
6 Unbounded Fredholm operators

This chapter offers a detailed introduction to various subsets of the unbounded Fred-
holm operators, with a particular focus on natural topologies thereon. This is a neces-
sary preparation for the definition of spectral flow of unbounded self-adjoint Fredholm
operators given in the next Chapter 7. First, Section 6.1 reviews various topologies on the
set of closed operators. Section 6.2 recalls some fundamentals about unbounded Fred-
holm operators that can be found in numerous books, e. g., [80, 99, 165]. Then, following
the works of Booß-Bavnbek, Lesch, and Phillips [31], as well as Lesch [126], the set of
unbounded self-adjoint Fredholm operators and its topology is studied in detail in Sec-
tion 6.3. Section 6.4 considers the important subclass of self-adjoint Fredholm operators
with compact resolvent and proves numerous topological results.

6.1 Topologies on closed and densely defined operators

Let us first recall that an unbounded operator is a linearmap T : D(T) ⊂ H → H′where
D(T) is a linear subspace of some Hilbert space H, called the domain of T . It is called
closed if its graph {(ϕ, Tϕ) : ϕ ∈ D(T)} is a closed subspace ofH ×H′. Let us introduce
a notation for the set of closed densely defined (also called regular) operators:

𝕃(H,H′) = {T : D(T) ⊂ H → H
′ closed and densely defined}.

In the case H′ = H, we also use the notation 𝕃(H) = 𝕃(H,H). For any T ∈ 𝕃(H,H′),
the adjoint operator T∗ ∈ 𝕃(H′,H) is defined by ⟨T∗ϕ|ψ⟩ = ⟨ϕ|Tψ⟩ for ψ ∈ D(T) and
ϕ in D(T∗) = {ϕ ∈ H′ : ψ ∈ D(T) 󳨃→ ⟨ϕ|Tψ⟩ bounded}. Then T is called symmetric
if D(T) ⊂ D(T∗) and T∗|D(T) = T , and furthermore T is called self-adjoint whenever
one has T = T∗ which includes D(T) = D(T∗). As a preparation for the constructions
below, some rather standard facts are needed that are included for the convenience of
the reader.

Lemma 6.1.1. Let T be a closed and densely defined operator. Then T∗T is self-adjoint
with domainD(T∗T) = {ϕ ∈ H : ϕ ∈ D(T), Tϕ ∈ D(T∗)}.
Proof. (See, e. g., Korollar VII.2.13 in [204].) Clearly, T∗T is well defined and symmet-
ric on D(T∗T). It remains to show that it is densely defined and self-adjoint. For that
purpose, let us equipD(T) with the scalar product

⟨ϕ|ψ⟩T = ⟨Tϕ|Tψ⟩ + ⟨ϕ|ψ⟩.

Because T is closed, (D(T), ⟨⋅|⋅⟩T ) is a Hilbert space which will be denoted by Ĥ. Let
I ∈ 𝔹(Ĥ,H) denote the natural embedding and I∗ ∈ 𝔹(H, Ĥ) its adjoint. Then II∗ is
self-adjoint and has a trivial kernel because ⟨ϕ|I∗ψ⟩T = ⟨Iϕ|ψ⟩ = ⟨ϕ|ψ⟩ and T is densely
defined. Thus Ran(II∗) = Ker(II∗)⊥ = H and II∗ has dense range. It will next be shown
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that Ran(II∗) ⊂ D(T∗T). Indeed, let ϕ ∈ H and ψ = II∗ϕ = I∗ϕ ∈ Ran(II∗) so that ψ ∈ Ĥ
and for any η ∈ D(T),

⟨Tη|Tψ⟩ = ⟨η|ψ⟩T − ⟨η|ψ⟩
= ⟨η|I∗ϕ⟩T − ⟨η|ψ⟩
= ⟨Iη|ϕ⟩ − ⟨η|ψ⟩
= ⟨η|ϕ − ψ⟩.

Hence η ∈ D(T) 󳨃→ ⟨Tη|Tψ⟩ is continuous and thus Tψ ∈ D(T∗), so that ψ ∈ D(T∗T).
It follows that D(T∗T) is dense. As T∗T is bounded from below and symmetric, it has
a self-adjoint extension with domain Ran(II∗), given by the Friedrich extension (this is
the only nonnegative self-adjoint extension). Hence one must have Ran(II∗) = D(T∗T),
and T∗T is self-adjoint.

Lemma 6.1.2. For any regular operator T ∈ 𝕃(H,H′), the domain D(T∗T) is a core for
T, namely T is the closure of T |D(T∗T) which in turn is also given by the double adjoint
of T |D(T∗T). Moreover, T(1 + T∗T)−1 and T(1 + T∗T)− 12 are bounded operators, both with
norm bounded by 1.

Proof. (See, e. g., Lemma 9.2 in [121].) Let us first show that

1 + T∗T : D(1 + T∗T) = D(T∗T) → H

is a bijection. For ϕ ∈ D(T∗T), one has
⟨ϕ󵄨󵄨󵄨󵄨(1 + T

∗T)ϕ⟩ = ⟨ϕ|ϕ⟩ + ⟨Tϕ|Tϕ⟩ ≥ ⟨ϕ|ϕ⟩,
and therefore ‖(1 + T∗T)ϕ‖ ≥ ‖ϕ‖. This implies that 1 + T∗T is injective. Furthermore,
if (ϕn)n≥1 is a Cauchy sequence in Ran(1 + T∗T) and ϕn = (1 + T∗T)ψn, then also (ψn)n≥1
is a Cauchy sequence converging to ψ, and then the closedness of 1 + T∗T implies that
ψ ∈ D(1 + T∗T) and (1 + T∗T)ψ = limϕn. Thus Ran(1 + T

∗T) is closed and therefore
equal toH. Moreover, it follows that the inverse (1 + T∗T)−1 : H → H is bounded with
norm ‖(1 + T∗T)−1‖ ≤ 1 and its range is Ran((1 + T∗T)−1) = D(T∗T). Let us note that, in
particular, the range of the operator (1+T∗T)−1 is dense inH. As, clearly, (1+T∗T)−1 > 0,
its square root (1 + T∗T)− 12 : H → H is well defined and has a dense range. Then for
ϕ ∈ H, one has

⟨T(1 + T∗T)−1ϕ|T(1 + T∗T)−1ϕ⟩ = ⟨(1 + T∗T)−1ϕ󵄨󵄨󵄨󵄨T∗T(1 + T∗T)−1ϕ⟩
≤ ⟨(1 + T∗T)−1ϕ󵄨󵄨󵄨󵄨(1 + T∗T)(1 + T∗T)−1ϕ⟩
= ⟨(1 + T∗T)−1ϕ󵄨󵄨󵄨󵄨ϕ⟩
= ⟨(1 + T∗T)− 12ϕ󵄨󵄨󵄨󵄨(1 + T∗T)− 12ϕ⟩,
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and therefore ‖T(1 + T∗T)− 12 (1 + T∗T)− 12ϕ‖ ≤ ‖(1 + T∗T)− 12ϕ‖. This implies that the op-
erator T(1 + T∗T)− 12 : Ran((1 + T∗T)− 12 ) → H′ is bounded with norm bounded by 1 and
therefore has an extension fromRan((1+T∗T)− 12 ) to all ofHwhich is also boundedwith
normbounded by 1. Next is shown that Ran((1+T∗T)− 12 ) = D(T) such that this extension
is given by T(1+T∗T)− 12 : H → H′. Let ϕ ∈ H. As Ran((1+T∗T)− 12 (1+T∗T)− 12 ) = D(T∗T)
is dense, there is a sequence (ϕn)n∈ℕ in the range of ((1 + T∗T)− 12 )2 converging to ϕ.
Then, as (1 + T∗T)− 12 is bounded, limn→∞(1 + T∗T)− 12ϕn = (1 + T∗T)− 12ϕ. Because the
operator T(1 + T∗T)− 12 : Ran((1 + T∗T)− 12 ) → H′ is bounded, (T(1 + T∗T)− 12ϕn)n∈ℕ is a
Cauchy sequence and therefore converges to some ψ = limn→∞ T(1 + T∗T)− 12ϕn ∈ H′.
As limn→∞((1+T∗T)− 12ϕn, T(1+T∗T)− 12ϕn) = ((1+T∗T)− 12ϕ,ψ) inH×H′ and T is closed,
(1+T∗T)− 12ϕ is in the domain of T and T(1+T∗T)− 12ϕ = ψ. Conversely, assume ϕ ∈ D(T).
Then as (1 + T∗T)− 12 T∗ ⊂ (T(1 + T∗T)− 12 )∗ is bounded, one has

ϕ = ((1 + T∗T)− 12 (1 + T∗T)− 12 T∗T + (1 + T∗T)−1)ϕ
= (1 + T∗T)− 12 ((1 + T∗T)− 12 T∗T + (1 + T∗T)− 12 )ϕ ∈ Ran((1 + T∗T)− 12 ).

This implies D(T) = Ran((1 + T∗T)− 12 ). Thus, for ϕ ∈ D(T) there is ψ ∈ H such that
ϕ = (1 + T∗T)− 12ψ. As Ran((1 + T∗T)−1) is dense in H, there is a sequence (θn)n∈ℕ in
Ran((1 + T∗T)−1) such that limn→∞(1 + T∗T)− 12 θn = ψ. Then

lim
n→∞(1 + T∗T)−1θn = ϕ

and

lim
n→∞ T(1 + T∗T)−1θn = lim

n→∞ T(1 + T∗T)− 12 (1 + T∗T)− 12 θn
= T(1 + T∗T)− 12ψ
= Tϕ.

One concludes that limn→∞((1 + T∗T)−1θn, T(1 + T∗T)−1θn) = (ϕ, Tϕ) and therefore
D(T∗T) is a core for T because (1 + T∗T)−1θn ∈ D(T∗T) for all n ∈ ℕ.

In this section two topologies on 𝕃(H,H′) are studied, as well as naturally asso-
ciated topologies on the image of 𝕃(H,H′) under the bounded transform that will be
introduced in (6.3) below. Let us begin with the gap topology. As T ∈ 𝕃(H,H′) is closed,
the orthogonal projection PT ∈ 𝔹(H ⊕H

′) onto the graph of T is bounded. Then the gap
metric on 𝕃(H,H′) is defined by

dG(T0, T1) = ‖PT0 − PT1‖, T0, T1 ∈ 𝕃(H,H
′). (6.1)

The topology OG on 𝕃(H,H
′) induced by dG is called the gap topology. In order to get a

better grip on it, let us write out the explicit form of the graph projections.
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Proposition 6.1.3. For T ∈ 𝕃(H,H′), let us set
RT = (1 + T

∗T)−1.
Then the orthogonal projection onto the graph of T is

PT = (
RT T∗RT∗
TRT 1 − RT∗) .

The gap metric is equivalent to the metric defined by

d′G(T0, T1) = ‖RT0 − RT1‖ + ‖RT∗0 − RT∗1 ‖ + ‖T0RT0 − T1RT1‖.
Proof. By Lemma 6.1.2, TRT is bounded, and thus also T∗RT∗ is bounded. Let us first
check that

RT∗T ⊂ TRT , RTT
∗ ⊂ (TRT )∗ = T∗RT∗ . (6.2)

For the first equality, let ϕ ∈ D(T). Then ψ = RTϕ ∈ Ran(RT ) = D(T
∗T) ⊂ D(T). As then

(1 + T∗T)ψ = ϕ, one has
Tϕ = T(1 + T∗T)ψ = (1 + TT∗)Tψ = (1 + TT∗)TRTϕ,

and multiplying by (1 + TT∗)−1 shows the first inclusion of (6.2). The second inclusion
in (6.2) follows from general principles. Indeed, for ϕ ∈ D(T∗), one concludes that
(TRT )
∗ϕ = RTT∗ϕ = T∗RT∗ϕ where the last equality follows from the first inclusion

of (6.2). AsD(T∗) is dense, this implies the last equality in (6.2). Using (6.2), an algebraic
computation shows that PT is an orthogonal projection. Moreover, one readily verifies

PT (
ϕ
Tϕ
) = (

(1 + T∗T)−1ϕ + T∗(1 + TT∗)−1Tϕ
T(1 + T∗T)−1ϕ + (1 − (1 + TT∗)−1)Tϕ) = ( ϕTϕ)

for all ϕ ∈ D(T), due to (1 + TT∗)−1T = RT∗T ⊂ TRT = T(1 + T∗T)−1. Note that the set
{(T
∗ψ−ψ ) : ψ ∈ D(T∗)} is the orthogonal complement of the graph of T in H ⊕ H′. One

checks that for ψ ∈ D(T∗),
PT (

T∗ψ
−ψ
) = (

(1 + T∗T)−1T∗ψ − T∗(1 + TT∗)−1ψ
T(1 + T∗T)−1T∗ψ − (1 − (1 + TT∗)−1)ψ) = (00) ,

where (1 + T∗T)−1T∗ = RTT∗ ⊂ T∗RT∗ = T∗(1 + TT∗)−1 was used. Hence PT is the or-
thogonal projection onto the graph of T . Replacing the formula for PT twice in definition
(6.1), one readily deduces the equivalence of dG and d

′
G.
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The key element for the definition of the Riesz topology on 𝕃(H,H′) is the bounded
transform (sometimes also called Riesz transform due to the work of Riesz and Lorch,
on which it is elaborated in the textbook [158]; note though that there is no square root
in these works)

F(T) = T(1 + T∗T)− 12 ∈ 𝔹(H,H′) (6.3)

of T ∈ 𝕃(H,H′). By Lemma 6.1.2, the operator F(T) is well defined and bounded so that
also the map F : 𝕃(H,H′) → 𝔹(H,H′) given by (6.3) is well defined. To analyze its
mapping properties, let us introduce the ball of bounded operators of radius a > 0,

𝔹a(H,H
′) = {F ∈ 𝔹(H,H′) : ‖F‖ ≤ a},

as well as the following subset of the unit ball:

𝔹01 (H,H
′) = {F ∈ 𝔹(H,H′) : ‖F‖ ≤ 1,Ker(1 − F∗F) = {0}}.

This notation fits with that of Section 4.6, namely the lower index 1 indicates that the
norm is bounded by 1 and the upper index 0 denotes that 1 is not a singular value of F .

Theorem 6.1.4. The bounded transform establishes a bijection

F : 𝕃(H,H′) → 𝔹01 (H,H′).
Moreover, F(T)∗ = F(T∗).
Proof. (See, e. g., Theorem 10.4 in [121].) In the proof of Lemma 6.1.2, it was shown that
(1 + T∗T)− 12 : H → H is well defined and bounded with norm bounded by 1. Moreover,
Ran((1 + T∗T)− 12 ) = D(T) and F(T) : H → H is well defined and bounded with norm
‖F(T)‖ ≤ 1, see the proof of Lemma 6.1.2.

Clearly,

(1 + T∗T)− 12 T∗ ⊂ F(T)∗, (6.4)

and therefore one has for ϕ ∈ H,

F(T)∗F(T)(1 + T∗T)− 12ϕ = (1 + T∗T)− 12 T∗T(1 + T∗T)−1ϕ
= (1 + T∗T)− 12 (1 + T∗T − 1)(1 + T∗T)−1ϕ
= (1 − (1 + T∗T)−1)(1 + T∗T)− 12ϕ.

As Ran((1 + T∗T)− 12 ) = D(T) is dense inH, this implies

1 − F(T)∗F(T) = (1 + T∗T)−1. (6.5)
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Thus as Ker((1+ T∗T)− 12 ) = Ker((1+ T∗T)−1) = {0}, the kernel of 1−F(T)∗F(T) is trivial.
This shows that the map F is well defined.

Let us next show that the map F is surjective. Let F ∈ 𝔹(H,H′) be such that ‖F‖ ≤ 1
and Ker(1−F∗F) = {0}. As Ker(1−F∗F) is trivial, it follows thatD = Ran((1−F∗F) 12 ) ⊂ H
is dense. Then an unbounded operator T : D→ H′ is defined by T(1 − F∗F) 12ϕ = Fϕ for
ϕ ∈ H. As 1 − F∗F is injective, this is well defined and

T = F(1 − F∗F)− 12 . (6.6)

Clearly, T is densely defined and it remains to show that it is closed and F(T) = F . We
next show that the kernel of 1−FF∗ is trivial. Suppose to the contrary, namely that there
is ϕ ∈ H′ with ‖ϕ‖ = 1 such that FF∗ϕ = ϕ. This implies that FF∗FF∗ϕ = ϕ and therefore

1 = ⟨ϕ󵄨󵄨󵄨󵄨FF
∗FF∗ϕ⟩ = ⟨F∗ϕ󵄨󵄨󵄨󵄨F∗F(F∗ϕ)⟩.

As ‖F∗ϕ‖ ≤ 1, this implies by the Cauchy–Schwarz inequality that ‖F∗ϕ‖ = 1 and that
F∗F(F∗ϕ) = F∗ϕ, which is a contradiction to Ker(1− F∗F) = {0}. Thus Ker(1− FF∗) = {0}
and the range D∗ = Ran((1 − FF∗) 12 ) ⊂ H′ is dense. Then S : D∗ → H, defined by
S(1 − FF∗) 12ϕ = F∗ϕ for ϕ ∈ H′, is well defined and S = F∗(1 − FF∗)− 12 . Next setting
ϕ = (1 − F∗F) 12ϕ′ ∈ D and ψ = (1 − FF∗) 12ψ′ ∈ D∗, one has

⟨Tϕ|ψ⟩ = ⟨Fϕ′󵄨󵄨󵄨󵄨(1 − FF∗) 12ψ′⟩
= ⟨(1 − FF∗) 12 Fϕ′󵄨󵄨󵄨󵄨ψ′⟩
= ⟨F(1 − F∗F) 12ϕ′󵄨󵄨󵄨󵄨ψ′⟩
= ⟨(1 − F∗F) 12ϕ′󵄨󵄨󵄨󵄨F∗ψ′⟩
= ⟨ϕ|Sψ⟩.

This implies S ⊂ T∗ and, in particular, T∗ is densely defined (and T is closable). One
directly checks that

P = ( 1 − F∗F (1 − F∗F) 12 F∗
F(1 − F∗F) 12 FF∗ ) ∈ 𝔹(H ⊕H′)

is an orthogonal projection. An explicit computation shows that the graph of T is Ran(P)
and therefore T is closed. Moreover, {(−Sψ,ψ) : ψ ∈ D∗} = Ker(P) and, because one has
{(ϕ, Tϕ) : ϕ ∈ D}⊥ = {(−T∗ψ,ψ) : ψ ∈ D(T∗)}, this impliesD∗ = D(T∗) and S = T∗. Next
let us verify that F = F(T). By Lemma 6.1.2,D(T) ⊂ Ran((1 + T∗T)− 12 ) and therefore

F(T)(1 − F(T)∗F(T))− 12 = T(1 + T∗T)− 12 (1 + T∗T) 12 = T .



6.1 Topologies on closed and densely defined operators � 179

This implies that T is given by (6.6) for F = F(T) and the map F is injective. Let T be as
in (6.6), then T∗ = F∗(1 − FF∗)− 12 and

F(T) = F(1 − F∗F)− 12 (1 + F∗(1 − FF∗)− 12 F(1 − F∗F)− 12 )− 12
= F(1 − F∗F)− 12 (1 + F∗F(1 − F∗F)−1)− 12
= F(1 − F∗F)− 12 ((1 − F∗F + F∗F)(1 − F∗F)−1)− 12
= F .

Therefore F is bijective and F(T)∗ = F(T∗).
The so-called Riesz metric on 𝕃(H,H′) is defined by

dR(T0, T1) =
󵄩󵄩󵄩󵄩F(T0) − F(T1)

󵄩󵄩󵄩󵄩, T0, T1 ∈ 𝕃(H,H
′).

Using Theorem 6.1.4, one checks the nondegeneracy assumption for dR. The triangle in-
equality and symmetry are obvious. The topology OR on 𝕃(H,H

′) induced by the Riesz
metric is also called the Riesz topology. Henceforth we use both notations (𝕃(H,H′), dR)
and (𝕃(H,H′),OR) depending on whether we want to stress the metric structure when
discussing the continuity of maps on 𝕃(H,H′). Similarly, we will proceed with other
spaces below.

As dR is naturally associated to the bounded transform, the following holds:

Proposition 6.1.5. The bounded transform

F : (𝕃(H,H′), dR) → (𝔹01 (H,H′), dN )
is a homeomorphism. As above, dN (T0, T1) = ‖T0 − T1‖ is here the norm distance.

Proof. By Theorem 6.1.4, F : 𝕃(H,H′) → F(𝕃(H,H′)) = 𝔹01 (H,H′) is bijective and, by
the very definition of the Riesz metric, it is a homeomorphism.

Proposition 6.1.6. An operator T ∈ 𝕃(H,H′) is bounded if and only if its bounded trans-
form has norm less than 1, namely ‖F(T)‖ < 1.

Proof. Let us first suppose that T ∈ 𝕃(H,H′) is bounded. Then it is sufficient to show
that ‖F(T)∗F(T)‖ = ‖F(T)‖2 < 1. As

F(T)∗F(T) = (1 + T∗T)− 12 T∗T(1 + T∗T)− 12 = T∗T(1 + T∗T)−1,
by the spectral radius theorem one has

󵄩󵄩󵄩󵄩F(T)
∗
F(T)󵄩󵄩󵄩󵄩 = sup(spec(F(T)

∗
F(T)))

= sup{λ(1 + λ)−1 : λ ∈ spec(T∗T)} < 1,
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where the spectral mapping theorem was used. Conversely, assume that ‖F(T)‖ < 1,
then ‖F(T)∗F(T)‖ < 1 and therefore 1 − F(T)∗F(T) is invertible with bounded inverse.
This implies that

T = F(T)(1 − F(T)∗F(T))− 12
is bounded.

Next let us introduce a pseudometric on the unit ball 𝔹1(H,H
′) by setting

dE(F0, F1)

= max{‖F∗0 F0 − F∗1 F1‖, ‖F0F∗0 − F1F∗1 ‖, 󵄩󵄩󵄩󵄩F0(1 − F∗0 F0) 12 − F1(1 − F∗1 F1) 12 󵄩󵄩󵄩󵄩}.
Clearly, dE satisfies the triangle inequality and is symmetric. Note that this is an exten-
sion of the pseudometric introduced in Lemma 4.6.3 to operators which are not self-
adjoint any more. As discussed after Lemma 4.6.3, it goes back to [108] and is called the
extended gapmetric, and the topology is then called the extended gap topology. The next
result justifies this terminology, namely the extended gapmetric is just the push-forward
of the gap metric under the bounded transform.

Proposition 6.1.7. The bounded transform

F : (𝕃(H,H′), dG) → (𝔹01 (H,H′), dE)
is a bi-Lipshitz-continuous homeomorphism. In particular, dE defines a metric on
F(𝕃(H,H′)) = 𝔹01 (H,H′).
Proof. In the proof of Theorem 6.1.4, it is shown that for T ∈ 𝕃(H,H′),

PT = (
1 − F(T)∗F(T) (1 − F(T)∗F(T)) 12F(T)∗

F(T)(1 − F(T)∗F(T)) 12 F(T)F(T)∗ ) ∈ 𝔹(H ⊕H′)
is the projection onto the graph of T . Comparing this to the definition of dE leads to

dE(F(T0),F(T1)) ≤ dG(T0, T1) ≤ √2dE(F(T0),F(T1)).

This implies all statements.

The next result extends the applicability of Lemma 4.6.3.

Lemma 6.1.8. The extended gap topology on 𝔹1(H,H
′) is weaker than the norm topol-

ogy. More precisely,

dE(F0, F1) ≤ 2√2dN (F0, F1)
1
2 , F0, F1 ∈ 𝔹1(H,H

′). (6.7)
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Moreover, for a < 1,

dN (F0, F1) ≤
1 + √2
1 − a2

dE(F0, F1)
1
2 , F0, F1 ∈ 𝔹a(H,H

′).
Proof. For the third term in dE , let us start with

󵄩󵄩󵄩󵄩F0(1 − F
∗
0 F0)

1
2 − F1(1 − F

∗
1 F1)

1
2 󵄩󵄩󵄩󵄩

≤ ‖F0(1 − F
∗
0 F0)

1
2 − F0(1 − F

∗
1 F1)

1
2 ‖ + ‖F0(1 − F

∗
1 F1)

1
2 − F1(1 − F

∗
1 F1)

1
2 ‖

≤ ‖(1 − F∗0 F0) 12 − (1 − F∗1 F1) 12 ‖ + ‖F0 − F1‖.
For the first summand, recall the fact (Proposition A.2.2) that for two nonnegative oper-
ators A ≥ 0, B ≥ 0 and α ∈ (0, 1), one has ‖Aα − Bα‖ ≤ ‖A − B‖α. Hence

‖F0(1 − F
∗
0 F0)

1
2 − F1(1 − F

∗
1 F1)

1
2 ‖ ≤ ‖F∗0 F0 − F∗1 F1‖ 12 + ‖F0 − F1‖.

Now

‖F∗0 F0 − F∗1 F1‖ ≤ 󵄩󵄩󵄩󵄩(F0 − F1)∗F0󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩F∗1 (F0 − F1)󵄩󵄩󵄩󵄩 ≤ 2‖F0 − F1‖,
and similarly

‖F0F
∗
0 − F1F

∗
1 ‖ ≤ 2‖F0 − F1‖.

Therefore

dE(F0, F1) ≤ √2‖F0 − F1‖
1
2 + ‖F0 − F1‖,

so that

dE(F0, F1) ≤ 2√2dN (F0, F1)
1
2 ,

because dN (F0, F1) = ‖F0 − F1‖ ≤ 2 for F0, F1 ∈ 𝔹1(H). The proof of the other bound (6.7)
is as in Lemma 4.6.3, upon replacing H2 by F∗F .

Next comes an extension of a result of Nicolaescu [139] showing that the gap topol-
ogy is weaker than the Riesz topology.

Proposition 6.1.9. The gap topology on 𝕃(H,H′) is strictly weaker than the Riesz topol-
ogy.

Proof. The fact that the gap topology is weaker than the Riesz topology on 𝕃(H,H′)
directly follows from the first part of Lemma 6.1.8 combined with Propositions 6.1.5 and
6.1.7.
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To show that the Riesz topology is different form the gap topology, we choose an
orthonormal basis {ϕk : k ∈ ℕ} ofH and define the linear operator

H : D(H) → H, ∑
k∈ℕ akϕk 󳨃→ ∑k∈ℕ kakϕk

with domain D(H) = {∑k∈ℕ akϕk : ∑k∈ℕ k2|ak |2 < ∞}. Clearly, H is self-adjoint and
therefore in 𝕃(H,H′). For n ∈ ℕ, let us define

Hn : D(Hn) → H, ∑
k∈ℕ akϕk 󳨃→ ∑k∈ℕ kakϕk − 2nanϕn

with domain D(Hn) = D(H). Then Hn is self-adjoint and therefore in 𝕃(H,H′). As
H2
n = H

2 for all n and thus RHn
= RH and

lim
n→∞ ‖HnRHn

− HRH‖ = lim
n→∞ ‖HnRHn

ϕn − HRHϕn‖ = lim
n→∞󵄩󵄩󵄩󵄩2n(1 + n2)−1󵄩󵄩󵄩󵄩 = 0,

the sequence (Hn)n∈ℕ converges to H with respect to the gap topology. For the Riesz
topology, one has

lim
n→∞󵄩󵄩󵄩󵄩F(Hn)ϕn − F(H)ϕn

󵄩󵄩󵄩󵄩 = lim
n→∞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩− n
√1 + n2

ϕn −
n
√1 + n2

ϕn
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
= lim

n→∞ 2n
√1 + n2

= 2.

Therefore (Hn)n∈ℕ does not converge toH with respect to the Riesz topology and the gap
topology is strictly weaker than the Riesz topology.

Proposition 6.1.9 directly implies that the bounded transformF is not continuous as
a map F : (𝕃(H,H′), dG) → (𝔹01 (H,H′), dN ). In other words, there are not enough open
sets in the gap topology to assure continuity of F in this sense.

The following is due to Cordes and Labrousse, see the addendum to [66]. However,
the proof presented here is considerably simpler.

Theorem 6.1.10. On the space of bounded operators𝔹(H,H′), the topologies induced by
dG and dR coincide with the norm topology. Moreover, with respect to both the gap and
Riesz topologies, 𝔹(H,H′) is open and dense in 𝕃(H,H′).
Proof. Let us introduce the set

𝔹<1(H,H′) = {F ∈ 𝔹1(H,H′) : ‖F‖ < 1}.
ThenF(𝔹(H,H′)) = 𝔹<1(H,H′) by Proposition 6.1.6 and, furthermore, by the definition
of the bounded transform,

F : (𝔹(H,H′), dN ) → (𝔹<1(H,H′), dN )
is a homeomorphism. On the other hand, the two maps,
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F : (𝔹(H,H′), dG) → (𝔹<1(H,H′), dE)
and

F : (𝔹(H,H′), dR) → (𝔹<1(H,H′), dN ),
are also homeomorphisms by Propositions 6.1.7 and 6.1.5, respectively.

But Lemma 6.1.8 implies that the metrics dE and dN induce the same topologies on
𝔹<1(H,H′), showing the first claim.

By Proposition 6.1.6, the image of 𝔹(H,H′) under the bounded transform is dense
and open in F(𝕃(H,H′)) with respect to the norm topology. By Proposition 6.1.5, this
implies that 𝔹(H,H′) is dense and open in 𝕃(H,H′)with respect to the Riesz topology.
As the gap topology is weaker than the Riesz topology by Proposition 6.1.9, this implies
that 𝔹(H,H′) is also dense in 𝕃(H,H′) with respect to the gap topology. Furthermore,
𝔹<1(H,H′) is open in (𝔹01 (H,H′), dE). Combined with Proposition 6.1.7 this implies that
𝔹(H,H′) is open in 𝕃(H,H′) with respect to the gap topology.
6.2 Basic properties of unbounded Fredholm operators

This section introduces unbounded Fredholm operators. As for bounded Fredholm op-
erators, we recall several basic facts about them which can also be found in the liter-
ature, e. g., [99, 165]. Most of the results presented here are similar to the properties of
bounded Fredholm operators studied in Section 3.2. However, as several modifications
are necessary, the proofs are provided with full details, even though this leads to some
repetitions.

Let us first recall that the quotient H/E of H with respect to a subspace E ⊂ H is
the set of equivalence classes of the relation ϕ ∼ ψ⇐⇒ ϕ − ψ ∈ E.

Definition 6.2.1. A linear operator T : D(T) ⊂ H → H′ is a Fredholm operator if and
only if
(i) T is regular,
(ii) dim(Ker(T)) < ∞,
(iii) dim(H′/Ran(T)) < ∞.
The set of Fredholm operators is denoted by 𝔽(H,H′) and simply by 𝔽(H) = 𝔽(H,H)
wheneverH′ = H.

For a closed operator T : D(T) ⊂ H → H′, the linear space D(T) equipped with
the T -norm ‖ϕ‖T = (‖ϕ‖

2
H + ‖Tϕ‖

2
H′ ) 12 is a Hilbert space. Associated with T there is a

bounded operator T̃ : (D(T), ‖ ⋅ ‖T ) → H′ defined by T̃ϕ = Tϕ.
Proposition 6.2.2. A closed operator T : D(T) ⊂ H → H′ is Fredholm if and only if the
associated bounded operator T̃ : (D(T), ‖ ⋅ ‖T ) → H′ is Fredholm.
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Proof. As Ker(T) = Ker(T̃) and Ran(T) = Ran(T̃), the claim directly follows from item
(ii) of Theorem 3.2.2.

As for bounded Fredholm operators, one has the following characterization.

Lemma 6.2.3. A linear operator T : D(T) ⊂ H → H′ is Fredholm if and only if
(i) T is regular,
(ii) dim(Ker(T)) < ∞,
(iii) dim(Ker(T∗)) < ∞,
(iv) Ran(T) is closed inH′.
Proof. Let us first assume that T is Fredholm. Then, by Proposition 6.2.2, the associated
bounded operator T̃ : (D(T), ‖ ⋅ ‖T ) → H′ is Fredholm and Ran(T̃) = Ran(T) is closed.
Therefore

dim(H′/Ran(T)) = dim(Ran(T)⊥) = dim(Ker(T∗))
is finite. Conversely, if Ran(T) is closed thenH′/Ran(T) is known to be a Hilbert space
of dimension dim(H′/Ran(T)) = dim(Ker(T∗)). Thus the equivalence is shown.

The following extends Theorem 3.2.2 to unbounded operators.

Theorem 6.2.4. For a regular operator T : D(T) ⊂ H → H′, the following are equivalent:
(i) T is a Fredholm operator.
(ii) There exists a unique S0 ∈ 𝔹(H

′,H) such that
Ker(S0) = Ran(T)

⊥, Ker(S∗0 ) = Ker(T),
and such that S0T can be continuously extended to the orthogonal projection onto
Ker(T)⊥. Moreover, TS0 is the orthogonal projection onto Ran(T) and

dim(Ran(1 − S0T)) < ∞, dim(Ran(1 − TS0)) < ∞.

(iii) There exists a so-called pseudoinverse S ∈ 𝔹(H′,H) such that TS − 1 and ST − 1 can
be extended to compact operators onH andH′, respectively.

Proof. (i) 󳨐⇒ (ii). First note that T |Ker(T)⊥ : D(T) ∩ Ker(T)⊥ → Ran(T) is bijective and
the graph of its inverse {(Tϕ,ϕ) : ϕ ∈ D(T) ∩ Ker(T)⊥} is closed as T is closed. Now, as
Ran(T) is closed and therefore a Hilbert space, the closed graph theorem shows that the
inverse S0 : Ran(T) → Ker(T)⊥ is bounded. It can be extended to all ofH′ by S0ψ = 0 for
ψ ∈ Ran(T)⊥. Then by construction TS0 is the projection in H′ onto Ran(T) and S0T is
bounded and can be extended to the projection inH onto Ker(T)⊥. This implies all the
stated properties. Uniqueness is obvious.

(ii) 󳨐⇒ (iii). This is obvious.
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(iii) 󳨐⇒ (i). Suppose that (ψn)n≥1 is an infinite orthonormal basis of Ker(T). As these
vectors are all eigenvectors of the compact operator K = ST − 1 for the eigenvalue 1, this
is a contradiction to Riesz’ theorem (Theorem 3.1.6). Suppose that (ϕn)n≥1 is an infinite
orthonormal basis of Ran(T)⊥. Consequently, one has ‖(TS − 1)ϕn‖ = ‖TSϕn − ϕn‖ ≥ 1
as TSϕn ⊥ ϕn, a contradiction to the compactness of TS − 1. It remains to show that
Ran(T) is closed. Let K be the compact extension of ST − 1. Choose L ∈ 𝕂(H) with a
finite-dimensional range and such that

‖K − L‖ ≤ 1
2
.

Then for all ϕ ∈ Ker(L) ∩D(T):

‖S‖‖Tϕ‖ ≥ ‖STϕ‖

= 󵄩󵄩󵄩󵄩(1 + K)ϕ
󵄩󵄩󵄩󵄩

≥ ‖ϕ‖ − ‖Kϕ‖

≥ ‖ϕ‖ − 󵄩󵄩󵄩󵄩(K − L)ϕ
󵄩󵄩󵄩󵄩 − ‖Lϕ‖

≥
1
2
‖ϕ‖.

Thus ‖ϕ‖ ≤ 2‖S‖‖Tϕ‖ for all ϕ ∈ Ker(L) ∩ D(T). This implies that T(Ker(L) ∩ D(T)) is
closed. Indeed, given a convergent sequence (Tϕn)n≥1 with ϕn ∈ Ker(L) ∩D(T), one can
set ψ = limn Tϕn. Then

‖ϕn − ϕm‖ ≤ 2‖S‖‖Tϕn − Tϕm‖.

Thus (ϕn)n≥1 is a Cauchy sequence and hence has a limit point ϕ = limϕn ∈ H. As T is
closed, one has ψ = Tϕ ∈ T(Ker(L) ∩D(T)). On the other hand,

T(Ker(L)⊥ ∩D(T)) = T(Ran(L∗) ∩D(T)).
As L∗ also has a finite-dimensional image, it follows that T(Ker(L)⊥ ∩ D(T)) is finite
dimensional. Thus Ran(T) = T(Ker(L) ∩D(T)) + T(Ker(L)⊥ ∩D(T)) is closed.

The following two propositions present criteria for regular operators to be Fred-
holm. They are the analogues of Lemma 3.4.2 and Proposition 3.2.6 for bounded opera-
tors.

Proposition 6.2.5. For a regular operator T : D(T) ⊂ H → H′, the following are equiv-
alent:
(i) dim(Ker(T)) < ∞ and Ran(T) is closed.
(ii) dim(Ker(T)) < ∞ and there is a constant c > 0 such that ‖Tϕ‖ > c‖ϕ‖ for all vectors

ϕ ∈ D(T) ∩ Ker(T)⊥.
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(iii) If (ϕn)n≥1 is a bounded sequence inD(T) such that (Tϕn)n≥1 is convergent, then there
is a convergent subsequence of (ϕn)n≥1.

Proof. (i)󳨐⇒ (ii). The restriction Tr of T is a bijection fromD(T)∩Ker(T)⊥ to Ran(T). The
graph of its inverse T−1r is {(Tϕ,ϕ) : ϕ ∈ D(T)∩Ker(T)⊥}. As T is a closed operator, also its
restriction Tr can be seen to be closed, so that the graph of T

−1
r : Ran(T) → H is closed.

As Ran(Tr) is closed and therefore a Hilbert space, the closed graph theorem shows that
T−1r is bounded. Therefore ‖ϕ‖ = ‖T−1r Tϕ‖ ≤ ‖T−1r ‖‖Tϕ‖ holds for all ϕ ∈ D(T) ∩ Ker(T)⊥.

(ii) 󳨐⇒ (i). Let (ψn)n≥1 be a sequence in Ran(T) converging to ψ ∈ H′. Then there are
ϕn ∈ Ker(T)

⊥ ∩ D(T) with Tϕn = ψn. By (ii), one has ‖ϕn − ϕm‖ < 1
c ‖ψn − ψm‖ so that

(ϕn)n≥1 is Cauchy and thus converges to some ϕ ∈ H. As (ϕn, Tϕn) converges to (ϕ,ψ)
and T is closed, one has Tψ = ϕ so that ϕ ∈ Ran(T) and Ran(T) is closed.

(ii) 󳨐⇒ (iii). Let (ϕn)n≥1 be a bounded sequence in D(T) such that (Tϕn)n≥1 is con-
vergent. One has ϕn = θn + ψn with θn ∈ Ker(T) and ψn ∈ D(T) ∩ Ker(T)

⊥. Because
‖ψn −ψm‖ <

1
c ‖Tϕn −Tϕm‖ by (ii), (ψn)n≥1 is Cauchy and therefore convergent. As (ϕn)n≥1

and (ψn)n≥1 are bounded, also (θn)n≥1 is bounded. Because the dimension of the kernel
of T is finite, (θn)n≥1 and therefore (ϕn)n≥1 has a convergent subsequence.

(iii) 󳨐⇒ (ii). Suppose that the kernel of T is infinite dimensional and that (ϕn)n∈ℕ is
an orthonormal basis of it. Then (ϕn)n∈ℕ is a bounded sequence in H such that Tϕn is
constant (equal to 0) and therefore convergent. As there is no convergent subsequence
of (ϕn)n∈ℕ, this is a contradiction to (ii). Thus Ker(T) is finite dimensional. Moreover,
there is a constant c > 0 such that ‖ϕ‖ ≤ c‖Tϕ‖ for all ϕ ∈ Ker(T)⊥ ∩ D(T), because
otherwise there is a sequence (ϕn)n∈ℕ in Ker(T)⊥ ∩ D(T) such that ‖ϕn‖ = 1 for all
n ∈ ℕ and ‖Tϕn‖ ≤

1
n for all n ∈ ℕ. As (Tϕn)n∈ℕ is convergent, by assumption there

is a subsequence (ϕnk )k∈ℕ converging to some vector ϕ ∈ Ker(T)⊥ with ‖ϕ‖ = 1. As
(ϕnk , Tϕnk ) converges to (ϕ, 0) and T is closed, one has ϕ ∈ D(T) and Tϕ = 0. This is a
contradiction to ϕ ∈ Ker(T)⊥.
Proposition 6.2.6. Let T : D(T) ⊂ H → H′ be a regular operator. If there is a compact
operator K ∈ 𝕂(H,H′′) and a constant c > 0 such that

‖ϕ‖ ≤ c(‖Tϕ‖ + ‖Kϕ‖)

for all ϕ ∈ D(T), then T has a closed range and a finite-dimensional kernel.

Proof. Let (ϕn)n∈ℕ be a bounded sequence inD(T) such that Tϕn is convergent, namely
there is a ψ ∈ H′ such that limn→∞ Tϕn = ψ. As K is compact, there is a subsequence
(ϕnk )k∈ℕ such that Kϕnk is convergent. Then (Kϕnk )k∈ℕ is a Cauchy sequence and as
limk→∞ Tϕnk = ψ, also (Tϕnk )k∈ℕ is a Cauchy sequence. Therefore for all ϵ > 0 there
is an N ∈ ℕ such that max{‖Tϕnk − Tϕnm‖, ‖Kϕnk − Kϕnm‖} <

ϵ
2c for all k,m > N . Thus

‖ϕnk − ϕnm‖ ≤ c(‖Tϕnk − Tϕnm‖ + ‖Kϕnk − Kϕnm‖) < ϵ



6.2 Basic properties of unbounded Fredholm operators � 187

or all k,m > N , which shows that (ϕnk )k∈ℕ is a Cauchy sequence and therefore conver-
gent. Finally, item (iii) of Proposition 6.2.5 shows the assertion.

Definition 6.2.7. The index of a Fredholm operator T ∈ 𝔽(H,H′) is
Ind(T) = dim(Ker(T)) − dim(H′/Ran(T)).

Next let us generalize Corollary 3.3.2 to unbounded Fredholm operators.

Corollary 6.2.8. (i) For T ∈ 𝔽(H,H′), T ′ ∈ 𝔽(H′′,H), also TT ′ ∈ 𝔽(H′′,H′).
(ii) If T ∈ 𝔽(H,H′), then T∗ ∈ 𝔽(H′,H). Moreover,

Ind(T) = dim(Ker(T)) − dim(Ker(T∗))
and

Ind(T∗) = − Ind(T).
(iii) If T ∈ 𝔽(H,H′), then

Ind(T) = dim(Ker(T∗T)) − dim(Ker(TT∗)).
(iv) For T ∈ 𝔽(H,H′) and T ′ ∈ 𝔽(H′′,H′′′), one has T ⊕ T ′ ∈ 𝔽(H ⊕H′′,H′ ⊕H′′′) and

Ind(T ⊕ T ′) = Ind(T) + Ind(T ′).
Proof. For the proof of (i), let us first show that TT ′ is densely defined, namely that
D(TT ′) = {ϕ ∈ D(T ′) : T ′ϕ ∈ D(T)} is dense inH′′. First, it is checked thatD(T)∩Ran(T ′)
is dense in Ran(T ′). As T ′ is Fredholm, Ran(T ′)⊥ is finite dimensional. Let {ψ1, . . . ,ψn}
be an orthonormal basis of Ran(T ′)⊥. Let ϵ1 > 0. BecauseD(T) is dense inH, there are
θi ∈ D(T) for i = 1, . . . , n such that ‖ϕi − θi‖ < ϵ1. Then E = span({θ1, . . . , θn}) is a sub-
space ofD(T) and, for ϵ1 sufficiently small, Ran(T ′) ∩ E = {0} and Ran(T ′) ⊕ E = H. By
Proposition 5.1.6, there is a projection P ∈ 𝔹(H) with Ran(P) = Ran(T ′) and Ker(P) = E.
Because D(T) ⊂ H is dense, for any vector ψ ∈ Ran(T ′) and ϵ2 > 0 there is ψ′ ∈ D(T)
such that ‖ψ − ψ′‖ < ϵ2. Then Pψ′ = ψ′ − (1 − P)ψ′ ∈ D(T) ∩ Ran(T ′) and

󵄩󵄩󵄩󵄩ψ − Pψ
′󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩ψ − ψ′󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩(1 − P)ψ′󵄩󵄩󵄩󵄩
< ϵ2 +
󵄩󵄩󵄩󵄩(1 − P)(ψ

′ − ψ)󵄩󵄩󵄩󵄩
≤ ϵ2(1 +

󵄩󵄩󵄩󵄩1 − P
󵄩󵄩󵄩󵄩),

where the second step follows asψ ∈ Ran(T ′) = Ker(1−P). This shows thatD(T)∩Ran(T ′)
is dense in Ran(T ′). To show thatD(TT ′) is dense inH′′, it is sufficient to show that for
ϵ > 0 and ϕ ∈ D(T ′) there is ϕ̃ ∈ D(TT ′) such that ‖ϕ − ϕ̃‖ < ϵ (because D(T ′) ⊂ H′′
is dense). For ϕ ∈ D(T ′), there is ϕ′ ∈ D(T ′) ∩ Ker(T ′)⊥ such that T ′ϕ′ = T ′ϕ and
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thus ϕ − ϕ′ ∈ Ker(T) ⊂ D(TT ′). By the above, there is ψ ∈ Ran(T ′) ∩ D(T) such that
‖ψ − T ′ϕ‖ < ϵc for c > 0 as in item (ii) of Proposition 6.2.5 applied to T ′. Then there is
θ ∈ D(T ′) ∩ Ker(T ′)⊥ such that ψ = T ′θ and therefore θ ∈ D(TT ′). Thus one concluldes
that ϕ′ − θ ∈ D(T ′) ∩ Ker(T ′)⊥ and, by Proposition 6.2.5,

󵄩󵄩󵄩󵄩ϕ
′ − θ󵄩󵄩󵄩󵄩 < 1c 󵄩󵄩󵄩󵄩T ′(ϕ′ − θ)󵄩󵄩󵄩󵄩 = 1c 󵄩󵄩󵄩󵄩T ′ϕ − ψ󵄩󵄩󵄩󵄩 < ϵ.

By construction, ϕ̃ = ϕ − ϕ′ + θ ∈ D(TT ′) fulfills
󵄩󵄩󵄩󵄩ϕ − ϕ̃
󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩ϕ
′ − θ󵄩󵄩󵄩󵄩 < ϵ.

This shows that TT ′ is densely defined.
To show that TT ′ is closed, let us choose a sequence (ϕn)n≥1 in D(TT ′) such that

(ϕn, TT
′ϕn) converges to (ϕ, θ). For ψn = T ′ϕn, there are ψ′n ∈ D(T) ∩ Ker(T)⊥ and

ψ′′n ∈ Ker(T) such that ψn = ψ
′
n + ψ
′′
n . Then (ψ

′
n)n≥1 is Cauchy, as, by Proposition 6.2.5,

there is a constant c > 0 such that

󵄩󵄩󵄩󵄩ψ
′
n − ψ
′
m
󵄩󵄩󵄩󵄩 < c
󵄩󵄩󵄩󵄩Tψ
′
n − Tψ

′
m
󵄩󵄩󵄩󵄩 = c
󵄩󵄩󵄩󵄩TT
′ϕn − TT ′ϕm󵄩󵄩󵄩󵄩

and (TT ′ϕn)n≥1 is Cauchy by assumption. Therefore (ψ′n)n≥1 is convergent, and one can
define ψ = limn→∞ ψ′n ∈ H. As (ψ′n, Tψ′n) = (ψ′n, TT ′ϕn) converges to (ψ, θ) and T is
closed, one has ψ ∈ D(T) and Tψ = θ. We show that (ψ′′n )n≥1 is bounded. Suppose
that (ψ′′n )n≥1 is unbounded, then there is a subsequence, again denoted by (ψ′′n )n≥1, such
that limn→∞ ‖ψ′′n ‖ = ∞. Then ( ψ′′n‖ψ′′n ‖ )n≥1 is a bounded sequence in the finite-dimensional
kernel of T . Again by choosing a subsequence, without loss of generality one can as-
sume that ( ψ

′′
n‖ψ′′n ‖ )n≥1 converges to ψ̃ ∈ Ker(T) with ‖ψ̃‖ = 1. As (ϕn)n≥1 is bounded, one

has limn→∞ ϕn‖ψ′′n ‖ = 0 and T ′ ϕn‖ψ′′n ‖ = ψ′n+ψ′′n‖ψ′′n ‖ converges to ψ̃. As T ′ is closed, this implies
ψ̃ = 0, which is a contradiction. Therefore the sequence (ψ′′n )n≥1 is bounded. As the di-
mension of Ker(T) is finite, there is a convergent subsequence (ψ′′nj )j≥1 of (ψ′′n )n≥1. Setting
ψ′′ = limj→∞ ψ′′nj ∈ Ker(T), one has limj→∞ ψnj = ψ + ψ′′. As (ϕnj )j≥1 converges to ϕ and
(Tϕnj )j≥1 = (ψnj )j≥1 converges to ψ + ψ′′, one has ϕ ∈ D(T ′) and T ′ϕ = ψ + ψ′′. As Tψ = θ
and ψ′′ ∈ Ker(T), one has θ = T(ψ + ψ′′) = TT ′ϕ. In conclusion, (ϕ, θ) is an element of
the graph of TT ′ and therefore TT ′ is closed.

We next use Proposition 6.2.5 to show that Ran(TT ′) is closed and that the dimension
of the kernel of TT ′ is finite. Let (ϕn)n≥1 in D(TT ′) be a bounded sequence such that
(TT ′ϕn)n≥1 is convergent. Forψn = T ′ϕn, there areψ′n ∈ D(T)∩Ker(T)⊥ andψ′′n ∈ Ker(T)
such thatψn = ψ

′
n+ψ
′′
n . Then (ψ

′
n)n≥1 is Cauchy, as, by Proposition 6.2.5, there is a constant

c > 0 such that

󵄩󵄩󵄩󵄩ψ
′
n − ψ
′
m
󵄩󵄩󵄩󵄩 < c
󵄩󵄩󵄩󵄩Tψ
′
n − Tψ

′
m
󵄩󵄩󵄩󵄩 = c
󵄩󵄩󵄩󵄩TT
′ϕn − TT ′ϕm󵄩󵄩󵄩󵄩
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and (TT ′ϕn)n≥1 is Cauchy by assumption. Therefore (ψ′n)n≥1 is convergent and one can set
ψ = limn→∞ ψ′n ∈ H. As above one can show that (ψ′′n )n≥1 is bounded. As the dimension
of Ker(T) is finite, there is a convergent subsequence (ψ′′nj )j≥1 of (ψ′′n )n≥1. Next setting
ψ′′ = limj→∞ ψ′′nj ∈ Ker(T), one has limj→∞ ψnj = ψ + ψ′′. Thus (T ′ϕnj )j≥1 = (ψnj )j≥1
converges toψ+ψ′′. By item (iii) of Proposition 6.2.5 applied to the Fredholm operator T ′,
there is a convergent subsequence of (ϕnj )j≥1. Thus Ran(TT ′) is closed and dim(Ker(TT ′))
is finite. To show that Ran(TT ′)⊥ is finite dimensional, note that dim(Ran(T ′)⊥) is finite
and thus the dimension of T(Ran(T ′)⊥) is finite. As

Ran(T) = T(Ran(T ′)) + T(Ran(T ′)⊥),
one has

Ran(T)⊥ = (T(Ran(T ′)))⊥ ∩ (T(Ran(T ′)⊥))⊥.
As Ran(T)⊥ and T(Ran(T ′)⊥) are finite dimensional, this implies that the dimension of
(T(Ran(T ′)))⊥ = Ran(TT ′)⊥ is finite.

In order to show (ii), let us note that T∗ is regular and Ker(T∗) = Ran(T)⊥ and
Ran(T∗)⊥ = Ker(T) are finite dimensional. It remains to show that Ran(T∗) is closed.
This follows from Proposition 6.2.5, because Ker(T∗)⊥ = Ran(T) as Ran(T) is closed.
Therefore for θ ∈ D(T∗) ∩ Ker(T∗)⊥ there is ϕ ∈ D(T) ∩ Ker(T)⊥ such that Tϕ = θ. Then

‖ϕ‖‖T∗θ‖ ≥ ⟨T∗θ󵄨󵄨󵄨󵄨ϕ⟩ = ⟨Tϕ|Tϕ⟩ = ‖Tϕ‖2 ≥ c‖ϕ‖‖Tϕ‖ = c‖ϕ‖‖θ‖
for a constant c > 0 by Proposition 6.2.5. Thus ‖T∗θ‖ ≥ c‖θ‖ for all θ ∈ D(T∗) ∩Ker(T∗)⊥
and Ran(T∗) is closed, again by Proposition 6.2.5. The claim about the index of T follows
directly from Definition 6.2.7.

As Ker(T) = Ker(T∗T) and Ker(T∗) = Ker(TT∗), item (iii) is a direct consequence
of (ii).

The last claim follows from the obvious identities Ker(T ⊕ T ′) = Ker(T) ⊕ Ker(T ′)
and Ran(T ⊕ T ′) = Ran(T) ⊕ Ran(T ′).
Proposition 6.2.9. If T ∈ 𝔽(H,H′) and T ′ ∈ 𝔽(H′′,H), then the index of the Fredholm
operator TT ′ ∈ 𝔽(H′′,H′) is given by

Ind(TT ′) = Ind(T) + Ind(T ′).
Proof. Recall that TT ′ is Fredholm by Corollary 6.2.8. One has

dim(Ker(TT ′)) = dim(Ker(T ′)) + dim(Ker(T) ∩ Ran(T ′)).
SettingN1 = Ker(T) ∩ Ran(T

′), there is a finite-dimensional subspaceN2 ⊂ H such that

Ker(T) = N1 ⊕N2.
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Note that Ran(T ′) ∩N2 = {0} and Ran(T
′) ⊕N2 is closed. Next it is shown that there is a

finite-dimensional subspaceN3 ⊂ D(T) such that

Ran(T ′) ⊕N2 ⊕N3 = H.

Because (Ran(T ′) ⊕ N2)
⊥ is a subspace of the finite-dimensional space Ran(T ′)⊥, it is

finite dimensional. If dim((Ran(T ′) ⊕N2)
⊥) = 0, the claim holds forN3 = {0}. Therefore,

without loss of generality, one can assume dim((Ran(T ′) ⊕ N2)
⊥) = l ∈ ℕ. Next since

Ran(T ′)⊕N2 is closed andT is densely defined, there is a vectorϕ1 ∈ D(T)\(Ran(T
′)⊕N2).

ThenH1 = Ran(T
′)⊕N2⊕span({ϕ1}) is closed anddim((Ran(T

′)⊕N2⊕span({ϕ1}))
⊥) = l−1.

If l ≥ 2, there is a vectorϕ2 ∈ D(T)\(Ran(T
′)⊕N2⊕span({ϕ1})). Repeating this procedure l

times, one finds vectorsϕ1, . . . ,ϕl ∈ D(T) such that Ran(T
′)⊕N2⊕span({ϕ1, . . . ,ϕl}) = H.

Then the claim holds forN3 = span({ϕ1, . . . ,ϕl}).
The restriction T |N3

is injective and

Ran(T) = Ran(TT ′) ⊕ TN3.

The last claim holds as Ran(T) = Ran(TT ′) + TN3 by construction and since, for vectors
ϕ ∈ Ran(T ′) and ψ ∈ N3 such that Tϕ = Tψ ∈ Ran(TT

′), one has ψ ∈ Ran(T ′) + Ker(T)
and therefore ψ = 0 by definition ofN3. Thus

dim(Ran(TT ′)⊥) = dim(Ran(T)⊥) + dim(N3).

One can conclude that

Ind(TT ′) = dim(Ker(TT ′)) − dim(H′/Ran(TT ′))
= dim(Ker(T ′)) + dim(N1) − dim(Ran(T)

⊥) − dim(N3)

= dim(Ker(T ′)) + dim(N1) + dim(N2)

− dim(Ran(T)⊥) − dim(N3) − dim(N2)

= dim(Ker(T ′)) + dim(Ker(T)) − dim(Ran(T)⊥) − dim(Ran(T ′)⊥)
= Ind(T) + Ind(T ′),

by definition ofN1,N2, andN3.

The next aim is to show that the Fredholm property and that the index is invariant
under small or compact perturbations. Therefore we introduce the notion of relatively
bounded and relatively compact operators.

Definition 6.2.10. Let T : D(T) ⊂ H → H′ be a closed linear operator. Another operator
S : D(S) ⊂ H → H′ with D(T) ⊂ D(S) is called relatively bounded with respect to T
(or T -bounded) if the restriction S|D(T) is bounded as operator S : D(T) → H′ where
D(T) is equipped with the T -norm ‖ ⋅ ‖T . Analogously, S is called relatively compact with
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respect to T (or T -compact) if the restriction S|D(T) : D(T) → H′ is compact, where
againD(T) is equipped with the T -norm.

Note that ϕ 󳨃→ ‖Tϕ‖ + ‖ϕ‖ defines a norm onD(T) that is equivalent to the T -norm.
Therefore an operator S : D(S) ⊂ H → H′ is relatively bounded with respect to T if and
only if there are constants c1, c2 > 0 such that

‖Sϕ‖ ≤ c1‖Tϕ‖ + c2‖ϕ‖ (6.8)

for all ϕ ∈ D(T). In particular, every bounded operator S : H → H′ is T -bounded and
every compact operator S : H → H′ is T -compact.
Lemma 6.2.11. If T : D(T) ⊂ H → H′ is a closed operator and S : D(S) ⊂ H → H′ is
relatively bounded with respect to T and the relative bound c1 in (6.8) is less than 1, then
T + S : D(T) ⊂ H → H′ is a closed operator.
Proof. Equation (6.8) with c1, c2 > 0 implies

󵄩󵄩󵄩󵄩(T + S)ϕ
󵄩󵄩󵄩󵄩 ≤ (1 + c1)‖Tϕ‖ + c2‖ϕ‖ (6.9)

and

󵄩󵄩󵄩󵄩(T + S)ϕ
󵄩󵄩󵄩󵄩 ≥ ‖Tϕ‖ − ‖Sϕ‖ ≥ (1 − c1)‖Tϕ‖ − c2‖ϕ‖.

As c1 < 1, the last inequality is equivalent to

‖Tϕ‖ ≤ 1
1 − c1
(󵄩󵄩󵄩󵄩(T + S)ϕ

󵄩󵄩󵄩󵄩 + c2‖ϕ‖). (6.10)

Let (ϕn)n≥1 be a sequence inD(T) such that (ϕn, (T + S)ϕn) converges to (ϕ, θ). By (6.10),

‖Tϕn − Tϕm‖ ≤
1

1 − c1
(󵄩󵄩󵄩󵄩(T + S)(ϕn − ϕm)

󵄩󵄩󵄩󵄩 + c2‖ϕn − ϕm‖)

and therefore (Tϕn)n≥1 is Cauchy and thus convergent. Setting ψ = limn→∞ Tϕn, this
implies that (ϕn, Tϕn)n≥1 converges to (ϕ,ψ). As T is closed, ϕ is inD(T) = D(T + S) and
Tϕ = ψ. Moreover, by (6.9),

󵄩󵄩󵄩󵄩(T + S)(ϕ − ϕn)
󵄩󵄩󵄩󵄩 ≤ (1 + c1)

󵄩󵄩󵄩󵄩T(ϕ − ϕn)
󵄩󵄩󵄩󵄩 + c2‖ϕ − ϕn‖

converges to 0. Therefore (T + S)ϕ = limn→∞(T + S)ϕn = θ and the graph of T + S is
closed.

A similar result holds for relatively compact operators.

Lemma 6.2.12. If T : D(T) ⊂ H → H′ is a Fredholm operator and S : D(S) ⊂ H → H′
is relatively compact with respect to T, then T + S : D(T) ⊂ H → H′ is a closed operator.



192 � 6 Unbounded Fredholm operators

Proof. Let T̃ : (D(T), ‖ ⋅ ‖T ) → H be the bounded operator associated with T . Similarly,
define S̃ : (D(T), ‖ ⋅ ‖T ) → H by S̃ϕ = Sϕ. Then by Proposition 6.2.2, T̃ and therefore
T̃ + S̃ : (D(T), ‖ ⋅ ‖T ) → H are bounded Fredholm operators. Let us define the embedding
I : D(T) ⊂ (H, ‖ ⋅ ‖H) → (D(T), ‖ ⋅ ‖T ) by Iϕ = ϕ. Then I is invertible and I

−1 is bounded
and therefore closed. Thus also I is closed and as Ker(I) = {0} and Ran(I) = D(T), I is a
Fredholm operator. Therefore, by item (i) of Corollary 6.2.8, T + S = (T̃ + S̃)I is Fredholm
and, in particular, closed.

After these preparations, we can now show that the Fredholm property is invariant
under small or compact perturbations.

Proposition 6.2.13. Let T : D(T) ⊂ H → H′ be a Fredholm operator and furthermore
let S : D(S) ⊂ H → H′ be relatively compact with respect to T or relatively bounded with
respect to T such that the constants c1, c2 in (6.8) are sufficiently small, then the operator
T + S : D(T) → H′ is Fredholm and

Ind(T + S) = Ind(T).

Proof. By the above lemmata, where c1 < 1 is assumed, operator T + S is closed. Let T̃ :
(D(T), ‖ ⋅ ‖T ) → H be the operator associated with T and again let S̃ : (D(T), ‖ ⋅ ‖T ) → H

be given by S̃ϕ = Sϕ. Then by Proposition 6.2.2, T + S is Fredholm if and only if T̃ + S̃
is Fredholm. If S is relatively compact with respect to T , T̃ + S̃ and therefore T + S are
Fredholm by Theorem 3.3.4. Moreover, Ind(T + S) = Ind(T̃ + S̃) = Ind(T̃) = Ind(T)
again by Theorem 3.3.4. If T̃ is Fredholm, as the set of bounded Fredholm operators is
open, see Theorem 3.3.5, there is a constant c > 0 such that T̃ + A is Fredholm for all
A ∈ 𝔹((D(T), ‖ ⋅ ‖T ),H

′) such that ‖A‖ < c. If S is relatively bounded with respect to T ,
then S̃ ∈ 𝔹((D(T), ‖ ⋅ ‖T ),H

′) has norm less than c provided the constants c1 and c2 in
(6.8) are sufficiently small. Then, by the above, T+S is Fredholmwith an index satisfying
Ind(T + S) = Ind(T̃ + S̃) = Ind(T̃) = Ind(T).

As in the bounded case for self-adjoint operators, there is another characterization
using the notion of essential spectrum. The essential spectrum of a self-adjoint operator
H : D(H) ⊂ H → H is defined as in Section 3.4 for bounded self-adjoint operators,
namely specess(H) = spec(H) \ specdis(H) where the discrete spectrum specdis(H) con-
sists of all isolated eigenvalues of H of finite multiplicity.

Theorem 6.2.14. A self-adjoint operator H = H∗ ∈ 𝕃(H) is Fredholm if and only if one
has 0 ̸∈ specess(H).

Proof. Let us first assume that H is Fredholm. As Ran(H) = Ker(H)⊥, then either H is
invertible with a bounded inverse, by the Hellinger–Toeplitz theorem, or 0 is an eigen-
value of finite multiplicity. It remains to show that there exists ϵ > 0 such that one has
spec(H) ∩ (−ϵ, ϵ) \ {0} = 0. The restriction H′ of H toD(H) ∩ Ker(H)⊥ is a bijection onto
its range, which is a Hilbert space. Its graph {(ϕ,Hϕ) : ϕ ∈ D(H) ∩ Ker(H)⊥} is closed
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because H is a closed operator. Therefore the closed graph theorem shows that (H′)−1
is bounded and therefore 0 lies in the resolvent set of H′. Thus there is ϵ > 0 such that
(−ϵ, ϵ) ∩ spec(H′) = 0. Furthermore, H + δ1 : D(H) ⊂ H → H is a Fredholm operator
of all δ ∈ (−ϵ, ϵ). Then Ran(H − δ1) = Ker(H − δ1)⊥ and therefore δ is an eigenvalue
of H or H − δ1 is invertible with bounded inverse so that δ ∉ spec(H). If δ is an eigen-
value of H , there is ϕ = ϕ1 + ϕ2 ∈ D(H) with ϕ1 ∈ Ker(H) and ϕ2 ∈ D(H) ∩ Ker(H)

⊥
such that Hϕ = Hϕ2 = δϕ = δϕ1 + δϕ2. Therefore δϕ1 = (H − δ)ϕ2 and, as ϕ1 ∈ Ker(H)
and (H − δ)ϕ2 ∈ Ker(H)

⊥, this implies ϕ1 = 0. Therefore H′ϕ2 = Hϕ2 = δϕ2, which is a
contradiction.

Conversely assume that 0 ̸∈ specess(H). Then dim(Ker(H)) < ∞ and ‖Hϕ‖ ≥ c‖ϕ‖
for some c > 0 for all ϕ ∈ D(H) ∩ Ker(H)⊥, which is, by Proposition 6.2.5, equivalent to
the Fredholm property of H .

The following generalizes Theorem 3.4.1 to unbounded operators.

Theorem 6.2.15. A regular operator T ∈ 𝕃(H,H′) is Fredholm if and only if one has
0 ̸∈ specess(T

∗T) and 0 ̸∈ specess(TT∗).
Proof. Let us first suppose that T is Fredholm. Then by Corollary 6.2.8, T∗ is Fredholm
and therefore T∗T and TT∗ are Fredholm. As T∗T and also TT∗ are self-adjoint by
Lemma 6.1.1 (note also that (T∗)∗ = T = T ), this implies 0 ̸∈ specess(T

∗T) and fur-
thermore 0 ̸∈ specess(TT

∗) by Theorem 6.2.14.
Conversely assume that 0 ̸∈ specess(T

∗T) and 0 ̸∈ specess(TT
∗). Then by Theo-

rem 6.2.14 and Lemma 6.1.1, T∗T and TT∗ are Fredholm. Therefore the dimensions of
Ker(T) = Ker(T∗T) and Ker(T∗) = Ker(TT∗) are finite. Moreover, Lemma 5.3.3 implies
that Ran(T) = Ran(TT∗) ⊕ (Ran(T) ∩ Ran(TT∗)⊥) is closed. This implies by Lemma 6.2.3
that T is a Fredholm operator.

As for bounded Fredholm operators, there is another characterization of the index
of a Fredholm operator T ∈ 𝔽(H,H′) using the operator L : D(T) ⊕ D(T∗) → H ⊕H′
defined by

L = (0 T∗
T 0
) . (6.11)

Note that the square L2 commutes with J = diag(1, −1) and therefore Ker(L) = Ker(L2)
is invariant under J . Now Ind(T) can be calculated as follows.

Proposition 6.2.16. Let T ∈ 𝔽(H,H′) be a Fredholm operator. Then the operator L de-
fined by (6.11) is self-adjoint. Moreover, the index of T is equal to the signature of the oper-
ator J = 1 ⊕ −1 ∈ 𝔹(H ⊕H′) restricted to the kernel of L, namely

Ind(T) = Sig(J |Ker(L)).
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Proof. One directly checks that L is symmetric. Therefore it is sufficient to show that
D(L∗) ⊂ D(L). As Ker(L) = Ker(T) ⊕ Ker(T∗) and

Ran(L) = Ran(T∗) ⊕ Ran(T) = Ker(T)⊥ ⊕ Ker(T∗)⊥ = Ker(L)⊥,
one has Ran(L∗) ⊂ Ker(L)⊥ = Ran(L) and Ker(L∗) = Ran(L)⊥ = Ker(L). Now let be
given ψ ∈ D(L∗) \D(L). Then L∗ψ ∈ Ran(L∗) ⊂ Ran(L) so that there is a ϕ ∈ D(L) with
L∗ψ = Lϕ = L∗ϕ. Hence 0 = L∗(ψ−ϕ) = L(ψ−ϕ) as Ker(L) = Ker(L∗), and one concludes
ψ ∈ D(L), in contradiction to the assumption. HenceD(L∗) ⊂ D(L) and L is self-adjoint.
As Ker(L) = Ker(T) ⊕ Ker(T∗), one concludes that

Sig(J |Ker(L)) = dim(Ker(T)) − dim(Ker(T∗)) = Ind(T),
completing the proof.

As the final topic of this section, let us examine the image of Fredholm operators
under the bounded transform F, namely let us restrict the bounded transform F to the
subset𝔽(H,H′) ⊂ 𝕃(H,H′). Combining Theorems 6.1.4 and 6.2.15 and using the identity
F(T)∗F(T) = T∗T(1 + T∗T)−1 where (1 + T∗T)−1 : H → D(T∗T) is a bijection so that
F(T)∗F(T) is Fredholm if and only if T∗T is Fredholm, one obtains

F(𝔽(H,H′))
= {F ∈ 𝔹1(H,H

′) : Ker(1 − F∗F) = {0}, 0 ̸∈ specess(F∗F) ∪ specess(FF∗)},
so that, by Theorem 6.2.15,

F(𝔽(H,H′)) = 𝔽𝔹01 (H,H′), (6.12)

where 𝔽𝔹01 (H,H
′) = 𝔽𝔹(H,H′) ∩ 𝔹01 (H,H′). Moreover, one has

Ind(F(T)) = Ind(T), T ∈ 𝔽(H,H′).
Now Propositions 6.1.5 and 6.1.7 immediately imply the following

Proposition 6.2.17. The bounded transform provides two homeomorphisms:

F : (𝔽(H,H′),OR) → (𝔽𝔹
0
1 (H,H

′),ON )

and

F : (𝔽(H,H′),OG) → (𝔽𝔹
0
1 (H,H

′),OE).

Proposition 6.2.17 leads to the following result that will be used in Section 8.2 for the
computation of the homotopy groups of (𝔽(H),OR).

Proposition 6.2.18. The inclusion i : (𝔽𝔹(H,H′),ON ) → (𝔽(H,H
′),OR) is a homotopy

equivalence with homotopy inverse F : (𝔽(H,H′),OR) → (𝔽𝔹(H,H
′),ON ).
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Proof. (Modification of the proof of Theorem 5.10 in [126].) Let us first show that the
composition F ∘ i : 𝔽𝔹(H,H′) → 𝔽𝔹(H,H′) is a homotopic to the identity. Consider the
norm-continuous homotopy h : 𝔽𝔹(H,H′) × [0, 12 ] → 𝔽𝔹(H,H′) defined by

h(T , t) = T(1 + T∗T)−t .
Then, clearly, h(T , 0) = T and h(T , 12 ) = (F ∘ i)(T) for all T ∈ 𝔽𝔹(H,H

′). By Proposi-
tion 6.2.17, this implies that i ∘ F = F−1 ∘ (F ∘ i) ∘ F is also homotopic to the identity.
Putting these facts together, one concludes that i is a homotopy equivalence.

6.3 Unbounded self-adjoint Fredholm operators

This section analyzes the set 𝔽sa(H) of unbounded self-adjoint Fredholm operators
on H. As a subset of the set 𝕃(H) = 𝕃(H,H) of closed densely defined operators, it
inherits two natural metrics, namely the Riesz metric dR and the gap metric dG. The in-
duced topologies will still be called Riesz and gap topologies, respectively. Let us begin
by analyzing the image of 𝔽sa(H) under the bounded transform. Recall from Section 4.6
the notations

𝔹01,sa(H) = {H ∈ 𝔹sa(H) : ‖H‖ ≤ 1,Ker(H2 − 1) = {0}}

and

𝔽𝔹01,sa(H) = 𝔹01,sa(H) ∩ 𝔽𝔹(H).
Proposition 6.3.1. The bounded transform F maps 𝕃sa(H) and 𝔽sa(H) bijectively onto
𝔹01,sa(H) and 𝔽𝔹01,sa(H), respectively.
Proof. By Theorem 6.1.4, one has F(T∗) = F(T)∗ for all T ∈ 𝕃(H). Therefore T is self-
adjoint if and only if F(T) is self-adjoint. Moreover, as (1 + T∗T)− 12 : H → D(T) is
bijective, Ran(T) = Ran(F(T)) and dim(Ker(T)) = dim(Ker(F(T))). This implies that T
is Fredholm if and only if F(T) is Fredholm. Theorem 6.1.4 implies the claim.

Even though it is not themain focus of this section, let us begin by studying the Riesz
metric. As it is obtained (by definition) via the bounded transform from the norm on the
bounded linear operators onH, the following is natural and actually directly follows by
combining Propositions 6.3.1 and 6.1.5.

Corollary 6.3.2. The bounded transform

F : (𝔽sa(H),OR) → (𝔽𝔹
0
1,sa(H),ON )

is a homeomorphism.
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Corollary 6.3.2 allows deducing the next result which later on allows us to deter-
mine the homotopy groups of (𝔽sa(H), dR), see Theorem 8.6.1. By repeating the proof of
Proposition 6.2.18 for self-adjoint operators, one obtains

Proposition 6.3.3. The inclusion i : (𝔽𝔹sa(H),ON ) → (𝔽sa(H),OR) is a homotopy equiv-
alence with homotopy inverse F : (𝔽sa(H),OR) → (𝔽𝔹sa(H),ON ).

The remainder of this section concerns the gap topology. First, let us combine Propo-
sition 6.3.1with Proposition 6.1.7which concerns the continuity properties ofFwhen the
gap metric dG and the extended gap metric dE are used. One immediately deduces

Corollary 6.3.4. The bounded transform F provides two bi-Lipshitz-continuous homeo-
morphisms

F : (𝕃sa(H), dG) → (𝔹
0
1,sa(H), dE), F : (𝔽sa(H), dG) → (𝔽𝔹

0
1,sa(H), dE).

The metric space (𝔽𝔹01,sa(H), dE) was already analyzed in Section 4.6. In particular,
Corollary 4.6.10 showed that G : (𝔹01,sa(H),OE) → (𝕌

0(H),ON ) with G defined by (4.22)
and

𝕌0(H) = {U ∈ 𝕌(H) : Ker(U − 1) = {0}} (6.13)

is a homeomorphism. Moreover, Corollary 4.6.12 already stated that also the map
G : (𝔽𝔹01,sa(H),OE) → (𝔽𝕌

0(H),ON ) is a homeomorphism. Combining this with Corol-
lary 6.3.4, one immediately obtains a central result of this section.

Theorem 6.3.5. The maps

G ∘ F : (𝕃sa(H),OG) → (𝕌
0(H),ON )

and

G ∘ F : (𝔽sa(H),OG) → (𝔽𝕌
0(H),ON )

are homeomorphisms.

Based on Theorem 6.3.5, one can then define the spectral flow of gap-continuous
paths in 𝔽sa(H) as the spectral flow of essentially gapped unitaries introduced in Sec-
tion 4.5. This will be carried out in detail in Section 7.1 below.

Let us next compute themapG∘F. Using spectral calculus of the self-adjoint operator
H ∈ 𝕃sa(H), one has

G ∘ F(H) = 2H2(1 + H2)
−1
− 1 − 2𝚤H(1 + H2)

− 12 (1 − H2(1 + H2)
−1
)
1
2

= 2H2(1 + H2)
−1
− 1 − 2𝚤H(1 + H2)

−1
= 2H(H − 𝚤1)(1 + H2)

−1
− 1
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= (H − 𝚤1)(H + 𝚤1)−1.
This shows that G ∘ F = C, where the Cayley transform is defined by

C : ℝ → 𝕊1 \ {1}, x 󳨃→ x − 𝚤
x + 𝚤
. (6.14)

Then the operator

C(H) = (H − 𝚤1)(H + 𝚤1)−1 = 1 − 2𝚤(H + 𝚤1)−1 (6.15)

is called the Cayley transform of H . It is a unitary operator C(H) ∈ 𝕌(H) by the spectral
theorem (this will also be proved more directly below). The mapping properties in the
first formula for C(H) in (6.15) are given by (H + 𝚤1)−1 : H → Ran((H + 𝚤1)−1) = D(H)
and afterwards H − 𝚤1 : D(H) ⊂ H → H.

Theorem 6.3.5 was deduced from the results of G as given in Section 4.6 combined
with those on F given in Section 6.1. While this is clearly sufficient to go on to the defini-
tion of the spectral flow in Section 7.1, wewill provide also a direct proof of Theorem6.3.5
along the works [31, 126]. This also provides several useful metrics that are equivalent
to the gapmetric dG. Moreover, these direct arguments are useful in other contexts, e. g.,
[38]. Let us start by analyzing the mapping properties of the Cayley transform and its
inverse.

Proposition 6.3.6. If U ∈ 𝕌(H) and U − 1 is injective, then H = 𝚤(1 + U)(1 − U)−1 is
self-adjoint onD(H) = Ran(1 − U). Moreover, H = 𝚤(1 − U)−1(1 + U).
Proof. Since U is normal, Ker(1 − U∗) = Ker(1 − U) and thus

Ran(1 − U) = Ker(1 − U∗)⊥ = Ker(1 − U)⊥ = H,
as 1 − U is injective. Consequently,D(H) = Ran(1 − U) is dense inH. From

(1 − U)(1 + U) = 1 − U2 = (1 + U)(1 − U), (6.16)

it follows that

(1 + U)(1 − U)−1 = (1 − U)−1(1 − U)(1 + U)(1 − U)−1
= (1 − U)−1(1 + U)|Ran(1−U). (6.17)

On the other hand, ifψ ∈ D((1−U)−1(1+U)), then (1+U)ψ ∈ D((1−U)−1) = Ran(1−U) and
accordingly there existsϕ ∈ H such that (1+U)ψ = (1−U)ϕ. Thusψ = (1−U)ϕ+(1−U)ψ−ψ
and hence

ψ = 1
2
(1 − U)(ψ + ϕ) ∈ D((1 + U)(1 − U)−1).
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It follows from (6.17) that

H = 𝚤(1 + U)(1 − U)−1 = 𝚤(1 − U)−1(1 + U).
Next, let us show that H is symmetric. If ψ,ϕ ∈ D(H) = Ran(1 − U), then there exist
ϕ′,ψ′ ∈ H such that ψ = ψ′ − Uψ′ and ϕ = ϕ′ − Uϕ′ and therefore Hψ = 𝚤(ψ′ + Uψ′) and
Hϕ = 𝚤(ϕ′ + Uϕ′). One gets

⟨ϕ|Hψ⟩ = 𝚤⟨ϕ′ − Uϕ′󵄨󵄨󵄨󵄨ψ′ + Uψ′⟩
= 𝚤(⟨ϕ′󵄨󵄨󵄨󵄨ψ′⟩ − ⟨Uϕ′󵄨󵄨󵄨󵄨ψ′⟩ + ⟨ϕ′󵄨󵄨󵄨󵄨Uψ′⟩ − ⟨Uϕ′󵄨󵄨󵄨󵄨Uψ′⟩)
= −𝚤⟨Uϕ′󵄨󵄨󵄨󵄨ψ′⟩ + 𝚤⟨ϕ′󵄨󵄨󵄨󵄨Uψ′⟩
= ⟨𝚤(ϕ′ + Uϕ′)󵄨󵄨󵄨󵄨ψ′ − Uψ′⟩
= ⟨Hϕ|ψ⟩.

Hence H is symmetric and

H ⊂ H∗ = −𝚤(1 − U∗)−1(1 + U∗). (6.18)

As U∗ − 1 is injective, arguing as above one gets
H∗ = −𝚤(1 − U∗)−1(1 + U∗) = −𝚤(1 + U∗)(1 − U∗)−1,

thus exchanging U and U∗ shows that H∗ is symmetric. Hence
H∗ ⊂ H∗∗ = 𝚤(1 − U)−1(1 + U) = H

and it follows from (6.18) that H = H∗.
Corollary 6.3.7. If U and H are as in Proposition 6.3.6, then C(H) = U. Moreover, the
Cayley transform C : 𝕃sa(H) → 𝕌

0(H) is a bijection.

Proof. By Proposition 6.3.6, H = 𝚤(1 + U)(1 − U)−1. Hence
H + 𝚤1 = 𝚤(1 + U)(1 − U)−1 + 𝚤(1 − U)(1 − U)−1 = 2𝚤(1 − U)−1,

and thus

(H + 𝚤1)−1 = 1
2𝚤
(1 − U).

Analogously,

H − 𝚤1 = 𝚤(1 + U)(1 − U)−1 − 𝚤(1 − U)(1 − U)−1 = 2𝚤U(1 − U)−1,
and one obtains
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C(H) = (H − 𝚤1)(H + 𝚤1)−1 = U(1 − U)−1(1 − U) = U .
To prove the second claim, one only has to show that U = C(H) is unitary and 1 − C(H)
injective for all H ∈ 𝕃sa(H). It is clear that U is surjective. For ϕ ∈ D(H),

‖Hϕ + 𝚤ϕ‖2 = ⟨Hϕ + 𝚤ϕ|Hϕ + 𝚤ϕ⟩

= ‖Hϕ‖2 + ‖ϕ‖2 − 𝚤⟨ϕ|Hϕ⟩ + 𝚤⟨Hϕ|ϕ⟩

= ‖Hϕ‖2 + ‖ϕ‖2

= ‖Hϕ − 𝚤ϕ‖2

and, since U(Hϕ + 𝚤ϕ) = Hϕ − 𝚤ϕ, it follows that ‖Uψ‖ = ‖ψ‖ for all ψ ∈ H. Hence U is a
surjective isometry defined on all ofH, and consequently it is a unitary operator. Now
let us assume that ψ ∈ H is such that C(H)ψ = ψ. Then one obtains from (6.15)

ψ = C(H)ψ = ψ − 2𝚤(H + 𝚤1)−1ψ,
and hence (H + 𝚤1)−1ψ = 0 which implies that ψ = 0.

The following connection of the spectrum of H ∈ 𝕃sa(H) to the spectrum of its
image C(H) ∈ 𝕌(H) follows from the spectral mapping theorem, but again a direct
proof is provided due to its importance for the definition of the spectral flow of paths of
unbounded self-adjoint Fredholm operators in Section 7.1.

Corollary 6.3.8. If H ∈ 𝕃sa(H) and λ ∈ ℝ, then
(i) Ker(λ1 − H) = Ker(C(λ1) − C(H));
(ii) Ran(λ1 − H) = Ran(C(λ1) − C(H));
(iii) λ ∈ spec(H) ⇐⇒ C(λ) ∈ spec(C(H));
(iv) λ ∈ specp(H) ⇐⇒ C(λ) ∈ specp(C(H));
(v) λ ∈ specess(H) ⇐⇒ C(λ) ∈ specess(C(H)).

The proof is based on the following lemma.

Lemma 6.3.9. For H ∈ 𝕃sa(H) and λ ∈ ℝ, one has

λ1 − H = (λ + 𝚤)(C(λ1) − C(H))(1 − C(H))−1.
Proof. The equality

λ1 − H = λ1 − 𝚤(1 + C(H))(1 − C(H))−1
= (λ(1 − C(H)) − 𝚤(1 + C(H)))(1 − C(H))−1
= (λ1 − λC(H) − 𝚤1 − 𝚤C(H))(1 − C(H))−1
= ((λ − 𝚤)1 − (λ + 𝚤)C(H))(1 − C(H))−1
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= (λ + 𝚤)((λ − 𝚤)(λ + 𝚤)−11 − C(H))(1 − C(H))−1
= (λ + 𝚤)(C(λ1) − C(H))(1 − C(H))−1

implies the claim.

Proof of Corollary 6.3.8. First of all, let us note that (1 − C(H))−1 maps D(H) bijectively
ontoH as 1 − C(H) = 2𝚤(H + 𝚤1)−1. Thus by the previous Lemma 6.3.9,

Ker(λ1 − H) = (1 − C(H))(Ker(C(λ1) − C(H)))
= Ker(C(λ1) − C(H)),

where the second equality follows from the fact that Ker(C(λ1) − C(H)) is invariant un-
der C(H). This implies the assertion (i). As (1 − C(H))−1 : D(H) → H is a bijection,
Lemma 6.3.9 directly implies (ii). All other claims are immediate consequences of (i)
and (ii).

Let us recall that for an operator H ∈ 𝕃sa(H) that is bounded, the spectrum of its
image C(H) ∈ 𝕌(H) does not contain 1. This is made more precise in the following
statement.

Lemma 6.3.10. For H ∈ 𝕃sa(H), one has
(i) 1 ̸∈ spec(C(H)) ⇐⇒ D(H) = H, and this is true if and only if H is bounded.
(ii) 1 ∈ specess(C(H)) ⇐⇒ D(H) ̸= H, and this is true if and only if H is unbounded.

Proof. The assertions regarding the boundedness and unboundedness of H follow as
any self-adjoint operator H : D(H) ⊂ H → H is bounded if and only if D(H) = H. By
(6.15), one has

1 − C(H) = 2𝚤(H + 𝚤1)−1 ∈ 𝔹(H)
mapping H bijectively onto D(H). Accordingly, if 1 is in the resolvent set of C(H), one
infers H = Ran(1 − C(H)) = D(H). Conversely, if D(H) = H, then 1 − C(H) maps H
bijectively ontoH, showing that 1 is in the resolvent set of C(H). Hence assertion (i) is
proved.

In order to show (ii), we note at first that by (i), 1 ∈ spec(C(H)) if and only if
D(H) ̸= H. Now it remains to show that if 1 ∈ spec(C(H)), then we actually have
1 ∈ specess(C(H)). But, if D(H) ̸= H, we see that Ran(1 − C(H)) = D(H) is a proper
dense subspace ofH and hence in particular not closed. Accordingly, 1 − C(H) is not a
Fredholm operator and, by Corollary 3.4.4, 1 ∈ specess(C(H)).

Corollary 6.3.8 implies:

Corollary 6.3.11. If H ∈ 𝕃sa(H), then
(i) C(spec(H)) = spec(C(H)) if H is bounded.
(ii) C(spec(H)) ∪ {1} = spec(C(H)) if H is unbounded.
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Nowall is prepared to state andprove the result that is essentially already contained
in Theorem 6.3.5. However, as already stressed above, the result also feature ametric d′′G
on 𝕃sa(H) defined by

d′′G (H0,H1) =
󵄩󵄩󵄩󵄩C(H0) − C(H1)

󵄩󵄩󵄩󵄩, H0,H1 ∈ 𝕃sa(H).

Due to (6.15), one then has

d′′G (H0,H1) = 2
󵄩󵄩󵄩󵄩(H0 + 𝚤1)

−1 − (H1 + 𝚤1)
−1󵄩󵄩󵄩󵄩, H0,H1 ∈ 𝕃sa(H). (6.19)

Hence the following theorem shows that the gap topology can be obtained form the Cay-
ley transform, similarly as the Riesz topology is obtained from the bounded transform
in Proposition 6.1.5.

Theorem 6.3.12. On 𝕃sa(H) the gap metric dG is equivalent to the metric d
′′
G . The Cayley

transform

C : (𝕃sa(H), dG) → (𝕌
0(H), dN )

is a Lipshitz-continuous homeomorphism.

Proof. Recall from Proposition 6.1.3 that dG is equivalent to

d′G(H0,H1) = 2‖RH0
− RH1
‖ + ‖H0RH0

− H1RH1
‖, H0,H1 ∈ 𝕃sa(H).

The identities

(H − 𝚤1)−1 = (H + 𝚤1)(H2 + 1)−1 = HRH + 𝚤RH ,
(H + 𝚤1)−1 = (H − 𝚤1)(H2 + 1)−1 = HRH − 𝚤RH

imply

RH =
1
2𝚤
((H − 𝚤1)−1 − (H + 𝚤1)−1),

HRH =
1
2
((H − 𝚤1)−1 + (H + 𝚤1)−1).

Therefore the metric d′G is equivalent to the metric d′′G as, for H0,H1 ∈ 𝕃sa(H),

d′′G (H0,H1) =
󵄩󵄩󵄩󵄩(H0 + 𝚤1)

−1 − (H1 + 𝚤1)
−1󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩(H0 − 𝚤1)

−1 − (H1 − 𝚤1)
−1󵄩󵄩󵄩󵄩,

where it was used that ‖A‖ = ‖A∗‖ for all A ∈ 𝔹(H). Now all claims follow from Corol-
lary 6.3.7 and (6.19).

Theorem 6.3.13. With respect to the gap metric, the set 𝔹sa(H) is dense in 𝕃sa(H).
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Proof. ForH ∈ 𝕃sa(H), let the spectral resolution ofH be denoted by (Eλ)λ∈ℝ. For n ∈ ℕ,
let us define the bounded self-adjoint operator

Hn = ∫[−n,n] λdEλ + ∫|λ|>n n sgn(λ)dEλ.
Then using the metric d′′G as in (6.19), one has

d′′G (H ,Hn) = 2
󵄩󵄩󵄩󵄩(H + 𝚤1)

−1 − (Hn + 𝚤1)
−1󵄩󵄩󵄩󵄩

= 2
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫|λ|>n(λ + 𝚤)−1 − (n sgn(λ) + 𝚤)−1dEλ

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤
4
n
.

HenceHn converges toH with respect to the metric d′′G and, by Theorem 6.3.12, also with
respect to the gap metric.

Next let us focus on the set

𝔽sa(H) = {H ∈ 𝔽(H) : H = H
∗}

of self-adjoint (unbounded) Fredholm operators on H. By Corollary 6.3.8, the Cayley
transform maps 𝔽sa(H) bijectively onto 𝔽𝕌0(H) = 𝔽𝕌(H) ∩ 𝕌0(H). Hence Theo-
rem 6.3.12 also implies the second statement of Theorem 6.3.5, namely

Theorem 6.3.14. The Cayley transform

C : (𝔽sa(H), dG) → (𝔽𝕌
0(H), dN )

is a Lipshitz-continuous homeomorphism.

Theorem 6.3.14 directly implies the following because 𝔽𝕌0(H) ⊂ 𝕌0(H) is open.

Corollary 6.3.15. With respect to the gap metric, the set 𝔽sa(H) is open in 𝕃sa(H).

In contrast to the set of bounded self-adjoint Fredholm operators consisting of three
connected components as studied in Section 3.6, 𝔽sa(H) is connected when equipped
with the gap metric. Following [31], this is now proved directly by a spectral-theoretic
argument. Let us note that an alternative proof, actually leading to a stronger statement,
is given in Section 8.6.

Theorem 6.3.16. With respect to the gap metric, the set 𝔽sa(H) is connected.

Proof. We show that 𝔽𝕌0(H) is connected with respect toON , which by Theorem 6.3.14
implies the claim. ForU ∈ 𝔽𝕌0(H), we show that there is a norm-continuous pathwithin
𝔽𝕌0(H) connecting U to 𝚤1. First, we decomposeH into the spectral subspacesH± of U



6.4 Self-adjoint Fredholm operators with compact resolvent � 203

corresponding to {e𝚤φ : φ ∈ [0, π)} and {e𝚤φ : φ ∈ [π, 2π]}. Respectively, we decompose
U = U+ ⊕ U−. There is no intersection of the spectral subspaces as if −1 ∈ spec(U) it is
an isolated eigenvalue and hence belongs to spec(U−). And if 1 ∈ spec(U), it does not
contribute to the decomposition of U as it is not an eigenvalue. Then by spectral defor-
mationwe contractU+ to 𝚤1+ andU− to −𝚤1− where 1± denotes the identity onH±. During
this contraction, 1 does not become an eigenvalue and −1 does not become an element
of the essential spectrum. Thus we have connected U to 𝚤1+ ⊕ −𝚤1− within 𝔽𝕌0(H).

IfH− is finite dimensional,we rotate−𝚤1− through−1 into 𝚤1−. Otherwise,we identify
H− with L2([0, 1]). Now the multiplication operator by −𝚤 on L2([0, 1]) can be connected
to the multiplication by the function f : [0, 1] → 𝕊1, f (t) = e𝚤( 32 π+t− 12 ) within the uni-
taries in such a way that one does not introduce spectrum at ±1. Then s ∈ [0, π] 󳨃→ e𝚤sf
connects f to g : [0, 1] → 𝕊1, g(t) = e𝚤( 12 π+t− 12 ) such that −1 is not in the spectrum
and 1 does not become an eigenvalue. Finally, g can be contracted to the multiplica-
tion by 𝚤. Thus, in both cases U can be connected to 𝚤1 within 𝔽𝕌0(H) completing the
argument.

The following result is due to Nicolaescu [139], see also [126] and Proposition 6.3.3.

Proposition 6.3.17. The Riesz topology on 𝔽sa(H) is strictly finer than the gap topology.

Proof. By Proposition 6.1.9, the topology induced by the Riesz metric on 𝔽sa(H) is finer
than the topology induced by the gapmetric. In the proof of Proposition 6.1.9, a sequence
(Hn)n∈ℕ of operators in 𝔽sa(H) converging to H ∈ 𝔽sa(H) with respect to the gap topol-
ogy, but not converging with respect to the Riesz topology was constructed. This implies
the claim.

Note that Proposition 6.3.17 implies, in particular, that every path in 𝔽sa(H) which
is continuous with respect to the Riesz metric is also continuous with respect to the gap
metric. Next let us transfer the theorem of Cordes and Labrousse (see Theorem 6.1.10) to
the subset of self-adjoint operators. One immediately deduces the following result (also
discussed in [126]).

Corollary 6.3.18. With respect to the gap metric, the set 𝔽𝔹sa(H) is open in 𝔽sa(H). On
𝔽𝔹sa(H) the topologies induced by dN , dR, and dG coincide.

Finally, the next result is a direct consequence of Theorem6.3.13 andCorollary 6.3.15.

Corollary 6.3.19. With respect to the gap metric, the set 𝔽𝔹sa(H) is dense in 𝔽sa(H).

6.4 Self-adjoint Fredholm operators with compact resolvent

This section analyzes the set 𝔽Csa(H) of self-adjoint Fredholm operators with compact
resolvent

𝔽Csa(H) = {H ∈ 𝔽sa(H) : (H − 𝚤1)
−1 ∈ 𝕂(H)}.
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By the resolvent identity, the compactness of the resolvent (H−z1)−1 at some other point
z ∈ ℂ \ spec(H) is equivalent to the compactness of (H − 𝚤1)−1. Further recall that the
compactness of the resolvent directly implies the Fredholm property:

Proposition 6.4.1. Let H ∈ 𝕃sa(H) have a compact resolvent (H − 𝚤1)
−1 ∈ 𝕂(H). Then

H ∈ 𝔽sa(H) is a Fredholm operator so that H ∈ 𝔽Csa(H).

Proof. If H ∈ 𝕃sa(H) has a compact resolvent, then 0 ̸∈ specess(H), which, by Theo-
rem 6.2.14, directly implies that H is a Fredholm operator.

Operators from 𝔽Csa(H) play a central role in index theory and noncommutative
geometry [63] where they appear as unbounded Fredholm modules, which are also
a special case of unbounded Kasparov modules (namely those representing elements
from KK(𝔹(H), ℂ) or KK(ℂ, 𝔹(H))). While both Riesz and gap topologies can be used
on 𝔽Csa(H), the focus will here be on the gap topology. One of the main final results of
this section is the following:

Theorem 6.4.2. Space (𝔽Csa(H),OG) is homotopy equivalent to (𝔽sa(H),OG).

The proof of this result is surprisingly intricate and will make up a large part of the
remainder of the section.While it will mainly pend on the use of the bounded transform
of the set 𝔽Csa(H), let us start the analysis of the Cayley transform of (𝔽Csa(H),OG). Recall
from Section 3.7 that𝕌C(H) is the set of unitaries U with U −1 ∈ 𝕂(H) and furthermore
from (6.13) that𝕌0(H) is the set of unitariesU withKer(U−1) = {0}. Here the intersection
of these sets will appear naturally

𝕌C,0(H) = {U ∈ 𝕌(H) : U − 1 ∈ 𝕂(H), Ker(U − 1) = {0}}.
Theorem 6.4.3. The Cayley transform

C : (𝔽Csa(H), dG) → (𝕌
C,0(H), dN )

is a Lipshitz-continuous homeomorphism.

Proof. By (6.15), the compactness of C(H) − 1 and that of the resolvent are equiva-
lent. Therefore the claim directly follows from Theorem 6.3.12 (or equivalently, Theo-
rem 6.3.5).

Next let us consider the bounded transform of the set 𝔽Csa(H). For this purpose, let
us introduce the set

𝔽𝔹C,01,sa(H) = {H ∈ 𝔽𝔹1,sa(H) : 1 − H2 ∈ 𝕂(H), Ker(1 − H2) = {0}}.

Note that this is a subset of 𝔽𝔹C1,sa(H) studied in Proposition 3.6.3, specified by the sup-
plementary condition Ker(1 − H2) = {0}.
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Proposition 6.4.4. The bounded transform F provides a bi-Lipshitz-continuous homeo-
morphism

F : (𝔽Csa(H), dG) → (𝔽𝔹
C,0
1,sa(H), dE).

Proof. This follows from Corollary 6.3.4 by implementing the compactness condition
1 − H2 ∈ 𝕂(H). Indeed, the identity

H = F(H)(1 − F(H)2)− 12
following from (6.6) implies

(H − 𝚤1)−1 = (1 − F(H)2) 12 (F(H) − 𝚤(1 − F(H)2) 12 )−1,
which shows that the compactness of the resolvent ofH is equivalent to the compactness
of 1 − F(H)2 because (F(H) − 𝚤(1 − F(H)2)

1
2 )−1 is unitary and hence bounded.

For the following it is necessary to use yet another topology on 𝔽𝔹C,01,sa(H) and some
of its supersets. The so-called strong extended gap topology on 𝔹1,sa(H) is defined by

OSE = O(OE ,OS),

where on the right-hand sideOE denotes the extended gap topology generated by dE ,OS
is the strong operator topology, and the remaining O denotes the generated topology. In
other words, OSE is the weakest (or smallest) topology on 𝔹1,sa(H) containing both OE
and OS . The topology OSE was introduced in [108] under the name strict extended gap
topology, but in the Hilbert space framework the strict and strong topologies coincide.
The strong topology is notmetrizable on the set of all bounded operators, but on𝔹1,sa(H)
it is metrizable. This leads to the following statement which, in particular, implies that
sequential compactness and compactness are equivalent in (𝔹1,sa(H),OSE).

Lemma 6.4.5. The topology OSE on 𝔹1,sa(H) is metrizable.
Proof. It will first be shown thatOS is metrizable on𝔹1,sa(H). For an orthonormal basis
(ϕn)n≥1 ofH, consider the metric

dS(H1,H0) =
∞
∑
n=1 2−n󵄩󵄩󵄩󵄩(H1 − H0)ϕn

󵄩󵄩󵄩󵄩,

and let Bε(H0) be a ball of radius ε > 0 in 𝔹1,sa(H) with respect to dS . Let N ∈ ℕ be
sufficiently large such that∑∞n=N 2−n+1 < ε

2 . WithH ∈ 𝔹1,sa(H), ψ ∈ H, and η > 0, the sets

Uη(H ,ψ) = {H
′ ∈ 𝔹1,sa(H) : 󵄩󵄩󵄩󵄩H′ψ − Hψ󵄩󵄩󵄩󵄩 < η}

form a subbase of OS and thus
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V =
N
⋂
n=1U ε

2
(H0,ϕn) ∈ OS .

It follows for H1 ∈ V that

dS(H1,H0) =
N
∑
n=1 2−n󵄩󵄩󵄩󵄩(H1 − H0)ϕn

󵄩󵄩󵄩󵄩 +
∞
∑

n=N+1 2−n󵄩󵄩󵄩󵄩(H1 − H0)ϕn
󵄩󵄩󵄩󵄩

≤
ε
2

N
∑
n=1 2−n + ∞∑n=N+1 2−n+1 < ε.

Thus V ⊂ Bε(H0), and it is shown that every open neighborhood of H0 in the metric
topology contains an open neighborhood of H0 in OS . This implies that OS is finer than
the metric topology.

For the converse inclusion, let us first note that OS is already generated by the sets
Uη(H ,ψ) with ψ only taken from any dense subset of H. Moreover, the set of all finite
linear combinations of elements of (ϕn)n≥1 is dense inH. Now let ψ = ∑Nn=1 anϕn. Then

󵄩󵄩󵄩󵄩(H1 − H0)ψ
󵄩󵄩󵄩󵄩 ≤

N
∑
n=1 |an|󵄩󵄩󵄩󵄩(H1 − H0)ϕn

󵄩󵄩󵄩󵄩

≤ 2N max
n=1,...,N |an| ∞∑n=1 2−n󵄩󵄩󵄩󵄩(H1 − H0)ϕn

󵄩󵄩󵄩󵄩.

Thus if dS(H1,H0) <
ε

2N max{|an|} , then H1 ∈ Uε(H0,ψ). As these sets are a subbase of OS , it
follows that the metric topology is finer than OS .

Finally, OSE is the topology induced by the metric d = dE + dS on 𝔹1,sa(H).
Proposition 6.4.6. The following pairs of topological spaces are identical:
(i) (𝔹01,sa(H),OSE) and (𝔹

0
1,sa(H),OE);

(ii) (𝔽𝔹01,sa(H),OSE) and (𝔽𝔹
0
1,sa(H),OE);

(iii) (𝔽𝔹C,01,sa(H),OSE) and (𝔽𝔹
C,0
1,sa(H),OE).

Proof. Let (Hj)j≥1 be a sequence in 𝔹01,sa(H) converging to H ∈ 𝔹01,sa(H) with respect to
dE , namely ‖H

2
j −H

2‖ → 0 and ‖Hj(1 −H
2
j )

1
2 −H(1 −H2)

1
2 ‖ → 0. One needs to show that

for any ϕ ∈ H, one has ‖(Hj − H)ϕ‖ → 0 so that the sequence also converges strongly.
As H ∈ 𝔹01,sa(H), one has Ker(1 −H2) = {0} and therefore the range of (1 −H2)

1
2 is dense

inH. Hence, for a given ϵ > 0 there exists ψ ∈ H with ‖ϕ − (1 − H2)
1
2ψ‖ ≤ ϵ. Then there

is a j0 such that for j ≥ j0

󵄩󵄩󵄩󵄩(Hj − H)ϕ
󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩(Hj(1 − H

2)
1
2 − H(1 − H2)

1
2 )ψ󵄩󵄩󵄩󵄩 + 2ϵ

≤ 󵄩󵄩󵄩󵄩(Hj(1 − H
2)

1
2 − Hj(1 − H

2
j )

1
2 )ψ󵄩󵄩󵄩󵄩 + 3ϵ
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≤ 󵄩󵄩󵄩󵄩((1 − H
2)

1
2 − (1 − H2

j )
1
2 )ψ󵄩󵄩󵄩󵄩 + 3ϵ

≤ 󵄩󵄩󵄩󵄩H
2 − H2

j
󵄩󵄩󵄩󵄩
1
2 ‖ψ‖ + 3ϵ,

where the last step follows from Proposition A.2.2. Choosing j0 possibly even larger, this
shows that ‖(Hj − H)ϕ‖ ≤ 4ϵ for all j ≥ j0. As ϵ was arbitrary, this shows the first claim,
which directly implies the second and third.

Proposition 6.4.7. One has the following deformation retracts:
(i) (𝔹01,sa(H),OSE) is a deformation retract of (𝔹1,sa(H),OSE);
(ii) (𝔽𝔹01,sa(H),OSE) is a deformation retract of (𝔽𝔹1,sa(H),OSE);
(iii) (𝔽𝔹C,01,sa(H),OSE) is a deformation retract of (𝔽𝔹

C
1,sa(H),OSE).

Proof. (Inspired by Proposition 2.13 in [108].) Let us focus on the proof of (ii) and later on
explain that the argument also covers the cases (i) and (iii). Let K ∈ 𝕂(H) be a nonnega-
tive compact operator with norm less than or equal to 1

2 . To construct such an operator,
recall that H is separable and thus has a countable orthonormal basis (ϕn)n≥1. Then
K = ∑n≥1 1

n+1 |ϕn⟩⟨ϕn| has all the desired properties. Then define
f : 𝔽𝔹1,sa(H) → 𝔽𝔹1,sa(H), f (H) = (1 − K)H(1 − K).

Note that f (H) is indeed self-adjoint and Fredholm by the compact stability of the Fred-
holm operators, and that it has norm less than or equal to 1 because ‖H‖ ≤ 1 and
‖1−K‖ ≤ 1. Now let ϕ be a normalized vector. Then, using again ‖H‖ ≤ 1 and ‖1−K‖ ≤ 1,
the Cauchy–Schwarz inequality implies

⟨ϕ󵄨󵄨󵄨󵄨 f (H)
2ϕ⟩2 = ⟨(1 − K)

1
2ϕ󵄨󵄨󵄨󵄨(1 − K)

1
2H(1 − K)2H(1 − K)ϕ⟩2

≤ ⟨ϕ󵄨󵄨󵄨󵄨(1 − K)ϕ⟩⟨ϕ
󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨(1 − K)

1
2H(1 − K)2H(1 − K)󵄨󵄨󵄨󵄨

2ϕ⟩
≤ ⟨ϕ󵄨󵄨󵄨󵄨(1 − K)ϕ⟩
= 1 − ⟨ϕ|Kϕ⟩.

Therefore

⟨ϕ󵄨󵄨󵄨󵄨(1 − f (H)
2)ϕ⟩ = 1 − ⟨ϕ󵄨󵄨󵄨󵄨 f (H)

2ϕ⟩ ≥ 1 − √1 − ⟨ϕ|Kϕ⟩ > 0,

because K has a trivial kernel. Hence Ker(1 − f (H)2) = {0} so that f (H) indeed lies in
𝔽𝔹01,sa(H).

Let us now show that f is continuous with respect to the topology OSE . Hence
let (Hj)j≥1 be a sequence converging to H in (𝔽𝔹1,sa(H),OSE). It has to be shown that
then also (f (Hj))j≥1 converges to f (H) in (𝔽𝔹1,sa(H),OSE). Clearly, (f (Hj))j≥1 converges
strongly to f (H). For the convergence with respect to dE , let us begin by estimating

󵄩󵄩󵄩󵄩f (Hj)
2 − f (H)2󵄩󵄩󵄩󵄩
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= 󵄩󵄩󵄩󵄩(1 − K)Hj(1 − K)
2Hj(1 − K) − (1 − K)H(1 − K)

2H(1 − K)󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩(1 − K)(H

2
j − H

2)(1 − K)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(1 − K)HjK(21 − K)Hj(1 − K) − (1 − K)HK(21 − K)H(1 − K)

󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩H

2
j − H

2󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩HjK(21 − K)Hj − HK(21 − K)H

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩H
2
j − H

2󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(Hj − H)K(21 − K)Hj

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩HK(21 − K)(H − Hj)

󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩H
2
j − H

2󵄩󵄩󵄩󵄩 + 4
󵄩󵄩󵄩󵄩(Hj − H)K

󵄩󵄩󵄩󵄩.

Now K can be approximated in the operator norm by a finite-dimensional matrix,
namely for all ϵ > 0 one can find some finite-rank operatorM with ‖K −M‖ < ϵ (this can
readily be written out explicitly from K as given above). Due to the strong convergence
s- limj→∞ Hj = H , one can then find a j0 such that ‖(Hj−H)M‖ ≤ ϵ for all j ≥ j0 (this is just
the standard argument showing that a strongly converging sequence of compact oper-
ators is norm convergent). Choosing j0 possibly even larger so that also ‖H

2
j − H

2‖ < ϵ
for j ≥ j0, one then finds

󵄩󵄩󵄩󵄩f (Hj)
2 − f (H)2󵄩󵄩󵄩󵄩 < ϵ + 8ϵ + 4

󵄩󵄩󵄩󵄩(Hj − H)M
󵄩󵄩󵄩󵄩 < 13ϵ

for all j ≥ j0. Hence limj→∞ ‖f (Hj)
2 − f (H)2‖ = 0. By a similar argument, one also checks

that the second norm difference in the definition of dE vanishes in the limit so that
limj→∞ dE(f (Hj), f (H)) = 0. In conclusion, f is a continuous map on (𝔽𝔹1,sa(H),OSE).

Next it will be shown that the map f is actually a homotopy inverse to the inclusion
i : 𝔽𝔹01,sa(H) → 𝔽𝔹1,sa(H), namely both of the maps i ∘ f : 𝔽𝔹1,sa(H) → 𝔽𝔹1,sa(H)
and f ∘ i : 𝔽𝔹01,sa(H) → 𝔽𝔹01,sa(H) are homotopic to the identity on (𝔽𝔹1,sa(H),OSE) and
(𝔽𝔹01,sa(H),OSE), respectively. One can use the homotopy hs(H) = (1−sK)H(1−sK)which
is indeed continuous by similar arguments as above, and it also satisfies the inclusion
hs(𝔽𝔹

0
1,sa(H)) ⊂ 𝔽𝔹01,sa(H) so that the case of f ∘ i is also dealt with.

The argument directly covers item (i) and also (iii), the latter because indeed one
has f (H) ∈ 𝔽𝔹C1,sa(H) for H ∈ 𝔽𝔹C1,sa(H).
Remark 6.4.8. The essence of the above proof is that the perturbation can be chosen
such that it eliminates the point spectrum of H2 at 1 for all H . The above proof also
shows that (𝔽𝔹01,sa(H),ON ) is a deformation retract of (𝔽𝔹1,sa(H),ON ), and also that
(𝔹01,sa(H),ON ) is a deformation retract of (𝔹1,sa(H),ON ). ⬦

Remark 6.4.9. In Proposition 6.4.7, on 𝔽𝔹1,sa(H) the strong essential gap topology OSE
appears. It is strictly weaker than the norm topology ON on 𝔽𝔹1,sa(H). This can be seen
by analyzing the bounded transform of the sequence (Hn)n≥1 studied in the proof of
Proposition 6.1.9 and realizing that F(Hn) → F(H) in the strong topology. Another man-
ifestation is that (𝔽𝔹1,sa(H),ON ) has 3 components, while (𝔽𝔹1,sa(H),OSE) has one com-
ponent by Theorem 6.3.16 combined with Corollary 6.3.4. ⬦
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Example 6.4.10. Proposition 6.4.6 showed that the extended gap topology OE and the
strong extended gap topology OSE coincide on 𝔽𝔹

0
1,sa(H). In view of Proposition 6.4.7,

onemightwonderwhether the sameholds true for the supersets𝔽𝔹1,sa(H) and𝔹1,sa(H).
In fact, this is not true as shows the following example. Consider the sequence (Hj)j≥1 in
𝔽𝔹1,sa(H) given by Hj = −(1 −

1
j )1. It converges to H = 1 with respect to dE because

󵄩󵄩󵄩󵄩(Hj)
2 − H2󵄩󵄩󵄩󵄩 = (1 −

1
j
)
2

− 1→ 0,

󵄩󵄩󵄩󵄩Hj(1 − H
2
j )

1
2 − H(1 − H2)

1
2 󵄩󵄩󵄩󵄩 = (1 −

1
j
)(1 − (1 − 1

j
)
2

)

1
2

→ 0.

However, the sequence (Hj)j≥1 does not converge strongly to H as Hjϕ → −ϕ ̸= ϕ = Hϕ
for all ϕ ∈ H \ {0}. Hence OSE is strictly stronger than OE on 𝔽𝔹1,sa(H).

Working with the same sequence, one can show that the map f defined in the proof
of Proposition 6.4.7 is not continuous with respect to OE on 𝔽𝔹1,sa(H). Indeed,

f (Hj) = −(1 −
1
j
)(1 − K)2, f (H) = f (1) = (1 − K)2,

so that

󵄩󵄩󵄩󵄩f (Hj)(1 − f (Hj)
2)

1
2 − f (1)(1 − f (1)2)

1
2 󵄩󵄩󵄩󵄩 →
󵄩󵄩󵄩󵄩−2(1 − K)

2(1 − (1 − K)4)
1
2 󵄩󵄩󵄩󵄩.

Hence dE(f (Hj), f (1)) does not converge to zero. The problem is that f moves all the spec-
trum away from ±1 to the inside which is a discontinuous procedure at 1 in the topology
OE (but the sequence (Hj)j≥1 does not converge to 1 with respect to OSE and hence does
not disprove continuity with respect to OSE). ⬦

Example 6.4.11. This example shows that the quotient topologies O∼E and O∼SE on
𝔽𝔹C,∼1,sa(H) = 𝔽𝔹C1,sa(H)/∼ do not coincide. Let us considerH = ℓ2(ℕ) and the following
sequence of operators from 𝔽𝔹C1,sa(H):

Hn = ∑
k ̸=1,n(1 − 1

kn
)|k⟩⟨k| + (1 − 1

n
)(|1⟩, |n⟩)T 1

√2
(
1 1
1 −1
) (⟨1|, ⟨n|).

Then ‖H2
n − 1‖ → 0 and hence dE(Hn, 1) → 0. Thus {Hn : n ≥ 2} is not closed with respect

to OE . As each class [Hn] with respect to ∼ has only one representative, it follows that
also {[Hn] : n ≥ 2} is not closed with respect to O

∼
E . On the other hand, it will be shown

that the set {[Hn] : n ≥ 2} is closed with respect to O
∼
SE . Indeed, as

󵄩󵄩󵄩󵄩(Hn − Hm)|1⟩
󵄩󵄩󵄩󵄩 =

1
√2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(−

1
n
+

1
m
)|1⟩ + (1 − 1

n
)|n⟩ − (1 − 1

m
)|m⟩
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≥

1
2√2
,
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the sequence (Hn)n≥2 has no strongly convergent subsequence so that the subspace
topology on {[Hn] : n ≥ 2} induced by O

∼
SE is the discrete topology. ⬦

The next step will be to realize that 𝔽𝔹C1,sa(H) is a deformation retract of 𝔽𝔹1,sa(H)
by spectral analysis. This was already proved in Proposition 3.6.3, see also Remark 3.6.4,
however, for the norm topology. It turns out that one can prove that this retraction is
also continuous with respect toOSE . A generalization of this fact is proved in [108]. Here
we provide an elementary proof.

Proposition 6.4.12. The space (𝔽𝔹C1,sa(H),OSE) is a deformation retract of the space
(𝔽𝔹1,sa(H),OSE).

Proof. It will be checked that the maps in the proof of Proposition 3.6.3 are continuous
with respect toOSE so that they provide the desired retraction. ForH ∈ 𝔽𝔹1,sa(H), let us
define δ(H) = min{1,min(specess(H

2))
1
2 } > 0. Then by the spectral radius theorem in the

Calkin algebra, it follows thatH 󳨃→ δ(H) is continuous with respect toOSE . For δ ∈ (0, 1],
let now fδ : [−1, 1] → ℝ be the monotone continuous function defined by

fδ(x) = χ[δ,1](x) − χ[−1,−δ](x) + xδ χ(−δ,δ)(x).
Then set ̃f : 𝔽𝔹1,sa(H) → 𝔽𝔹C1,sa(H) defined by ̃f (H) = fδ(H)(H) and consider the linear
homotopy

h : 𝔽𝔹1,sa(H) × [0, 1] → 𝔽𝔹1,sa(H), h(H , t) = (1 − t)H + t ̃f (H).

To show that this homotopy is continuous, let us first note that if a sequence (Hn)n≥1
in𝔽𝔹1,sa(H) converges toH with respect toOSE and f is a continuous function, then also
(f (Hn))n≥1 converges strongly to f (H). Indeed, for all even polynomials p, this follows
from the convergence of (H2

n)n≥1 toH2 in norm, while odd polynomials can bewritten as
Hnp(Hn) for an even polynomial p so that the strong convergence ofHn toH implies that
s- limn→∞ Hnp(Hn) = Hp(H). Then the strong continuity for any function follows from
the Weierstrass approximation theorem which can be applied since ‖H2

n −H
2‖ → 0 and

therefore the sequence (Hn)n≥1 is bounded.
To show that the homotopy h is continuous, it is shown that for any sequence

(Hn, tn)n≥1 in 𝔽𝔹1,sa × [0, 1] converging to (H , t) ∈ 𝔽𝔹1,sa × [0, 1]with respect to OSE × | ⋅ |,
the sequence h(Hn, tn) converges to h(H , t) with respect to OSE . By Lemma 6.4.5, OSE is
the topology induced by the metric d = dE + dS on 𝔹1,sa(H) where

dS(H
′
0,H
′
1) =
∞
∑
n=1 2−n󵄩󵄩󵄩󵄩(H′1 − H′0)ϕn󵄩󵄩󵄩󵄩, H′0,H′1 ∈ 𝔹1,sa(H),

for a fixed orthonormal basis (ϕn)n≥1 of H as in the proof of Lemma 6.4.5. Thus it is
sufficient to show that
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lim
n→∞(dE(h(Hn, tn), h(H , t)) + dS(h(Hn, tn), h(H , t))) = 0. (6.20)

The second summand is bounded by

dS(h(Hn, tn), h(H , t)) = dS((1 − tn)Hn + tn ̃f (Hn), (1 − t)H + t ̃f (H))

≤ dS((1 − tn)Hn + tn ̃f (Hn), (1 − t)Hn + t ̃f (Hn))

+ dS((1 − t)Hn + t ̃f (Hn), (1 − t)H + t ̃f (H)).

The second summand in this expression converges to 0 because fδ(Hn) converges to
fδ(H) with respect to ‖ ⋅ ‖L∞ and therefore by the first part of the above argument
s- limn→∞ h(Hn, t) = h(H , t). The first summand is bounded by

dS((1 − tn)Hn + tn ̃f (Hn), (1 − t)Hn + t ̃f (Hn))

=
∞
∑
m=1 2−m󵄩󵄩󵄩󵄩(t − tn)Hnϕn + (tn − t) ̃f (Hn)ϕm

󵄩󵄩󵄩󵄩

≤
∞
∑
m=1 2−m|tn − t|(‖Hn‖ +

󵄩󵄩󵄩󵄩
̃f (Hn)
󵄩󵄩󵄩󵄩)

≤ 2
∞
∑
m=1 2−m|tn − t|.

Thus dS((1 − tn)Hn + tn ̃f (Hn), (1 − t)Hn + t ̃f (Hn)) converges to 0 uniformly in Hn, and one
concludes that limn→∞ dS(h(Hn, tn), h(H , t)) = 0. The first summand in (6.20) is bounded
by

dE(h(Hn, tn), h(H , t)) = dE((1 − tn)Hn + tn ̃f (Hn), (1 − t)H + t ̃f (H))

≤ dE((1 − tn)Hn + tn ̃f (Hn), (1 − t)Hn + t ̃f (Hn))

+ dE((1 − t)Hn + t ̃f (Hn), (1 − t)H + t ̃f (H)).

By Lemma 6.1.8,

dE((1 − tn)Hn + tn ̃f (Hn), (1 − t)Hn + t ̃f (Hn))

≤ 2√2󵄩󵄩󵄩󵄩(1 − tn)Hn + tn ̃f (Hn) − (1 − t)Hn + t ̃f (Hn)
󵄩󵄩󵄩󵄩
1
2

≤ 2√2(|t − tn|(‖Hn‖ +
󵄩󵄩󵄩󵄩
̃f (Hn)
󵄩󵄩󵄩󵄩))

1
2

≤ 2√2(2|t − tn|)
1
2 .

Thus dE((1−tn)Hn+tn ̃f (Hn), (1−t)Hn+t ̃f (Hn)) converges to 0 uniformly inHn. It remains
to show limn→∞ dE((1 − t)Hn + t ̃f (Hn), (1 − t)H + t ̃f (H)) = 0. It is therefore sufficient to
show that ht : 𝔽𝔹1,sa(H) → 𝔽𝔹1,sa(H) defined by ht(H) = h(t,H) is continuous with
respect to OE . Because ht is a class map with respect to ∼, this can be checked using
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the last claim of Lemma 4.6.6, namely it is sufficient to prove the continuity of the map
h∼t : 𝔽𝔹∼1,sa(H) → 𝔽𝔹∼1,sa(H) with respect to O∼E . By Corollary 4.6.11, this is equivalent to
the continuity ofG∘h∼t ∘G−1 on (𝔽𝕌(H),ON ). This is, in turn, guaranteed by the continuity
of the map

(e𝚤φ, δ) ∈ 𝕊1 × (0, 1] 󳨃→ G ∘ h∼t,δ ∘ G−1(e𝚤φ), (6.21)

where φ ∈ (0, 2π] and ht,δ : [−1, 1] → [−1, 1] is defined by
ht,δ(x) = (1 − t)x + tfδ(x).

As

G ∘ h∼t,δ ∘ G−1(e𝚤φ) = G(−(1 − t) cos(φ2 ) + tfδ(− cos(φ2 ))) ∈ 𝕊1,
for (e𝚤φ, δ) ∈ 𝕊1 × (0, 1] the continuity of (6.21) can readily be checked.
Corollary 6.4.13. The space (𝔽𝔹C,01,sa(H),OSE) is homotopy equivalent to the space
(𝔽𝔹01,sa(H),OSE).

Proof. Proposition 6.4.7(iii) implies that (𝔽𝔹C,01,sa(H),OSE) is homotopy equivalent to
(𝔽𝔹C1,sa(H),OSE), which, by Proposition 6.4.12, is homotopy equivalent to the space
(𝔽𝔹1,sa(H),OSE). But Proposition 6.4.7(ii) shows that the latter is homotopy equivalent to
(𝔽𝔹01,sa(H),OSE).

Proof of Theorem 6.4.2. By Proposition 6.4.6, the topologiesOE andOSE coincide on both
𝔽𝔹C,01,sa(H) and𝔽𝔹01,sa(H). Due to Corollary 6.4.13, one concludes that (𝔽𝔹C,01,sa(H),OE) and
(𝔽𝔹01,sa(H),OE) are homotopy equivalent. The claim now follows from Proposition 6.4.4
and Corollary 6.3.4.

In order to further complete the analysis of the strong extended gap topology OSE
on 𝔽𝔹C1,sa(H), let us prove that it is equivalent to the Kasparov topology as introduced
by Bunke, Joachim, and Stolz [44].

Definition 6.4.14. The Kasparov topologyOK on 𝔽𝔹
C
1,sa(H) is the weakest topology con-

taining the strong topology OS and such that the map

H ∈ (𝔽𝔹C1,sa(H),OK) 󳨃→ 1 − H2 ∈ (𝕂(H),ON )

is continuous.

Proposition 6.4.15. The strong extended gap topology OSE on 𝔽𝔹
C
1,sa(H) is identical to

the Kasparov topology OK .

Proof. (Following Proposition 3.3 in [108].) The extended gap topology on 𝔽𝔹C1,sa(H)
is the weakest topology such that H ∈ (𝔽𝔹C1,sa(H),OSE) 󳨃→ H2 ∈ (𝔽𝔹1,sa(H),ON ) and
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H ∈ (𝔽𝔹C1,sa(H),OSE) 󳨃→ H(1 − H2)
1
2 ∈ (𝔽𝔹1,sa(H),ON ) are continuous. Clearly, the

continuity of the two maps H ∈ (𝔽𝔹C1,sa(H),OSE) 󳨃→ 1 − H2 ∈ (𝔽𝔹1,sa(H),ON ) and
H ∈ (𝔽𝔹C1,sa(H),OSE) 󳨃→ H2 ∈ (𝕂(H),ON ) are equivalent. As both OSE and OK contain
OS , it follows that OSE is finer than OK .

Next let us come to the the converse. It will be used that the continuity of the map
H ∈ (𝔽𝔹C1,sa(H),OK ) 󳨃→ 1 − H2 ∈ (𝕂(H),ON ) implies, by Proposition A.2.2, also the
continuity of H ∈ (𝔽𝔹C1,sa(H),OK ) 󳨃→ (1 − H

2)
1
2 ∈ (𝕂(H),ON ). Because a strongly

continuous map of compact operators is norm-continuous, it follows that also the map
H ∈ (𝔽𝔹C1,sa(H),OK ) 󳨃→ H(1 − H2)

1
2 ∈ (𝕂(H),ON ) is continuous, showing that OK is also

finer than OSE .

Next let us provide an application of the Kasparov topology. In the set 𝔽𝔹C1,sa(H),
there are two subsets with opposite properties: one is𝔽𝔹C,01,sa(H) in which neither −1 nor
1 is an eigenvalue, the other has both as eigenvalues with infinite multiplicity,

𝔽𝔹C,∞1,sa (H) = {H ∈ 𝔽𝔹C1,sa(H) : dim(Ker(H ± 1)) = ∞}.
The analogue of Proposition 6.4.7 is the following result (that is not used for the proof of
Theorem 6.4.2):

Proposition 6.4.16. The space (𝔽𝔹C,∞1,sa (H),OSE) is homotopy equivalent to the space
(𝔽𝔹C1,sa(H),OSE).

Proof. (Inspired by Lemma 2.5 of [44].) Let us denote L2 = L2([0, 1]) ⊗ ℂ2 and choose a
unitary

U : H → L2.

Further let Q0 = 1 ⊗ diag(1, −1) be a proper symmetry on L
2. Next let us introduce the

unitaryW = (W0,W1) : L
2 → L2 ⊕ L2 by

(W0ψ)(x) = 2
− 12ψ(x

2
), (W1ψ)(x) = 2

− 12ψ(x + 1
2
),

where x ∈ [0, 1] and the 2 × 2 matrix component is the identity and suppressed in the
notation. Then set

H̃ = U∗W∗(UHU∗ ⊕ Q0)WU

for H ∈ 𝔽𝔹C1,sa(H). By construction, one has H̃ ∈ 𝔽𝔹C,∞1,sa (H). It remains to construct a
homotopy h : 𝔽𝔹C1,sa(H) × [ 12 , 1] → 𝔽𝔹C1,sa(H) from h1(H) = H to h 1

2
(H) = H̃ , continuous

with respect to OSE . For this purpose, one can now proceed using a family of partial
isometries Vt : L

2 → L2 first introduced by Dixmier and Douady [73]. Set

(Vtψ)(x) = {
t− 12ψ( xt ), x ∈ [0, t],
0, x ∈ (t, 1].
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Note that V∗t Vt = 1 and VtV∗t = χ[0,t] is the projection onto L2([0, t]) (again tensorized
with the identity on ℂ2), so that, in particular, V1 is unitary. Also [Vt ,Q0] = 0. Moreover,
by a standard approximation argument with smooth functions, one can check that both
t ∈ [ 12 , 1] 󳨃→ Vt and t ∈ [

1
2 , 1] 󳨃→ V∗t are strongly continuous. Then set

ht(H) = U
∗(VtUHU∗V∗t + (1 − VtV∗t )Q0)U .

Due to V∗t (1 − VtV∗t ) = 0, (1 − VtV∗t )2 = 1 − VtV∗t and Q20 = 1, one has

1 − ht(H)
2 = U∗(1 − VtUHU∗V∗t VtUHU∗V∗t − (1 − VtV∗t )2Q20)U
= U∗(VtV∗t − VtUH2U∗V∗t )U
= U∗VtU(1 − H2)U∗V∗t U ,

which is compact so that indeed ht(H) ∈ 𝔽𝔹
C
1,sa(H). Next let us verify that h is continuous

and therefore a homotopy on (𝔽𝔹C1,sa(H),OSE). For this purpose, it is shown that, for any
sequence (Hn, tn)n≥1 in 𝔽𝔹C1,sa × [ 12 , 1] converging to (H , t) ∈ 𝔽𝔹C1,sa × [ 12 , 1]with respect to
OSE × | ⋅ |, the sequence htn (Hn) converges to ht(H)with respect to OSE . By Lemma 6.4.5,
OSE is the topology induced by the metric d = dE + dS on 𝔹1,sa(H) where

dS(H
′
0,H
′
1) =
∞
∑
n=1 2−n󵄩󵄩󵄩󵄩(H′1 − H′0)ϕn󵄩󵄩󵄩󵄩, H′0,H′1 ∈ 𝔹1,sa(H),

for a fixed orthonormal basis (ϕn)n≥1 of H as in the proof of Lemma 6.4.5. Thus it is
sufficient to show that

lim
n→∞(dE(htn (Hn), ht(H)) + dS(htn (Hn), ht(H))) = 0. (6.22)

The second summand is bounded by

dS(htn (Hn), ht(H)) ≤ dS(htn (Hn), ht(Hn)) + dS(ht(Hn), ht(H)). (6.23)

Then

lim
n→∞ dS(ht(Hn), ht(H)) = lim

n→∞ ∞∑
m=1 2−m󵄩󵄩󵄩󵄩U∗VtU(Hn − H)U

∗V∗t Uϕm󵄩󵄩󵄩󵄩 = 0
because s- limn→∞ Hn = H by assumption and ‖U∗VtU(Hn − H)U

∗V∗t U‖ ≤ 2 for all
(n, t) ∈ ℕ × [ 12 , 1]. The first summand in (6.23) is bounded by

dS(htn (Hn), ht(Hn))

=
∞
∑
m=1 2−m󵄩󵄩󵄩󵄩U∗(VtnUHnU

∗V∗tn − VtUHnU
∗V∗t + Q0(VtV∗t − VtnV∗tn))Uϕm󵄩󵄩󵄩󵄩
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≤
∞
∑
m=1 2−m󵄩󵄩󵄩󵄩U∗(VtnUHnU

∗V∗tn − VtUHnU
∗V∗t )Uϕm󵄩󵄩󵄩󵄩

+
∞
∑
m=1 2−m󵄩󵄩󵄩󵄩(VtV∗t − VtnV∗tn)Uϕm󵄩󵄩󵄩󵄩.

The second summand converges to 0 and the first summand is bounded by∞
∑
m=1 2−m󵄩󵄩󵄩󵄩U∗(VtnUHnU

∗V∗tn − VtUHnU
∗V∗t )Uϕm󵄩󵄩󵄩󵄩

≤
∞
∑
m=1 2−m(󵄩󵄩󵄩󵄩VtnUHnU

∗(V∗tn − V∗t )Uϕm󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(Vtn − Vt)UHnU

∗V∗t Uϕm󵄩󵄩󵄩󵄩)
≤
∞
∑
m=1 2−m(󵄩󵄩󵄩󵄩VtnUHnU

∗(V∗tn − V∗t )Uϕm󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(Vtn − Vt)U(Hn − H)U

∗V∗t Uϕm󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(Vtn − Vt)UHU

∗V∗t Uϕm󵄩󵄩󵄩󵄩)
≤
∞
∑
m=1 2−m(2󵄩󵄩󵄩󵄩(V∗tn − V∗t )Uϕm󵄩󵄩󵄩󵄩 + 2󵄩󵄩󵄩󵄩(Hn − H)U

∗V∗t Uϕm󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(Vtn − Vt)UHU

∗V∗t Uϕm󵄩󵄩󵄩󵄩)
and all three summands converge to 0 by the same argument as above using
that s- limn→∞ V∗tn = V∗t and s- limn→∞ Hn = H . Finally, it remains to verify that
limn→∞ dE(htn (Hn), ht(H)) = 0. As OSE = OK on 𝔽𝔹c1,sa(H) by Proposition 6.4.15 and
s- limn→∞ htn (Hn) = ht(H) by the above, it is sufficient to show

lim
n→∞󵄩󵄩󵄩󵄩htn (Hn)

2 − ht(H)
2󵄩󵄩󵄩󵄩 = 0.

This follows from

󵄩󵄩󵄩󵄩htn (Hn)
2 − ht(H)

2󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩VtnU(1 − H

2
n)U
∗V∗tn − VtU(1 − H2)U∗V∗t 󵄩󵄩󵄩󵄩

≤ 󵄩󵄩󵄩󵄩(Vtn − Vt)U(1 − H
2
n)U
∗V∗tn󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩VtU((1 − H
2
n) − (1 − H

2))U∗V∗tn󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩VtU(1 − H

2)U∗(V∗tn − V∗t )󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩(Vtn − Vt)U(1 − H

2
n)
󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩H
2
n − H

2󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(1 − H

2)U∗(V∗tn − V∗t )󵄩󵄩󵄩󵄩
≤ 󵄩󵄩󵄩󵄩(Vtn − Vt)U(1 − H

2)󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(Vtn − Vt)U(H

2 − H2
n)
󵄩󵄩󵄩󵄩
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+ 󵄩󵄩󵄩󵄩H
2
n − H

2󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩(1 − H

2)U∗(V∗tn − V∗t )󵄩󵄩󵄩󵄩.
The first summand converges to 0 because s- limn→∞ Vtn = Vt and 1 − H2 ∈ 𝕂(H) is
compact. Because ((Vtn −Vt)U(1−H

2))∗ = (1−H2)U∗(V∗tn −V∗t ), this implies that also the
last summand converges to 0. By assumption limn→∞ dE(Hn,H) = 0 and by definition
of the extended gap metric, this implies that the third summand converges to 0 and
therefore also the second summand converges to 0. One concludes that (6.22) holds and
therefore h is continuous.

It only remains to note that indeed h1(H) = H and h 1
2
(H) = H̃ , and furthermore

ht(H) ∈ 𝔽𝔹
C,∞
1,sa (H) for all H ∈ 𝔽𝔹C,∞1,sa (H) and all t ∈ [ 12 , 1]. Therefore also the map

f : 𝔽𝔹C1,sa(H) → 𝔽𝔹C,∞1,sa (H) defined by f (H) = H̃ is a homotopy equivalence with respect
to OSE with homotopy inverse given by the embedding i : 𝔽𝔹

C,∞
1,sa (H) → 𝔽𝔹C1,sa(H).

The following is a direct consequence of Theorems 6.4.2 and 6.3.16.

Theorem 6.4.17. With respect to the gap metric, the set 𝔽Csa(H) is connected.

Because this result may seem surprising at first sight, a direct proof is provided.

Proof. It is shown that𝕌C,0(H) is connected, which, by Theorem 6.4.3, implies the claim.
For U ∈ 𝕌C,0(H), a norm-continuous path within𝕌C,0(H) connecting U to

Uref = ∑
n≥1 e 𝚤n+1 |ϕn⟩⟨ϕn|,

where (ϕn)n≥1 is an orthonormal basis ofH, is constructed. Note that Uref = e
𝚤Kref for the

self-adjoint and compact operator Kref = ∑n≥1 1
n+1 |ϕn⟩⟨ϕn|.

First, let us decompose H into the spectral subspaces H± of U corresponding to
{e𝚤φ : φ ∈ [0, π]} and {e𝚤φ : φ ∈ (π, 2π]}. Respectively, we decompose U = U+ ⊕ U−.
There is no intersection of the spectral subspaces as, if −1 ∈ spec(U), it is an isolated
eigenvalue and hence belongs to spec(U+). And if 1 ∈ spec(U), it does not contribute to
the decomposition of U as it is not an eigenvalue.

IfH− is finite dimensional, we rotate U− through −1 into U ′− = −U−. More precisely,
the path t ∈ [0, 1] 󳨃→ e−𝚤πtU− lies entirely in 𝕌C,0(H−) and connects U− to U ′− where
spec(U ′−) ⊂ {e𝚤φ : φ ∈ (0, π)}. Otherwise, we identify H− with L2([0, 1]). Then U− is of
the form U− = e𝚤K− for some self-adjoint injective compact operator K− ∈ 𝕂(L2([0, 1]))
with spec(K−) ⊂ (−π, 0]. For t ∈ [0, 2], let Mt ∈ 𝔹(L

2([0, 1])) denote the multiplication
operator given by multiplication with the function ft : [0, 1] → [0, 1] defined by

ft(x) = (−1 + 2tx)χ[0,1](t) + (2(1 − x)(t − 2) + 1)χ(1,2](t)
for t ∈ [0, 2] and x ∈ [0, 1]. Then
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t ∈ [0, 2] 󳨃→ Kt = −|K−| 12Mt|K−| 12
is a continuous path of injective compact operators connecting K− to −K− such that
‖Kt‖ ≤ ‖K−‖ < π for all t ∈ [0, 2]. Therefore the path t ∈ [0, 2] 󳨃→ e𝚤Kt lies in 𝕌C,0(H)
and connects U− to U ′− = e−𝚤K− .

In both cases taking the pointwise direct sum of the constructed path and the con-
stant path t 󳨃→ U+ gives a path in 𝕌C,0(H) connecting U to U+ ⊕ U ′− with spectrum
satisfying spec(U+ ⊕ U ′−) ⊂ {e𝚤φ : φ ∈ [0, π]}. Then there is an injective compact op-
erator K ∈ 𝕂(H) with spec(K) ⊂ [0, π] such that U+ ⊕ U ′− = e𝚤K . The linear path
t ∈ [0, 1] 󳨃→ K ′t = (1 − t)K + tKref connecting K to Kref is within the injective compact
operators with spectrum spec(Kt) ⊂ [0, π]. Therefore the path t ∈ [0, 1] 󳨃→ e𝚤K ′t is within
𝕌C,0(H) and connects U+ ⊕ U ′− to Uref. Thus U can be connected to Uref within𝕌

C,0(H),
which implies the claim.


