

Contents

1	About this book — 1
2	Introduction to machine learning: what and why? — 2
2.1	Some motivation — 2
2.2	What is machine learning? — 2
3	Classification problem — 4
4	The fundamentals of artificial neural networks — 6
4.1	Basic definitions — 6
4.2	ANN classifiers and the softmax function — 10
4.3	The universal approximation theorem — 12
4.4	Why is non-linearity in ANNs necessary? — 14
4.4.1	$0 + 0 = 8?$ — 14
4.4.2	Non-linear activation functions are necessary in ANNs — 15
4.5	Exercises — 16
5	Supervised, unsupervised, and semisupervised learning — 19
5.1	Basic definitions — 19
5.2	Example of unsupervised learning: detecting bank fraud — 21
5.3	Exercises — 22
6	The regression problem — 24
6.1	What is regression? How does it relate to ANNs? — 24
6.2	Example: linear regression in dimension 1 — 26
6.3	Logistic regression as a single neuron ANN — 27
6.3.1	1D example: studying for an exam — 27
6.3.2	2D example of admittance to graduate school: separation of sets and decision boundary — 30
6.3.3	Relation between ANNs and regression — 32
6.3.4	Logistic regression vs. networks with many layers — 33
6.4	Exercises — 35
7	Support vector machine — 40
7.1	Preliminaries: convex sets and their separation, geometric Hahn–Banach theorem — 40
7.2	Support vector machine — 42
7.3	Hard margin SVM classifiers — 44
7.4	Soft margin SVM classifier — 46
7.5	Exercises — 49

8	Gradient descent method in the training of DNNs — 52
8.1	Deterministic gradient descent for the minimization of multivariable functions — 53
8.2	Additive loss functions — 56
8.3	What are SGD algorithms? When to use them? — 57
8.4	Epochs in SGD — 58
8.5	Weights — 59
8.6	Choosing the batch size through a numerical example — 60
8.7	Exercises — 64
9	Backpropagation — 67
9.1	Computational complexity — 67
9.2	Chain rule review — 72
9.3	Diagrammatic representation of the chain rule in simple examples — 74
9.4	The case of a simple DNN with one neuron per layer — 78
9.5	Backpropagation algorithm for general DNNs — 83
9.6	Exercises — 88
10	Convolutional neural networks — 93
10.1	Convolution — 93
10.1.1	Convolution of functions — 93
10.1.2	Convolution of matrices — 94
10.1.3	Hadamard product and feature detection — 96
10.2	Convolutional layers — 99
10.3	Padding layer — 102
10.4	Pooling layer — 103
10.5	Building CNNs — 105
10.6	Equivariance and invariance — 107
10.7	Summary of CNNs — 114
10.8	Exercises — 115
A	Review of the chain rule — 119
	Bibliography — 121
	Index — 125