Contents

Introduction					
-	er 1. Formulation of Inverse Logarithmic Potential Problem. Fun-				
	tal Equation	7			
-	Formulation of inverse problem	7			
-	Nonlinear boundary value problem for mapping function	13			
	The analytic continuation of the potential across a boundary	16			
-	The boundary analyticity of domain is a solution to an inverse problem	23			
§1.5	The structure of inverse problem solution. final solvability. Examples	28			
Chapte	er 2. Local Solvability of an Inverse Problem	41			
$\S 2.1$	Univalent function variation	41			
$\S 2.2$	Local theorem of existence	42			
$\S 2.3$	Linearization of the boundary value problem	44			
$\S 2.4$	The auxiliary problem	46			
$\S 2.5$	The Newton-Kantorovitch method	47			
$\S 2.6$	The explicit solution of the linear problem	49			
$\S 2.7$	The local uniqueness theorem	49			
$\S 2.8$	The density variation. The equivalent solution set of the inverse problems.				
	Remarks	50			
$\S 2.9$	The complex-valued density case	52			
§2.10	Existence theorems for the inverse problem for small constant densities	56			
§2.1	1 Proof of theorems	58			
Chapte	er 3. The Estimate of Bounded Univalent Function Coefficients and				
Unival	ent Polynomials	71			
$\S 3.1$	Classical estimates. Classes of bounded functions and with bounded image				
	area	71			
$\S 3.2$	The estimate of univalent polynomials coefficients	74			
-	The Diedonne-Horowitz inequalities for univalent polynomials	77			
$\S 3.4$	Numerical estimates of univalent polynomials coefficients	81			
Chapte	er 4. Mass Potential Estimates. Necessary Conditions for Solvability.				
A Prio	ri Estimates for Inverse Problem Solution	85			

$\S 4.1$	Exact estimates for a mass potential gradient in the three-dimensional case.	
	Extremal domain	85
$\S 4.2$	Exact estimates of logarithmic mass potential	91
$\S 4.3$	A priori estimates for inverse potential problem solution	93
§4.4	On zeros of a potential mass gradient	97
$\S 4.5$	Estimates of mass potential derivatives in a fixed angle	100
§4.6	The estimates of the mass potential derivatives in the disk	103
$\S 4.7$	The estimate of the mass potential based on the Calderon-Zygmund results	
	for the singular integral	109
$\S 4.8$	The necessary solvability conditions, a priori estimates — using the univa-	
	lent function theory	113
Chapte	er 5. The Continuation by the Parameter of an Inverse Problem	1
Solutio		- 125
	The dependence of an inverse problem solution on the parameter - a con-	
Ü	stant density	125
§5.2	The theorem on the continuation of a solution by the parameter	129
	Inverse potential problems and univalent functions	
Chante	er 6. On the Analyticity and Smoothness of an Inverse Problem	
Solutio		139
	Theorem on the smoothness of inverse problem solutions	
	Applications of the theorem on smoothness, in connection with free bound-	
3	ary smoothness	148
$\S 6.3$	Analytical continuation of the potential through the angle points	
Chante	er 7. Inverse Linear Problem. Determination of a Density of the	
-	·	155
	Existence theorems. The particular solutions of the inhomogeneous prob-	100
31.2	lem construction	155
87.2	Solution of the homogeneous problem. Density of the vanishing external	
3	potential	158
§7.3	Special classes of domains	
•	Determination of a body's density by the given potential of an elliptic	
3	equation	167
§7.5	Linear inverse problem in the classes $L_p \ldots \ldots \ldots \ldots$	
Chante	er 8. Conjugation of Harmonic and Analytic Functions: Direct and	1
_		173
	Problems of the linear conjugation for harmonic and analytic functions	
_	The particular cases, modifications, applications and generalization of the	114
30.2	base conjugation problem	183
883	Formulation of inverse problems	
	Applied inverse problems.	
	Interior inverse problems.	
30.0		-00

Chapte	er 9. Applications in Gravity Prospecting and in Magnetic Prospect	-
ing		205
§9.1	Setting of problems. The algorithm for numerical construction of the equivalent solutions set by the analytically given field	206
$\S 9.2$	On one approximation method (analytic continuation) for gravitational	
-	fields	209
	Examples of the numerical constructing of the equivalent solutions family. Approximation of the anomaly field and determining the object by the	210
, 0	random search method	219
Bibliog	graphy	229