was written by Axel Herold, Lothar Lem-
nitzer, and Peter Meyer.

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783111233758-005

mailto:herold@bbaw.de
mailto:meyer@ids-mannheim.de
mailto:wiegand@bbaw.de
https://doi.org/10.1515/9783111233758-005

4.1 Introduction

Data modelling is also concerned with sorting and structuring, but of data rather than
Lego bricks. In relation to lexicography, the task of data modelling is to structure the
lexicographic content so that the computer can grasp it in a targeted way. Translated
into the Lego example, it is possible to attach labels to the individually sorted Lego
boxes that enable a machine to grab all of the red bricks or all of the blue ones in a
targeted way, or – when sorted differently – to target only the 2 × 2 and 2 × 3 bricks.
This programming is considerably easier than developing a machine that automati-
cally distinguishes between the singles and doubles and can deliberately pick them
out. It is exactly the same with lexicographic data: here we can also proceed more
flexibly with the data when the content can be distinguished easily by a machine.

Just as different houses can be built out of the same Lego bricks, it is a normal
requirement nowadays to present the same lexicographic content in different ways,
e.g. in a print and an electronic dictionary. The prerequisite for this – and for so-
called advanced searches in digital dictionaries, where users are able to enter com-
plex combinations of search options (→ Chapter 5) – is appropriate data modelling.

In order to understand this process, we must first take a look at the different “le-
vels” that have to be taken into account in the production of a print or electronic dic-
tionary (→ Fig. 4.2 and → Chapter 3). The basis of any dictionary is, first and foremost,
a lexicographic database. Various product-related excerpts can be derived from this
database. A good example for this approach is the shared database called “Duden –

Wissensnetz deutsche Sprache” (Alexa 2011) that serves as the basis for the content of
various reference dictionaries on Standard High German where all of the dictionaries
are collectively known under the brand name Duden. The “Wissensnetz” database in-
cludes the data contained in the dictionaries on German orthography, loanwords and
synonyms, for example. To compile a dictionary, a specific excerpt is generated from
this database targeted for a specific output, such as the 148,000 headwords in Duden
1 – DIE DEUTSCHE RECHTSCHREIBUNG (DDRS) with the associated information on spelling
and grammar and brief explanations of meaning. Then, either a dictionary can be
printed from this output-specific database or an app can be developed for smart-
phones and tablets or an Internet dictionary. The data modelling is done at the level
of the database since all of the prerequisites for the following steps are created there.
Returning to the Lego analogy, the individual bricks can be found at the database
level. The finished outputs are located at the external presentational level, i.e. the
houses in the Lego example or the individual dictionaries when applied to lexicogra-
phy. The lexicographers work directly on the lexicographic database and the users
interact with and read the outputs.

It may be worth stressing at this point that the underlying lexicographic database
might not only include textual descriptions of linguistic phenomena. It might also store
information such as images or even short video sequences that are used in the descrip-
tion of meaning within entries. This is most obviously the case for dedicated picture dic-

98 Axel Herold, Peter Meyer, and Frank Wiegand

tionaries. Another common type of data stored in lexicographic databases are sound files
that capture the pronunciation of headwords and possibly other parts of the entries such
as related multi-word expressions or even citations. Thus, when we talk about lexico-
graphical data throughout this chapter, we take it to mean data in a very broad sense.

In order to be able to present the same lexicographic content in different ways, that con-
tent must be machine accessible in specific ways. The foundation for this is a suitable
data model. Just like with the Lego bricks, an ordering principle has to be chosen: is the
leading element the content of the information (e.g. whether it describes the word class
or meaning of a headword), or only the part of the entry to which it belongs (the general
information at the beginning of an entry or specifically a section on a particular mean-
ing), or a different aspect altogether? It is important to have clear guidelines: as with the
Lego bricks, choosing a new sorting system in the middle of the process is “expensive”.
For example, if we had already sorted half of the Lego bricks according to colour and
then decided we wanted to sort them according to size, then all of the work done so far
would have been in vain. It is no different when modelling data.

In this chapter, we will first discuss different data formats in which structured
content can be formally represented, explaining their respective advantages and dis-
advantages, and how suitable query languages can be used to retrieve information
from these data structures. The third section covers the core issues of data modelling –
how to describe the structure of specific lexicographical content, e.g. which “boxes”
the lexicographic content should be put in – both in abstract terms and with reference

Fig. 4.2: Levels in the lexicographic process.

4 Data Modelling 99

to the data structures introduced before. put in, including the associated advantages
and disadvantages. There are many lexicographic projects that face largely similar
challenges. For this reason, initiatives have been launched oriented towards develop-
ing standardised solutions for modelling lexicographic data, similar to a set of guide-
lines for sorting Lego bricks. We report on these in the fourth section.

4.2 Data structures and representation formats

In this chapter, we pick up on concepts, explanations, and examples from → Chapter 1
on the technical foundations of Internet dictionaries. The starting point now is how
the lexicographic information for a dictionary should be stored in a sensible way on a
server. Let us revisit the HTML code already discussed in → Chapter 1 used to create a
basic web page for a dictionary entry on the English lemma disproof, replicated here
for convenience.

<html>

<head>

<meta charset="utf-8">

<title>MyEnglishDict</title>

</head>

<body>

<h1>disproof</h1>

<p> [dIs'pru:f] <i>n.</i></p>

facts that disprove something

the act of disproving

<p><i>See also:</i>

disprove</p>

</body>

</html>

In our explanation of how web servers and web applications generally work in →
Chapter 1, we deliberately left out the central issue of where exactly the web applica-
tion obtains the HTML code for the relevant dictionary entry required by the user.
One obvious and straightforward answer would be to simply integrate the code for
the dictionary entry in the web application. A web application is a program that runs
on the web server and responds to requests from the client. As such, the following
instruction could, for example, be integrated into this program: “If the request reads
‘GET /entry/disproof’, then send the following HTML code back as the response:

100 Axel Herold, Peter Meyer, and Frank Wiegand

(see code as shown above)”. However, this is not a viable approach since any change
in the appearance of the web page for an entry would require a change in the code of
the computer program; this means that programming the web application and editing
lexicographic content would become inextricably intertwined.

In order to separate the storage of data for lexicographic information from the pro-
gramming and administration of the web application, an individual text file could,
quite simply, be deposited for each dictionary entry and named according to the rele-
vant lemma in a particular directory on the hard drive of the web server. Each text file
would then contain the HTML code of the relevant web page. In this scenario, when the
web application receives the request “GET /entry/[LEMMA]” (where [LEMMA] is a
placeholder for the required lemma), it searches in the aforementioned data folder for
a text file with the name [LEMMA].txt. If such a file is found, the program reads the
content of the text file (which is the HTML code for the entry’s web page) and sends it
as an HTTP(S) response to the web browser making the request. The obvious advantage
of this solution is that lexicographers can change or even delete the text files completely
independently of the programmers and deposit new text files as the dictionary is ex-
tended; the web application itself remains unaffected by these changes and can simply
continue to run since the program code contains no information at all about the content
of the web pages.

In this approach – or, typically, a more sophisticated variant using a database, for
example – the more “technical” aspects of compiling an Internet dictionary are some-
what decoupled from the more “content-related” aspects. However, the decoupling is
neither as complete nor as far reaching as necessary: the lexicographic data that are
made available to the program still consist of HTML code. Thus, these data are stored
from the beginning in a specific format for Internet dictionaries and determine the
appearance of individual dictionary entries. As such, lexicographers writing entries
for an Internet dictionary like this find themselves at the level of data presentation
from the beginning. Let us assume that the dictionary editors decide to make changes
to the presentation of an entry at a later date:
– “Information about the word class must sit right next to the lemma and be writ-

ten out in full, e.g. noun instead of n.”
– “Information on pronunciation should appear between |vertical slashes| rather

than between [square brackets].”
– . . .

In such a case, a simple change to some CSS code does not do the trick. All of the
HTML pages have to be altered manually or with the help of suitable programming,
even though the lexicographic content will not have changed at all. Therefore, what is
also required is a separation between the lexicographic data proper and the proper-
ties of data presentation: the text files for individual dictionary entries on the web
server should not contain any HTML code but rather just indicate the lexicographic
information in a data format that makes sense for the lexicographic work and that is

4 Data Modelling 101

abstracted as far as possible from the details of its final presentation. It is then the
task of the web application to translate this data format into suitable HTML code. If
the editors decide to make changes to the presentation of the entries at any point,
only the program code for that process of translation has to be changed; the original
data with the lexicographic information remain unchanged.

Yet what does a suitable format for representing lexicographic information look
like? Answering this question brings us to the problems of data modelling and the
data structures associated with it.

One obvious textual representation that is suited to machine processing is to sep-
arate the individual types of information from one another in a hierarchically struc-
tured form and to apply corresponding headings or “labels” to them. This can be done
in many different ways, as in this sketch of a possible approach:

entry (id: MED.disproof):

form:

spelling: disproof

pronunciation: dIs'pru:f

grammar:

part-of-speech: noun

senses:

sense (numbering: 1):

definition: facts that disprove something

sense (numbering: 2):

definition: the act of disproving

cross-reference (refid: MED.disprove): disprove

As we can see, the content structure of the entry is represented here in blocks that
are hierarchically nested inside one another and marked with “headings” and in-
dents. Each block contains either a series of further subordinated blocks (the senses
block contains two individual sense blocks and these each contain, in turn, a defini-
tion block) or simply text (the pronunciation block contains the text “dɪsˈpruːf”).
Some blocks have additional meta information that is recorded as what we will call
attributes in parentheses after the block name, instead of in its own subordinate
blocks. Thus, the whole block with the name entry is assigned the attribute id, here
with a value that is supposed to specify a uniquely identifying ID character string for
this particular entry; the block cross-reference contains the lemma of the referenced
entry and has an attribute refid, whose value is the ID of the entry that is being re-
ferred to. The sense blocks feature an additional attribute numbering that indicates
numbering labels such as “2.”, “2.c”, “(ii)”, or similar. Such an attribute could be useful
in the context of digitising a print dictionary. Note that the names of the blocks and
attributes can, in principle, be chosen arbitrarily; the hierarchical structure could
also have been designed in a different way. In our oversimplified example, it would

102 Axel Herold, Peter Meyer, and Frank Wiegand

have been possible, for instance, to just have the blocks named spelling, pronuncia-
tion, part of speech, definition, and cross-reference as pieces of information di-
rectly subordinate to entry. Even the textual order of the data could have been
different, one possible exception being the ordering of the sense blocks, which might
reflect a lexicographical assessment of the frequency, importance, or relatedness of
the senses. Finally, there is no logical necessity to introduce attributes as a separate
syntactic device for marking meta information; it would have been sufficient to use
ordinary blocks for that purpose. The particular way in which the data are structured
in our toy example actually foreshadows standard ways of modelling and digitally en-
coding lexicographical content, which are to be discussed in what follows.

4.2.1 XML documents

Formally, hierarchical structures of this type can be described as trees and, accord-
ingly, can be represented as tree diagrams, which do, in fact, look like a tree standing
on its head. Such trees consist of individual positions (nodes) connected by “arrows”
(edges) (→ Fig. 4.3).

The root node at the top of the “inverted” tree represents the entire structure, and
the child nodes linked with it by edges represent the blocks of the highest structural
level. From a formal and informatics perspective, trees are simple structures that are
easy to describe and process. They have been used for a long time in metalexicogra-
phy to systematically describe entry structures in print and digital dictionaries
(Kunze/Lemnitzer 2007: 77–93; cf. also Wiegand 1989). Every node in the tree – each
content block – has precisely one parent node – a block that contains it – with the
exception of the root node. Accordingly, trees can be stored in a simple way in a com-
puter in that each node is basically represented by referencing the storage addresses
for its child nodes, with the exception of “childless” nodes or leaves at the bottom of
the hierarchy, which are simply stored as text.

A very common way of encoding such tree structures in a textual form that is
both human and machine readable is XML (Extensible Markup Language), which is
strongly reminiscent of the HTML discussed in → Chapter 1 and which works “accor-
ding” to the same basic principles. The individual content blocks are each enclosed in
a start tag and a corresponding end tag and contain further “blocks”, formally known
in HTML and XML as elements, and/or plain text, that is, a sequence of characters,
especially letters and numbers. XML is syntactically more rigid than HTML: for exam-
ple, unlike HTML, elements always must have an end tag, even if they do not have
any content at all. While the “vocabulary”, i.e. the range of available element and at-
tribute names, and the “grammar”, i.e. the rules that govern where elements are al-
lowed to occur in the document, are mostly predefined in HTML, in XML all these
aspects can be defined individually for each concrete application – e.g. for encoding
entries in a particular dictionary – in a so-called schema.

4 Data Modelling 103

Fi
g.

4.
3:

Re
pr
es
en

ta
tio

n
of

th
e
m
ic
ro
st
ru
ct
ur
e
of

an
en

tr
y
as

a
tr
ee

di
ag

ra
m
.

104 Axel Herold, Peter Meyer, and Frank Wiegand

Represented in XML, the toy entry could appear as:

<?xml version="1.0" encoding="UTF-8"?>

<entry id="MED.disproof">

<form>

<spelling>disproof</spelling>

<pronunciation>dis'pru:f</pronunciation>

</form>

<grammar>

<part-of-speech>n</part-of-speech>

</grammar>

<senses>

<sense numbering="1">

<definition>facts that disprove something

</definition>

</sense>

<sense numbering="2">

<definition>the act of disproving</definition>

</sense>

</senses>

<cross-reference refid="MED.disprove">disprove</cross-

reference>

</entry>

The first line is the XML declaration, which has a special syntax and specifies the char-
acter encoding used. (For more about this concept and the somewhat similar docu-
ment type declaration in HTML, → Chapter 1) Just like with HTML, XML has the
concept of attributes. Attributes are typically used to describe information that is in
some sense descriptive of a specific element occurrence but is not regarded as part of
its content. However, there are no clear-cut rules when to use attributes and when to
use elements with text content. For example, the part of speech could also be coded as
an attribute.

If the XML-based representation shown above is to be used for a web application,
the application must contain program code capable of parsing, i.e. analysing the struc-
ture of this XML document and creating, in the simplest case, the HTML document
shown at the beginning of → Section 4.2. This code can take advantage of the fact that
the different types of lexicographic information in the XML document are each
marked up semantically with their own tags. A widely used technology for generating
other XML documents or HTML documents out of given XML documents is called an
XSL transformation. As a side note, the program code of XSL transformations, often
referred to as an XSLT stylesheet, is itself written using XML syntax. Using different
stylesheets, an XML document can be “translated” into HTML pages in completely dif-

4 Data Modelling 105

ferent ways, depending, for example, on the user’s preference, or, alternatively, into
other types of documents, such as a PDF file for printing. In the transformation pro-
cess, any information contained in the XML document can be omitted or reorganised;
in this way, the same XML document can be used to generate, for example, an over-
view presentation of the most important information as well as a complete, detailed
view of a dictionary entry.

4.2.2 Relational databases

Another form of representation for lexicographic data, and one that has been around
for much longer, are relational databases. By this, we mean a structured system of
data tables, somewhat comparable to the tables in spreadsheet software. These data
tables can be saved in an extremely efficient form on the hard drive of a server com-
puter and be read, altered, and managed with great speed by a program known as a
database management system (DBMS). Programs – e.g. web applications – that receive
information from a relational database or wish to modify it “call” the database man-
agement system using SQL, a specialised query and data manipulation language. The
database management system can run on the same computer as the web application
or on another server, usually connected via a fast internal computer network. It is not
possible here to go into the complex details of relational database technology; instead,
by virtue of the miniature entry used as a toy example above, we shall demonstrate
how dictionary entries can be described in a relational database. In order to keep the
example simple, we initially assume that all of the entries in the dictionary include
only one indication of pronunciation and, at most, one cross-reference to another
entry. Only the number of word senses will vary. Then, the main table of dictionary
entries might look as it does in → Table 4.1.

Since the number of word senses varies and, in theory, any number of meanings can
belong to any one dictionary entry (the so-called 1:n-relation), senses require their
own table, which contains the sense definitions and the numbering label but also, cru-
cially, the reference to the relevant entry. The references use the entry IDs, and the ID
column acts as the so-called key to unambiguously identifying a table row (a specific

Table 4.1: Relational table ENTRYTABLE of dictionary entries.

ID Spelling Pronunciation PartOfSpeech CrossReference

.
MED.disproof disproof dɪsˈpruːf noun MED.disprove
MED.disprove disprove dɪsˈpruːv verb NULL
.

106 Axel Herold, Peter Meyer, and Frank Wiegand

dataset or “record” as in → Table 4.2). The database management system can automat-
ically guarantee the referential integrity of these references to datasets in other tables;
that is, it prevents a dataset for an entry from being deleted in the entry table, if there
is still a reference to the ID of this entry in the senses table.1

In a more realistic scenario, an entry can contain any number of cross-references to
other entries. In that case, the “CrossReference” column is omitted from the main
table, and a further table is needed for cross-references, as shown in → Table 4.3.
Each row (record) in this table contains the ID of the source entry (which contains
the reference) and the ID of the target entry (to which the reference refers). This is
an m:n-relation: in theory, any number of target entries can belong to each source
entry – each entry can refer to any number of others. At the same time, any entry
can be referred to by any number of other entries. If the order in which multiple
cross-references are to be presented in an entry matters lexicographically, it must
be encoded as a separate column in the table because the rows of a relational table
have no intrinsic ordering (→ Fn. 1).

The web application can now make requests to the database management system in
the aforementioned query language, SQL, in order to receive the lexicographic data

Table 4.2: Relational table SENSETABLE of word senses.

Entry Numbering Definition

.
MED.disproof  facts that disprove something
MED.disproof  the act of disproving
.

Table 4.3: Relational table REFERENCETABLE of cross-references.

Source Target Position

.
MED.disproof MED.disprove 

MED.disproof MED.proof 

.

 Note that the rows in a relational database table are not ordered in a technical sense (since, mathe-
matically speaking, they are elements of a set), even if a specific order has to be chosen in a diagram-
matic representation like the one in → Table 4.2. Thus, the order of word senses present in the XML
document has no equivalent in the relational database although it might be recoverable from the
Numbering column.

4 Data Modelling 107

for the entry on disproof with the ID “MED.disproof”. The following SQL query returns
all of the column values belonging to the row with the ID “MED.disproof” in the main
entry table:

SELECT * FROM ENTRYTABLE WHERE ID="MED.disproof";

However, all of the corresponding rows in the other two tables must be retrieved
as well:

SELECT * FROM SENSETABLE WHERE Entry="MED.disproof";

SELECT * FROM REFERENCETABLE WHERE Source="MED.disproof";

With the help of the data acquired in this way, the web application or web service
can, in turn, construct its response to the client (e.g. an HTML page).

4.2.3 Other types of databases

While XML documents and relational databases continue to be the dominant repre-
sentation forms for large lexical resources, other types of databases are being ex-
plored and used in different contexts. Conventionally, such non-relational databases
are collectively referred to as NoSQL databases. Conceptually, one strain of develop-
ment is focusing strongly on the notion of documents (resulting in a document store)
and another strain is focusing on generalising the tree model underlying many tradi-
tional lexicographic databases to a graph model (resulting in a graph database).2

In a document store, entries are typically managed as individual documents by
the database management system. For example, in an XML-based store, entries such
as those described in → Section 4.2.1 are stored by the DBMS as separate and “indivi-
dual” entities without mapping them explicitly onto a (complex) table structure. The
indexing system of an XML database then allows for the direct retrieval of sets of
documents or parts of documents using established query devices such as XPath (XML
Path Language) or XQuery (XML Query Language).

XPath expressions allow the specification of the location of individual nodes
within an XML document by specifying their properties in terms of their name (i.e. a
node test), contextual constraints on the node (predicates), and an indication as to the
axes that need to be followed when traversing the tree (e.g. following the edges vs.

 There are other NoSQL approaches too, such as key-value stores, but we will not discuss them here
because there has been little uptake so far in the domain of lexicography.

108 Axel Herold, Peter Meyer, and Frank Wiegand

moving laterally across sibling nodes). Consider the following XPath expression and
its application on the XML representation presented in → Section 4.2.1:

/child::entry/child::form/child::spelling

The forward slash separates individual steps of the path expression, the axis specifica-
tion (child::) tells us to move along the line of descendants of the nodes (i.e. along
the edges of the tree), and the node tests specify the names of the nodes to be expected
along the path. There are no predicates in this example. When the expression is “pro-
cessed” (evaluated), the result returned will be a set of all the nodes (node set) that
are reached when traversing the tree as follows: start at the root node <entry>,
from there proceed to a child node <form>, and from there to another child node
<spelling>. Given the single document in the example, a node set containing the
node <spelling>disproof</spelling> would be returned. As more and more
entries are added to the database that are structured like the disproof entry, the re-
sulting node set would grow accordingly, effectively providing a headword list de-
rived from all of the spellings in all of the entries. The expression in our example can
be abbreviated in two regards: syntactically and semantically. As the child:: axis is
considered the default, it can be omitted, resulting in the syntactically equivalent
expression:

/entry/form/spelling

If we are only interested in creating a headword list from <spelling> nodes, it is not
strictly necessary to specify that each such node needs to have a parent node called
<form>. In this case we can change the axis that needs to be traversed from child::

to the broader descendant::, resulting in the semantically equivalent expression:

/entry/descendant::spelling

or even:

/descendant::spelling

denoting all <spelling> nodes that can be reached when moving along the edges
of the tree downwards from the root node.

As an example for the application of predicates, consider the following expression:

/entry [descendant::sense [@numbering]]

Here, the square brackets enclose predicates, i.e. constraints that the nodes in the
path expression have to satisfy, with the @ symbol denoting the name of an XML attri-

4 Data Modelling 109

bute. Thus, the node set returned by this expression is the set of all <entry> nodes
that have one or more descendant <sense> nodes, which, in turn, must meet the
condition to carry an attribute called numbering. In this way, we can determine the
set of all entries that describe polysemous words.

While XPath expressions allow for the selection of nodes that meet certain criteria so
they can be retrieved and returned by the DBMS, they do not provide a means of modify-
ing or storing data in the DBMS. For complex query, storage, and retrieval tasks, XML
databases typically provide XQuery-based interfaces. XQuery uses XPath expressions to
create node sets that can then be used in complex expressions. Consider the following
example for such a query. It generates a fragment of HTML code consisting of an

element that contains child elements with all the entries’ headwords, alphabetically
sorted, as their text content. Note that the collection('/db/dict') part serves to
illustrate a locator for the dictionary in the DBMS, which will often be stored as a collec-
tion of documents:

{

for $headword in collection('/db/dict')/

descendant::spelling

order by $headword

return {$headword}

}

The evaluation of this XQuery expression goes beyond the application of XPath in two
ways. First, it provides a template for HTML markups (for ordered lists and
 for list items therein) that enables a direct rendering of the query result. “Se-
cond”, much like with the SQL queries on relational databases, XQuery engines allow
for further modifications of result sets, such as sorting (order by $headword in
our example). In XQuery, users may define and invoke custom functions, and also the
DBMS will provide its own interface via special functions so that the database can not
only be queried but also modified, updated, and added to.

Let us conclude this section with a brief description of graph databases, which, at
their core, rely on the mathematical concept of a graph. We will not go into the finer
details of graph theory here but rather focus on the essence needed to understand its
possible applications in the context of lexicography.

Generally, a graph consists of a set of nodes (called vertices in graph theory; we
will use the term node here to underline the relation with the description of the trees
above) and a set of edges, which are essentially pairs of nodes where the nodes are
related to one another in a specific way. Graphs can be classified according to certain
properties, such as whether the edges are directed or undirected, whether all nodes
need to be connected or not, whether they may contain loops as opposed to only con-

110 Axel Herold, Peter Meyer, and Frank Wiegand

taining a single path between any two given nodes, or whether the edges may carry
additional information (such as weights), to name but a few.

Graph databases differ from each other in their restrictions on and assumptions
about the features of nodes and edges. In the case of labelled-property graphs, nodes
and/or edges may have explicitly specified, named (i.e. labelled) properties that can be
used to store additional data directly without the need to model these properties as
nodes and edges as well. As a consequence, nodes and edges in a labelled-property
graph may have different “data types”, i.e. sets of mandatory or optional properties. The
opposite approach is adopted by the data model in the Research Description Framework
(RDF). Here, the graph consists of a set of triples that each comprise two unlabelled
nodes and an unlabelled edge connecting them. The edge (the predicate) always points
from one node (the subject) to the other node (the object); thus the graph is directed. The
triples constructed in this way can be considered statements about two resources for
which the relation expressed by the predicate holds. The term resource is used very ge-
nerically in RDF. In the domain of lexicography, a resource may be a single dictionary,
an entry within a dictionary, or any constituent that entries are constructed from. To
refer to resources, RDF relies on uniform resource identifiers (URIs) that unambiguously
identify resources. While the subject and the predicate always need to be URIs, the object
may be either a URI or a literal (i.e. a character string). Several notations are used for
RDF triples, among them XML- and JSON-based serialisations as well as RDF specific for-
mats such as N-Triples or Turtle. To provide a practical example, we use the easily read-
able N-Triple notation. The triple is given on a single line and terminated by a full stop:

<http://example.com/entry/disproof>

<http://example.com/has_headword> "disproof" .

This triple states that a dictionary entry referred to by its URI http://example.
com/entry/disproof has a headword (http://example.com/has_head
word – the relation is also referred to by its URI) that is given by the literal string
“disproof”. Statements regarding senses could be formalised accordingly:

<http://example.com/entry/disproof> <http://example.com/

means> <http://example.com/sense/disproof_facts_sense> .

<http://example.com/entry/disproof> <http://example.com/

means> <http://example.com/sense/disproof_act_sense> .

Note how the subject is identically referred to by its URI twice and how the object in each
statement is also referred to by a URI this time. With a triple representation of our dictio-
nary stored in a graph database (which in this case would be called a triple store), triples
with subjects referred to by the URI http://example.com/sense/disproof_
facts_sense would allow us to retrieve further information on the first sense of the

4 Data Modelling 111

http://example.com/entry/disproof
http://example.com/has_headword%3E%22disproof%22
http://example.com/entry/disproof
http://example.com/entry/disproof
http://example.com/has_headword
http://example.com/has_headword
http://example.com/entry/disproof
http://example.com/means
http://example.com/means
http://example.com/sense/disproof_facts_sense
http://example.com/entry/disproof
http://example.com/means
http://example.com/means
http://example.com/sense/disproof_act_sense
http://example.com/sense/disproof_facts_sense
http://example.com/sense/disproof_facts_sense

entry. To query an RDF triple store, SPARQL (the SPARQL Protocol and RDF Query Lan-
guage) is used. The following SPARQL query retrieves the senses that are associated with
the entry “disproof” (a line starting with PREFIX describes a prefix that is used to
shorten the URIs):

PREFIX ex: <http://example.com/>

PREFIX entry: <http://example.com/entry/>

SELECT ?sense

WHERE

{

entry:disproof ex:means ?sense .

}

For graph databases, many efficient algorithms have been described and imple-
mented (cf. Robinson/Eifrem/Webber 2013), which makes it possible to quickly search
for paths in graphs, that is, to locate routes from one node to another running along
multiple edges. Especially in the context of Linked Open Data (LOD), graph databases
have become hugely popular recently. The types of data considered in the LOD para-
digm go far beyond lexicographic data. There is a strong focus on general knowledge
bases such as Wikidata and DBpedia, two projects that automatically extract facts
from WIKIPEDIA and convert them into knowledge graphs. Another common type of
LOD resources are ontologies that model – often domain-specific – conceptual hierar-
chies. LOD resources form the basis for the Semantic Web, thus named to highlight its
overarching goal, which is to provide the data and infrastructure needed to create
semantic annotations for resources on the Internet. Early on, ideas were proposed to
also include lexicographical resources (cf. Spohr 2012). Dictionaries that rely heavily
on relations (such as the lexical-semantic wordnets discussed in → Section 4.4.2) are
ideal for graph-based representations because of the close resemblance of their inter-
nal organisation and the modelling assumptions imposed by graph databases. Never-
theless, in principle, all lexical resources can be represented in graph databases.

4.3 Data modelling

4.3.1 Conceptual (semantic) data models

The discussion so far has shown how lexicographic information can be represented in
very different data formats – textual or tabular – independently of presentational as-
pects, facilitating further machine processing and flexible presentation of the data. In
the process, we also raised the problem that, when developing an Internet dictionary,
it must first be decided in very general terms how the data will be structured that

112 Axel Herold, Peter Meyer, and Frank Wiegand

http://example.com/
http://example.com/entry

need to be stored and processed. Particular questions that arise here are which types
of lexicographic detail we need in our dictionary entries, which hierarchical relation-
ships exist between them, which are obligatory, and which can occur more than once.
As the example of cross-references between entries demonstrated above, these funda-
mental decisions about structure are necessary in the case of relational databases in
order to determine the number and structure of data tables and their relationships to
one another. But these decisions are also a prerequisite for determining which XML
elements are needed for an XML-based dictionary and how they are to be nested inside
each other; thus, it would make little sense to distinguish, as shown in the example in
→ Section 4.2.1, between a superordinate ‘container’ or ‘wrapper’ element <senses>
and subordinate <sense> elements if there was a maximum of one meaning per entry.

If developing a dictionary involves specifying the required lexicographic indica-
tions and their relationships in an abstract way without already deciding, for exam-
ple, on whether to use a relational database or XML, then we have entered the
territory of conceptual data modelling. There are established and formalised diagram-
matic formats for formulating conceptual data models, in particular the entity-
relationship model and the Unified Modelling Language (UML). As an illustration, we
shall present only a very simple example based on UML modelling applied to the toy
dictionary entry discussed in → Section 4.2.

A large number of different types of diagrams are associated with UML. → Fig. 4.4
shows a class diagram. The rectangles represent classes, that is, types of entities that
need to be modelled. This example sets out two types of entities, namely dictionary
entries as a whole and word sense information within these entries. The names of
attributes are located underneath the names of the classes, separated by a horizontal
line. In UML, attributes are the properties that jointly characterise each entity (entry,
word sense) of the relevant class. For actual entries, these properties in our example
are an ID, the orthographic form of the lemma sign, its pronunciation, and its part of
speech. Word senses have a definition and (assumed here for demonstration pur-
poses) a numbering within the entry. In more detailed modelling, the data type of the
individual attributes could also be given, for example, the pronunciation is a string of
symbols of any length or the part-of-speech indication is one of several predetermined
sets of symbols such as “n”, “v”, “prep”, etc.

Fig. 4.4: Simple UML modelling of an example entry.

4 Data Modelling 113

The relationships between the entities in classes are represented by associations,
which are lines drawn between the relevant class rectangles to link them. The multi-
plicities of the association are given at each end of such a line. This is explained in the
modelling requirements that the diagram above expresses (the asterisk symbol ✶ des-
ignates in general terms an arbitrary non-negative integer number):
– A given entry has at least one but otherwise any number of senses (multiplicity 1..✶).
– Conversely, each meaning only “belongs” to exactly one entry (multiplicity 1 or,

in more detailed notation, 1..1). This is not a trivial point; one might wish to model
relationships of synonymy explicitly in this way so that one and the same “mea-
ning” can be assigned to multiple entries.3

– A given entry cross-references any number of other entries (multiplicity 0..✶);
since the entities that relate to one another are instances of the same class (en-
tries), we speak of a reflexive association.

– Conversely, a given entry can be referred to by any number of other entries (mul-
tiplicity 0..✶).

It is clear that the principles and terminology of conceptual data modelling sketched
out here can generally be applied without alterations to describe the microstructure
and mediostructure of print dictionaries. However, especially older print dictionaries
tend not to have rigid, formalisable structures since they were conceived for human
users rather than for machine searching and processing. As such, the fundamental
difference between digital dictionaries and print dictionaries is not the manner in
which information can be structured as such. Instead it is the necessity to actually
store and prepare the data in some kind of rigorously structured way as well as the
possibility of presenting this structured content in a flexible way and of making it pos-
sible for it to be searched accordingly. Here, the granularity of the data modelling can
vary considerably. Especially in older dictionaries, there are often sections within en-
tries that cannot be structured in a consistent way when they are retrospectively pre-
pared in a digital form because of their narrative character; a typical example would
be discursive explanations of etymology. In the most extreme case, this kind of section
has to be modelled as an entity, the sole attribute of which is simply the whole text of
the section as a non-structured series of characters that can only be accessed in a full
text search. Freshly conceived digital dictionaries are the opposite extreme, since in
this case it is possible to model the lexicographic data in a very granular way, that is,
to store the individual types of information (indications) in a very fine-grained way,
each as a different attribute of an entity. In the case of actively edited and maintained
dictionaries, the modelling and overall lexicographic process must be flexible and ex-

 In that case, the position numbering would have to be dealt with in a different way since the num-
bering assigned to a sense in one entry might differ from that in another entry that features the same
word sense. The solution would basically be to encode the numbering as an attribute of the associa-
tion itself, using what is called an association class.

114 Axel Herold, Peter Meyer, and Frank Wiegand

tensible to guarantee that each entry may be revised at any time. This often makes it
necessary for the conceptual modelling to adjust to new requirements that arise
while the dictionary is already operational.

4.3.2 Logical data models

It is striking that the manner in which one entry is supposed to cross-reference an-
other is not specified in the UML diagram in → Fig. 4.4. In the XML document shown
in → Section 4.2.1, the cross-reference is achieved by providing the ID of the entry
which is being referred to. However, implementing the actual “cross-referencing
mechanism” assumes that the data(base) format is already known. On the conceptual
modelling level, though, these issues are generally dealt with in abstract terms. The
focus is essentially on content-related decisions such as the types and properties of
entities that will be described and the types and properties of the relationships “bet-
ween” these entities. Questions arising from the actual implementation of cross-
referencing structures are addressed instead in the domain of logical data modelling,
which involves “spelling out” the conceptual data model for a specific data format
and the database system associated with it. The process of spelling out the data model
is not a process that can be carried out mechanically since the conceptual and logical
data models do not exist in a simple correspondence to one another. For example, the
grouping of the spelling and pronunciation elements under the superordinate form
element in the XML document in → Section 4.2.1 does not have any formal correspon-
dence in the class diagram in → Fig. 4.4.

Logical data modelling with XML documents is again captured through suitable
formal descriptions, so-called schema languages. There are several established formal
schema languages for XML documents, including DTD (Document Type Definition),
XSD (XML Schema Definition), and RELAX NG (REgular LAnguage for XML Next Gen-
eration). For illustrative purposes we show here a simple, almost self-explanatory
RELAX-NG modelling applied to the toy example XML document in → Section 4.2.1:

element entry {

attribute id { text },

element form {

element spelling { text },

element pronunciation { text }

},

element grammar {

element part-of-speech { string "n" | string "v" |

string "adj" }

},

element senses {

4 Data Modelling 115

element sense {

attribute numbering { text },

element definition { text }

}+

},

element cross-reference {

attribute refid { text },

text

}*

}

The specified modelling determines exactly which elements are permitted to appear
in a generic XML document for our fictional dictionary, with which attributes, in
which position, and how many times. In the miniature modelling provided, the word
class element part-of-speech can only contain one of the three labels “n”, “v”, or
“adj”. In the example, the equivalents for the multiplicities from the conceptual
modelling are the symbols “*” (corresponds to 0..* in UML; so “any number, including
none”) and “+” (corresponds to 1..*, so “at least one”).

The various schema languages differ from one another in terms of their expressive
power, i.e. they permit constraints to varying degrees and of varying complexity to be
formulated. But their purpose is the same: to describe with precision the desired struc-
ture of a class of XML documents. Then a computer can check in a purely formal way
whether or not a given XML document really matches this required structure. This pro-
cess is called validation. The validity of XML documents is a fundamental prerequisite
for any form of further machine processing of the documents. Thus, a program to trans-
late any dictionary entry represented in XML into an HTML representation (e.g. an XSL
transformation) can only be developed if it knows the structure of the XML documents
and, therefore, where in these documents to find which indications.

Of course, there are also formal techniques for specifying the desired data struc-
tures for relational databases. A relational database schema determines which tables
there are, which columns they have, which types of data can be entered into the differ-
ent columns, which relationships exist between the tables, and which keys have to
refer to a specific row in another table (→ Section 4.2.2). It is also possible to determine
further restrictions in a database, so-called constraints, which prescribe, for example,
the range of values allowed in a particular column or certain complex conditions for
the permissibility of whole datasets (rows), the maintenance of which is automatically
protected by the database management system.

116 Axel Herold, Peter Meyer, and Frank Wiegand

4.3.3 Technical implications of logical data modelling

In principle, any given conceptual data modelling can be realised using any of the tech-
nological methods for representing and manipulating data introduced in this chapter.
However, the choice of a representation format has far-reaching practical consequences,
especially when it comes to the tools required for processing the data and the necessary
technical equipment as well as the lexicographic work process and the compatibility of
data with the output and requirements of other projects as well. A further criterion is
the flexibility and expandability of the chosen form of representation in the event of
new requirements for the lexicographic information represented in the dictionary con-
cerned. Here, relational databases are often at a disadvantage since changes to the data
modelling can bring about a complex reorganisation of the table structures. Finally, in
certain circumstances a justifiable balance needs to be found between the desired com-
plexity of data modelling and the speed of data retrieval.

In a relational database, the data are distributed across many tables in the opti-
mum form for machine processing. In order for a human processor to be able to do
anything with these data, a program designed for lexicographers to edit the data has
to read the desired information from the various tables using queries to the database
management system and then present it as readable text. Conversely, any changes or
additions to the data input via the editing application must be “translated” again by
this program into SQL commands to change the datasets in the various tables. Because
the input program cannot randomly change the database schema (that is, the number
or structure of tables, for example) and because the database management system it-
self systematically prevents formal inconsistencies in the data, adherence to the cho-
sen conceptual data modelling and the integrity of the data are guaranteed, even if
several people revise the lexicographic information in an entry at the same time.

At present, XML is still the de facto standard for representing lexicographic data.
Unlike a relational database, where the lexicographic information for an entry is stored
in a clever way so as to be dispersed across multiple tables, XML documents are initially
nothing more than plain text documents that can be read by a human being, that con-
tain all the lexicographic information for an entry in one place, and that can, in princi-
ple, be viewed and edited in any simple text editor or word processor.

However, in practice, specialised XML editors are used to edit XML documents.
These automatically ensure, for example, that the documents are syntactically well
formed. In other words, when changes are made, the editors prevent the general
rules for constructing and structuring XML documents from being inadvertently con-
travened, such as the end tag being forgotten after its associated start tag. Professional
XML editors can present XML documents in a way familiar from word processors so
that a lexicographer working on the document shown in → Section 4.2.1 sees it in a
similar way to that in → Section 4.2. Such a convenience view must first of all be con-
figured for a given XML schema. During editing, one very important function of an
XML editor is constant automatic validation of an XML document with respect to a

4 Data Modelling 117

given XML schema. In this way, if an XML editor is set to use the schema from → Sec-
tion 4.3.2, it can automatically prevent an additional part-of-speech element from
being added in the XML source text of → Section 4.2.1. Nonetheless, in contrast to rela-
tional database systems, no standard solution exists for managing as well as simulta-
neously and collaboratively editing what might be a huge collection of large XML
documents.

Numerous established technologies exist for the machine processing of XML
documents. There are specialised query languages that make it possible to read infor-
mation in a targeted way, leveraging the hierarchical structure of XML documents:
the query language XPath, which makes it possible to systematically address elements
and attributes, and the powerful programming language XQuery, which is built on the
former (→ Section 4.2.3).

In view of the considerable technological differences between relational and XML
representations, it is vitally important that the two formats can essentially be trans-
lated into one another. Some XML databases can even transform XML documents au-
tomatically into relational database tables with the help of a specified XML schema in
order to efficiently store, search, and retrieve the data. Conversely, XML can be used
as an easy textual conversion format if the content of a whole relational database (or
just the lexicographic information of a single entry) has to be transferred from one
system to another or has to be further processed in a different way.

Because of the extensive translatability of representation formats into one an-
other, special data formats that are tailored to the workflows and existing, often his-
torically developed, technical infrastructure are often used internally in lexicographic
projects. Thus, it makes sense for collaborative or partially collaborative dictionaries
(→ Chapter 2.2.3) to use a markup language for revising entries that is much simpler
than XML or HTML. A well-known example is the markup languages used in Wiki sys-
tems like WIKIPEDIA; these systems are also used for extensive collaborative lexico-
graphic projects (cf. Hämäläinen/Rueter 2018; also → Chapter 8). The disadvantage of
using these formats is that they are often ill-suited for modelling complex and hierar-
chically structured information.

Data formats used internally are often not published systematically. If it is planned
to transfer the data to other projects or institutions, they are typically “translated” into
standardised data formats, as discussed in the following section.

4.4 Attempts at standardisation

Over time, typical forms of presentation have emerged for the contents of dictionaries
so that users of a print dictionary can find the information they are looking for
quickly and easily. Thus, pieces of information that belong together normally appear
grouped next to one another and the headword to which the information refers is

118 Axel Herold, Peter Meyer, and Frank Wiegand

usually highlighted by a particular font or by its position at the beginning of the
grouping. Of course, lexical information does not have to be presented in this particu-
lar way, but a targeted search for specific content would be made substantially more
difficult if a dictionary diverged from these conventions.

While conventionalised forms of presentation are sufficient for human dictionary
users to search for and find the desired information, machine production and inter-
pretation of lexical data require that a specific form of representation is identified
and agreed as binding – that is, standardised. In particular, the exact specification of
the formats used is a necessary precondition for the practical implementation of soft-
ware tools. Work processes (for example, the entire lexicographic process, as de-
scribed in → Chapter 3) can also be standardised. However, in this section we restrict
ourselves to discussing the standardisation of lexicographic models and data formats.

Generally, there are many reasons for modelling and storing lexical data in a
standardised form:
– Using standard formats ensures that different datasets are compatible with one

another. Information of the same type appears in the same form of presentation.
For example, a standard format can specify the precise form in which pieces of
data have to be stored. In this way, it becomes possible to process, change, and
present data from different sources with the same software tools. Above all, spe-
cific access to entries and individual bits of information within these entries is
made easier in situations where lexicographic data from different sources are ag-
gregated and merged according to users’ preferences (→ Chapter 7).

– The lexicographic process is often supported by different software tools (→ Chap-
ter 3 and Abel 2012). Using standard models and formats ensures that these tools
are interoperable, both conceptually and technically. Here, the standard format
represents a defined interface between the tools. The agreed output format of
one tool serves as the input format for another tool. In this way, exchanging data
becomes technically possible beyond the boundaries of individual work groups.

– Publicly documented standards are an important prerequisite for long-lasting
and sustainable storage of lexical data, i.e. for their long-term archiving. They can
be understood as explicit and detailed format documentation. On this basis, soft-
ware tools can also be (re)implemented at a later date, even when the programs
used originally cannot be used any more for technical reasons.

– Alongside the advantages already listed, which are primarily of a technical na-
ture, the consistent use of standard formats also supports the internal consistency
and coherence of a lexical resource. For dictionaries modelled according to a spe-
cific format, the rules specified in that format take on the role of the dictionary’s
grammar. With the help of corresponding schema descriptions, it is very easy to
check whether an electronic version of a dictionary – an instance of this schema
– corresponds to this grammar. Here, the specification of the format can be for-
mulated in a very detailed way and can, for example, lay down exactly which val-
ues may be used for detailing specialist domains. Some grammars such as

4 Data Modelling 119

Schematron also allow rules to be formulated that determine properties of ele-
ments that refer to properties of elements positioned elsewhere in a dictionary
entry. One such rule might, for example, state that an entry containing a synonym
reference must not contain an antonym reference to the same target reference as
well while still allowing antonym references to other targets.

– The explicit and detailed modelling and storage of data structures and data ele-
ments that is required by most standard lexical formats – in particular, when
using XML technologies – means that the storage volume of electronic “dictiona-
ries” is often relatively large. Nevertheless, this effect is negligible considering the
availability of increasingly inexpensive computer storage.

The idea of modelling lexical resources on a commonmodel in order to ensure the com-
patibility and interoperability of electronic dictionaries is certainly not a new one. In-
deed, Kanngießer (1996) already considered the question in relation to the growing
range of electronic lexical resources at that time from the perspective of the (integrated)
re-use of those resources. Starting from the observation that the challenge for standard-
isation consists in depicting very heterogeneous lexical models in a single representa-
tion, he sets out the central problem: “lexical re-use [. . .] is therefore possible to the
precise extent that it is possible to unify grammars and their underlying theories”
(p. 92). Because lexicographic description cannot proceed in a theory-neutral way and,
at the same time, grammatical theories can take incompatible or contradictory basic
assumptions as their starting points, any standardisation would necessarily lead to in-
consistent forms of modelling within a particular theory. However, this does not apply
equally to all lexicographic descriptions. Rather it is possible to identify invariant ele-
ments, that is, elements modelled in the same way independently of the grammatical
theory underlying them, which can quite probably be modelled on one another (cf. also
Romary/Wegstein (2012), who refer to these elements as crystals in relation to electronic
dictionaries). If a model is restricted to these invariant descriptive parts and specified
dynamically on the basis of the concrete resource to be modelled, then at least a valid
partial model can be achieved. This approach has been supported more recently by the
introduction of a standardised lexical metamodel, the Lexical Markup Framework (→
Section 4.4.3).

Standards for electronic dictionaries are often distinguished by a high degree of
variability and modularity, meaning that the formats and guidelines for actual lexico-
graphic processes can be adapted to project-specific needs. Therefore, they typically
provide modelling frameworks rather than strictly fixed rules for lexicographic de-
scriptions. Nonetheless, it can happen that – independently of the dictionary – there
is no suitable model in a standard for a particular type of information. In particular,
innovative dictionaries of contemporary language like ELEXIKO or the DWDS find
themselves confronted with this problem. As a rule, project-specific data models are
developed for these purposes that focus on the necessary types of information. Still,
standard formats can be used to exchange lexicographic data with third parties, al-

120 Axel Herold, Peter Meyer, and Frank Wiegand

though the transformation then necessarily involves some loss of lexicographic infor-
mation. Another possibility, albeit one that is only practicable in the long term, would
involve influencing the standardisation process, leading to more specialised data
models that can be adopted in later versions of a standard.

The standardisation of lexical models and data formats does not have to be lim-
ited to the formal data structures themselves. In the ideal case, it also encompasses an
explicit semantic description of these data structures and the elements from which
they are constructed. One possible way of explicitly describing the semantics of data
elements is by referring to an index of data categories and concepts that includes
“definitions” for all of the elements (often in various languages), permissible values,
and relationships between classes of elements. This is often achieved by referring to
common ontologies.

Generally, broader technical standards underlie the modelling of the various lexi-
cographic “standards” described in the following sections. For example, in many
cases the individual letters and symbols that appear are coded using the UNICODE stan-
dard. In order to ultimately store abstract data models as data on the computer, they
are often transformed according to a family of XML standards (https://www.w3.org/
XML/; → Section 4.2.1). This process is known as serialisation. However, in what fol-
lows, we will not explore these kinds of base standards any further. Instead, we focus
on the higher-level lexicographic standards.

Organisationally, attempts at standardisation can be located at different levels.
The boundaries are never sharply defined, but it is possible to distinguish three proto-
typical organisational levels on which standards are located with differing degrees of
obligatoriness.

In the simplest case, a standard only applies to a single dictionary project or work
team. Initially, such ad-hoc standards have little relevance outside a relatively narrow
project context. They are used exclusively for working and organisational processes
within a specific project and often undergo changes and adaptations in relation to the
specific requirements of the project.

Standardising models and formats in larger project contexts necessitates agree-
ment between different actors, who may have different requirements. Because of
their larger community of users and, in particular, when they continue to be actively
developed, they emerge as a de-facto standard in the field in which they are em-
ployed. De-facto standards often establish themselves by being implemented in a
wide range of computer programs. The Multi-Dictionary Formatter format (MDF; →
Section 4.4.4) used by linguists in the Shoebox/Toolbox working environment when
they are undertaking fieldwork to document endangered languages is one example of
this kind of development.

Finally, attempts at standardisation can be pursued on an international level and
can culminate, for example, in the adoption of an ISO standard. Multinational consor-
tia like the Unicode Consortium or the Text Encoding Initiative (→ Section 4.4.1) play a
role similar to that of the International Organization for Standardization (ISO). One

4 Data Modelling 121

https://www.w3.org/XML/
https://www.w3.org/XML/

advantage of international standardisation lies in the associated convergence towards
a stable standard. Models and formats are no longer subject to short-term changes
because the standardisation process on this level takes a very long time. Another ad-
vantage is that the organisational structure of international standardisation bodies
guarantees a reliable, long-term point of reference, which individual time-limited lexi-
cographic projects are unable to provide in this form.

In the following sections, we present a selected number of lexicographic formats
and models in more detail. In the process, we attempt to provide a cross-section of
different types of dictionary, different groups of users, and different fields in which
these dictionaries are used. Furthermore, the different standards are situated on dif-
ferent organisational levels. Nevertheless, we shall restrict ourselves to presenting
formats and models for resources intended to be consulted by human users. We will
not examine specialised dictionaries and lexical databases that are developed for au-
tomatic language processing applications.

4.4.1 Text Encoding Initiative

First formulated at the end of the 1980s and continuously developed since then, the
guidelines for the Text Encoding Initiative (TEI) were conceived very generally from
the outset, focusing on the standardised description of texts of any kind. These guide-
lines have detailed, ready-made ways of describing many different types of text. With
their help, it is possible to model printed literature, handwritten texts, inscriptions on
gravestones, transcribed dialogues, for example, with a high degree of accuracy. Thus,
they can also be used to model dictionaries. Nowadays, the TEI guidelines are the
most widely used text markup standard in the (digital) humanities, and there is a vast
array of resources available in this form.

The main area where the TEI guidelines are applied in lexicography is in the
retro-digitisation of existing print dictionaries from one of the three main perspec-
tives identified in the guidelines: typographical, editorial, and lexical (cf. TEI 2023).
Ideally, these different perspectives are modelled in such a way that they are cleanly
separate from one another. However, the TEI model also allows for hybrid forms. Let
us briefly elaborate on each of these three perspectives:

The typographical perspective reflects the surface form of a printed page that is deter-
mined by technical (typesetting) and typographical factors. It captures information on the
fonts and emphasis used, on line breaks, and on the layout of areas of text on the page as
well as further medium-specific properties of the actual two-dimensional representation.

The editorial perspective involves an abstraction from the two-dimensional posi-
tioning of textual symbols in that it constitutes a stream of letters, punctuation sym-
bols, and possible processing instructions for a hypothetical typesetting process.
Medium-specific artefacts from the typographical perspective (such as hyphenation at

122 Axel Herold, Peter Meyer, and Frank Wiegand

the end of a line) no longer occur in this textual model. The lexicographic information
is thus modelled conceptionally as a one-dimensional sequence of symbols.

Just like the editorial perspective, the lexical perspective is an abstraction from
the two-dimensional typographical perspective. With the help of a semantically deter-
mined inventory of categories, the lexical information is assigned to specific lexical
categories. This results in a semantic annotation for each piece of lexicographic infor-
mation. Furthermore, the relationship of one piece of information to another models
the scope of this information and what it addresses. For example, the lexical perspec-
tive makes it possible to indicate exactly which entry each sense description belongs
to or which citation is an attestation for a specific sense.

Below, the (a) typographical and (b) lexical perspectives will be compared in detail
using as a starting point a short entry on the lemma nachtlied (night song) from the
first edition of Jacob and Wilhelm Grimm’s DEUTSCHES WÖRTERBUCH (German Dictio-
nary, DWB-ONLINE). While the typographical perspective reproduces many technical
typesetting details (the comma after the lemma, the colon after the meaning para-
phrase, the indent at the beginning of the entry, the line breaks, hyphens, and so on),
no information is provided about the lexicographic status of individual sections of
text – even the boundaries between pieces of information are not clearly recognisable
by virtue of the markup (for example, between the indication of gender – “n.” – and
the beginning of the definition – “abends oder nachts gesungenes . . . lied”). By con-
trast, the purely lexical perspective does not indicate how to present the lexicographi-
cal information. Punctuation marks that delimit pieces of information have to be
derived in a hypothetical typesetting process following rules from the sequence of in-
formation (“in the event that further information follows, a colon follows the defini-
tion”; “authors’ names are set in small caps”). A normalisation of values can also take
place. For example, the indication of gender in the lexical perspective appears in the
form “neuter”, while – again following rules – the form “n.” is used in the hypothetical
typesetting process in order to shorten the text. Finally, the lexical perspective can en-
code information that does not appear in print at all, as is the case with the indication
of the word class “noun”.

(a)

<hi rend="capitalized indented">nachtlied</hi>,

<hi rend="italics">n. abends oder nachts gesungenes oder zu

sin-

<lb/>gendes lied:</hi> nachtlieder dichten. <hi

rend="smallcaps">Petr.</hi>

40ª; wanderers nacht-<lb/>lied. <hi rend="smallcaps">Göthe

</hi> 1,109;

4 Data Modelling 123

(b)

<entry>

<form>

<orth>nachtlied</orth>

<gramGrp>

<gen>neuter</gen>

<pos>noun</pos>

</gramGrp>

</form>

<sense>

<def>abends oder nachts gesungenes

oder zu singendes lied</def>

<cit>

<quote>nachtlieder dichten</quote>

<bibl>

<author>Petrarca</author>

<biblScope>40ª</biblScope>

</bibl>

</cit>

<cit>

<quote>wanderers nachtlied</quote>

<bibl>

<author>Göthe</author>

<biblScope>1,109</biblScope>

</bibl>

</cit>

The two perspectives each have their own specific fields of application. However, for
lexicographic (and metalexicographic) work, only modelling from a lexical perspec-
tive is of use since it is capable of directly reflecting the inherent tree structure of
dictionary entries (→ Section 4.2.1), which results from the relation between the en-
try’s individual pieces of lexical information.

The inventory of concepts in the TEI is organised in a modular fashion. Because
the TEI model can be adapted in very specific and far-reaching ways by those who
use it and because it retains the option of subcategorisation, the inventory of catego-
ries can be extended practically at will. In the TEI world, such adaptations are called
customisations.

One notable customisation that specifically aims at the representation of dictio-
naries is provided by the Lex-0 initiative (TEI Lex-0 2023). The main focus of TEI Lex-0
is on interoperability across different dictionaries and, thereby, on fostering tool re-
use across lexical resources. This goal is pursued by streamlining the number of ele-
ments allowed in dictionary-specific contexts. For example, the different entry-like ob-

124 Axel Herold, Peter Meyer, and Frank Wiegand

jects allowed in the general TEI framework (entry – general entry, re – related
entry, superEntry – groups of entries, entryFree – unstructured entry, hom –

homograph) are collapsed into a single entry object that may be used recursively
and may be associated with a type attribute if needed. Other constraints introduced
by the TEI Lex-0 guidelines concern attributes that are made mandatory as opposed
to their optional status in the general framework of the TEI (e.g. the id attribute on
entry and sense elements), or tighter restrictions for contexts in which certain ele-
ments may occur. We provide a serialisation in TEI Lex-0 for our toy example disproof
below. Note the xml:id attribute on the entry and sense elements as well as the
type attribute on the gram element – all of which are optional in the general frame-
work but are obligatory in TEI Lex-0.

<entry xml:id="MED.disproof" xml:lang="en">

<form type="lemma">

<orth>disproof</orth>

<pron>dIs'pruːf</pron>
</form>

<gramGrp>

<gram type="pos">n</gram>

</gramGrp>

<sense xml:id="MED.disproof.1" n="1">

<def>facts that disprove something</def>

</sense>

<sense xml:id="MED.disproof.2" n="2">

<def>the act of disproving</def>

</sense>

<xr type="related">

<ref target="#MED.disprove" type="entry">disprove

</ref>

</xr>

</entry>

4.4.2 Lexical-semantic wordnets

The first large-scale lexical-semantic wordnet has been developed from the mid-1980s
onwards at Princeton University under the name WORDNET. It was originally con-
ceived as a model of a section of linguistic knowledge inspired by psycholinguistics
and cognitive science, namely the mental lexicon. Here, mental concepts that extend
across individual languages are modelled (STONE, GO, RED), which are represented
by synsets (collections of synonyms realised in individual languages: {rock, stone},
{go, go away, depart}, {red, reddish, ruddy, blood-red, . . . }). As such, wordnets belong

4 Data Modelling 125

to the category of onomasiological dictionaries, that is, dictionaries that assign linguis-
tic forms to lexical meanings.

A variety of lexical-semantic relationships exist between synsets. Formally, a
wordnet represents a graph for which the synsets form the set of nodes. The lexical-
semantic relationships of the synsets between one another are produced through a
series of relations across the collection of nodes. They can thus be conceived as the set
of vertices for the graph. Such a graph is not necessarily connected; nor does it have
to be free of loops. Fellbaum (1998) provides a good overview of the construction and
many early applications of the English-language WORDNET.

Wordnets have enjoyed great popularity up to the present time, especially in the
context of computational linguistic applications. A wordnet provides a good founda-
tion for the automatic semantic annotation and analysis of texts. If wordnets in differ-
ent languages are interoperably modelled or translated into a common form of
representation, this approach can be extended to cover different languages. Human
users employ wordnets first and foremost as thesauri or as synonym dictionaries.
Princeton’s WORDNET exists in two storage formats: a proprietary text-based database
version (lexicographer files, see below) and as a Prolog knowledge base, a way of rep-
resenting knowledge that has traditionally been used in the research field of artificial
intelligence. Many subsequent monolingual wordnet projects have also used text-
based database representations as an exchange format or have made proprietary
XML-based formats available.

{ [rock1, adj.all:rough^rocky,+] [stone, adj.all:
rough^stony,+ verb.contact:stone,+] noun.Tops:
natural_object, (a lump or mass of hard consolidated
mineral matter; “he threw a rock at me”) }

At the moment there is no single, standard format used by all wordnet projects. None-
theless, WORDNET-LMF does provide a suggested LMF model for wordnets and equiva-
lence relations between synsets (→ Section 4.4.3; cf. also Soria et al. 2009). This
suggested model was implemented as an example for a series of wordnet projects but
has scarcely been adopted outside the original project context so far. It has therefore
remained an example of an ad-hoc standard to date.

4.4.3 The Lexical Markup Framework – a model for all types
of dictionaries

The Lexical Markup Framework (LMF) was adopted in 2008 as international standard
ISO 24613:2008. This standard includes a modular metamodel to describe the actual
models of a variety of types of lexical resources. The most important modelling princi-

126 Axel Herold, Peter Meyer, and Frank Wiegand

ples are the consolidation of the elements on individual levels of linguistic description
in modules (syntax, phonology, etc.) and the hierarchical arrangement of those units.
In order to do justice to the issues discussed above concerning the theoretically in-
formed genesis of a dictionary, LMF contains a reference mechanism which can be
used to describe explicitly the semantics of lexical concepts. This is validated by refer-
ence to a further international standard (ISO 12620:2009), which describes a data cate-
gory registry.

Using a range of examples, Romary/Wegstein (2012) demonstrate that, under cer-
tain prior assumptions, lexical modelling in the TEI framework can be understood as
a realisation of the LMF model. Their core argument is the way the model is limited to
“crystals”, which form semantically autonomous units in an entry.

Since LMF has been available as an integrative, internationally standardised
(meta)model, a series of specific formats derived from it have been proposed, for ex-
ample: WordNet-LMF (→ Section 4.4.2), UBY-LMF (Eckle-Kohler et al. 2012), or the
lemon lexicon model (McCrae et al. 2017). It remains to be seen whether one of these
proposals does indeed develop into a de-facto standard format for the LMF model or
whether reference to the common metamodel already suffices in order to represent
lexical resources so that they are interoperable, i.e. they are able to communicate
with one another. However, what we can conclude is that existing resources can de-
monstrably be modelled within the LMF model in many areas of electronic lexicogra-
phy. Clearly LMF provides a sufficiently wide framework in order to model lexical
resources of the most varied kinds (cf. Francopoulo 2013).

4.4.4 Toolbox and Multi-Dictionary Formatter

Toolbox is a computer program provided by SIL International for documenting and
managing linguistic and, specifically, lexical data. It has been used especially by lin-
guists working on the documentation of endangered languages for many years. Be-
cause of its widespread use in this group, the Multi-Dictionary Formatter (MDF)
format used by Toolbox to store data represents a de-facto standard in this field of
research. Users can employ a collection of around 100 lexicographic information
types and also supplement this collection with custom types.

The MDF standard format is represented as an example below. The entry for the
lemma alabanja is part of a dictionary of Iwaidja, an Australian language (presented
in Ringersma/Drude/Kemp-Snijders 2010). Lexicographic information is introduced by
field labels (in the example, among others, by: \lx – “lexeme”, the form of the symbol
for the lemma; \sn – “sense number”, semantic classification mark; \ps – “part-of-

4 Data Modelling 127

speech”, word class; \de – “definition”). The lexical model underlying the MDF stan-
dard model is that of a semasiological dictionary, that is, a dictionary starting from
lexical signs and assigning meanings to them.

\lx alabanja
\sn 1
\ps n
\de beach hibiscus. Rope for harpoons and tying up

canoes is made from this tree species, and the
timber is used to make \fv{larrwa} smoking pipes

\ge hibiscus
\re hibiscus, beach
\rfs 205,410; IE 84
\sd plant
\sd material
\rf Iwa05.Feb2
\xv alabanja alhurdu
\xe hibiscus string/rope
\sn 2
\ps n
\de short-finned batfish
...

The addressing of information remains, for the most part, implicit in the MDF format.
Although the lexical categories are clearly identified, their relationships with one an-
other are not. Individual conventionalised classification functions constitute an excep-
tion, such as those assigned to the \sn and \ps fields in the documentation. There is no
explicit hierarchical categorisation of the entry. Using the different perspectives intro-
duced above in our discussion of the TEI model (→ Section 4.4.1), the MDF format
models a mixed form between the editorial and lexical perspectives. If we consider
the main field in which the format is used, this becomes immediately clear. First, a
typesetting process can be derived directly from the data since the information is al-
ready stored sequentially. The field labels then acquire the role of simple typographi-
cal processing instructions. Second, targeted access to lexicographic categories is
made possible for linguists so that they can retrieve and analyse the data on the basis
of specific linguistic phenomena that are addressable by the field labels.

128 Axel Herold, Peter Meyer, and Frank Wiegand

4.5 Outlook

It is customary practice nowadays that standards are used in data modelling. For ex-
ample, it is almost impossible to find a relatively large dictionary project that does not
rely on the use of XML-based technology. However, the picture is slightly different
when it comes to the application of the lexicographic standards or guidelines discussed
in → Section 4.4. On the one hand, there are numerous initiatives and infrastructure
projects working to promote and refine linguistic, lexicographic, and metadata stan-
dards, such as the European CLARIN and DARIAH consortia. On the other hand, the
most important requirement for individual lexicographic projects is typically to de-
velop a data model that best suits the needs of these projects. This often results in a
data model tailored to a specific dictionary. Understandably, the applicability of the
data model for everyday work within the project plays a crucial role – and is some-
times more important than data exchange and interoperability with other projects. It
is always possible to transform a finely granulated, tailor-made data model into a re-
presentation using more general lexicographic standards, for example one that con-
forms to the TEI. Nonetheless, as discussed in → Section 4.3, this kind of conversion
can, at times, be fraught with the loss of highly specific annotations due to generalisa-
tions imposed by the standard and also due to deviating interpretations of certain data
categories. Thus, it remains to be seen to what extent international attempts at stan-
dardisation are embraced across the board.

The most compelling question for the future will be whether the highly granular
markup of lexicographic content remains a prerequisite for data to be machine acces-
sible in the first place. It is a long-standing belief in the lexicographic community that
the granular, standard-based modelling of lexicographic data fosters their usefulness
and applicability and ultimately leads to the data being much easier to process. Alas,
for many tasks in the field of automatic natural language processing (NLP), the best
results are often achieved by machine learning (ML) approaches based on manually
annotated (lexical) data. After being trained on a high-quality standard-based dataset,
the computer can then annotate, analyse, and retrieve unstructured, unannotated
data (the supervised ML approach). Today, with the advent of Large Language Models
(LLM), purely automatic, unsupervised ML approaches are gaining ground fast, i.e.
algorithms that are based on current neural network techniques and trained on huge
amounts of unstructured data. As such applications increasingly reduce the need for
manually prepared data, lexicography might, in the long term, lose its significance in
the field of the NLP. In fact, initial attempts to let LLMs create dictionary entries are
already promising (Lew 2023). However, the central role of data modelling in “produ-
cing” innovative digital lexicographic tools and resources that can be analysed and
understood by humans (as opposed to the black boxes that LLMs constitute) as well as
its role in the sustainable archiving of lexicographic content remains unaffected by
these developments for now.

4 Data Modelling 129

To return to the Lego analogy from the beginning of this chapter: at the moment,
it is (still) more effective to ensure that the red and blue bricks, and the 2 × 1s and 2 ×
2s are labelled so that the computer can grab them in a targeted way. Perhaps at
some point in the future, it will be more effective to either train the computer to iden-
tify the different types of bricks among the unsorted mass of Lego – or let the com-
puter figure out the solution entirely on its own.

Bibliography

Further reading

DARIAH-Campus. Paris: DARIAH ERIC (Digital Research Infrastructure for the Arts and Humanities
European Research Infrastructure Consortium). Online: https://campus.dariah.eu/. Online open-
source platform for learning resources on topics in the digital humanities.

Lemnitzer, Lothar/Romary, Laurent/Witt, Andreas (2013): Representing human and machine dictionaries in
Markup languages. In: Gouws, Rufus H., et al. (eds.): Dictionaries. An International Encyclopedia of
Lexicography. Supplementary Volume: Recent Developments with Focus on Computational Lexicography.
Berlin/Boston: De Gruyter, 1195–1208. In-depth summary of XML-based lexicographic data modelling.

Romary, Laurent (2011): Stabilizing knowledge through standards – A perspective for the humanities. In:
Grandin, Karl (ed.): Going Digital. Evolutionary and Revolutionary Aspects of Digitization. New York:
Science History Publications. Good, accessible introduction to standardisation issues in relation to
lexicography. https://doi.org/10.48550/arXiv.1011.0519 [last access: April 27, 2024].

Literature

Academic literature

Abel, Andrea (2012): Dictionary writing systems and beyond. In: Granger, Sylviane/Paquot, Magali (eds.):
Electronic Lexicography. Oxford: Oxford University Press, 81–106.

Alexa, Melina (2011): Modellierung eines semantischen Wissensnetzes für lexikographische Anwendungen
am Beispiel der Duden-Ontologie. In: Klosa, Annette/Müller-Spitzer, Carolin (eds.): Datenmodellierung
für Internetwörterbücher. 1. Arbeitsbericht des wissenschaftlichen Netzwerks “Internetlexikografie”.
Mannheim, 61–70. https://pub.ids-mannheim.de/laufend/opal/pdf/opal2011-2.pdf [last access:
April 27, 2024].

Eckle-Kohler, Judith, et al. (2012): UBY-LMF – A uniform model for standardizing heterogeneous lexical-
semantic resources in ISO-LMF. In: Proceedings of LREC 2012. Istanbul, 275–282.

Fellbaum, Christiane (1998): WordNet. An Electronic Lexical Database. Cambridge, Mass.: MIT Press.
Francopoulo, Gil (2013) (ed.): LMF Lexical Markup Framework. Oxford: Wiley.
Hämäläinen, Mika/Rueter, Jack (2018): Advances in Synchronized XML-media Wiki Dictionary Development

in the Context of Endangered Uralic Languages. In: Čibej, Jaka, et al. (eds.): Proceedings of the XVIII
EURALEX International Congress: Lexicography in Global Contexts: 17–21 July 2018, Ljubljana. Ljubljana:
Ljubljana University Press, 967–978.

130 Axel Herold, Peter Meyer, and Frank Wiegand

https://campus.dariah.eu/
https://pub.ids-mannheim.de/laufend/opal/pdf/opal2011-2.pdf

Kanngießer, Siegfried (1996): Zwei Prinzipien des Lexikonimports und Lexikonexports. In: Hötker, Wilfried/
Ludewig, Petra (eds.): Lexikonimport, Lexikonexport. Studien zur Wiederverwertung lexikalischer
Informationen. Tübingen: Niemeyer.

Kunze, Claudia/Lemnitzer, Lothar (2007): Computerlexikographie. Eine Einführung. Tübingen: Narr.
Lew, Robert (2023): ChatGPT as a COBUILD lexicographer. In: Humanities and Social Sciences

Communications 10, 705. https://doi.org/10.1057/s41599-023-02119-6 [last access: April 27, 2024].
McCrae, John Philip, et al. (2017). TheOntoLex-Lemon Model: development and applications. In:

Proceedings of eLex 2017, 587–597.
Ringersma, Jacqueline/Drude, Sebastian/Kemp-Snijders, Marc (2010): Lexicon standards: From de facto

standard Toolbox MDF to ISO standard LMF. Talk presented at LRT standard workshop, LREC’2010, Max
Planck Institute for Psycholinguistics, Nijmegen/Goethe-Universität, Frankfurt. https://pure.mpg.de/
rest/items/item_446072_8/component/file_446073/content [last access: April 27, 2024].

Robinson, Ian/Eifrem, Emil/Webber, Jim (2013): Graph Databases. Sebastopol, CA: O’Reilly & Associates.
Romary, Laurent/Wegstein, Werner (2012): Consistent Modeling of Heterogeneous Lexical Structures. In:

Journal of the Text Encoding Initiative [online] 3. https://doi.org/10.4000/jtei.540 [last access:
April 27, 2024].

Soria, Claudia/Monacchini, Monica/Vossen, Piek (2009): Wordnet-LMF: fleshing out a standardized format
for wordnet interoperability. In: Proceedings of IWIC, Stanford.

Spohr, Dennis (2012): Towards a Multifunctional Lexical Resource. Design and Implementation of a Graph-
based Lexicon Model. Berlin/Boston: De Gruyter.

Wiegand, Herbert Ernst (1989): Der Begriff der Mikrostruktur: Geschichte, Probleme, Perspektiven. In:
Hausmann, Franz Josef/Reichmann, Oskar/Wiegand, Herbert Ernst (eds.): Wörterbücher, Dictionaries,
Dictionnaires. Ein internationales Handbuch zur Lexikographie. 1. Teilbd. Berlin/New York: De Gruyter,
409–462.

Dictionaries

DDRS = Duden – Die deutsche Rechtschreibung: Das umfassende Standardwerk auf der Grundlage der aktuellen
amtlichen Regeln. 28., völlig neu bearbeitete und erweiterte Auflage. Berlin 2020: Bibliographisches
Institut.

DWB-ONLINE = Deutsches Wörterbuch von Jacob und Wilhelm Grimm online. In: Wörterbuchnetz des Trier
Center for Digital Humanities/Kompentenzzentrum für elektronische Erschließungs- und
Publikationsverfahrens in den Geisteswissenschaften an der Universität Trier. https://woerterbuchnetz.
de/DWB/ [last access: April 27, 2024].

DWDS = Das Digitale Wörterbuch der deutschen Sprache. Berlin-Brandenburgische Akademie der
Wissenschaften. https://www.dwds.de/ [last access: April 27, 2024].

ELEXIKO = Online-Wörterbuch zur deutschen Gegenwartssprache. In: OWID – Online Wortschatz-
Informationssystem Deutsch. Mannheim: Institut für Deutsche Sprache. http://www.elexiko.de/ [last
access: April 27, 2024].

WORDNET = WordNet. Princeton, NJ: Princeton University. https://wordnet.princeton.edu/ [last access:
April 27, 2024].

4 Data Modelling 131

https://pure.mpg.de/rest/items/item_446072_8/component/file_446073/content
https://pure.mpg.de/rest/items/item_446072_8/component/file_446073/content
https://woerterbuchnetz.de/DWB/
https://woerterbuchnetz.de/DWB/
https://www.dwds.de/
http://www.elexiko.de/
https://wordnet.princeton.edu/

Internet Sources

CLARIN = Common Language Resources and Technology Infrastructure. https://www.clarin.eu/ [last access:
April 27, 2024].

DARIAH = Digital Research Infrastructure for the Arts and Humanities. https://www.dariah.eu/ [last access:
April 27, 2024].

DBPEDIA = DBpedia Open Knowledge Graph. https://www.dbpedia.org/ [last access: April 27, 2024].
SIL = SIL International. https://www.sil.org/ [last access: April 27, 2024].
TEI (2023) = TEI Consortium (2023) (eds.): TEI P5: Guidelines for Electronic Text Encoding and Interchange.

Version 4.7.0. Last updated November 16, 2023, revision e5dd73ed0. TEI Consortium. https://www.tei-c.
org/release/doc/tei-p5-doc/en/html/index.html [last access: April 27, 2024].

TEI LEX-0 (2023) = Tasovac, Toma/Romary, Laurent, et al. (2023): TEI Lex-0: A baseline encoding for
lexicographic data. Version 0.9.2. DARIAH Working Group on Lexical Resources. https://dariah-eric.github.
io/lexicalresources/pages/TEILex0/TEILex0.html [last access: April 27, 2024].

UNICODE = The Unicode Consortium. Online: https://www.unicode.org/.
WIKIPEDIA = Wikipedia, the free Encyclopaedia. https://www.wikipedia.org/ [last access: April 27, 2024].
WIKIDATA = Wikidata Knowledge Base. https://www.wikidata.org/ [last access: April 27, 2024].

Images

Fig. 4.1 private.

132 Axel Herold, Peter Meyer, and Frank Wiegand

https://www.clarin.eu/
https://www.dariah.eu/
https://www.dbpedia.org/
https://www.sil.org/
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://www.tei-c.org/release/doc/tei-p5-doc/en/html/index.html
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://dariah-eric.github.io/lexicalresources/pages/TEILex0/TEILex0.html
https://www.unicode.org/
https://www.wikipedia.org/
https://www.wikidata.org/

