

Contents

Preface — VII

About the author — IX

1 Introduction to sustainable processing — 1

- 1.1 Sustainable development — 2
- 1.2 Introduction to green chemistry — 4
- 1.3 The 24 principles of green chemistry and green engineering — 5
- Bibliography — 11

2 Green process metrics — 13

- 2.1 Atom economy — 13
- 2.2 Reaction mass efficiency — 15
- 2.3 Carbon efficiency — 15
- 2.4 Effective mass yield — 16
- 2.5 Environmental factor — 16
- 2.6 Mass intensity — 19
- 2.7 Process mass intensity — 20
- 2.8 Mass productivity — 20
- 2.9 Wastewater intensity — 21
- 2.10 Solvent intensity — 21
- 2.11 Carbon footprint, carbon emission factor, and carbon intensity — 22
- 2.11.1 Methodology for carbon footprint industrial standards — 23
- 2.11.2 Carbon footprint in the pharmaceutical industry — 24
- 2.11.3 Carbon footprint in the petrochemical industry — 25
- 2.12 Health and safety hazards — 27
- 2.13 Defining a good chemical process — 28
- Bibliography — 30

3 The role of solvents in sustainable processes — 32

- 3.1 Classification of solvents — 33
- 3.2 Solvent usage and safety concerns — 34
- 3.3 Green solvents — 37
- 3.4 Solvent selection guides — 42
- Bibliography — 45

4 Sustainable process development from alpha to omega — 48

- 4.1 PolarClean: a green polar aprotic solvent — 48
- 4.2 The patented production of PolarClean — 49
- 4.3 Toward the design of greener synthetic routes — 51

4.4	Quality assessment — 54
4.5	Green metrics analysis — 56
4.5.1	Complexity and Ideality — 56
4.5.2	Carbon intensity — 57
4.5.3	Atom economy — 60
4.5.4	Yield — 63
4.5.5	E-factors — 65
4.5.6	Health and safety risks — 66
4.5.7	Solvent intensity — 68
4.6	Room for improvement: Further optimization potential — 69
	Bibliography — 70
5	Process intensification: methods and equipment — 72
5.1	Evolution of chemical processes — 77
5.2	Process-intensifying equipment — 78
5.2.1	Microreactors — 78
5.2.2	Rotating devices — 80
5.3	Process-intensifying methods — 83
5.3.1	Membrane reactors — 84
5.3.2	Hybrid separations — 86
5.3.3	Use of alternative energy: ultrasound and microwave — 87
5.3.4	Other methods — 92
	Bibliography — 93
6	Continuous microflow processes — 98
6.1	Introduction — 98
6.2	The advantages and disadvantages of continuous microfluidic systems — 100
6.3	The green attributes of continuous flow processes — 102
6.3.1	Principle 1: Prevention — 103
6.3.2	Principle 2: Atom economy — 106
6.3.3	Principle 6: Design for energy efficiency — 109
6.3.4	Principle 9: Catalysis — 109
6.3.5	Principle 11: Real-time analysis for pollution prevention — 111
6.3.6	Principle 12: Safer chemistry for accident prevention — 112
6.4	Microflow reactor systems — 114
6.5	Lab-of-the-future and automated robotic platforms — 116
	Bibliography — 117
7	Continuous separation processes — 121
7.1	Downstream processing in organic synthesis — 121
7.2	Batch versus continuous separations — 121

7.3	Continuous processing with supercritical fluids — 123
7.4	Continuous membrane separations — 125
7.5	Continuous crystallization processes — 132
7.6	Centrifugal partition chromatography — 135
7.7	Pressure and temperature swing adsorption — 137
7.8	Artificial intelligence in chemical and separation technologies — 141
	Bibliography — 143
8	Solvent recovery and recycling — 147
8.1	Distillation processes — 148
8.2	Adsorption processes — 152
8.3	Membrane-based solvent recovery processes and their comparison with distillation and adsorption — 154
8.4	Tools for solvent recovery process design — 161
	Bibliography — 162
9	Process analytical technology — 165
9.1	Introduction — 165
9.2	PAT for green chemistry and engineering — 167
9.3	Development of PAT systems — 170
9.4	Industry outlook — 172
9.5	PAT methods — 173
9.5.1	Infrared spectroscopy — 173
9.5.2	Raman spectroscopy — 175
9.5.3	Nuclear magnetic resonance spectroscopy — 175
9.5.4	Ultraviolet-visible spectroscopy — 176
9.6	Case studies — 177
9.6.1	Control of ammonia content and reaction monitoring with FTIR — 177
9.6.2	FTIR spectroscopy-enabled control strategy for brivanib alaninate manufacturing — 180
9.6.3	Implementation of Raman spectroscopy in reaction monitoring — 182
9.6.4	Process control of continuous synthesis and solid drug formulation by IR and Raman spectroscopy — 183
	Bibliography — 185
10	Sustainable nuclear fuels — 188
10.1	Benefits of nuclear energy — 192
10.2	Disadvantages of nuclear energy — 193
10.3	Uranium as a nuclear fuel — 195
10.3.1	Availability of uranium — 195

10.3.2	Current methods for uranium sourcing — 195
10.3.3	Sustainable extraction of uranium from seawater — 197
10.4	Waste management — 201
	Bibliography — 204
11	Toward sustainable biofuel production processes — 207
11.1	Production of alcohols as fuels — 208
11.1.1	Biochemical conversion of lignocellulosic biomass — 210
11.1.2	Grinding — 210
11.1.3	Pretreatment — 211
11.1.4	Hydrolysis/saccharification — 212
11.1.5	Fermentation — 213
11.1.6	Distillation/dehydration — 214
11.1.7	Case study of a membrane integrated bioreactor system for the continuous production of bioethanol — 215
11.2	Biodiesel and its conventional production — 217
11.2.1	Alternative routes for biodiesel production — 220
	Bibliography — 225
12	Green polymers and green building blocks — 229
12.1	Introduction — 229
12.2	Polymers and the environment — 231
12.3	Plastic waste management: methods and limitations — 235
12.4	Bioplastics — 236
12.5	Green polymers — 238
12.6	Green monomers and building blocks — 241
12.7	Extraction methods — 248
12.7.1	Mechano-catalytic depolymerization — 248
12.7.2	Integrated conversion — 249
12.7.3	Ultrasound-assisted radical depolymerization — 251
12.7.4	Fermentation — 252
12.7.5	Segmented continuous flow fractionation — 253
12.8	New design technology concepts for advanced polymer materials — 254
12.8.1	Reactor design configuration — 255
12.8.2	Online monitoring — 255
12.8.3	Automation — 256
12.8.4	Membranes — 256
12.8.5	Membranes from chitosan and PLA — 258
12.8.6	Production of bio-based polyethylene (bio-PE) — 260
12.8.7	Bio-based 1,4-butanediol — 262
12.8.8	BioFoam — 263
12.8.9	Desmodur eco N — 263

12.8.10	Rilsan HT and Rilsan Invent — 264
12.8.11	Polycarbonates — 264
	Bibliography — 265
13	Solar powered engineering — 269
13.1	Water harvesting from air — 269
13.2	Solar-driven membrane processes — 272
13.3	Concentrated solar power — 275
13.4	Photochemistry and photocatalysis — 279
13.4.1	Heterogeneous photocatalysis — 280
13.4.2	Solar-driven advanced oxidation processes — 283
13.4.3	Hybrid advanced oxidation processes — 284
13.4.4	Homogeneous photocatalysis — 286
13.4.5	Luminescent solar concentrator reactors — 287
13.4.6	Cloud-inspired photochemical reactor — 288
13.4.7	Chiral separation using light — 290
	Bibliography — 291
14	Data-driven optimization of chemical processes — 294
14.1	Self-optimizing systems — 295
14.1.1	Autonomous experimentation platforms — 296
14.2	Fault detection and diagnosis systems in industrial processes — 301
14.2.1	Shallow machine learning algorithms — 303
14.2.2	Deep learning — 305
14.2.3	Transfer learning — 307
14.2.4	Unsupervised machine learning algorithms — 309
14.3	Refinery production scheduling — 310
14.3.1	Optimizing production scheduling: industry 3.0 vs. industry 4.0 in oil refinery operations — 311
14.3.2	Challenges — 315
14.3.3	Real case: Abqaiq Plants, a digital transformation success story — 317
14.3.4	Enhancing heating control to increase refinery throughput — 319
14.3.5	Model predictive control in scheduling a refinery — 320
	Bibliography — 323
15	Worked examples — 327
15.1	Example 1 – Green metrics analysis for hazardous chemistry scale-up and decision-making — 327
15.1.1	Part A problem statements — 327
15.1.2	Part B problem statements — 327
15.1.3	Part A solutions — 328
15.1.4	Part B solutions — 329

15.2	Example 2 – Green metric analysis of catalytic synthesis and purification of a pharmaceutical building block — 332
15.2.1	Part A problem statements — 332
15.2.2	Part B problem statements — 332
15.2.3	Part A solutions — 333
15.2.4	Part B solutions — 334
15.3	Example 3 – Comparison of batch and microflow processes in diazomethane-based chemistry — 336
15.3.1	Part A problem statements — 336
15.3.2	Part B problem statements — 337
15.3.3	Part A solutions — 338
15.3.4	Part B solutions — 342
15.4	Example 4 – Bioethanol production: conventional batch fermentation versus continuous membrane bioreactor — 344
15.4.1	Part A problem statements — 344
15.4.2	Part A solutions — 345
15.4.3	Part B problem statements — 348
15.4.4	Part B solutions — 349
15.5	Example 5 – Application of process analytical technologies in continuous catalytic hydrogenation — 354
15.5.1	Problem statements — 354
15.5.2	Solutions — 355
15.6	Example 6 – Green metrics analysis for hazardous chemistry and purification optimization — 356
15.6.1	Part A problem statements — 357
15.6.2	Part A solutions — 357
15.6.3	Part B problem statements — 358
15.6.4	Part B solutions — 359
15.7	Example 7 – Green metrics analysis and reaction optimization — 360
15.7.1	Part A problem statements — 361
15.7.2	Part A solutions — 361
15.7.3	Part B problem statements — 362
15.7.4	Part B solutions — 362
15.7.5	Part C problem statements — 364
15.7.6	Part C solutions — 364
15.7.7	Part D problem statements — 365
15.7.8	Part D solutions — 365
	Bibliography — 366