List of figures and tables

Figures

Figure 1	Working mechanism used to identify 3N within 2N —— 24
Figure 2	Variants to be found and lemmatized for <i>credit card company</i> —— 32
Figure 3	Branching patterns in tripartite nominal compounds —— 35
Figure 4	Morphological structures for <i>children's bookstore</i> —— 41
Figure 5	Potential morphological structures for four-constituent compounds —— 49
Figure 6	Mapping between orthography and internal structure of 3N —— 75
Figure 7	Distribution of stress points in left- and right-branching 3N —— 89
Figure 8	Most frequent types of three-noun compounds —— 99
Figure 9	Relationship between branching patterns across frequency ranges —— 101
Figure 10	Token frequencies of most frequent left- and right-branching 3N —— 103
Figure 11	Distribution of 3N tokens among registers —— 111
Figure 12	Semantic fields established by the USAS —— 115
Figure 13	Categorization of semantic areas denoted by 3N modifiers —— 116
Figure 14	Degrees of compositionality in 2N —— 120
Figure 15	Degrees of compositionality in 3N —— 122
Figure 16	Examples of compounds with different degrees of productivity —— 153
Figure 17	Relationship between constituent family sizes —— 158
Figure 18	Distribution of compounds on functions in 3N —— 159
Figure 19	Semantic map of head nouns in the pattern 'football + N' —— 169
Figure 20	Semantic map of head nouns in the pattern 'weekend + N' —— 171
Figure 21	Semantic map of head nouns in the pattern 'birthday + N' —— 174
Figure 22	Semantic map of head nouns in the pattern 'roadside + N' —— 175
Figure 23	Relationship between productivity and formal complexity —— 179
Figure 24	Relationship between productivity and frequency —— 182
Figure 25	Relationship between productivity and association strength —— 191
Figure 26	Relationship between corpus data and entrenchment —— 198
Figure 27	The Entrenchment and Conventionalization Model —— 199
Figure 28	Different strengths of syntagmatic associations for 'health care + N' —— 220
Figure 29	Use of exemplary patterns —— 221
Figure 30	Potential degrees of schematicity for three-noun compounds —— 227
Figure 31	Potential levels of representations in three-noun compounding —— 229
Figure 32	More and less typical instances of three-noun compounding —— 240

Tables

Table 1	Compounds with identical word pair frequencies —— 54
Table 2	Branching patterns assigned to 3N categorized as "unbiased" —— 55
Table 3	Average number of syllables for 3N in different frequency levels —— 61
Table 4	Average number of syllables distributed among constituents —— 63
Table 5	Average number of morphemes for 3N in different frequency levels —— 64
Table 6	Average number of morphemes distributed among constituents —— 65
Table 7	Syllable counts distinguished for frequency levels and BPs —— 69
Table 8	Morpheme counts distinguished for frequency levels and BPs —— 71
Table 9	Use of available spelling formats —— 77
Table 10	Distribution of 3N tokens on spelling formats —— 80
Table 11	Stress assigned to left- and right-branching 3N —— 87
Table 12	Count of 3N types in different token frequency ranges —— 96
Table 13	Distribution of types and tokens among frequency ranges —— 98
Table 14	Type-token relationship distinguished for branching patterns —— 103
Table 15	Most frequent left-branching and right-branching compounds —— 107
Table 16	Distribution of 3N tokens among registers —— 112
Table 17	3N and corresponding syntactic phrases —— 128
Table 18	3N and corresponding syntactic phrases with token frequencies —— 131
Table 19	Most productive compounds based on types of 3N —— 149
Table 20	Compounds with lower degrees of productivity —— 150
Table 21	Categorization of 2N based on number of 3N formed —— 152
Table 22	Number of 3N formed by 2N of different productivity categories —— 155
Table 23	Correlation coefficients for different productivity subsets —— 160
Table 24	Head and modifier family sizes for most productive compounds —— 161
Table 25	Head and modifier family sizes for less productive compounds —— 162
Table 26	Most productive modifiers (left) and heads (right) —— 164
Table 27	Comparison of constituent family sizes for embedded compounds —— 165
Table 28	Average number of 3N formed per 2N —— 166
Table 29	Contingency table for <i>health care</i> —— 186
Table 30	Association scores for exemplary compounds —— 189