6 Unbounded Fredholm operators

This chapter offers a detailed introduction to various subsets of the unbounded Fred-
holm operators, with a particular focus on natural topologies thereon. This is a neces-
sary preparation for the definition of spectral flow of unbounded self-adjoint Fredholm
operators given in the next Chapter 7. First, Section 6.1 reviews various topologies on the
set of closed operators. Section 6.2 recalls some fundamentals about unbounded Fred-
holm operators that can be found in numerous books, e. g., [80, 99, 165]. Then, following
the works of Boof3-Bavnbek, Lesch, and Phillips [31], as well as Lesch [126], the set of
unbounded self-adjoint Fredholm operators and its topology is studied in detail in Sec-
tion 6.3. Section 6.4 considers the important subclass of self-adjoint Fredholm operators
with compact resolvent and proves numerous topological results.

6.1 Topologies on closed and densely defined operators

Let us first recall that an unbounded operator is alinear map T : D(T) ¢ H — H' where
D(T) is a linear subspace of some Hilbert space X, called the domain of T. It is called
closed if its graph {(@, T¢) : ¢ € D(T)} is a closed subspace of H x F'. Let us introduce
a notation for the set of closed densely defined (also called regular) operators:

IL(H,H") = {T : D(T) ¢ H — H' closed and densely defined}.

In the case H' = 3(, we also use the notation IL(7() = IL(J(, ). For any T € LL(3(, H'),
the adjoint operator T* € IL(H', H) is defined by (T*¢|) = (¢|Tw) for y € D(T) and
¢in D(T*) = {¢p € H' : b € D(T) — {(¢|TY) bounded}. Then T is called symmetric
if D(T) ¢ D(T*) and T*|py = T, and furthermore T is called self-adjoint whenever
one has T = T* which includes D(T) = D(T*). As a preparation for the constructions
below, some rather standard facts are needed that are included for the convenience of
the reader.

Lemma 6.1.1. Let T be a closed and densely defined operator. Then T*T is self-adjoint
with domain D(T*T) = {¢p € H : ¢ € D(T), Tp € D(T*)}.

Proof. (See, e.g., Korollar VI1.2.13 in [204].) Clearly, T*T is well defined and symmet-
ric on D(T*T). It remains to show that it is densely defined and self-adjoint. For that
purpose, let us equip D(T) with the scalar product

(PlY)r = (TRITY) + (PlV).

Because T is closed, (D(T), {:|)7) is a Hilbert space which will be denoted by F. Let
I € B(H,H) denote the natural embedding and I* € B(H, ) its adjoint. Then II* is
self-adjoint and has a trivial kernel because (¢|I* ) = {(Ip|) = (|Y) and T is densely
defined. Thus Ran(IT*) = Ker(II*)* = 3 and IT* has dense range. It will next be shown
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that Ran(II*) ¢ D(T*T). Indeed, let ¢ € H and ) = II*¢ = I*¢ € Ran(II*) so that i) € K
and for any n € D(T),

(TnITy) = ()7 - nlY)
= (NII" o) — (NIp)
= (Inlg) - (nly)
= (nl¢ - ).

Hence n € D(T) — (Tn|Ty) is continuous and thus Ty € D(T*), so that ¥ € D(T*T).
It follows that D(T*T) is dense. As T*T is bounded from below and symmetric, it has
a self-adjoint extension with domain Ran(II*), given by the Friedrich extension (this is
the only nonnegative self-adjoint extension). Hence one must have Ran(II*) = D(T*T),
and T*T is self-adjoint. O

Lemma 6.1.2. For any regular operator T ¢ IL(3(,3("), the domain D(T*T) is a core for
T, namely T is the closure of T|p -y which in turn is also given by the double adjoint
of T|pr+1)- Moreover; T(1 + T* T land T1+T* T)’% are bounded operators, both with
norm bounded by 1.

Proof. (See, e.g., Lemma 9.2 in [121].) Let us first show that
1+T*T: DA+ T*T) = D(T*T) » K
is a bijection. For ¢ € D(T*T), one has

($|(1+T7T)¢) = (9I9) + (TPITP) = (9I9),

and therefore [|(1+ T*T)¢|l > |l¢|. This implies that 1 + T*T is injective. Furthermore,
if (¢,)ns1 is @ Cauchy sequence in Ran(1+ T*T) and @, = (1 + T*T)t,,, then also (¥,,)p>1
is a Cauchy sequence converging to ¢, and then the closedness of 1 + T* T implies that
Y e DA+ T*T)and 1 + T*T)yY = lim¢@,. Thus Ran(1 + T*T) is closed and therefore
equal to . Moreover, it follows that the inverse (1 + T* T)‘1 : H — H is bounded with
norm ||(1+ T*T)7Y|| < 1and its range is Ran((1 + T*T)!) = D(T*T). Let us note that, in
particular, the range of the 1operator (1+T*T) lis dense in K. As, clearly, 1+T*T) ! > 0,
its square root (1 + T*T)"2 : H — K is well defined and has a dense range. Then for
¢ € H, one has

(TA+T*T) ' GIT1+T*T) '¢) = (A+ T°T

(
(

( ) I T+ T T) " 9)
1+ T°T) '¢|(1+ T*T)(1+ T*T) ' ¢)
( )
( )

IN

1+T*T

"9]0)
S (A TT) 29|+ T T) ),
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and therefore IT(1+ T*T)y 11+ T* T)’i ol < IA+T* Ty @|.. This implies that the op-
erator TA+ T* T)" Ran((1+ T* T)‘E) - H'i 1s bounded with norm bounded by 1 and
therefore has an extension from Ran((1+ T*T)~ ) to all of H which is also bounded with
norm bounded by 1. Next is shown that Ran((1+T*T)~ ) =D(T) such that thlS extension
isgivenby T(1+T" T)” H — H'.Let¢p € H.AsRan((1+T*T)~ 2(1+T T)’E) =D(T*T)
is dense, there is a sequence (Pn)nen 1n the range of (A+T*T)” 2) convergmg to ¢.
Then,as 1+ T*T)” : is bounded, lim,_,,,(1 + T*T)~ ¢n =(1+T'T) 2¢. Because the
operator T(1 + T*T)‘% : Ran((1 + T*T)‘%) — H'isbounded, (T(1 + T* T)‘%gbn)nEIN isa
Cauchy sequence and therefore converges to some ¢ = lim,_,,, T(1 + T*T)‘%¢n e 3.
AsTim, oo ((1+7° T) 2, TA+T*T) 2¢h,) = (@+T° T)"2¢, 1) in 5 x 3’ and T is closed,
A+T*T)” ; ¢isin the domain of T and T(1+ T* T)‘i ¢ = 1. Conversely, assume ¢ € D(T).
Thenas (1+ T* T)’i T c(TA+T*T)” 2) is bounded, one has

6= (A+T'T) A+ T'T) T T+ (1+T°T) o

1 _1
2 2

1 _1 _
=(1+T'T) *(1+T"T) ZT*T+ (1+T°T) *)p e Ran((1+T"T) ?).
This implies D(T) = Ran((1+ T* T)‘E) Thus, for ¢ € D(T) there is € H such that
¢ =@0A+T'T) z/) AsRan((1+ T*T)” ) is dense in X, there is a sequence (6,),cn N

Ran((1+ T*T)~ ) such that lim a+T T)’E 0, = Y. Then

n—o0o0

lim (1+T°T) 0 =¢

n—-oo

and

~ 7! i e e
lim T(1+T°T) "6, = lim T(1+T°T) *(1+ T"T) ?6,

TA+T°T) 2y

= T.

One concludes that lim,_, (1 + T* T)‘len,T(l + T*T)‘len) = (¢, T¢) and therefore
D(T*T) is a core for T because (1+ T*T)"'6, € D(T*T) foralln € N. O

In this section two topologies on IL(7(, 3") are studied, as well as naturally asso-
ciated topologies on the image of I(J{, (') under the bounded transform that will be
introduced in (6.3) below. Let us begin with the gap topology. As T € IL(3(, (') is closed,
the orthogonal projection P; € B(J & H') onto the graph of T is bounded. Then the gap
metric on IL(H, ') is defined by

dg(To, Ty) = |P, = Prl,  To, Ty € L(3,3"). (6.1

The topology Og on (3, ') induced by d is called the gap topology. In order to get a
better grip on it, let us write out the explicit form of the graph projections.
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Proposition 6.1.3. For T € IL(3(,3(), let us set
|
Ry =(1+T°T) .

Then the orthogonal projection onto the graph of T is

Ry T*Rp
PT = .
TRy 1-Rp

The gap metric is equivalent to the metric defined by
dg(Tp, Ty) = IRy, — Ry || + IR7s = Ryl + I ToRy, — TiRy, .

Proof. By Lemma 6.1.2, TRy is bounded, and thus also T*Ry- is bounded. Let us first
check that

Rp-T cTR;, RyT* < (TRp)" = T*Ry.. (6.2)

For the first equality, let ¢ € D(T). Then ¢ = Ry¢ € Ran(Ry) = D(T*T) ¢ D(T). As then
(1+T*T)yY = ¢, one has

T =T+ T T)p = (1+ TT*)Ty = (1+ TT*) TR,

and multiplying by (1 + TT*)™! shows the first inclusion of (6.2). The second inclusion
in (6.2) follows from general principles. Indeed, for ¢ € D(T™), one concludes that
(TRp)*¢ = RyT*¢ = T*Ry-¢ where the last equality follows from the first inclusion
of (6.2). As D(T™) is dense, this implies the last equality in (6.2). Using (6.2), an algebraic
computation shows that Py is an orthogonal projection. Moreover, one readily verifies

(i) rmdsa i orone) < ()

for all ¢ € D(T), due to (1 + TT*)™'T = R;.T ¢ TRy = T(1+ T*T)~L. Note that the set
{(T_l;p) : 1 € D(T*)} is the orthogonal complement of the graph of T in 3 @ H'. One
checks that for ¥ € D(T™),

» (T*¢> ~ ( A+T' )T Y -T* A+ TT*) Y ) ~ <o>
-y ) \ta+T'DT*y-a-@a+17hy/) \0/)’
where (1+ T*T)'T* = R;T* ¢ T*Ry. = T*(1+ TT*)"! was used. Hence Py is the or-

thogonal projection onto the graph of T. Replacing the formula for P; twice in definition
(6.1), one readily deduces the equivalence of d; and d.. O
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The key element for the definition of the Riesz topology on IL(J(, }{') is the bounded
transform (sometimes also called Riesz transform due to the work of Riesz and Lorch,
on which it is elaborated in the textbook [158]; note though that there is no square root
in these works)

F(T) =T+ T*T)_% € B(3H, ") (6.3)

of T ¢ IL(H, H'). By Lemma 6.1.2, the operator F(T) is well defined and bounded so that
also the map F : (3, H') — B(H,H') given by (6.3) is well defined. To analyze its
mapping properties, let us introduce the ball of bounded operators of radius a > 0,

B, (3, H') = {F € B(H,3') : |IF|| < a},
as well as the following subset of the unit ball:
BY(H, H') = {F € B(H, H') : |F|l < 1,Ker(1- F*F) = {0}}.

This notation fits with that of Section 4.6, namely the lower index 1 indicates that the
norm is bounded by 1 and the upper index 0 denotes that 1 is not a singular value of F.

Theorem 6.1.4. The bounded transform establishes a bijection
F: L(H,H') - BY(H, H).

Moreover, F(T)* = F(T*).

Proof. (Seel, e.g., Theorem 10.4 in [121].) In the proof of Lemma 6.1.2, it was shown that
A+T*T) 2 : 9{1 — H is well defined and bounded with norm bounded by 1. Moreover,
Ran((1+ T*T)"2) = D(T) and F(T) : H — H is well defined and bounded with norm
|F(T)| < 1, see the proof of Lemma 6.1.2.

Clearly,

1
(A1+T°T) °T" cF(T)", (6.4)
and therefore one has for ¢ € K,

F(T)"F(T)(1+ T*T)_%qﬁ =(1+ T*T)_% T*T(1+T*T) ¢

1
A+ T T) 2A+ T T-1)(1+T°T) ¢
1
= (1-(1+T'T) )2+ TT) 7.
AsRan((1+T* T)_%) = D(T) is dense in K, this implies

1-F(T)'FT) = A+ T°T) . (6.5)
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Thus as Ker((1+ T* T)’%) =Ker((1+ T*T)™) = {0}, the kernel of 1 - F(T)* F(T) is trivial.
This shows that the map ¥ is well defined.

Let us next show that the map 7 is surjective. Let F € B(3(, ') be such that |F| < 1
and Ker(1-F*F) = {0}. As Ker(1-F*F) is trivial, it follows that D = Ran((l—F*F)%) cH
is dense. Then an unbounded operator T : D — K’ is defined by T(1- F*F)%qb = F¢ for
¢ € H.As1- F*F is injective, this is well defined and

1
2

T=FQ1-F'F) 2. (6.6)
Clearly, T is densely defined and it remains to show that it is closed and F(T) = F. We

next show that the kernel of 1- FF* is trivial. Suppose to the contrary, namely that there
is ¢ € 3" with |¢|| = 1 such that FF*¢ = ¢. This implies that FF* FF*¢ = ¢ and therefore

1= (Q[FFFF" 9) = (F" 9[F"F(E"$)).

As |F*¢| < 1, this implies by the Cauchy-Schwarz inequality that |[F*¢| = 1 and that
F*F(F*¢) = F* ¢, which is a contradiction to Ker(1- F*F) = {0}. Thus Ker(1- FF*) = {0}
and the range D* = Ran((1 - FF*)%) c 3’ is dense. Then S : D* — I, defined by
Sa- FF*)%d) = F*¢ for ¢ ¢ ', is well defined and S = F*(1 - FF*)_%. Next setting
o= (1—1—"*1—")%¢’ cDandy=(1 —FF*)%W € D*, one has

(TPIY) = (FY'|(1-FF")0)
~ (1-FF)2FQ|)
- (FA-F'F)!¢'y")
- (A-F' P |Fy)
= (P|SY).

This implies S ¢ T* and, in particular, T* is densely defined (and T is closable). One
directly checks that

* .
( 1-F*F 1 (1- F*F):F > ¢ B3 00

F(1-F*F)2 Fr*
is an orthogonal projection. An explicit computation shows that the graph of T is Ran(P)
and therefore T is closed. Moreover, {(-Si, ¥) : ) € D*} = Ker(P) and, because one has
{9, TP) : ¢ € D} = {(-T*Y,¥) : Y € D(T*)}, this implies D* = D(T*) and § = T*. Next
let us verify that F = F(T). By Lemma 6.1.2, D(T) c Ran((1+ T* T)’%) and therefore

_1
2

FOA-FT)*FT)) * =T+ T*T)_%(l + T*T)% =T
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This implies that T is given by (?.6) for F = ¥(T) and the map ¥ is injective. Let T be as
in (6.6), then T* = F*(1 - FF*)"z and

IS

F(T) = F(1- F'F) *(1+ F*(1- FF*) "F(1- F"F) ?)°
—F(-F'F) {1+ F'FA-F'F) ) ?
CFA-F'F) (- F'F+FR)A-F'F) )

=F.

Therefore F is bijective and F(T)* = F(T™). O

The so-called Riesz metric on IL(7(, (') is defined by
dR(TO’ Tl) = ng’-(To) - St(Tl)n, To, Tl € ]L(:H:, :H:’)

Using Theorem 6.1.4, one checks the nondegeneracy assumption for dy. The triangle in-
equality and symmetry are obvious. The topology O on IL(J, ') induced by the Riesz
metric is also called the Riesz topology. Henceforth we use both notations (IL(F(, 3'), dg)
and (IL(3(, H"), Og) depending on whether we want to stress the metric structure when
discussing the continuity of maps on IL(7(, "). Similarly, we will proceed with other
spaces below.

As dj is naturally associated to the bounded transform, the following holds:

Proposition 6.1.5. The bounded transform
F : (L(3C3), dg) — (BY(3C.3'). dy)

is a homeomorphism. As above, dy(Ty, Ty) = ||Ty — T4l is here the norm distance.

Proof. By Theorem 6.1.4, F : L(F(, H') — F(IL(H, H")) = ]B(l)(i}{, H') is bijective and, by
the very definition of the Riesz metric, it is a homeomorphism. O

Proposition 6.1.6. An operator T < 1L(J, (') is bounded if and only if its bounded trans-
form has norm less than 1, namely |F(T)| < 1

Proof. Let us first suppose that T € IL(J, ') is bounded. Then it is sufficient to show
that |F(T)* F(T)|| = |F(D)|? < 1. As

_1 _1 _
FO'FT)=Q+TT) *T*TA+T'T) * =T T1+T"T) 1,
by the spectral radius theorem one has

[F(T)* F(T)| = sup(spec(F(T)* F(T)))
= supfA1+A)": A e spec(T*T)} < 1,
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where the spectral mapping theorem was used. Conversely, assume that [|F(T)| < 1,
then |F(T)*F(T)| < 1 and therefore 1 - F(T)* F(T) is invertible with bounded inverse.
This implies that

1
2

T = 5(T)(1- F(T)"F(T))
is bounded. O

Next let us introduce a pseudometric on the unit ball B, (7, ') by setting

dg(Fo, Fy)

1
2

1
= max{|F; Fy - Fy Fil, IFoFs - FiF; |, -R(1-FR)|}

|Fo(1-FyFo)

Clearly, dp satisfies the triangle inequality and is symmetric. Note that this is an exten-
sion of the pseudometric introduced in Lemma 4.6.3 to operators which are not self-
adjoint any more. As discussed after Lemma 4.6.3, it goes back to [108] and is called the
extended gap metric, and the topology is then called the extended gap topology. The next
result justifies this terminology, namely the extended gap metric is just the push-forward
of the gap metric under the bounded transform.

Proposition 6.1.7. The bounded transform
5+ (L(3G3), dg) — (BY(3,3'). dp)

is a bi-Lipshitz-continuous homeomorphism. In particular, dp defines a metric on
F(L(I, H')) = B H).

Proof. In the proof of Theorem 6.1.4, it is shown that for T e IL(7(, 3{),

, :< 1-F(T)'FT)  A-F D) FI)FID)*
T \Fma- 7y 7(1): F(T)F(T)*

) eB(HaoH')
is the projection onto the graph of T. Comparing this to the definition of dj leads to
dp(F(Ty), F(T) < dg(Ty, Ty) < V2dp(F(Ty), F(Ty)).

This implies all statements. O

The next result extends the applicability of Lemma 4.6.3.

Lemma 6.1.8. The extended gap topology on B, (7, 3(') is weaker than the norm topol-
0gy. More precisely,

dp(Fo, Fy) < 2V2dy (Fy, Fy)2, Fo Fy € By (3¢, 5C). 6.7)
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Moreover; for a < 1,

1+2 1
dN(FO)Fl)S 1_a2 dE(FO’Fl)Z’ Fo,F1€]Ba(:H:,:H:,).

Proof. For the third term in dg, let us start with

1 el
|Fo(1 - FgFo)? — Fi(1- F{ Fy)?|

1
2

[

1 * 1 * *
< IFg(1 - FgFp)? — Fo(1- F{Fy)2| + IFo(1 - F{Fy)* - F{(1 - F{ Fy)*||
1 e 1
< (1= F3Fy)? = (1= E;Fy)?|| + |Fy - F4l.

For the first summand, recall the fact (Proposition A.2.2) that for two nonnegative oper-
atorsA > 0,B > 0 and a € (0,1), one has |A* — BY| < |A — B||*. Hence

||F0(1 - FSFO)% - F1(1 - Fl*Fl)% | < ||FSF0 - F1*F1||% + |y — F4ll.
Now
IFg Fo — Fy Fyll < ||(Fo = Fy)"Fo| + |[Fy (Fo = Fy)|| < 2y - Fyll,

and similarly

IFoFy — FyFy || < 2|lFy - Fyl.
Therefore

dp(Fy, Fy) < V2IFy ~ Fy]1* + |y~ iyl

so that

dy(Fo, Fy) < 2V2dy (Fy Fy)?,

because dy (Fy, Fy) = |Fy — F;ll < 2 for Fy, F; € B{(J). The proof of the other bound (6.7)
is as in Lemma 4.6.3, upon replacing H by F*F. O

Next comes an extension of a result of Nicolaescu [139] showing that the gap topol-
ogy is weaker than the Riesz topology.

Proposition 6.1.9. The gap topology on IL(3(, ') is strictly weaker than the Riesz topol-
ogy.

Proof. The fact that the gap topology is weaker than the Riesz topology on IL(3(, )
directly follows from the first part of Lemma 6.1.8 combined with Propositions 6.1.5 and
6.1.7.
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To show that the Riesz topology is different form the gap topology, we choose an
orthonormal basis {¢; : k € N} of H and define the linear operator

H: 'D(H) - H, z ak¢k = Z kak¢k
keN keN

with domain D(H) = {¥en Gdx : Yxen Kolaxl> < oo}. Clearly, H is self-adjoint and
therefore in (3, K'). For n € N, let us define

Hy:DH,) - H, ) axypx— Y kaydy —2nayp,
keN keN

with domain D(H,) = D(H). Then H, is self-adjoint and therefore in LL(7, H"). As
Hﬁ = H? for all n and thus Ry =Ry and

. . . o1
lim [|H,Ry; — HRyll = lim |[H,Ry; 6, — HRyz,l = lim |2n(1+ %) = 0,

the sequence (H,),cn converges to H with respect to the gap topology. For the Riesz
topology, one has

||—1im“— S —
] Y AR )

Therefore (H,),cn does not converge to H with respect to the Riesz topology and the gap
topology is strictly weaker than the Riesz topology. O

2n _9

HILIEOHE(Hn)¢n - -T(H)(pn 1 7
+n

Pn

m
n—oo

Proposition 6.1.9 directly implies that the bounded transform J is not continuous as
amap J : (I(H, H),d;) — (IB?(iH, H"), dy). In other words, there are not enough open
sets in the gap topology to assure continuity of ¥ in this sense.

The following is due to Cordes and Labrousse, see the addendum to [66]. However,
the proof presented here is considerably simpler.

Theorem 6.1.10. On the space of bounded operators B(3, H'), the topologies induced by
d; and djy coincide with the norm topology. Moreover, with respect to both the gap and
Riesz topologies, B(J, H{') is open and dense in IL(3(, 3').

Proof. Let us introduce the set
By (3, H") = {F € By(3, ) : |F| < 1}.

Then F(B(J, H')) = B_,(3(, H') by Proposition 6.1.6 and, furthermore, by the definition
of the bounded transform,

F: (B(II), dy) — (B (3,5), dy)

is a homeomorphism. On the other hand, the two maps,
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F: (B(H, H'),dg) — (B (0, H), di)
and
F: (B(H,H'), dg) = (B4(H,H'), dy),

are also homeomorphisms by Propositions 6.1.7 and 6.1.5, respectively.

But Lemma 6.1.8 implies that the metrics dp and dy, induce the same topologies on
B_, (7, 3("), showing the first claim.

By Proposition 6.1.6, the image of B(3(, ') under the bounded transform is dense
and open in F(IL(3(, H')) with respect to the norm topology. By Proposition 6.1.5, this
implies that B(3(, (') is dense and open in IL(J, J(') with respect to the Riesz topology.
As the gap topology is weaker than the Riesz topology by Proposition 6.1.9, this implies
that B(3(, ') is also dense in IL(3(, ') with respect to the gap topology. Furthermore,
B.;(H, H') is open in (BY(H, H'), dg). Combined with Proposition 6.1.7 this implies that
B(3, H') is open in I(H, H') with respect to the gap topology. O

6.2 Basic properties of unbounded Fredholm operators

This section introduces unbounded Fredholm operators. As for bounded Fredholm op-
erators, we recall several basic facts about them which can also be found in the liter-
ature, e. g., [99, 165]. Most of the results presented here are similar to the properties of
bounded Fredholm operators studied in Section 3.2. However, as several modifications
are necessary, the proofs are provided with full details, even though this leads to some
repetitions.

Let us first recall that the quotient H/€ of H with respect to a subspace & c H is
the set of equivalence classes of the relation ¢ ~ ) = ¢ - ¢ € €.

Definition 6.2.1. A linear operator T : D(T) ¢ H — H' is a Fredholm operator if and
only if

(1) Tisregular,

(ii) dim(Ker(T)) < oo,

(i) dim(7H'/Ran(T)) < co.

The set of Fredholm operators is denoted by F(J, ") and simply by F(3() = F(3(, )
whenever H' = K.

For a closed operator T : D(T) < H — H', the linear space D(T) equipped with
the T-norm @l = (||¢||_§,{ + ||T¢||?H,)i is a Hilbert space. Associated with T there is a
bounded operator T : (D(T), || - |l7) — 3’ defined by T¢ = T¢.

Proposition 6.2.2. A closed operator T : D(T) ¢ H — H' is Fredholm if and only if the
associated bounded operator T : (D(T), || - |l7) — H' is Fredholm.
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Proof. AsKer(T) = Ker(T) and Ran(T) = Ran(T), the claim directly follows from item
(ii) of Theorem 3.2.2. O

As for bounded Fredholm operators, one has the following characterization.

Lemma 6.2.3. A linear operator T : D(T) ¢ H — H' is Fredholm if and only if
() Tisregular

(ii)) dim(Ker(T)) < oo,

(iii) dim(Ker(T*)) < oo,

(iv) Ran(T) is closed in 3'.

Proof. Let us first assume that T is Fredholm. Then, by Proposition 6.2.2, the associated
bounded operator T : (D(T),|| - [l;) — (' is Fredholm and Ran(T) = Ran(T) is closed.
Therefore

dim(7'/ Ran(T)) = dim(Ran(T)*) = dim(Ker(T™))

is finite. Conversely, if Ran(T) is closed then '/ Ran(T) is known to be a Hilbert space
of dimension dim(J'/ Ran(T)) = dim(Ker(T*)). Thus the equivalence is shown. O

The following extends Theorem 3.2.2 to unbounded operators.

Theorem 6.2.4. Foraregularoperator T : D(T) c 7 — (', the following are equivalent:
(i) T isaFredholm operator.
(ii) There exists a unique S, € B(JH', H) such that

Ker(Sy) = Ran(T)*, Ker(Sy) = Ker(T),

and such that SyT can be continuously extended to the orthogonal projection onto
Ker(T)™*. Moreover, TS, is the orthogonal projection onto Ran(T) and

dim(Ran(1 - SyT)) < 0o, dim(Ran(1 - TSy)) < co.

(iii) There exists a so-called pseudoinverse S € B(3', ) such that TS — 1 and ST — 1 can
be extended to compact operators on 3 and H', respectively.

Proof. (i) = (ii). First note that T|geyr): : D(T) N Ker(T)" — Ran(T) is bijective and
the graph of its inverse {(T¢, ¢) : ¢ € D(T) n Ker(T)"} is closed as T is closed. Now, as
Ran(T) is closed and therefore a Hilbert space, the closed graph theorem shows that the
inverse S, : Ran(T) — Ker(T)" is bounded. It can be extended to all of 3’ by Sy1 = 0 for
¥ € Ran(T)*. Then by construction TS, is the projection in J’ onto Ran(T) and S,T is
bounded and can be extended to the projection in  onto Ker(T)*. This implies all the
stated properties. Uniqueness is obvious.
(if) = (iii). This is obvious.
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(iii) == (1). Suppose that (§,,),,>1 is an infinite orthonormal basis of Ker(T). As these
vectors are all eigenvectors of the compact operator K = ST —1 for the eigenvalue 1, this
is a contradiction to Riesz’ theorem (Theorem 3.1.6). Suppose that (¢,),>1 is an infinite
orthonormal basis of Ran(T)"*. Consequently, one has [|(TS - Doull = ITSP, — ¢l = 1
as IS¢, L ¢,, a contradiction to the compactness of TS — 1. It remains to show that
Ran(T) is closed. Let K be the compact extension of ST — 1. Choose L € K(H) with a
finite-dimensional range and such that

1
K -L| < 7
Then for all ¢ € Ker(L) n D(T):
ISIITN = ISl
=@+ K9]
> [loll - K¢l
> [l¢ll - (K - L)g| - LIl
1
> EII(PII-

Thus ||¢]l < 2[SIIT@|l for all ¢ € Ker(L) n D(T). This implies that T(Ker(L) n D(T)) is
closed. Indeed, given a convergent sequence (T¢,),-1 with ¢, € Ker(L) n D(T), one can
set i = lim,, T¢,,. Then

60 = Omll < 2111 TSy, — Tpl.

Thus (¢,,),,»1 is a Cauchy sequence and hence has a limit point ¢ = lim¢,, € H. As T is
closed, one has ¥ = Tgp € T(Ker(L) n D(T)). On the other hand,

T(Ker(L)* n D(T)) = T(Ran(L™) n D(T)).

As L* also has a finite-dimensional image, it follows that T(Ker(L)* n D(T)) is finite
dimensional. Thus Ran(T) = T(Ker(L) n D(T)) + T(Ker(L)* n D(T)) is closed. O

The following two propositions present criteria for regular operators to be Fred-
holm. They are the analogues of Lemma 3.4.2 and Proposition 3.2.6 for bounded opera-
tors.

Proposition 6.2.5. For a regular operator T : D(T) ¢ H — ', the following are equiv-

alent:

(1) dim(Ker(T)) < co and Ran(T) is closed.

(i) dim(Ker(T)) < co and there is a constant ¢ > 0 such that |T¢| > c||@| for all vectors
¢ € D(T) nKer(T)™*.
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(i) If (¢,)n>1 is a bounded sequence in D(T) such that (T¢,),-1 IS convergent, then there
is a convergent subsequence of (¢,,) 1.

Proof. (i) = (ii). The restriction T, of T is a bijection from D(T) nKer(T)* toRan(T). The
graph of its inverse T, Tis {(T¢, ) : ¢ € D(T)nKer(T)*}. As T is a closed operator, also its
restriction T, can be seen to be closed, so that the graph of T, 1. Ran(T) — H is closed.
AsRan(T,) is closed and therefore a Hilbert space, the closed graph theorem shows that
T is bounded. Therefore ||¢|| = | T, Tg|l < [T, (|| T¢| holds for all ¢ € D(T) n Ker(T)*.

(i) = (). Let ()1 be a sequence in Ran(T) converging to ¢ € 3('. Then there are
¢, € Ker(T)* n D(T) with Tg, = ¥, By (ii), one has [|¢,, — @, < %"l/)n — Yl so that
(¢,)n>1 1s Cauchy and thus converges to some ¢ € (. As (¢, Tp,,) converges to (¢, 1))
and T is closed, one has Ty = ¢ so that ¢ € Ran(T) and Ran(T) is closed.

(if) = (iii). Let (¢,),»1 be a bounded sequence in D(T) such that (T¢,),>; is con-
vergent. One has ¢, = 0, + ¥, with 8, € Ker(T) and ¥, € D(T) n Ker(T)". Because
WV — ¥l < %||T¢n —T¢,,|l by (1), (¢,,),»1 is Cauchy and therefore convergent. As (¢,,) ;1
and (¥,,),>1 are bounded, also (6,)),51 is bounded. Because the dimension of the kernel
of T is finite, (6,),~1 and therefore (¢,),-1 has a convergent subsequence.

(iii) = (ii). Suppose that the kernel of T is infinite dimensional and that (¢,),cx 1S
an orthonormal basis of it. Then (¢,,),cn is @ bounded sequence in 3 such that T¢,, is
constant (equal to 0) and therefore convergent. As there is no convergent subsequence
of (¢,)nen this is a contradiction to (ii). Thus Ker(T) is finite dimensional. Moreover,
there is a constant ¢ > 0 such that ||¢|| < c|T¢| for all ¢ € Ker(T)* n D(T), because
otherwise there is a sequence (¢,),c in Ker(T)* n D(T) such that [¢,| = 1 for all
n € Nand |Tg,| < % for all n € N. As (Td,),en 1S convergent, by assumption there
is a subsequence (@, )xen CONVerging to some vector ¢ € Ker(T)*" with [¢]| = 1. As
(¢n,> Tn,) converges to (¢,0) and T is closed, one has ¢ € D(T) and T¢ = 0. This is a
contradiction to ¢ € Ker(T)". O

Proposition 6.2.6. Let T : D(T) ¢ H — 3’ be a regular operator. If there is a compact

operator K € K(J, H'"") and a constant ¢ > 0 such that

Il < (1Tl + 1K9l)

forall ¢ € D(T), then T has a closed range and a finite-dimensional kernel.

Proof. Let (¢,),en be abounded sequence in D(T) such that T¢,, is convergent, namely
there is a ¥y € 3’ such that lim,_,, T¢, = . As K is compact, there is a subsequence
(¢n,Jken such that K¢, is convergent. Then (K¢, )ren is a Cauchy sequence and as
limy o, Tdn, = ¥, also (T9y, e is a Cauchy sequence. Therefore for all € > 0 there
isan N € N such that max{||Tq)nk - T¢nm||, ||Kq)nk - K‘Pn,,, I} < i for all k,m > N. Thus

”d)nk - ¢nm S C(” T¢nk - T¢nm I+ "K¢nk - K¢nm ") <€
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or all k,m > N, which shows that (¢,, )xen is @ Cauchy sequence and therefore conver-
gent. Finally, item (iii) of Proposition 6.2.5 shows the assertion. O

Definition 6.2.7. The index of a Fredholm operator T € F(3(, ') is
Ind(T) = dim(Ker(T)) — dim(7('/ Ran(T)).

Next let us generalize Corollary 3.3.2 to unbounded Fredholm operators.

Corollary 6.2.8. (i) ForT € F(H,H"), T' € F(H",H), also TT' ¢ F(H",H").
(i) IfT e F(H, H'), then T* € F(IH', J(). Moreover;

Ind(T) = dim(Ker(T)) — dim(Ker(T™))
and
Ind(T*) = - Ind(T).
(i) If T € F(H, H'), then
Ind(T) = dim(Ker(T*T)) — dim(Ker(TT")).
(v) For T e F(H,H')and T' € F(K",H'""), onehas Te T' € F(H & H",H' o K'") and
Id(T & T') = Ind(T) + Ind(T").

Proof. For the proof of (i), let us first show that TT' is densely defined, namely that
D(TT') = {¢p € D(T") : T'¢ € D(T)}is densein I First, it is checked that D(T)nRan(T")
is dense in Ran(T"). As T’ is Fredholm, Ran(T’)" is finite dimensional. Let {1y, ...,¥,}
be an orthonormal basis of Ran(T')*. Let ¢; > 0. Because D(T) is dense in J{, there are
6; € D(T)fori = 1,...,nsuch that [|¢; — 6;| < €. Then & = span({6;,...,0,}) is a sub-
space of D(T) and, for ¢, sufficiently small, Ran(T") n € = {0} and Ran(T’) @ & = (. By
Proposition 5.1.6, there is a projection P € B(J) with Ran(P) = Ran(T') and Ker(P) = €.
Because D(T) ¢  is dense, for any vector 3 € Ran(T’) and €, > 0 there is ' € D(T)
such that || — ¢'|| < €,. Then Py’ = ¢’ — (1 - P)y’ € D(T) nRan(T') and

¥ -Py'| < & -y’ +]a-Py'|
<g+|a-PY -y
<e(1+[1-P|),

where the second step follows as ) € Ran(T') = Ker(1-P). This shows that D(T)nRan(T")
is dense in Ran(T"). To show that D(TT’) is dense in 3", it is sufficient to show that for
e > 0and ¢ € D(T’) there is ¢ € D(TT') such that [|¢ — ¢|| < e (because D(T') c H"
is dense). For ¢ € D(T'), there is ¢’ € D(T') n Ker(T')* such that T'¢’ = T'¢ and
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thus ¢ — ¢' € Ker(T) c D(TT'). By the above, there is ¥ € Ran(T') n D(T) such that
I — T'¢ll < ec for ¢ > 0 as in item (ii) of Proposition 6.2.5 applied to T'. Then there is
0 € D(T") nKer(T')* such that ¢ = T'0 and therefore 8 € D(TT'). Thus one concluldes
that ¢’ — 0 € D(T') n Ker(T')* and, by Proposition 6.2.5,

lo" -] < ||T ¢'-0)| = ||T ¢-y|<e
By construction, ¢ = ¢ — ¢’ + 8 ¢ D(TT’) fulfills

le - ¢l =l¢" -6l <e.

This shows that TT' is densely defined.
To show that TT’ is closed, let us choose a sequence (@ )ns1 In D(TT') such that
(¢, TT'¢,) converges to (¢, 60). For ¥, = T'@,, there are ¥, € D(T) n Ker(T)" and
' € Ker(T) such that ¢, = ) + ). Then ()),51 is Cauchy, as, by Proposition 6.2.5,
there is a constant ¢ > 0 such that

[0 = ¥l < €| TY; = Ty = €| TT'§ = TT' |

and (TT' ¢,) 51 is Cauchy by assumption. Therefore ()51 is convergent, and one can
define = lim,_,, ¥, € H. As (), Ty,) = (), TT'¢,) converges to (y,0) and T is
closed, one has ¢ € D(T) and Ty = 6. We show that ()1 is bounded. Suppose
that (¥},),>1 is unbounded, then there is a subsequence, again denoted by ()51, such
that lim,,_, ||l/) | = co. Then (|| o )n>1 is a bounded sequence in the finite-dimensional
kernel of T. Again by choosing a subsequence, without loss of generality one can as-
sume that (”:i#),pl converges to § € Ker(T) with [§]| = 1. As (¢n)n>1 1s bounded, one

has lim,,_,_, -2 i = 0and T’ "Z?,"," = lp":ﬁf converges to . As T’ is closed, this implies

1 = 0, which is a contradiction. Therefore the sequence (¥] )ps1 is bounded. As the di-
mension of Ker(T) is finite, there is a convergent subsequence (lp )]>1 of (l,b Ins1- Setting
Y = limy l/)nj € Ker(T), one has lim; ., ¢, = ¥ + Y. As (@, )}Zl converges to ¢ and
(Tdn)jz1 = (¥, )j=1 CONVerges to Y + Y",onehas¢ e D(T)and T'¢ =y + " . As Ty = 0
and ¥" € Ker(T), one has 8 = T(¢ + ¢'") = TT'¢. In conclusion, (¢, 0) is an element of
the graph of TT' and therefore TT' is closed.

We next use Proposition 6.2.5 to show that Ran(TT') is closed and that the dimension
of the kernel of TT' is finite. Let (¢,)ps1 in D(TT') be a bounded sequence such that
(TT' ) ps1 is convergent. For y,, = T'¢,,, there are ¢}, € D(T)nKer(T)" and ¢, € Ker(T)
suchthaty, = ¢;,+y, . Then (;),»1 is Cauchy, as, by Proposition 6.2.5, there is a constant
¢ > 0 such that

[0 = ¥l < €| TY; = T = €| TT'$ = TT' B |
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and (TT’ ¢,,) 1 is Cauchy by assumption. Therefore (¥,) .1 is convergent and one can set
¥ = lim,_,, ¥, € H. As above one can show that (i))),5; is bounded. As the dimension
of Ker(T) is finite, there is a convergent subsequence (l/),’{j )js1 Of () )ns1. Next setting
P!’ = lim_, ;12 € Ker(T), one has lim; ., ¢, = ¥ + y". Thus (T’¢)n]_ Jz1 = Pz
converges to p+1" . By item (iii) of Proposition 6.2.5 applied to the Fredholm operator T,
there is a convergent subsequence of (qbn/, )]-21. Thus Ran(TT') is closed and dim(Ker(TT"))
is finite. To show that Ran(TT’)* is finite dimensional, note that dim(Ran(7T')") is finite
and thus the dimension of T(Ran(T')*) is finite. As

Ran(T) = T(Ran(T")) + T(Ran(T")"),
one has
Ran(T)* = (T(Ran(T")))" n (T(Ran(T")"))".

As Ran(T)* and T(Ran(T")*) are finite dimensional, this implies that the dimension of
(T(Ran(T")))* = Ran(TT")* is finite.

In order to show (ii), let us note that T* is regular and Ker(T*) = Ran(T)"* and
Ran(T*)* = Ker(T) are finite dimensional. It remains to show that Ran(T*) is closed.
This follows from Proposition 6.2.5, because Ker(T*)* = Ran(T) as Ran(T) is closed.
Therefore for 6 € D(T*) nKer(T*)* thereis ¢ € D(T) nKer(T)* such that T¢ = 6. Then

IpNIT 6l = (T*6|¢) = (THIT) = ITI* = clpllITol = clglI6]

for a constant ¢ > 0 by Proposition 6.2.5. Thus [|[T* 0| = c||0| for all @ € D(T*) nKer(T*)*
and Ran(T™) is closed, again by Proposition 6.2.5. The claim about the index of T follows
directly from Definition 6.2.7.

As Ker(T) = Ker(T*T) and Ker(T*) = Ker(TT"), item (iii) is a direct consequence
of (ii).

The last claim follows from the obvious identities Ker(T @ T') = Ker(T) @ Ker(T")
and Ran(T @ T') = Ran(T) @ Ran(T"). O

Proposition 6.2.9. If T ¢ F(J,H") and T' < F(H", ), then the index of the Fredholm
operator TT' € F(H", H') is given by

Ind(TT’) = Ind(T) + Ind(T").
Proof. Recall that TT' is Fredholm by Corollary 6.2.8. One has
dim(Ker(TT")) = dim(Ker(T")) + dim(Ker(T) n Ran(T")).
Setting N, = Ker(T) n Ran(T"), there is a finite-dimensional subspace N, ¢ J( such that

Ker(T) = N; @ N,.
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Note that Ran(T’) N N, = {0} and Ran(T') @ N, is closed. Next it is shown that there is a
finite-dimensional subspace N5 ¢ D(T) such that

Ran(T’) [$] Nz &b N?) = :}(.

Because (Ran(T’) ® N,)* is a subspace of the finite-dimensional space Ran(T')*, it is
finite dimensional. If dim((Ran(T") @ N,)*) = 0, the claim holds for N3 = {0}. Therefore,
without loss of generality, one can assume dim((Ran(T’') @ N,)*) = [ € N. Next since
Ran(T")®N, is closed and T is densely defined, there is a vector ¢, € D(T)\(Ran(T")&N,).
Then 3, = Ran(T")eN,@span({¢,}) is closed and dim((Ran(T")eN,@span({p,;)*) = I-1.
Ifl > 2, thereis a vector ¢, € D(T)\(Ran(T")eN,@span({¢,})). Repeating this procedure [
times, one finds vectors ¢, ..., ¢; € D(T) such that Ran(T")eN,@span({¢;, ..., d;}) = H.
Then the claim holds for N3 = span({@;, ..., ¢;}).
The restriction Ty, is injective and

Ran(T) = Ran(TT") & TN;.

The last claim holds as Ran(T) = Ran(TT') + TN3 by construction and since, for vectors
¢ € Ran(T") and ¥ € Ny such that Tg = Ty € Ran(TT'), one has i € Ran(T’) + Ker(T)
and therefore ¥ = 0 by definition of N3. Thus

dim(Ran(TT")") = dim(Ran(T)*) + dim(N;).
One can conclude that

Ind(7T") = dim(Ker(TT")) - dim(%'/ Ran(TT"))
= dim(Ker(T")) + dim(N;) — dim(Ran(T)") — dim(N3)
= dim(Ker(T")) + dim(N;) + dim(N,)
— dim(Ran(T)*) - dim(Nj) — dim(Ny)
= dim(Ker(T")) + dim(Ker(T)) — dim(Ran(T)*) — dim(Ran(T")")
=Ind(T) + Ind(T"),

by definition of Ny, Ny, and Nj. O

The next aim is to show that the Fredholm property and that the index is invariant
under small or compact perturbations. Therefore we introduce the notion of relatively
bounded and relatively compact operators.

Definition 6.2.10. Let T : D(T) ¢ I — H' be a closed linear operator. Another operator
S :D(S) ¢ H — H with D(T) c D(S) is called relatively bounded with respect to T
(or T-bounded) if the restriction S|4 7y is bounded as operator S : D(T) — H' where
D(T) is equipped with the T-norm || - | ;. Analogously, S is called relatively compact with
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respect to T (or T-compact) if the restriction S| gy : D(T) — H' is compact, where
again D(T) is equipped with the T-norm.

Note that ¢ — [Tl + [|¢|| defines a norm on D(T) that is equivalent to the T-norm.
Therefore an operator S : D(S) ¢ 7 — 3’ is relatively bounded with respect to T if and
only if there are constants ¢;, ¢, > 0 such that

ISp1l < c1[ITPll + c2 /14l (6.8)

for all ¢ € D(T). In particular, every bounded operator S : 7 — 3’ is T-bounded and
every compact operator S : H{ — 3’ is T-compact.

Lemma 6.2.11. If T : D(T) ¢ 5 — (' is a closed operator and S : D(S) ¢ H — H'is
relatively bounded with respect to T and the relative bound c; in (6.8) is less than 1, then
T+S:D(T) c H — H'is aclosed operator.

Proof. Equation (6.8) with ¢;, ¢, > 0 implies
I(T+8)¢] < A+ eDITI + a9l 6.9

and

I(T +$)g]| = ITPl - 1Pl = (1 - c)ITPI — ¢, Pl

As ¢; < 1, the last inequality is equivalent to

1Tl <

(1T + $)0] + calo). .10
-

Let (¢,)n>1 be a sequence in D(T) such that (¢, (T + S)¢,,) converges to (¢, 6). By (6.10),

1
1-¢

”T¢n_T¢m" < (|l(T+S)(¢n_¢m)|l +CZ”¢n_¢m||)

and therefore (T¢,),>; is Cauchy and thus convergent. Setting ¢ = lim,_,, T¢,, this
implies that (@,,, T@,).>1 converges to (¢, ). As T is closed, ¢ is in D(T) = D(T + S) and
T¢ = . Moreover, by (6.9),

I(T + )@ = @)l < A+ c)|T(@ - @n)|| + 2l - Byl

converges to 0. Therefore (T + S)¢ = lim,_, (T + S)¢,, = 6 and the graph of T + S is
closed. 0

A similar result holds for relatively compact operators.

Lemma 6.2.12. If T : D(T) ¢ H — H' is a Fredholm operator and S : D(S) ¢ H — H’
is relatively compact with respect to T, then T + S : D(T) ¢ H — H' is a closed operator:
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Proof. Let T : (D), - [l7) — H be the bounded operator associated with T. Similarly,
define S : (D(T),| - ) — H by S¢ = S¢. Then by Proposition 6.2.2, T and therefore
T+S: (DD, |- ) — H are bounded Fredholm operators. Let us define the embedding
I:D(T)c(FH, - lgc) = (D(T), |l - ll) by Ip = ¢. Then I is invertible and I"!is bounded
and therefore closed. Thus also I is closed and as Ker(I) = {0} and Ran(I) = D(T),Iisa
Fredholm operator. Therefore, by item (i) of Corollary 6.2.8, T + S = (T + S)I is Fredholm
and, in particular, closed. O

After these preparations, we can now show that the Fredholm property is invariant
under small or compact perturbations.

Proposition 6.2.13. Let T : D(T) ¢ H — H' be a Fredholm operator and furthermore
let S : D(S) ¢ H — H' berelatively compact with respect to T or relatively bounded with
respect to T such that the constants c,, ¢, in (6.8) are sufficiently small, then the operator
T +S:D(T) —» H' is Fredholm and

Ind(T + S) = Ind(T).

Proof. By the above lemmata, where ¢, < 11is assumed, operator T + S is closed. Let T :
(D(T), I l7) — H be the operator associated with T and again let S (D), ] - ) — H
be given by S¢ = S¢. Then by Proposition 6.2.2, T + S is Fredholm if and only if T + S
is Fredholm. If S is relatively compact with respect to T, T + S and therefore T + S are
Fredholm by Theorem 3.3.4. Moreover, Ind(T + S) = Ind(T + S) = Ind(T) = Ind(T)
again by Theorem 3.3.4. If T is Fredholm, as the set of bounded Fredholm operators is
open, see Theorem 3.3.5, there is a constant ¢ > 0 such that T + A is Fredholm for all
A € B((D(T), | - lI7), H') such that [|A| < c. If S is relatively bounded with respect to T,
then S € B(D(T), ] - I), 7") has norm less than ¢ provided the constants ¢; and c, in
(6.8) are sufficiently small. Then, by the above, T +S is Fredholm with an index satisfying
Ind(T +8) = Ind(T + ) = Ind(T) = Ind(T). O

As in the bounded case for self-adjoint operators, there is another characterization
using the notion of essential spectrum. The essential spectrum of a self-adjoint operator
H : D(H) ¢ H — H is defined as in Section 3.4 for bounded self-adjoint operators,
namely spec,.,(H) = spec(H) \ specy;s(H) where the discrete spectrum specgy;,(H) con-
sists of all isolated eigenvalues of H of finite multiplicity.

Theorem 6.2.14. A self-adjoint operator H = H* ¢ IL(K) is Fredholm if and only if one
has 0 ¢ spec,(H).

Proof. Let us first assume that H is Fredholm. As Ran(H) = Ker(H)*, then either H is
invertible with a bounded inverse, by the Hellinger-Toeplitz theorem, or 0 is an eigen-
value of finite multiplicity. It remains to show that there exists € > 0 such that one has
spec(H) N (=€, €) \ {0} = 0. The restriction H' of H to D(H) n Ker(H)™ is a bijection onto
its range, which is a Hilbert space. Its graph {(¢, Hp) : ¢ € D(H) n Ker(H)"} is closed



6.2 Basic properties of unbounded Fredholm operators =—— 193

because H is a closed operator. Therefore the closed graph theorem shows that (H')™
is bounded and therefore 0 lies in the resolvent set of H'. Thus there is € > 0 such that
(~e,€) nspec(H') = ¢. Furthermore, H + §1 : D(H) ¢ H — K is a Fredholm operator
of all § € (—¢,¢€). Then Ran(H - §1) = Ker(H - §1)* and therefore § is an eigenvalue
of H or H - §1is invertible with bounded inverse so that § ¢ spec(H). If § is an eigen-
value of H, there is ¢ = ¢, + ¢, € D(H) with ¢, € Ker(H) and ¢, € D(H) n Ker(H)*
such that Hp = Hp, = §¢ = 8¢ + 5¢,. Therefore §¢, = (H — §)¢, and, as ¢, € Ker(H)
and (H - 8)¢, € Ker(H)", this implies ¢, = 0. Therefore H'¢, = H¢, = §¢,, which is a
contradiction.

Conversely assume that 0 ¢ spec,.(H). Then dim(Ker(H)) < oo and [|[Ho|l > c|¢l
for some ¢ > 0 for all ¢ € D(H) n Ker(H)*, which is, by Proposition 6.2.5, equivalent to
the Fredholm property of H. O

The following generalizes Theorem 3.4.1 to unbounded operators.

Theorem 6.2.15. A regular operator T ¢ IL(3,H') is Fredholm if and only if one has
0 ¢ specye(T*T) and 0 ¢ specy (TT").

Proof. Let us first suppose that T is Fredholm. Then by Corollary 6.2.8, T* is Fredholm
and therefore T*T and TT* are Fredholm. As T*T and also TT* are self-adjoint by
Lemma 6.1.1 (note also that (T*)* = T = T), this implies 0 ¢ spec,,(T*T) and fur-
thermore 0 ¢ spec,.(TT*) by Theorem 6.2.14.

Conversely assume that 0 ¢ specy,(T*T) and 0 ¢ specy,(TT™). Then by Theo-
rem 6.2.14 and Lemma 6.1.1, T*T and TT* are Fredholm. Therefore the dimensions of
Ker(T) = Ker(T*T) and Ker(T*) = Ker(TT") are finite. Moreover, Lemma 5.3.3 implies
that Ran(T) = Ran(TT*) ® (Ran(T) n Ran(TT*)™") is closed. This implies by Lemma 6.2.3
that T is a Fredholm operator. O

As for bounded Fredholm operators, there is another characterization of the index
of a Fredholm operator T € TF(J, H') using the operator L : D(T) & D(T*) — H & H'
defined by

0 T*
L:<T 0). (6.11)

Note that the square L% commutes with J = diag(1,-1) and therefore Ker(L) = Ker(LZ)
is invariant under J. Now Ind(T) can be calculated as follows.

Proposition 6.2.16. Let T < IF(J, H(') be a Fredholm operator. Then the operator L de-
fined by (6.11) is self-adjoint. Moreover; the index of T is equal to the signature of the oper-
ator | = 1@ -1 € B(H @ H') restricted to the kernel of L, namely

Ind(T) = Sig(JIer(z))-
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Proof. One directly checks that L is symmetric. Therefore it is sufficient to show that
D(L*) c D(L). As Ker(L) = Ker(T) ® Ker(T*) and

Ran(L) = Ran(T*) @ Ran(T) = Ker(T)* @ Ker(T*)" = Ker(L)*,

one has Ran(L*) c Ker(L)* = Ran(L) and Ker(L*) = Ran(L)* = Ker(L). Now let be
given ¥ € D(L*) \ D(L). Then L*1 € Ran(L*) ¢ Ran(L) so that there is a ¢ € D(L) with
L*Y=L¢=L"¢.Hence 0 = L* (Y- ¢) = L()—¢) as Ker(L) = Ker(L"), and one concludes
¥ € D(L), in contradiction to the assumption. Hence D(L*) ¢ D(L) and L is self-adjoint.
As Ker(L) = Ker(T) ® Ker(T*), one concludes that

Sig(JIker(r)) = dim(Ker(T)) — dim(Ker(T™)) = Ind(T),

completing the proof. O

As the final topic of this section, let us examine the image of Fredholm operators
under the bounded transform &, namely let us restrict the bounded transform J to the
subset F(3(, H') ¢ I(H, H"). Combining Theorems 6.1.4 and 6.2.15 and using the identity
F(TY'F(T) = T*TA+ T*T)  where 1+ T*T)™' : H — D(T*T)is a bijection so that
F(T)*F(T) is Fredholm if and only if T*T is Fredholm, one obtains

F(E(H, 3"))
= {F € By(3, H') : Ker(1- F*F) = {0}, 0 ¢ spec,.(F*F) U specy(FF")},

so that, by Theorem 6.2.15,
F(F(H, H')) = FBY(H, H'), (6.12)
where ]FIB?((H, H') = FB(K, K" n lB‘l)(fH,fi{’). Moreover, one has
Id(F(T)) = Ind(T), T e F(3,H').

Now Propositions 6.1.5 and 6.1.7 immediately imply the following
Proposition 6.2.17. The bounded transform provides two homeomorphisms:

F: (B(3H'), 0p) — (FBY (3, 5), Oy)
and

F : (F(H, H'),06) — (FBL(H, H'), Op).

Proposition 6.2.17 leads to the following result that will be used in Section 8.2 for the
computation of the homotopy groups of (IF(3), Og).

Proposition 6.2.18. The inclusion i : (FB(J(, H'), Oy) — (F(J, '), Og) is a homotopy
equivalence with homotopy inverse F : (F(7(, '), Og) — (FB(I, "), Op).
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Proof. (Modification of the proof of Theorem 5.10 in [126].) Let us first show that the

composition F i : FB(H, H') — FB(F, H') is a homotopic to the identity. Consider the

norm-continuous homotopy h : FB(J, H') x [0, %] — FB(H, H') defined by
hT,t)=TA+T*T)".

Then, clearly, h(T,0) = T and h(T, %) = (Foi)(T) for all T € FB(J,H'). By Proposi-
tion 6.2.17, this implies that i o F = F 1o (F i) o F is also homotopic to the identity.
Putting these facts together, one concludes that i is a homotopy equivalence. O

6.3 Unbounded self-adjoint Fredholm operators

This section analyzes the set F, () of unbounded self-adjoint Fredholm operators
on H. As a subset of the set L(H) = L(H,H) of closed densely defined operators, it
inherits two natural metrics, namely the Riesz metric dy and the gap metric d;;. The in-
duced topologies will still be called Riesz and gap topologies, respectively. Let us begin
by analyzing the image of FFg, (3() under the bounded transform. Recall from Section 4.6
the notations

B, (30) = {H € Bo,(30) : |H| < 1, Ker(H* - 1) = {0}}
and
FB{, (3) = B, (30) N FB(%).
Proposition 6.3.1. The bounded transform F maps Lg,(H) and F,,(H) bijectively onto

IB?’Sa(ﬂ-C) and ]FIB%SH({H), respectively.

Proof. By Theorem 6.1.4, one has F(T*) = F(T)* for all T € LL(X). Therefore T is self-
adjoint if and only if F(T) is self-adjoint. Moreover, as (1 + T*T)’% : H — D(T)is
bijective, Ran(T) = Ran(F(T)) and dim(Ker(T)) = dim(Ker(F(T))). This implies that T
is Fredholm if and only if F(T) is Fredholm. Theorem 6.1.4 implies the claim. O

Even though it is not the main focus of this section, let us begin by studying the Riesz
metric. As it is obtained (by definition) via the bounded transform from the norm on the
bounded linear operators on X, the following is natural and actually directly follows by
combining Propositions 6.3.1 and 6.1.5.

Corollary 6.3.2. The bounded transform
T+ (Fea(90), Og) — (FBY (30, Oy)

is a homeomorphism.
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Corollary 6.3.2 allows deducing the next result which later on allows us to deter-
mine the homotopy groups of (Fg, (3), dg), see Theorem 8.6.1. By repeating the proof of
Proposition 6.2.18 for self-adjoint operators, one obtains

Proposition 6.3.3. The inclusion i : (FBg,(H), Oy) — (Fg,(H), Op) is a homotopy equiv-
alence with homotopy inverse J : (FFg, (), Ogp) — (FBg, (H), Op).

The remainder of this section concerns the gap topology. First, let us combine Propo-
sition 6.3.1 with Proposition 6.1.7 which concerns the continuity properties of ¥ when the
gap metric d; and the extended gap metric d are used. One immediately deduces

Corollary 6.3.4. The bounded transform F provides two bi-Lipshitz-continuous homeo-
morphisms
T : (Lsa(90), dg) — (]Bg,sa(%)’ dg), T : (Fga(30,dg) — (]FIB?,sa(:H)’ dg).

The metric space (IFIB?)Sa(fH), dr) was already analyzed in Section 4.6. In particular,

Corollary 4.6.10 showed that G : (]B(l),sa(ﬂf), Op) — (UO(fH), Op) with G defined by (4.22)
and

U°(H) = {U € U(H) : Ker(U - 1) = {0} (6.13)

is a homeomorphism. Moreover, Corollary 4.6.12 already stated that also the map
g: (lPlBisa(iH), Op) — (IFIUO(iJ-f), Op) is a homeomorphism. Combining this with Corol-
lary 6.3.4, one immediately obtains a central result of this section.

Theorem 6.3.5. The maps

§oF : (Lgy(30), 06) — (U°(30), 0)
and

§oF : (Fya(30),06) — (FU(H), Oy)

are homeomorphisms.

Based on Theorem 6.3.5, one can then define the spectral flow of gap-continuous
paths in Fg, () as the spectral flow of essentially gapped unitaries introduced in Sec-
tion 4.5. This will be carried out in detail in Section 7.1 below.

Let us next compute the map GoF. Using spectral calculus of the self-adjoint operator
H e Ly, (H), one has

Go F(H) = 2B (1+ HY) " ~1-2H(1+ HY) * (1- H*(1+ BY) )}
= ZHZ(l +H2)_1 -1-2H(1 +H2)_1
= 2HH - 1)(1+HY) " -1



6.3 Unbounded self-adjoint Fredholm operators =—— 197

=(H-1M)H+11)L

This shows that § - F = C, where the Cayley transform is defined by

C:R— S\ {1}, xm— 1 (6.14)
X+1
Then the operator
CH)=H-MH+D)  =1-2H+1)7" (6.15)

is called the Cayley transform of H. It is a unitary operator C(H) € U(H) by the spectral
theorem (this will also be proved more directly below). The mapping properties in the
first formula for C(H) in (6.15) are given by (H + zl)*1 : H — Ran((H + zl)’l) = D(H)
and afterwards H —11: D(H) ¢ H — H.

Theorem 6.3.5 was deduced from the results of G as given in Section 4.6 combined
with those on J given in Section 6.1. While this is clearly sufficient to go on to the defini-
tion of the spectral flow in Section 7.1, we will provide also a direct proof of Theorem 6.3.5
along the works [31, 126]. This also provides several useful metrics that are equivalent
to the gap metric d;. Moreover, these direct arguments are useful in other contexts, e. g.,
[38]. Let us start by analyzing the mapping properties of the Cayley transform and its
inverse.

Proposition 6.3.6. If U ¢ U(H) and U - 1 is injective, then H = 1(1 + U)(1 - U)‘l is
self-adjoint on D(H) = Ran(1 - U). Moreover, H = 1(1 - U)‘1(1 + ).

Proof. Since U is normal, Ker(1 - U*) = Ker(1 - U) and thus
Ran(1-U) = Ker(1- U")" = Ker(1- U)* = K,
as1- U is injective. Consequently, D(H) = Ran(1 - U) is dense in J{. From
A-U)1+U)=1-U*= 1+ U)1-U), (6.16)
it follows that

A+A-t=a-0l1-na+na-ov™
=1-U)"'A+ U)lganav)- (6.17)
On the other hand, if ) € D((1-U)(1+U)), then (1+U)y € D(1-U)™?) = Ran(1-U) and

accordingly there exists ¢ € H such that (1+U)y = (1-U)¢. Thus ¢ = 1-U)p+(1-U)y-¢
and hence

b= 3A-U)$+9) e DA+ DYA-1))
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It follows from (6.17) that

H=11+0)A-U)"=:1-0)2+ ).
Next, let us show that H is symmetric. If ), € D(H) = Ran(1 - U), then there exist
@',y € Hsuchthaty = ¢’ — Uy’ and ¢ = ¢' — U¢' and therefore Hp = :(¥' + Uy') and
He = (¢’ + Ug"). One gets

(GIHY) = 1(9' - V'[9 + UY')
= 1((9'[8') — (V'[9 + (@' |UW') — (Ug'|Uy'))
= —(UQ'|') + (¢ |UW')
= (' + UB Y - UY')
= (HPlY).

Hence H is symmetric and
HcH =—(1-U*)"(1+U"). (6.18)
As U™ —11is injective, arguing as above one gets
H =—(1-U") " (1+U%) = =1+ U")A-U") ",
thus exchanging U and U”* shows that H* is symmetric. Hence
H cH" =1(1-U)'1+U)=H

and it follows from (6.18) that H = H*. O

Corollary 6.3.7. If U and H are as in Proposition 6.3.6, then C(H) = U. Moreover; the
Cayley transform C : L, (H) — U°(H) is a bijection.

Proof. By Proposition 6.3.6, H = 1(1+ U)(1- U)"’. Hence
H+d=:1+A-0) ' +1-0)A-)t=201-0)7}
and thus
41
H+MD)==-1-0).
21
Analogously,
H-1=:1+0A-0) ' -a-)a-0)=201-0)",

and one obtains
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CH)=H-MH+D =v1-U)1-U)=U.

To prove the second claim, one only has to show that U = C(H) is unitary and 1 - C(H)
injective for all H € L, (H). It is clear that U is surjective. For ¢ € D(H),

IH +191* = (Hp + 10| Hp + 1))
= |HI* + 191* — 1{pIHS) + 1(H|9)
= |HBI* + gl
= |Ho - 19I°
and, since U(H¢ + 1¢) = Hp — 19, it follows that ||Uy| = ||¢| for all p € H. Hence U is a

surjective isometry defined on all of , and consequently it is a unitary operator. Now
let us assume that ¥ € 3 is such that C(H)y = ¢. Then one obtains from (6.15)

Y= CHWY = - 2u(H +1)y,

and hence (H +11)"11 = 0 which implies that 1 = 0. O

The following connection of the spectrum of H € L, (H) to the spectrum of its
image C(H) € U(XK) follows from the spectral mapping theorem, but again a direct
proof is provided due to its importance for the definition of the spectral flow of paths of
unbounded self-adjoint Fredholm operators in Section 7.1.

Corollary 6.3.8. IfH € L,(H) and A € R, then

(i) Ker(A1- H) = Ker(C(A1) — C(H));

(ii) Ran(Al1- H) = Ran(C(A1) - C(H));

(iii) A € spec(H) & C(A) € spec(C(H));

(iv) A € specp(H) = C) e specp((?(H));

(V) A € Specy(H) & C(A) € spec,,(C(H)).
The proof is based on the following lemma.

Lemma 6.3.9. For H € L,,(H) and A € R, one has
M-H = +1)(CA) - CH))(1 - CH))

Proof. The equality

M-H=21-11+CH)1-CH)

= (A(1 - C(H)) - 1(1+ C(H)))(1 - C(H))
= (AL = AC(H) — 11— 1€(H))(1 - C(H))
= (=1 - A+ DEH))(1 - C(H)) ™
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= A+ )((A=DA + 07 - eH) (1 - e(H)”
= (A+ (€D - e(H))(1 - e(H))

implies the claim. O

Proof of Corollary 6.3.8. First of all, let us note that (1 - C(H))~! maps D(H) bijectively
onto K as1- C(H) = 2:(H +11). Thus by the previous Lemma 6.3.9,

Ker(A1 - H) = (1- C(H))(Ker(C(A1) - C(H)))
= Ker(C(A1) - C(H)),

where the second equality follows from the fact that Ker(C(A1) — @(H)) is invariant un-
der C(H). This implies the assertion (i). As (1 - (“Z‘(H))’1 : D(H) — H is a bhijection,
Lemma 6.3.9 directly implies (ii). All other claims are immediate consequences of (i)
and (ii). O

Let us recall that for an operator H € L, () that is bounded, the spectrum of its
image C(H) € U(H) does not contain 1. This is made more precise in the following
statement.

Lemma 6.3.10. For H € L, (H), one has
(1) 1¢spec(C(H)) = D(H) = H, and this is true if and only if H is bounded.
(ii) 1 e specy(C(H)) & D(H) # H, and this is true if and only if H is unbounded.

Proof. The assertions regarding the boundedness and unboundedness of H follow as
any self-adjoint operator H : D(H) ¢ H — K is bounded if and only if D(H) = 3. By
(6.15), one has

1-CH) = 2(H + 1) € B(X)

mapping H bijectively onto D(H). Accordingly, if 1 is in the resolvent set of C(H), one
infers H = Ran(1 - C(H)) = D(H). Conversely, if D(H) = KH, then 1 - C(H) maps H
bijectively onto 3, showing that 1 is in the resolvent set of C(H). Hence assertion (i) is
proved.

In order to show (ii), we note at first that by (i), 1 € spec(C(H)) if and only if
D(H) + H. Now it remains to show that if 1 € spec(C(H)), then we actually have
1 € spec,(C(H)). But, if D(H) # X, we see that Ran(1 — C(H)) = D(H) is a proper
dense subspace of H and hence in particular not closed. Accordingly, 1 — C(H) is not a
Fredholm operator and, by Corollary 3.4.4, 1 € spec.(C(H)). O

Corollary 6.3.8 implies:

Corollary 6.3.11. IfH € L, (H), then
(i) C(spec(H)) = spec(C(H)) ifH is bounded.
(ii) C(spec(H)) u {1} = spec(C(H)) if H is unbounded.
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Now allis prepared to state and prove the result that is essentially already contained
in Theorem 6.3.5. However, as already stressed above, the result also feature a metric dg
on L, (H) defined by

dg (Hy, Hy) = ||C(Hy) — C(Hy)|

,  Hy,Hj € Ly (H).
Due to (6.15), one then has
dl(Ho, Hy) = 2||(Hy + )" = (H; + )Y, Hy, Hy € Ly (H0). (6.19)

Hence the following theorem shows that the gap topology can be obtained form the Cay-
ley transform, similarly as the Riesz topology is obtained from the bounded transform
in Proposition 6.1.5.

Theorem 6.3.12. On L, () the gap metric d; is equivalent to the metric d;.. The Cayley
transform

€ : (Lgy(90),dg) — (U°(30), dy)
is a Lipshitz-continuous homeomorphism.
Proof. Recall from Proposition 6.1.3 that d,; is equivalent to
dg(Ho, Hy) = 2Ry, — Ry || + |HoRy, — HyRy I, Ho, Hy € Loy (30).
The identities

H-1)" = H+M)H?*+1) = HRy + Ry,
H+) = H-M)(H +1)" = HRy - Ry
imply

Ry = %((H - -H+m)Y,

HRy = %((H —-) +H+mh).
Therefore the metric dy; is equivalent to the metric dy; as, for Hy, H; € Lg, (3),
Al (Ho, Hy) = |[(Hy + 1) = (Hy + 1) 7| + |(Hy — 1) = (Hy - 1) 7Y,

where it was used that ||A| = ||A*| for all A € B(H). Now all claims follow from Corol-
lary 6.3.7 and (6.19). O

Theorem 6.3.13. With respect to the gap metric, the set B, () is dense in L, (H).
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Proof. For H € Lg,(7), let the spectral resolution of H be denoted by (E;)cgr- Forn € N,
let us define the bounded self-adjoint operator

n

H, - J AdE, + j nsgn()dE,.

[-n,n] Al>n
Then using the metric d’6' as in (6.19), one has
dl(H,Hy) =2|(H + )™ - (H, + )7

= 2” J A+t - (nsgn(d) + 1)71dEAH
Al>n

IN
:.I =

Hence H,, converges to H with respect to the metric d'é and, by Theorem 6.3.12, also with
respect to the gap metric. O

Next let us focus on the set
Fg(H)={H e F(H) : H=H"}

of self-adjoint (unbounded) Fredholm operators on . By Corollary 6.3.8, the Cayley
transform maps Fg,(3) bijectively onto FU(H) = FU(H) n U'(H). Hence Theo-
rem 6.3.12 also implies the second statement of Theorem 6.3.5, namely

Theorem 6.3.14. The Cayley transform
€1 (Fey(F0), dg) — (FU° (), dy)

is a Lipshitz-continuous homeomorphism.
Theorem 6.3.14 directly implies the following because FU°(H) ¢ U°(%) is open.
Corollary 6.3.15. With respect to the gap metric, the set F, () is open in L, ().

In contrast to the set of bounded self-adjoint Fredholm operators consisting of three
connected components as studied in Section 3.6, Fg,(H) is connected when equipped
with the gap metric. Following [31], this is now proved directly by a spectral-theoretic
argument. Let us note that an alternative proof, actually leading to a stronger statement,
is given in Section 8.6.

Theorem 6.3.16. With respect to the gap metric, the set Fg, (3) is connected.

Proof. We show that FU°() is connected with respect to O, which by Theorem 6.3.14
implies the claim. For U € FU°(%), we show that there is a norm-continuous path within
FU°() connecting U to 11. First, we decompose  into the spectral subspaces H, of U
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corresponding to {¢" : ¢ € [0,7)} and {¢'? : ¢ € [, 27]}. Respectively, we decompose
U = U, & U_. There is no intersection of the spectral subspaces as if -1 € spec(U) it is
an isolated eigenvalue and hence belongs to spec(U_). And if 1 € spec(U), it does not
contribute to the decomposition of U as it is not an eigenvalue. Then by spectral defor-
mation we contract U, to:1, and U_ to —1_ where 1, denotes the identity on J{,. During
this contraction, 1 does not become an eigenvalue and -1 does not become an element
of the essential spectrum. Thus we have connected U to «1, @ —1_ within FU°().

If H_ isfinite dimensional, we rotate —i1_ through —1into:1_. Otherwise, we identify
H_ with L2([0,1]). Now the multiplication operator by —: on L%([0,1]) can be connected
to the multiplication by the function f : [0,1] — S, f(t) = ¢'G™3) within the uni-
taries in such a way that one does not introduce spectrum at +1. Then s € [0, 7] — €*f
connects f to g : [0,1] — S% g(t) = ¢2™-3) such that —1 is not in the spectrum
and 1 does not become an eigenvalue. Finally, g can be contracted to the multiplica-
tion by . Thus, in both cases U can be connected to 1 within FU’(%) completing the
argument. O

The following result is due to Nicolaescu [139], see also [126] and Proposition 6.3.3.
Proposition 6.3.17. The Riesz topology on F,(H) is strictly finer than the gap topology.

Proof. By Proposition 6.1.9, the topology induced by the Riesz metric on F, (H) is finer
than the topology induced by the gap metric. In the proof of Proposition 6.1.9, a sequence
(Hy)nen of operators in Fg, () converging to H € F, () with respect to the gap topol-
ogy, but not converging with respect to the Riesz topology was constructed. This implies
the claim. O

Note that Proposition 6.3.17 implies, in particular, that every path in Fg, () which
is continuous with respect to the Riesz metric is also continuous with respect to the gap
metric. Next let us transfer the theorem of Cordes and Labrousse (see Theorem 6.1.10) to
the subset of self-adjoint operators. One immediately deduces the following result (also
discussed in [126]).

Corollary 6.3.18. With respect to the gap metric, the set FBg,(H) is open in Fg,(H). On
B, (H) the topologies induced by dy, dg, and d;; coincide.

Finally, the next result is a direct consequence of Theorem 6.3.13 and Corollary 6.3.15.

Corollary 6.3.19. With respect to the gap metric, the set FB, ()) is dense in F, (F).

6.4 Self-adjoint Fredholm operators with compact resolvent

This section analyzes the set IFsCa(H) of self-adjoint Fredholm operators with compact
resolvent

F5,(30) = {H € B (30 : (H - 11" € K(J0)}.
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By the resolvent identity, the compactness of the resolvent (H —z1) ! at some other point
z € C)\ spec(H) is equivalent to the compactness of (H — 11)"L. Further recall that the
compactness of the resolvent directly implies the Fredholm property:

Proposition 6.4.1. Let H ¢ L, () have a compact resolvent (H — 11)‘1 € K(H). Then
H e Fg,(H) is a Fredholm operator so that H € ]Fsca(J-C).

Proof. If H € L, () has a compact resolvent, then 0 ¢ spec,,(H), which, by Theo-
rem 6.2.14, directly implies that H is a Fredholm operator. O

Operators from nga(iJ-C) play a central role in index theory and noncommutative
geometry [63] where they appear as unbounded Fredholm modules, which are also
a special case of unbounded Kasparov modules (namely those representing elements
from KK(B(H), C) or KK(C, B(H))). While both Riesz and gap topologies can be used
on IFSa(J-(), the focus will here be on the gap topology. One of the main final results of

this section is the following:
Theorem 6.4.2. Space (IFga(fJ-C), Og) is homotopy equivalent to (F,(H), Og).

The proof of this result is surprisingly intricate and will make up a large part of the
remainder of the section. While it will mainly pend on the use of the bounded transform
of the set ]Fga(ﬂ-t), let us start the analysis of the Cayley transform of (]Fsca(ﬂ{), O¢)- Recall
from Section 3.7 that IUC(iJ-f) is the set of unitaries U with U -1 € K(H) and furthermore
from (6.13) that UO(fJ-C) is the set of unitaries U with Ker(U-1) = {0}. Here the intersection

of these sets will appear naturally
U () = {U € U(H) : U -1 € K(H), Ker(U - 1) = {0}}.
Theorem 6.4.3. The Cayley transform
€ : (Fgy(30), dg) — (U*(30), dy)

is a Lipshitz-continuous homeomorphism.

Proof. By (6.15), the compactness of C(H) — 1 and that of the resolvent are equiva-
lent. Therefore the claim directly follows from Theorem 6.3.12 (or equivalently, Theo-
rem 6.3.5). 0

Next let us consider the bounded transform of the set FS,

us introduce the set

(H). For this purpose, let

FBY

1,sa

(H) = {H € FB ,(H) : 1 - H* € K(K), Ker(1- H?) = {0}}.

Note that this is a subset of EBisa(J{) studied in Proposition 3.6.3, specified by the sup-
plementary condition Ker(1 - H 2) = {0}.
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Proposition 6.4.4. The bounded transform JF provides a bi-Lipshitz-continuous homeo-
morphism

T : (F, (90, dg) — (FBSL (90), dg).

Proof. This follows from Corollary 6.3.4 by implementing the compactness condition
1- H? € K(70). Indeed, the identity

_1
2

H = F(H)(1- 5(H)")

following from (6.6) implies
(H =)™ = (1- T (FEH) o1 - FHP)?)

which shows that the compactness of the resolvent of H is equivalent to the compactness
1
of1- rJ'"(H)2 because (F(H) —1(1 - ?(H)Z)E )‘1 is unitary and hence bounded. O

For the following it is necessary to use yet another topology on ]F]Bi’soa(%) and some
of its supersets. The so-called strong extended gap topology on B, ¢, () is defined by

Ogg = 0(OF, Og),

where on the right-hand side O denotes the extended gap topology generated by dg, Og
is the strong operator topology, and the remaining O denotes the generated topology. In
other words, Og is the weakest (or smallest) topology on B, ¢, (7() containing both O
and Og. The topology Ogp was introduced in [108] under the name strict extended gap
topology, but in the Hilbert space framework the strict and strong topologies coincide.
The strong topology is not metrizable on the set of all bounded operators, but on B, s, ()
it is metrizable. This leads to the following statement which, in particular, implies that
sequential compactness and compactness are equivalent in (1B, ¢, (H), Ogg).

Lemma 6.4.5. The topology Ogp on B, s, (H) is metrizable.

Proof. It will first be shown that Og is metrizable on BB, i, (). For an orthonormal basis
(¢,)ns1 Of I, consider the metric

ds(Hy, Hy) = Z 27" (Hy - Ho)n

n=1

|

and let B.(Hy) be a ball of radius ¢ > 0 in B, ;, () with respect to ds. Let N € IN be
sufficiently large such that Y, 271 < £ With H € By, (H), ¥ € H,and n > 0, the sets

W, (H,¥) = {H' € By ,(H) : |H'Y - HY|| < n}

form a subbase of O and thus
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N
V= ﬂu§(H0,¢n) € 0.

n=1
It follows for H; € V that
o0
ds(Hy, Hy) = ZZ "||(Hy - Ho)n| + z 27" (Hy ~ Ho)y|
n=1 n=N+1
e N 00 1
-n —n+
<3 Z 27"+ _Z 27" <e,
n=1 n=N+1

Thus V ¢ B.(H,), and it is shown that every open neighborhood of H; in the metric
topology contains an open neighborhood of Hj, in Og. This implies that O is finer than
the metric topology.

For the converse inclusion, let us first note that O is already generated by the sets
U,(H,y) with ¢ only taken from any dense subset of 3. Moreover, the set of all finite
linear combinations of elements of (¢,,),,»1 is dense in . Now let § = Z’,Ll a,®,. Then

N
n(Hl - Ho)wll < z |an|||(H1 - H0)¢n||

n=1

o0
<2V max |a,| Y 27"|(H; - Hy)oy|.
n=1..N =
Thus if dg(Hy, Hy) < leal}’ then H; € U.(Hy, ¥). As these sets are a subbase of O, it

follows that the metric topology is finer than Og.
Finally, Og is the topology induced by the metric d = d + dg on By ¢, (H). O

Proposition 6.4.6. The following pairs of topological spaces are identical:
@) (B, (30), Og) and (B, (), Op);

(i) (BB, (H), Ogp) and (FB), (30), Op);

(iti) (BTG, (H), Ogg) and (FByg, (3), Op).

Proof. Let (Hj);»; be a sequence in 131 Sa(J-C) converging to H ¢ IB1 sa(J0) with respect to
dp, namely ||Hj2 - H2|| — 0 and ||Hj(1 - H]-Z) 2 -H@1- Hz) 2] — 0. One needs to show that
for any ¢ € X, one has ||(Hj — H)¢|| — 0 so that the sequence also converges strongly.
AsH € ]B‘l),sa(ﬂ-C), one has Ker(1 - Hz) = {0} and therefore the range of (1- H z)§ is dense
in J. Hence, for a given € > 0 there exists ¢ € H with ||¢ — (1 - HZ)%lPII < €. Then there
is a jy such that forj > j,

G, — DG < |(Hi(1 - H2)* — H(1- H?)? )] + 2

< (B~ BY)? - (- H) )y + 3¢
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< (- HY) - (- HD) )y + 3
< |2 - ) 1l + 3e,

where the last step follows from Proposition A.2.2. Choosing j, possibly even larger, this
shows that ||(H; — H)¢|l < 4e for all j > j,. As € was arbitrary, this shows the first claim,
which directly implies the second and third. O

Proposition 6.4.7. One has the following deformation retracts:

@ (lB‘l),sa(J{), Ogg) is a deformation retract of (By ¢, (), Ogg);

(ii) (IFIBg’sa(ﬂ-(), Ogg) s a deformation retract of (FB, i, (H), Ogg);

(iii) (lFlBi’fa(ﬂf), Ogg) is a deformation retract of (EBisa(%), OgE).

Proof. (Inspired by Proposition 2.13in [108].) Let us focus on the proof of (ii) and later on
explain that the argument also covers the cases (i) and (iii). Let K € IK()H) be a nonnega-
tive compact operator with norm less than or equal to % To construct such an operator,
recall that J{ is separable and thus has a countable orthonormal basis (¢,),~1. Then
K=% n%llq&n) (¢,| has all the desired properties. Then define

[ i FByga(3H) = FBy (30, f(H)=(1-K)H(1-K).

Note that f(H) is indeed self-adjoint and Fredholm by the compact stability of the Fred-
holm operators, and that it has norm less than or equal to 1 because |H|| < 1 and
[1- K| <1.Now let ¢ be a normalized vector. Then, using again |H|| < 1and |[1- K| < 1,
the Cauchy-Schwarz inequality implies

(O FHP$) = (- K)ig|(1 - K)IH( - KYHA - K)g)’
< (9l - K)¢) (9|1 - K):H( - KY*HA - K)[¢)
< (¢|1-K)p)
~1- (BIK).

Therefore

(|- FH)P) =1 (9| fH)'$) 21— \1- (BIK) >0,

because K has a trivial kernel. Hence Ker(1 — f(H )2) = {0} so that f(H) indeed lies in
FIBY ., (30).

Let us now show that f is continuous with respect to the topology Og:. Hence
let (H;);»1 be a sequence converging to H in (FBy, (3), Ogg). It has to be shown that
then also (f(H;));»; converges to f(H) in (FBy g, (H), Ogg). Clearly, (f(H;));»; converges
strongly to f(H). For the convergence with respect to dg, let us begin by estimating

I - F D’
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=1~ KH;1-K)’H;1-K) - (1- K)HA - K)’H(1 - K)|
< |a-K)(H; - H)1-K)|
+ - KHK@1 - K)H;(1-K) - 1 - K)HK(21 - K)HQ1 - K)|
< |H? - H?| + |H;K (21 - K)H; - HK(21 - K)H]|
< |H? - H?| + |(H; - H)K(21 - K)Hj| + | HK(21 - K)(H - H;)|
< [H} ~ H*| + 4| (H; - K]

Now K can be approximated in the operator norm by a finite-dimensional matrix,
namely for all € > 0 one can find some finite-rank operator M with | K — M|| < € (this can
readily be written out explicitly from K as given above). Due to the strong convergence
s-lim;_,, H; = H, one can then find a j, such that |(H;—- H)M|| < e for allj > j, (this is just
the standard argument showing that a strongly converging sequence of compact oper-
ators is norm convergent). Choosing j, possibly even larger so that also ||Hj2 -HY<e

forj > j,, one then finds
If(H)? - FHY| < € + 8¢ + 4|[(H; - H)M] < 13¢

forallj > j,. Hence lim;_, ||f(Hj)2 — f(H)?|| = 0. By a similar argument, one also checks
that the second norm difference in the definition of dr vanishes in the limit so that
limjﬂoo de(f (Hj), f(H)) = 0. In conclusion, f is a continuous map on (FB ¢, (H), Ogg).

Next it will be shown that the map f is actually a homotopy inverse to the inclusion
i: IFIB?’sa(iH) — By i, (), namely both of the maps i o f : FB; s (H) — FB;,(H)
andfoi: IF]B?,Sa(fH) - IF]B?)Sa(iH) are homotopic to the identity on (FB; i, (H), Og) and
(]F]B(l))sa(ﬂf), Ogp), respectively. One can use the homotopy hy(H) = (1-sK)H(1-sK) which
is indeed continuous by similar arguments as above, and it also satisfies the inclusion
hs(lFIB(l),Sa(fH)) C ]FlB%Sa(.‘H) so that the case of f o i is also dealt with.

The argument directly covers item (i) and also (iii), the latter because indeed one
has f(H) € FB{,(30) for H € FB{,(30). O

Remark 6.4.8. The essence of the above proof is that the perturbation can be chosen
such that it eliminates the point spectrum of H at 1 for all H. The above proof also
shows that (]FIB?)Sa(%), Oyp) is a deformation retract of (IFBB; ¢, (), Oy), and also that
(]Bisa(ﬂ-f), Op) is a deformation retract of (IB; s, (), Op). o

Remark 6.4.9. In Proposition 6.4.7, on FBB, ¢, () the strong essential gap topology Ogg
appears. It is strictly weaker than the norm topology O on FB, ¢, (3(). This can be seen
by analyzing the bounded transform of the sequence (H,),>; studied in the proof of
Proposition 6.1.9 and realizing that ¥ (H,) — F(H) in the strong topology. Another man-
ifestation is that (FIB; g, (7(), Oy) has 3 components, while (IFB; ¢, (H), Og¢) has one com-
ponent by Theorem 6.3.16 combined with Corollary 6.3.4. <o
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Example 6.4.10. Proposition 6.4.6 showed that the extended gap topology O and the
strong extended gap topology Ogp coincide on ]FIBisa(iH). In view of Proposition 6.4.7,
one might wonder whether the same holds true for the supersets IFB; o, () and By i, (30).
In fact, this is not true as shows the following example. Consider the sequence (H;);. in
FBy 5, (3) given by H; = —(1 - ]1.)1. It converges to H = 1 with respect to dp because

2
1
| - B = (1-]-,> -1-0,

2.1
||Hj(1_Hj2)% —H(1—H2)%|| = (1— })(1— <1 - }) )2 - 0.
However, the sequence (H;);»; does not converge strongly to H as Hip — -¢ # ¢ = Hp
for all ¢ € 3\ {0}. Hence Og is strictly stronger than O on FB; 5, ().
Working with the same sequence, one can show that the map f defined in the proof
of Proposition 6.4.7 is not continuous with respect to O on FB, i, (3{). Indeed,

fH)) = -(1 - ]1)(1—102, fH) =f1) =A-K)Y,
so that
FE)@A-FE) - PO -FAP)] - [-20- KA1 - - K],

Hence dg(f (H;), f(1)) does not converge to zero. The problem is that f moves all the spec-
trum away from +1 to the inside which is a discontinuous procedure at 1in the topology
O (but the sequence (Hj);»; does not converge to 1 with respect to Og; and hence does
not disprove continuity with respect to Og). <o

Example 6.4.11. This example shows that the quotient topologies Oz and Og: on
FBS™ () = IF]Bisa(ﬂ-C) /~ do not coincide. Let us consider 5 = £*(N) and the following

1sa
sequence of operators from ]F]Bisa(j{)l

Hy= ¥ (1= ot s (1= 2 a1 %) aan.

k#1,n

Then ||H,21 —1|l - 0 and hence dg(H,,,1) — 0. Thus {H,, : n > 2} is not closed with respect
to O. As each class [H,] with respect to ~ has only one representative, it follows that
also {[H,] : n = 2} is not closed with respect to O. On the other hand, it will be shown
that the set {[H,,] : n > 2} is closed with respect to Og;. Indeed, as

1 1 1 1 1 1
= = (<5 ) (1 Jo = (1 2 i 15
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the sequence (H,),s; has no strongly convergent subsequence so that the subspace
topology on {[H,,] : n > 2} induced by Og; is the discrete topology. <o

The next step will be to realize that IFIBisa(fH) is a deformation retract of FIB, s, (7)
by spectral analysis. This was already proved in Proposition 3.6.3, see also Remark 3.6.4,
however, for the norm topology. It turns out that one can prove that this retraction is
also continuous with respect to O. A generalization of this fact is proved in [108]. Here
we provide an elementary proof.

Proposition 6.4.12. The space (IF]Bisa(fH),OSE) is a deformation retract of the space
(FBy go(F0), Ogg).

Proof. 1t will be checked that the maps in the proof of Proposition 3.6.3 are continuous
with respect to Og so that they provide the desired retraction. For H € FB ¢, (3), letus

define §(H) = min{1, min(specyg (H 2))%} > 0. Then by the spectral radius theorem in the
Calkin algebra, it follows that H — &(H) is continuous with respect to Og. For 6 € (0,1],
let now fs : [-1,1] — R be the monotone continuous function defined by

fs(x) = X151 X) = X[=1,-7 () + %X(—(S,&)(X)~

Then set f : FBy 4, () — FBY,(3() defined by f(H) = f5,(H) and consider the linear
homotopy

R FBy g (H) x [0,1] — FBy,(H), h(H,t) = 1-t)H + tf (H).

To show that this homotopy is continuous, let us first note that if a sequence (H,) >4
in FB, ¢, (7() converges to H with respect to Og; and f is a continuous function, then also
(f (H,))n=1 converges strongly to f(H). Indeed, for all even polynomials p, this follows
from the convergence of (H2),,.; to H in norm, while odd polynomials can be written as
H,p(H,) for an even polynomial p so that the strong convergence of H, to H implies that
s-lim,,_,, H,p(H,) = Hp(H). Then the strong continuity for any function follows from
the Weierstrass approximation theorem which can be applied since ||Hﬁ -H%* - 0and
therefore the sequence (H,),> is bounded.

To show that the homotopy h is continuous, it is shown that for any sequence
(Hp, th)ps1 in FBy 5, x [0,1] converging to (H, t) € FB ¢, x [0,1] with respect to Ogg x| - |,
the sequence h(H,, t,) converges to h(H, t) with respect to Og. By Lemma 6.4.5, O is
the topology induced by the metric d = d + dg on B, i, () where

o0

ds(Ho, Hy) = ) 27"|(H{ - Hy)¢|

n=1

. Hg,Hj € By, (30),

for a fixed orthonormal basis (¢,),s; of H as in the proof of Lemma 6.4.5. Thus it is
sufficient to show that
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nli_)rgo(dg(h(Hn, ty), h(H,t)) + dg(h(H,, t,), h(H,t))) = 0. (6.20)
The second summand is bounded by

dg(h(Hp, ty), h(H, 1)) = dg((1 - t,)H, + tof (H,), (1 - ) H + tf (H))
< ds((1 - t)H, + t,f (Hy), 1 - t)H,, + tf (H,))
+dg((1- O)H, + tf (Hy), (1 - OH + tf (H)).

The second summand in this expression converges to 0 because fs , converges to
fsqr) with respect to || - [~ and therefore by the first part of the above argument
s-lim,,_,, h(Hy, t) = h(H, t). The first summand is bounded by

ds((1 - t)H, + tof (Hy), (1 - OH, + tf (Hy))

= Y 27|t - t)Hudp + (ty = OF (Hy) by
m=1

< ¥ 2 - A + Pl

m

—

<2 ) 27™M¢, - t.

18

=1

3

Thus dg((1-t,)H, + t,f (H,), 1 - t)H, + tf (H,)) converges to 0 uniformly in H,, and one
concludes that lim,,_,, dg¢(h(H,, t,), h(H,t)) = 0. The first summand in (6.20) is bounded
by

di(R(Hy, t,), R(H, 1)) = dp((1 - t,)Hy, + t,f (H,), (1 - OH + tf (H))
< de((A - t)H, + t,f (H,), (1 - OH, + tf (H,))
+dg((1 - OH, + tf (H,), (1 - OH + tf (H)).

By Lemma 6.1.8,

dg((1~ ty)Hy + tof (Hy), (1= OH, + f (Hy))
<2V2||(1 - t)H, + tf (Hy) - (1 - O)H,, + tf(Hn)"%
< 2V - (U + [FCE)]))’
<2V2(2lt - tn|)%.
Thus dg (1-t,)H, +t,f (H,), 1- QHn +tf (Hy)) converges to 0 uniformly in H,,. It remains
to show lim,,_, . dp((1 - O)H,, + tf (H,), 1 - t)H + tf(H)) = 0. It is therefore sufficient to

show that h; : FB; o, (H) — FB;,(H) defined by h,(H) = h(t, H) is continuous with
respect to Of. Because h, is a class map with respect to ~, this can be checked using
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the last claim of Lemma 4.6.6, namely it is sufficient to prove the continuity of the map
he : FBy ., (H) — FB, (3H) with respect to Oz. By Corollary 4.6.11, this is equivalent to
the continuity of Goh; o S~ lon (FU(H), O ). Thisis, in turn, guaranteed by the continuity
of the map

(€%,8) € S'x (0,1] = G o hy5 0 G (€?), (6.21)
where ¢ € (0,27] and h; 5 : [-1,1] — [-1,1] is defined by

he 500 = (1= Ox + tfs(X).

As

Gohigo 9"1(e"") = 9(—(1 -t cos(%) + tf(;<— cos(%))) €S,

for (€', 8) € $! x (0,1] the continuity of (6.21) can readily be checked. O

Corollary 6.4.13. The space (FByg,(H),Og;) is homotopy equivalent to the space
(BB, (30), Ogp).

Proof. Proposition 6.4.7(iii) implies that (IF]Bf’SOé1

(]F]Bisa(il-f), Ogg), which, by Proposition 6.4.12, is homotopy equivalent to the space
(FIBy 55 (), Ogg). But Proposition 6.4.7(ii) shows that the latter is homotopy equivalent to
(FBJ 4, (30), Ogp). O

(30), Ogp) is homotopy equivalent to

Proof of Theorem 6.4.2. By Proposition 6.4.6, the topologies O and Ogp coincide on both
lF]Bf”SOa(J{) and lF]B‘l),Sa(J{). Due to Corollary 6.4.13, one concludes that (IFBifa(J{), Op) and
(]F]Bisa(il-f), Op) are homotopy equivalent. The claim now follows from Proposition 6.4.4

and Corollary 6.3.4. O

In order to further complete the analysis of the strong extended gap topology Og
on FBisa(ﬂ{), let us prove that it is equivalent to the Kasparov topology as introduced
by Bunke, Joachim, and Stolz [44].

Definition 6.4.14. The Kasparov topology O on ]FlBisa(J{) is the weakest topology con-
taining the strong topology Og and such that the map

H € (FB{,(3),0g) = 1- B € (K(30), Oy)

is continuous.

Proposition 6.4.15. The strong extended gap topology Ogr on EBisa(J{) is identical to
the Kasparov topology Ok.

Proof. (Following Proposition 3.3 in [108].) The extended gap topology on IF]Bisa(fJ-C)
is the weakest topology such that H € (IFIBisa(fH), Og) — H? € (FBy ¢4 (H), Oy) and
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H ¢ (]P]Bisa(ﬂ-f), Ogp) —» H(1 - Hz)% € (FByg,(H), Oy) are continuous. Clearly, the
continuity of the two maps H € (]F]Bf,sa(ﬂf), Ogp) —» 1- H? € (FIBy g, (H), Oy) and
H e (FB{,(30),0g) — H* € (K(3(),0y) are equivalent. As both Og; and Ok contain
Og, it follows that O is finer than O.

Next let us come to the the converse. It will be used that the continuity of the map
H ¢ (IFIBE @30, 0) —» 1- H? ¢ (K(F), Oy) implies, by Proposition A.2.2, also the
continuity of H € (lFIBisa(iH), Og) » 1- Hz)% € (K(3),Op). Because a strongly
continuous map of compact operators is norm-continuous, it follows that also the map
He (]FlBisa(ﬂ'(), Og)— HQ1- Hz)% € (K(H), Oy) is continuous, showing that Oy is also
finer than Og;. O

Next let us provide an application of the Kasparov topology. In the set ]P]Bisa(ﬂf),
there are two subsets with opposite properties: one is IF]Bf’SOa(fH) in which neither -1 nor
1is an eigenvalue, the other has both as eigenvalues with infinite multiplicity,

FB{X(H) = {H € FB,(90) : dim(Ker(H +1)) = oo}

1,5a

The analogue of Proposition 6.4.7 is the following result (that is not used for the proof of
Theorem 6.4.2):

Proposition 6.4.16. The space (]FIB%S‘;O(J{),OSE) is homotopy equivalent to the space
(FB{ g, (30), Ogp).

Proof. (Inspired by Lemma 2.5 of [44].) Let us denote L’ = LZ([O, 1) ® C? and choose a
unitary

U:H — L2

Further let Q; = 1 ® diag(1, -1) be a proper symmetry on L?. Next let us introduce the
unitary W = (W,, W;) : L* - L* @ L* by

1 (X 1o fx+1
w0 =249(3 ), o - 27 p( X1,
where x € [0,1] and the 2 x 2 matrix component is the identity and suppressed in the
notation. Then set

H=U"W*"(UHU" & Q,)WU

for H € IFIBisa(ﬂ-C). By construction, one has He lFIBf’S‘;" (). It remains to construct a

homotopy h : ]F]sta(}f) X [%,1] - ]F]sta(}f) from hy(H) = H to h: (H) = H, continuous
> > 2

with respect to Og;. For this purpose, one can now proceed using a family of partial

isometries V, : L2 = I* first introduced by Dixmier and Douady [73]. Set

eop¥), xelo.],

v, =
V) (x) 10) X e (1],
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Note that V"V, = 1and V,V; = x| is the projection onto L*([0,t]) (again tensorized
with the identity on (CZ), so that, in particular, V; is unitary. Also [V}, Qy] = 0. Moreover,
by a standard approximation argument with smooth functions, one can check that both
te [%,1] — Vi,andt e [%,1] — V" are strongly continuous. Then set

h(H) = U*(V,UHU*V;} + (1= V,V;")Qo)U.
Dueto V;/(1-V, V) =0,(1- V,V;)* =1-V,V; and Q% = 1, one has

1- h(H)* = U*(1- V,UHU"V; V,UHU" V; — (1 - V,V;} )’ Q3)U

= U (VWV} - V.UH*U" VU

- UV, U(1-H)U"V;U,
whichis compact so thatindeed h,(H) € ]PIBisa(fH). Nextlet us verify that h is continuous
and therefore a homotopy on (]PIBisa(J-f), Ogg). For this purpose, it is shown that, for any
sequence (Hy, t,)p>1 In ]F]Bisa X [%, 1] converging to (H, t) € IF]BiSﬁl X [%, 1] with respect to
Ogp x| - |, the sequence h, (H,) converges to h,(H) with respect to Ogz. By Lemma 6.4.5,
Og is the topology induced by the metric d = di + dg on B ¢, (7() where

(o)

ds(Ho, Hy) = . 27" |(Hy = Ho)@n|

n=1

., Hg, H] € By, (30),

for a fixed orthonormal basis (¢,),>1 of H as in the proof of Lemma 6.4.5. Thus it is
sufficient to show that

im (d (h, (Hy), h(HD) + ds(hy, (), he(HD)) = 0. (6.22)
The second summand is bounded by
ds(hy, (Hy), he(H) < ds(hy, (Hy), h(Hy) + ds(he(H,), he(H)). (6.23)
Then

o0
lim dg(h,(H,), h(H)) = lim Z1 2" U V,UH, - H)U*V,; Udy| = 0
m=
because s-lim,_,., H, = H by assumption and |U*V,U(H, - H)U*V;U| < 2 for all
(n,t) e N x [%, 1]. The first summand in (6.23) is bounded by
ds(ht,, (Hn)’ ht(Hn))

[ee)
=Y 2 MU (V, UH, UV, - VUV, + Qo(ViV, -V, V) Uy

m=1
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<

D18

2_m||U*(th UH,U" V;:l - V.UH, UV ) U,
1

(o)
+ 2 2V V] =V V) U
m=1

3
Ii

The second summand converges to 0 and the first summand is bounded by
o0
Y. 2" |U" (v, UB,U" Vy, ~ VU, UV, Uy
m=1
& —
< Z 2 m(”thUHnU (th - Vz*)U‘pm”
m=1
+|(Vy, = VOUH,U" V" Uy )
< 2 2|V, UHU™ (V) = V) Uy
m=1

+|(V, = VOUH, ~ H)U"V; Uy
+|(V,, ~ V,)UHU" V; Up,,|))

[oe)

< z Z_m(ZH(V{: = V) U + 2||(H, — HYUV, Uy
m=1
1V, - VOUHU"; U )

and all three summands converge to 0 by the same argument as above using
that s-lim,_,, V; = V and s-lim,_,,H, = H. Finally, it remains to verify that
lim,, o, dp(h, (H,), h(H)) = 0. As Ogz = Oy on FB{,(H) by Proposition 6.4.15 and
s-limy,_,, h; (Hy) = h,(H) by the above, it is sufficient to show

lim [ln, (H,)* - b (H)| = 0.
This follows from

e, (H? = he(HD*|| = |V, UL - H)U"V,, = VU1~ H)U" V|
< (v, - VOUQ - H)U* V|
+|vu(@-Hy) - (- HE)U V|
+ VU -H)U* (v, - V)|
< (v, - vou(1-Hy)|
+ |[Hy - H|
+|(a-BHU* (v - )|
<|v, - vpUu@-H?)|
+|(v, - VoUH® - HY)|
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+|Hy - 1)
+a-=Yu (v, - V).

The first summand converges to 0 because s-lim,_,,, V; = V; and 1 - H? € K(H) is
compact. Because ((V;, -V,)U(1-H ) = (1-HH)U* (Vt’: - V;), this implies that also the
last summand converges to 0. By assumption lim,_,, dp(H,, H) = 0 and by definition
of the extended gap metric, this implies that the third summand converges to 0 and
therefore also the second summand converges to 0. One concludes that (6.22) holds and
therefore h is continuous.

It only remains to note that indeed h(H) = H and h% (H) = H, and furthermore

h,(H) € IFIB%S‘;"(IJ{) forall H € ]PIBi’S‘?(f}-C) and all t € [%,1]. Therefore also the map
f: IF]Blc)Sa(H) — FBY®(K) defined by f(H) = H is a homotopy equivalence with respect

1,sa

to Ogr with homotopy inverse given by the embedding i : ]P]Bf"s‘f;’(ﬂ{) - IF]Bisa(fJ-C). O
The following is a direct consequence of Theorems 6.4.2 and 6.3.16.
Theorem 6.4.17. With respect to the gap metric, the set ]Fsca(ﬂ{) is connected.

Because this result may seem surprising at first sight, a direct proof is provided.

Proof. Itisshown that o (H) is connected, which, by Theorem 6.4.3, implies the claim.
For U € IUC’O(U-C), a norm-continuous path within lUC’O(SJ-C) connecting U to

Uper = Y. €7(6,) (D,

n=1

where (¢,),-1 is an orthonormal basis of I, is constructed. Note that Uyes = Xt for the
self-adjoint and compact operator Kef = Y ;51 %lq&n) (Dnl.

First, let us decompose H into the spectral subspaces 3, of U corresponding to
{€? : ¢ € [0,m]} and {¢" : ¢ € (7, 2n]}. Respectively, we decompose U = U, & U_.
There is no intersection of the spectral subspaces as, if -1 € spec(U), it is an isolated
eigenvalue and hence belongs to spec(U, ). And if 1 € spec(U), it does not contribute to
the decomposition of U as it is not an eigenvalue.

If 7(_ is finite dimensional, we rotate U_ through —1into U’ = —U_. More precisely,
the path t € [0,1] — e™™U_ lies entirely in UC’O(}C_) and connects U_ to U’ where
spec(U’) c {€? : ¢ € (0,7)}. Otherwise, we identify 3_ with L*([0,1]). Then U_ is of
the form U_ = ¢'f for some self-adjoint injective compact operator K_ € K(L2([0,1]))
with spec(K_) ¢ (-m,0]. For t € [0,2],let M; € lB(LZ([O,l])) denote the multiplication
operator given by multiplication with the function f; : [0,1] — [0, 1] defined by

fi(0) = (=14 200)x101) () + (2 = X)(t = 2) + 1)y a2 ()

for t € [0,2] and x € [0,1]. Then
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te[0,2] > K, = —|[K_|*M,K_|?

is a continuous path of injective compact operators connecting K_ to —K_ such that
IK:l < IK_ll < 7 for all ¢t € [0,2]. Therefore the path t € [0,2] — et lies in UC’O(fH)
and connects U_to U’ = e -,

In both cases taking the pointwise direct sum of the constructed path and the con-
stant path t — U, gives a path in US0(%) connecting U to U . ® U’ with spectrum
satisfying spec(U, ® U’) c {¢' : ¢ € [0,7]}. Then there is an injective compact op-
erator K ¢ K(J) with spec(K) c [0,7] such that U, & U’ = ¢'X. The linear path
t € [0,1] — K; = (1 - t)K + tK,¢; connecting K to K. is within the injective compact
operators with spectrum spec(K;) c [0, r]. Therefore the path t € [0,1] — ¢! is within
U (%) and connects U, ® U’ to U, Thus U can be connected to U, within U (%),
which implies the claim. O



