Inhalt

Vorwort — V

Legende — VII

1	Die Physik, ihre Lehrbücher und ihre Geschichte — 1
1.1	Die Physik und ihre Lehrbücher —— 1
1.2	Die Physik und ihre Geschichte —— 2
1.3	Nature of Science und Wissenschaftsgeschichte —— 6
1.3.1	Die Rolle der Wissenschaftsgeschichte für den Lernbereich NOS — 9
1.4	Die Quantenphysik als Revolution —— 12
1.4.1	Mythos klassische Physik und klassisches Weltbild —— 13
1.4.2	Warum sprechen wir von "klassischer Physik"? —— 17
1.4.3	Gab es eine Quantenrevolution? —— 18
1.5	Die Quasigeschichte der Quantentheorie —— 20
2	Die frühe Quantentheorie — 23
2.1	Das Problem der Schwarzkörperstrahlung —— 23
2.1.1	Die verschiedenen Gesetze der Schwarzkörperstrahlung und ihr
	mathematischer Zusammenhang —— 24
2.1.2	Das Strahlungsgesetz von Wien —— 26
2.1.3	Das Strahlungsgesetz von Rayleigh–Jeans —— 28
2.1.4	Das Scheitern des Wien'schen Strahlungsgesetzes —— 29
2.1.5	Das Strahlungsgesetz von Planck —— 31
2.2	Einsteins Lichtquantenhypothese —— 37
2.2.1	Rezeption der Lichtquantenhypothese —— 40
2.3	Einsteins Theorie der spezifischen Wärme —— 43
2.4	Das Spektrum von Röntgenstrahlung —— 47
2.4.1	Der Nachweis der Beugung von Röntgenstrahlung durch Laue, Knipping und
	Friedrich —— 48
2.4.2	Die Braggs —— 51
2.4.3	Das Debye–Scherrer–Hull-Verfahren —— 55
2.5	Atombegriff und Atommodelle vor Bohr —— 56
2.5.1	Exkurs zur akustischen und elektromagnetischen Abstrahlung —— 59
2.5.2	Das Spektrum des Wasserstoffs — 61
2.6	Das Bohr'sche Atommodell —— 62
2.6.1	Das Bohr'sche Korrespondenzprinzip —— 65
2.6.2	Didaktische Kritik am Bohr'schen Atommodell —— 67
2.6.3	Das Atommodell von Bohr–Sommerfeld —— 68
2.6.4	Henry Moseley und das Röntgenspektrum —— 78
2.7	Der Franck–Hertz-Versuch —— 82

2.7.1	Interpretation des Ergebnisses — 83
2.7.2	Die ursprüngliche Interpretation von Franck und Hertz —— 85
2.8	Historischer Einschub: Der Erste Weltkrieg und seine Folgen —— 86
2.9	Einsteins Strahlungstheorie —— 91
2.9.1	Bedeutung der Einstein'schen Strahlungstheorie — 94
2.10	Der Doppler-Effekt in der Quantentheorie —— 96
2.10.1	Einsteins Experiment zur Entscheidung des Welle-Teilchen-Dualismus — 97
2.10.2	Erklärung des Doppler-Effekt mit Lichtquanten —— 99
2.11	Das Stern–Gerlach-Experiment —— 101
2.11.1	Die aktuelle Erklärung des Stern-Gerlach-Experiments — 104
2.11.2	Adolf Schmidt, der vergessene Helfer — 105
2.12	Der Compton-Effekt —— 106
2.12.1	Aktuelle Erklärung des Compton-Effekts — 108
2.13	Louis de Broglies Materiewellen —— 109
2.13.1	Bedeutung der Materiewellen-Hypothese —— 111
2.13.2	Experimenteller Nachweis der Materiewellen —— 112
2.14	Die wegweisenden Experimente der Quantentheorie —— 119
2.15	Die "alte" Quantentheorie und ihre "Krise" —— 122
3	Der Formalismus der Quantenmechanik —— 125
3.1	Postulate der Quantenmechanik —— 126
3.2	Heisenbergs Matrizenmechanik —— 127
3.3	Schrödingers Wellenmechanik —— 132
3.3.1	Die Schrödingergleichung —— 133
3.3.2	Die zeitabhängige Schrödingergleichung —— 134
3.3.3	Zur physikalischen Bedeutung der Wellenfunktion —— 137
3.4	Quantenmechanik als Hilbertraum-Theorie —— 142
3.4.1	Erwartungswerte für Ort und Impuls —— 142
3.4.2	Operatoren für physikalische Größen —— 143
3.4.3	Das Skalarprodukt von Wellenfunktionen und der Hilbertraum —— 144
3.4.4	Warum Eigenwerte in der Quantenmechanik eine besondere Rolle
	spielen —— 148
3.4.5	Orthogonale Zustände —— 148
3.4.6	Verallgemeinerung der Born'schen Regel —— 149
3.4.7	Der "Kollaps der Wellenfunktion" und die Ensemble-Deutung —— 151
3.4.8	Operatoren mit kontinuierlichem Spektrum —— 152
3.4.9	Der Zusammenhang zwischen Matrizen- und Wellenmechanik —— 156
3.4.10	Der klassische Grenzwert der Quantenmechanik —— 157
3.5	Die Dirac-Schreibweise —— 159
3.5.1	Basiswechsel in Vektorräumen —— 160
3.5.2	Die Bra-Ket-Notation —— 161
3.6	Gemischte Zustände Symmetrien und Erhaltungsgrößen — 165

3.6.1	Die Dichtematrix — 165
3.6.2	Symmetrien und Erhaltungsgrößen —— 170
4	Die Heisenberg'sche Unbestimmtheitsrelation —— 175
4.1	Kennard- und Robertson-Beziehung —— 175
4.1.1	Die Rolle der Messung in der HUR —— 176
4.1.2	Geschichte der Unbestimmtheitsrelation — 177
4.2	Neuere Entwicklungen zu Unbestimmtheitsrelationen —— 180
4.2.1	HUR beim Einzelspalt: qualitative Betrachtung —— 181
4.2.2	HUR beim Einzelspalt: quantitative Betrachtung —— 182
4.2.3	HUR und das Doppelspaltexperiment —— 185
5	Anwendung und Vertiefung der Quantenmechanik —— 189
5.1	Das freie Teilchen — 190
5.1.1	Das Normierungsproblem —— 191
5.1.2	Das Gauß'sche Wellenpaket —— 192
5.2	Der unendlich hohe Potenzialtopf —— 193
5.2.1	Die HUR beim unendlichen Potenzialtopf —— 198
5.2.2	Der Impuls beim unendlichen Potenzialtopf —— 199
5.2.3	Das Elektronengasmodell —— 203
5.2.4	Der unendliche Potenzialtopf und NOS —— 205
5.3	Der endlich hohe Potenzialtopf —— 206
5.3.1	Gebundene Lösungen (<i>E</i> < 0) —— 206
5.3.2	Kontinuumslösungen (<i>E</i> > 0) —— 210
5.4	Der Tunneleffekt —— 213
5.5	Der quantenmechanische harmonische Oszillator — 214
5.5.1	Auf- und Absteigeoperatoren —— 215
5.5.2	Besetzungszahloperator und Unbestimmtheitsrelation — 218
5.5.3	Historische Anmerkung zum quantenmechanischen HO —— 219
5.6	Das Wasserstoffatom —— 220
5.6.1	Der Drehimpuls —— 220
5.6.2	Die Schrödingergleichung in Kugelkoordinaten —— 223
5.6.3	Magnetfelder und der Elektronenspin —— 230
5.6.4	Das Pauliprinzip und die quantenmechanische Ununterscheidbarkeit — 237
5.7	Atombau und das Periodensystem der Elemente —— 239
5.7.1	Aufbauprinzip und Nebengruppen —— 240
5.7.2	Kann die Chemie auf die Physik reduziert werden? —— 242
5.8	Spin-Addition und Verschränkung —— 242
5.8.1	Das Tensorprodukt und die Spin-Addition —— 243
5.8.2	Verschränkung — 247
5.9	Die Wechselwirkung von Strahlung und Materie in der semiklassischen
	Näherung —— 254

5.9.1	Photoeffekt ohne Photonen —— 255
5.9.2	Was sind Photonen? —— 260
6	Die Philosophie der Quantenmechanik —— 268
6.1	Die Interpretation der Quantenmechanik —— 268
6.1.1	Die "Kopenhagener Deutung" der Quantentheorie —— 269
6.1.2	Schrödingers Katze und das Messproblem —— 271
6.1.3	Maudlins Trilemma und eine Klassifikation der Interpretationen — 274
6.1.4	Die De-Broglie–Bohm-Theorie —— 275
6.1.5	Viele-Welten-Interpretation —— 277
6.1.6	Spontane-Kollaps-Theorien —— 278
6.1.7	Epistemische Interpretationen —— 278
6.2	EPR und die Bell'schen Ungleichungen —— 280
6.2.1	Das EPR-Experiment —— 280
6.2.2	Die Bell'sche Ungleichung —— 282
6.2.3	Konsequenzen aus der Verletzung der Bell'schen Ungleichung —— 288
6.2.4	Der experimentelle Test der Bell'schen Ungleichung — 290
6.2.5	Die Rezeptionsgschichte des Bell-Theorems —— 291
Α	Appendix —— 297
A.1	Die Berechnung der spektralen Modendichte —— 297
A.2	Details zu Plancks Herleitung des Strahlungsgesetzes —— 298
Literat	ur — 301
Stichw	ortverzeichnis — 315