
9 Bott–Maslov index via spectral flow

This chapter develops the theory of the Bott–Maslov and Conley–Zehnder indices in
the framework of a complex infinite-dimensional Krein space. It hence generalizes
many of the results of Chapter 2 by imposing suitable Fredholm conditions. Standard
monographs on Krein spaces are [29, 20]. The infinite-dimensional Bott–Maslov index
was introduced and studied by Swanson [187], Nicolaescu [138], Booß-Bavnbek and Fu-
rutani [30], Kirk and Lesch [113], and Furutani [90], see also [137, 33, 168, 203]. Apart
from these fundamental references, other literature is cited in the text below. Works
on the finite-dimensional case are already mentioned in Chapter 2. As an application
of the infinite-dimensional theory, Section 9.7 develops oscillation theory for the bound
states of a high-dimensional scattering setup. Let us note that numerous other ap-
plications can be found in the literature, in particular, most notably in Morse theory
[138, 113].

9.1 Krein spaces and operators thereon

In this chapter, the separable complex Hilbert spaceK is supposed to be equipped with
a proper symmetry J = J∗ = J−1 ∈ 𝔹(K), namely one which has infinite-dimensional
eigenspaces for the eigenvalues 1 and −1. We will always assume to be in the spectral
representation of J so that

J = (1 0
0 −1
) .

Thus J introduces a grading of K, namely K = H+ ⊕H−. Because J is proper, bothH+
and H− are infinite dimensional and therefore they can be naturally identified with a
separable Hilbert spaceH, namelyK = H ⊕H. One then calls the couple (K, J) a com-
plex Krein space with fundamental symmetry J . Let us note that this excludes the class
of infinite-dimensional Pontryagin spaces [29, 20] where one of the fibersH+ orH− is
finite-dimensional. However, later on (in particular, in Section 9.2) Pontryagin subspaces
of a Krein space and their Krein signature will be relevant.

Definition 9.1.1. Let P be an orthogonal projection on a Krein space (K, J) and let Φ be
a normalized frame for P, namely P = ΦΦ∗.
(i) P is called J -invariant if and only if PJ = JP.
(ii) P is called nondegenerate if 0 ̸∈ spec(Φ∗JΦ).
(iii) A nondegenerate orthogonal projection P is called a Pontryagin projection if and

only if Φ∗JΦ has only a finite number of positive eigenvalues or a finite number of
negative eigenvalues. Then the Krein signature of a Pontryagin projection P is

KSig(P) = Sig(Φ∗JΦ) ∈ ℤ ∪ {−∞, +∞}.
Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative

Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783111172477-009

https://doi.org/\global \c@doi \c@chapter \relax \global \advance \c@doi \c@parttext \relax 10.1515/9783111172477-000


278 � 9 Bott–Maslov index via spectral flow

(iv) A Pontryagin projection is called Krein-definite if Φ∗JΦ is either positive or negative
definite, or equivalently if the restricted quadratic form J |Ran(P) is either positive or
negative definite.

Identifying orthogonal projections with their range, all these notions directly transpose
to closed subspaces E ofK.

Note that every J -invariant projection is nondegenerate. In this section, Pontryagin
spaces and their Krein signature will not play any role, yet. The focus here is rather on
the analysis of linear operators on the Krein space that preserve J as a quadratic form.

Definition 9.1.2. A bounded invertible operator T ∈ 𝔹(K) on a Krein space (K, J) is
called J -unitary if

T∗JT = J . (9.1)

The set of J -unitary operators on K is denoted by 𝕌(K, J) and it will be equipped with
the norm metric dN and the associated norm topology ON .

Let us stress that 𝕌(K, J) does not denote the unitary operators on K viewed as a
Hilbert space. These latter operators are simply denoted by𝕌(K). Also note that the rela-
tion (9.1) alone does not imply that T is invertible. For example, setK = ℓ2(ℕ)⊕ℓ2(ℕ) in
the grading of J and define T = S ⊕ S where S denotes the right-shift on ℓ2(ℕ). Then (9.1)
holds butT is not invertible andhencenot in𝕌(𝕂, J).Manyof the basic algebraic proper-
ties of J -unitaries transfer from the finite-dimensional case. In particular, the spectrum
satisfies (2.16) and the Riesz projection of T ∈ 𝕌(K, J) are those given in Proposition 2.2.2.
Furthermore,𝕌(K, J) is clearly a subgroup of the set𝔾(K) of invertible operators onK.
One can also rewrite the definition of𝕌(K, J) as follows.

Proposition 9.1.3. The group 𝕌(K, J) is invariant under taking adjoints. In the grading
of J, one has

𝕌(K, J) = {(A B
C D
) ∈ 𝔾(K) : A∗A − C∗C = 1, D∗D − B∗B = 1, A∗B = C∗D}

= {(
A B
C D
) ∈ 𝔾(K) : AA∗ − BB∗ = 1, DD∗ − CC∗ = 1, AC∗ = BD∗} ,

and in this representation A and D are invertible and satisfy ‖A−1‖ ≤ 1, ‖D−1‖ ≤ 1. Also
‖A−1B‖ < 1, ‖D−1C‖ < 1, ‖BD−1‖ < 1, and ‖CA−1‖ < 1.
Proof. Inverting T∗JT = J shows T−1J(T∗)−1 = J so that J = TJT∗. The fact that A is
invertible follows from AA∗ ≥ 1 and A∗A ≥ 1. Analogously, one shows that D is invert-
ible. Furthermore, AA∗ − BB∗ = 1 implies that A−1B(A−1B)∗ = 1 − A−1(A−1)∗ < 1, so that
‖A−1B‖ < 1. The same argument leads to the other inequalities.
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As in finite dimension (Proposition 2.2.5), the polar decomposition of J -unitary op-
erators only involves J -unitary operators. In fact, the proof in finite dimension is based
on Lemma 2.2.6 which directly generalizes to the Krein space framework.

Proposition 9.1.4. Let T ∈ 𝕌(K, J) have the polar decomposition T = W |T |, namely
where |T | = (T∗T) 12 and W is unitary. Then |T | ∈ 𝕌(K, J) and W ∈ 𝕌(K, J) ∩ 𝕌(K).

Now let us turn to study the topology of (𝕌(K, J),ON ) and some of its subspaces. As
in the finite-dimensional case, one has the following.

Corollary 9.1.5. The group (𝕌(K, J),ON ) is path connected.

Proposition 9.1.6. The group (𝕌(K, J) ∩ 𝕌(K),ON ) is contractible and given by

𝕌(K, J) ∩ 𝕌(K) = {diag(V+,V−) ∈ 𝕌(K) : V+,V− ∈ 𝕌(H)}.
Proof. Let us fist note that𝕌(K, J)∩𝕌(K) is the set of unitaries commutingwith J . These
are the, in the grading of J , diagonal unitaries, just as stated. Therefore the contractibility
of𝕌(K, J) ∩ 𝕌(K) follows as𝕌(H) is contractible by Kuiper’s theorem.

Let us next consider another subgroup of𝕌(K, J), namely the set of J -unitary oper-
ators that are compact perturbations of the identity,

𝕌C(K, J) = {1 + K invertible : K ∈ 𝕂(K), (1 + K)∗J(1 + K) = J}.
This is the norm-closure of the finite-dimensional J -unitaries, under suitable embedding
of the latter in𝕌(K, J). Proposition 9.1.4 directly implies the following result.

Corollary 9.1.7. Let T ∈ 𝕌C(K, J) have the polar decomposition T = W |T |, then one has
|T | ∈ 𝕌C(K, J) and W ∈ 𝕌C(K, J) ∩ 𝕌(K).

The next result follows from Corollary 9.1.7 combined with (8.1).

Proposition 9.1.8. The space (𝕌C(K, J) ∩𝕌(K),ON ) is a deformation retract of the space
(𝕌C(K, J),ON ). The homotopy groups of (𝕌

C(K, J),ON ) are

πk(𝕌
C(K, J)) = {

ℤ ⊕ ℤ, k odd,
0, k even.

Proof. Using the polar decomposition in𝕌C(K, J) as given in Corollary 9.1.7 and deform-
ing the radial part shows that𝕌C(K, J) can be retracted to𝕌C(K, J) ∩ 𝕌(K). Moreover,
Proposition 9.1.6 shows that 𝕌C(K, J) ∩ 𝕌(K) = 𝕌C(H) × 𝕌C(H) where K = H ⊕ H.
Therefore, the claim follows from (8.1).

Next let us come to the Lie algebra of𝕌(K, J).
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Definition 9.1.9. A bounded operator H ∈ 𝔹(K) on a Krein space (K, J) is called J -self-
adjoint if

JH∗J = H . (9.2)

The set of J -self-adjoint bounded operators on K is denoted by 𝔹sa(K, J) and it is
equipped with the norm metric dN and the associated norm topology ON .

There is a close connection between J -self-adjoint operators and self-adjoint opera-
tors on K. More precisely, H is J -self-adjoint if and only if S = JH is self-adjoint. Let us
note that𝔹sa(K, J) is anℝ-vector space. Moreover,𝔹sa(K, J) is the Lie algebra of𝕌(K, J)
in the sense that

H ∈ 𝔹sa(K, J) 󳨐⇒ e𝚤H ∈ 𝕌(K, J).
If H ∈ 𝔹sa(K, J) is such that H + 𝚤1 ∈ 𝔹(K) is invertible, also the Cayley transform
C(H) = (H−𝚤1)(H+𝚤1)−1 lies in𝕌(K, J). Finally, the set𝔹sa(K)∩𝔹sa(K, J) is the real vector
space which is the Lie algebra of𝕌(K)∩𝕌(K, J), namelyH ∈ 𝔹sa(K)∩𝔹sa(K, J) implies
e𝚤H ∈ 𝕌(K) ∩𝕌(K, J). Statements and formulas similar to those in Proposition 9.1.3 also
hold for operators in the Lie algebra 𝔹sa(K, J).

Proposition 9.1.10. The ℝ-vector space 𝔹sa(K, J) is invariant under taking adjoints. In
the grading of J, one has

𝔹sa(K, J) = {(
A B
C D
) : A = A∗, D = D∗, B = −C∗} .

Proof. The claim follows directly by writing out (9.2).

There is another natural class of bounded operators on the Krein spaceK = H⊕H,
namely for a given operator B ∈ 𝔹(H) one can set

H = ( 0 B
B∗ 0
) .

By construction, H = H∗ is self-adjoint and satisfies JHJ = −H , namely 𝚤H is J -self-
adjoint. In a quantum-mechanical setting, the operator H is then called a Hamiltonian
and the relation JHJ = −H either a supersymmetry [67] or a chiral symmetry [152]. This
motivates the following definition.

Definition 9.1.11. A self-adjoint operator H ∈ 𝔹sa(K) satisfying JHJ = −H is called chi-
ral.

Chiral operators clearly have a spectral symmetry spec(H) = − spec(H) ⊂ ℝ. A par-
ticular example of a chiral operator is a chiral symmetry. For every chiral symmetry Q,
there is a unitary operator U onH such that
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Q = ( 0 −U
−U∗ 0

) . (9.3)

As will be discussed below, there is a tight connection between invertible chiral oper-
ators and J -Lagrangian projections, and this also explains why we choose to add the
minus sign in (9.3).

9.2 J-isotropic subspaces

Definition 9.2.1. A closed subspace E of a Krein space (K, J) is called J -isotropic if J
viewed as a hermitian sesquilinear form vanishes when restricted to E. More explicitly,
for all ϕ,ψ ∈ E, one has ϕ∗Jψ = 0. Two closed subspaces E and E′ are called J -orthogonal
if and only if ϕ∗Jψ = 0 for all ϕ ∈ E and ψ ∈ E′.

Let us note that any subspace on which J vanishes can be closed and its closure
will then be J -isotropic so that it is natural to require closedness in Definition 9.2.1. Fur-
thermore, every J -isotropic subspace is J -orthogonal to itself. As there is a bijection be-
tween closed subspaces of a Hilbert space and orthogonal projections (self-adjoint idem-
potents), the following definition is hence in line with the above.

Definition 9.2.2. An orthogonal projection P is called J -isotropic if PJP = 0. The set of
J -isotropic projections will be denoted by 𝕀(K, J). Two orthogonal projections P and P′
are called J -orthogonal if and only if PJP′ = 0.

One has the following characterization of J -isotropic projections.

Lemma 9.2.3. An orthogonal projection P is J-isotropic if and only if

P ≤ J(1 − P)J .

Proof. First note that J(1 − P)J is an orthogonal projection. Moreover, P ≤ J(1 − P)J is
equivalent to Ran(P) ⊂ Ran(J(1 − P)J) because if P ≤ J(1 − P)J holds and ϕ1 ∈ Ran(P) is
a vector in the range of P then one has

‖ϕ1‖
2 = ⟨ϕ1|Pϕ1⟩ ≤ ⟨ϕ1

󵄨󵄨󵄨󵄨 J(1 − P)Jϕ1⟩ ≤ ‖ϕ1‖
2󵄩󵄩󵄩󵄩J(1 − P)J

󵄩󵄩󵄩󵄩 = ‖ϕ1‖
2.

Therefore, as the Cauchy–Schwarz inequality is an equality in this case, J(1− P)Jϕ1 = ϕ1
and ϕ1 is in the range of J(1−P)J . Conversely, assume that Ran(P) ⊂ Ran(J(1−P)J) holds.
Then for ϕ = ϕ0 + ϕ1 ∈ H with ϕ0 ∈ Ker(P) and ϕ1 ∈ Ran(P), one has J(1 − P)Jϕ1 = ϕ1
and therefore

⟨ϕ󵄨󵄨󵄨󵄨 J(1 − P)Jϕ⟩
= ⟨ϕ1
󵄨󵄨󵄨󵄨 J(1 − P)Jϕ1⟩ + ⟨ϕ0

󵄨󵄨󵄨󵄨 J(1 − P)Jϕ1⟩ + ⟨ϕ1
󵄨󵄨󵄨󵄨 J(1 − P)Jϕ0⟩ + ⟨ϕ0

󵄨󵄨󵄨󵄨 J(1 − P)Jϕ0⟩
= ⟨ϕ1|ϕ1⟩ + ⟨ϕ0|ϕ1⟩ + ⟨ϕ1|ϕ0⟩ + ⟨ϕ0

󵄨󵄨󵄨󵄨 J(1 − P)Jϕ0⟩
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= ⟨ϕ1|ϕ1⟩ + ⟨ϕ0
󵄨󵄨󵄨󵄨 J(1 − P)Jϕ0⟩ ≥ ⟨ϕ1|ϕ1⟩

= ⟨ϕ|Pϕ⟩,

thus P ≤ J(1 − P)J follows. We show

P ≤ J(1 − P)J ⇐⇒ P = PJ(1 − P)JP = P − PJPJP. (9.4)

Let us first suppose that P = PJ(1 − P)JP holds. Then for ϕ1 ∈ Ran(P), one obtains
the equalities ϕ1 = Pϕ1 = PJ(1 − P)Jϕ1 = J(1 − P)Jϕ1 where the last step follows as
‖J(1 − P)Jϕ1‖ ≤ ‖ϕ1‖. This implies Ran(P) ⊂ Ran(J(1 − P)J) and therefore P ≤ J(1 − P)J .
Conversely, P ≤ J(1−P)J implies Ran(P) ⊂ Ran(J(1−P)J) and therefore J(1−P)Jϕ1 = ϕ1 for
ϕ1 ∈ Ran(P). Thus Pϕ1 = PJ(1−P)JPϕ1 follows. As Pϕ0 = 0 = PJ(1−P)JPϕ0 forϕ0 ∈ Ker(P)
is obvious, P = PJ(1 − P)JP follows. This concludes the proof of (9.4). If P is J -isotropic,
the right-hand side of (9.4) is obviously correct and therefore P ≤ J(1 − P)J holds. Con-
versely, P ≤ J(1 − P)J implies by (9.4) that 0 = PJPJP = (PJP)2, as PJP is self-adjoint, and
this implies that P is J -isotropic.

Associated to a given J -unitary operator T ∈ 𝕌(K, J) there are numerous J -isotropic
subspaces. Recall that a subset Δ ⊂ spec(T) is called separated spectral subset if it is a
closed subset and has trivial intersection with the closure of spec(T) \ Δ.

Proposition 9.2.4. Let T ∈ 𝕌(K, J) and Δ, Δ′ ⊂ spec(T) be separated spectral subsets. Set
Δ−1 = {z ∈ ℂ : z−1 ∈ Δ}.
(i) If Δ′ ∩ Δ−1 = 0, then the associated Riesz projections of T satisfy

(RΔ)
∗JRΔ′ = 0.

(ii) If Δ ∩ Δ−1 = 0, then the range of the Riesz projection RΔ is J-isotropic.
(iii) If Δ ∩ Δ−1 = 0, then the projection on the cokernel of RΔ is J-isotropic.
(iv) Suppose that spec(T) = Δ ∪ Δ′ and

Δ = Δ−1, Δ′ = Δ′−1, Δ ∩ Δ′ = 0.
Furthermore, let RΔ only have finite-dimensional range. Then both Ran(RΔ) and
Ran(RΔ′ ) are nondegenerate.

Proof. First of all, let us note that Proposition 2.2.2 remains valid for infinite-dimensional
Krein spaces by the same proof, namely the Riesz projections satisfy

(RΔ)
∗ = JR

Δ
−1 J .

Therefore

(RΔ)
∗JRΔ′ = JRΔ−1 JJRΔ′ = JRΔ−1RΔ′ = 0,
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the latter by the assumption and the properties of the Riesz projections, see Ap-
pendix A.1. The claim (ii) is now a direct consequence and (iii) follows from the identity
RΔJ(RΔ)

∗ = 0 obtained in a similar manner.
(iv) By item (i), Ran(RΔ) and Ran(RΔ′ ) are J -orthogonal. Moreover, these two sub-

spaces span allK due to RΔ + RΔ′ = 1 which follows from Proposition A.1.1(iii). Suppose
that Ran(RΔ) is not nondegenerate. Then there exists a nonvanishing vector ϕ ∈ Ran(RΔ)
such that (ϕ′)∗Jϕ = 0 for all ϕ′ ∈ Ran(RΔ) and hence ϕ is J -orthogonal to all vectors inK.
This is a contradiction to the fact that J is invertible. Now let Φ be a normalized frame
with Ran(ϕ) = Ran(RΔ′ ). Then ΦΦ∗JΦΦ∗ − J is finite dimensional. Hence the essential
spectrum of ΦΦ∗JΦΦ∗ is {−1, 1}. But spec(Φ∗JΦ) ∪ {0} = spec(ΦΦ∗JΦΦ∗), unless Δ = 0.
However, by the same argument as above, Ker(Φ∗JΦ) = {0}. Taking these facts together,
one deduces that also RΔ′ is nondegenerate.
Remark 9.2.5. Results similar to Proposition 9.2.4 also hold for a J -self-adjoint opera-
tor H . One merely has to replace the spectral reflection on the unit circle 𝕊1 by a reflec-
tion on the real axis, namely by complex conjugation. For example, let Δ ⊂ spec(H) be a
spectral subset such that Δ ∩ Δ = 0 where the complex conjugate is Δ = {z ∈ ℂ : z ∈ Δ}.
Then the range and cokernel of the Riesz projection RΔ of H are J -isotropic subspaces.
Several of the results below transfer in the sameway, even though thiswill not be spelled
out. The reader may consult [29, 175]. ⬦

Next let us note that for a J -isotropic orthogonal projection P, also P + JPJ is an or-
thogonal projection. Its range is a J -invariant subspace, and so is therefore its orthogonal
complement which will be denoted

FP = Ran(P + JPJ)
⊥ = Ker(P) ∩ Ker(JPJ).

Definition 9.2.6. A J -isotropic projection P is called semi-Fredholm ifFP is a Pontryagin
space, and it is called Fredholm if FP is finite dimensional.

Let us establish an elementary link between the Fredholm property of J -isotropic
projections and Fredholm pairs of projections.

Proposition 9.2.7. A J-isotropic projection P is Fredholm if and only if (1 − P, JPJ) is a
Fredholm pair. Its index is given by

Ind(1 − P, JPJ) = dim(FP).

Proof. The characterization of the Fredholm property given in Proposition 5.3.2 can be
readily checked and

Ind(1 − P, JPJ) = dim(Ran(1 − P) ∩ Ker(JPJ)) − dim(Ran(JPJ) ∩ Ker(1 − P))
= dim(Ker(P) ∩ Ker(JPJ)) − dim(Ran(JPJ) ∩ Ran(P)),

which is indeed equal to dim(FP) because JPJ and P are orthogonal.
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The invariant Ind(1−P, JPJ) is, however, not the only interesting integer that can be
associated to a Fredholm J -isotropic projection. Even for any semi-Fredholm J -isotropic
projection P, one can furthermore consider the Krein signature

KSig(1 − P − JPJ) = Sig(J |FP
) ∈ ℤ ∪ {−∞, +∞}.

It turns out that these two quantities are related for the following class of J -isotropic
subspaces.

Definition 9.2.8. A J -isotropic subspace E is called maximally J -isotropic if there is
no J -isotropic subspace F with E ⊂ F and E ̸= F. A projection P is called maximally
J -isotropic if its range is maximally J -isotropic. The set of all Fredholm maximally
J -isotropic projections will be denoted by

𝔽𝕀(K, J) = {P ∈ ℙ(K) : P maximally J -isotropic and Fredholm}.

It is equipped with the norm topology ON .

Proposition 9.2.9. A J-isotropic projection P is maximal if and only if 1 − (P + JPJ) is a
Krein-definite Pontryagin projection.Moreover, for everymaximally J-isotropic projection
P, one has

Ind(1 − P, JPJ) = 󵄨󵄨󵄨󵄨KSig(1 − P − JPJ)
󵄨󵄨󵄨󵄨.

Proof. Note that 1 − (P + JPJ) is the projection onto FP . The J -isotropic projection P is
not maximal if and only if there exists a nontrivial subspace ofFP that is J -orthogonal to
itself. For any unit vector ϕ in this subspace, P + ϕϕ∗ is a J -isotropic projection. Then Jϕ
and ϕ are linearly independent vectors fromFP , and J restricted to the two-dimensional
subspace spanned by ϕ and Jϕ has eigenvalues 1 and −1, so that FP is not Krein-definite.
Conversely, if FP is not Krein-definite, there is a unit vector ϕ ∈ FP that is J -orthogonal
to itself. Then P + ϕϕ∗ is a J -isotropic projection and P is not maximal. The claim about
Ind(1 − P, JPJ) directly follows from Proposition 9.2.7.

For a finite-dimensional H, every maximally J -isotropic subspace is of dimension
dim(H) and is hence J -Lagrangian in the sense that JPJ = 1 − P holds for its range
projection P, see Definition 9.3.1 below. However, in infinite dimension there are more
maximally J -isotropic subspaces, namely maximally J -isotropic subspaces that are not
J -Lagrangian (other than incorrectly stated in Section 2 of [168]). This shows the follow-
ing example.

Example 9.2.10. Let us fix an orthonormal basis {bl : l ∈ ℕ} of Ker(J − 1) and an or-
thonormal basis {el : l ∈ ℕ} of Ker(J + 1). For k ∈ ℕ, let us then define Pk as the
projection onto Ran(Pk) = span{bl + el−k : l ∈ ℕ, l > k}. As (1 − Pk)J(1 − Pk)bl = bl for all
l = 1, . . . , k, one has (1−Pk)J(1−Pk) ̸= 0. (ThusPk is not J -Lagrangian.) One directly checks
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that Pk is J -isotropic and, equivalently, Ran(Pk) is J -isotropic. Because of the orthogonal
decomposition

K = Ran(Pk) ⊕ Ran(JPkJ) ⊕ span{b1, . . . , bk}, (9.5)

there is no extension of Ran(Pk) to a J -isotropic subspace, namely Ran(Pk) is maximally
J -isotropic. Along the same lines, it is also possible to construct an example of a maxi-
mally J -isometric projection P∞ such that Ran(P∞) ⊕ Ran(JP∞J) has infinite codimen-
sion, by setting, e. g., Ran(P∞) = span{bl + e2l : l ∈ ℕ}. ⬦

The maximally J -isotropic projections Pk constructed in Example 9.2.10 are Fred-
holm for k < ∞ and their Krein signature is k > 0. In the same manner, it is also possi-
ble to construct maximally J -isotropic projections with negative Krein signature. On the
other hand, P∞ is not Fredholm and has Krein signature +∞.

Proposition 9.2.11. The space (𝔽𝕀(K, J),ON ) hasℤ connected components labeled by the
Krein signature, that is, the map K : π0(𝔽𝕀(K, J)) → ℤ given by

K(P) = KSig(1 − P − JPJ)

is an isomorphism.

Proof. It is shown that everyP ∈ 𝔽𝕀(K, J)withKSig(1−P−JPJ) = k is unitarily equivalent
to a fixed maximally J -isotropic projection Pk with KSig(1 − Pk − JPkJ) = k via a unitary
that commutes with J (Example 9.2.10 constructs such projections Pk for k ≥ 0). From
this unitary equivalence, one readily constructs the desired connecting path by taking a
root of the unitary. For the construction of the unitary, it is convenient to use normalized
frames (see Definition 5.1.5). Hence let Φk be a normalized frame for Pk , namely one has
Pk = ΦkΦ

∗
k . Then JΦk is a normalized frame for JPkJ . Further set Ψk = (Φk , JΦk)

⊥ which
is then a normalized frame for the orthogonal projection onto the finite-dimensional
space FPk . Note that JΨk = sgn(k)Ψk . Similarly, let Φ, JΦ and Ψ be associated to P. Then
one checks that U = (Φ, JΦ,Ψ)(Φk , JΦk ,Ψk)

∗ is well defined, unitary, commutes with J ,
and satisfies UPkU

∗ = P.
Given a maximally J -isotropic projection P, one can set

TP =
1
2
P + 2JPJ + (1 − P − JPJ), (9.6)

and then readily checks that TP ∈ 𝕌(K, J) is J -unitary. The same holds, e. g., for the oper-
ator zP+z−1JPJ+e𝚤φ(1−P−JPJ)where z is a complex numberwith |z| ∈ (0, 1) and e𝚤φ ∈ 𝕊1
a phase. Even further, one can spread out the spectrum on the unit circle within the class
of J -unitary operators. On the other hand, it is impossible for these unit eigenvalues to
leave the unit circle under any perturbation within the set of J -unitaries. Indeed, each
such eigenvalue λ would lead to another eigenvalue λ

−1
by (2.16), and a more detailed
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elementary analysis shows that the J -inertia on the joint eigenspace has to be (1, 0, 1)
which is impossible because Ran(1 − P − JPJ) is a J -definite subspace. This is the essence
of Krein stability which associates a signature to each unit eigenvalue of a J -unitary
operator, for details see, e. g., [168]. In Definition 9.2.12 below, the Krein signature is not
associated to a single eigenvalue on the unit circle, but rather jointly to all eigenvalues
on 𝕊1, which corresponds to taking the sum of all Krein signatures of unit eigenval-
ues. The example of TP suggests the following natural situation in which Fredholm
J -isotropic projections appear. This is relevant for applications, such as in [168, 175].

Definition 9.2.12. A J -unitary operator T ∈ 𝕌(K, J) is said to be essentially 𝕊1-gapped if
it only has discrete spectrum (isolated eigenvalues of finite algebraic multiplicity) on 𝕊1.
The total Krein signature of such an essentially 𝕊1-gapped J -unitary T is

KSig(T) = KSig(P=),
where P= denotes the finite-dimensional range projection of all eigenvalues on the unit
circle 𝕊1.

Let us note that Proposition 9.2.4(iv) applies directly, in particular, to an essentially
𝕊1-gapped operator T ∈ 𝕌(K, J) if one chooses Δ = 𝕊1∩spec(T) and Δ′ = spec(T)\Δ. Thus
Ran(P=) = Ran(RΔ) and Ran(RΔ′ ) are J -orthogonal and nondegenerate. As P= is finite
dimensional, it is hence a Pontryagin projection with a well-defined Krein signature.
Therefore KSig(T) is well defined.

Proposition 9.2.13. Let T ∈ 𝕌(K, J) be an essentially 𝕊1-gapped J-unitary. Then let R<
and R> be the Riesz projections of T associated to the spectral subsets spec(T) ∩ B1(0)
and spec(T) \ B1(0), respectively, and let P

< and P> be the orthogonal projections onto
the subspaces E< = Ran(R<) and E> = Ran(R>). Further let P= be the finite-dimensional
range projection of all eigenvalues on the unit circle 𝕊1. The (total) Krein signatureKSig(T)
of the essentially 𝕊1-gapped J-unitary T is continuous in T. The projections P< and P> are
Fredholm J-isotropic projections,which aremaximal (namely in𝔽𝕀(K, J)) if the restriction
J |Ran(P=) of the quadratic form J to Ran(P=) is definite.
Proof. The fact that P< and P> are J -isotropic follows from Proposition 9.2.4 applied to
Δ = spec(T)∩B1(0). The Fredholmproperty follows directly from the hypothesis because
JP<J is the orthogonal projection onto Ker(R>)⊥ and thus FP< = Ker(R>) ∩ Ran(R<)⊥
is finite dimensional as P= is finite dimensional. The same argument shows that also
FP> = Ker(R<) ∩ Ran(R>)⊥ is finite dimensional. Now an eigenvalue λ of T can leave
𝕊1 only together with its reflected λ

−1
(Krein collision). But on the span of the two cor-

responding eigenvectors, J has vanishing signature (this requires an addendum to the
argument leading to Proposition 9.2.4, see [168]). Even though this process changes the
projection P=, it does therefore not change the Krein signature KSig(T). Once J is definite
on the range of P=, no eigenvalue can leave the unit circle and neither P< nor P> can be
enlarged, and are thus maximal.
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Admittedly, the above proof of Proposition 9.2.13 is only a sketch of what is the heart
of the celebrated Krein stability result [118]. The reader interested in further details is
referred to [168, 175].

Remark 9.2.14. Once again, one can also introduce essentiallyℝ-gappedbounded J -self-
adjoint operators, namely those bounded J -self-adjoints that only have discrete spec-
trum of finite multiplicity on ℝ. Then one can consider their global Krein signature.
Using Riesz projections for the upper and lower half-plane, as well as a perturbative
argument for the real eigenvalues of indefinite signature, one can show that the set
of all essentially ℝ-gapped bounded J -self-adjoint operators can be retracted to the set
𝔽𝕀(K, J), if the latter is identified with the J -self-adjoint operators H = 𝚤P − 𝚤JPJ (this
is similar to (9.6)). Moreover, it is possible to show by analytic Fredholm theory that
the set of all essentially ℝ-gapped bounded J -self-adjoint operators is equal to the set
{H ∈ 𝔹sa(K, J) : H−λ1 ∈ 𝔽𝔹(K) for all λ ∈ ℝ}. Detailed proofs can be found in [175]. Such
a characterizationwith a Fredholmproperty is not possible for the essentially𝕊1-gapped
J -unitaries, see [168] for a counterexample. It is likely also not true that the essentially
𝕊1-gapped J -unitaries can be retracted to 𝔽𝕀(K, J). ⬦

9.3 J-Lagrangian subspaces

Definition 9.3.1. Projection P = P∗ = P2 ∈ ℙ(K) is called J -Lagrangian if and only
if JPJ = 1 − P. A closed subspace is called J -Lagrangian if its range projection is
J -Lagrangian. The J -Lagrangian Grassmannian is defined as

ℙ(K, J) = {P = P∗ = P2 ∈ 𝔹(K) : JPJ = 1 − P}.
It is equipped with the metric dN and thus the norm topology ON .

A Fredholmmaximally J -isotropic projection P is J -Lagrangian if and only if one has
KSig(1 − P − JPJ) = 0. Clearly, one can reformulate Definition 9.3.1 as

P J -Lagrangian ⇐⇒ P + JPJ = 1.

The definition implies that 1−P is J -Lagrangian if and only if P is J -Lagrangian. Further-
more, every J -Lagrangian projection P provides a chiral symmetry Q = 1 − 2P, and vice
versa. More generally, the negative spectral projection P = χ(H < 0) of an invertible chi-
ral operatorH is J -Lagrangian. Definition 9.3.1 can further be reformulated algebraically.
In view of (9.3), every J -Lagrangian projection is of the form

P = 1
2
(
1 U
U∗ 1
) , (9.7)
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where U is a unitary on H, see also Proposition 9.3.4 below. Let us next give another
characterization of J -Lagrangian projections.

Lemma 9.3.2. An orthogonal projection P is J-Lagrangian if and only if

PJP = 0 and (1 − P)J(1 − P) = 0,

or alternatively if and only if the restrictions J |Ran(P) and J |Ran(1−P) of the quadratic form
J vanish.

Proof. Multiplying JPJ = 1 − P by P from the left and J from the right shows PJP = 0.
Proceeding similarly with P = J(1 − P)J shows (1 − P)J(1 − P) = 0. Conversely,

JPJ = JPJP + JPJ(1 − P)

= JPJ(1 − P)

= J(P + 1 − P)J(1 − P)

= (1 − P),

showing the claimed equivalence.

The following result describes a natural situation in which J -Lagrangian subspaces
arise. It is the infinite-dimensional analogue of Proposition 2.2.3.

Proposition 9.3.3. Let T ∈ 𝕌(K, J) satisfy spec(T) ∩ 𝕊1 = 0. Then let R< and R> be the
Riesz projections of T associated to the separated spectral subsets spec(T) ∩ B1(0) and
spec(T) \ B1(0), respectively, and let P

< and P> be the orthogonal projections onto the
subspaces E< = Ran(R<) and E> = Ran(R>). Then P< and P> are J-Lagrangian.
Proof. This follows directly from Proposition 9.2.13.

Next let us consider the set of all J -Lagrangian subspaces. Due to (9.7), the J -La-
grangian Grassmannianℙ(K, J) onK can naturally be identified with the unitary group
onH.

Proposition 9.3.4. The stereographic projection Π : ℙ(K, J) → 𝕌(H) defined by

Π(P) = U , P = 1
2
(
1 U
U∗ 1
) ,

is a bijective isometry.

Proof. The stereographic projection is surjective because, for U ∈ 𝕌(H),

P = 1
2
(
1 U
U∗ 1
) ∈ ℙ(K, J)
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is a Lagrangian projection and Π(P) = U . Moreover, the stereographic projection is in-
jective as, for P, P′ ∈ ℙ(K, J) with U = Π(P) and U ′ = Π(P′), one has

󵄩󵄩󵄩󵄩P − P
′󵄩󵄩󵄩󵄩 = 12 󵄩󵄩󵄩󵄩Π(P) − Π(P′)󵄩󵄩󵄩󵄩 = 12 󵄩󵄩󵄩󵄩U − U ′󵄩󵄩󵄩󵄩.

Therefore Π is injective. In conclusion, the stereographic projection is a bijection. The
above identity also shows that it is bi-Lipshitz-continuous.

The spectral theory in𝕌(H) is of importance for the intersection of two Lagrangian
subspaces, as shows the following result which is at the heart of intersection theory
of J -Lagrangian subspaces and hence of crucial relevance for the Bott–Maslov index
introduced and analyzed in the next section.

Proposition 9.3.5. Let P0 and P1 be J-Lagrangian projections with stereographic projec-
tions U0 = Π(P0) and U1 = Π(P1). One has

dim(Ran(P0) ∩ Ker(P1)) = dim(Ker(U
∗
1 U0 + 1))

= dim(Ker(U1U
∗
0 + 1)),

or alternatively

dim(Ran(P0) ∩ Ran(JP1J)) = dim(Ker(U
∗
1 U0 + 1)).

Proof. A vector ϕ = (ϕ1ϕ2) ∈ K with ϕ1,ϕ2 ∈ H is in the range of P0 if and only if

P0ϕ =
1
2
(
ϕ1 + U0ϕ2
U∗0 ϕ1 + ϕ2) = (ϕ1ϕ2)

which is equivalent to U0ϕ2 = ϕ1. Then

P1ϕ =
1
2
(
ϕ1 + U1ϕ2
U∗1 ϕ1 + ϕ2) = 0

if and only if −U∗1 ϕ1 = ϕ2. In conclusion, ϕ ∈ Ran(P0) ∩ Ker(P1) implies ϕ2 = −U∗1 U0ϕ2
and dim(Ran(P0) ∩ Ker(P1)) ≤ dim(Ker(U

∗
1 U0 + 1)). Conversely, for ϕ2 ∈ Ker(U

∗
1 U0 + 1),

one has U0ϕ2 = −U1ϕ2 and therefore ϕ = (U0ϕ2ϕ2
) ∈ Ran(P0) ∩ Ker(P1). This implies that

dim(Ran(P0) ∩ Ker(P1)) ≥ dim(Ker(U
∗
1 U0 + 1)) and thus the claim follows.

A J -unitary operator T ∈ 𝕌(K, J) sends a J -Lagrangian subspace E to a J -Lagrangian
subspace TE. Indeed, for all vectors ψ0 = Tϕ0 ∈ TE and ψ1 = Tϕ1 ∈ TE, one deduces
ψ∗0 Jψ1 = ϕ∗0T∗JTϕ1 = ϕ∗0 Jϕ1 = 0. Analogously, for ψ̃0 = (T∗)−1ϕ̃0 ∈ (TE)⊥ = (T∗)−1E⊥
and ψ̃1 = (T

∗)−1ϕ̃1 ∈ (TE)⊥, one has (ψ̃0)∗Jψ̃0, so that Lemma 9.3.2 implies that TE is
J -Lagrangian. (Note that this also shows that the image of J -isotropic subspaces under
a J -unitary is J -isotropic.) If P ∈ ℙ(K, J) is the range projection of E, then the range
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projection of TE is denoted by T ⋅ P, namely ⋅ : 𝕌(K, J) × ℙ(K, J) → ℙ(K, J) is a group
action. This action is transitive. Actually, already the subgroup 𝕌(K, J) ∩ 𝕌(K) does so
as shows the following result.

Proposition 9.3.6. The group 𝕌(K, J) ∩ 𝕌(K) acts continuously and transitively on
ℙ(K, J).

Proof. The action of 𝕌(K, J) ∩ 𝕌(K) on ℙ(K, J) is simply given by V ⋅ P = VPV∗ for
V ∈ 𝕌(K, J) ∩ 𝕌(K) and P ∈ ℙ(K, J). One directly checks that VPV∗ is in ℙ(K, J) and
therefore the action is well defined. To show that the action is transitive, consider two
J -Lagrangian projections

P0 =
1
2
(
1 U0
U∗0 1

) and P1 =
1
2
(
1 U1
U∗1 1

) ,

where U0,U1 ∈ 𝕌(H) are unitaries. One directly checks that VP0V
∗ = P1 for

V = (U1 0
0 U0
) ∈ 𝕌(K, J) ∩ 𝕌(K),

finishing the proof.

Now the action (5.7) of invertibles on projections becomes an action of 𝕌(K, J) on
ℙ(K, J). Recall that for T ∈ 𝕌(K, J) on P ∈ ℙ(K, J), it is given by

T ⋅ P = (TPT∗)(TPT∗)−2(TPT∗).
The following elementary fact will be used later on.

Proposition 9.3.7. For T ∈ 𝕌(K, J) and P ∈ ℙ(K, J), one has

T ⋅ P = J((T−1)∗ ⋅ (1 − P))J .
Proof. The computation

J(T ⋅ P)J = (JTPT∗J)(JTPT∗J)−2(JTPT∗J)
= ((T−1)∗JPJT−1)((T−1)∗JPJT−1)−2((T−1)∗JPJT−1),

combined with JPJ = 1 − P, shows the claim.

Under the stereographic projection, the action takes a simpler form.

Proposition 9.3.8. The group𝕌(K, J) acts continuously on the Siegel disc

𝔻(H) = {U ∈ 𝔹(H) : ‖U‖ < 1}

and also on the unitary group𝕌(H) by Möbius transformation denoted by a dot and de-
fined by



9.4 Fredholm pairs of J-Lagrangian projections � 291

(
A B
C D
) ⋅ U = (AU + B)(CU + D)−1, U ∈ 𝔻(H).

TheMöbius action on𝕌(H) implements the action ⋅ : 𝕌(K, J)×ℙ(K, J) → ℙ(K, J), namely

T ⋅ Π(P) = Π(T ⋅ P).

Proof. One first has to show that for U ∈ 𝔹(H)with ‖U‖ ≤ 1 and T ∈ 𝕌(K, J) the inverse
in the Möbius transformation T ⋅ U is well defined. By Proposition 9.1.3, one concludes
that (CU +D) = D(D−1CU +1) is indeed invertible. Then the identities of Proposition 9.1.3
imply

(CU + D)∗(CU + D) − (AU + B)∗(AU + B) = 1 − U∗U . (9.8)

Now multiplying (9.8) from the left by ((CU + D)∗)−1 and from the right by (CU + D)−1
and using 1 − U∗U > 0 for U ∈ 𝔻(H) shows (T ⋅ U)∗(T ⋅ U) < 1 so that T ⋅ U ∈ 𝔻(H). By
the same argument, if U ∈ 𝕌(H), then T ⋅ U ∈ 𝕌(H). A short algebraic calculation also
shows that (TT ′) ⋅ U = T ⋅ (T ′ ⋅ U).

To prove the last formula, let us note that the range of P = 1
2 (

1 U
U∗ 1 ) is

Ran(P) = {(Uϕ
ϕ
) : ϕ ∈ H} ,

therefore

Ran(T ⋅ P) = {((AU + B)ϕ
(CU + D)ϕ

) : ϕ ∈ H}

= {(
(AU + B)(CU + D)−1ϕ̃

ϕ̃
) : ϕ̃ ∈ H}

= Ran( 1
2
(

1 (AU + B)(CU + D)−1
((AU + B)(CU + D)−1)∗ 1

)) .

Proposition 9.3.4 implies the claim.

9.4 Fredholm pairs of J-Lagrangian projections

Recall from Section 5.2 the notion of Fredholm pairs (P0, P1) of orthogonal projec-
tions and their index given by the difference of the finite dimensions of the subspaces
Ran(P0) ∩ Ker(P1) = Ran(P0) ∩ Ran(P1)

⊥ and Ran(P1) ∩ Ker(P0) = Ran(P1) ∩ Ran(P0)⊥.
It is now natural to consider Fredholm pairs of J -Lagrangian projections and introduce
the following notation:

𝔽ℙℙ(K, J) = {(P0, P1) : P0, P1 ∈ ℙ(K, J) and (P0, P1) Fredholm pair}. (9.9)
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Again ON (or more precisely, ON × ON ) is the natural topology on this set. Noting that
J -Lagrangian Fredholm pairs are always proper and recalling the notation for proper
Fredholm pairs from (5.19), this can be rewritten as

𝔽ℙℙ(K, J) = (ℙ(K, J), ℙ(K, J)) ∩ 𝔽ℙℙ(K).

Let us provide a simple way to produce Fredholm pairs of J -Lagrangian projections.

Proposition 9.4.1. Let P ∈ ℙ(K, J) and T ∈ 𝕌C(K, J). Then (P, T ⋅ P) ∈ 𝔽ℙℙ(K, J).

Proof. The hypothesis implies that T ⋅P −P ∈ 𝕂(K), e. g., by using the formula in Propo-
sition 9.3.8. Therefore the Fredholm property of the pair (P, T ⋅ P) follows from Proposi-
tion 5.2.4.

The first aim will be to characterize the Fredholm property of pairs of J -Lagrangian
projections (P0, P1) in terms of the associated stereographic projections. That this
should be possible is plausible due to Proposition 9.3.5 which shows that the above
finite-dimensional intersections can precisely be determined from the spectral the-
ory of the stereographic projections. For the formulation of the result, which goes
back at least to [113], let us recall the relevant spectral notions from Section 3.4.
The discrete spectrum specdis(A) of a normal operator A ∈ 𝔹(H) consists of all iso-
lated eigenvalues of finite multiplicity, and then the essential spectrum is defined by
specess(A) = spec(A) \ specdis(A). Also recall form Section 3.7 that the set of unitaries
U ∈ 𝕌(H) such that −1 ∉ specess(U) is denoted by 𝔽𝕌(H).

Theorem 9.4.2. Let P0 and P1 be two J-Lagrangian projections with stereographic pro-
jections U0 = Π(P0) and U1 = Π(P1). Then

(P0, P1) ∈ 𝔽ℙℙ(K, J) Fredholm pair ⇐⇒ −1 ̸∈ specess(U
∗
1 U0)

⇐⇒ U∗1 U0 ∈ 𝔽𝕌(H)
⇐⇒ U1U

∗
0 ∈ 𝔽𝕌(H).

Proof. As above, Q0 = 1 − 2P0 and Q1 = 1 − 2P1 are chiral symmetries. If (P0, P1) is a
Fredholm pair,

(Q0 + Q1)
2 = (
(U0 + U1)(U0 + U1)

∗ 0
0 (U0 + U1)

∗(U0 + U1))
is Fredholm by Proposition 5.4.2 and therefore 0 ∉ specess((Q0 + Q1)

2). Multiplying out
shows that

(U0 + U1)
∗(U0 + U1) = 21 + U∗1 U0 + U∗0 U1

and
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(U0 + U1)(U0 + U1)
∗ = 21 + U1U∗0 + U0U∗1

are Fredholm. Let us define U∗1 U0 = Û . Then
21 + Û + Û∗ = (1 + Û)(1 + Û)∗ = (1 + Û)∗(1 + Û)

is Fredholm. Thus, by Corollary 3.4.4, 0 ∉ specess(21 + Û + Û
∗) and 1 + Û is Fredholm by

Theorem 3.4.1. Again by Corollary 3.4.4, one has −1 ̸∈ specess(Û) = specess(U0U
∗
1 ).

Conversely, if −1 ̸∈ specess(U
∗
1 U0), then 1 + U∗1 U0 is Fredholm by Corollary 3.4.4.

Therefore U0 +U1 and (U0 +U1)
∗ are Fredholm. Thus Q0 +Q1 is Fredholm and, by Propo-

sition 5.4.2, (P0, P1) is a Fredholm pair.

Corollary 9.4.3. Let (P0, P1) be a pair of J-Lagrangian projections and let furthermore
V ∈ 𝕌(K, J) ∩ 𝕌(K). Then

(P0, P1) ∈ 𝔽ℙℙ(K, J) ⇐⇒ (V ⋅ P0,V ⋅ P1) ∈ 𝔽ℙℙ(K, J).

Proof. Recall from Proposition 9.1.6 that V = diag(V+,V−) with V± ∈ 𝕌(H). By Proposi-
tion 9.3.8, one hence has Π(V ⋅ Pj) = V+Π(Pj)V∗− so that

Π(V ⋅ P1)
∗Π(V ⋅ P0) = V−Π(P1)∗Π(P0)V∗− . (9.10)

Hence the claim follows from Theorem 9.4.2.

Proposition 9.4.4. Let P ∈ ℙ(K, J) with U = Π(P) and T ∈ 𝕌(K, J). Then

(P, T ⋅ P) ∈ 𝔽ℙℙ(K, J) ⇐⇒ (U
1
)
∗
T(U

1
) ∈ 𝔽𝔹(H).

Proof. By Theorem 9.4.2, the Fredholm property of (P, T ⋅ P) ∈ 𝔽ℙℙ(K, J) is equivalent
to −1 not being in the essential spectrum ofU∗T ⋅U , which is equivalent to 0 not being in
the essential spectrum of the self-adjoint operatorℜe(U∗T ⋅U) + 1. Now let A, B, C, D be
the entries of T , e. g., as in Proposition 9.3.8. This proposition also shows that (CU +D)−1
is invertible. Then

ℜe(U∗T ⋅ U) + 1 = 1
2
(U∗T ⋅ U + (T ⋅ U)∗U) + 1
=
1
2
(U∗T ⋅ U + 1)∗(U∗T ⋅ U + 1)
=
1
2
((CU + D)−1)∗[(U

1
)
∗
T(U

1
)]
∗
(
U
1
)
∗
T(U

1
)(CU + D)−1

=
1
2
(
U
1
)
∗
T(U

1
)󵄨󵄨󵄨󵄨(CU + D)

∗󵄨󵄨󵄨󵄨−2[(U1)∗T(U1)]∗.
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Due to Theorem 3.4.1, the stated Fredholm property implies a lower bound on the essen-
tial spectrumofℜe(U∗T ⋅U)+1, and, conversely, the Fredholmproperty is a consequence
of the lower bound on the essential spectrum.

Example 9.4.5. There are P ∈ ℙ(K, J) and T ∈ 𝕌(K, J) such that (P, T ⋅ P) is not a Fred-
holm pair. For example, take U = 1 (which corresponds to P being the reference projec-
tion Pref given in (9.11) below) and T = J . ⬦

The following result provides another natural situation in which Fredholm pairs of
J -Lagrangian projections arise. It merely extends Proposition 9.3.3.

Proposition 9.4.6. Let T ∈ 𝕌(K, J) satisfy spec(T) ∩ 𝕊1 = 0. Let R< and R> be the Riesz
projections of T associated to the spectral subsets spec(T) ∩ B1(0) and spec(T) \ B1(0), re-
spectively, and let P< and P> be the orthogonal projections onto their rangesE< = Ran(R<)
and E> = Ran(R>). Then (P<, 1 − P>) forms a Fredholm pair.

Proof. In Proposition 9.3.3 it was already shown that P< and P> are J -Lagrangian so
that also 1 − P> is J -Lagrangian. It remains to check the conditions in Definition 5.3.2
for P0 = P< and P1 = 1 − P>. First of all, Ran(P0) + Ran(1 − P1) = E< + E> = K is
closed. Secondly, Ran(P0) ∩ Ker(P1) = E

< ∩ E> = {0} is finite dimensional, and finally,
Ker(P0)

⊥ + Ran(P1)⊥ = Ran(P0) + Ker(P1) = E< + E> = K so that Ker(P0) ∩ Ran(P1) = {0}
is also finite dimensional.

The next results states that for a Fredholm pair of J -Lagrangian projections the in-
dex as defined in Section 5.2 is of little interest (for the finite-dimensional case, see al-
ready Remark 5.2.3).

Proposition 9.4.7. For all (P0, P1) ∈ 𝔽ℙℙ(K, J), one has

Ind(P0, P1) = 0.

Moreover, (𝔽ℙℙ(K, J),ON ) is connected.

Proof. Let (P0, P1) be a Fredholm pair of J -Lagrangian projections. Then, by Theo-
rem 9.4.2, −1 is not in the essential spectrum of Π(P0)Π(P1)

∗. By spectral calculus with
a root for which the branch cut is chosen to be on the negative real axis, the paths
s ∈ [0, 1] 󳨃→ (Π(P0)Π(P1)

∗)1−s lies entirely in 𝔽𝕌(H). For U(s) = (Π(P0)Π(P1)∗)1−sΠ(P1),
let us define a path of J -Lagrangian projections by

s ∈ [0, 1] 󳨃→ P(s) = 1
2
(

1 U(s)
U(s)∗ 1

) .

Again by Theorem 9.4.2, one checks that s ∈ [0, 1] 󳨃→ (P(s), P1) is a path of Fredholmpairs
of J -Lagrangian projections. It connects (P0, P1) to (P1, P1). Therefore by Proposition 5.2.7,

Ind(P0, P1) = Ind(P1, P1) = 0.
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The second claim follows because the set𝕌(H) of unitaries onH is connected and
therefore there is a path s ∈ [0, 1] 󳨃→ Û(s) of unitaries connecting Π(P1) to 1. Then
s ∈ [0, 1] 󳨃→ Π−1(Û(s)) is a path of J -Lagrangian projections connecting P1 to the refer-
ence J -Lagrangian projection Pref =

1
2 (

1 1
1 1). Thus s ∈ [0, 1] 󳨃→ (Π

−1(Û(s)),Π−1(Û(s))) is
a path of Fredholm pairs of J -Lagrangian projections connecting (P1, P1) to (Pref, Pref).
In conclusion, there is a path of Fredholm pairs of J -Lagrangian projections connecting
(P0, P1) to (Pref, Pref) and therefore the set of Fredholm pairs of J -Lagrangian projections
is connected.

In many applications of the Fredholm pairs of J -Lagrangian projections, one of the
projections, say P0, is fixed and given by a reference J -Lagrangian projection which we
choose to be

Pref =
1
2
(
1 1
1 1
) . (9.11)

Thus let us introduce the Fredholm J -Lagrangian Grassmannian (with respect to Pref) by

𝔽ℙ(K, J) = {P ∈ ℙ(K, J) : (Pref, P) ∈ 𝔽ℙℙ(K, J)}.

As Π(Pref) = 1, Theorem 9.4.2 implies the following

Corollary 9.4.8. The map Π : (𝔽ℙ(K, J),ON ) → (𝔽𝕌(H),ON ) is a bijective isometry.

Due to Corollary 8.1.2, this directly implies the next statement:

Corollary 9.4.9. The homotopy groups of (𝔽ℙ(K, J),ON ) are

πk(𝔽ℙ(K, J)) = {
ℤ, k odd,
0, k even.

The next result also allows accessing the homotopy groups of 𝔽ℙℙ(K, J).

Proposition 9.4.10. The space (𝔽ℙ(K, J),ON ) is homotopy equivalent to the space
(𝔽ℙℙ(K, J),ON ).

Proof. Let (P0, P1) ∈ 𝔽ℙℙ(K, J) be a pair. Recall that there is a unitaryU0 ∈ 𝕌(H) (where
K = H ⊕H in the grading of J) such that

P0 =
1
2
(
1 U0
U∗0 1

) .

Set V = diag(1,U0), which is an element in𝕌(K, J) ∩ 𝕌(K). Then

(P0, P1) = V
∗(Pref,VP1V∗)V .

Due to the natural identification
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𝔽ℙ(K, J) ≅ {(Pref, P) : P ∈ ℙ(K, J) and (Pref, P) ∈ 𝔽ℙℙ(K, J)},

one hence has 𝔽ℙℙ(K, J) = 𝔽ℙ(K, J) × 𝕌(H). Therefore the claim follows from the
contractibility of𝕌(H).

Combining Corollary 9.4.9 with Proposition 9.4.10, one deduces

Theorem 9.4.11. The homotopy groups of (𝔽ℙℙ(K, J),ON ) are

πk(𝔽ℙℙ(K, J)) = {
ℤ, k odd,
0, k even.

9.5 Paths of Fredholm pairs of J-Lagrangian projections

Proposition 9.4.7 shows that the index of a Fredholm pair (P0, P1) ∈ 𝔽ℙℙ(K, J) of
J -Lagrangian projections always vanishes. As already stated in Theorem 9.4.11, there is
interesting topological information contained in paths in 𝔽ℙℙ(K, J). As shown in Corol-
lary 9.5.7 at the end of this section, this is captured by the Bott–Maslov index which will
be introduced and studied in this section. For the definition, recall the characterization
of Fredholm pairs of J -Lagrangian projections as given in Theorem 9.4.2.

Definition 9.5.1. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J) be a path of Fredholm pairs
of J -Lagrangian projections and set U(t) = Π(P0(t))

∗Π(P1(t)) ∈ 𝔽𝕌(H). Then the Bott–
Maslov index of the path is defined by

BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t))) = Sf(t ∈ [0, 1] 󳨃→ U(t)).

By Proposition 9.3.5, the Bott–Maslov index counts the number of finite-dimensional
intersections of Ker(P0(t)) with Ran(P1(t)) along the path, with the orientation of the
passage through the intersection as a weight. This two-sidedness will be further dis-
cussed below, and wewill also provide a crossing form formulation for the Bott–Maslov
index. Let us first note a few obvious properties that the Bott–Maslov index directly
inherits from the spectral flow. More precisely, the next Proposition 9.5.2 is a direct con-
sequence of Theorem 4.5.6, and Proposition 9.5.3 further down follows from item (ii) of
Theorem 4.5.5.

Proposition 9.5.2. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J) be a path of Fredholm pairs
of J-Lagrangian projections. Then its Bott–Maslov index is a homotopy invariant under
homotopies within the set of paths of Fredholm pairs of J-Lagrangian projections keeping
the endpoints (P0(0), P1(0)) and (P0(1), P1(1)) fixed.

In particular, the Bott–Maslov index associates to every closed path of Fredholm
pairs of J -Lagrangianprojections an integer invariant. Aswill be shown inCorollary 9.5.7
below, this characterizes the fundamental group of 𝔽ℙℙ(K, J).
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Proposition 9.5.3. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) and t ∈ [0, 1] 󳨃→ (P
′
0(t), P

′
1(t)) be two

paths in 𝔽ℙℙ(K, J) such that P0(1) = P
′
0(0) and P1(1) = P

′
1(0). Then their concatenation

(P0 ∗ P
′
0, P1 ∗ P

′
1), defined by

Pj ∗ P
′
j (t) = {

Pj(2t), t ∈ [0, 12 ],
P′j (2t − 1), t ∈ [ 12 , 1],

has a Bott–Maslov index given by

BM(t ∈ [0, 1] 󳨃→ (P0 ∗ P
′
0(t), P1 ∗ P

′
1(t)))

= BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t))) + BM(t ∈ [0, 1] 󳨃→ (P
′
0(t), P

′
1(t))).

The next result also follows directly from the definition and the identity (9.10).

Proposition 9.5.4. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J) be a path of Fredholm pairs
of J-Lagrangian projections and V ∈ 𝕌(K, J) ∩ 𝕌(K). Then

BM(t ∈ [0, 1] 󳨃→ (V ⋅ P0(t),V ⋅ P1(t))) = BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t))).

Next crossing forms for differentiable paths t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J)
are introduced. Let us set U(t) = Π(P0(t))

∗Π(P1(t)) ∈ 𝔽𝕌(H) as in Definition 9.5.1. Then
the crossing form at t as in Definition 4.5.7 is given by

Γt : Ker(U(t) + 1) → ℝ, Γt(ϕ) = −𝚤⟨ϕ
󵄨󵄨󵄨󵄨U(t)
∗𝜕tU(t)ϕ⟩.

A crossing is called regular if Γt is nondegenerate. Now Proposition 4.5.9 immediately
implies the following result.

Proposition 9.5.5. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J) be a continuously differen-
tiable path having only regular crossings. Then

BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t))) =
1
2
Sig(Γ0) + ∑

t∈(0,1) Sig(Γt) + 12 Sig(Γ1). (9.12)

As in the finite-dimensional case (Lemma 2.1.9), it is useful to have an explicit for-
mula for the crossing form in terms of the projections. This can be deduced from the
first part of the next statement.

Lemma 9.5.6. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) be a differentiable path of pairs of J-La-
grangian projections with associated U0(t) = Π(P0(t)) and U1(t) = Π(P1(t)). Then for
U(t) = U0(t)

∗U1(t) one has
U(t)∗𝜕tU(t) = 4(U1(t)0 )∗P0(t)𝜕tP0(t)(U1(t)0 ) + 4(01)∗P1(t)𝜕tP1(t)(01).
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If, moreover, 𝜕tP0(t) and 𝜕tP1(t) are trace class, then U(t)
∗𝜕tU(t) is trace class and given

by

Tr(U(t)∗𝜕tU(t)) = 2 Tr(JP0(t)𝜕tP0(t)∗) − 2 Tr(JP1(t)𝜕tP1(t)∗).
Proof. By the formulas in Proposition 9.3.4, one has for j = 0, 1,

Pj(t)𝜕tPj(t) =
1
4
(
Uj(t)𝜕tUj(t)

∗ 𝜕tUj(t)
𝜕tUj(t)

∗ Uj(t)
∗𝜕tUj(t)) .

As

U(t)∗𝜕tU(t) = U1(t)∗(U0(t)𝜕tU0(t)∗)U1(t) + U1(t)∗𝜕tU1(t),
this implies the first formula. The summability in the second claim is now clear, and

Tr(U(t)∗𝜕tU(t)) = − Tr(U(t)𝜕tU(t)∗)
= 2 Tr(JP0(t)𝜕tP0(t)

∗) − 2 Tr(JP1(t)𝜕tP1(t)∗),
by taking the trace of the above formula for Pj(t)𝜕tPj(t) times J .

Next let us state that the Bott–Maslov index restricted to closed paths identifies the
fundamental group of 𝔽ℙℙ(K, J) given in Theorem 9.4.11.

Corollary 9.5.7. The Bott–Maslov index defined in Definition 9.5.1 establishes an isomor-
phism

BM : π1(𝔽ℙℙ(K, J)) → ℤ.

For differentiable closed paths and under a trace class condition on 𝜕tU(t), it is now
possible to plug in the formula for Tr(U(t)∗𝜕tU(t)) given in Lemma 9.5.6 into Proposi-
tion 4.5.11.

Corollary 9.5.8. Let t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J) be a continuously differen-
tiable closed path. Suppose that 𝜕tP0(t) and 𝜕tP1(t) are trace class. Then

BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t)))

=
1
π𝚤

1

∫
0

dt(Tr(JP0(t)𝜕tP0(t)
∗) − Tr(JP1(t)𝜕tP1(t)∗)).

Next let us note that one has an infinite-dimensional analogue of Proposition 2.2.14.
Further down in Proposition 9.6.17 a link to the Conley–Zehnder index will be given.

Proposition 9.5.9. Let t ∈ [0, 1] 󳨃→ Tt ∈ 𝕌
C(K, J) be a closed path. Then the Bott–Maslov

index BM(t ∈ [0, 1] 󳨃→ (P, Tt ⋅ P)) is well defined and independent of P ∈ ℙ(K, J).
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Proof. First of all, Proposition 9.4.1 indeed shows that (P, Tt ⋅ P) ∈ 𝔽ℙℙ(K, J) so that
the Bott–Maslov index of the path is well defined. As the path is closed, it is given by a
winding number in the sense of Proposition 4.5.10 and thus is homotopy invariant. Now
given P0, P1 ∈ ℙ(K, J), there exists a unitary U ∈ 𝕌(K, J) ∩ 𝕌(K) such that P1 = U ⋅ P0
by Proposition 9.3.6. Then, because𝕌(K, J) ∩ 𝕌(K) is connected, one can choose a path
s ∈ [0, 1] 󳨃→ Us ∈ 𝕌(K, J) ∩ 𝕌(K) such that Ps = Us ⋅ P0 connects P0 to P1 in ℙ(K, J).
Then s ∈ [0, 1] 󳨃→ (Ps, Tt ⋅ Ps) is a homotopy of closed loops in 𝔽ℙ(K, J), showing that the
Bott–Maslov index of the stated path is independent of P.

Based on Proposition 9.4.4, one can also deal with other situations than that in
Proposition 9.5.9 in which t 󳨃→ (P, Tt ⋅ P) has a well-defined Bott–Maslov index that has
stability properties in P. For example, suppose Tt = T0(1+Kt) for some fixed T0 and loop
t ∈ [0, 1] 󳨃→ Kt ∈ 𝕂(K) in the Lie algebra such that (P, T0 ⋅ P) is a Fredholm pair. Then
indeed (P, Tt ⋅ P) is a Fredholm pair (by the same argument as in Proposition 9.4.1) and,
furthermore, the Fredholm property is stable along this path under small perturbations
of P due to Proposition 9.4.4. By homotopy invariance of the Bott–Maslov index, one
then also deduces its stability as in Proposition 9.5.9. As to explicit formulas, of course,
Corollary 9.5.8 applies to the case of differentiable closed paths (P, Tt ⋅ P) and actually
only one of the summands remains. Further formulas (such as an infinite-dimensional
analogue of Proposition 2.2.14) will be given below.

As already pointed out, often one of the two projections of a pair of J -Lagrangian
projections is fixed. Also Proposition 9.5.9 considers such a situation. In the following,
this reference projection is again chosen to be P0 = Pref, and then the Bott–Maslov index
of the path t 󳨃→ (Pref, P(t)) is considered for P(t) ∈ 𝔽ℙ(K, J). Moreover, it will be shown
below (by essentially the same argument as in the proof of Proposition 9.4.10) that one
can always arrange one of the J -Lagrangian projections to be moved into the reference
J -Lagrangian projection Pref (or any other one). In this situation, the following is just a
special case of Definition 9.5.1, simply because Π(Pref) = 1.

Definition 9.5.10. For a path t ∈ [0, 1] 󳨃→ P(t) ∈ 𝔽ℙ(K, J) in the Fredholm J -Lagrangian
Grassmannian, the Bott–Maslov index is defined by

BM(t ∈ [0, 1] 󳨃→ P(t)) = Sf(t ∈ [0, 1] 󳨃→ U(t)),

where U(t) = Π(P(t)) ∈ 𝔽𝕌(H).

Proposition 9.5.11. Let t 󳨃→ Tt = (At BtCt Dt
) be a differentiable closed path in 𝕌(K, J)

and P ∈ ℙ(K, J). Suppose that (P, Tt ⋅ P) ∈ 𝔽ℙℙ(K, J) and that 𝜕tTtJT
∗
t is trace class.

Then

BM(t ∈ [0, 1] 󳨃→ Tt ⋅ P) =
1
𝚤π

1

∫
0

dt Tr((1 − Tt ⋅ P)(𝜕tTtJT
∗
t )).
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Due to Corollary 4.5.10, the proof of Proposition 9.5.11 is completed by the following
algebraic lemma which generalizes Lemma 2.2.13 dealing with the finite-dimensional
case.

Lemma 9.5.12. Let t 󳨃→ Tt = (At BtCt Dt
) be a differentiable path in 𝕌(K, J) and P ∈ ℙ(K, J).

Then Ut = Π(Pt) associated to Pt = Tt ⋅ P satisfies

U∗t 𝜕tUt = (Ut−1)∗ (𝜕tTtJT∗t ) (Ut−1) .
Moreover, if 𝜕tTtJT

∗
t is trace class, then also 𝜕tUt is trace class and

Tr(U∗t 𝜕tUt) = 2 Tr((1 − Pt)(𝜕tTtJT∗t )).
Proof. For sake of notational simplicity, let us suppress the index tand set W = Π(P).
First note that

U∗𝜕U = Π(T ⋅ P)∗𝜕Π(T ⋅ P) = (T ⋅W )∗𝜕(T ⋅W ),
because Π(T ⋅ P) = T ⋅Π(P) = T ⋅W . Using (T ⋅W )∗ = (T ⋅W )−1 and the laws of operator
differentiation, one finds

(T ⋅W )∗𝜕(T ⋅W )
= (Tt ⋅W )

∗(𝜕(AW + B))(CW + D)−1 − (𝜕(CW + D))(CW + D)−1
= ((CW + D)−1)∗[(AW + B)∗𝜕(AW + B) − (CW + D)∗𝜕(CW + D)](CW + D)−1
= ((CW + D)−1)∗(W

1
)
∗
T∗J𝜕T(W

1
)(CW + D)−1.

But

(
W
1
) (CW + D)−1 = T−1 (U

1
) .

Now

(T−1)∗(T∗J𝜕T)T−1 = J(𝜕TJT∗)J
concludes the proof of the first identity. Plugging it into the trace leads to the second
one.

It is always possible to recourse to the Bott–Maslov index with respect to a fixed
reference plane as in Definition 9.5.10 by appealing to Proposition 9.3.6 to deform P0(t)
into Pref. More precisely, given a path t ∈ [0, 1] 󳨃→ (P0(t), P1(t)) of J -Lagrangian projec-
tions, set as in the proof of Proposition 9.4.10
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V (t) = (1 0
0 Π(P0(t))

) .

Clearly, t ∈ [0, 1] 󳨃→ V (t) is a path in𝕌(K, J) ∩ 𝕌(H), and one checks that

V (t)P0(t)V (t)
∗ = Pref.

In this manner, one obtains the path t ∈ [0, 1] 󳨃→ (Pref,V (t)P1(t)V (t)
∗) which consists of

Fredholm pairs if (P0(t), P1(t)) are Fredholm pairs. The basis change can be suppressed
in the following by setting P(t) = V (t)P1(t)V (t)

∗. Then U(t) = Π(P(t)) lies in 𝔽𝕌(H) by
Theorem 9.4.2.

Remark 9.5.13. Another alternative to attain a situation with a fixed reference frame
is a doubling procedure, e. g., [90]. Suppose given t 󳨃→ (P0(t), P1(t)) ∈ 𝔽ℙℙ(K, J). Then
one constructs a new Krein space (K̂, ̂J) by setting K̂ = K ⊕ K and Ĵ = J ⊕ (−J). Then
P̂(t) = P0(t) ⊕ (1 − P1(t)) is clearly Ĵ -Lagrangian by construction. Moreover, the doubled
reference frame

P̃ref =
1
2
(
12 12
12 12
)

is also Ĵ -Lagrangian. One can then check that

dim(Ran(P0(t)) ∩ Ker(P1(t))) = dim(Ran(P̂(t)) ∩ Ker(P̃ref))

and, with U0(t) = Π(P0(t)) and U1(t) = Π(P1(t)),

BM(t ∈ [0, 1] 󳨃→ (P0(t), P1(t))) = Sf(t ∈ [0, 1] 󳨃→ U0(t)
∗U1(t))

= Sf(t ∈ [0, 1] 󳨃→ ( 0 −U1(t)
U0(t)
∗ 0

))

= BM(t ∈ [0, 1] 󳨃→ (P̂(t), P̃ref)),

i. e., the latter expression is a Bott–Maslov index in the sense of Definition 9.5.10. This
approach may be of some theoretical use, but has the disadvantage of doubling dimen-
sion and consequently only producing a special type of Ĵ -Lagrangian subspaces, namely
the diagonal ones P̂(t). ⬦

Combining Corollaries 9.4.9 and 9.4.8 with Corollary 8.1.3 now leads to

Corollary 9.5.14. The Bott–Maslov index induces an isomorphism

BM : π1(𝔽ℙ(K, J)) → ℤ.
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Let us also note that both Corollary 9.5.8 and Proposition 9.5.11 cover the situation
of a fixed reference Pref. There is, however, an even more explicit formula extending
Proposition 2.2.14 of the finite-dimensional case.

Proposition 9.5.15. Let t ∈ [0, 1] 󳨃→ Tt = (At BtCt Dt
) ∈ 𝕌(K, J) be a closed differentiable path

such that all four entries of 𝜕tTt are trace class. Then

BM(t ∈ [0, 1] 󳨃→ Tt ⋅ Pref)

=
1
2π𝚤

1

∫
0

dt Tr((At + Bt)
−1𝜕t(At + Bt) − (Ct + Dt)−1𝜕t(Ct + Dt)).

Proof. Set Ut = Π(Tt ⋅ Pref). Then, by Lemma 9.5.12, the hypothesis implies that U
∗
t 𝜕tUt is

trace class so that Corollary 4.5.10 can be applied to compute the Bott–Maslov index. As
Ut = Tt ⋅ Π(Pref) = Tt ⋅ 1 = (At + Bt)(Ct + Dt)

−1, the usual derivative rule and the cyclicity
of the trace then immediately lead to the claimed identity.

In the remainder of this section, let us next discuss a geometric interpretation of
the Bott–Maslov index that has been put forward by Arnold. Let us now consider a
path t ∈ [0, 1] 󳨃→ P(t) ∈ 𝔽ℙ(K, J). By Proposition 9.3.5, the Bott–Maslov index counts
the number of intersections of Ran(P(t))with the fixed subspace Ran(JPrefJ), with their
multiplicity and with an orientation as a weight. The following definition, generalizing
Arnold’s definition [9], is hence natural.

Definition 9.5.16. The singular cycle of J -Lagrangian subspaces with nontrivial inter-
sections with JPrefJ is

𝕊ℙ(K, J) = ⋃
l≥1 𝕊ℙl(K, J),

where

𝕊ℙl(K, J) = {P ∈ 𝔽ℙ(K, J) : dim(Ran(P) ∩ Ker(Pref)) = l}.

First of all, let us note that the Fredholm property assures that the intersection of
Ran(P)with Ran(JPrefJ) = Ker(Pref) is always finite dimensional. Note also that Proposi-
tion 9.3.5 implies

Π(𝕊ℙl(K, J)) = {U ∈ 𝔽𝕌(H) : dim(Ker(U + 1)) = l}.

Hence the codimension of 𝕊ℙl(K, J) increaseswith l and thismakes 𝕊ℙ(K, J) into a strat-
ified spacewith strata 𝕊ℙl(K, J). Finally, the singular cycle 𝕊ℙ(K, J) is two-sided, namely
a point close to 𝕊ℙ(K, J) can either be on its right or its left, depending on whether the
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eigenvalue of its stereographic projectionhas a positive or negative imaginary part. Hav-
ing inmind the image of the path under the stereographic projection, all these geometric
properties become self-evident.

9.6 Conley–Zehnder index

Section 2.3 analyzed the Conley–Zehnder index in finite dimensions. It turned out
that the Conley–Zehnder index is nothing but the Bott–Maslov index of the graphs of
J -unitaries, considered as Lagrangian subspaces in a doubled Krein space. The same
algebraic setup transposes to infinite-dimensional Krein spaces, provided that suitable
Fredholm conditions are imposed. This is carried out in this section. Most of the alge-
braic expressions and identities are identical to those in Section 2.3, but several are
repeated to facilitate readability.

Associated to a Krein space (K, J) and a given J -unitary T is another doubled Krein
space (K ⊕ K, (−J) ⊕ J) on which then acts 1 ⊕ T as ((−J) ⊕ J)-unitary. The range of the
operator (1 ⊕ T)(11) is the graph GT of T . It is hence a ((−J) ⊕ J)-Lagrangian subspace. In
order to use the stereographic projection in the form of Section 9.3, it is convenient to
use the basis transformation F̂ given in (2.24). Note that it actually is a symmetry. It then
leads to a standard form for the doubled Krein space,

(K̂, Ĵ) = (K ⊕K, F̂((−J) ⊕ J)F̂),

with Ĵ = diag(1, −1). The group of Ĵ -unitary operators is again denoted by𝕌(K̂, Ĵ). A par-
ticular operator therein is

T̂ = F̂(1 ⊕ T)F̂ ∈ 𝕌(K̂, Ĵ),

and an example of a Ĵ -Lagrangian subspace is the F̂-transformed graph ĜT = F̂GT . The
stereographic projection from the space ℙ(K̂, Ĵ) of Ĵ -Lagrangian subspaces to𝕌(K) de-
fined as in Proposition 9.3.4 is denoted by Π̂. As a reference Ĵ -Lagrangian projection, we
will use

P̂ref =
1
2
(
1 1
1 1
) . (9.13)

It satisfies Π̂(P̂ref) = 1 and F̂P̂refF̂ = P̂ref. Its range is denoted by Êref = Ran(P̂ref). More-
over, it allowswriting the projection on ĜT as T̂ ⋅P̂ref. The algebraic proof of the following
theorem is identical to that of Theorem 2.3.1 covering the finite-dimensional case.

Theorem 9.6.1. To a given T ∈ 𝕌(K, J) let us associate a unitary S(T) by

S(T) = Π̂(ĜT ) = Π̂(P̂ref)
∗Π̂(T̂ ⋅ P̂ref) ∈ 𝕌(K). (9.14)
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If T = (A B
C D), then

S(T) = (A − BD
−1C BD−1

−D−1C D−1 ) = ((A∗)−1 BD−1
−D−1C D−1 ) .

The map T ∈ 𝕌(K, J) 󳨃→ S(T) ∈ 𝕌(K) is a continuous embedding with image

{(
α β
γ δ
) ∈ 𝕌(K) : α, δ ∈ invertible} . (9.15)

Also the proof of the next structural result for S(T) is as in the finite-dimensional
case, see Proposition 2.3.2.

Proposition 9.6.2. Given T ∈ 𝕌(K, J), one has

S(−T) = −JS(T)J ,

and

S(T)∗ = S(T)−1 = S(T−1) = JS(T∗)J .
The following result justifies the above constructions. The algebraic proof is identi-

cal to the proof of Theorem 2.3.3.

Theorem 9.6.3. Let T and S(T) be as in Theorem 9.6.1. Then

Ker(T − 1) = Ker(S(T) − 1), Ker(T + 1) = J Ker(S(T) + 1).

Theorem 9.6.3, as well as the connection between eigenvectors, can easily be
adapted to study other eigenvalues on the unit circle. Indeed, if Tϕ = zϕ for z ∈ 𝕊1,
then also (zT)ϕ = ϕ. But the operator zT is also J -unitary so that one can apply the
above again to construct an associated unitary. This shows the following.

Proposition 9.6.4. Let T = (A B
C D) be a J-unitary and set, for z ∈ 𝕊

1,

S(zT) = (z(A
∗)−1 BD−1
−D−1C zD−1) . (9.16)

Then the geometric multiplicity of z as eigenvalue of T is equal to the multiplicity of 1 as
eigenvalue of S(zT).

Therefore, the unitaries S(zT) are a tool to study eigenvalues of T which lie on the
unit circle. Let us focus again on z = ±1. Theorem9.6.3 concerns the kernel of S(T)±1. It is
natural to analyze howmuchmore spectrum S(T) has close to ±1, or, what is equivalent,
howmuch spectrum the self-adjoint operatorℜe(S(T)) = 1

2 (S(T)+S(T)
∗) has close to ±1.
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For this purpose, it is useful to have an explicit formula forℜe(S(T)). Again the algebraic
proof is identical to that in the finite-dimensional cases stated in Proposition 2.3.7.

Proposition 9.6.5. Let T be a J-unitary and S(T) as above. Then

ℜe(S(T)) = (1 + T)(1 + T∗T)−1(1 + T)∗ − 1. (9.17)

The most robust compactness property of J -unitaries implies the following:

Proposition 9.6.6. For T ∈ 𝕌C(K, J), one has S(T) ∈ 𝕌C(K). Furthermore, the image of
the map S : T ∈ 𝕌(K, J) 󳨃→ S(T) ∈ 𝕌(K) is

S(𝕌C(K, J)) = {(α β
γ δ
) ∈ 𝕌C(K) : α, δ ∈ invertible} .

Proof. As T = 1 + K ∈ 𝕌C(K, J), the claim directly follows from Theorem 9.6.1.

Remark 9.6.7. Proposition 9.6.6 holds irrespective of the choice of the reference pro-
jection. More precisely, if one uses some other reference plane P̃ref ∈ ℙ(K̂, Ĵ) to define
S̃(T) = Π̂(P̃ref)

∗Π̂(T̂ ⋅ P̃ref), then also S̃(T) ∈ 𝕌C(K) for T ∈ 𝕌C(K, J). ⬦

Let us now come to a Fredholm condition for the J -unitaries.

Definition 9.6.8. A J -unitary T ∈ 𝕌(K, J) is called Fredholm if S(T) ∈ 𝔽𝕌(K). The set of
all J -unitaries T ∈ 𝕌(K, J) with this Fredholm property is denoted by 𝔽𝕌(K, J).

Clearly, one has𝕌C(K, J) ⊂ 𝔽𝕌(K, J). Let us now provide several characterizations
of the Fredholm property of T ∈ 𝕌(K, J), one of which shows that it is independent of
the choice of P̂ref (similar as in Remark 9.6.7). Another comment is that characterization
(iv) below explains that operators in 𝔽𝕌(K, J) were called (−1)-Fredholm J -unitaries in
[168] (and then the more restricted class of 𝕊1-Fredholm unitaries was considered there
for which T − z1 is Fredholm for all z ∈ 𝕊1, which is a strictly larger class than the
essentially 𝕊1-gapped J -unitaries considered in Definition 9.2.12).

Proposition 9.6.9. For T ∈ 𝕌(K, J), the following are equivalent:
(i) T ∈ 𝔽𝕌(K, J);
(ii) (P̂ref, T̂ ⋅ P̂ref) ∈ 𝔽ℙℙ(K̂, Ĵ);
(iii) −1 ̸∈ specess(S(T));
(iv) T + 1 ∈ 𝔽𝔹(K).

Proof. (i)⇐⇒ (ii). This follows directly from Theorem 9.4.2 applied to the Krein space
(K̂, Ĵ) and the Fredholm pair of Ĵ -Lagrangian projections (P̂ref, T̂ ⋅ P̂ref).

(i)⇐⇒ (iii). This follows immediately from thedefinitionbecause S(T) ∈ 𝔽𝕌(K) is equiv-
alent to −1 ̸∈ specess(S(T)).
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(iii)⇐⇒ (iv). For any unitary S,−1 ̸∈ specess(S) is equivalent tomin specess(ℜe(S)+1) > 0.
Now ℜe(S(T)) + 1 is given by Proposition 9.6.5 which can also be rewritten as

ℜe(S(T)) + 1 = (1 + T)(1 + T∗T)−1(1 + T)∗.
Because (1 + T∗T)−1 is a bounded invertible operator and therefore Fredholm, (iv) im-
plies by Corollary 3.3.2 thatℜe(S(T)) + 1 is Fredholm which, by Corollary 3.4.4, is equiv-
alent to (iii). Conversely, if ℜe(S(T)) + 1 is Fredholm also

J(ℜe(S(T)) + 1)J = (1 + T∗)(1 + TT∗)−1(1 + T)
is Fredholm. Therefore dim(Ker(J(ℜe(S(T)) + 1)J)) < ∞ and, because one moreover has
Ker(1 + T) ⊂ Ker(J(ℜe(S(T)) + 1)J), this implies dim(Ker(1 + T)) < ∞. Furthermore, the
range of ℜe(S(T)) + 1 is closed. Thus

Ran(1 + T) = Ran(ℜe(S(T)) + 1) ⊕ (Ran(1 + T) ⊖ Ran(ℜe(S(T)) + 1))

is closed because Ran(1+T)⊖Ran(ℜe(S(T))+1) ⊂ Ran(ℜe(S(T))+1)⊥ is finite dimensional
and therefore closed. As Ran(1 + T)⊥ ⊂ Ran(ℜe(S(T)) + 1)⊥ is finite dimensional, this
implies that 1 + T is Fredholm.

Combined with Theorem 9.6.1, more precisely (9.15), Proposition 9.6.9 implies the
following:

Corollary 9.6.10. The image of 𝔽𝕌(K, J) under S : T ∈ 𝕌(K, J) 󳨃→ S(T) ∈ 𝕌(K) is

S(𝔽𝕌(K, J)) = {(α β
γ δ
) ∈ 𝔽𝕌(K) : α, δ ∈ invertible} .

Corollary 9.6.10 suggests that𝕌C(K, J) is a deformation retract of 𝔽𝕌(K, J) because
𝕌C(K) is a deformation retract of 𝔽𝕌(K) by Proposition 3.7.2. This is, however, not
clear because the retract in the proof of Proposition 3.7.2 may not stay within the im-
age S(𝔽𝕌(K, J)) of the map S given in Corollary 9.6.10.

Now all preparations for the following definition are carried out.

Definition 9.6.11. The Conley–Zehnder index of a path t ∈ [0, 1] 󳨃→ Tt ∈ 𝔽𝕌(K, J) is
defined as

CZ(t ∈ [0, 1] 󳨃→ Tt) = Sf(t ∈ [0, 1] 󳨃→ S(Tt)).

Note that, indeed, Proposition 9.6.9 implies that the spectral flow of unitaries on
the right-hand side is well defined (as the spectral flow through −1 in the sense of Sec-
tion 4.5). As such, the Conley–Zehnder index inherits several properties of the spectral
flowwhich are not spelled out in detail: concatenation, homotopy invariance (with fixed
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endpoints), integrality, and additivity. From these properties, one directly deduces the
following statement:

Proposition 9.6.12. The Conley–Zehnder index applied to closed paths induces group ho-
momorphisms CZ : π1(𝔽𝕌(K, J)) → ℤ and CZ : π1(𝕌

C(K, J)) → ℤ.

Remark 9.6.13. Proposition 9.1.8 shows that π1(𝕌
C(K, J)) = ℤ ⊕ ℤ. Hence the Conley–

Zehnder index extracts one of these ℤ. ⬦

Inmany applications, one deals with differentiable paths t 󳨃→ Tt of J -unitaries. Then
it is useful to be able to compute the derivatives of the eigenvalues of S(Tt) when they
cross −1, namely those points which can contribute to the Conley–Zehnder index. The
following proposition then leads to a crossing form formulation of the Conley–Zehnder
index. This is not spelled out in detail as it is essentially the same as in Section 4.3. The
formulas below also allow to analyze the transversality of the path.

Proposition 9.6.14. Let t 󳨃→ Tt = (At BtCt Dt
) be a differentiable path in𝕌(K, J). Then

S(Tt)
∗𝜕tS(Tt) = ( 1 0

−D−1t Ct D−1t )
∗
(T∗t J𝜕tTt) ( 1 0

−D−1t Ct D−1t ) .
For a vector ϕt ∈ K satisfying Ttϕt = −ϕt , one has S(Tt)Jϕt = −Jϕt and

ϕ∗t JS(Tt)∗𝜕tS(Tt)Jϕt = ϕ∗t T∗t J𝜕tTtϕt .
Proof. The proof is essentially the same as that of Lemma 2.3.9.

Let us now provide an integral formula for the Conley–Zehnder index of differen-
tiable closed paths. It is an infinite-dimensional version of Proposition 2.3.11 with an
identical proof, provided supplementary trace class properties are imposed. In particu-
lar, the algebraic Lemma 2.3.10 transposes directly.

Proposition 9.6.15. Let t 󳨃→ Tt = (At BtCt Dt
) be a continuously differentiable closed path in

𝕌(K, J) such that all four entries of 𝜕tTt are trace class. Then

CZ(t ∈ [0, 1] 󳨃→ Tt) =
1
2π𝚤

1

∫
0

dt Tr((At)
−1𝜕tAt − (Dt)−1𝜕tDt).

Also the statement andproof of Corollary 2.3.12 transpose to the infinite-dimensional
setting. It provides a connection between the Bott–Maslov and Conley–Zehnder indices.

Corollary 9.6.16. Let t 󳨃→ Tt = (At BtCt Dt
) be a continuously differentiable closed path in

𝕌C(K, J) such that all four entries of 𝜕tTt are trace class. Then for any P ∈ ℙ(K, J),

CZ(t ∈ [0, 1] 󳨃→ Tt) = BM(t ∈ [0, 1] 󳨃→ (P, Tt ⋅ P)).
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Based on Corollary 9.6.16, as well as Propositions 9.5.9 and 9.5.15, one can now prove
an infinite-dimensional version of Corollary 2.3.13, simply by realizing that the finite-
dimensional arguments transpose to a trace class situation.While it is certainly possible
to weaken the hypothesis, this is not further studied here.

Proposition 9.6.17. Let t ∈ [0, 1] 󳨃→ Pt ∈ 𝔽ℙ(K, J) and t ∈ [0, 1] 󳨃→ Tt ∈ 𝕌
C(K, J) be two

continuously differentiable closed paths such that all four entries of 𝜕tTt are trace class.
Then

BM(t ∈ [0, 1] 󳨃→ Tt ⋅ Pt) = BM(t ∈ [0, 1] 󳨃→ Pt) + CZ(t ∈ [0, 1] 󳨃→ Tt).

9.7 Oscillation theory for bound states of scattering systems

This section provides an application of the Bott–Maslov index and spectral flow in the
infinite-dimensional setting as described in this chapter. It is about oscillation theory
for bound states of a higher-dimensional quantum scattering system (within a single-
particle framework). This basically consists of transposing the setup and results of Sec-
tion 2.6 to a situation where the fibers are infinite dimensional and the locality of the
scattering perturbation directly leads to the required Fredholm property. Therefore it is
possible to simply refer to Section 2.6 for most of the algebraic arguments, and merely
add the required functional analytic elements to the proofs. Let us also note that we are
not aware of other results on oscillation theory with infinite dimensional fibers except
for [101] where, however, the Fredholm property rather holds in a Breuer–Fredholm
sense and the spectral flow is with respect to a semifinite trace so that it determines the
density of states.

Let us begin by describing the Hamiltonian. It acts on the Hilbert space ℓ2(ℤd , ℂN )
over a d-dimensional lattice with N internal degrees of freedom over every site and is
of the next-neighbor form

(Hψ)m = ∑|m−k|=1 am,kψk + vmψm, (9.18)

where ψ = (ψm)m∈ℤd with ψm ∈ ℂ
N , the sum runs over all sites neighboring n (the

distance |n − m| is meant in the maximum norm on ℤd), and am,k = a∗k,m and vm are
N × N matrices that are invertible and self-adjoint. As in Section 2.6, we will suppose
to be in a scattering situation where the coefficient matrices am,k and vm are all equal
to a and v except for a finite number of sites. Let L > 0 be such that all these sites lie
in a strip ℤd−1 × {1, . . . , L}. Hence H is a finite-rank perturbation of a periodic Hamilto-
nian

(Hperψ)m = ∑|m−k|=1 aψk + vψm.
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By discrete Fourier transform, one can show thatHper has purely absolutely continuous
spectrum spec(Hper) = specac(Hper) consisting of at most N intervals. This section is
about computing discrete eigenvalues ofH not lying in spec(Hper), thus so-called bound
states, by a formula similar as in Theorem 2.6.5. The dimension is throughout assumed
to satisfy d ≥ 2.

For this purpose, the Hamiltonian is rewritten as a (two-sided) infinite block Jacobi
operator. The fiber Hilbert space will beH = ℓ2(ℤd−1, ℂN ). Then ℓ2(ℤd , ℂN ) ≅ ℓ2(ℤ,H).
Under this identification, the Hamiltonian (9.18) can be rewritten as

(Hψ)n = An+1ψn+1 + Anψn−1 + Vnψn,
where now n ∈ ℤ and (An)n∈ℤ, (Vn)n∈ℤ are both sequences of invertible and self-adjoint
operators on H, respectively. We do not write out explicit formulas for An and Vn in
terms of the am,k and vm, but stress that the coefficient operators are such that

An = A, Vn = V , n ̸∈ {1, . . . , L}, (9.19)

just as in Section 2.6. The Schrödinger equation HψE = EψE will be considered for all
sequences ψE = (ψEn)n∈ℤ of vectors ψEn ∈ H, and not only square-integrable states from
ℓ2(ℤ,H). Explicitly written out, it becomes

An+1ψEn+1 + VnψEn + AnψEn−1 = EψEn . (9.20)

Regrouping two neighboring vectors into

ΨE
n = (

An+1ψEn+1
ψEn
) ,

one can then rewrite (9.20) as

ΨE
n = M

E
nΨ

E
n−1, (9.21)

where the I-unitary transfer matrices ME
n on the Krein space (K, I) = (H ⊕ H, I) are

defined by

ME
n = (
(E1 − Vn)A

−1
n −An

A−1n 0
) . (9.22)

Let us stress that (9.21) looks exactly as the corresponding equation (2.50) in the setting
with finite-dimensional fibers. Indeed, all structural algebraic facts transpose directly.
In particular, we will use (9.21) also as an equation for frames ΨE

n : H → K = H ⊕H. If
one of the ΨE

n spans an I-Lagrangian subspace, then all others do as well because allM
E
n

are I-unitary. Let us note that due to (9.19) theME
n are for all n ̸∈ {1, . . . ,N} equal to one

fixed I-unitary
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ME = (
(E1 − V )A−1 −A

A−1 0
) .

The matrix entries of this transfer matrix specify Hper, and thereforeM
E is also closely

linked to the spectral properties of Hper. The following result extends Propositions 2.6.1
and 2.6.2.

Proposition 9.7.1. The following statements hold:
(i) E ∈ σ(Hper) ⇐⇒ σ(ME) ∩ 𝕊1 ̸= 0.
(ii) For real E ̸∈ σ(Hper), the subspaces E

E,< and EE,> given by the range of the Riesz pro-
jection ofME on spec(ME)∩B1(0) and spec(M

E)\B1(0), respectively are I-Lagrangian.
(iii) For real E ̸∈ σ(Hper), the subspaces EE,< and (EE,>)⊥ form a Fredholm pair of

I-Lagrangian subspaces.

Proof. Thefirst claim follows by aWeyl sequence argument, just as in the proof of Propo-
sition 2.6.1. The second and third claims follow from Proposition 9.4.6, after a Cayley
transform.

As in Section 2.6 now follows the analysis of the energy dependence of the unitaries

WE,< = Π(CEE,<), WE,> = Π(CEE,>),
using the half-space restrictions of Hper. Let H

+
per and H

−
per be the (Dirichlet) restrictions

of Hper to the subspaces ℓ
2(ℕ,H) and ℓ2(ℕ−,H), respectively, whereℕ = {1, 2, . . .} and

ℕ− = {. . . , −1, 0}. In the situation of Section 2.6, the fiber Hilbert space H is finite di-
mensional, and this implies that the new spectrum spec(H±per) \ spec(Hper) only consists
of a finite number of eigenvalues (bound states) of finite multiplicity. In the present
situation, it is possible that spec(H±per) acquires new essential spectrum resulting from
surface states along the boundary. This spectrum is typically topologically protected.
It can be studied via K -theoretic methods [152] or via transfer matrix methods along
the boundary [17, 174]. We believe that the computation of the density of states of this
boundary spectrum is possible by adapting Corollary 2.6.4 to a semifinite setting (either
by using the Fourier decomposition along the boundary or, more generally, by transpos-
ing the techniques from [101]), but this is not carried out here. Irrespective of this, one
can prove the following analogue of Proposition 2.6.3.

Proposition 9.7.2. One has, for E ∈ ℝ \ spec(Hper),

1
𝚤
(WE,<)∗𝜕EWE,< < 0, 1

𝚤
(WE,>)∗𝜕EWE,> > 0.

Proof. The whole setup is translation invariant with respect to shifts along the bound-
ary. Hence it is possible to carry out a (d−1)-dimensional discrete Fourier decomposition
of all objects involved. In particular,
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H±per ≅ ⊕∫
𝕋d−1 dk H

±
per(k),

where k ∈ 𝕋d−1 󳨃→ H±per(k) is a real-analytic family of half-space block Jacobi matrices
with a finite-dimensional fiber. Furthermore, also the transfer operators admit such a
Fourier decomposition

ME ≅
⊕
∫

𝕋d−1 dk M
E(k),

with finite-dimensional J -unitaries depending real analytically on k ∈ 𝕋d−1. Thus also
EE,< and EE,>, as well asWE,< andWE,>, can be decomposed. For each k ∈ 𝕋d−1, one can
now apply Proposition 2.6.3, and integrating over 𝕋d−1 concludes the proof.

To continue the analysis of the scattering Hamiltonian H , let us now set

mE = multiplicity of E as eigenvalue of H .

Each eigenstate ψE ∈ ℓ2(ℤd , ℂN ) ≅ ℓ2(ℤ,H) decays both at −∞ and +∞. To construct
such an eigenstate, one can again proceed as in Section 2.6. Outside of [1, L] ∩ ℤ, the
decaying solution satisfies (9.21) withME

n = M
E . Hence neighboring sites must produce

vectors lying in EE,> on (−∞, 0] ∩ ℤ and lying in EE,< on [L + 1,∞) ∩ ℤ. Matching of the
solutions thus shows

mE = dim(ME(L, 1)EE,> ∩ EE,<), (9.23)

whereME(L, 1) = ME
L ⋅ ⋅ ⋅M

E
1 .

Proposition 9.7.3. For E ∈ ℝ \ spec(Hper), the multiplicity m
E is finite and given by

mE = dim(Ker(Π(CEE,<)∗Π(CME(L, 1)EE,>) − 1)). (9.24)

Proof. By Proposition 9.7.1, the right-hand side of (9.23) is an intersection between the
two I-Lagrangian subspaces ME(L, 1)EE,> and EE,<. This intersection can thus be com-
puted by (9.24) due to Proposition 9.3.5. It remains to show that this intersection is finite.
For that purpose, let us first note that by Proposition 9.7.1 one has EE,< ∩ EE,> = {0}, and
therefore 1 is not in the spectrum of Π(CEE,<)∗Π(CEE,>) = (WE,<)∗WE,>, again by Propo-
sition 9.3.5. Furthermore, let us note thatEE,> isME -invariant by construction. Therefore
(ME)LEE,> = EE,>. Due to the assumption (9.19),ME

n −M
E is of finite rank and therefore

ME
n (M

E)−1 = 1 + Fn where Fn is of finite rank (and such that 1 + Fn is J -unitary). Iter-
ating one concludes that ME(L, 1)(ME)−L = 1 + F where F is of finite rank. Finally, by
Proposition 9.3.8,
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Π(CME(L, 1)EE,>) = Π(CME(L, 1)(ME)
−L
E
E,>)

= (C(1 + F)C∗) ⋅WE,>
= (1 + CFC∗) ⋅WE,>
= WE,> + K ,

where K is some compact operator (such that WE,> + K is unitary). In conclusion,
Π(CEE,<)∗Π(CME(L, 1)EE,>) is a compact perturbation of (WE,<)∗WE,> and therefore
has no essential spectrum in a neighborhood of 1.

Note that the above proof combined with Theorem 9.4.2 also shows that the sub-
spacesME(L, 1)EE,> and (EE,<)⊥ form a Fredholm pair of I-Lagrangians. As in Section 2.6,
let us now set

UE = −Π(CEE,<)∗Π(CME(L, 1)EE,>)
= −(WE,<)∗(CME(L, 1)C∗) ⋅WE,>.

Theorem 9.7.4. One has

1
𝚤
(UE)
∗
𝜕EU

E > 0. (9.25)

Suppose that [E0, E1] ∩ spec(Hper) = 0 and that E0 and E1 are not eigenvalues of H. Then
the number of bound states of H in [E0, E1] is given by

#{eigenvalues of H in [E0, E1]} = Sf(E ∈ [E0, E1] 󳨃→ UE through −1).

Proof. Given the preparations in Propositions 9.7.2 and 9.7.3, the proof is identical to
that of Theorem 2.6.5.


