Gregor Biichel, Bernhard Schrider

Verfahren und Techniken in der computergestiitzten Lexikographie

1 Kodierung strukturierter Texte mit SGML 1.4.2 Eindeutigkeit

und XML 1.4.3 Interpretierbarkeit
1.1 Anforderungen an ein Kodierungssystem 1.4.4 Nachhaltigkeit
1.1.1 Michtigkeit 1.4.5 Portierbarkeit
1.1.2 Eindeutigkeit 1.4.6 Softwareunterstiitzung
1.1.3 Interpretierbarkeit 2 Datenbanksysteme zur Verwaltung
1.1.4 Nachhaltigkeit strukturierter Textdaten
1.1.5 Portierbarkeit 2.1 Datenbanksysteme: Allgemeiner Aufbau
1.1.6 Softwareunterstiitzung 2.2 Datenbankentwurf und
1.2 Die Grundkonzepte von SGML und XML Datenbankmodelle
1.2.1 Die formalen Grundkonzepte 2.2.1 Relationale Datenbanksysteme (RDBS)
1.2.2 Das pragmatische Grundkonzept 2.2.2 Objektorientierte Datenbanksysteme
1.3 SGML vs. XML (OODBS)
1.4 SGML und XML als Antwort auf die 3 Resiimee

Anforderungen? 4 Literatur

1.4.1 Michtigkeit

Jedes Vorhaben, bei dem die Erfassung und Verarbeitung von Textdaten eine wichtige
Rolle spielt, wird vor den Problemen stehen,

— in welcher Weise die Textdaten erfasst werden sollen,

- in welcher Form die Textdaten gespeichert werden sollen und

- mit welchen Hilfsmitteln das Textmaterial fiir die weitere Arbeit oder fiir eine Verdffent-
lichung des Materials erschlossen werden soll.

Dabei steht nicht mehr die Bewiltigung groBer Textmengen im Vordergrund der Uberle-
gungen — textuelle Information, die dem Umfang ganzer Biicherregale entspricht, ldsst sich
heute mit jedem handelsiiblichen PC und preisgiinstig zu erwerbender oder gar kostenfreier
Software verwalten —, sondern der Umgang mit strukturierter textueller Information. Was
ist damit gemeint?

Fiir die allermeisten Formen der digitalen Représentation von Texten bildet die lineare
Abfolge von Basiseinheiten des Textes — i.d.R. Zeichen — die Grundstruktur der Repriisen-
tation. Einfache Textdateien bestehen schlicht aus einer Abfolge von Zeichenreprisenta-
tionen (Zeichencodes). Neben der linearen Strukturierung, die sich in dieser Art der Kodie-
rung wiederspiegelt, weisen Texte immer auch vielfiltige andere explizite und implizite
Strukturen auf, die hier pauschal als nichtlineare Strukturen bezeichnet werden sollen. Zu
den nichtlinearen Strukturen in diesem weiten Sinne gehoren:

— Formatierungen und Layout von Texten und Textteilen, Hervorhebung von Textteilen
durch den Autor

- Metainformation zum Text, z.B. bibliographische Angaben oder andere Angaben zur
Textherkunft, Angaben zur Digitalisierung, Angaben zu Korrekturen usw.,

8 Gregor Biichel, Bernhard Schrider

~ Textgliederung,

~ interpretierende Angaben zum Text oder zu Textteilen (linguistischer, philologischer,
historischer, soziologischer usw. Art),

~ Verkniipfungen zwischen Texten oder Textteilen (darunter kénnen explizit vom Autor
vorgenommene Verknilipfungen wie Fullnoten oder explizite Querverweise sein oder von
einem Interpreten vorgenomme Verkniipfungen) und

- Verkniipfungen mit nicht-textuellen Medien, wie statischen oder bewegten Bildern,
Klangdaten, interaktiven Anwendungen, Internet-Ressourcen.

Die Verkniipfungsstrukturen werden auch als die in einem engeren Sinne nichtlinearen
Strukturen bezeichnet.

Die explizite Kodierung der genannten nichtlinearen Strukturen wird i.d.R. von moder-
nen Textverarbeitungsprogrammen — zumindest in Ansétzen — unterstiitzt. Die nichtlineare
Kodierungsfihigkeit eines Systems wird allerdings oft bei retrospektiven Projekten zur
Digitalisierung historischer Dokumente vor besondere Herausforderungen gestellt: Bei der
retrospektiven Digitalisierung hat man es nicht selten mit unterschiedlichen Textzeugen
und -versionen, Graden an Sicherheit bei der Entschliisselung, Textliicken, Textfragmenten
mit unklarer Anordnung usw. zu tun. Einerseits erfordert die Abbildung dieser Strukturen
auf die von Textverarbeitungsprogrammen gebotenen Mdoglichkeiten viel Phantasie, und
entsprechend lisst der Bedienungskomfort der Textverarbeitungsprogramme bei derartigen
Anwendungen zu wiinschen ubrig. Andererseits wirft der Versuch, die erfassten Daten in
unterschiedlichen Medien (Druck, WWW, CD-ROM) oder nur selektiv zu publizieren,
gerade bei den nichtlinearen Strukturen nur schwer 16sbare Probleme auf. Und schlieBlich
scheitert man zumeist an der Aufgabe, nichtlineare Strukturen in andere Anwendungen
oder Kodierungsformate zu exportieren.

Man wird aber auch schon bei linearen Strukturen auf Probleme stoflen, wenn man vor
der Aufgabe steht, Zeichen zu kodieren, die in den tiblichen Zeichensitzen des Betriebs-
systems nicht verfligbar sind. Die Darstellbarkeit solcher Zeichen auf dem Bildschirm ist
nicht immer auch eine Garantie fiir die Druckbarkeit von Zeichen oder die Darstellbarkeit
der Zeichen auf WWW-Seiten. Und den Export in andere Anwendungen iiberleben solche
aus anderen Codes entlichenen Zeichen selten.

Lexikographische Projekte, wie sie in diesem Band geschildert werden, sind mit den
aufgefiihrten Textkodierungs- und -strukturierungsproblemen in besonderer Weise kon-
frontiert: Zum einen stellen Lexikoneintrige stark nichtlinear strukturierte Texte dar; im
gedruckten Worterbuch wird durch typographische Mittel eine oft sehr filigrane Mikro-
struktur erschlie8bar gemacht. Die implizite Kodierung der Mikrostruktur durch die Typo-
graphie reicht aber normalerweise nicht aus, wenn aus dieser Textgrundlage Worterbuch-
versionen fiir das elektronische Medium abgeleitet werden sollen. Der Hauptgrund dafiir ist
die Polyfunktionalitit typographischer Merkmale. Kursivierung kann in einem Warterbuch
unterschiedliche Funktionen haben; im fiir die digitale Verarbeitung giinstigeren Fall, lasst
sich die Funktion rein formal durch den Kontext ermitteln, im ungiinstigeren Fall kann die
Ermittlung der Funktion nur durch eine Interpretationsleistung der Worterbuchbenutzerin
oder des Worterbuchbenutzers geschehen. Zur Implementierung unterschiedlicher Sichten
auf Worterbuchartikel in einem elektronischen Worterbuch, die die Ausblendung von
Teilen der Mikrostruktur gestatten, ist eine eindeutige explizite Markierung der Mikro-
struktur vonnoten.

Zum zweiten weisen Worterbiicher in starkem Mafle Verkniipfungsstrukturen auf. Es be-
stehen eine Vielzahl von Verweisen innerhalb der Artikel, zwischen Artikeln und von

Verfahren und Techniken in der computergestiitzten Lexikographie 9

Worterbuchartikeln auf Belege. Zunehmend werden auch Verweise auf nicht-textuelle
Medien integriert.

Und schliefilich arbeiten alle Worterbuchprojekte mit Korpora retrospektiv digitalisierter
Texte. Neben den bereits erwdhnten Kodierungsproblemen bei diesen Korpora, stellt sich
spétestens bei der elektronischen Publikation eines Worterbuchs die Frage, ob die Korpora
oder ausgewihlte Belegstellen zusammen mit dem Worterbuch publiziert werden sollen
und welche Verweisstrukturen zwischen dem Woérterbuch und den Korpora explizit ge-
macht werden sollen.

Um die angesprochenen Strukturierungs- und Kodierungsfragen zu beantworten und die
damit verbundenen Erfassungs- und Publikationsprobleme zu losen, miissen eine Vielzahl
inhaltlicher und technischer Probleme geldst werden; ein weites Spektrum an Fragen und
an prinzipiellen und exemplarischen Lésungen wird in diesem Band angesprochen. In die-
sem Beitrag geht es um die Grundlagen der Kodierung strukturierter textueller Information
mit SGML und XML und der Verwaltung dieser Strukturen in Datenbanksystemen.

1 Kodierung strukturierter Texte mit SGML und XML

In diesem Abschnitt wird diskutiert, welche Anforderungen an ein addquates Kodierungs-
system fiir strukturierte textuelle Information zu stellen sind. SGML und XML werden als
Kodierungssysteme vor dem Hintergrund dieser Forderungen bewertet.

1.1 Anforderungen an ein Kodierungssystem

Je nach Projekt wird man mit unterschiedlicher Gewichtung fordern, dass das gewihlte
Kodierungssystem hinreichend michtig ist, die zu kodierenden Strukturen eindeutig
reprisentiert, gut maschinell zu interpretieren ist, dass die Kodierung nachhaltigen Bestand
hat und auf andere Computersysteme portierbar ist, ferner dass benutzerfreundliche
Werkzeuge zur Arbeit mit dem Kodierungssystem bereitstehen. Die folgenden Abschnitte
sollen die Anforderungen verdeutlichen.

1.1.1 Michtigkeit

Ein Kodierungssystem muss zundchst fiir die explizit zu kodierende Information auch
Kodierungsmechanismen bereitstellen. Ein Kodierungssystem, das zur Kodierung rein
linearer Strukturen dient, ist beispielsweise ungeeignet zur Kodierung von Verweis-
strukturen. Das schliefit nicht aus, dass man mit zusitzlichen Konventionen, z.B. durch
Reservierung bestimmter Zeichensequenzen fiir die Kodierung von Verweisstrukturen, die
Machtigkeit eines Kodierungssystems erweitern kann. Die Etablierung zusitzlicher
Konventionen bedeutet aber nichts anderes als die Implementierung eines neuen michti-
geren Kodiersystems auf der Basis eines weniger méchtigen. Geschieht diese Erweiterung
ad hoc, so lduft man ein nicht zu unterschitzendes Risiko, dass die tibrigen Anforderungen
beziiglich des erweiterten Kodierungssystems nicht mehr erfiillt sind.

10 Gregor Biichel, Bernhard Schrider

1.1.2 Eindeutigkeit

Gerade bei ad hoc entworfenen Kodierungssystemen kann es leicht passieren, dass die
gewihlten Kodierungen nicht eindeutig sind. Im trivialen Fall, der bei Texten, die in den
Anfangszeiten der linguistischen Datenverarbeitung erfasst wurden, nicht selten anzutreffen
ist, wurden in den damaligen Codes nicht verfiigbare Zeichen durch Zeichensequenzen
ersetzt, die auch sonst im Text anzutreffen waren, so dass eine automatische Erkennung
dieser Zeichen im Code nicht immer méglich ist. Ob zuende in einem Kodierungssystem,
bei dem alle Umlaute als nicht-umgelauteter Vokal + e kodiert werden, als zwei- oder
dreisilbig zu interpretieren ist, ist nur unter Zuhilfenahme sprachlichen Wissens
entscheidbar. Weniger triviale Fille sind aber auch in moderneren Kodierungssystemen
anzutreffen: Bei Kodierungen, die von reservierten Codes eingeleitet werden, ist nicht
immer klar, wo sie enden. Kodierungen, die nichtlineare strukturelle Information zu
Textteilen beinhalten, sind oft nicht eindeutig, wenn es um die Frage geht, wo diese
Textteile beginnen und wo sie enden; beendet eine neue Kodierung desselben Typs immer
den Giiltigkeitsbereich der vorangehenden? Diese Frage wird nicht von jedem
Kodierungssystem eindeutig beantwortet.

1.1.3 Interpretierbarkeit

Auch die formale Eindeutigkeit von Kodierungen muss nicht immer eine giinstige
maschinelle Interpretierbarkeit bedeuten. Konventionen konnen von den Bearbeiterinnen
und Bearbeitern aufgrund des sprachlichen und auBlersprachlichen Wissens, iiber das sie
verfiigen, sehr leicht zu erlernen und zu interpretieren sein, ohne dass diese Konventionen
deshalb auch leicht programmtechnisch umzusetzen sind. Dies ist immer dann der Fall,
wenn es sehr komplexe Abhéngigkeiten verschiedener Kodierungen voneinander gibt, eine
Kodierung A beispielsweise im Kontext einer Kodierung B auf eine Weise, im Kontext
einer Kodierung C aber auf eine ganz andere Weise verwendet wird.

1.1.4 Nachhaltigkeit

In diesem Band wird von Langzeitprojekten berichtet, die sich iiber viele Jahrzehnte er-
strecken. Es ist selbstverstindlich, dass die in diesen Projekten akkumulierten elektroni-
schen Textressourcen fiir die Projektdauer und die elektronisch publizierten Ergebnisse
moglichst lange dariiber hinaus Bestand haben sollen. Es ist nicht allzu verwegen, zu pro-
gnostizieren, dass die Anwendungsprogramme, die heute die Benutzerschnittstellen zu
Worterbiichern auf CD-ROM oder im World-Wide Web (WWW) bereitstellen, nicht iiber
Jahrzehnte hinweg benutzbar sein werden, sofern sie auf avancierteren Techniken beruhen
als bloBen auf einem Server bereitliegenden HTML-Seiten. Die Analogie zur bisherigen
Entwicklung berechtigt zu dieser Annahme. Nicht wenige nur ein Jahrzehnt alte Anwen-
dungsprogramme sind auf heutigen PCs nur dann noch nutzbar, wenn neben aktuellen Be-
triebssystemsversionen auch alte DOS-Versionen installiert werden. Und manches alte
Programm verweigert selbst dann die Zusammenarbeit mit neuer Hardware.

Hard- und Softwarehersteller haben nur ein geringes wirtschaftliches Interesse an der
Gewihrleistung einer nachhaltigen Abwirtskompatibilitdt neuer Systeme, also der Mog-
lichkeit, dltere Software und Daten auf neueren Systemen zu nutzen. Die zusitzliche Forde-

Verfahren und Techniken in der computergestiitzten Lexikographie 11

rung weitreichender Abwirtskompatibilitit verteuert ndmlich die Hard- und Softwareent-
wicklung und verringert den Anreiz, die neuesten Softwareprodukte zu erwerben.

Noch bedrohlicher als die mangelnde Abwirtskompatibilitit der Weiterentwicklungen
eines bestimmten Systems kann fiir Anwendungssoftware das vollstindige Verschwinden
bestimmter Hardware- und Betriebssystemsplattformen vom Markt sein. Es ist schwer, fur
manche Anwendungssoftware, die auf in den 80er Jahren noch weit verbreiteten Grof3-
rechnern lief, heute noch geeignete Rechner zu finden.

Und schlieBlich entspricht veraltete Anwendungssoftware auch nicht mehr den heutigen
Benutzungsgewohnheiten, ihre Bedienung ist oft nur umsténdlich zu erlernen, sie wird von
den potentiellen Benutzerinnen und Benutzern nicht selten abgelehnt.

Kompatibilititsprobleme stellen sich aber nicht nur bei Anwendungsprogrammen,
sondern auch bei den zugehorigen Dateiformaten. Aktuelle Programmversionen von Text-
verarbeitungsprogrammen haben nicht selten Schwierigkeiten bei der Wiederherstellung
aller Formatierungsinformationen aus Dateien, die mit Vorgingerversionen vor etwa fiinf
Jahren hergestellt wurden, an weiteren nichtlinearen Strukturen in diesen Texten scheitern
sie oft genug. Eine Unterstiitzung von Formaten nicht mehr auf dem Markt befindlicher
Textverarbeitungssysteme ist selten anzutreffen.

Vor diesem Hintergrund muss ein Kodierungsschema auch darauthin untersucht werden,
ob man berechtigterweise prognostizieren kann, dass es auch in einigen Jahrzehnten noch
ohne groBen Eigenaufwand zur Herstellung von Kompatibilitdt und ohne Informations-
verlust zu verwenden ist.

1.1.5 Portierbarkeit

Will man sich in einem Projekt nicht ein fiir alle Mal auf bestimmte Hard- und Software-
produkte festlegen, so stelit sich die Frage der Portierbarkeit der Daten. Kénnen die Daten
ohne groflen Aufwand und ohne Informationsverlust auch auf anderen Systemen verwendet
werden? Zwar ist Portierbarkeit meist auch in den Uberlegungen zur Nachhaltigkeit einge-
schlossen, aber es kommt auch vor, dass sich Nachhaltigkeitsiiberlegungen auf die An-
nahme stiitzen, dass sich ein bestimmtes technisches System durchsetzen werde und nach-
haltig verfiigbar bleibe, z.B. aufgrund seiner technischen Uberlegenheit oder der Markt-
macht des Herstellers. So kommt es bei Projekten mit starkem Bezug zum WWW vor, dass
bei der Entscheidung fiir ein bestimmtes Kodierungssystem den Ausschlag gibt, ob das
Kodierungssystem eine Zukunft im WWW hat. Gleichzeitig kann es aber der Fall sein, dass
dieses Kodierungssystemen von den konkurrierenden Browsern in sehr unterschiedlicher
Weise unterstiitzt wird, von einzelnen Browsern also méglicherweise derzeit gar nicht un-
terstiitzt wird.

1.1.6 Softwareunterstiitzung

Die Arbeit mit komplexen Kodierungssystemen kann umstéindlich, ermiidend und fehleran-
fillig sein. Es ist fiir eine ergonomisch sinnvolle Erfassung der Daten wichtig, dass geeig-
nete Softwarewerkzeuge, Spezialeditoren, zur Verfiigung stehen. Die effiziente Auswertung
der Daten kann wesentlich von der Verfiigbarkeit von Recherchewerkzeugen abhiingen, die
sowohl die linearen als auch die nichtlinearen Textstrukturen nutzen. Und schlieBlich kann
geeignete Publikationssoftware die Druck- oder CD-ROM-Versionen der zu verdffentli-
chenden Daten sehr erleichtern.

12 Gregor Biichel, Bernhard Schrider

In den folgenden beiden Unterabschnitten werden SGML und XML als Formalismen,
mit denen sich komplexe Kodierungssysteme definieren lassen, in Grundziigen vorgestellt,
um dann zu diskutieren, inwiefern SGML- oder XML-basierte Formalismen den Anforde-
rungen geniigen.

1.2 Die Grundkonzepte von SGML und XML

SGML (Standard Generalized Markup Language) und XML (Extensible Markup
Language) sind Formalismen,' mit denen sich Kodierungssysteme formal definieren lassen.
Man kann SGML und XML als Metasprachen auffassen, mit denen spezielle
Kodierungssysteme beschrieben werden. Diese speziellen Kodierungssysteme werden
gerne als Markup Languages (Markierungs-/Annotierungssprachen) bezeichnet. Insofern
als diese Bezeichnung suggeriert, dass die Aufgabe SGML- oder XML-basierter Kodie-
rungssysteme grundsitzlich sei, Markierungs- oder Annotierungsmoglichkeiten fiir vorge-
gebene Texte zu definieren, ist sie ungenau. SGML- und XML-basierte Kodierungssysteme
werden inzwischen auch zu anderen Zwecken als der Représentation textueller Strukturen
verwendet, mit SGML und XML ldsst sich die Syntax von Programmiersprachen ebenso
definieren wie Datenaustauschformate fir Datenbanken mit beliebigem Inhalt. Der
Schwerpunkt von SGML- und XML-Anwendungen liegt jedoch nach wie vor auf der Re-
prisentation textueller Strukturen. Und nur darauf soll im Folgenden Bezug genommen
werden.

SGML ist die iltere der beiden Metasprachen, sie wurde bereits 1986 definiert und als
ISO-Norm 8879 standardisiert. Im folgenden soll zundchst iiberwiegend von SGML die
Rede sein, aber bis auf weiter unten ausdriicklich vermerkte Unterschiede ist die Darstel-
lung auch auf XML iibertragbar.

Bei den Grundkonzepten von SGML sind die, die sich ausschlieflich auf die bereitge-
stellten formalen Strukturen beziehen, von denen zu unterscheiden, die sich auf den inten-
dierten Umgang mit den formalen Konzepten beziehen.

1.2.1 Die formalen Grundkonzepte

Der Aufbau eines Textes aus Teilen wird in SGML durch Elemente modelliert. Terminolo-
gisch soll hier zwischen Elementen als Typen von Textteilen und den konkreten Textteilen
selbst als Instanzen dieser Elemente, kurz: Elementinstanzen, unterschieden werden. Das
Element abschnitt kann also nach dieser Sprachweise mehrfach in einem Text vorkommen,
jedes Vorkommen ist aber eine neue Instanz dieses Elements. Ein Text als ganzer bildet
eine Elementinstanz. Jede Elementinstanz kann Textstiicke und weitere Elementinstanzen
enthalten. Die in einer Elementinstanz unmittelbar enthaltenen Elementinstanzen diirfen
einander nicht iiberlappen.

Die Elementstruktur eines Textes entspricht also einer Baumstruktur, bei der das umfas-
sendste Element die Wurzel, die enthaltenen Elemente die Zweige und die enthaltenen

! Wenn man sich im WWW iiber SGML und XML informieren méchte, bietet das Electronic Text
Center an der University of Virginia einen guten Ausgangspunkt gerade im Bereich akademischer
Anwendungen, s. http://etext.lib.virginia.edu/standard.html. Sehr viel weiterfiihrende Infor-
mation findet man auf den XML Cover Pages unter http://www.oasis-open.org/cover/sgml-
xml.html.

Verfahren und Techniken in der computergestiitzten Lexikographie 13

Textstiicke die Blitter bilden. Der Beginn und das Ende eines Elementes wird i.d.R. durch
ein Tag, eine Marke, angezeigt, das durch die Markup-Begrenzer < und > vom umgebenden
Text abgegrenzt ist. Im Anfangs-Tag steht direkt hinter dem linken Markup-Begrenzer der
Name des Elementes, im End-Tag steht i.d.R. zwischen den Markup-Begrenzern ein Quer-
strich und der Name des zu beendenden Elementes. Hier ein Teil dieses Abschnitts mit
Abschnitt, Sitzen und Nominalphrasen als Elementen:

<abschnitt>

<satz><np>Der Aufbau <np>eines Textes</np> aus <np>Teilen</np></np>
wird in <np>SGML</np> durch <np>Elemente</np> modelliert.</satz>
<satz><np>Ein Text als ganzer</np> bildet <np>ein
Element</np>.</satz>

</abschnitt>

Elemente kénnen in SGML nun Triger von Eigenschaften sein. Zur Kodierung von Eigen-
schaften werden in den Anfangs-Tags von Elementen hinter dem Elementnamen Attribute
mit zugehdrigen Werten notiert. Wollen wir beispielsweise im obigen Abschnitt bei den
Nominalphrasen auch deren Kasus und Numerus kodieren, so kann das wie folgt aussehen:

<abschnitt>

<satz><np kasus=“nom" numerus=“sg“>Der Aufbau

<np kasus="gen" numerus=“sg“>eines Textes</np> aus

<np kasus=“dat"“ numerus=‘pl*>Teilen</np></np> wird in

<np kasus="dat™ numerus=“sg"“>SGML</np> durch

<np kasus=“akk" numerus=“pl“>Elemente</np> modelliert.</satz>
<satz><np kasus=“nom" numerus=“sg“>Ein Text als ganzer</np> bildet
<np kasus=“akk"“ numerus=“sg“>ein Element</np>.</satz>

</abschnitts>

Vor der Kodierung der Gliederungsstruktur muss natiirlich festgelegt werden, was kodiert
werden soll. In einer Dokumenttypdefinition (DTD) geschieht der formale Teil der Festle-
gung: Es wird im Wesentlichen festgelegt, welche Elemente es gibt — im Beispiel abschnitt,
satz und np —, welche Elemente in welchen anderen enthalten sein diirfen oder miissen, ob
bestimmte Elemente unmittelbar Text enthalten konnen oder nur wieder weitere Elemente.
Diese Spezifikation bezeichnet man auch als das Inhaltsmodell eines bestimmten Doku-
menttyps. In der DTD wird femer festgelegt, welche Attribute diese Elemente tragen
kénnen. Zu den Attributen wird angegeben, welchen Typs die Werte sind.

Je nach Kodierungszweck und Kodierungsstil kann es zu einem Dokument unzihlige
mogliche DTDs geben. Durch eine DTD ist nur bestimmt, welche Kodierungen zuldssig
sind, nicht aber, wie sie verwendet werden sollen. Dies sollte in Kommentaren zur DTD
oder in einem separaten Kodierungshandbuch méglichst detailliert und praxisnah nieder-
gelegt werden.

Aus dem hierarchischen SGML-Strukturierungsmodell fir Dokumente ergibt sich eine
nicht unwesentliche Einschrénkung: Die gleichzeitige Strukturierung eines Dokumentes in
einander iiberlappende Einheiten ist ausgeschlossen. Ein Dokument, das durch SGML-
Elemente, die Abschnitte umfassen, gegliedert wird, kann nicht gleichzeitig durch SGML-
Elemente gegliedert werden, die Seiten umfassen, sofern mehrere Abschnitte auf einer Seite
vorkommen kénnen, gleichzeitig aber auch ein Seitenumbruch innerhalb eines Abschnitts
vorkommen kann. Denn in solchen Fillen kann weder die betreffende Seitenelementinstanz

14 Gregor Biichel, Bernhard Schroder

als Teilelement der Elementinstanz des Abschnitts noch umgekehrt aufgefasst werden.
Zwar sieht der SGML-Standard fiir solche Fille die Moglichkeit vor, mit konkurrierenden
DTDs zu arbeiten, also eine DTD bereitzuhalten, in der die Seitengliederung, nicht aber die
Abschnittsgliederung beriicksichtigt wird, und eine andere DTD fiir den umgekehrten Fall.
In das Dokument werden speziell markierte Tags firr beide DTDs aufgenommen. Leider
gibt es jedoch kaum Werkzeuge, die die gleichzeitige Arbeit mit konkurrierenden DTDs
unterstiitzen wiirden.

Als Ausweg aus dem Dilemma bietet sich an, bei einer der beiden konkurrierenden Glie-
derungsarten darauf zu verzichten, mit SGML-Elementen die Einheiten dieser Gliederungs-
ebene zu umschliefien, sondern stattdessen mithilfe leerer, d.h. weder Text noch weitere
Elemente umfassender, Elemente nur den Anfang oder nur das Ende oder beides zu mar-
kieren. Damit verzichtet man allerdings auf Moglichkeiten, die zulidssigen Strukturen dieser
Gliederungsart genauer durch eine DTD zu beschreiben und die Gliederungseinheiten in
bequemer Weise zu adressieren.

Die bisher behandelten Mittel zur Kodierung von Textstrukturen erlauben, iiber den Text
ein baumartige Gliederungsstruktur zu legen. Zwischen den Elementinstanzen sowie den
Elementinstanzen und dem Text bestehen zwei Basisrelationen: Eine Elementinstanz oder
ein Textstiick kann in einer (anderen) Elementinstanz unmittelbar enthalten sein. In einer
Elementinstanz unmittelbar enthaltene Elementinstanzen oder Textstiicke stehen in einer
linearen Abfolgerelation zueinander: Die unmittelbar enthaltenen Elementinstanzen oder
Textstiicke stehen eben immer rechts oder links von anderen Elementinstanzen oder
Textstiicken.

Zu der baumartigen Gliederungsstruktur tritt noch die Méglichkeit, Elementinstanzen
mit Attributen und zugehorigen Werten zu versehen. Der Mechanismus der Attribuierung
von Elementinstanzen wird in SGML dazu genutzt, weitere beliebige Relationen zwischen
den Elementinstanzen eines Dokumentes oder auch zu Elementinstanzen anderer Doku-
mente herzustellen.

Um beispielsweise einen Verweis von einem Worterbuchartikel auf einen anderen zu
kodieren, kann man ersteren eindeutig benennen, indem man der zu diesem Artikel geho-
renden Elementinstanz ein Attribut mit einem Identifikator, einer zur Bezeichnung keiner
anderen Elementinstanz verwendeten Zeichenkette zuordnet.

<artikel id=hund><lemma>Hund</lemma>
</artikel>

<artikel id=katzes><lemma>Katze</lemma>
siehe auch <verweis idref=hunds>Artikel Hund</verweiss>

</artikel>

Die Elementinstanz von verweis im Artikel Katze verweist durch den Wert des Attributs
idref also auf die Elementinstanz von artikel mit dem Identifikator Aund. Fiihrt man zusitz-
lich noch Konventionen zur eindeutigen Identifikation anderer Dokumente ein, wie es im
WWW durch die Uniform Resource Identifiers (URIs) realisiert ist, so kénnen Verweise
auf beliebige Elementinstanzen in beliebigen SGML-Dokumenten realisiert werden. Mit-

2 Vgl hierzu auch den Beitrag von Thomas Burch und Johannes Fournier in diesem Band. Die TEI

befasst sich im Kapitel 31 der Guidelines mit diesem Thema.

Verfahren und Techniken in der computergestiitzten Lexikographie 15

hilfe der fir XML definierten XML Pointer Language (XPointer) kann auch auf
Elementinstanzen ohne Identifikatoren referiert werden, indem man einen Pfad durch den
Strukturbaum des Dokumentes beschreibt, der zu der gemeinten Elementinstanz flihrt. Das
Verweiskonzept kann auch derart erweitert werden, dass Verweise mit mehreren Zielen
zugelassen werden. Auf diese Weise kann von einer Elementinstanz auf mehrere andere
verwiesen werden. Die XML Linking Language (XLink) definiert fiir XML erweiterte
Verweiskonzepte, mit deren Hilfe beliebige Relationen zwischen Elementinstanzen von
Dokumenten kodierbar sind und Verweis- und Gliederungsstruktur relativ unabhédngig
voneinander verwaltet werden konnen.

Nur erwidhnt sei hier ein weiteres Sprachelement von SGML: Entititen sind Code-
Sequenzen, die einzelne Zeichen oder Zeichenfolgen vertreten. Damit lassen sich insbeson-
dere Bezeichner fiir Zeichen bilden, die im aktuell benutzten Code nicht vorhanden sind
oder die fiir die Portabilitidt der Daten hinderlich wiren. Dadurch wird die Integration belie-
biger Zeichensysteme in SGML mdoglich.

1.2.2 Das pragmatische Grundkonzept

SGML ist intendiert als ein Kodierungssystem fiir ein deskriptives Markup. SGML-Tags
sollen nicht als Befehle fiir bestimmte Formatierungsoperationen verstanden werden, son-
dern mithilfe von SGML-Elementen sollen die inhaltliche Gliederung eines Dokumentes
markiert werden.

Wie das inhaltlich durch SGML-Tags gegliederte Dokument fiir unterschiedliche Aus-
gabemedien zu formatieren ist, wird unabhingig vom SGML-Markup bestimmt. Ob eine
Uberschrift fett, groBer, zentriert erscheint, soll nicht durch SGML-Tags im Dokument
kodiert werden, sondern durch eine gesonderte Spezifikation, die Elementen in Abhingig-
keit von ihrer Umgebung und Attributen, Formatierungseigenschaften zuweist. Diese Zu-
weisung geschieht auBerhalb des eigentlichen Dokuments. Die so erreichte Modularisie-
rung ermdglicht es, ohne Veréinderung des Dokuments, an unterschiedliche Ausgabemedien
optimal angepasste Darstellungsformen des Dokuments herzustellen. DSSSL (Document
Style Semantics and Specification Language) ist der zu SGML gehorige Standard zur
Spezifikation von Darstellungsformen eines Dokuments, XSL (Extensible Style Language)
der entsprechende — z.T. noch in Entwicklung befindliche — Standard fiir XML, der viele
Prinzipien von DSSSL aufgreift.

Dass das pragmatische Grundkonzept des deskriptiven Markup bei der Entwicklung von
SGML leitend war, schlieit jedoch nicht aus, dass SGML auch fiir ein darstellungsbezo-
genes Markup verwendet werden kann. HTML (Hypertext Markup Language), die Sprache
des WWW, ist eine SGML-basierte Markup-Sprache, die urspriinglich einige wenige
Gliederungsméglichkeiten fiir Dokumente vorsah. Die Art der Darstellung der Dokumente
blieb weitgehend den Betrachterprogrammen iiberlassen. Der zunchmende Bedarf an
graphischen Gestaltungsmdglichkeiten und an kontrolliertem Layout hat zur Aufnahme von
Elementen und Attributen zur Steuerung des Layout gefiihrt. HTML wurde mehr und mehr
zur Layout-Programmiersprache fiir das WWW. Erst die Einfithrung von Cascading Style
Sheets (CSSs) zur Bestimmung von Layout-Eigenschafien von WWW-Seiten macht es
moglich, den Anteil von nicht-deskriptivem Markup in den HTML-Dokumenten selbst zu
verringern, ohne auf ansprechendes Layout zu verzichten.

Bei der retrospektiven Digitalisierung allerdings wird man des dfteren davon Gebrauch
machen miissen, dass sich mit SGML prinzipiell auch graphische Eigenschaften von Texten

16 Gregor Biichel, Bernhard Schroder

beschreiben lassen; iiberall da, wo unklar ist, wie bestimmte graphische Merkmale (z.B.
Wechsel des Schrifityps, der Schriftgrofle oder -farbe) zu interpretieren sind, wird man sich
bei der Kodierung auf die (typo-)graphischen Eigenschaften zurtickziehen miissen.

1.3 SGML vs. XML

Die Grundkonzepte von SGML sind liickenlos auch auf XML tiibertragbar. Neben einigen
rein notationellen Unterschieden schlieBt XML insbesondere Merkmale von SGML aus, die
die automatische Analyse von SGML-Dokumenten erschweren, dazu gehéren beispiels-
weise Moglichkeiten, Start- oder End-Tags, die aus dem Zusammenhang zu erschlieBen
sind, nach entsprechender Deklaration in der DTD wegzulassen. Die Markup-
Minimierungsmdoglichkeiten von SGML haben zur Folge, dass viele SGML-Dokumente
ohne eine DTD gar nicht eindeutig analysiert werden konnen, dass also nicht immer ein-
deutig zu ermitteln ist, wie weit sich eine Elementinstanz erstreckt. Fallen die Minimie-
rungsmdglichkeiten, wie in XML, weg, miissen also alle Elementinstanzen explizit durch
ein Start-Tag gedffnet und durch ein End-Tag geschlossen werden; so kann man auch ohne
eine DTD iiberpriifen, ob zumindest die Verschachtelung der Elementinstanzen korrekt ist
und ob die verwendeten Entititen bekannt sind. Fillt die Uberpriifung positiv aus, so hat
man es mit einem wohlgeformten Dokument zu tun. Entspricht die Struktur des Dokuments
dariiber hinaus noch der zugehorigen DTD, so verfiigt man iiber ein giiltiges Dokument.
Die zwei Stufen formaler Richtigkeit erweisen sich in der praktischen Arbeit als oft sehr
niitzlich. Nicht immer vollzieht sich die DTD-Entwicklung und die Entdeckung neuer Er-
fordernisse bei der Kodierungsarbeit synchron. In solchen Fillen kann eine Arbeit mit be-
ziiglich der aktuellen DTD ungiiltigen Dokumenten vonndten sein, nichtsdestotrotz bleibt
deren Wohlgeformtheit iiberpriifbar.

1.4 SGML und XML als Antwort auf die Anforderungen?

Die in Abschnitt 1.1 genannten Anforderungen lassen sich mit SGML bzw. XML weit-
gehend erfiillen.

1.4.1 Michtigkeit

Durch die grofle Flexibilitdt bei der Definition unterschiedlichster Dokumenttypen kénnen
SGML und XML als geeignete Werkzeuge fir die meisten Kodierungsaufgaben gesehen
werden. Mithilfe der erweiterten Verweistechniken lassen sich beliebige Relationen
zwischen Dokumententeilen kodieren. Einander iiberlappende Dokumentteile zwingen
jedoch héufig zu intuitiv weniger eingédngigen Kodierungsmechanismen. SGML und XML
sind insgesamt aber méchtig genug, prinzipiell jede Datenstruktur kodieren zu konnen.

1.4.2 Eindeutigkeit

Mithilfe von SGML oder XML definierte Kodierungssysteme sind formal eindeutig. Eine
Verwechslung von Textstiicken oder Markup oder Unklarheiten, auf welche Textteile sich
ein bestimmtes Markup erstreckt, sind bei geeigneter DTD-Konstruktion und giiltigen

Verfahren und Techniken in der computergestiitzten Lexikographie 17

SGML-Dokumenten oder wohlgeformten XML-Dokumenten ausgeschlossen. Dass Kodie-
rungen auch von allen Benutzerinnen und Benutzern eindeutig und hinreichend klar ver-
standen werden, kann natiirlich auf formalem Weg nicht sichergestellt werden. Von der
Text Encoding Initiative (TEI) werden jedoch in den TEI Guidelines fiir zahlreiche Kodie-
rungsprobleme detaillierte Empfehlungen fiir die Verwendung von SGML-Markup ausge-
sprochen. Diese Empfehlungen kénnen als eine Grundlage fiir ein detailliertes Kodierungs-
handbuch dienen, das auch die pragmatisch-inhaltlichen Fragen der Markup-Verwendung
klart.

1.4.3 Interpretierbarkeit

Durch SGML- bzw. XML-DTDs werden kontextfreie Grammatiken spezifiziert. SGML-
oder XML-Dokumente stellen an automatische Analyseprogramme damit dhnliche Anfor-
derungen wie der Code von Programmiersprachen. XML bedeutet gegeniiber SGML eine
deutliche Reduktion des Analyseaufwands.

1.4.4 Nachhaltigkeit

Jede Prognose iiber zukiinftige technische Entwicklungen ist mit Unsicherheit behaftet. Die
wachsende Bedeutung von XML im Internet-Bereich® und als Grundlage von Industriestan-
dards in Wachstumsbereichen® berechtigt zu der Annahme, dass XML auf Jahre hin ein
zentraler Standard zur Textkodierung sein wird. Verlage und Redaktionen setzen zuneh-
mend mit langfristigen Investitionen auf den Einsatz von SGML oder XML bei der medi-
enneutralen Texterfassung. Aber Nachhaltigkeit wird nicht zuletzt auch von den Eigen-
schaften gesichert, die ein hohes MaB an Portierbarkeit garantieren.

1.4.5 Portierbarkeit

SGML- und XML-Dateien sind reine Textdateien, d.h. die enthaltenen Zeichen kann man
mit jedem einfachen Texteditor betrachten. Im Allgemeinen beschrinkt man sich auf die-
jenigen Zeichen des ASCII-Zeichensatzes, die auf verschiedenen Systemen gleich interpre-
tiert werden. Damit stellen SGML- und XML-Dateien an Editier- und Betrachter-
programme minimale Anforderungen, sofern keine SGML- oder XML-spezifischen Editier-
oder Formatierfunktionen erwartet werden.

1.4.6 Softwareunterstiitzung

Der Softwaremarkt stellt Spezialwerkzeuge zur Arbeit mit SGML und zunehmend auch mit
XML fiir die unterschiedlichsten Aufgaben zur Verfiigung.’ Die XML-Tauglichkeit neuer

3 Uber aktuelle Standardisierungsbemiihungen im WWW-Bereich kann man sich auf den WWW-
Seiten des World Wide Web Consortium (W3C) informieren: http://www.w3c.org .

4 WML, die Beschreibungssprache fiir Internetseiten, die auf Mobiltelefonen angezeigt werden
konnen, ist beispielsweise ein XML-basierter Standard, vgl. http://www.wapforum.org .

5 FEinen sehr gut aufbereiteten Uberblick tiber Software zur Arbeit mit SGML und XML gibt Steve
Pepper in seinem Whirlwind Guide unter http://www.infotek.no/sgmltool/guide.htm .

18 Gregor Biichel, Bernhard Schroder

WWW-Browser diirfte stark zu Popularisierung von XML-Werkzeugen beitragen. Nicht
alle Spezialwerkzeuge unterstiitzen den SGML- oder XML-Standard in allen Einzelheiten.
Und nicht jede Funktionalitit, die man sich fiir die Arbeit mit diesen Kodierungssystemen
wiinscht, ist in einer vorkonfektionierten Softwarelosung erhiltlich. Spezielle Anwendun-
gen werden deshalb auf die Entwicklung spezialisierter Losungen setzen. Im Zentrum
dieser Losungen werden meist Datenbanksysteme stehen, in denen die SGML- oder XML-
kodierten Daten verwaltet werden. Darauf gehen die folgenden Abschnitte ein.

2 Datenbanksysteme zur Verwaltung strukturierter Textdaten

2.1 Datenbanksysteme: Allgemeiner Aufbau

Unter dem Begriff Datenbank (DB) versteht man eine strukturierte Sammlung von Daten,
welche fiir eine Reihe von unter Umstéinden unterschiedlichen Anwendungssystemen ein
Modell eines in der Regel kleinen Teiles der von Menschen wahrgenommenen Welt repri-
sentiert (Heuer/Saake [1997], Vossen [1994]).

Das Datenbank-Management-System (DBMS) bezeichnet die notwendige Sammlung von
Software, mit der unabhingig von Anwendungssystemen die lesenden und schreibenden
Zugriffe (Einfiigen, Andern, Loschen) auf eine Datenbank durchgefithrt und verwaltet
werden. Wenn im weiteren Text von ,,Datenbanksoftware oder von ,,Software des Daten-
banksystems* gesprochen wird, sollen damit Synonyme zum Wort Datenbank-Manage-
ment-System gemeint sein.

Der Begriff Datenbanksystem (DBS) beschreibt den Verbund einer nicht leeren Menge
von Datenbanken mit einem Datenbank-Management-System.

Datenbanksystem = Datenbank + Datenbank-Management-System

Bei einem Datenbanksystem handelt es sich um eine fiir Anwendungssysteme weiterent-
wickelte Spezialisierung der Grundfunktionalitit des Dateisystems eines Betriebssystems.
Beim Dateisystem eines Betriebssystems (sequentielles Dateisystem) kénnen mehrere An-
wender nur unter erh6htem Programmieraufwand fiir ein Anwendungssystem (z.B. durch
Programmierung des wechselseitigen Ausschlusses von Schreiboperationen auf einen
Datenbestand) in einem gleichen Zeitintervall lesend und schreibend auf den gleichen
Datenbestand zugreifen. Sie bendtigen weiterhin Werkzeuge fiir elementare Operationen
auf Dateien: Editieren (nach Moglichkeit mit strukturierten Editierhilfen), Suchen,
Sortieren. Diese Werkzeuge sind in der Regel mit dem Dateisystem alleine nicht gegeben.
Die Folge ist ein in der Regel erhéhter Programmier-(bzw. Installations-)aufwand und ein
cher ineffizient zeitlich ausgenutzter Datenbestand im Mehrbenutzerbetrieb.

Ein Datenbanksystem ermdglicht es mehreren Benutzern, in einem gemeinsam genutzten
Laufzeitintervall mit dem gleichen physischen Datenbestand zu arbeiten. Die Benutzer
greifen nicht mehr direkt, sondern {iber dic Datenbanksoftware auf den Datenbestand zu.
Die Datenbanksoftware iibernimmt die Kommunikation zwischen den Datenbankbenutzern
und den Schreib-/Leseoperationen auf die Datenbestinde. Sie bietet folgende Grundfunk-
tionalitiit an:

Verfahren und Techniken in der computergestiitzten Lexikographie 19

1. Persistenz (= dauerhafte Verwaltung von Datenbestinden) und Sekundirspei-
cherverwaltung: Die Daten sollen wihrend der Laufzeit strukturtreu vom Haupt- in
den Hintergrundspeicher geschrieben werden kénnen. Die Datenbanksoftware muss
Funktionen bereitstellen, um adressengesteuert Direktzugriffe auf Datensétze im Hin-
tergrundspeicher ausfiihren zu kénnen. Hinzu kommt Software, die anwendungsunab-
hiingig das Einfligen, Andern und L&schen von Daten auf Hintergrundspeichern
ausfiihrt.

2. Verwaltung eines Schemakataloges (Data Dictionary): Das Schema ist die konzep-
tuelle Beschreibung der Datenbanken eines Datenbanksystems. Es enthilt die Daten-
definitionen fiir samtliche Daten, die durch das Datenbanksystem verwaltet werden.
Dieser Schemakatalog, der auch ,Data-Dictionary‘ genannt wird, ermdglicht wihrend
der Laufzeit des Datenbanksystems Online-Zugriffe auf die Datendefinitionen des
Systems. Die in diesem und im vorhergehenden Absatz genannte Software garantiert
die Forderung der Datenunabhdingigkeit an eine Datenbank. Diese Forderung hat das
Ziel, eine in der Regel langlebige Datenbank von stéindig auftretenden Anderungen der
auf sie zugreifenden Anwendungssysteme abzukoppeln.

3. Interpretation einer Anfragesprache: Ein Datenbanksystem bietet dem Benutzer
eine Anfragesprache an, mit der er, ohne die interne Speicherung der Daten in der
Datenbank zu kennen, auf die Datenmengen des Datenbanksystems zugreifen kann.
Der Zugriff geschieht in der Regel interaktiv.

Weitere sechs notwendige Merkmale eines DBMS sind: Sicherung der Integritit, Verwalt-
ung von Benutzersichten, Datenschutz, Transaktionsverwaltung, Synchronisation, Recov-

ery/Datensicherung,
PeM_1 O3 -
2l SACAA

PGM_n

0

Front- Datenbanksoftware

End-
Werkzeuge

—)l Betriebssystem

Abb. 1: Allgemeiner Aufbau eines Datenbanksystems

Legende zu Abbildung 1:

user_i (1 £1i £ k): Anwender des Datenbanksystems, die ihre Schreib- bzw. Leseanfor-
derungen an das Datenbanksystem iiber einen vernetzten Rechner an den Rechner, auf dem
das Datenbanksystem installiert ist, weitergeben.

20 Gregor Biichel, Bernhard Schrider

PGM_i (1 £ i < n): DB-Anwendungsprogramm, das durch Schreib- bzw. Leseanforde-
rungen eines Anwenders gestartet wird und mittels der Datenbanksoftware auf Datenbe-
stinde des Datenbanksystems zugreift. Jedes DB-Anwendungsprogramm ist in der Regel
durch folgenden Schichtenaufbau gekennzeichnet:

Benutzerschnittstelle Melden und Empfangen von User-Daten
Algorithmische Schicht Verfahren zur Lsung des Anwendungsproblems
DB-Zugriff Aufruf von Funktionen der DB-Software

Abb. 2: Schichten eines DB-Anwendungsprogramms

Front-End-Werkzeuge:

— a) Benutzerschnitistelle zur interaktiven Verarbeitung von Kommandos der Anfrage-
sprache: Der Benutzer kann hier unmittelbar Kommandos eingeben, die an den
Kommandointerpreter weitergeleitet, analysiert und ausgefiihrt werden.

- b) Dialogmaskengenerator. Der Dialogmaskengenerator ist ein Softwaresystem zum
Erzeugen von Dialogmaskenprogrammen. Dialogmasken (engl. forms) gestalten eine
formatierte Eingabe fiir den lesenden und schreibenden Zugriff auf Datenbanken. Wegen
der formatierten Eingabe und der damit verbundenen Méglichkeit der Integrititskon-
trolle sind Dialogmaskenprogramme fiir die Bearbeitung von Daten in Lexikonartikeln
gut geeignet. Beim lesenden Zugriff ist insbesondere die Unterstiitzung von Suchfunk-
tionen (trunkierte Suche, maskierte Suche) durch Dialogmaskenprogramme hervorzu-
heben, die inzwischen bei géngigen Datenbanksystemen auch in Form von WWW-
Programmen implementiert sind. Die Ergebnisse einer Suchanfrage werden als sortierte
Listen ausgegeben. Hierfiir stellt das DBMS komfortable, fiir den Benutzer unaufwen-
dige, in Hinsicht auf das Datenmodell einer Datenbank flexible Sortierroutinen zur Ver-
fugung.

- ¢) Berichtsgenerator: Berichtsprogramme sind Programme, die in der Betriebsart Stapel-
verarbeitung des gegebenen Betriebssystems ablaufen. (Ein Desiderat der computerge-
stiitzten Lexikographie sind z.B. SGML-Berichtsgeneratoren).

2.2 Datenbankentwurf und Datenbankmodelle

Das Design einer Datenbank entspricht dem Einteilen der Daten eines geplanten Anwen-
dungssystems in verschiedene Entititenmengen (spitere Tabellen der Datenbank) und dem
Bestimmen der zwischen den Entititenmengen (Entities) bestehenden Beziehungstypen
(Relationships). Zum Design von Datenbanken hat sich das Entity-Relationship-Modell als
Entwicklungsmethode bewihrt. Entity-Relationship-Modelle unterstiitzen die Abbildung
formaler Beschreibungen von Lexikonartikeln, die z.B. in SGML vorliegen, auf Tabellen-
strukturen eines einzurichtenden DBS zur Verwaltung lexikographischer Daten. Graphisch
werden Entity-Relationship-Modelle durch E/R-Diagramme dargestellt.

Verfahren und Techniken in der computergestiitzten Lexikographie 21

Syntaktisch bestehen E/R-Diagramme nur aus zwei Symbolen. Jeweils eines filir Entities
(Entitytypen) und eines fiir Relationships (bzw. Beziehungstypen oder Relationstypen). Die
Kanten eines E/R-Diagramms kénnen mit Quantititen (sog. erweitertes E/R-Diagramm)
und auch mit einem Durchlaufsinn eingefirbt sein. Es hat sich folgende Darstellungsweise
durchgesetzt (Abbildung 3):

Bezeichnung Symbol Bemerkung

Entitytypen Entity-Name

Relationen Die Quantititen r,,r; bezeich-
nen Anzahlen sich entspre-
chender Elemente in den
Tupeln des Relationstyps R,
der zwischen zwei Entititen-
mengen A und B besteht. Es
gibt folgende Standardquanti-
tatsangaben:

r,rne {1,n, m,c,cn, cmj

ce{0,1}:n,me N.

Abb. 3: Syntax von E/R-Diagrammen

Nachfolgend ist als Beispiel fiir die Informationselemente der Artikel des ,Hegel-
Lexikons“ von Hermann Glockner (Glockner [1935]) ein Entity-Relationship-Modell
angegeben (Abb. 4).

Nach Aufstellung des Entity-Relationship-Modells kann in Hinsicht auf die Merkmale
des vorliegenden lexikographischen Datenmodells die Auswahl des Typs des zu benut-
zenden DBMS (z.B.: relational oder objektorientiert) getroffen werden. Fragen fiir die Ent-
scheidungsfindung konnen z.B. sein:

- Sind die Daten vorwiegend als Tupel strukturiert oder sind sie hauptsdchlich in Hierar-
chien bzw. Netzwerken angeordnet?

- Will man die Daten durch eine komplexe oder durch eine einfache Anfragesprache ver-
walten?

- Hat man zwischen den verschiedenen Entititenmengen viele oder wenige Eigenschaften,
die sich ,,vererben® lassen?

- Maochte man ein weitverbreitetes DBMS oder kann man auch mit einem weniger verbrei-
teten DBMS arbeiten?

22 Gregor Biichel, Bernhard Schroder

STICHWORT . BAND-
p "5 ANGABE
c m

n n
‘| VERWANDTER MERKMAL
' BEGRIFF
1| BEGRIFFS- ‘
— KREIS 1

s

1| SEITEN- =
@ ANGABE

Abb. 4: E / R-Diagramm zu H. Glockner: , Hegel-Lexikon*

2.2.1 Relationale Datenbanksysteme (RDBS)

Das relationale Datenbankmodell wurde 1970 von E.F. Codd entwickelt. Die unmittelbar
abbildbaren Datenstrukturen sind Tupel elementarer Datentypen, die in Tabellen zusam-
mengefasst werden. Das relationale Datenbankmodell basiert auf den mathematischen Ope-
rationen der relationalen Algebra (Selektion, Projektion, Verbund, Differenz und Verei-
nigung von Relationen) (Sauer [1994], Schwinn [1992]). Die Relationen (Beziehungen)
werden durch zweidimensionale Tabellen dargestellt. Dabei wird die Anzahl der Spalten
fest vorgegeben. Die Zeilen der Tabelle enthalten dabei die Datenobjekte (Datensitze), die
durch ihren Schliissel unterschieden werden kénnen. Es kommt also keine Zeile einer
Tabelle zweimal vor. Die Spalten (Datenfelder) enthalten die Attributwerte, die in einer
Spalte immer vom gleichen elementaren Datentyp sind. Elementare Datentypen sind z.B.
INTEGER (ganze Zahl), CHAR(n) (Zeichenkette der Lange n), FLOAT (Gleitkommazahl),
usw. Die Reihenfolge der Zeilen und Spalten ist im relationalen Datenmodell gleichgiiltig.

Verfahren und Techniken in der computergestiitzten Lexikographie 23

SP, SP, o SPy - SPx

Z| a1

Zy amk

Abb. 5: Allgemeiner Tabellenaufbau

Legende zu Abbildung 5:

- SPg: Name der k-ten Spalte (=: Name des Attributes A,)

- Datensitze sind in den Zeilen Z,, Z,, ..., Zy enthalten.

- Tupelstruktur: Zi=(a;, ap, ..., an) € WiXWxWix.. xWy (W; ist Wertebereich zur
Spalte Sp;). Alle Attributwerte des Attributes A, sind vom gleichen elementaren Daten-
typ dtyp(Ay).

Mit relationalen Datenbanken ist in kanonischer Weise die Datenbanksprache SQL (SQL =
Structured Query Language) verbunden (Knebel/Postels [1991], Miesgeld [1991], Petkovic
[1995]). SQL basiert auf der Relationenalgebra und dem Tupelkalkiil, das dem Tabellen-
aufbau relationaler Datenbanken zugrunde liegt. SQL ist eine Anfrage-, Datendefinitions-
und Datenmanipulationssprache. Mit ihr konnen Benutzersichten, Dateiorganisations-
formen und Zugriffspfade definiert werden. SQL ist eine genormte Datenbanksprache
(ANSI/ZISO [SQL-92], eine neue Norm [SQL3] steht zur Verabschiedung an).

In einem einfachen lexikographischen Datenbanksystem werden Daten aus Hegel-

Registern und Hegel-Lexika verwaltet. Hieraus ist das Beispiel in Abbildung 6 entnommen
worden.

— Terminal - averoest

“File Edit Session Options Help

PERFORM: Query m Previous View Add Update Remove Table Screen
Shows the next row in the Current List. ** 1: glocktab table**
+ - . oo b e i i oy e NS Iyt st o 4 . e e - e DS +
Glockner : Hegel - Lexikon

Schlagwort [Abstraktion]
Grundform [Abstraktion]

Schlagwortzeile

[(abstrakt,abstrakt-konkret,Allgemeines) 1
{]
Bemerkung 1 : [B]
Bemerkung 2 : [|

Begriffskreise :

[B iff 1

in 1
[symbolische Architektur 1
[indische Religion]

s e s . s a0

Abb. 6: SQL-FORM zur Verarbeitung der GLOCKNER-Tabelle

24 Gregor Biichel, Bernhard Schrider

2.2.2 Objektorientierte Datenbanksysteme (OODBS)

Das Konzept objektorientierter Datenbanken vereinigt zwei Mengen wesentlicher Eigen-
schaften (Atkinson [1992]):
(1.) Es beinhaltet ein objektorientiertes Datenmodell.
(2.) Es enthilt die Speicherungstechniken eines gewdhnlichen Datenbanksystems (Per-
sistenz, Sekundirspeicherverwaltung, Verwaltung von Transaktionen, Recovery-Tech-
niken, ...; vgl. Heuer [1997], Hughes [1992], Saake/Tiirker/Schmitt [1997]).

Auszug aus der Liste der Forderungen zu (1.):

(1.1) Moglichkeit der direkten Modellierung komplexer Objekte (abstrakte Datentypen).

(1.2) Objektidentitdt (OID).

(1.3) Jedes Objekt kapselt Struktur und Verhalten (Kapselung). Die Struktur eines Objekts wird
durch Instanz-Variablen beschrieben. Das Verhalten eines Objekts wird durch Methoden
beschrieben.

(1.4) Objekte mit gemeinsamer Struktur und gemeinsamen Verhalten werden in Klassen grup-
piert. Jedes Objekt ist Instanz einer Klasse.

(1.5) Klassen konnen als Spezialisierung anderer Klassen definiert werden (Vererbung).

OODBS eignen sich zur Speicherung von komplizierten Datenstrukturen, deren Abbildung
auf Tabellen eines RDBMS mit Schwierigkeiten verbunden ist. (Eine Tabelle hat eine
moglicherweise grofle, aber immer konstante, den Anwendungsdaten beim Betrieb des
DBS vorgegebene Anzahl von Spalten, die wihrend der Laufzeit nicht gedndert werden
kann!) Zu solchen Datenstrukturen zihlen z.B.: Baumstrukturen (Hierarchien) mit vielen
Hierarchiestufen, netzwerkartige Strukturen mit unterschiedlichen Kantentypen.

Eine Klasse definiert den Aufbau und beschreibt iiber die Methoden das Verhalten eines
Objektes. Alle Instanzen einer Klasse besitzen somit das gleiche Verhalten und die gleiche
Wertestruktur. Durch Definition von Klassen vergroflert sich die Menge der zuldssigen
Datentypen im Data-Dictionary. Damit bietet sich die Moglichkeit, abstrakte Datentypen zu
definieren (List-Typen, Mengentypen). Als Anfragesprachen fiir OODBS werden héhere
Programmiersprachen verwendet, die Klassen als Datentypen zulassen, wie C++, JAVA
und SMALLTALK. Wie in der Programmiersprache C++ sind Objekte in einem OODBS
verkapselt, d.h. Methoden und Daten eines Objektes bilden eine Einheit. Der Benutzer kann
nicht direkt auf die Werte eines Objektes zugreifen, sondern nur iiber die Methoden, die der
Klasse des Objektes bekannt sind. In einem OODBS kénnen dynamische Listen verhilt-
nisméBig einfach als Klassen modelliert werden. OODBS werden besonders zur Reali-
sierung komplexer, datenintensiver Anwendungen im Konstruktions- und Entwurfsbereich
(CAD) eingesetzt.

Ein OODBS muss weiterhin das Konzept der Vererbung (Spezialisierung) unterstiitzen.
Beispiel: Die Entitiéit Student ist eine Spezialisierung der Entitit Person. Man unterscheidet
zwischen Superklassen (hier Person) und sogenannten Subklassen (hier Student). Die Spe-
zialisierungsbeziehung zwischen Klassen fiihrt zu Klassenhierarchien.

Ein Beispiel fiir Vererbungsbeziehungen zwischen Klassen eines lexikographischen Da-
tenmodells kann in einem Modell einer datenbankorientierten Beschreibung ausgewihlter
Informationselemente des Artikelaufbaus des ,,DUDEN - Das grofie Worterbuch der
deutschen Sprache” (DUDEN [1993]) gegeben werden.® Folgende Tabelle (Tab. 1), die in
Anlehnung an Lenders (1990) eine ,,Vorform* einer Artikelbeschreibung darstellt, gibt eine

 An dieser Stelle mochten wir Frau Dr. A. Storrer (IDS Mannheim) danken, die uns den Hinweis

auf dieses schone Beispiel einer Vererbungsstruktur gab.

Verfahren und Techniken in der computergestiitzten Lexikographie

25

hierarchisch strukturierte Liste von Entititen (mit Attributen) an, die auf unterschiedlichen
Ebenen mit grammatischen Angaben versehen sind.

Tab. 1:
ENTITATENMENGEN LISTENELEMENTE | BEISPIEL ANM.
LEMMA (Stichwort) Abstich 03]
GRAMMATISCHE der; -[e]s, -e
ANGABE zum LEMMA
(=: GRAM_H)
LISTE von LESARTEN pro Lesart: (2)
TITEL der Lesart das Abstechen
ERLAUTERUNG der|{der A. von Torf,
Lesart Rasen
GRAMMATISCHE <o0.P1>
ANGABE zur Lesart
(optional)
(=: GRAM 1)
LISTE von KOMPOSITA g %) 3)
Etc.

Anmerkungen zu Tabelle 1:

(1) DUDEN (1993), S. 98.
(2) Das Beispiel weist drei weitere Lesarten auf, wobei die Lesart Nr. 3 zwei Varianten hat:

NR | TITEL der Lesart ERLAUTERUNG der GRAMM. |SACHGEBIET
Lesart ANGABE
2) | Art des Kantenverlaufs | stark flichender A. %] Schneiderei
beim Sakko ...
3a) | das Abstechen der A. des [Roh]eisens <o0.P1> Hiittenwesen
3b) [Teil eines Hochofens, ... | die GieBpfanne unter den | @&
A. riicken
4) | das Abstechen, Kontrast | dort erschien sie licht, im | @&
A. ihrer nichtlichen Um-
gebung (Grillparzer,
Medea I)

(3) Das Beispiel enthilt keine Komposita.

Im Folgenden wird fiir die in dieser Tabelle gegebenen Entititenmengen ein Klassenbezie-
hungsgraph (Abb. 8) angegeben, der als Instrument des Entwurfes eines OODBS dienen
kann. Das Aufstellen eines Klassenbeziehungsgraphen setzt in der Regel eine Entity-
Relationship-Analyse voraus.

26 Gregor Biichel, Bernhard Schréder

K

al
az2

aN

ful()
fum()

Abb. 7: Klassenbeziehungsgraph

GRaMH S | _ _ _ _ _ _
1
genus |
numerus I
LEMMA 1 c I
deklination() 1
Lemma 'l
Wortklasse
Erlauterung |
getlesalist() LESART 1 1
putlesalist() 1 cxn GRAM_L
Nr Spezifikation
Titel .
Erlauterung
Sachgebiet
connectsachg() flexion()

Abb. 8: Klassenbeziehungsgraph

Der (1:n)-Beziehungstyp wird als sog. gerichtete Assoziation mit dem Symbol
1 n

> dargestellt (Fowler [1995], vgl. auch: Booch [1995], Rumbaugh
[1993]). Die Vererbung zwischen zwei Klassen wird hier mit dem Symbol

bezeichnet.

Das Symbol einer Klasse im Klassenbeziehungsgraph (vgl. Abb.6) setzt sich zusammen aus
einem Klassennamen K, einer Liste von Attributen al,..., aN und einer Liste von Methoden
ful(),..., fuM(), die die Daten der Klasse K verarbeiten.

Verfahren und Techniken in der computergestiitzten Lexikographie 27

3 Resiimee

Dieser Beitrag geht auf Entscheidungskriterien ein, die fiir die Wahl eines Kodierungssys-
tems fiir komplexe Textstrukturen relevant sind. In den meisten Fillen diirfte die Wahl
eines SGML- oder XML-basierten Kodierungssystems addquat sein. Da SGML und XML
zur Kodierung beliebiger Datenstrukturen verwendet werden konnen, wird die Verwendung
von SGML oder XML immer prinzipiell moglich sein. Die Verwaltung SGML- oder XML-
kodierter Daten kann mithilfe von Datenbanksystemen geschehen. Dazu sind die in SGML
oder XML kodierten Textobjekte und Beziehungen auf die Ausdrucksmittel des gewihlten
Datenbanktyps abzubilden. Dies ist in jedem Fall méglich, da in SGML- und XML-
kodierten Dokumenten vorhandene Strukturen auf wenige Relationen zwischen Elementin-
stanzen oder zwischen Text und Elementinstanzen oder zwischen Elementinstanzen, Attri-
buten und Werten abbildbar sind. Welche Datenbank-Modellierung sich unter Gesichts-
punkten des Datenzugriffs und der Datenpflege als giinstig erweist, hingt stark von der Art
der Dokumentstrukturierung und dem Nutzungszweck ab.

4 Literatur

Atkinson, M., et. al. (1992): The Object Oriented Database System Manifesto — In: Bancilhon, F., et
al.: Building an Object-Oriented Database System — The Story of O2. —San Francisco, Ca.:
Morgan-Kaufmann,

Booch, G. (1995): Objektorientierte Analyse und Design. — Bonn, Albany: Addison-Wesley.

DUDEN: DAS GROSSE WORTERBUCH DER DEUTSCHEN SPRACHE in acht Bianden. Hg. G.
Drosdowski. Mannheim: Dudenverlag 1993.

Fowler, M. (1997). UML Distilled — Applying the Standard Object Modeling Language. — Reading
(Mass.) et al.: Addison-Wesley.

Glockner, H. (1935): Hegel-Lexikon. —~ In Hegel, G. W.F.: Simtliche Werke (Jubildumsausgabe),
Bd. 23-26, Stuttgart: Frommann.

Goldfarb, Charles F. (1990): The SGML Handbook. — Oxford: Clarendon Press.

— und Prescod, Paul (1998): The XML Handbook. Upper Saddle River, NJ: Prentice Hall PTR,
1998.

Graham, Ian S., Quin, Liam (1999): XML Specification Guide. New York, NY: John Wiley & Sons.

Hald, A., Nevermann, W. (1995): Datenbank-Engineering fiir Wirtschaftsinformatiker. — Braun-
schweig, Wiesbaden: Vieweg.

Heuer, A. (1997): Objektorientierte Datenbanken, Bonn: Addison-Wesley.

— und Saake G. (1997): Datenbanken — Konzepte und Sprachen. — Bonn, Albany: Int. Thomson
Publishing Comp.

Hughes, J.G. (1992): Objektorientierte Datenbanken. — Miinchen, Wien: C. Hanser (in coedition with
Prentice Hall).

Knebel, B., Postels, G. (1991): Einfiihrung in Informix-SQL. — Heidelberg: Hiithig.

Lenders, W. (1990): Semantische Relationen in Worterbuch-Eintrigen — Eine Computeranalyse des
DUDEN-Universalworterbuches. — In: Schaeder, B., Rieger, B. (Hgg.): Lexikon und Lexiko-
graphie. Hildesheim: Olms.

-~ (Hg.) (1993): Computereinsatz in der angewandten Linguistik — Konstruktion und Weiterverar-
beitung sprachlicher Korpora. - Frankfurt a.M.: Lang.

Lobin, Henning (Hg.) (1999): Text im digitalen Medium. — Opladen, Wiesbaden: Westdeutscher
Verlag.

Misgeld, W. (1991): SQL - Einstieg und Anwendung. — Miinchen, Wien: Hanser Verlag.

Méhr, Wiebke, Schmidt, Ingrid (Hgg.) (1999): SGML und XML — Anwendungen und Perspektiven.
— Berlin etc.: Springer.

28 Gregor Biichel, Bernhard Schréder

Musciano, Chuck, Kennedy, Bill (1999): HTML — Das umfassende Referenzwerk. 2. Aufl. — Koln:
O’Reilly.

Petkovic, D. (1995): Informix 6.0/7.1. — Bonn: Addison-Wesley.

Rumbaugh, J., Blaha, M., et.al. (1993): Objektorientiertes Modellieren und Entwerfen, Miinchen,
London: Hanser/Prentice-Hall.

Saake G., Tiirker C., Schmitt 1. (1997): Objektdatenbanken. — Bonn, Albany: Int. Thomson
Publishing Comp.

Sauer H. (1994): Relationale Datenbanken — Theorie und Praxis. — Bonn, et al.: Addison-Wesley.

Schroder, Bernhard (1998): Pro-SGML: Ein Prolog-basiertes System zum Textretrieval. — In: Gerhard
Heyer, Christian Wolff (Hgg.): Linguistik und neue Medien, 205-216. Wiesbaden, DUV.

— und Ostermann-Heimig, Jens (1998): Kants Werke als Hypertext. — In: Angelika Storrer, Bettina
Harrichausen (Hgg.): Hypermedia fiir Lexikon und Grammatik, 233-246. Tiibingen, Narr.

Schwinn, H. (1992): Relationale Datenbanksysteme. — Miinchen, Wien: C. Hanser Verlag.

Sperberg-McQueen, C. M., Burnard, Lou (1994): TEI Guidelines for Electronic Text Encoding and
Interchange (P3). 1.4.2000, http://etext.lib.virginia.edu/TEl.html.

Vossen, G. (1994): Datenbanken, Datenmodelle, Zugriffssprachen. — Bonn: Addison-Wesley.

Wilde, Erik (1999): World Wide Web — Technische Grundlagen. — Berlin, etc.: Springer.

Gregor Biichel, Kéln
Bernhard Schréder, Bonn

