
Gregor Büchel, Bernhard Schröder

Verfahren und Techniken in der computergestützten Lexikographie

1 Kodierung strukturierter Texte mit SGML
und XML

1.1 Anforderungen an ein Kodierungssystem
1.1.1 Mächtigkeit
1.1.2 Eindeutigkeit
1.1.3 Interpretierbarkeit
1.1.4 Nachhaltigkeit
1.1.5 Portierbarkeit
1.1.6 Softwareunterstützung
1.2 Die Grundkonzepte von SGML und XML
1.2.1 Die formalen Grundkonzepte
1.2.2 Das pragmatische Grundkonzept
1.3 SGML vs. XML
1.4 SGML und XML als Antwort auf die

Anforderungen ?
1.4.1 Mächtigkeit

Jedes Vorhaben, bei dem die Erfassung und Verarbeitung von Textdaten eine wichtige
Rolle spielt, wird vor den Problemen stehen,

- in welcher Weise die Textdaten erfasst werden sollen,
- in welcher Form die Textdaten gespeichert werden sollen und
- mit welchen Hilfsmitteln das Textmaterial für die weitere Arbeit oder für eine Veröffent-

lichung des Materials erschlossen werden soll.

Dabei steht nicht mehr die Bewältigung großer Textmengen im Vordergrund der Überle-
gungen - textuelle Information, die dem Umfang ganzer Bücherregale entspricht, lässt sich
heute mit jedem handelsüblichen PC und preisgünstig zu erwerbender oder gar kostenfreier
Software verwalten sondern der Umgang mit strukturierter textueller Information. Was
ist damit gemeint?

Für die allermeisten Formen der digitalen Repräsentation von Texten bildet die lineare
Abfolge von Basiseinheiten des Textes - i.d.R. Zeichen - die Grundstruktur der Repräsen-
tation. Einfache Textdateien bestehen schlicht aus einer Abfolge von Zeichenrepräsenta-
tionen (Zeichencodes). Neben der linearen Strukturierung, die sich in dieser Art der Kodie-
rung wiederspiegelt, weisen Texte immer auch vielfaltige andere explizite und implizite
Strukturen auf, die hier pauschal als nichtlineare Strukturen bezeichnet werden sollen. Zu
den nichtlinearen Strukturen in diesem weiten Sinne gehören:

- Formatierungen und Layout von Texten und Textteilen, Hervorhebung von Textteilen
durch den Autor

- Metainformation zum Text, z.B. bibliographische Angaben oder andere Angaben zur
Textherkunft, Angaben zur Digitalisierung, Angaben zu Korrekturen usw.,

1.4.2 Eindeutigkeit
1.4.3 Interpretierbarkeit
1.4.4 Nachhaltigkeit
1.4.5 Portierbarkeit
1.4.6 Softwareunterstützung
2 Datenbanksysteme zur Verwaltung

strukturierter Textdaten
2.1 Datenbanksysteme: Allgemeiner Aufbau
2.2 Datenbankentwurf und

Datenbankmodelle
2.2.1 Relationale Datenbanksysteme (RDBS)
2.2.2 Objektorientierte Datenbanksysteme

(OODBS)
3 Resümee
4 Literatur

8 Gregor Büchel, Bernhard Schröder

- Textgliederung,
- interpretierende Angaben zum Text oder zu Textteilen (linguistischer, philologischer,

historischer, soziologischer usw. Art),
- Verknüpfungen zwischen Texten oder Textteilen (darunter können explizit vom Autor

vorgenommene Verknüpfungen wie Fußnoten oder explizite Querverweise sein oder von
einem Interpreten vorgenomme Verknüpfungen) und

- Verknüpfungen mit nicht-textuellen Medien, wie statischen oder bewegten Bildern,
Klangdaten, interaktiven Anwendungen, Internet-Ressourcen.

Die Verknüpfungsstrukturen werden auch als die in einem engeren Sinne nichtlinearen
Strukturen bezeichnet.

Die explizite Kodierung der genannten nichtlinearen Strukturen wird i.d.R. von moder-
nen Textverarbeitungsprogrammen - zumindest in Ansätzen - unterstützt. Die nichtlineare
Kodierungsfahigkeit eines Systems wird allerdings oft bei retrospektiven Projekten zur
Digitalisierung historischer Dokumente vor besondere Herausforderungen gestellt: Bei der
retrospektiven Digitalisierung hat man es nicht selten mit unterschiedlichen Textzeugen
und -Versionen, Graden an Sicherheit bei der Entschlüsselung, Textlücken, Textfragmenten
mit unklarer Anordnung usw. zu tun. Einerseits erfordert die Abbildung dieser Strukturen
auf die von Textverarbeitungsprogrammen gebotenen Möglichkeiten viel Phantasie, und
entsprechend lässt der Bedienungskomfort der Textverarbeitungsprogramme bei derartigen
Anwendungen zu wünschen übrig. Andererseits wirft der Versuch, die erfassten Daten in
unterschiedlichen Medien (Druck, WWW, CD-ROM) oder nur selektiv zu publizieren,
gerade bei den nichtlinearen Strukturen nur schwer lösbare Probleme auf. Und schließlich
scheitert man zumeist an der Aufgabe, nichtlineare Strukturen in andere Anwendungen
oder Kodierungsformate zu exportieren.

Man wird aber auch schon bei linearen Strukturen auf Probleme stoßen, wenn man vor
der Aufgabe steht, Zeichen zu kodieren, die in den üblichen Zeichensätzen des Betriebs-
systems nicht verfugbar sind. Die Darstellbarkeit solcher Zeichen auf dem Bildschirm ist
nicht immer auch eine Garantie für die Druckbarkeit von Zeichen oder die Darstellbarkeit
der Zeichen auf WWW-Seiten. Und den Export in andere Anwendungen überleben solche
aus anderen Codes entliehenen Zeichen selten.

Lexikographische Projekte, wie sie in diesem Band geschildert werden, sind mit den
aufgeführten Textkodierungs- und -strukturierungsproblemen in besonderer Weise kon-
frontiert: Zum einen stellen Lexikoneinträge stark nichtlinear strukturierte Texte dar; im
gedruckten Wörterbuch wird durch typographische Mittel eine oft sehr filigrane Mikro-
struktur erschließbar gemacht. Die implizite Kodierung der Mikrostruktur durch die Typo-
graphie reicht aber normalerweise nicht aus, wenn aus dieser Textgrundlage Wörterbuch-
versionen für das elektronische Medium abgeleitet werden sollen. Der Hauptgrund dafür ist
die Polyfunktionalität typographischer Merkmale. Kursivierung kann in einem Wörterbuch
unterschiedliche Funktionen haben; im für die digitale Verarbeitung günstigeren Fall, lässt
sich die Funktion rein formal durch den Kontext ermitteln, im ungünstigeren Fall kann die
Ermittlung der Funktion nur durch eine Interpretationsleistung der Wörterbuchbenutzerin
oder des Wörterbuchbenutzers geschehen. Zur Implementierung unterschiedlicher Sichten
auf Wörterbuchartikel in einem elektronischen Wörterbuch, die die Ausblendung von
Teilen der Mikrostruktur gestatten, ist eine eindeutige explizite Markierung der Mikro-
struktur vonnöten.

Zum zweiten weisen Wörterbücher in starkem Maße Verknüpfimgsstrukturen auf. Es be-
stehen eine Vielzahl von Verweisen innerhalb der Artikel, zwischen Artikeln und von

Verfahren und Techniken in der computergestützten Lexikographie 9

Wörterbuchartikeln auf Belege. Zunehmend werden auch Verweise auf nicht-textuelle
Medien integriert.

Und schließlich arbeiten alle Wörterbuchprojekte mit Korpora retrospektiv digitalisierter
Texte. Neben den bereits erwähnten Kodierungsproblemen bei diesen Korpora, stellt sich
spätestens bei der elektronischen Publikation eines Wörterbuchs die Frage, ob die Korpora
oder ausgewählte Belegstellen zusammen mit dem Wörterbuch publiziert werden sollen
und welche Verweisstrukturen zwischen dem Wörterbuch und den Korpora explizit ge-
macht werden sollen.

Um die angesprochenen Stfukturierungs- und Kodierungsfragen zu beantworten und die
damit verbundenen Erfassungs- und Publikationsprobleme zu lösen, müssen eine Vielzahl
inhaltlicher und technischer Probleme gelöst werden; ein weites Spektrum an Fragen und
an prinzipiellen und exemplarischen Lösungen wird in diesem Band angesprochen. In die-
sem Beitrag geht es um die Grundlagen der Kodierung strukturierter textueller Information
mit SGML und XML und der Verwaltung dieser Strukturen in Datenbanksystemen.

1 Kodierung strukturierter Texte mit SGML und XML

In diesem Abschnitt wird diskutiert, welche Anforderungen an ein adäquates Kodierungs-
system für strukturierte textuelle Information zu stellen sind. SGML und XML werden als
Kodierungssysteme vor dem Hintergrund dieser Forderungen bewertet.

1.1 Anforderungen an ein Kodierungssystem

Je nach Projekt wird man mit unterschiedlicher Gewichtung fordern, dass das gewählte
Kodierungssystem hinreichend mächtig ist, die zu kodierenden Strukturen eindeutig
repräsentiert, gut maschinell zu interpretieren ist, dass die Kodierung nachhaltigen Bestand
hat und auf andere Computersysteme portierbar ist, ferner dass benutzerfreundliche
Werkzeuge zur Arbeit mit dem Kodierungssystem bereitstehen. Die folgenden Abschnitte
sollen die Anforderungen verdeutlichen.

1.1.1 Mächtigkeit

Ein Kodierungssystem muss zunächst für die explizit zu kodierende Information auch
Kodierungsmechanismen bereitstellen. Ein Kodierungssystem, das zur Kodierung rein
linearer Strukturen dient, ist beispielsweise ungeeignet zur Kodierung von Verweis-
strukturen. Das schließt nicht aus, dass man mit zusätzlichen Konventionen, z.B. durch
Reservierung bestimmter Zeichensequenzen für die Kodierung von Verweisstrukturen, die
Mächtigkeit eines Kodierungssystems erweitern kann. Die Etablierung zusätzlicher
Konventionen bedeutet aber nichts anderes als die Implementierung eines neuen mächti-
geren Kodiersystems auf der Basis eines weniger mächtigen. Geschieht diese Erweiterung
ad hoc, so läuft man ein nicht zu unterschätzendes Risiko, dass die übrigen Anforderungen
bezüglich des erweiterten Kodierungssystems nicht mehr erfüllt sind.

10 Gregor Büchel, Bernhard Schröder

1.1.2 Eindeutigkeit

Gerade bei ad hoc entworfenen Kodierungssystemen kann es leicht passieren, dass die
gewählten Kodierungen nicht eindeutig sind. Im trivialen Fall, der bei Texten, die in den
Anfangszeiten der linguistischen Datenverarbeitung erfasst wurden, nicht selten anzutreffen
ist, wurden in den damaligen Codes nicht verfügbare Zeichen durch Zeichensequenzen
ersetzt, die auch sonst im Text anzutreffen waren, so dass eine automatische Erkennung
dieser Zeichen im Code nicht immer möglich ist. Ob zuende in einem Kodierungssystem,
bei dem alle Umlaute als nicht-umgelauteter Vokal + e kodiert werden, als zwei- oder
dreisilbig zu interpretieren ist, ist nur unter Zuhilfenahme sprachlichen Wissens
entscheidbar. Weniger triviale Fälle sind aber auch in moderneren Kodierungssystemen
anzutreffen: Bei Kodierungen, die von reservierten Codes eingeleitet werden, ist nicht
immer klar, wo sie enden. Kodierungen, die nichtlineare strukturelle Information zu
Textteilen beinhalten, sind oft nicht eindeutig, wenn es um die Frage geht, wo diese
Textteile beginnen und wo sie enden; beendet eine neue Kodierung desselben Typs immer
den Gültigkeitsbereich der vorangehenden? Diese Frage wird nicht von jedem
Kodierungssystem eindeutig beantwortet.

1.1.3 Interpretierbarkeit

Auch die formale Eindeutigkeit von Kodierungen muss nicht immer eine günstige
maschinelle Interpretierbarkeit bedeuten. Konventionen können von den Bearbeiterinnen
und Bearbeitern aufgrund des sprachlichen und außersprachlichen Wissens, über das sie
verfugen, sehr leicht zu erlernen und zu interpretieren sein, ohne dass diese Konventionen
deshalb auch leicht programmtechnisch umzusetzen sind. Dies ist immer dann der Fall,
wenn es sehr komplexe Abhängigkeiten verschiedener Kodierungen voneinander gibt, eine
Kodierung A beispielsweise im Kontext einer Kodierung B auf eine Weise, im Kontext
einer Kodierung C aber auf eine ganz andere Weise verwendet wird.

1.1.4 Nachhaltigkeit

In diesem Band wird von Langzeitprojekten berichtet, die sich über viele Jahrzehnte er-
strecken. Es ist selbstverständlich, dass die in diesen Projekten akkumulierten elektroni-
schen Textressourcen für die Projektdauer und die elektronisch publizierten Ergebnisse
möglichst lange darüber hinaus Bestand haben sollen. Es ist nicht allzu verwegen, zu pro-
gnostizieren, dass die Anwendungsprogramme, die heute die Benutzerschnittstellen zu
Wörterbüchern auf CD-ROM oder im World-Wide Web (WWW) bereitstellen, nicht über
Jahrzehnte hinweg benutzbar sein werden, sofern sie auf avancierteren Techniken beruhen
als bloßen auf einem Server bereitliegenden HTML-Seiten. Die Analogie zur bisherigen
Entwicklung berechtigt zu dieser Annahme. Nicht wenige nur ein Jahrzehnt alte Anwen-
dungsprogramme sind auf heutigen PCs nur dann noch nutzbar, wenn neben aktuellen Be-
triebssystemsversionen auch alte DOS-Versionen installiert werden. Und manches alte
Programm verweigert selbst dann die Zusammenarbeit mit neuer Hardware.

Hard- und Softwarehersteller haben nur ein geringes wirtschaftliches Interesse an der
Gewährleistung einer nachhaltigen Abwärtskompatibilität neuer Systeme, also der Mög-
lichkeit, ältere Software und Daten auf neueren Systemen zu nutzen. Die zusätzliche Forde-

Verfahren und Techniken in der computergestützten Lexikographie 11

rung weitreichender Abwärtskompatibilität verteuert nämlich die Hard- und Softwareent-
wicklung und verringert den Anreiz, die neuesten Softwareprodukte zu erwerben.

Noch bedrohlicher als die mangelnde Abwärtskompatibilität der Weiterentwicklungen
eines bestimmten Systems kann für Anwendungssoftware das vollständige Verschwinden
bestimmter Hardware- und Betriebssystemsplattformen vom Markt sein. Es ist schwer, für
manche Anwendungssoftware, die auf in den 80er Jahren noch weit verbreiteten Groß-
rechnern lief, heute noch geeignete Rechner zu finden.

Und schließlich entspricht veraltete Anwendungssoftware auch nicht mehr den heutigen
Benutzungsgewohnheiten, ihre Bedienung ist oft nur umständlich zu erlernen, sie wird von
den potentiellen Benutzerinnen und Benutzern nicht selten abgelehnt.

Kompatibilitätsprobleme stellen sich aber nicht nur bei Anwendungsprogrammen,
sondern auch bei den zugehörigen Dateiformaten. Aktuelle Programmversionen von Text-
verarbeitungsprogrammen haben nicht selten Schwierigkeiten bei der Wiederherstellung
aller Formatierungsinformationen aus Dateien, die mit Vorgängerversionen vor etwa fünf
Jahren hergestellt wurden, an weiteren nichtlinearen Strukturen in diesen Texten scheitern
sie oft genug. Eine Unterstützung von Formaten nicht mehr auf dem Markt befindlicher
Textverarbeitungssysteme ist selten anzutreffen.

Vor diesem Hintergrund muss ein Kodierungsschema auch daraufhin untersucht werden,
ob man berechtigterweise prognostizieren kann, dass es auch in einigen Jahrzehnten noch
ohne großen Eigenaufwand zur Herstellung von Kompatibilität und ohne Informations-
verlust zu verwenden ist.

1.1.5 Portierbarkeit

Will man sich in einem Projekt nicht ein für alle Mal auf bestimmte Hard- und Software-
produkte festlegen, so stellt sich die Frage der Portierbarkeit der Daten. Können die Daten
ohne großen Aufwand und ohne Informationsverlust auch auf anderen Systemen verwendet
werden? Zwar ist Portierbarkeit meist auch in den Überlegungen zur Nachhaltigkeit einge-
schlossen, aber es kommt auch vor, dass sich Nachhaltigkeitsüberlegungen auf die An-
nahme stützen, dass sich ein bestimmtes technisches System durchsetzen werde und nach-
haltig verfügbar bleibe, z.B. aufgrund seiner technischen Überlegenheit oder der Markt-
macht des Herstellers. So kommt es bei Projekten mit starkem Bezug zum WWW vor, dass
bei der Entscheidung für ein bestimmtes Kodierungssystem den Ausschlag gibt, ob das
Kodierungssystem eine Zukunft im WWW hat. Gleichzeitig kann es aber der Fall sein, dass
dieses Kodierungssystemen von den konkurrierenden Browsern in sehr unterschiedlicher
Weise unterstützt wird, von einzelnen Browsern also möglicherweise derzeit gar nicht un-
terstützt wird.

1.1.6 Softwareunterstützung

Die Arbeit mit komplexen Kodierungssystemen kann umständlich, ermüdend und fehleran-
fallig sein. Es ist für eine ergonomisch sinnvolle Erfassung der Daten wichtig, dass geeig-
nete Softwarewerkzeuge, Spezialeditoren, zur Verfügung stehen. Die effiziente Auswertung
der Daten kann wesentlich von der Verfügbarkeit von Recherchewerkzeugen abhängen, die
sowohl die linearen als auch die nichtlinearen Textstrukturen nutzen. Und schließlich kann
geeignete Publikationssoftware die Druck- oder CD-ROM-Versionen der zu veröffentli-
chenden Daten sehr erleichtern.

12 Gregor Büchel, Bernhard Schröder

In den folgenden beiden Unterabschnitten werden SGML und XML als Formalismen,
mit denen sich komplexe Kodierungssysteme definieren lassen, in Grundzügen vorgestellt,
um dann zu diskutieren, inwiefern SGML- oder XML-basierte Formalismen den Anforde-
rungen genügen.

1.2 Die Grundkonzepte von SGML und XML

SGML (Standard Generalized Markup Language) und XML (Extensible Markup
Language) sind Formalismen,1 mit denen sich Kodierungssysteme formal definieren lassen.
Man kann SGML und XML als Metasprachen auffassen, mit denen spezielle
Kodierungssysteme beschrieben werden. Diese speziellen Kodierungssysteme werden
gerne als Markup Languages (Markierungs-/Annotierungssprachen) bezeichnet. Insofern
als diese Bezeichnung suggeriert, dass die Aufgabe SGML- oder XML-basierter Kodie-
rungssysteme grundsätzlich sei, Markierungs- oder Annotierungsmöglichkeiten für vorge-
gebene Texte zu definieren, ist sie ungenau. SGML- und XML-basierte Kodierungssysteme
werden inzwischen auch zu anderen Zwecken als der Repräsentation textueller Strukturen
verwendet, mit SGML und XML lässt sich die Syntax von Programmiersprachen ebenso
definieren wie Datenaustauschformate für Datenbanken mit beliebigem Inhalt. Der
Schwerpunkt von SGML- und XML-Anwendungen liegt jedoch nach wie vor auf der Re-
präsentation textueller Strukturen. Und nur darauf soll im Folgenden Bezug genommen
werden.

SGML ist die ältere der beiden Metasprachen, sie wurde bereits 1986 definiert und als
ISO-Norm 8879 standardisiert. Im folgenden soll zunächst überwiegend von SGML die
Rede sein, aber bis auf weiter unten ausdrücklich vermerkte Unterschiede ist die Darstel-
lung auch auf XML übertragbar.

Bei den Grundkonzepten von SGML sind die, die sich ausschließlich auf die bereitge-
stellten formalen Strukturen beziehen, von denen zu unterscheiden, die sich auf den inten-
dierten Umgang mit den formalen Konzepten beziehen.

1.2.1 Die formalen Grundkonzepte

Der Aufbau eines Textes aus Teilen wird in SGML durch Elemente modelliert. Terminolo-
gisch soll hier zwischen Elementen als Typen von Textteilen und den konkreten Textteilen
selbst als Instanzen dieser Elemente, kurz: Elementinstanzen, unterschieden werden. Das
Element abschnitt kann also nach dieser Sprachweise mehrfach in einem Text vorkommen,
jedes Vorkommen ist aber eine neue Instanz dieses Elements. Ein Text als ganzer bildet
eine Elementinstanz. Jede Elementinstanz kann Textstücke und weitere Elementinstanzen
enthalten. Die in einer Elementinstanz unmittelbar enthaltenen Elementinstanzen dürfen
einander nicht überlappen.

Die Elementstruktur eines Textes entspricht also einer Baumstruktur, bei der das umfas-
sendste Element die Wurzel, die enthaltenen Elemente die Zweige und die enthaltenen

1 Wenn man sich im WWW über SGML und XML informieren möchte, bietet das Electronic Text
Center an der University of Virginia einen guten Ausgangspunkt gerade im Bereich akademischer
Anwendungen, s. http://etext.lib.virginia.edu/standard.html. Sehr viel weiterführende Infor-
mation findet man auf den XML Cover Pages unter http://www.oasis-open.org/cover/sgml-
xml.html.

Verfahren und Techniken in der computergestützten Lexikographie 13

Textstücke die Blätter bilden. Der Beginn und das Ende eines Elementes wird i.d.R. durch
ein Tag, eine Marke, angezeigt, das durch die Markup-Begrenzer < und > vom umgebenden
Text abgegrenzt ist. Im Anfangs-Tag steht direkt hinter dem linken Markup-Begrenzer der
Name des Elementes, im End-Tag steht i.d.R. zwischen den Markup-Begrenzern ein Quer-
strich und der Name des zu beendenden Elementes. Hier ein Teil dieses Abschnitts mit
Abschnitt, Sätzen und Nominalphrasen als Elementen:

<abschnitt>
<satzxnp>Der Aufbau <np>eines Textes</np> aus <np>Teilen</npx/np>
wird in <np>SGML</np> durch <np>Elemente</np> modelliert.</satz>
<satzxnp>Ein Text als ganzer</np> bildet <np>ein
Element</np>.</satz>

</abschnitt>
Elemente können in SGML nun Träger von Eigenschaften sein. Zur Kodierung von Eigen-
schaften werden in den Anfangs-Tags von Elementen hinter dem Elementnamen Attribute
mit zugehörigen Werten notiert. Wollen wir beispielsweise im obigen Abschnitt bei den
Nominalphrasen auch deren Kasus und Numerus kodieren, so kann das wie folgt aussehen:

<abschnitt>
<satzxnp kasus="nom" numerus="sg">Der Aufbau
<np kasus="gen" numerus="sg">eines Textes</np> aus
<np kasus="dat" numerus="pl">Teilen</npx/np> wird in
<np kasus="dat" numerus="sg">SGML</np> durch
<np kasus="akk" numerus="pl">Elemente</np> modelliert.</satz>
<satzxnp kasus="nom" numerus="sg">Ein Text als ganzer</np> bildet
<np kasus="akk" numerus="sg">ein Element</np>.</satz>

</abschnitt>
Vor der Kodierung der Gliederungsstruktur muss natürlich festgelegt werden, was kodiert
werden soll. In einer Dokumenttypdefinition (DTD) geschieht der formale Teil der Festle-
gung: Es wird im Wesentlichen festgelegt, welche Elemente es gibt - im Beispiel abschnitt,
satz und np - , welche Elemente in welchen anderen enthalten sein dürfen oder müssen, ob
bestimmte Elemente unmittelbar Text enthalten können oder nur wieder weitere Elemente.
Diese Spezifikation bezeichnet man auch als das Inhaltsmodell eines bestimmten Doku-
menttyps. In der DTD wird ferner festgelegt, welche Attribute diese Elemente tragen
können. Zu den Attributen wird angegeben, welchen Typs die Werte sind.

Je nach Kodierungszweck und Kodierungsstil kann es zu einem Dokument unzählige
mögliche DTDs geben. Durch eine DTD ist nur bestimmt, welche Kodierungen zulässig
sind, nicht aber, wie sie verwendet werden sollen. Dies sollte in Kommentaren zur DTD
oder in einem separaten Kodierungshandbuch möglichst detailliert und praxisnah nieder-
gelegt werden.

Aus dem hierarchischen SGML-Strukturierungsmodell für Dokumente ergibt sich eine
nicht unwesentliche Einschränkung: Die gleichzeitige Strukturierung eines Dokumentes in
einander überlappende Einheiten ist ausgeschlossen. Ein Dokument, das durch SGML-
Elemente, die Abschnitte umfassen, gegliedert wird, kann nicht gleichzeitig durch SGML-
Elemente gegliedert werden, die Seiten umfassen, sofern mehrere Abschnitte auf einer Seite
vorkommen können, gleichzeitig aber auch ein Seitenumbruch innerhalb eines Abschnitts
vorkommen kann. Denn in solchen Fällen kann weder die betreffende Seitenelementinstanz

14 Gregor Büchel, Bernhard Schröder

als Teilelement der Elementinstanz des Abschnitts noch umgekehrt aufgefasst werden.
Zwar sieht der SGML-Standard für solche Fälle die Möglichkeit vor, mit konkurrierenden
DTDs zu arbeiten, also eine DTD bereitzuhalten, in der die Seitengliederung, nicht aber die
Abschnittsgliederung berücksichtigt wird, und eine andere DTD für den umgekehrten Fall.
In das Dokument werden speziell markierte Tags für beide DTDs aufgenommen. Leider
gibt es jedoch kaum Werkzeuge, die die gleichzeitige Arbeit mit konkurrierenden DTDs
unterstützen würden.

Als Ausweg aus dem Dilemma bietet sich an, bei einer der beiden konkurrierenden Glie-
derungsarten darauf zu verzichten, mit SGML-Elementen die Einheiten dieser Gliederungs-
ebene zu umschließen, sondern stattdessen mithilfe leerer, d.h. weder Text noch weitere
Elemente umfassender, Elemente nur den Anfang oder nur das Ende oder beides zu mar-
kieren. Damit verzichtet man allerdings auf Möglichkeiten, die zulässigen Strukturen dieser
Gliederungsart genauer durch eine DTD zu beschreiben und die Gliederungseinheiten in
bequemer Weise zu adressieren.2

Die bisher behandelten Mittel zur Kodierung von Textstrukturen erlauben, über den Text
ein baumartige Gliederungsstruktur zu legen. Zwischen den Elementinstanzen sowie den
Elementinstanzen und dem Text bestehen zwei Basisrelationen: Eine Elementinstanz oder
ein Textstück kann in einer (anderen) Elementinstanz unmittelbar enthalten sein. In einer
Elementinstanz unmittelbar enthaltene Elementinstanzen oder Textstücke stehen in einer
linearen Abfolgerelation zueinander: Die unmittelbar enthaltenen Elementinstanzen oder
Textstücke stehen eben immer rechts oder links von anderen Elementinstanzen oder
Textstücken.

Zu der baumartigen Gliederungsstruktur tritt noch die Möglichkeit, Elementinstanzen
mit Attributen und zugehörigen Werten zu versehen. Der Mechanismus der Attribuierung
von Elementinstanzen wird in SGML dazu genutzt, weitere beliebige Relationen zwischen
den Elementinstanzen eines Dokumentes oder auch zu Elementinstanzen anderer Doku-
mente herzustellen.

Um beispielsweise einen Verweis von einem Wörterbuchartikel auf einen anderen zu
kodieren, kann man ersteren eindeutig benennen, indem man der zu diesem Artikel gehö-
renden Elementinstanz ein Attribut mit einem Identifikator, einer zur Bezeichnung keiner
anderen Elementinstanz verwendeten Zeichenkette zuordnet.

< a r t i k e l id=hund><lemma>Hund</lemma>

< / a r t i k e l >

< a r t i k e l i d=ka t zex l emma>Ka tze< / l emma>
s i e h e auch < v e r w e i s i d r e f = h u n d > A r t i k e l Hund</verweis>

< / a r t i k e l >

Die Elementinstanz von verweis im Artikel Katze verweist durch den Wert des Attributs
idref also auf die Elementinstanz von artikel mit dem Identifikator hund. Führt man zusätz-
lich noch Konventionen zur eindeutigen Identifikation anderer Dokumente ein, wie es im
WWW durch die Uniform Resource Identifiers (URIs) realisiert ist, so können Verweise
auf beliebige Elementinstanzen in beliebigen SGML-Dokumenten realisiert werden. Mit-

2 Vgl. hierzu auch den Beitrag von Thomas Burch und Johannes Fournier in diesem Band. Die TEI
befasst sich im Kapitel 31 der Guidelines mit diesem Thema.

Verfahren und Techniken in der computergestützten Lexikographie 15

hilfe der für XML definierten XML Pointer Language (XPointer) kann auch auf
Elementinstanzen ohne Identifikatoren referiert werden, indem man einen Pfad durch den
Strukturbaum des Dokumentes beschreibt, der zu der gemeinten Elementinstanz fuhrt. Das
Verweiskonzept kann auch derart erweitert werden, dass Verweise mit mehreren Zielen
zugelassen werden. Auf diese Weise kann von einer Elementinstanz auf mehrere andere
verwiesen werden. Die XML Linking Language (XLink) definiert für XML erweiterte
Verweiskonzepte, mit deren Hilfe beliebige Relationen zwischen Elementinstanzen von
Dokumenten kodierbar sind und Verweis- und Gliederungsstruktur relativ unabhängig
voneinander verwaltet werden können.

Nur erwähnt sei hier ein weiteres Sprachelement von SGML: Entitäten sind Code-
Sequenzen, die einzelne Zeichen oder Zeichenfolgen vertreten. Damit lassen sich insbeson-
dere Bezeichner für Zeichen bilden, die im aktuell benutzten Code nicht vorhanden sind
oder die für die Portabilität der Daten hinderlich wären. Dadurch wird die Integration belie-
biger Zeichensysteme in SGML möglich.

1.2.2 Das pragmatische Grundkonzept

SGML ist intendiert als ein Kodierungssystem für ein deskriptives Markup. SGML-Tags
sollen nicht als Befehle für bestimmte Formatierungsoperationen verstanden werden, son-
dern mithilfe von SGML-Elementen sollen die inhaltliche Gliederung eines Dokumentes
markiert werden.

Wie das inhaltlich durch SGML-Tags gegliederte Dokument für unterschiedliche Aus-
gabemedien zu formatieren ist, wird unabhängig vom SGML-Markup bestimmt. Ob eine
Überschrift fett, größer, zentriert erscheint, soll nicht durch SGML-Tags im Dokument
kodiert werden, sondern durch eine gesonderte Spezifikation, die Elementen in Abhängig-
keit von ihrer Umgebung und Attributen, Formatierungseigenschaften zuweist. Diese Zu-
weisung geschieht außerhalb des eigentlichen Dokuments. Die so erreichte Modularisie-
rung ermöglicht es, ohne Veränderung des Dokuments, an unterschiedliche Ausgabemedien
optimal angepasste Darstellungsformen des Dokuments herzustellen. DSSSL (Document
Style Semantics and Specification Language) ist der zu SGML gehörige Standard zur
Spezifikation von Darstellungsformen eines Dokuments, XSL (Extensible Style Language)
der entsprechende - z.T. noch in Entwicklung befindliche - Standard für XML, der viele
Prinzipien von DSSSL aufgreift.

Dass das pragmatische Grundkonzept des deskriptiven Markup bei der Entwicklung von
SGML leitend war, schließt jedoch nicht aus, dass SGML auch für ein darstellungsbezo-
genes Markup verwendet werden kann. HTML (Hypertext Markup Language), die Sprache
des WWW, ist eine SGML-basierte Markup-Sprache, die ursprünglich einige wenige
Gliederungsmöglichkeiten für Dokumente vorsah. Die Art der Darstellung der Dokumente
blieb weitgehend den Betrachterprogrammen überlassen. Der zunehmende Bedarf an
graphischen Gestaltungsmöglichkeiten und an kontrolliertem Layout hat zur Aufnahme von
Elementen und Attributen zur Steuerung des Layout geführt. HTML wurde mehr und mehr
zur Layout-Programmiersprache für das WWW. Erst die Einführung von Cascading Style
Sheets (CSSs) zur Bestimmung von Layout-Eigenschaften von WWW-Seiten macht es
möglich, den Anteil von nicht-deskriptivem Marküp in den HTML-Dokumenten selbst zu
verringern, ohne auf ansprechendes Layout zu verzichten.

Bei der retrospektiven Digitalisierung allerdings wird man des öfteren davon Gebrauch
machen müssen, dass sich mit SGML prinzipiell auch graphische Eigenschaften von Texten

16 Gregor Büchel, Bernhard Schröder

beschreiben lassen; überall da, wo unklar ist, wie bestimmte graphische Merkmale (z.B.
Wechsel des Schrifttyps, der Schriftgröße oder -färbe) zu interpretieren sind, wird man sich
bei der Kodierung auf die (typo-)graphischen Eigenschaften zurückziehen müssen.

1.3 SGML vs. XML

Die Grundkonzepte von SGML sind lückenlos auch auf XML übertragbar. Neben einigen
rein notationeilen Unterschieden schließt XML insbesondere Merkmale von SGML aus, die
die automatische Analyse von SGML-Dokumenten erschweren, dazu gehören beispiels-
weise Möglichkeiten, Start- oder End-Tags, die aus dem Zusammenhang zu erschließen
sind, nach entsprechender Deklaration in der DTD wegzulassen. Die Markup-
Minimierungsmöglichkeiten von SGML haben zur Folge, dass viele SGML-Dokumente
ohne eine DTD gar nicht eindeutig analysiert werden können, dass also nicht immer ein-
deutig zu ermitteln ist, wie weit sich eine Elementinstanz erstreckt. Fallen die Minimie-
rungsmöglichkeiten, wie in XML, weg, müssen also alle Elementinstanzen explizit durch
ein Start-Tag geöffnet und durch ein End-Tag geschlossen werden; so kann man auch ohne
eine DTD überprüfen, ob zumindest die Verschachtelung der Elementinstanzen korrekt ist
und ob die verwendeten Entitäten bekannt sind. Fällt die Überprüfung positiv aus, so hat
man es mit einem wohlgeformten Dokument zu tun. Entspricht die Struktur des Dokuments
darüber hinaus noch der zugehörigen DTD, so verfugt man über ein gültiges Dokument.
Die zwei Stufen formaler Richtigkeit erweisen sich in der praktischen Arbeit als oft sehr
nützlich. Nicht immer vollzieht sich die DTD-Entwicklung und die Entdeckung neuer Er-
fordernisse bei der Kodierungsarbeit synchron. In solchen Fällen kann eine Arbeit mit be-
züglich der aktuellen DTD ungültigen Dokumenten vonnöten sein, nichtsdestotrotz bleibt
deren Wohlgeformtheit überprüfbar.

1.4 SGML und XML als Antwort auf die Anforderungen?

Die in Abschnitt 1.1 genannten Anforderungen lassen sich mit SGML bzw. XML weit-
gehend erfüllen.

1.4.1 Mächtigkeit

Durch die große Flexibilität bei der Definition unterschiedlichster Dokumenttypen können
SGML und XML als geeignete Werkzeuge für die meisten Kodierungsaufgaben gesehen
werden. Mithilfe der erweiterten Verweistechniken lassen sich beliebige Relationen
zwischen Dokumententeilen kodieren. Einander überlappende Dokumentteile zwingen
jedoch häufig zu intuitiv weniger eingängigen Kodierungsmechanismen. SGML und XML
sind insgesamt aber mächtig genug, prinzipiell jede Datenstruktur kodieren zu können.

1.4.2 Eindeutigkeit

Mithilfe von SGML oder XML definierte Kodierungssysteme sind formal eindeutig. Eine
Verwechslung von Textstücken oder Markup oder Unklarheiten, auf welche Textteile sich
ein bestimmtes Markup erstreckt, sind bei geeigneter DTD-Konstruktion und gültigen

Verfahren und Techniken in der computergestützten Lexikographie 17

SGML-Dokumenten oder wohlgeformten XML-Dokumenten ausgeschlossen. Dass Kodie-
rungen auch von allen Benutzerinnen und Benutzern eindeutig und hinreichend klar ver-
standen werden, kann natürlich auf formalem Weg nicht sichergestellt werden. Von der
Text Encoding Initiative (TEI) werden jedoch in den TEI Guidelines für zahlreiche Kodie-
rungsprobleme detaillierte Empfehlungen für die Verwendung von SGML-Markup ausge-
sprochen. Diese Empfehlungen können als eine Grundlage für ein detailliertes Kodierungs-
handbuch dienen, das auch die pragmatisch-inhaltlichen Fragen der Markup-Verwendung
klärt.

1.4.3 Interpretierbarkeit

Durch SGML- bzw. XML-DTDs werden kontextfreie Grammatiken spezifiziert. SGML-
oder XML-Dokumente stellen an automatische Analyseprogramme damit ähnliche Anfor-
derungen wie der Code von Programmiersprachen. XML bedeutet gegenüber SGML eine
deutliche Reduktion des Analyseaufwands.

1.4.4 Nachhaltigkeit

Jede Prognose über zukünftige technische Entwicklungen ist mit Unsicherheit behaftet. Die
wachsende Bedeutung von XML im Internet-Bereich3 und als Grundlage von Industriestan-
dards in Wachstumsbereichen4 berechtigt zu der Annahme, dass XML auf Jahre hin ein
zentraler Standard zur Textkodierung sein wird. Verlage und Redaktionen setzen zuneh-
mend mit langfristigen Investitionen auf den Einsatz von SGML oder XML bei der medi-
enneutralen Texterfassung. Aber Nachhaltigkeit wird nicht zuletzt auch von den Eigen-
schaften gesichert, die ein hohes Maß an Portierbarkeit garantieren.

1.4.5 Portierbarkeit

SGML- und XML-Dateien sind reine Textdateien, d.h. die enthaltenen Zeichen kann man
mit jedem einfachen Texteditor betrachten. Im Allgemeinen beschränkt man sich auf die-
jenigen Zeichen des ASCII-Zeichensatzes, die auf verschiedenen Systemen gleich interpre-
tiert werden. Damit stellen SGML- und XML-Dateien an Editier- und Betrachter-
programme minimale Anforderungen, sofern keine SGML- oder XML-spezifischen Editier-
oder Formatierfunktionen erwartet werden.

1.4.6 Softwareunterstützung

Der Softwaremarkt stellt Spezialwerkzeuge zur Arbeit mit SGML und zunehmend auch mit
XML für die unterschiedlichsten Aufgaben zur Verfugung.3 Die XML-Tauglichkeit neuer

3 Über aktuelle Standardisierungsbemühungen im WWW-Bereich kann man sich auf den WWW-
Seiten des World Wide Web Consortium (W3C) informieren: http://www.w3c.org .

4 WML, die Beschreibungssprache für Internetseiten, die auf Mobiltelefonen angezeigt werden
können, ist beispielsweise ein XML-basierter Standard, vgl. http://www.wapforum.org .

5 Einen sehr gut aufbereiteten Überblick über Software zur Arbeit mit SGML und XML gibt Steve
Pepper in seinem Whirlwind Guide unter http://www.infotek.no/sgmltool/guide.htm .

18 Gregor Büchel, Bernhard Schröder

WWW-Browser dürfte stark zu Popularisierung von XML-Werkzeugen beitragen. Nicht
alle Spezialwerkzeuge unterstützen den SGML- oder XML-Standard in allen Einzelheiten.
Und nicht jede Funktionalität, die man sich für die Arbeit mit diesen Kodierungssystemen
wünscht, ist in einer vorkonfektionierten Softwarelösung erhältlich. Spezielle Anwendun-
gen werden deshalb auf die Entwicklung spezialisierter Lösungen setzen. Im Zentrum
dieser Lösungen werden meist Datenbanksysteme stehen, in denen die SGML- oder XML-
kodierten Daten verwaltet werden. Darauf gehen die folgenden Abschnitte ein.

2 Datenbanksysteme zur Verwaltung strukturierter Textdaten

2.1 Datenbanksysteme: Allgemeiner Aufbau

Unter dem Begriff Datenbank (DB) versteht man eine strukturierte Sammlung von Daten,
welche für eine Reihe von unter Umständen unterschiedlichen Anwendungssystemen ein
Modell eines in der Regel kleinen Teiles der von Menschen wahrgenommenen Welt reprä-
sentiert (Heuer/Saake [1997], Vossen [1994]).

Das Datenbank-Management-System (DBMS) bezeichnet die notwendige Sammlung von
Software, mit der unabhängig von Anwendungssystemen die lesenden und schreibenden
Zugriffe (Einfügen, Ändern, Löschen) auf eine Datenbank durchgeführt und verwaltet
werden. Wenn im weiteren Text von „Datenbanksoftware" oder von „Software des Daten-
banksystems" gesprochen wird, sollen damit Synonyme zum Wort Datenbank-Manage-
ment-System gemeint sein.

Der Begriff Datenbanksystem (DBS) beschreibt den Verbund einer nicht leeren Menge
von Datenbanken mit einem Datenbank-Management-System.

Datenbanksystem = Datenbank + Datenbank-Management-System

Bei einem Datenbanksystem handelt es sich um eine für Anwendungssysteme weiterent-
wickelte Spezialisierung der Grundfunktionalität des Dateisystems eines Betriebssystems.
Beim Dateisystem eines Betriebssystems (sequentielles Dateisystem) können mehrere An-
wender nur unter erhöhtem Programmieraufwand für ein Anwendungssystem (z.B. durch
Programmierung des wechselseitigen Ausschlusses von Schreiboperationen auf einen
Datenbestand) in einem gleichen Zeitintervall lesend und schreibend auf den gleichen
Datenbestand zugreifen. Sie benötigen weiterhin Werkzeuge für elementare Operationen
auf Dateien: Editieren (nach Möglichkeit mit strukturierten Editierhilfen), Suchen,
Sortieren. Diese Werkzeuge sind in der Regel mit dem Dateisystem alleine nicht gegeben.
Die Folge ist ein in der Regel erhöhter Programmier-(bzw. Installations-)aufwand und ein
eher ineffizient zeitlich ausgenutzter Datenbestand im Mehrbenutzerbetrieb.

Ein Datenbanksystem ermöglicht es mehreren Benutzern, in einem gemeinsam genutzten
Laufzeitintervall mit dem gleichen physischen Datenbestand zu arbeiten. Die Benutzer
greifen nicht mehr direkt, sondern über die Datenbanksoftware auf den Datenbestand zu.
Die Datenbanksoftware übernimmt die Kommunikation zwischen den Datenbankbenutzern
und den Schreib-/Leseoperationen auf die Datenbestände. Sie bietet folgende Grundfunk-
tionalität an:

Verfahren und Techniken in der computergestützten Lexikographie 19

1. Persistenz (= dauerhafte Verwaltung von Datenbeständen) und Sekundärspei-
cherverwaltung: Die Daten sollen während der Laufzeit strukturtreu vom Haupt- in
den Hintergrundspeicher geschrieben werden können. Die Datenbanksoftware muss
Funktionen bereitstellen, um adressengesteuert Direktzugriffe auf Datensätze im Hin-
tergrundspeicher ausfuhren zu können. Hinzu kommt Software, die anwendungsunab-
hängig das Einfügen, Ändern und Löschen von Daten auf Hintergrundspeichern
ausfuhrt.

2. Verwaltung eines Schemakataloges (Data Dictionary): Das Schema ist die konzep-
tuelle Beschreibung der Datenbanken eines Datenbanksystems. Es enthält die Daten-
definitionen für sämtliche Daten, die durch das Datenbanksystem verwaltet werden.
Dieser Schemakatalog, der auch ,Data-Dictionary' genannt wird, ermöglicht während
der Laufzeit des Datenbanksystems Online-Zugriffe auf die Datendefinitionen des
Systems. Die in diesem und im vorhergehenden Absatz genannte Software garantiert
die Forderung der Datenunabhängigkeit an eine Datenbank. Diese Forderung hat das
Ziel, eine in der Regel langlebige Datenbank von ständig auftretenden Änderungen der
auf sie zugreifenden Anwendungssysteme abzukoppeln.

3. Interpretation einer Anfragesprache: Ein Datenbanksystem bietet dem Benutzer
eine Anfragesprache an, mit der er, ohne die interne Speicherung der Daten in der
Datenbank zu kennen, auf die Datenmengen des Datenbanksystems zugreifen kann.
Der Zugriff geschieht in der Regel interaktiv.

Weitere sechs notwendige Merkmale eines DBMS sind: Sicherung der Integrität, Verwalt-
ung von Benutzersichten, Datenschutz, Transaktionsverwaltung, Synchronisation, Recov-
ery/ Datensicherung.

Legende zu Abbildung 1:

user i (1 ^ i <, k): Anwender des Datenbanksystems, die ihre Schreib- bzw. Leseanfor-
derungen an das Datenbanksystem über einen vernetzten Rechner an den Rechner, auf dem
das Datenbanksystem installiert ist, weitergeben.

20 Gregor Büchel, Bernhard Schröder

PGM_i (1 ^ i <, n): DB-Anwendungsprogramm, das durch Schreib- bzw. Leseanforde-
rungen eines Anwenders gestartet wird und mittels der Datenbanksoftware auf Datenbe-
stände des Datenbanksystems zugreift. Jedes DB-Anwendungsprogramm ist in der Regel
durch folgenden Schichtenaufbau gekennzeichnet:

Benutzerschnittstelle Melden und Empfangen von User-Daten

Algorithmische Schicht Verfahren zur Lösung des Anwendungsproblems

DB-Zugriff Aufruf von Funktionen der DB-Software

Abb. 2: Schichten eines DB-Anwendungsprogramms

Front-End-Werkzeuge:

- a) Benutzerschnittstelle zur interaktiven Verarbeitung von Kommandos der Anfrage-
sprache: Der Benutzer kann hier unmittelbar Kommandos eingeben, die an den
Kommandointerpreter weitergeleitet, analysiert und ausgeführt werden.

- b) Dialogmaskengenerator. Der Dialogmaskengenerator ist ein Softwaresystem zum
Erzeugen von Dialogmaskenprogrammen. Dialogmasken (engl, forms) gestalten eine
formatierte Eingabe für den lesenden und schreibenden Zugriff auf Datenbanken. Wegen
der formatierten Eingabe und der damit verbundenen Möglichkeit der Integritätskon-
trolle sind Dialogmaskenprogramme für die Bearbeitung von Daten in Lexikonartikeln
gut geeignet. Beim lesenden Zugriff ist insbesondere die Unterstützung von Suchfunk-
tionen (trunkierte Suche, maskierte Suche) durch Dialogmaskenprogramme hervorzu-
heben, die inzwischen bei gängigen Datenbanksystemen auch in Form von WWW-
Programmen implementiert sind. Die Ergebnisse einer Suchanfrage werden als sortierte
Listen ausgegeben. Hierfür stellt das DBMS komfortable, für den Benutzer unaufwen-
dige, in Hinsicht auf das Datenmodell einer Datenbank flexible Sortierroutinen zur Ver-
fügung.

- c) Berichtsgenerator. Berichtsprogramme sind Programme, die in der Betriebsart Stapel-
verarbeitung des gegebenen Betriebssystems ablaufen. (Ein Desiderat der computerge-
stützten Lexikographie sind z.B. SGML-Berichtsgeneratoren).

2.2 Datenbankentwurf und Datenbankmodelle

Das Design einer Datenbank entspricht dem Einteilen der Daten eines geplanten Anwen-
dungssystems in verschiedene Entitätenmengen (spätere Tabellen der Datenbank) und dem
Bestimmen der zwischen den Entitätenmengen (Entities) bestehenden Beziehungstypen
(Relationships). Zum Design von Datenbanken hat sich das Entity-Relationship-Modell als
Entwicklungsmethode bewährt. Entity-Relationship-Modelle unterstützen die Abbildung
formaler Beschreibungen von Lexikonartikeln, die z.B. in SGML vorliegen, auf Tabellen-
strukturen eines einzurichtenden DBS zur Verwaltung lexikographischer Daten. Graphisch
werden Entity-Relationship-Modelle durch E/R-Diagramme dargestellt.

Verfahren und Techniken in der computergestützten Lexikographie 21

Syntaktisch bestehen E/R-Diagramme nur aus zwei Symbolen. Jeweils eines fur Entities
(Entitytypen) und eines fur Relationships (bzw. Beziehungstypen oder Relationstypen). Die
Kanten eines E/R-Diagramms können mit Quantitäten (sog. erweitertes E/R-Diagramm)
und auch mit einem Durchlaufsinn eingefarbt sein. Es hat sich folgende Darstellungsweise
durchgesetzt (Abbildung 3):

Bezeichnung Symbol Bemerkung

Entitytypen Entity-Name

Relationen

r, / / r2
- J — < T Relationstyp >

Die Quantitäten rj,r2 bezeich-
nen Anzahlen sich entspre-
chender Elemente in den
Tupeln des Relationstyps R,
der zwischen zwei Entitäten-
mengen A und B besteht. Es
gibt folgende Standardquanti-
tätsangaben:

r,,r2 e {1, n, m, c, c n , c m}

ce {0,1}; n, m e N .

Abb. 3: Syntax von E/R-Diagrammen

Nachfolgend ist als Beispiel für die Informationselemente der Artikel des „Hegel-
Lexikons" von Hermann Glockner (Glockner [1935]) ein Entity-Relationship-Modell
angegeben (Abb. 4).

Nach Aufstellung des Entity-Relationship-Modells kann in Hinsicht auf die Merkmale
des vorliegenden lexikographischen Datenmodells die Auswahl des Typs des zu benut-
zenden DBMS (z.B.: relational oder objektorientiert) getroffen werden. Fragen für die Ent-
scheidungsfindung können z.B. sein:

- Sind die Daten vorwiegend als Tupel strukturiert oder sind sie hauptsächlich in Hierar-
chien bzw. Netzwerken angeordnet?

- Will man die Daten durch eine komplexe oder durch eine einfache Anfragesprache ver-
walten?

- Hat man zwischen den verschiedenen Entitätenmengen viele oder wenige Eigenschaften,
die sich „vererben" lassen?

- Möchte man ein weitverbreitetes DBMS oder kann man auch mit einem weniger verbrei-
teten DBMS arbeiten?

22 Gregor Büchel, Bernhard Schröder

berührt

BAND-
ANGABE

,/ife s t e h t \ .
aus

VERWANDTER
BEGRIFF

BEGRIFFS-
KREIS

1 SEITEN- n
ANGABE ANGABE 's. '

Abb. 4: E / R-Diagramm zu H. Glockner: „Hegel-Lexikon"

2.2.1 Relationale Datenbanksysteme (RDBS)

Das relationale Datenbankmodell wurde 1970 von E.F. Codd entwickelt. Die unmittelbar
abbildbaren Datenstrukturen sind Tupel elementarer Datentypen, die in Tabellen zusam-
mengefasst werden. Das relationale Datenbankmodell basiert auf den mathematischen Ope-
rationen der relationalen Algebra (Selektion, Projektion, Verbund, Differenz und Verei-
nigung von Relationen) (Sauer [1994], Schwinn [1992]). Die Relationen (Beziehungen)
werden durch zweidimensionale Tabellen dargestellt. Dabei wird die Anzahl der Spalten
fest vorgegeben. Die Zeilen der Tabelle enthalten dabei die Datenobjekte (Datensätze), die
durch ihren Schlüssel unterschieden werden können. Es kommt also keine Zeile einer
Tabelle zweimal vor. Die Spalten (Datenfelder) enthalten die Attributwerte, die in einer
Spalte immer vom gleichen elementaren Datentyp sind. Elementare Datentypen sind z.B.
INTEGER (ganze Zahl), CHAR(n) (Zeichenkette der Länge n), FLOAT (Gleitkommazahl),
usw. Die Reihenfolge der Zeilen und Spalten ist im relationalen Datenmodell gleichgültig.

Verfahren und Techniken in der computergestützten Lexikographie 23

SPI SP2 ... s p k ... SPN

Z, alk

...

Zm

Abb. 5: Allgemeiner Tabellenaufbau

Legende zu Abbildung 5:

- SPK: Name der k-ten Spalte (=: Name des Attributes Ak)
- Datensätze sind in den Zeilen Z\, Z 2 , . . . , ZM enthalten.
- Tupelstruktur: Zj=(aü, a¡2, . . . , a iN) e W 1 xW 2 xW 3 x. . .xW N (Wj ist Wertebereich zur

Spalte Sp¡). Alle Attributwerte des Attributes Ak sind vom gleichen elementaren Daten-
typ dtyp(Ak).

Mit relationalen Datenbanken ist in kanonischer Weise die Datenbanksprache SQL (SQL =
Structured ßuery Language) verbunden (Knebel/Postels [1991], Miesgeld [1991], Petkovic
[1995]). SQL basiert auf der Relationenalgebra und dem Tupelkalkül, das dem Tabellen-
aufbau relationaler Datenbanken zugrunde liegt. SQL ist eine Anfrage-, Datendefinitions-
und Datenmanipulationssprache. Mit ihr können Benutzersichten, Dateiorganisations-
formen und Zugriffspfade definiert werden. SQL ist eine genormte Datenbanksprache
(ANSI/ISO [SQL-92], eine neue Norm [SQL3] steht zur Verabschiedung an).

In einem einfachen lexikographischen Datenbanksystem werden Daten aus Hegel-
Registern und Hegel-Lexika verwaltet. Hieraus ist das Beispiel in Abbildung 6 entnommen
worden.

Terminal - averoest
File £dit Session Options Help
PERFORM: Query .̂iv̂ Z'vffi Previous View Add Update Remove Table Screen
shows the next row in the Current List. ** it glocktab table**

Glockner : Hegel - Lexikon

Schlagwort [Abstraktion 3
Grundform [Abstraktion 3

Schlagwortzeile
[(abstrakt,abst räkt- Iconkrst, All^snisinss)]
[]

Bemerkung 1 : [B]
Bemerkung 2 : []

Begriffskreise :
[Begriff]
[Dasein]
[symbolische Architektur]
[indische Religion]

Abb. 6: SQL-FORM zur Verarbeitung der GLOCKNER-Tabelle

24 Gregor Büchel, Bernhard Schröder

2.2.2 Objektorientierte Datenbanksysteme (OODBS)

Das Konzept objektorientierter Datenbanken vereinigt zwei Mengen wesentlicher Eigen-
schaften (Atkinson [1992]):
(1.) Es beinhaltet ein objektorientiertes Datenmodell.
(2.) Es enthält die Speicherungstechniken eines gewöhnlichen Datenbanksystems (Per-
sistenz, Sekundärspeicherverwaltung, Verwaltung von Transaktionen, Recovery-Tech-
niken,...; vgl. Heuer [1997], Hughes [1992], Saake/Türker/Schmitt [1997]).

Auszug aus der Liste der Forderungen zu (1.):

(1.1) Möglichkeit der direkten Modellierung komplexer Objekte (abstrakte Datentypen).
(1.2) Objektidentität (OID).
(1.3) Jedes Objekt kapselt Struktur und Verhalten (Kapselung). Die Struktur eines Objekts wird

durch Instanz-Variablen beschrieben. Das Verhalten eines Objekts wird durch Methoden
beschrieben.

(1.4) Objekte mit gemeinsamer Struktur und gemeinsamen Verhalten werden in Klassen grup-
piert. Jedes Objekt ist Instanz einer Klasse.

(1.5) Klassen können als Spezialisierung anderer Klassen definiert werden (Vererbung).

OODBS eignen sich zur Speicherung von komplizierten Datenstrukturen, deren Abbildung
auf Tabellen eines RDBMS mit Schwierigkeiten verbunden ist. (Eine Tabelle hat eine
möglicherweise große, aber immer konstante, den Anwendungsdaten beim Betrieb des
DBS vorgegebene Anzahl von Spalten, die während der Laufzeit nicht geändert werden
kann!) Zu solchen Datenstrukturen zählen z.B.: Baumstrukturen (Hierarchien) mit vielen
Hierarchiestufen, netzwerkartige Strukturen mit unterschiedlichen Kantentypen.

Eine Klasse definiert den Aufbau und beschreibt über die Methoden das Verhalten eines
Objektes. Alle Instanzen einer Klasse besitzen somit das gleiche Verhalten und die gleiche
Wertestruktur. Durch Definition von Klassen vergrößert sich die Menge der zulässigen
Datentypen im Data-Dictionary. Damit bietet sich die Möglichkeit, abstrakte Datentypen zu
definieren (List-Typen, Mengentypen). Als Anfragesprachen für OODBS werden höhere
Programmiersprachen verwendet, die Klassen als Datentypen zulassen, wie C++, JAVA
und SMALLTALK. Wie in der Programmiersprache C++ sind Objekte in einem OODBS
verkapselt, d.h. Methoden und Daten eines Objektes bilden eine Einheit. Der Benutzer kann
nicht direkt auf die Werte eines Objektes zugreifen, sondern nur über die Methoden, die der
Klasse des Objektes bekannt sind. In einem OODBS können dynamische Listen verhält-
nismäßig einfach als Klassen modelliert werden. OODBS werden besonders zur Reali-
sierung komplexer, datenintensiver Anwendungen im Konstruktions- und Entwurfsbereich
(CAD) eingesetzt.

Ein OODBS muss weiterhin das Konzept der Vererbung (Spezialisierung) unterstützen.
Beispiel: Die Entität Student ist eine Spezialisierung der Entität Person. Man unterscheidet
zwischen Superklassen (hier Person) und sogenannten Subklassen (hier Student). Die Spe-
zialisierungsbeziehung zwischen Klassen fuhrt zu Klassenhierarchien.

Ein Beispiel für Vererbungsbeziehungen zwischen Klassen eines lexikographischen Da-
tenmodells kann in einem Modell einer datenbankorientierten Beschreibung ausgewählter
Informationselemente des Artikelaufbaus des „DUDEN - Das große Wörterbuch der
deutschen Sprache" (DUDEN [1993]) gegeben werden.6 Folgende Tabelle (Tab. 1), die in
Anlehnung an Lenders (1990) eine „Vorform" einer Artikelbeschreibung darstellt, gibt eine

6 An dieser Stelle möchten wir Frau Dr. A. Storrer (IDS Mannheim) danken, die uns den Hinweis
auf dieses schöne Beispiel einer Vererbungsstruktur gab.

Verfahren und Techniken in der computergestützten Lexikographie 25

hierarchisch strukturierte Liste von Entitäten (mit Attributen) an, die auf unterschiedlichen
Ebenen mit grammatischen Angaben versehen sind.

Tab. 1:

ENTITÄTENMENGEN LISTENELEMENTE BEISPIEL ANM.

LEMMA (Stichwort) Abstich (1)

GRAMMATISCHE
ANGABE zum LEMMA
(=: GRAM H)

der; -[e]s, -e

LISTE von LESARTEN pro Lesart: (2)

TITEL der Lesart das Abstechen
ERLÄUTERUNG der
Lesart

der A. von Torf,
Rasen

GRAMMATISCHE
ANGABE zur Lesart
(optional)
(=: GRAM L)

<0.P1.>

LISTE von KOMPOSITA 0 0 (3)
Etc.

Anmerkungen zu Tabelle 1:
(1) DUDEN (1993), S. 98.
(2) Das Beispiel weist drei weitere Lesarten auf, wobei die Lesart Nr. 3 zwei Varianten hat:

NR TITEL der Lesart ERLÄUTERUNG der
Lesart

GRAMM.
ANGABE

SACHGEBIET

2) Art des Kantenverlaufs
beim Sakko...

stark fliehender A. 0 Schneiderei

3a) das Abstechen der A. des [Rohjeisens <o.Pl.> Hüttenwesen
3b) Teil eines Hochofens,... die Gießpfanne unter den

A. rücken
0

4) das Abstechen, Kontrast dort erschien sie licht, im
A. ihrer nächtlichen Um-
gebung (Grillparzer,
Medea I)

0

(3) Das Beispiel enthält keine Komposita.

Im Folgenden wird für die in dieser Tabelle gegebenen Entitätenmengen ein Klassenbezie-
hungsgraph (Abb. 8) angegeben, der als Instrument des Entwurfes eines OODBS dienen
kann. Das Aufstellen eines Klassenbeziehungsgraphen setzt in der Regel eine Entity-
Relationship-Analyse voraus.

26 Gregor Büchel, Bernhard Schröder

K

al
a2
aN

fu1()

fÜM()

Abb. 7: Klassenbeziehungsgraph

LEMMA

Lemma
Wortklasse
Erläuterung

1 c ^

GRAM_H_S

genus
numerus

n
1

1
1 LEMMA

Lemma
Wortklasse
Erläuterung

1 c* n
>

deklination() i
i
1

M/
getlesalist()
putlesalistQ

1 c* n
>

LESART i i
3> GRAM L getlesalist()

putlesalistQ
1 c* n

>

Nr
Titel
Erläuterung
Sachgebiet

Spezifikation

connectsachg() flexionQ

Abb. 8: Klassenbeziehungsgraph

Der (l:n)-Beziehungstyp wird als sog. gerichtete Assoziation mit dem Symbol
1 n

^ dargestellt (Fowler [1995], vgl. auch: Booch [1995], Rumbaugh
[1993]). Die Vererbung zwischen zwei Klassen wird hier mit dem Symbol

bezeichnet.

Das Symbol einer Klasse im Klassenbeziehungsgraph (vgl. Abb.6) setzt sich zusammen aus
einem Klassennamen K, einer Liste von Attributen al,..., aN und einer Liste von Methoden
ful(),..., fuM(), die die Daten der Klasse K verarbeiten.

Verfahren und Techniken in der computergestützten Lexikographie 27

3 Resümee

Dieser Beitrag geht auf Entscheidungskriterien ein, die für die Wahl eines Kodierungssys-
tems für komplexe Textstrukturen relevant sind. In den meisten Fällen dürfte die Wahl
eines SGML- oder XML-basierten Kodierungssystems adäquat sein. Da SGML und XML
zur Kodierung beliebiger Datenstrukturen verwendet werden können, wird die Verwendung
von SGML oder XML immer prinzipiell möglich sein. Die Verwaltung SGML- oder XML-
kodierter Daten kann mithilfe von Datenbanksystemen geschehen. Dazu sind die in SGML
oder XML kodierten Textobjekte und Beziehungen auf die Ausdrucksmittel des gewählten
Datenbanktyps abzubilden. Dies ist in jedem Fall möglich, da in SGML- und XML-
kodierten Dokumenten vorhandene Strukturen auf wenige Relationen zwischen Elementin-
stanzen oder zwischen Text und Elementinstanzen oder zwischen Elementinstanzen, Attri-
buten und Werten abbildbar sind. Welche Datenbank-Modellierung sich unter Gesichts-
punkten des Datenzugriffs und der Datenpflege als günstig erweist, hängt stark von der Art
der Dokumentstrukturierung und dem Nutzungszweck ab.

4 Literatur

Atkinson, M., et. al. (1992): The Object Oriented Database System Manifesto - In: Bancilhon, F., et
al.: Building an Object-Oriented Database System - The Story of 02. - San Francisco, Ca.:
Morgan-Kaufmann.

Booch, G. (1995): Objektorientierte Analyse und Design. - Bonn, Albany: Addison-Wesley.
DUDEN: DAS GROSSE WÖRTERBUCH DER DEUTSCHEN SPRACHE in acht Bänden. Hg. G.

Drosdowski. Mannheim: Dudenverlag 1993.
Fowler, M. (1997): UML Distilled - Applying the Standard Object Modeling Language. - Reading

(Mass.) et al.: Addison-Wesley.
Glockner, H. (1935): Hegel-Lexikon. - In Hegel, G.W.F.: Sämtliche Werke (Jubiläumsausgabe),

Bd. 23-26, Stuttgart: Frommann.
Goldfarb, Charles F. (1990): The SGML Handbook. - Oxford: Clarendon Press.
- und Prescod, Paul (1998): The XML Handbook. Upper Saddle River, NJ: Prentice Hall PTR,

1998.
Graham, Ian S., Quin, Liam (1999): XML Specification Guide. New York, NY: John Wiley & Sons.
Haid, A., Nevermann, W. (1995): Datenbank-Engineering für Wirtschaftsinformatiker. - Braun-

schweig, Wiesbaden: Vieweg.
Heuer, A. (1997): Objektorientierte Datenbanken, Bonn: Addison-Wesley.
- und Saake G. (1997): Datenbanken - Konzepte und Sprachen. - Bonn, Albany: Int. Thomson

Publishing Comp.
Hughes, J.G. (1992): Objektorientierte Datenbanken. - München, Wien: C. Hanser (in coedition with

Prentice Hall).
Knebel, B., Posteis, G. (1991): Einfuhrung in Informix-SQL. - Heidelberg: Hüthig.
Lenders, W. (1990): Semantische Relationen in Wörterbuch-Einträgen - Eine Computeranalyse des

DUDEN-Universalwörterbuches. - In: Schaeder, B., Rieger, B. (Hgg.): Lexikon und Lexiko-
graphie. Hildesheim: Olms.

- (Hg.) (1993): Computereinsatz in der angewandten Linguistik - Konstruktion und Weiterverar-
beitung sprachlicher Korpora. - Frankfurt a.M.: Lang.

Lobin, Henning (Hg.) (1999): Text im digitalen Medium. - Opladen, Wiesbaden: Westdeutscher
Verlag.

Misgeld, W. (1991): SQL - Einstieg und Anwendung. - München, Wien: Hanser Verlag.
Möhr, Wiebke, Schmidt, Ingrid (Hgg.) (1999): SGML und XML - Anwendungen und Perspektiven.

- Berlin etc.: Springer.

28 Gregor Büchel, Bernhard Schröder

Musciano, Chuck, Kennedy, Bill (1999): HTML - Das umfassende Referenzwerk. 2. Aufl. - Köln:
O'Reilly.

Petkovic, D. (1995): Informix 6.0/7.1. - Bonn: Addison-Wesley.
Rumbaugh, J., Blaha, M., et.al. (1993): Objektorientiertes Modellieren und Entwerfen, München,

London: Hanser/Prentice-Hall.
Saake G., Türker C., Schmitt I. (1997): Objektdatenbanken. - Bonn, Albany: Int. Thomson

Publishing Comp.
Sauer H. (1994): Relationale Datenbanken - Theorie und Praxis. - Bonn, et al.: Addison-Wesley.
Schröder, Bernhard (1998): Pro-SGML: Ein Prolog-basiertes System zum Textretrieval. - In: Gerhard

Heyer, Christian Wolff (Hgg.): Linguistik und neue Medien, 205-216. Wiesbaden, DUV.
- und Ostermann-Heimig, Jens (1998): Kants Werke als Hypertext. - In: Angelika Starrer, Bettina

Harriehausen (Hgg.): Hypermedia für Lexikon und Grammatik, 233-246. Tübingen, Narr.
Schwinn, H. (1992): Relationale Datenbanksysteme. - München, Wien: C. Hanser Verlag.
Sperberg-McQueen, C. M., Bumard, Lou (1994): TEI Guidelines for Electronic Text Encoding and

Interchange (P3). 1.4.2000, http://etext.lib.virginia.edu/TEI.html.
Vossen, G. (1994): Datenbanken, Datenmodelle, Zugriffssprachen. - Bonn: Addison-Wesley.
Wilde, Erik (1999): World Wide Web - Technische Grundlagen. - Berlin, etc.: Springer.

Gregor Büchel, Köln
Bernhard Schröder, Bonn

