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Einleitung

Was ist Algebra ? Welche Fragen untersucht man heute in diesem Teilgebiet
der Mathematik ? Wohl die meisten werden sich an ihren Schulunterricht er-
innern und mit dem Wort Algebra Vorstellungen verbinden, die ihr Wesen gar
nicht oder nur am Rande beschreiben. Man denkt vielleicht an besondere
Techniken beim Umformen oder Berechnen komplizierter Ausdriicke oder
wartet auf eine Sammlung iiberraschender Methoden zur Auflésung gewisser
Gleichungen.

Aber all das steht zumindest nicht im Vordergrund einer Algebra, so wie sie
heute betrieben wird. Die Motive dafiir sind zum Teil recht praktischer Natur.
Man mag sich beispielsweise dariiber freuen, explizite Formeln fiir die Null-
stellen kubischer Polynome hinschreiben zu konnen; doch wird es wenige
Mathematiker geben, die sie jemals benutzt haben. Das Interessante an diesen
fir die praktische Anwendung zu komplizierten Formeln, in denen neben
Summen, Produkten, Differenzen und Quotienten der Polynomkoeffizienten
nur Wurzelzeichen auftreten, ist lediglich ihre Existenz: Es ist ja keineswegs
selbstverstindlich, daB man die gesuchten Nullstellen in der beschriebenen
Gestalt angeben kann.

Wir kommen dem Kern der Algebra durch einfachere Beispiele nidher. Man be-
trachte etwa die bekannten Bruchrechenregeln. Wenn man sie iiberhaupt ein-
mal sauber bewiesen hat, dann vielleicht in der Form, daB die Zahler und
Nenner ganze Zahlen waren. Spéater lernt man die reellen oder die komplexen
Zsahlen kennen; wieder gelten die Bruchrechenregeln; aber man muB sie er-
neut beweisen, obwohl man ziemlich rasch sieht, da8 man die alten Beweise
ohne wesentliche Anderungen abschreiben kann. Es ist eine der Hauptaufgaben
der Algebra, derartige Wiederholungen durch die Herleitung allgemeinerer
Sétze zu vermeiden. In dem vorgelegten Fall wiirden wir etwa folgendes fest-
stellen: Wenn in einem Rechenbereich, den wir dann einen Kérper nennen, ge-
wisse Voraussetzungen erfiillt sind, so gelten in ihm die Bruchrechenregeln.
Hinterher hétte man sich nur noch zu vergewissern, dafl die Menge der kom-
plexen Zahlen ein Koérper ist; die Bruchrechenregeln fiir komplexe Zahlen er-
scheinen nun als ein Spezialfall eines Satzes der Algebra.

Solche Moglichkeiten der Vereinfachung und Zusammenfassung mathemati-
scher Sachverhalte haben sich im Verlauf der Zeit immer héaufiger ergeben,
und sie waren keineswegs immer so vordergriindiger Natur wie in dem eben
geschilderten Beispiel. Auf diese Weise ist die Algebra zu einer Theorie der
verschiedensten Rechenoperationen geworden und hat sich langst zu einer
selbstindigen Disziplin entwickelt, deren Weiterentwicklung eine groBe Be-
deutung fiir viele andere Gebiete der Mathematik bekommen hat. Etwas kon-
kreter gesagt, betrachtet man Mengen, auf denen gewisse Rechenoperationen
erklart sind, die méglichst wenige einfache Forderungen erfiillen. Man gibt
ihnen Namen wie Gruppen, Ringe, Kérper und betreibt etwa Gruppentheorie
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als eine Theorie der Konsequenzen, die sich aus den Gruppenaxiomen ergeben.
Weill man dann von irgendeiner Menge von Zahlen, Matrizen, Funktionen, daB
sie eine Gruppe ist, so kann jeder Satz der Gruppentheorie auf sie angewandt
werden. Die wichtigsten Anwendungen der Algebra betreffen die Zahlentheorie
und die Geometrie, und umgekehrt liefern Geometrie und Zahlentheorie viele
Beispiele und Vorstellungen, die zu algebraischen Sétzen fiihren.

Wolite man eine Geschichte dieser Entwicklung skizzieren, die zur heutigen
Auffassung der Algebra gefithrt hat, so konnte marr sie mit drei groBen Namen
beginnen, die uns noch oft begegnen werden: ABEL (1802—1829), Garois
(1811—1832), Gavuss (1777—1855). In der zweiten Halfte des vergangenen
Jahrhunderts entwickelte sich dann vor allem die Gruppentheorie, und
DEDEXIND (1831—1916) begriindete die Idealtheorie; aber der Ubergang zum
axiomatischen Standpunkt, der sich als so fruchtbar erwiesen hat, war all-
gemein noch nicht vollzogen. Entscheidende Impulse fiir diesen Durchbruch
gingen erst von HILBERT (1862—1943) aus; sein EinfluB auf die Gestalt der
neuzeitlichen Mathematik kann kaum tiberschitzt werden. In den letzten
Jahrzehnten ist die Hinwendung zur Abstraktion immer starker geworden,
und dieser Proze$ halt aus mancherlei Griinden an. Fiir den schopferischen
Mathematiker bedeutet das nicht gleichzeitig einen Verzicht auf die Anschau-
ung; nur ihre Formen haben sich gewandelt. Letzten Endes wird jede abstrakte
Theorie sich an konkreten Spezialfillen bewihren miissen, wenn sie lebendig
bleiben soll.

Es ist das Ziel dieses Buches, einen ersten Einblick in dieses umfangreiche Teil-
gebiet der Mathematik zu vermitteln; bei der Stoffauswahl beschrinken wir
uns auf einige wesentliche Ausschnitte der Algebra. Viele Fragen, die in aus-
fithrlicheren Darstellungen behandelt werden, bleiben deshalb unerwihnt.
Auch die sogenannte lineare Algebra, die zusammen mit der analytischen Geo-
metrie an den Beginn eines Mathematikstudiums gehort, ist nur in dem Um-
fang wiedergegeben, in dem sie spéter von uns gebraucht wird. Der Leser sollte
eine gewisse Vertrautheit im Umgang mit mathematischen Begriffsbildungen
besitzen und vielleicht die ersten beiden Studiensemester schon hinter sich
haben. Vorkenntnisse werden dagegen nur in ganz geringem Umfang erwartet.
Das Rechnen mit komplexen Zahlen ist in einem Anhang, der bei Bedarf zu
Rate gezogen werden kann, noch einmal kurz zusammengestellt. Auch das
erste Kapitel iiber die Grundbegriffe der Algebra wird vieles dem Leser bereits
Bekannte enthalten. Unbewiesen blieb lediglich der an einigen Stellen aus der
komplexen Analysis ibernommene Satz, daBl jedes nichtkonstante Polynom
mit komplexen Koeffizienten wenigstens eine komplexe Nullstelle besitzt.
Der Text ist in Kapitel und die Kapitel sind in Paragraphen aufgeteilt. Lingere
Paragraphen werden der besseren Ubersicht wegen noch einmal in Teil-
abschnitte zerlegt. Die Sétze sind in jedem Paragraphen neu durchnumeriert;
bei Verweisen auf frilhere Paragraphen wird deren Nummer vorangestellt;
Satz 7.5 ist also Satz 5 aus § 7. Ein Verweis auf § 7.3 dagegen bedeutet den
dritten Abschnitt von § 7. Vielen Paragraphen sind Aufgaben beigefiigt; die
Losungen finden sich am SchluB des Buches; wenn es erlaubt schien, wurden
sie entsprechend knapp formuliert. Von den Ergebnissen friiher gestellter
Aufgaben wird im Text des Buches mitunter Gebrauch gemacht; sie werden
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wie die Sitze zitiert. Am Ende eines jeden Kapitels und hin und wieder auch
in einzelnen Paragraphen stehen Literaturverweise, die zu weiterer Lektiire
anregen sollen. Nur diese im Text genannten Biicher sind im Literaturverzeich-
nis aufgefithrt. Wer sich ausfiihrlicher mit Algebra beschiftigen will, sei ins-
besondere auf die umfangreicheren und weiterfithrenden Werke von Jacos-
sox [10] und vaNx DER WAERDEN [16] hingewiesen.

Die in dem vorliegenden Buch benutzten Symbole wurden, soweit sie nicht
allgemein geldufig sind, in einem gesonderten Verzeichnis noch einmal zu-
sammengestellt. SchlieBlich sind einige Paragraphen, deren Lektiire iiber-
schlagen werden kann, durch einen Stern gekennzeichnet.



1 Grundlagen

Wie bereits angedeutet, beschéftigt sich die Algebra mit dem Rechnen in ge-
eignet erklarten Mengen. Wir stellen deshalb zundchst die von uns benétigten
Grundbegriffe der Mengenlehre zusammen, wobei wir den sogenannten naiven
Standpunkt einnehmen: Fragen der Axiomatik werden nicht erértert.

§ 1 Mengen

1.1 Unter einer Menge verstehen wir die Zusammenfassung irgendwelcher
paarweise voneinander verschiedener Objekte, etwa Zahlen oder Buchstaben,
zu einem Ganzen; wir bezeichnen Mengen mit groen Buchstaben wie 4, B,
G, M. Die in der Menge A enthaltenen Objekte heien Elemente von A ; ist a
ein Element von 4, so schreiben wir ¢ € 4, andernfalls a ¢ 4.

Wollen wir eine Menge M explizit angeben, so zdhlen wir in geschweiften
Klammern ihre Elemente auf oder beschreiben deren Gesamtheit. Beispiels-
weise enthdlt M; = {1, 2, 3} die Elemente 1, 2, 3;

My = {(z,y): ,y reell, 22 + y2 = 1}

ist die Menge aller Punkte (z,y) des Einheitskreises. Enthélt eine Menge tiber-
haupt keine Elemente, so heiBt sie leer. Wir bezeichnen die leere Menge mit £.

Die Anzahl der Elemente einer Menge M sei |{M]. Bei unendlichen Mengen
schreiben wir |M| = oo; sonst ist | M| eine nichtnegative ganze Zahl und spe-
ziell [8] = 0.

Fiir einige Mengen, die wiederholt auftreten, wahlen wir die folgenden festen
Bezeichnungen. Es seien

N die Menge der natiirlichen Zahlen,

3 die Menge der ganzen Zahlen,

) die Menge der rationalen Zahlen,

R die Menge der reellen Zahlen,

€ die Menge der komplexen Zahlen.

Ist jedes Element der Menge 4 auch Element der Menge B, so heiflit 4 Teil-
menge von B oder B Obermenge von A ; wir sagen auch, 4 sei in B enthalten,
schreiben dafir A c B und nennen diese Relation die mengentheoretische
Inklusion. Gleichbedeutend mit 4 c B sei B > A. Fiir jede Menge M gilt also
McMund R c M. Aus A c B und B c C folgt A c C; deshalb schreibt man
auch fortlaufend A cBc C. Sogilt etwa N c3 cR cRcE

Zwei Mengen A,B heiBen einander gleich, 4 = B, wenn sie aus denselben
Elementen bestehen, andernfalls ungleich: A 3= B; die Reihenfolge, in der die
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Elemente der beiden Mengen eventuell explizit aufgefiihrt werden, spielt also
keine Rolle. Die Mengen A4,B sind demnach genau dann einander gleich, wenn
A c B und 4 > B gelten:

1) A=B < AcBund 4H>B.

(Der Pfeil => bedeute, daB aus der Aussage links die Aussage rechts folgt; eine
analoge Bedeutung habe <. Der Doppelpfeil <> steht fiir ,,= und <*; die
Aussagen links und rechts sind dann gleichwertig.) Die Gleichheit zweier Men-
gen wird in der Regel nach dem Schema (1) gezeigt. Die Menge A hei3t echte
Teilmenge von B, wenn 4 c B, aber 4 & B ist.

Unter der Vereinigung A u B zweier Mengen A,B verstehen wir die Menge
aller Elemente aus wenigstens einer der Mengen A oder B,

AUB = py{z:xc A oder x € B};

durch das Zeichen ,,— p/* (lies: definitionsgleich) weisen wir darauf hin, daB die
linke Seite der Gleichung nur eine andere Bezeichnung fiir die rechte ist oder
umgekehrt. Entsprechend wird 4 u Bu C erklirt. Es gelten die Regeln
(AuB)uC = Au(BuC) = AuBuC und AuB = Bud. Wir setzen

n
AjvAsu ... ud, = U A,; fir die Vereinigung der Mengen A;, 43, 4g, ...

v=1

o0
schreiben wir U A, oder unter Angabe der Indexmenge besser U A4;.
A=1 AeMN

Der Durchschnitt A n B der Mengen 4, B wird definiert durch
AnB = pr{z:xedund x e B},

und 4 n Bn C oder N 4, usw. haben entsprechende Bedeutungen wie fiir das
AN '

Vereinigungszeichen. Die Mengen 4, B heilen elementefremd oder disjunkt,

wenn 4 n B = § ist. Wieder gelten die Regeln (A nB)nC = 4 n(Bn ()

= AnBnC und AnB = BnA. Auflerdem sind auch die folgenden Dis-

tributivgesetze (2) richtig, die man nach dem Muster (1) beweist.

Aufgabe 1: Zeige
An(Bul) = (AnB)u(dn0),
2) AU(BnC) = (AuB)n(4u0).

Man darf also in beiden Fallen die Klammern ,,ausmuitiplizieren‘‘.

1.2 Die Elemente der Mengen %, 3, 2, R lassen sich etwa nach wachsender
GroBe ordnen. So bekommt man einfache Beispiele fiir geordnete Mengen im
Sinne der folgenden

Definition: Die Menge M mit den Elementen a, b, ¢, ... heift teilweise ge-
ordnet oder halbgeordnet, wenn in M eine (Ordnungs-)Relation a << b (lies: a vor
b) mit den folgenden Eigenschaften (1), (2) erklirt ist:

(1) Dann und nur dann gilt sowohl a << b als auch b < a, wenn a = b ist.
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(2) Ausa < bund b < ¢ folgt a < c.

Stnd iiberdies je zwei Elemente aus M vergleichbar, gilt also zusdtzlich
3NabeM = a<boderb<a,

80 heift M geordnet oder vollstindig geordnet.

Ist also M eine halbgeordnete Menge, so gilt nach (1) speziell m < m fiir
jedes m e M.

Wie schon erwiahnt, werden die Mengen N, 3, Q, R durch die Relation a < b
geordnet im Sinne der aufgeschriebenen Definition.

Ein wichtiges Beispiel einer teilweise geordneten Menge ist die Menge P
aller Teilmengen einer vorgelegten Menge M. Es sei etwa M = ({1, 2, 3}. Die
simtlichen Teilmengen von M sind T) =8, Ty = {1}, Ts = {2}, T4 = {3},
Ts=1{1,2}, Te ={1,3}, T» = {2, 3}, Tg = {1, 2, 3}, und man bekommt dann
P ={T1,Ts, ..., Tg}. Als Ordnungsrelation fiir P wihlen wir die mengen-
theoretische Inklusion:

T¢<Tj <> T{CTJ.

Auf Grund unserer Feststellungen im vorigen Abschnitt sind damit sicher die
Forderungen (1) und (2) unserer Definition erfiillt. Auf diese Weise wird also
tatsichlich P teilweise geordnet. Aber P ist dadurch nicht vollstindig geord-
net; beispielsweise gilt weder T2 < T's noch T's < T'2; (3) ist verletzt.

Im allgemeinen kann eine Menge M auf verschiedene Arten vollsténdig oder
teilweise geordnet werden. Ist M teilweise geordnet, so ist es auch jede Teil-
menge T von M vermoge derselben Ordnungsrelation. Ist M teilweise und die
nicht leere Teilmenge K c M sogar vollstindig geordnet, so heift K eine
Kette aus M. Ketten aus der eben notierten halbgeordneten Menge P sind zum
Beispiel {Th, T's, T's} und {7, T's, T'7, T's}.

Ein Element a einer geordneten Menge A heil3t erstes Element von 4, wenn
fir jedes z € A gilt: @ < z. Besitzt eine geordnete Menge A4 ein erstes Element
a, so ist es nach (1) eindeutig bestimmt. Im Sinne der erwdhnten Ordnung
besitzt N ein erstes Element, 3 dagegen nicht. Wir heben nun gewisse geordnete
Mengen noch besonders hervor.

Definition: Eine geordnete Menge M heift wohlgeordnet, wenn jede nicht
leere Tetlmenge T c M ein erstes Element besitzt.
Sind also N, 3, Q, R nach wachsender GréBe ihrer Elemente geordnet, so ist
N wohlgeordnet, 3, Q, R dagegen sind es nicht. Eine endliche geordnete Menge
ist bereits wohlgeordnet.
Ein klassischer Satz der Mengenlehre, der sogenannte Wohklordrnungssatz
(ZerMELO 1904), soll hier nur mitgeteilt sein: Jede Menge kann wohlgeordnet
werden. Erst recht kann also jede Menge M geordnet werden.

1.3 Sind 4, B zwei Mengen, so definieren wir ihr cartesisches Produkt A x B
durch
Ax B = {(a,b):ac A,be B};

es besteht also aus allen (geordneten) Paaren (a, b), deren erste Komponente
a aus A und deren zweite Komponente b aus B stammt; dabei gilt (a, b)
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= (a’, ") genau dann, wenn @ = a’ und b = b’ ist. Entsprechend ist Ax BxC
eine Menge von Tripeln (a, b, ¢} usw.; statt M x M schreiben wir auch M2,
und M» bezeichne das Produkt M x M x ...x M aus n Faktoren M. An-
schaulich bedeutet R2 die Menge aller Punkte der Ebene. SchlieBlich sei M >
die Menge aller unendlichen Folgen (my, mg, mg, ...) von Elementen aus M.

1.4 Es seien 4 und M zwei nicht leere Mengen. Wenn durch eine geeignete
Vorschrift jedem Paar (@, m) aus 4 x M genau ein m* € M zugeordnet ist,
so nennt man diese Zuordnung eine Komposition von M mit 4 und schreibt mit
einem entsprechenden Zeichen wie -, -, o usw.etwaaom = m*. Ist 4 = M,
so spricht man auch von einer inneren Komposition oder einer Verkniipfung
von M; ist 4 = M, so liegt dagegen eine Gufere Komposition von M mit 4
vor. Eine Menge M == £ mit wenigstens einer Komposition heiBt algebraische
Struktur. Die Algebra ist im wesentlichen eine Theorie der algebraischen
Strukturen.
Angenommen, die Menge M besitze eine innere Komposition; diese auf M er-
klirte Verkniipfung sei bequemlichkeitshalber fiir den Augenblick einfach
multiplikativ geschrieben. Man nennt sie kommautativ, wenn zy = yx fiir alle
x,y € M gilt; als assoziativ wird sie bezeichnet, wenn fiir alle z, y, z € M gilt:
(zy)z = 2(yz).
Beispiel 1. Man wihle 4 = M = N und als innere Komposition die Addi-
tion aom = a + m in N. Diese Verkniipfung von N ist assoziativ und kom-
mutativ.
Beispiel 2. Man wihle A = M = 8 und als Verkniipfungen die Addition
a + m und die Multiplikation a - m in 3. So wird 3 eine Menge mit zwei asso-
ziativen und kommutativen Verkniipfungen.
Beispiel 3. Es seien 4 =R und M = R2, und a o m bedeute das iibliche
Produkt (ax, ay) des Skalars @ mit dem Vektor m = (z, ¥).
Beispiel 4. Wir betrachten die Menge P = {74, T, . .., T's} aus Abschnitt 2.
Mit 7'y, T'; € P gilt auch T'¢ u Ty € P; durch Ty u T'; wird also eine Verkniipfung
auf P definiert, und diese Verkniipfung ist wieder assoziativ und kommutativ.
Eine zweite ebenfalls assoziative und kommutative Verkniipfung auf P liefert
T¢n Ty. Diese beiden Verkniipfungen sind noch durch die sogenannten Ab-
sorptionsregeln

Tiv(TinTy) =Ty, Tsa(TyoTy) = Ty

aneinander gekoppelt. Eine algebraische Struktur ¥ mit zwei assoziativen und
kommutativen Verkniipfungen, fiir die die Absorptionsregeln gelten, heifit
ein Verband. Die Elemente des Verbandes P sind Mengen; deshalb heift P
auch ein Mengenverband. Die Theorie der Verbande wird in diesem Buch
nicht behandelt.

Wir betrachten nun eine Verkniipfung einer algebraischen Struktur § und
schreiben sie der Einfachheit halber wieder multiplikativ. Wir setzen
818283 = (8182)33, 81829384 = (818293)9a usw. (s;€8). Damit ist das Produkt
8182. . .8 erklirt. Es wird im allgemeinen von der Reihenfolge der Faktoren
abhangen,
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Besonders wichtig sind die assoziativen Verkniipfungen. Fiir sie besteht der

Satz 1: Ist die Verkniipfung assoziativ, so behdlt das Produkt ;8. . .sy bes
jeder Beklammerung denselben Wert.

Beweis: Vollstindige Induktion nach k. Die Behauptung ist nach Vor-
aussetzung fiir k = 1, 2, 3 richtig. Sie sei fiir £ und weniger Faktoren bereits
bewiesen. Dann bleibt zu zeigen, daB fiir jedes ¢ < k die Beziehung

(8192- - -8i)(84118¢42- . -Sk41) = S182. . .8k+1

richtig ist; auf weitere Klammern linker Hand konnte wegen der Induktions-
voraussetzung verzichtet werden. Das Assoziativgesetz und die Induktions-
voraussetzung liefern aber gerade

(8192. . - 81)(8¢5+18¢+2. - . Sk+1) = (8192. . .8¢)((8¢+28¢42- . . Sk)Sk+1)
= ((s182- . - 3)(8¢+18¢+2- - - 3k))Sk+1
= (8182. . .8k)%k+1
= 8152. . .8k+41.
Auf der Giiltigkeit dieses Satzes beruht die Bedeutung der assoziativen Ver-
kniipfungen. Das Rechnen mit nicht assoziativen Verkniipfungen ist wegen

der Notwendigkeit, auf die Art der Klammersetzung zu achten, sehr viel un-
bequemer.

§ 2 Die Menge N der natiirlichen Zahlen

Wir sehen die algebraischen Strukturen R, 3, Q, R, € und das Rechnen mit
den beiden Verkniipfungen Addition und Multiplikation als bekannt an. Im
Verlauf unserer spiteren Untersuchungen wird sich jedoch zeigen, wie die
Mengen 3, 2, R, € konstruiert und die Verkniipfungen Addition und Multi-
plikation in ihnen eingefithrt werden konnen, wenn nur 9t und das Rechnen
in M bekannt sind. Es erscheint deshalb angebracht, die Menge M und ihre
beiden Verkniipfungen noch axiomatisch zu charakterisieren.

Das folgende PEANOsche Axiomensystem beschreibt die Menge N:
1) 1e.

(2) Jedes n € N besitzt genau einen Nachfolger n* € N.

(3) Es gibt kein n € M mit n* = 1; es tst also stetsn* + 1.
@nt=nf = m=ns

B)Ist T cH, 1eT,und gt mitte T aucht*e T, s0ist T =N.

Das Axiom (1) besagt, daB N nicht leer ist, und es wird ein (erstes) Element
von N, die Eins, angegeben. Die Forderungen (2), (3) und (4) axiomatisieren
in anschaulich plausibler Form den Zahlproze8, und das sogenannte Induk-
tionsaxiom (5) driickt aus, daf auf diese Weise alle natiirlichen Zahlen ge-
funden werden. Auf ihm beruht das dem Leser bekannte Beweisprinzip der
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vollstindigen Induktion. Aus (1), (3), (4) und (5) folgt zum Beispiel, daB fiir
alle n eMN gilt: n* = n. Die Teilmenge 7 cN aller » €N mit n* = n wird
niamlich gleich M. Ahnlich sicht man, daB es zu jedem 7 € R, n % 1, genau ein
k € M mit » = k* gibt.

Auf 90 lassen sich nun durch

6) n + 1 = n* n+ m*=(n+ m)*

und

(MNMrn-l=nnm¥=n-m+n

(wobei wie iblich das Zeichen fiir die Multiplikation stirker binden soll als
das fiir die Addition) die Addition und die Multiplikation einfiihren.

Dieser Aufbau ist sehr lehrreich und kann mit allen Einzelheiten im Kapitel 1
des Buches von Lanpav {15] nachgelesen werden. Wir verzichten auf die ge-

naue Durchfithrung und formulieren das Ergebnis, auf das wir uns spiter
stiitzen, als

Satz 1: Auf N lassen sich durch (8) und (7) zwei Verkniipfungen, die Addi-
tion und die Multiplikation, erkliren. Sie sind beide assoziativ und kommutativ.
Fiir a, b, ¢ € N gilt das Distributivgesetz a(b + ¢) = ab + ac. An Stelle der
nicht immer ausfihrbaren Umkehroperationen (Subtraktion und Division) sind
die Kiirzungsregeln

atr=at+y => =y
und
ax=ay = z=4y
erfiillt (a, z, y eN).

Zum Schlufl noch eine Verabredung: Eine natiirliche Zahl p + 1 heif3t Prim-

2ahl, wenn aus p = mn (m, n € N) entweder m = 1 oder n = 1 folgt. Die Eins
ist also keine Primzahl.

§ 3 Abbildungen

3.1 Eine Vorschrift f, die jedem Element a einer Menge A genau ein Element
b einer Menge B als Bild zuordnet, heit eine Abbildung (Funktion) von A
in B. Wir schreiben f: A > B oder 4 > B und bezeichnen das Bild & von

a€ A mit b = f(a). Zu vorgelegtem b € B braucht dagegen kein a € A mit
b = f(a) zu existieren, und wenn es ein solches @ gibt, mufl es nicht eindeutig
bestimmt sein; jedes ¢ mit f(a) = b heiBt Urbild oder Original von b. Mit
f(4) bezeichnen wir die Menge aller Bilder f(a); es gilt also f(4) c B. Fir
T c A bedeute allgemein f(T') die Menge aller f(t), te T'.

Zwei Abbildungen f;: A - B und f3: A - B sind genau dann einander gleich,
fL = fo, wenn fiir jedes x € A gilt: fi(z) = fa(x). Gleichheiten von Abbildungen
werden so gezeigt.

Ist f: A > B eine Abbildung von 4 in B und 7' eine Teilmenge von 4, so
ordnet f erst recht jedem Element von 7' genau ein Element aus B als Bild

2 Hornfeck, Algebra
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zu und definiert damit eine Abbildung von 7' in B, die wir die Restriktion von
f auf T nennen.

Eine Abbildung f: A - B, bei der jedes b € B als Bild auftritt, fiir die also
f(4) = B gilt, heillt Surjektion, surjektive Abbildung oder Abbildung von A
auf B.

Eine Abbildung f: A — B, bei der jedes b € B hichstens einmal als Bild auf-
tritt, fiir die also aus f(e1) = H(az) immer a; = as folgt, heilt Injektion, in-
jektive oder eineindeutige Abbildung von A in B.

Eine eineindeutige Abbildung f: A - B von A auf B, also eine Abbildung, die
sowohl injektiv als auch surjektiv ist, nennt man auch bijekitv. Dann und nur
dann, wenn zu jedem b € B genau ein Original a existiert, ist die Abbildung
f: A > B bijektiv, und in diesem Fall schreiben wir auch a = f-1(b) an Stelle
von b = f(a). Genau dann also besitzt die Abbildung f: 4 -> B eine sogenannte
Umkehrabbildung f-1: B - A, wenn sie bijektiv ist, und es gelten dann
fY(f(a)) = a fiir alle @ € A und f(f-1(b)) = b fiir alle b € B. Wenn f bijektiv ist,
so ist es auch f-1.

Unabhiéngig davon versteht rean unter dem Urbild f-1(T') der Menge T c B
fiir eine beliebige Abbildung f: 4 — B die Menge

UT) = {z:x € 4 und f(z) e T}

aller derjenigen x € 4, deren Bilder in T liegen.

Die folgenden Beispiele kann man sich leicht durch einfache Skizzen ver-
anschaulichen:

1) Die durch f(z) = sin z definierte Abbildung f: R - R ist weder surjektiv
noch injektiv.

2) Die durch f((x, y)) = « definierte Abbildung f: %2 - R ist surjektiv, aber
nicht injektiv.

3) Die durch f(z) = arctg z definierte Abbildung f: ® — R ist injektiv, aber
nicht surjektiv.

4) Die durch f(x) = «3 definierte Abbildung f: ® — R ist bijektiv.

Ist schlieBlich M eine beliebige Menge und bildet f: M — M jedes m € M auf
sich selbst ab, f(m) = m, so nennt man f die identische Abbzldung Wir bezeich-
nen die identische Abbildung meist mit «.

3.2 Es seien die Abbildungen f: 4 - B und g: B - C gegeben; setzt man
h(a) = g(f(a)) fiir jedes a € A, so wird dadurch eine Abbildung %: A - C de-
finiert. Man bezeichnet sie als die Produktabbildung und schreibt A = gf; es
ist also (gf)(@) = g(f(a)), und wenn Verwechslungen nicht zu befiirchten sind,
schreiben wir statt (gf)(a) auch einfach gf(a).

Man betrachte zum Beispiel eine bijektive Abbildung f: A - B und ihre Um-
kehrabbildung f-1: B - A. Es folgt f-1f(a) = a fiir alle a € A; also ist f~1f = ¢4
die identische Abbildung von A, und entsprechend wird ff-} = ¢p die iden-
tische Abbildung von B. Fiir den Fall B = 4 konnen wir schreiben:

fi =1 = .
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Man priift ohne Mihe nach: Sind f: 4 - B und g: B - C bijektive Abbildun-
gen, so ist auch die Produktabbildung gf: 4 - C bijektiv.
Gehen wir nun von drei Abbildungen f, g, » und dem Schema

A 7 B>C->D
g h
aus, 80 ist das Produkt hgf = prk (gf) erklart, und es gilt der wichtige
Saiz 1: Das Produkt von Abbildungen ist assoziativ: h(gf) = (hg)f.

Beweis: Die Abbildungen A(gf) und (kg)f bilden A4 in D ab und haben
auf jedes x € A dieselbe Wirkung; es ist ja h(gf)(x) = h(gf(x)) = h(g(f(x))) und
(h)f(x) = h(g(f(x)))-

Aufgabe 1: Es sei f eine Abbildung von 4 in B. Man zeige:
a) Fir jede Teilmenge T c A4 gilt fY(f(T)) > T.
b) Fiir jede Teilmenge 7' c B gilt {f-1(T)) c T.
Weder in a) noch in b) steht notwendig das Gleichheitszeichen.

Aufgabe 2: Es seien M und N Teilmengen von A und f eine Abbildung
von 4 in B. Man zeige
a) (M uN) = f(M)uf(N),
b) (M 0 N) c {(M) a f(N);
an Hand eines Beispiels weise man nach, daB in b) nicht notwendig das Gleich-
heitszeichen steht.

§ 4 Abzihlbarkeit

Eine Menge M heil3t abzihlbar, wenn eine eineindeutige Abbildung von M
auf N existiert, wenn sich also die Elemente von M mit Eins beginnend durch-
numerieren lassen: m;, mg, mg, ..., und wenn in dieser Liste kein m € M fehlt.
Ist M endlich oder abzihlbar, so sagt man auch, M sei héchstens abziklbar.
Man sieht sofort, dal eine Teilmenge einer abzihlbaren Menge héchstens ab-
zahlbar ist.

Ein Beispiel einer nicht abzdhlbaren Menge ist R. Schon die Teilmenge
T = {x:2eR, 0 <x <1} von R ist nimlich nicht abzihlbar. Um das ein-
zusehen, denke man sich jedes ¢t € T eindeutig als unendlichen Dezimalbruch,
zum Beispiel 0,5 = 0,4999. . ., geschrieben und eine Liste #;, 5, f3, ... von T
vorgelegt. Es sei nun a; die i-te Ziffer hinter dem Komma von ¢; und
t = 0,b1bob3... €T ein unendlicher Dezimalbruch mit b; == 0 und b; <+ a4
(¢ = 1,2,3,...). Dann kann ¢ in der Liste nicht vorkommen. Wire nimlich
t = tg, so miften ¢ und ¢ in der k-ten Ziffer hinter dem Komma iiberein-
stimmen, was aber auf Grund der Konstruktion gerade nicht der Fall ist.

R und erst recht € sind also nicht abzéhlbar. Mit 9t ist dagegen auch 3 abzihl-
bar, wie die Liste 0,1, — 1,2, — 2, ... zeigt.

Sind die Mengen A, B abzihlbar, so ist es auch 4 x B. Die meisten Abzihlbar-
keitsbeweise beruhen auf diesem Sachverhalt. Zum Beweis schreibe man sich,

PAd
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ausgehend von zwei Listen ay, ag, a3, ... bzw. by, bg, bs, ... fiir A bzw. B, die
Paare von 4 x B in dem quadratischen Schema

EEEs
5] (as, bs)
(0'4, b2) (G‘, b3) (a47 b4)

auf. Eine Liste von 4 x B bekommt man dann, indem man die Paare den
Pfeilen folgend notiert: (a1, b1), (21,b2), (a2, b1), (@1, b3), (a2, bz), (as, b1), (a1, ba), . . .

Etwas allgemeiner kénnen wir sagen: Sind die Mengen A, B héchstens abzihl-
bar, so ist auch ihr cartesisches Produkt A x B hochstens abzdhlbar. Vollstin-
dige Induktion nach » liefert den

Satz 1: Sind die Mengen Ay, As, ..., A, hichstens abzihlbar, so tst auch
thr cartesisches Produkt Ay x Asx ...x Ap hichstens abzihlbar.

Sind die Mengen A4; (¢ =1, 2, 3, ...) abzahlbar, so ist es auch deren Vereini-

gung U A;. Dazu schreibe man sich in die i-te Zeile eine Liste von A;
e

(e= 1: 2,3, ...) und durchlaufe das entstehende quadratische Schema nach

dem obigen Vorbild ; bei der Liste fiir U 4;hat man nur noch darauf zu achten,

teN
daB ein und dasselbe Element in ihr nicht mehrfach auftritt. Etwas allgemeiner
formulieren wir den

Satz 2: Sind die A¢ endlich viele oder abzihlbar viele hochstens abzihlbare
Mengen, so ist auch thre Vereinigung U Ay hichstens abzihlbar.

Die positiven rationalen Zahlen lassen sich als gekiirzte Briiche mit Zihler
und Nenner aus 9 schreiben und nach dem Paarschema abzahlen. Damit wird
schlieSlich auch £ abzéhlbar.

§ 5 Aquivalenzrelationen

Der Begriff der Aquivalenzrelation ist iiber die Algebra hinaus von zentraler
Bedeutung.

Definition: Auf einer Menge M = € mit Elementen a,b,e, ... ses eine
Relation ,,~* erklirt, das heift, fiir je zwet Elemente a, b € M soll feststehen, ob
a ~ b gilt oder nicht. Diese Relation heipt Aquivalenzrelation, wenn sie die fol-
genden drei Bedingungen erfiillt:

(1) Fiir jedes a € M gilt a ~ a (Reflexivitit).
(2) Aus a ~ b folgt b ~ a (Symmetrie).
(3) Ausa ~ bund b ~ c folgt @ ~ ¢ (Transitivitit).

Die einfachste Aquivalenzrelation ist die Gleichheit. In der Mathematik be-
steht nun oft das Bediirfnis, Dinge als einander gleich anzusehen, die es von
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vornherein gar nicht sind. Schon in der Schule werden beispielsweise in be-
stimmten Féllen kongruente Dreiecke einfach als dieselben betrachtet. Bei
gsolchen Anldssen spielen unsere anschlieBenden Uberlegungen eine grund-
legende Rolle.

Beispiel 1. M sei die Menge aller Dreiecke des 2, und ,,~* bedeute ,,kon-
gruent‘.

Beispiel 2. M sei dieselbe Menge, und ,,~‘‘ bedeute ,,dhnlich®.

Beispiel 3. M sei die Menge aller Geraden des %3, und ,, ~* bedeute ,,parallel*.
Beispiel 4. M sei die Menge aller auf R erklérten reellen Funktionen, und
»f ~ g* bedeute ,,f — ¢ ist konstant (f, g € M).

Eine Zerlegung M = AuBuCCu. .. einer Menge M in paarweise disjunkte nicht
leere Teilmengen A, B, C, ... wollen wir eine Partition von M nennen. Eine
solche Partition definiert in trivialer Weise eine Aquivalenzrelation auf M: Es
bedeute m ~ n, daB m und n in derselben Teilmenge der Partition liegen.

Umgekehrt sei nan M vorgelegt und eine Aquivalenzrelation auf M erklirt.
Wir wollen zeigen, daB sie in natiirlicher Weise eine Partition auf M definjert.
Dazu fithren wir fiir jedes @ € M die zugehérige sogenannte Aquivalenzklasse

K@) = {z:zeMund a ~ z}

ein; sie ist wegen a ~ a, also a € K(a), nicht leer. Ersichtlich gilt M = U K(a).
aeM
Zwei Aquivalenzklassen K(a), K(b) sind nun aber entweder elementefremd
oder identisch: Es sei ¢ € K(a) n K(b); ist y ein beliebiges Element,aus K(a),
so folgt aus a ~ ¢, b ~ ¢ und a ~ y mit (2) und (3) jedenfalls b ~ y, also
K(a) c K(b), und analog wird K(a)> K(b). Mit anderen Worten: Aus
K(a) n K(b) + £ folgt K(a) = K(b). Streicht man also in M = U K(a) die
aeM
iiberzdhligen Klassen rechter Hand heraus, so erhilt man eine Partition von

M. Wir fassen diese Uberlegungen zusammen.

Satz 1: Eine Aquivalenzrelation auf einer Menge M =+ £ definiert eine Par-
tition auf M und umgekehrt.

Ist K(a) eine Aquivalenzklasse in M und b ein beliebiges Element aus K(a),
8o heillt b ein Reprdsentant oder Vertreter von K(a). Eine Menge R c M heilit
vollstindiges Reprdsentantensystem einer Partition von M, wenn R aus jeder
Klasse der Partition genau einen Vertreter enthélt. Sind m, n Elemente aus
M, so gilt dann und nur dann K(m) = K(n), wenn m ~ n ist; aus der Aquiva-
lenz der Elemente wird die Gleichheit der Klassen.

So ist es also etwa auch im obigen Beispiel 1. Die untereinander kongruenten
Dreiecke sind dquivalent und nicht von vornherein gleich ; Gleichheit gilt dann
fir die Klassen, zu denen sie gehoren.

Beispiel 5. Es sei n eine fest gewihlte natiirliche Zahl und M = 3. Die Re-
lation @ ~ b bedeute: @ — b ist durch = teilbar. Man priift leicht das Erfiillt-
sein der Forderungen (1), (2), (3) nach. Es wird also M in genau n Aquivalenz-
klassen zerlegt, und zwar derart, daB alle Elemente einer Klasse bei Division
durch n den gleichen Rest 7, 0 < r < n, liefern. Diese Aquivalenzklassen heiBen
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deshalb auch Restklassen modulo n; als vollstindiges Repriasentantensystem
kann {0, 1, 2, . . ., n—1} gewédhlt werden: M = K(0)u K(1)u ...u K(n—1).

Aufgabe 1: Es sei M = T« N. Zeige, daB durch
(@,b) ~(c,d) = a+d=0>b+¢c
eine Aquivalenzrelation auf M erklirt wird.
Aufgabe 2: Essei M = {(x,y):2€3, ye3, y & 0}. Zeige, daB durch
(@, b) ~ (¢,d) <= ad=bc
eine Aquivalenzrelation auf M erklart wird.
Aufgabe 3: Es sei f: A — B eine Abbildung. Zeige, dafl durch
ar ~az <= fla) = flaz)
eine Aquivalenzrelation auf 4 erklirt wird.

Literatur: Die Paragraphen 1—5 von ALEXANDROFF [1] und Kamke [11].
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Wir betrachten im folgenden algebraische Strukturen mit genau einer in der
Regel multiplikativ geschriebenen Verkniipfung und beschiftigen uns mit den
wichtigsten unter ihnen, den Gruppen. Von der Verkniipfung wird dann nur
verlangt, daB sie assoziativ und in einem noch zu prizisierenden Sinn (Satz
6.2) umkehrbar ist. Vorbilder fiir diese letzte Forderung sind etwa die Sub-
traktion als Umkehrung der Addition oder die Division als Umkehrung der
Multiplikation. So einfache Strukturen wie Gruppen treten oft auf, und darauf
beruht ihre Bedeutung.

§ 6 Das Rechnen in Gruppen

6.1 Wir beginnen mit der folgenden

Definition: Eine Menge H == £ mit einer assoziativen Verkniipfung heift
eine Halbgruppe.

Sind 4; Elemente der Halbgruppe H, so gilt also immer (hiho)hg = hi(hohs),
und nach Satz 1.1 behélt das Produkt A3ks. . . kg bei jeder Beklammerung den-
selben Wert. Gruppen sind nun Halbgruppen mit den zuséitzlichen nach-
stehenden Eigenschaften (1) und (2).

Definition: Eine Menge G == £ mit einer assoziativen Verkniipfung heift
eine Gruppe, wenn in thr gilt:
(1) Es existiert eine sogenannte Linkseins e € G mit ea = a fiir alle a € G.
() Zu jedem a € G existiert ein sogenanntes Linksinverses a-1 € G mit a—la = e.
Die Elementeanzahl |G| heift die Ordnung der Gruppe.

Zunichst wire es denkbar, daBl es neben e weitere Elemente mit der Eigen.-
achaft (1) in @ gibt; auch geht aus (2) nicht hervor, daB zu jedem @ € G nur
genau ein Linksinverses a1 vorhanden ist. Diese und andere Fragen behandelt
der

Satz 1: G sei eine Gruppe mit der Linkseins e. Dann gelten folgende Aus-
sagen.:
a) Ist a1 ein Linksinverses von ac @, so ist es auch ein Rechtsinverses:
ala =e¢ =»> aa’l = e
b) Die Linkseins e ist auch Rechtseins: Fiir alle a € G gilt ae = a.
c) Es seien a und b Elemente aus G. Dann sind die Qleichungen ax = b und
ya = b in G eindeutig losbar.
d) Es gibt in G genau ein Element e mit der Eigenschaft (1).
e) Zu a € G gibt es genau ein a1 € G mit der Eigenschaft (2).
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f) Esist(a1)!l =a.
g) Sind ay, as, . .., ay Elemente von @, so gilt (a1az. . .az)~! = azlazl, ... afl.

Beweis:
a) Es sei a ein beliebiges Element aus G@. Wir wihlen nach (2) ein a-! und zu
diesem ein (¢-1)-1. In @ ist dann das Produkt (a-1)-la-laa-! erklart. Wir be-
rechnen es, indem wir auf verschiedene Arten Klammern setzen. Einmal wird
(@) Yala)a-l = (a1)Yea!) = (a-1)la-l = e. Zum anderen ergibt sich
((@V)la1)(aa~1) = e(aa~1l) = aa~l. Beides zusammen liefert aa~} = e.
b) Nach a) wird ae = a(a-la) = (aal)a = ea = a.
¢) Die Gleichung az = b ist in G 16sbar: Zu ¢ € G wihle man ein a-1 € G gemaB
(2) und setze x = a-1b. Auf Grund von a) wird dann richtig e(a-15) = (aa—1)b
= eb = b. Die Gleichung ist eindeutig l6sbar: Aus az = ax’ (z, 2z’ € &) folgt
ja (e la)x = (a~la)x’ oder x = z’. Analog zeigt man die eindeutige Losbarkeit
von ya = b.
d) Nach c) hat die Gleichung ya = a nur eine Losung.
e) Nach c) hat die Gleichung ya = e nur eine Losung.
f) Nach c) hat die Gleichung ya—! = e genau eine Losung y in G. Definitions-
gemiB ist y = (a1)71; nach a) darf auch y = a gesetzt werden. Es folgt
(@)1 =a.
g) Die Gleichung ¥ (a1as. . .an)= e wird sowohl von (a;az. . .a;)"1 als auch von
azlazl,...ay! geldst, und diese beiden Losungen miissen nach c) iibereinstim-
men.

Das Rechnen in Gruppen ist nun ibersichtlich geworden ; es hat vieles mit der
gewohnten Multiplikation gemeinsam; lediglich auf die Reihenfolge der Fak-
toren muf} geachtet werden. Auf Grund von Satz 1 ist ferner die obige Gruppen-
definition gleichwertig mit der

Definition: Eine Menge G == £ mit einer assoziativen Verkniipfung heift
eine Gruppe, wenn in thr gilt:
(1) Es existiert ein Einselement e € G mit ea = ae = a fiir allea € G.
(2) Zu jedem a € Q existiert ein Inverses a=1 € G mit a~la = ag~! = e.

SchlieBlich hitten wir oben an Stelle einer Linkseins und eines Linksinversen
auch Rechtseins und Rechtsinverses verlangen und einen zu Satz 1 analogen
Satz bewejsen konnen. Gleichwertig mit den beiden bereits gegebenen ist also
die folgende dritte

Definition: Eine Menge G & & mit einer assoziativen Verkniipfung heifpt
etne Gruppe, wenn in thr gilt:
(1") Es existiert eine Rechtseins e € G mit ae = a fiir alle a € G.
(2" Zu jedem a € G existiert ein Rechtsinverses a~1 € G mit aa~1 = e.

Als letzte Aussage in diesem Zusammenhang notieren wir noch den

Satz 2: Eine Gruppe kann auch definiert werden als eine Halbgruppe G, in
der die Gleichungen ax = b und ya = b fiir alle a, b € G lisbar sind.
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Beweis: Nach Satz 1 sind ax = b und ye = b in einer Gruppe immer
lésbar. Es sei daher umgekehrt G eine Halbgruppe, in der ax = b und ya = b
stets 16sbar sind. Wir haben die Forderungen (1) und (2) zu priifen und zeigen
als erstes die Existenz einer Linkseins ¢ € G. Dazu sei g ein beliebiges Element
aus @; es existiert, da @ nicht leer ist. Wir .wihlen eine Ldsung von yg = ¢
und nennen sie e. Ist nun @ irgendein Element aus @, so kann es in der Gestalt
a = gz mit einem z € G geschrieben werden. Es folgt ea = (eg)x = gz = a;
also ist ¢ Linkseins, und (1) ist erfiillt. Nach Voraussetzung ist ferner fiir jedes
a € @ die Gleichung ya = e losbar, wie es in (2) verlangt wird.

An die bahnbrechenden Arbeiten des norwegischen Mathematikers N. H. ABEL
erinnert die

Definition: Gilt fir alle a,be G der Gruppe G das kommutative Gesetz
ab = ba, so heift G eine kommutative oder abelsche Gruppe.

In einer abelschen Gruppe ist folglich das Produkt ayaz. . .a, von #n Gruppen-
elementen auch noch von der Reihenfolge der Faktoren unabhingig. Abelsche
Gruppen schreibt man oft additiv. Das Verkniipfungsergebnis von @ und b
heiBt dann also a + b; das beziiglich dieser Verkniipfung neutrale Element e
wird der Gewohnheit entsprechend mit O bezeichnet ind Nullelement der
Gruppe genannt. SchlieBlich steht —a an Stelle des Inversen a-1, und man
definiert a@ 4 (—b) =a —b.

In einer multiplikativ geschriebenen beliebigen Gruppe wird dagegen e viel-
fach mit 1 bezeichnet. AuBerdem verwendet man die geldufigen Abkiirzungen
aa = a2, aaa = a3, (a~1)2 = a2, a® = 1 usw. und erhalt fiir ganze Zahlen m, n
die Potenzrechenregeln (a™)* = am® und a™a® = am+n. Naheliegend ist end-
lich noch die

Definition: Eine Teilmenge U der Gruppe G heift Untergruppe von G, wenn
U beziiglich der in G erklirten Verkniipfung eine Gruppe ist. Die Untergruppe
U heift echte Untergruppe, wenn U & G ist.

Es gibt natiirlich auch andere als die oben erwiéhnten Moglichkeiten, Gruppen
zu definieren. Man hat verschiedentlich nach méglichst schwachen Axiomen
gesucht, die zur Charakterisierung von Gruppen noch ausreichen. Die beson-
ders hiibschen Axiomensysteme von R. BAER und F.W. LEvI findet man etwa
bei Kurosch [14].

In gruppentheoretischen Untersuchungen taucht oft das sogenannte Zentrum
einer Gruppe auf. Wir beschreiben es in der folgenden

Definition: E3 set G eine Gruppe. Unter dem Zentrum von G versteht man
die Menge
Z = {z:z €@, xg = gz fiir alle g € G}

aller derjenigen Elemente x € G, die mit jedem g € G vertauschbar sind.

Aufgabe 1: In einer Gruppe G gelte 22 = e fiir jedes z € G. Zeige: Dann
ist G abelsch.
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Aufgabe 2: Es seien I == £ eine Indexmenge, G eine Gruppe und die U;
(¢ € I) Untergruppen von G. Man zeige: Auch der Durchschnitt D = N U;
dieser Untergruppen ist eine Untergruppe von G. sel

Aufgabe 3: Es sei G eine Gruppe und Z ihr Zentrum. Man zeige, da8 Z
eine abelsche Untergruppe von @ ist.

6.2 Man kann leicht Beispiele fiir Gruppen angeben. Die Menge Qp aller von
Null verschiedenen rationalen Zahlen ist eine Gruppe beziiglich der Multipli-
kation, und dasselbe gilt fiir die entsprechend erklirten Mengen Ry und €.
Wir nennen sie in Zukunft die multiplikativen Gruppen von Q, R, €. Die vollen
Mengen 3, Q, R, € sind Gruppen beziiglich der Addition; wir nennen sie die
additiven Gruppen von 3, Q, R, €. Alle diese Gruppen sind abelsch. Die Menge
aller nichtsinguléren reellen zweireihigen quadratischen Matrizen ist eine nicht-
kommutative Gruppe beziiglich der Matrizenmultiplikation. Beispielsweise die
Aussagen a) und g) von Satz 1 lassen sich nun als Satze iiber Matrizen deuten.

Weiter wollen wir uns Beispiele von Gruppen endlicher Ordnung ansehen. Jede
multiplikativ geschriebene Gruppe muBl das Einselement e enthalten. Es gibt
also genau eine Gruppe der Ordnung Eins, G = {e}, mit der Verkniipfung
ee¢ = e; andere Modelle unterscheiden sich von ihr nur durch die Schreibweise.
Wollen wir auf der zweielementigen Menge G = {¢, a} eine multiplikative
Gruppenstruktur mit dem Einselement e einfithren, so miissen wir ee = e,
ea = a und ae = a definieren; wegen ae = @ und Aussage c¢) von Satz 1 kann
nicht auch ae den Wert ¢ haben; wir setzen also noch aa = e. Schreiben wir
in die erste Spalte den ersten, in die erste Zeile den zweiten Faktor, so lautet
also die einzig mogliche Gruppentafel

|ea
elea
alae,

und man priift leicht nach, da8 auf diese Weise wirklich eine Gruppe definiert
wird. Es gibt also, wenn man von der Bezeichnung und der konkreten Bedeutung
ihrer Elemente absieht, genau eine Gruppe der Ordnung 2.

Probiert man dasselbe mit der dreielementigen Menge G == {e, a, b}, so ergibt
sich als einzig mogliche Gruppentafel

|eabd
elead
aiabe

bibea.

Zunichst stehen die Verkniipfungsresultate mit e als linkem oder rechtem
Faktor fest. Dann kann wegen der Aussage c) aus Satz 1 in keiner Zeile oder
Spalte der Verkniipfungsergebnisse zweimal derselbe Buchstabe stehen. Fiir
aa kommen also nur b oder e in Frage; e scheidet aus, weil sonst in der dritten
Spalte zweimal b stiinde. Der Rest ergibt sich zwangslaufig. Wieder priift man
nach, daB auf diese Weise tatsichlich eine Gruppe, also in dem bereits eror-
terten Sinn die einzige Gruppe der Ordnung 3, entstanden ist.
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Versucht man in gleicher Weise, auf der Menge M = {e, a, b, ¢} eine Gruppen-
struktur einzufiihren, so liefern Fallunterscheidungen die folgenden méglichen
Gruppentafeln.

lleabec 2| eabc 3leabe 4| eabec
eleabe eleabe eleabe eleabc
alaech ajaecd alabce aiacebd
blbcea blbcae b}bcea blbeca
clebae clchbea c\ceab clchbae

In allen vier Fallen handelt es sich wirklich um Gruppen; die Nachpriifung des
Assoziativgesetzes macht allerdings ohne weitere Hilfsmittel schon recht viel
Miibe. Man hat aber gar nicht vier wesentlich voneinander verschiedene
Gruppen der Ordnung 4 gefunden! Vertauscht man ndmlich in der zweiten
Tafel @ und b, éndert also lediglich diese beiden Bezeichnungen, so geht sie in
die dritte iiber. Analog geht die vierte Tafel in die dritte iiber, wenn iiberall b
statt ¢ und ¢ statt b geschrieben wird. Es bleiben also die beiden Tafeln 1 und
3; sie definieren die beiden einzigen Gruppen der Ordnung 4; sie sind verschie-
den, weil in der ersten Gruppe x2 = ¢ fiir jedes Gruppenelement gilt, in der
anderen nicht.

Die erste Gruppe Gi = {e, a, b, ¢}, in der immer 22 = e gilt und das Produkt
von je zweien der Elemente a, b, ¢ das dritte liefert, heiit nach dem deutschen
Mathematiker F. KLemv (1849—1925) die KrLEiNsche Vierergruppe oder auch
nur die Vierergruppe. Macht man in der dritten Gruppentafel die Umbezeich-
nung e =0, a=1, b =2, ¢ = 3, 80 erhilt man mit diesen neuen Zeichen
0, 1, 2, 3 fiir die zweite mégliche Gruppe G2 = {0, 1, 2, 3} der Ordnung 4 die
Gruppentafel

|

WO

WO O
[ U N
— O WNN
N —-O W W

Diese Darstellung wird besonders durchsichtig, wenn man die Verkniipfung
nun additiv liest; das Ergebnis von m + » ist dann einfach der Rest bei Divi-
sion durch 4.

Wir haben also gefunden: Es gibt je eine Gruppe der Ordnungen 1, 2, 3 und
zwei Gruppen der Ordnung 4. Sie sind, wie die Symmetrie der Gruppentafeln
zur Hauptdiagonale zeigt, alle abelsch. Wir werden spiter sehen, daB es genaun
eine Gruppe der Ordnung 5 gibt und daB sie abelsch ist, ferner, dal es genaun
zwei Gruppen der Ordnung 6, eine abelsche und eine nichtkommutative, gibt.
Nur in Ausnahmeféillen 1aBt sich heute die Frage nach allen Gruppen vor-
gegebener endlicher Ordnung » beantworten; auf einige dieser Fille kommen
wir noch zuriick. Die Frage nach allen abelschen Gruppen der Ordnung » ist
dagegen algebraisch gelost; die Bestimmung ihrer Anzahl werden wir auf ein
zahlentheoretisches Problem zuriickfiithren (§ 11).
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6.3 Es sei eine Gruppe G vorgelegt, und eine algebraische Struktur S habe
eine Verkniipfung, die wir der Bequemlichkeit halber wie die von G multipli-
kativ schreiben wollen. Es moge nun auBerdem eine bijektive Abbildung
f: @ > 8 derart existieren, dal aus der Beziehung ab = ¢ in G immer folgt:
f(a)f(®) = f(c) in 8. Offenbar unterscheiden sich die algebraischen Strukturen
G und 8 dann nur durch die Schreibweise ; jedes a € G wird lediglich durch sein
Bild f(a) € S ersetzt. Beispiele fiir diesen Sachverhalt sind uns in Gestalt der
Gruppen der Ordnung 4 schon im letzten Abschnitt begegnet. Er fiihrt zu der
folgenden

Definition: Es seien G eine Gruppe und S eine algebraische Struktur mit
evner multiplikativ geschriebenen Verknipfung. Dann heifen G und S tsomorpkh,
G ~ 8, wenn eine bijektive Abbildung f: G — 8 derart existiert, daf fir alle
a, b e G gilt: f(ab) = f(a)f(b).

Isomorphe Gruppen unterscheiden sich also als algebraische Strukturen nur
hinsichtlich der Bezeichnung ihrer Elemente, und wenn wir 8agen, es gebe nur
eine Gruppe der Ordnung 3, so ist immer dieser Sachverhalt gemeint. Das
schlieBt nicht aus, daB die verschiedensten konkreten Realisierungen ein und
derselben Gruppe moglich sind. Gruppen der Ordnung 2 kénnen sich zum Bei-
spiel dadurch unterscheiden, daB ihre Elemente in dem einen Fall Zahlen, in
dem anderen vielleicht Abbildungen sind. Soll man schlieflich alle Unter-
gruppen der Vierergruppe V = {e, a, b, ¢} angeben, so mdichte man sie auch
erst einmal alle sehen: {e}, {e, a}, {e, b}, {e, ¢}, {e, a, b, ¢}. DaB einige von ihnen,
nimlich {e, a}, {e, b} und {e, ¢}, isomorph sind, ist eine nachtrigliche Feststel-
lung. Wenn wir aber spiter fiir gewisse Gruppen feste Bezeichnungen verein-
baren, wie etwa 33 fiir die Gruppe der Ordnung 3, so ist damit wieder das im
vorigen Abschnitt aufgeschriebene eindeutig festgelegte abstrakte Modell ge-
meint.

Die Eigenschaft f(ab) = f(a)f(b) der Abbildung f: G - 8 nennt man Relations-
treue; f selbst heifit der Isomorphismus zwischen G und 8. Es ist durchaus
moglich, daB es zwischen G und S mehrere Isomorphismen gibt. Es ist klar,
daB das isomorphe Bild S von G wieder eine Gruppe ist. Bei der Abbildung f
geht das Einselement von ¢ in das Einselement von § iiber, und Inverse gehen
in Inverse iiber. Durch die Isomorphie wird eine Aquivalenzrelation unter den
Gruppen erklirt; isomorphe Gruppen werden von diesem bereits erorterten
Standpunkt aus im allgemeinen nicht mehr als voneinander verschieden an-
gesehen. Dabei kénnen, wie etwa in dem anschlieBenden Beispiel 1, die Ver-
kniipfungen durchaus auch mit verschiedenen Zeichen geschrieben sein, wo-
durch die Forderung der Relationstreue formal eine andere Gestalt bekommt.
Es kann nun der Fall eintreten, daB das isomorphe Bild H einer Gruppe G
selbst Teilmenge einer Menge M ist: H c M. Der vermittelnde Isomorphismus
f zwischen & und H ist dann eine eineindeutige relationstreue Abbildung von
G auf H und von G in M. Um diese Sachverhalte zu beschreiben, sprechen wir
in Anlehnung an die Verabredungen aus § 3 gegebenenfalls von einem Isomor-
phismus f von G auf H oder einem Isomorphismus f von G in M.

Beispiel 1. Es sei G ={2:2€€,z2=a + biund a, b3} die Menge aller
ganzen GauBschen Zahlen; G ist eine Gruppe beziiglich der Addition in €.
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Ferner sei H die Teilmenge {x: x = 293%, a, b € 3} von ; sie ist eine Gruppe
beziiglich der Multiplikation in Q. Dann wird durch fla + bi) = 243% ein
Isomorphismus von G auf H oder von G in £ definiert. Zunédchst ist ja f eine
Abbildung von G auf H; sie ist eineindeutig, weil aus fla 4+ b5) = f(c + di)
folgt: a = ¢ und b = d; sie ist relationstreu wegen
f(a + b1) + (¢ + di)) = f((@ + ¢} + (b 4 d)i)
= 2a+c30+d — 92a3b . Qc3d
= fla + bi) - fc + di).
Beispiel 2. Es sei @ die additive Gruppe von € und H die Menge aller reellen
Matrizen der Gestalt
abd
(5

mit der Matrizenaddition als Verkniipfung. Dann ist @ ~ H. Dazu ordne man
dem Element a -+ b: € € die aufgeschriebene Matrix zu.

Beispiel 3. Im Anschlu an Beispiel 2 wollen wir mit Gy die multiplikative
Gruppe €y von € bezeichnen. Analog sei Hy die Menge H aus Beispiel 2 ohne
die Nullmatrix und mit der Matrizenmultiplikation als Verkniipfung. Dann
zeigt eine leichte Rechnung, daB dieselbe Zuordnung wie in Beispiel 2 auch
relationstreu beziiglich der Multiplikation ist Gy ~ Hy. Es gilt ja

ab ¢ ac—bd ad-+be
—bal\—dec) T (—(ad—f—bc) ac—bd).
Aufgabe 4: Es sei G die multiplikative Gruppe aller positiven Zahlen aus
R und H die additive Gruppe von R. Man zeige G ~ H.
Aufgabe 5: Es sei R die additive und Ry die multiplikative Gruppe der
reellen Zahlen. Zeige: Es gibt keinen Isomorphismus f von & auf Re.

§ 7 Darstellungen durch Transformationsgruppen

7.1 Vorangestellt sei die folgende

Definition: Eine eineindeutige Abbildung f: M — M einer Menge M auf
sich heifit Transformation. Eine Transformation etner endlichen Menge M heift
auch Permutation.

Auf der Hand liegt die Giiltigkeit von

Satz 1: Die Menge F aller Transformationen einer Menge M ist esne multi-
plikative Gruppe.

Beweis: Das Produkt zweier Transformationen ist nach § 3.2 erklirt und
liefert ein Element von F. Nach Satz 3.1 ist diese Multiplikation assoziativ.
Die identische Abbildung £ von M auf sich ist das Einselement von F, und
wegen f-1f = ff-1 = ¢ ist die Umkehrabbildung f-1 € F (vgl. § 3.2) das Inverse
von fe F.
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Jede Gruppe, deren Elemente Transformationen sind, nennen wir nun 7T'rans-
formationsgruppe, jede Gruppe von Permutationen Permutationsgruppe.

Der englische Mathematiker CavyrLEy (1821—1895), einer der Begriinder der
Gruppentheorie, zeigte, daB sich jede Gruppe als Transformationsgruppe dar-
stellen 1aBt. Von ihm stammt namlich der

Satz 2: Jede Gruppe G ist einer Transformationsgruppe isomorph.

Beweis: Wihle ein @ € G und betrachte die durch f,(2) = ax definierte
Abbildung f,: G - G. Da sich nach Satz 6.1 jedes g € G in der Gestalt ax
schreiben 1d8t, ist sie surjektiv; sie ist injektiv wegen

fa) = faly) = = = y.

Also ist f; eine Transformation von G. Fiir verschiedene a, b € G sind auch
fa, f» verschieden; denn aus f, = fp folgt fa(e) = fs(e) oder @ = b. Nun bilden
wir die Menge F = {f;: a € G} aller dieser Transformationen und zeigen
G ~ F. Die durch ¢(a) = f, definierte Abbildung ¢: G — F ist, wie bereits
festgestellt, bijektiv. Fiir die Relationstreue muB ¢(ab) = ¢(a)p(h) oder
fab = faf» gezeigt werden; es ist aber in der Tat

far(x) = abx = afp(x) = fafs(x)
fiir alle x € G.

7.2 Der Beweis von Satz 2 gestattet sofort die

Folgerung: Jede endliche Gruppe 148t sich als Permutationsgruppe schrei-
ben.
Wir betrachten zunichst die vollen Permutationsgruppen endlicher Mengen.

Definition: Es sei M = £ eine endliche Menge von n Elementen. Die Gruppe
aller Permutationen von M heiflt die symmetrische Gruppe vom Index n. Wir
bezeichnen sie in Zukunft mit Sy

Wir wissen also inzwischen, daB zu jeder endlichen Gruppe G eine Permuta-
tionsgruppe P und ein Index = derart existieren, daB G ~ P und Pc &,
gelten. Nach dem Beweis von Satz 2 kann man hierbei n = |G| wiahlen.

Besonders iibersichtlich ist fiir Permutationen die folgende Schreibweise. Man
notiert M etwa in der Gestalt M = {1,2, ..., n} und f € &, durch

(l 23 ...n )
a az ag ... Qayj,
wobei ax = f(k) ist. Die Gruppe &, hat so viele Elemente, wie es Anordnungen

der paarweise verschiedenen ax € M in der zweiten Zeile dieses Schemas gibt.
Wir haben also den

Satz 3: Die symmetrische Gruppe Sy hat n! Elemente.

Betrachtet man etwa in &, die Teilmenge aller Permutationen, die das Element
n + 1 € M festlassen, so sicht man &, c &,.;.
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Die Multiplikation von Permutationen fiihren wir, ihrem Charakter als Ab-
bildungen entsprechend, von rechts nach links aus. Es seien beispielsweise

123 123
f=(213) und 9=(321)

Permutationen aus &3; wir bekommen dann

ot = (353 wmd fe=(373) +

Wegen &, c Sp,41 liefert das gleich noch den

Satz 4: Die symmetrische Gruppe &, ist kommutativ fir n = 1,2 und
nichtkommutativ fiir n = 3.

Wir kennen also damit auch schon eine nichtkommutative Gruppe der Ordnung
6, nimlich &3.

Mitunter ist eine abgekiirzte Schreibweise fiir Permutationen empfehlenswert.
Man betrachte etwa

12345678
f=(34827561)e®8'

Zunichst geht 1 in 3, 3 in 8 und 8 in 1 iiber; dafiir schreiben wir kurz (138)
und nennen einen solchen Ausdruck einen Zyklus. Weiter geht 2 in 4 und 4 in
2 iiber ; zusammen schreiben wir, wieder von rechts nach links gelesen, (24)(138),
und schlieBlich wird f = (576)(24)(138). Auf diese Weise 148t sich, wie man sich
sofort iiberlegt, jede Permutation als Produkt elementefremder Zyklen schrei-
ben. Bleibt ein Element fest, so liefert es einen Zyklus der Linge Eins, den
man auch weglaBt.

7.3 Definition: Eine Permutation te &,, die sich als Zyklus der Linge 2

schreiben lipt, die also zwei der Zahlen 1,2, ..., n vertauscht und die iibrigen
festhdilt, heifit Transposition.
Intuitiv glaubt man zu wissen, da8 man jede Anordnung der Zahlen 1,2, ..., n

durch sukzessives Vertauschen von je zweien herstellen kann. Dies bestitigt der

Satz 5: Jede Permutation fe &y, n = 2, lift sich als Produkt tife—1.. .4
von Transpositionen schretben. Sind f = $xtg—1 ... 01 und | = f, ... 4
zwei derartige Darstellungen, so sind dariiber hinaus k und 1 entweder beide
gerade oder beide ungerade.

Beweis: Wir zeigen zunichst die Darstellbarkeit von f als Produkt von
Transpositionen. Fiir die identische Abbildung & gilt etwa ¢ = (12) (12). Ist

f=(12 n)

a a ... Gy

nicht die Identitdt, also etwa @ = 1, a3 = 2, ...,0p00 = A —1, a3 + 4
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(1 £ 1 < n), so liefert Linksmultiplikation von f mit ¢ = (ia;) eine Permu-
tation '

12 ...n
g = (bl by ... by
mit b =1, bp=2,...,bp =4 Wiederholung des Verfahrens ergibt
tifk—1 - .. if = € mit gewissen Transpositionen #,. Es folgt f = titz ... &g,
wie man durch Einsetzen bestéitigt; es ist ja {2 = .

Zum Beweis der zweiten Behauptung verwenden wir einen Kunstgriff. Wir
betrachten das Produkt

PL2 ....,n) = (1—2(1—3)...(01—n)
2—3)...(2—n)

Ersetzt man hierin fir alle 1 < ¢ < n die Zahl ¢ durch f(¢), so bekommt man,
da f bijektiv ist, eine Zahl

P(f(1), {(2), ..., f(n)) = ¢P(L,2,...,n),

wobei ¢y ein durch f € &, eindeutig festgelegter Vorzeichenfaktor ist: ¢y = -1
oder ¢; = —1. Man iiberlegt sich, daB fiir Transpositionen ¢ dieser Vorzeichen-
faktor c; immer den Wert —1 hat. Man fithre den Ubergang von P(1, 2,...,n)
zu P(f(1), f(2), ..., f(rn)) durch Hintereinanderschaltung von &, ¢, ... , & bzw.
¢, 83, . . ., & schrittweise aus. Unsere Voraussetzung war f = fele— ... 4
= Yt ... ; sie liefert also ¢; = (—1)¥ = (—1)! und damit die Restbehaup-
tung des Satzes.

Ist nun f € &, ein Produkt von k Transpositionen, so ist nach Satz 5 die Zahl
sgnf = (—1)¥ durch f eindeutig bestimmt. Sie heiBt das Signum der Per-
mutation.

Definition: Ein fe &, heift gerade Permutation, wenn sgnf = -1 ist,
andernfalls ungerade Permutation.

Fiir die geraden Permutationen gilt der
Satz 6: Die Menge WU, der geraden Permulationen aus Sy, n = 2, tst etne

Untergruppe von &, mit %n! Elementen. Sie ist kommutativ nur fir n < 3.

Beweis: Sind f = tita...tox €Uy, und g = tit5. . .85 € Uy, als Produkte
von Transpositionen geschrieben, so folgt sgn (fg) = (—1)2¥+2f = 1, also
fg € Yn. Die Multiplikation aller, speziell auch der geraden Permutationen ist
assoziativ. Die identische Permutation ¢ = (12)(12) ist gerade. Mit
f = tifa...tox €Uy ist auch f-1 = fopdor—1...61 gerade. Also ist U, eine
Untergruppe von &,.

Weiter sei ¢ eine feste Transposition aus &,. Dann ldBt sich jeder geraden
Permutation g € ¥, mit tg eine ungerade zuordnen; dabei liefern g1, g2 € Un
dann und nur dann dieselben ungeraden Permutationen tfg;, fge, wenn
g1 = g2 ist. Es gibt also mindestens so viele ungerade wie gerade Permutatio-
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nen. Genauso zeigt man umgekehrt: Es gibt mindestens so viele gerade wie

1 1
ungerade Permutationen. Aus beidem zusammen folgt (Uy| = — (S, = - nl.
8 2 2

SchlieBlich sind f = (142) = (14)(24) und g = (132) = (13)(23) Elemente aus
U4 mit fg = (24)(13) und gf = (23)(14), also fg = gf; aus Y, c Yn41 folgt also,
daB U, fir n = 4 nicht kommutativ ist, und da U, Us als Gruppen der Ord-
nungen 1, 3 kommutativ sind, ist Satz 6 damit bewiesen.

Beispielsweise ist also Y, eine nichtkommutative Gruppe der Ordnung 12. Man
nennt Y, die alternierende Gruppe vom Index n.

§ 8 Untergruppen

8.1 Es sei eine Teilmenge U einer Gruppe G vorgelegt, und es soll gepriift
werden, ob U eine Untergruppe von @ ist. Bislang haben wir in einem solchen
Fall einfach die Gruppenaxiome durchgesehen: Wenn U eine Untergruppe
von @ ist, so muB mit a, b € U jedenfalls auch ab € U sein; ist u € U, so wird
die Gleichung ux=w nur durch die Eins ¢ aus G gelost, so daB ferner ec U
gelten muB; schlieflich muBl mit » € U auch %! in U liegen. Diese notwendi-
gen Bedingungen sind sicher auch hinreichend, da das in ganz G giiltige Asso-
ziativgesetz in U von selbst erfiillt ist.

Mitunter 1aBt sich der geforderte Nachweis in folgender Weise etwas verein-
fachen.

Satz 1: Eine nicht leere Teilmenge U einer Gruppe G ist eine Untergruppe
von G genau dann, wenn eine der beiden falgenden gleichwertigen Bedingungen
erfillt ist:

(1) Ausa,be U folgtab-le U.
(2) Ausa,beU folgtabeU.

Beweis: Ist U eine Untergruppe von G, so gilt sicher (1). Wir zeigen
nun: Wenn (1) erfiillt ist, so ist U eine Untergruppe von G. Wegen U == £
existiert zundchst ein 4 € U, und es folgt uu—1 = e e U. Jetzt ergibt sich aus
a € U weiter ea-l = a-1 e U. Sind schlieBlich a, b Elemente aus U, so sind es
hiernach auch g, -1, und man hat zuletzt noch a(b-1)-! = abe U. Es ist also
U genau dann eine Untergruppe von G, wenn (1) gilt. Ebenso zeigt man, da3
U genau dann eine Untergruppe von @ ist, wenn (2) gilt. Damit ist Satz 1
bewiesen.

Ist die Gruppe G endlich, so kann man oft auch mit Vorteil die in der Auf-
gabe folgende Variante von Satz 1 benutzen.

Aufgabe 1: Eine nicht leere Teilmenge U einer endlichen Gruppe G ist
schon Untergruppe von G, wenn aus a, b € U immer folgt: ab € U. Beweis ?
8.2 Wir treffen nun wieder einige Verabredungen.

Definition: Es seien A und B nicht leere Teilmengen der Gruppe G. Unter
dem Komplexprodukt AB von A, B versteht man dann die Menge aller Produkte
abmitac A und b e B:

8 Hornfeck, Algebra
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AB =pix:xeG,x =ab,ac 4, be B}.

Besonders haufig treten spezielle Komplexprodukte auf, fiir die sich modifi-
zierte Bezeichnungen eingebiirgert haben.

Definition: Es se: G eine Gruppe, U eine Untergruppe von @ und a ein be-
liebiges Element aus G. Dann heifst

aU =pix:z€ @, x = au, uc U}
etne Linksnebenklasse und
Ua =prz: €@, x = ua, uc U}

eine Rechtsnebenklasse von U in G.

Neuerdings wird des ofteren auch aU Rechtsnebenklasse (von a) und Ua
Linksnebenklasse (von a) genannt.

Die Bedeutung der Nebenklassen von Untergruppen beruht auf dem Inhalt
von -

Satz 2: Es set G eine Gruppe mit Elementen a, b, ¢, ... und U eine Unier-
gruppe von G. Dann gelten die nachstehenden Aussagen.
a) Zwei Linksnebenklassen aU, bU von U sind entweder elementefremd oder
identisch.
b) Durch die Gesamtheit derjenigen Linksnebenklassen von U, die paarweise
voneinander verschieden sind, wird eine Partition auf G definiert.
¢) Der durch die Linksnebenklassen von U auf Q definierten Partition enispricht
die Aquivalenzrelation

(1) a~b <« albel.

Die Elemente a, b sind also genau dann dquivalent, wenn sie sich nur durch einen
Rechtsfakior aus U voneinander unierscheiden.

Beweis:
a) Haben zwei Linksnebenklassen alU, bU ein Element ¢ = au; = buy ge-
meinsam (41, uz € U), so folgt a = buguyl, also au = busuilu € bU fiir jedes
u € U. Das heiBit aU cbU, und entsprechend zeigt man bU calU. Sind also
aU und bU nicht elementefremd, so gilt aU = bU.
b) Nach'a) bleibt noch zu zeigen, daB die Linksnebenklassen von U ganz G
ausschépfen. Ist g ein Element aus @, so gilt aber g e gU.
¢) Zwei Elemente a, b sind genau dann dquivalent, @ ~ b, wenn ihre Klassen
gleich sind: aU = bU. Durch Linksmultiplikation mit a-! folgt hieraus
U = a-1bU, und aus U = a-1bU folgt umgekehrt aU = bU. Es bedeuten
also @ ~ b und a-1bU = U dasselbe. Die Linksnebenklassen a-1U und
eU = U wiederum sind nach a) genau dann identisch, wenn a-1b € elU ist.
Es gilt also (1). Die Bedingung a-1b € U besagt: Die Losung von ax = b liegt
in U. Da U eine Gruppe ist, sind schlieBlich die Bedingungen ¢-1b € U und
(@ 1b)-1 = blae U gleichwertig, und letzteres besagt: Die Losung von
a = by liegt in U.
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Es ist klar, daB ein entsprechender Satz fiir die Rechtsnebenklassen einer
Untergruppe U von @ gilt. Die zugehérige Aquivalenzrelation lautet dann

1 a~b <« ablel.

Keine der von U verschiedenen Links- oder Rechtsnebenklassen von U ent-
hélt das (in U gelegene) Einselement; nur U selbst ist also eine Untergruppe
der Gruppe G. Die Rechts- und die Linksnebenklassen von U in @ fallen im
allgemeinen nicht zusammen; wir kommen darauf noch zuriick.

Wegen b e bU und Aussage a) von Satz 2 gilt aU = bU genau dann, wenn
b € aU ist; diese und dhnliche Umformungen werden wir spiter oft benutzen.

8.3 Es sei weiterhin @ eine Gruppe und U eine Untergruppe von G. Wir inter-
essieren uns fiir die Anzahl der Nebenklassen von U in G und beginnen dazu
mit einer Vorbetrachtung.

Setzt man ¢(g) = g1 fir jedes g € G, so wird dadurch eine Transformation
¢: G - G definiert; denn wegen ¢(g-') = ¢ ist die Abbildung ¢: G - @ sur-
jektiv, und sie ist injektiv, weil aus g-1 = A-1 durch Inversenbildung folgt:
g = k. Die Restriktion von ¢ auf U bildet also auch U ememdeutlg auf U ab.
Es sei nun I eine Menge von Indizes und

G = UgU (gUngU = & fiiri &)
i€l
die Zerlegung von G in paarweise verschiedene Linksnebenklassen g;U von
U c G. Hierauf wenden wir ¢ an. Links bekommen wir ¢(G) = G. Rechts
diirfen wir ¢ mit dem Vereinigungszeichen vertauschen und benutzen dann
Aussage g) von Satz 6.1 und ¢(U) = U. Da ¢ eineindeutig ist, lautet das
Ergebnis

¢ = UUgi'  (Ugitn Ugit = R fiir i =+ ).
sel

Aus der ersten Zerlegung von @ in paarweise verschiedene Linksnebenklassen
g:1U von U ist die Zerlegung von G in paarweise verschiedene Rechtsnebenklassen
Ug;! von U geworden; das vollstindige Repriasentantensystem der g; (i € I)
fir die Linkszerlegung liefert ein vollstandiges Repriasentantensystem fiir die
Rechtszerlegung in Gestalt seiner samtlichen Inversen g7l (¢ € I).

Wenn es also genau k paarweise voneinander verschiedene Linksnebenklassen
von U in G gibt, so gibt es ebensoviele paarweise voneinander verschiedene
Rechtsnebenklassen ; ist die Anzahl der paarweise voneinander verschiedenen
Linksnebenklassen unendlich, so ist es auch die Anzahl der entsprechenden
Rechtsnebenklassen. Diese Feststellungen berechtigen zu der folgenden

Definition: Ist U eine Untergruppe der Gruppe G, so heifit die Anzahl der
paarweise voneinander verschiedenen Nebenklassen von U in G der Index von U
in G.

Wir bezeichnen den Index von U in G mit ind U. Ist G unendlich, aber U endlich,
so ist gewill ind U unendlich. Eine unendliche Untergruppe U einer unend-
lichen Gruppe @ dagegen kann einen endlichen Index haben. Man wihle zum

3
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Beispiel fiir @ die additive Gruppe von 3 und fiir U die Untergruppe der ge-
raden Zablen; dann hat U den Index 2, und @ wird in die Nebenklassen U
der geraden und 1 4+ U = U + 1 der ungeraden Zahlen zerlegt.

Nun wenden wir uns noch dem Fall zu, daBl G endlich ist. Hier gilt der in der
Gruppentheorie stindig gebrauchte

Satz 3: Es set U etne Untergruppe der endlichen Gruppe Q. Dann ist die
Ordnung |U| von U ein Teiler der Ordnung |G| von Q. Genauergilt |G| = |U|-ind U.

Beweis: Wir sind fertig, wenn wir die letzte Behauptung bewiesen haben.
Hierfiir wiederum geniigt es zu zeigen, dafl jede Nebenklasse von U genauso
viele Elemente hat wie U selbst. Man betrachte etwa eine Linksnebenklasse
aU von U. Setzt man f(u) = au fiir jedes u € U, so bekommt man eine sur-
jektive Abbildung f: U — aU, die sogar bijektiv ist, weil aus au; = aug folgt:
uy = ug (u1, ug € U). Also gilt |[aU| = |U]|, und es folgt der Satz.

8.4 Die Linkszerlegung und die Rechtszerlegung.der Gruppe @ nach der Unter-
gruppe U fallen gewil dann zusammen, wenn fiir alle a € G gilt: aU = Ua.

Definition: Eine Untergruppe U einer Gruppe G heifit Normalteiler von G,
wenn fiir jedes a € G gilt: aU = Ua.

In dieser Definition wird also im Unterschied zum Zentrum einer Gruppe nicht
verlangt, dafl jedes u € U mit jedem a € G vertauschbar sein soll; die Forde-
rung aU = Ua ist schwiicher und verlangt nur die Gleichheit der Mengen
aU und Ua.

Beispiele fiir Normalteiler sind leicht anzugeben. In einer abelschen Gruppe
ist jede Untergruppe Normalteiler. Jede Gruppe @ hat {¢} und G selbst als
triviale Normalteiler. Das Zentrum einer Gruppe G ist ein Normalteiler von
G. Ferner ist es niitzlich, sich das folgende Beispiel zu merken: Ist U eine
Untergruppe von G vom Index 2, so ist U Normalteiler von G. Um das nach-
zuweisen, geniigt es, ein a € G zu betrachten, das nicht in U liegt; es gilt dann
Q@ = UvaU = UuUa,alsoalU = Ua.

Genau dann ist U Normalteiler von G, wenn aU = Ua fiir jedes a € @ gilt;
statt dessen kann man auch in leicht verstindlicher Bezeichnungsweise schrei-
ben: aUa-1 = U fiir jedes a € G. In dem folgenden oft gebrauchten Satz wird
dieser Sachverhalt etwas vereinfacht.

Satz 4: Die Untergruppe U der Gruppe G ist genau dann Normalteiler von
G, wenn fir jedes a € G gilt: aUa-1 c U.

Beweis: Zu zeigen bleibt, daB U Normalteiler ist, sobald aUa-1 c U fiir
jedes a € @ gilt. Ist @ ein Element aus G, so gilt also einmal aUa-1 c U oder
aU c Ua; zum anderen gilt auch a-1U(a-1)-1 ¢ U oder Ua c aU. Beides zu-
sammen liefert aU = Ua und damit die Normalteilereigenschaft von U.

Aufgabe 2: Es sei G eine Gruppe mit Elementen a, b, ¢, ... und M eine
Teilmenge von G. Zeige: Dann und nur dann definiert @ ~ b < a~1b € M eine
Aquivalenzrelation auf @, wenn M eine Untergruppe von @ ist.
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Aufgabe 3: Man gebe je ein Beispiel einer Gruppe G mit einer Unter-
gruppe U c G an derart, daB
a) |U| endlich und ind U unendlich ist,
b) |U] und ind U unendlich sind.

Aufgabe 4: Es sei & eine Gruppe und U eine Untergruppe von G. Zeige:
Dann und nur dann stimmen die Linkszerlegung und die Rechtszerlegung von
@G nach U iiberein, wenn U Normalteiler ist.

Aufgabe 5: Es seien I & £ eine Indexmenge, G eine Gruppe und die N
(¢ € I) Normalteiler von G. Man zeige: Auch der Durchschnitt D = N N;
dieser Normalteiler ist ein Normalteiler von G. vel

§ 9 Zyklische Gruppen

9.1 In § 6.2 hatten wir uns unter anderem die Gruppen der Ordnung 4 an-
gesehen. Die eine war die Kleinsche Vierergruppe. Die andere haben wir zu-
letzt in der Gestalt G = {0, 1, 2, 3} geschrieben und die Verkniipfung additiv
gelesen ; das Verkniipfungsergebnis fiir zwei Elemente aus ¢ bekam man dann,
indem man nach normaler Addition wie in 3 den kleinsten nichtnegativen Rest
nach Division durch 4 aufschrieb. Dieses Beispiel greifen wir auf und verall-
gemeinern es. Dabei beachten wir, daB die Elemente aus G zwar aus plau-
siblen Griinden wie die ganzen Zahlen 0, 1, 2, 3 bezeichnet, daB sie aber trotz-
dem keine ganzen Zahlen sind.

Es sei jetzt » eine beliebig gewihlte feste natiirliche Zahl und

G = {K(0), K(1), ..., K(n — 1)}

die Menge der Restklassen modulo » (§ 5, Beispiel 5). Wir erinnern uns: Jedes
K(a) € G kann auch in der Gestalt K(a) = K(a + An) mit beliebigem €3
geschrieben werden, weil @ und @’ = a 4 An Reprisentanten derselben
Klasse sind, und umgekehrt unterscheiden sich zwei Représentanten a, o’
derselben Klasse stets nur durch ein Vielfaches von n.

Auf @ wollen wir nun durch

(1) K(a) + K(b) = K(a + b)

eine additiv geschriebene Verkniipfung einfithren. Da aber die Klassen K(a),
K(b) linker Hand mit anderen Repriasentanten auch in der Gestalt K(a'),
K(b") geschrieben werden koénnen, deren Summe laut (1) dann K(a' 4 b’)
wire, miissen wir, wenn durch (1) iiberhaupt ein eindeutiges Verkniipfungs-
ergebnis erklirt sein soll, folgendes nachweisen: Wenn K(a') = K(a) und
K(b') = K(b) ist, so gilt K@’ + b') = K(a + b). Oder: Wenn @’ = a + in
und b = b + un ist (4, u € 3), so gilt K(a’ + b’') = K(a + b). Das ist aber
wegena’ + b’ = a + b4 (A + u)n richtig.

Jetzt erst wissen wir: (1) ist eine Definition. In Zukunft werden wir oft vor
dhnlichen Situationen stehen und uns dann die entsprechende Frage vorlegen
miissen, ob ein aufgeschriebener Ausdruck auch wirklich definiert ist.
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Nun priift man leicht nach, da G mit der durch (1) festgelegten Verkniipfung
eine abelsche Gruppe ist: Es ist G == 2; es gilt das assoziative Gesetz

(K(a) 4+ K(®)) + K(¢) = K(a + b) + K(c)
— K(a+8) +0)
— K@ + (b + o))
= K@) + K@ + o) = K(a) + (K() + K(©))

und analog das kommutative Gesetz; es ist K(0) das Nullelement und K(—a)
das additive Inverse von K(a¢). Man nennt G die additive Restklassengruppe
modulo n. Setzt man n =4, so erhilt man die eingangs erwihnte Gruppe der
Ordnung 4 mit K(0), K(1), K(2), K(3) an Stelle von 0, 1, 2, 3. Etwa fir n = 6
wird K(4) + K(5) + K(5) = K(2); man tut so, als rechne man in 3, setzt
aber Vielfache von 6 gleich Null.

Die additive Restklassengruppe G = {K(0), K(1), ..., K(n — 1)} hat eine
wichtige Eigenschaft: Jedes Element aus @ 1a8it sich durch Summanden K(1)
darstellen; G besteht aus den Elementen K(1), K(1) + K(1), ...; dabei wird
K(n — 1) eine Summe von 2 — 1 und K(0) die Summe von » Summanden
K(1).

9.2 Wir interessieren uns nun nur noch fiir die gruppentheoretische Struktur
der Gruppe G aus 9.1 und nicht mehr fiir die spezielle Gestalt ihrer Elemente.
Die Verkniipfung schreiben wir wieder multiplikativ und setzen etwa K(1) = g.
Dann wird G = {e, g, 92, ..., g"1} eine Gruppe, die nur aus den Potenzen
eines Elementes g besteht, fiir das g» = e gilt. Die Gruppe G hat n Elemente;
fir n = 1 ist ¢ = {¢}. Das Rechnen in @ ist klar: Es wird gkg! = g¥+!, wenn
k + 1 < nist, und gkg! = g", wenn k + ! = n + r mit r = 0 ist; dabei wird,
wie bereits in § 6.1 verabredet, g® = e gesetzt. Das Inverse von g* € @ ist gn—*%.
Eine Gruppe G, die nur aus den Potenzen g, ¢2, ..., g% = e eines festen Ele-
mentes g besteht, heiBt zyklische Gruppe der Ordnung n. Die im vorigen Ab-
schnitt durchgefiihrte Konstruktion besagt: Zu jeder natiirlichen Zahl » gibt
es eine zyklische Gruppe der Ordnung ». Sind andrerseits @ = {e,g.42,...,g7 1}
und H = {e, h, k2, ..., hn-1} zwei zyklische Gruppen gleicher Ordnung =, so
wird durch f(g¥) = k¥ ersichtlich ein 'Isomorphismus von G auf H definiert.
Das liefert den

Satz 1: Zu jeder natiirlichen Zahl n gibt es genau eine zyklische Gruppe der
Ordnung n. Sie ist abelsch und isomorph zur additiven Restklassengruppe mo-
dulo n.

Nun diirfen wir von der zyklischen Gruppe der Ordnung » sprechen und fiir
sie eine feste Bezeichnung einfiihren: 3,. Ein Element g, aus dessen Potenzen
2, besteht, heiBt erzeugendes Element von 3,.

Zu jeder vorgegebenen endlichen Ordnung n gibt es also wenigstens eine
Gruppe G mit |G| = n, die zyklische Gruppe 3,. Die Beispiele n < 4 sind uns
demnach bereits in § 6.2 begegnet. Die Kleinsche Vierergruppe V = {e,a,b,c}
besitzt die drei zyklischen Untergruppen {e, a}, {e, b}, {¢, ¢} der Ordnung 2, ist
aber selbst nicht zyklisch. Die Menge der n-ten Einheitswurzeln aus € ist eine
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zyklische Gruppe der Ordnung n beziiglich der Multiplikation in € als Ver-
kniipfung (vgl. Anhang).

9.3 Wir fithren nun eine oft gebrauchte Sprechweise ein.

Definition: Eine Menge E von Elementen einer Gruppe G heift Erzeugenden-
system von G, wenn jedes g € G, g = e, als Produkt von endlich vielen Elementen ge-
schrieben werden kann, die entweder selbst oder deren Inverse in E liegen. Eine
Gruppe G heift zyklisch, wenn sie ein einelementiges Erzeugendensystem besitzt.
Ist E ein Erzeugendensystem von G, so sagt man auch: Die Elemente von E er-
zeugen G.

Die oben definierten endlichen zyklischen Gruppen sind gewif zyklisch im
Sinne dieser Definition. Ist umgekehrt G eine von einem Element g erzeugte
endliche Gruppe, so ist zu zeigen, daBl G auch im oben erkldrten Sinn zyklisch
ist. Zundchst muf es Exponenten k > 1> 0 mit g¥ = g}, also gkl =,
geben, weil andernfalls ¢ unendlich wiére. Es gibt also positive Exponenten m
mit g™ = e; den kleinsten von ihnen nennen wir #. Sind nun 1 L1 <x < n
zwei verschiedene Exponenten zwischen 1 und %, so muBl g» &= g4 gelten, weil
andernfalls gx-2 = ¢, 0 < x — A < n, wire im Widerspruch zur Wahl von n.
In der Gruppe G liegen also sicher die n paarweise voneinander verschiedenen
Elemente g, g2, ...,g" = e. Weitere davon verschiedene positive Potenzen
von g gibt es nicht; dazu schreibe man blof den Exponenten k in g% in der
Gestalt k = gn+r,0=r<n(g,rel); man bekommt gk = gingr = gr,
also eine bereits aufgeschriebene Potenz von g. Nach Definition ist nun jedes
Element aus G Produkt aus Faktoren g und g-1; da hier aber g1 = gn-1 gilt,
ist also jedes Element aus Geine positive Potenz von g oder G = {e,g,92,. . . ,g»1}.
Wegen gn = ¢ ist das die im vorigen Abschnitt aufgeschriebene zyklische
Gruppe 35.

Ein Beispiel einer unendlichen zyklischen Gruppe ist die additive Gruppe von
3 mit dem Erzeugendensystem E = {1}; ein von Null verschiedenes Element
aus 3 laBt sich ja entweder durch Summanden 1 oder durch Summanden —1
darstellen. Schreibt man diese Gruppe wieder multiplikativ, so bekommt sie
die Gestalt ¢ = {g*: k € 3}. Die Existenz wenigstens einer multiplikativ ge-
schriebenen zyklischen Gruppe unendlicher Ordnung ist damit wieder ge-
sichert; das Rechnen in G ist durch g¥g? = gk+! erklirt, und es gilt gm = e
nur fir m = 0. Ist H = {hk: k e 3} eine zweite zyklische Gruppe unendlicher
Ordnung mit dem erzeugenden Element %, so kann &A™ = e nur fiir m =0
gelten, weil andernfalls H endlich wiirde. Wie oben vermittelt deshalb
f(g¥) = h* einen Isomorphismus von G auf H, und wir konnen sagen: Es gibt
genau eine unendliche zyklische Gruppe. Sie ist abelsch und isomorph zur addi-
tiven Gruppe von 3.

Etwa die additive Gruppe aller durch 5 teilbaren ganzen Zahlen ist zyklisch
mit dem erzeugenden Element 5 und folglich isomorph 8, obwohl sie eine echte
Teilmenge von 3 ist. Die additive Gruppe G aller ganzen GauBschen Zahlen
(vgl. § 6.3, Beispiel 1) dagegen ist sicher nicht zyklisch, da sonst alle ihre
Punkte in der GauBschen Zahlenebene auf einer Geraden liegen miiiten. Aber
jedes von Null verschiedene Element von G liBt sich als Summe endlich
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vieler Summanden 1, —1, ¢, —¢ darstellen, so daB G etwa von 1 und ¢ erzeugt
wird. Jede Gruppe besitzt trivialerweise sich selbst als Erzeugendensystem E;
aber man wird natiirlich nach Systemen F mit moglichst kleiner Elemente-
zahl suchen. Die Kleinsche Vierergruppe V = {e, a, b, ¢} beispielsweise be-
sitzt das zweielementige Erzeugendensystem E = {a, b}.

9.4 Es sei nun eine beliebige Gruppe G vorgelegt und g € @ irgendein Element
aus G. Wir betrachten jetzt dieMenge U = {gk: k € 3} c G aller Potenzen von
g. Zwei Fille konnen eintreten. Entweder es ist g® = e nur fiir m = 0; dann
gilt g¥ = ¢! nur fiir k = 1, und U ist die eben betrachtete unendliche zyklische
Gruppe. Oder es gibt ein m == 0 mit g™ — ¢; dann ist auch g™ = e, so daf3
m > 0 angenommen werden darf; es folgt die Existenz eines kleinsten positi-
ven Exponenten n mit g» = ¢, und wir bekommen, wie bereits ausgefiihrt,
mit U = {e, g, 9% ..., g" 1} die zyklische Gruppe 3,. Wir nennen in beiden
Fillen U die von g erzeugte (zyklische) Untergruppe von G.

Definition: Ist g ein Element der Gruppe G und g™ = e nur fiir m = 0, so
heift g € G ein Element von unendlicher Ordnung. Ist andernfalls n der kleinste
positive Exponent mit gr = e, so sagen wir, g habe die Ordnung n.

Wir notieren nun einige ebenso einfache wie wichtige Satze.

Satz 2: Das Element g der Gruppe G habe die endliche Ordnung n. Dann gilt
g™ = e genau dann, wenn n ein Teiler von m ist.

Beweis: Ist m = gn mit einem ¢ € 3, so gilt natiirlich gm = e. Ist umge-
kehrt g = eund m =qn 47,0 < r < n (g, r € 3), so wird gm = gingr = gr
= ¢, und nach Wahl von » kann nur r = 0, also » ein Teiler von m, sein.

Satz 3: Es sei G eine endliche Gruppe der Ordnung n und g ein Element
aus G. Dann ist die Ordnung d von g ein Tetler von n.

Beweis: Die von g erzeugte Untergruppe U von @ ist endlich wie G; sie
hat d Elemente. Nach Satz 8.3 ist also d ein Teiler von .

Satz 4: Ist G eine endliche Gruppe der Ordnung n und g ein Element aus
G, so gilt gn = e.

Beweis: Es sei d die Ordnung von g € G. Nach Satz 3 ist d ein Teiler von
n; nach Satz 2 gilt also g» = e.

Nun sei eine Gruppe G von Primzahlordnung p gegeben. Wir wahlen ein
ge G, g & e, und betrachten die von g erzeugte zyklische Untergruppe U.
Dann ist |U| groBer als Eins und Teiler von p, also gleich p;esfolgt G = U = 3,
und damit der

Satz 5: Zu jeder Primzahl p gibt es nur genau eine Gruppe der Ordnung p,
die zyklische Gruppe 3p.

Damit sind uns inzwischen auch die beiden einzigen Gruppen der Ordnungen
5 und 7 bekannt. Wir kennen zwei Gruppen der Ordnung 6, 3 und &;, und
wir werden noch sehen, daBl es weitere nicht gibt (Aufgabe 12.4).



§ 10 Direkte Produkte 41

Zuletzt betrachten wir noch die Untergruppen zyklischer Gruppen.

Satz 6: Es sei G eine von g erzeugte zyklische Gruppe. Dann gelten die fol-
genden Aussagen.
a) Jede Untergruppe U von Q ist zyklisch.
b) Hat G = {e, 9,92, ..., g" 1} die Ordnung n, so gibt es zu jeder natiirlichen
Zahl d, die n teilt, genaw eine Untergruppe Ug der Ordnung d von G; ste ist
n

zyklisch und wird von g@ erzeugt. Sind dy und dy Teiler von n und dy ein Teiler
von dg, so gilt Ud1 c U¢2 und umgekehrt.

Beweis:

a) Der Fall U = {e} ist trivial. Es sei daher U == {e}; da mit w € U auch
u-le U gilt, existiert in diesem Fall ein kleinster positiver Exponent % mit
g* € U. Wir zeigen, daB U von g* erzeugt wird. Es sei g™ ein beliebiges Element
aus U. Wieder schreiben wir nach Division von m durch & mit Rest r den Ex-
ponenten in der Gestalt m = gk 47,0 <r < k (g, r€3). Aus gk e U folgt
auch g9 € U und damit g-¢%¢gm = g¢gr € U; da k minimal gewahlt war, folgt
weiter r = 0. Das heillt aber m = gk oder gm = (g¥)9, was wir zeigen wollten.
b) Fiir jeden Teiler d von » kann man leicht eine Untergruppe Ugq c G der
Ordnung d aufschreiben:

oot
Ud = {e)gd,gd) YN/
n
Sie ist zyklisch und wird von g¢ erzeugt. Um die Eindeutigkeitsaussage nach-
zuweisen, nehmen wir an, U c G sei eine Untergruppe der Ordnung 4 und
g* € U. Nach Satz 4 gilt (g4} = gA¢ = e. Die Ordnung 7 von g teilt also nach

n
(d-1 )a}

Satz 2 den Exponenten Ad, und das besagt, dal 4 ein Vielfaches von% ist. Da

g* ein beliebiges Element aus U war, heifit das U c Uy; weil |U| = d sein sollte,
folgt also richtig U = Uj.
Sind schlieBlich d;, d2 Teiler von n und d; ein Teiler von ds, so folgt aus dem
bereits Bewiesenen Ug, c Ug, ¢ G. Die Umkehrung gilt wegen Satz 8.3. Da-
mit ist auch Satz 6 bewiesen.

Aufgabe 1: Man bestimme die Ordnungen der Elemente der alternie-
renden Gruppe Uy.

Aufgabe 2: Es sei @ = {e,¢,¢2, ...,9" 1} eine zyklische Gruppe der
Ordnung » > 1. Man zeige: Ein Element g* € G ist genau dann Erzeugendes
von @, wenn k zu n teilerfremd ist.

8§ 10 Direkte Produkte

10.1 Wir wollen aus zwei Gruppen G, H mit Elementen gy, ks eine neue kon-
struieren. Dazu fithren wir auf dem cartesischen Produkt G x H (vgl.§1.3) die Ver-
kniipfung (g1, 21) - (g2, 2) = (9192, k1k2) ein. Bezeichnen wir die Einsen aus Gund H
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etwas nachldssig beide mit e, so wird ersichtlich G x H eine Gruppe mit dem
Einselement (e, €). Sind G und H abelsch, so ist es auch @x H; sind G und H
endlich, so wird |[Gx H| = |G| - |H|.

Beispiel 1. Man wihle die GruppenG = {e, g} und H = {e, b} der Ordnung
2. Schreibt man sich die Verkniipfungstafel von & x H auf und nennt die Ele-
mente (e, ¢), (g, e), (e, k), (g, k) von G x H hinterher kurz ¢, a, b, ¢, so sicht man,
daB Gx H die Kleinsche Vierergruppe ist. Nun brauchen wir auch das in
§ 6.2 so ldstige Assoziativgesetz nicht mehr nachzupriifen.

Angenommen, es wird eine Gruppe vorgelegt, die auf diese Weise entstanden
ist; wir bezeichnen sie deshalb wieder mit Gx H. Man betrachte die Teil-
mengen Q' = {g’: ¢’ =(g,¢),9€G} und H' = {A': &' = (e, k), he H} von
G x H. Dann sind, wie man sieht, G, H' zu G, H isomorphe Gruppen: G ~ &,
H ~ H’; aber im Gegensatz zu G und H sind G’ und H’ Untergruppen von
G x H. Produkte der Gestalt g'A" mit ¢’ € G’ und &' € H' liegen in G'x H; ihre
Gesamtheit liefert ganz G'x H, und aus g1y = gohs folgt g7 = g3 und Ay = A}
(9: € @, bi € H'). Das heiBlt: Jedes Element aus G x H 1Bt sich in der Gestalt
g’h’ mit ¢ e G’ und b’ € H' schreiben, und diese Darstellung ist eindeutig.
AuBlerdem gilt g’'A’ = b'g’.

Beispiel 1. In der oben konstruierten Kleinschen Vierergruppe Gx H
= {e,a,b,c} ist G' = {e,a}, H = {¢,b}, und man hat ¢ = ee, a = ae,
b=eb, c = ab.

Beide Versionen des Rechnens in @ x H unterscheiden sich nur durch die
Schreibweise; denn die Abbildung f: Gx H - G’H’ auf das Komplexprodukt
G'H’, die durch f((g, k)) = (g, e) * (e, h) definiert wird, ist bijektiv, und sie ist
auch relationstreu:

fllg1, k1) - (g2, h2)) = f((g192, hah2)) = (9192, €) - (e, haha)
(gl) e)(92’ e)(e, hl)(e’ h2)
(91 e)e, 1) - (92, e)(e, h2)
(g1, })) - f((g2, h2)).

LBt man an den zu @, H isomorphen Modellen G, H' die Striche wieder weg,
80 ist es also erlaubt, das eingangs beschriebene Konstruktionsverfahren fir
das sogenannte direkte Produkt G'x H der Gruppen G, H wie folgt zu verein-
fachen: Man bildet die Menge aller formalen Produkte gk (g € G, 2 € H) und
sieht zwei von ihnen genau dann als gleich an, wenn sie komponentenweise
ibereinstimmen; man definiert gih * goho = g1g2h1ke und schreibt fiir ge nur
g, fiir ek nur 4. Die Gruppen @, H sind dann sogar Untergruppen ihres direkten
Produktes.

Das lauft auf die folgende Definition hinaus, die nun gleich den allgemeinen
Fall des direkten Produkts aus endlich vielen Faktoren behandelt.

[

Definition: Die Gruppe Q heift direktes Produkt G = Uyx Uzx ...x Uy
der Untergruppen Uy, Uy, ..., Uy von G, wenn jedes g € G genau eine Darstel-
lung der Gestalt g = uyug . .. u, (ug € Uy) besitzt und fiir © == § gilt: wquy = wyuy.
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Hiernach hat man also zwischen dem cartesischen Produkt Uy x U, der Mengen
und dem direkten Produkt U;x Us der Gruppen Ui, Uz zu unterscheiden;
sollten Verwechslungen zu befiirchten sein, werden wir sie durch einen Hin-
weis auszuschlieBen haben. Die direkten Produkte U;ix Uz und Usx U
stimmen auf Grund der Definition iiberein; die Reihenfolge der U; spielt also
beim direkten Produkt G = U;x Usx ...x U, keine Rolle.

Wir notieren noch unser bereits am Anfang erwihntes Resultat.

Satz Y: Ist G das direkte Produkt der Gruppen Ui, Uz ..., Uy, so gilt
|G| = |U1|*|Ug| ++- |Ugnl. Sind die U; abelsche Gruppen, so ist auch
G = U]_x ng cee X U,,abelsch.

Beispiel 1. Wie wir gesehen haben, ist die Kleinsche Vierergruppe
V = {e, a; b, c} das direkte Produkt zweier Modelle der zyklischen Gruppe
B2. Dafiir schreiben wir auch ¥ = 32x 2.

Beispiel 2. Es seien Uy = {e, a}, Us = {e, b}, Us = {e, ¢} drei Modelle der
Gruppe 32. Thr direktes Produkt G = 33x 32x 3 ist dann abelsch und
besteht aus den acht Elementen e, a, b, ¢, ab, ac, be, abe. Die Verkniipfungs-
tafel von G ergibt sich aus der Vertauschbarkeit der Elemente a, b, ¢ und den
Regeln a? = b2 = ¢2 = ¢; beispielsweise gilt (ab)(abc) = a2b% = c. Die Gruppe
G ist wie 33 x 32 nicht zyklisch; auBler ¢ hat jedes g € G die Ordnung 2.
Beispiel 3. Es seien U; = {e, a} eine zyklische Gruppe der Ordnung 2 und
= {e, b, b2, b3} eine zyklische Gruppe der Ordnung 4. Ihr direktes Produkt
H = B3 x 34 ist wieder abelsch und besteht aus den acht Elementen e, b, b2,
b3, a, ab, ab?, ab8. Das Rechnen in H ergibt sich aus der Vertauschbarkeit von
a und b und den Regeln a? = b% = e. Da in H wenigstens ein Element b der
Ordnung 4 vorkommt, sind 33x 32x 32 und 3zx 34 nicht isomorph, und da
jedes Element aus H hochstens die Ordnung 4 hat, ist auch 89 x 34 nicht
zyklisch.
Wir kennen also inzwischen die drei abelschen Gruppen 3s,32x 34 und
B2 x Bax 32 der Ordnung 8; in § 11 wird sich zeigen, daB es weitere abelsche
Gruppen der Ordnung 8 nicht gibt.

Beispiel 4. Bei additiver Schreibweise wird aus dem direkten Produkt die
direkte Summe; man verwendet fiir sie oft das Zeichen @. Man betrachte etwa
die additive Gruppe € der komplexen Zahlen mit den Untergruppen U; = R
und Uz = {z:z=1r,reR}. Offenbar gilt € = Uy o U, und da U, Uy
Modelle der additiven Gruppe R sind, schreiben wir auch € = R o R. Fir
die additive Gruppe @ c € der ganzen GauBschen Zahlen (vgl. § 6.3, Beispiel 1)
gilt entsprechend G = 3 3.

10.2 Im folgenden geben wir ein notwendiges und hinreichendes Kriterium
dafiir, daB eine Gruppe @ direktes Produkt zweier Untergruppen U, V ist. Es
wird oft gebraucht.

Satz 2: Es seien U und V Untergruppen der Gruppe G. Genau dann ist G
das direkte Produkt von U und V, wenn die nachstehenden drei Bedingungen
erfillt sind:
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(1) Fiir das Komplexprodukt UV gilt UV = Q.
(2) BsistUnV = {e}.
(3) U und V sind Normalteiler von G.

Beweis:
a) Es gelte @ = U x V. Dann ist (1) erfillt und sicher auch (2) Un V = {e};
wire namlich ce Un V, ¢ & ¢, so hitte ¢ € G die beiden voneinander ver-
schiedenen Darstellungen ¢ = ce und ¢ = ec mit Faktoren aus U, V. Ferner
sind U, V Normalteiler; ist g ein Element aus G und g = ww, ue U, ve V,
so gilt ja etwa fiir U die Beziehung

gUg!l = wlv !l = wlUwlu! = wlul = U,

weil nach Voraussetzung » mit jedem Element aus U vertauschbar ist.

b) Fir die Untergruppen U, V von @ seien die Bedingungen (1),(2),(3) er-
fillt. Zu zeigen ist: Jedes g € G 1a8t sich in der Gestalt g = wv, ue U, ve V,
schreiben, diese Darstellung ist eindeutig, und es gilt uv = vu. Die Darstell-
barkeit g = uv folgt sofort aus (1). Ist dann g = ujvn = ugve (w4 U, v € V),
so wird uzluy = wvevyl; links steht ein Element aus U, rechts eines aus ¥, und
beide sind gleich, konnen also nach (2) nur e sein. Es folgt die Eindeutigkeit
#) = ug, v1 = v der Darstellung von g. Aus (3) folgt schlieBlich uvu-l1e V
und vu-lpleU; es gilt also sowohl uvu—lv-1 = (uvu-ljp-te V als auch
wvu~lvl = y{vu—lv-1) € U, mithin uvu-1v-1 € U n ¥ oder nach (2) uvu-lv-l1=e¢,
und das liefert noch uv = vu.

10.3 Den griften gemeinschaftlichen Teiler (3.9.T.) d > 0 zweier ganzer Zahlen
m, n, die nicht beide Null sind, bezeichnen wir in Zukunft auch mit (m, n);
sind m und n beide Null, so setzen wir ihren g.g.7. (0, 0) gleich Null. Fiir das
Folgende verabreden wir noch (n, ) = # und (o0, ) = co. Ist die ganze
Zahl a ein Teiler der ganzen Zahl b, so schreiben wir a|b, andernfalls atb. Dies
vorausgeschickt, gilt der

Satz 3: Das direkte Produkt zweter zyklischer Gruppen A, B der Ordnungen
m = o0, n = o0 tst abelsch; es ist zyklisch genau dann, wenn (m,n) = 1 ist.

Beweis: Dal 4x B als direktes Produkt abelscher Gruppen wieder
abelsch ist, ist klar. Es seien nun a, b die erzeugenden Elemente von 4, B.
Wir zeigen: Im Falle (m, n) = 1 besitzt A x B ein erzeugendes Element, sonst
nicht.

a) Es sei m =n = co. Wiirde a*ble Ax B das direkte Produkt erzeugen
(k,1€3), so miiBte es ein 13 mit (a*b?)* = a**bM = g geben. Das hiitte
Ak =1 und Al = 0, also Il = 0 zur Folge. Entsprechend miiite k¥ = 0 gelten.
Das Element a*b! = a%0 = e erzeugt aber A x B nicht.

b) Es sei meN und n = co. Wiirde a¥b? € 4 x B das direkte Produkt er-
zeugen (k,1€3), so millte es ein A3 mit (a*¥b!)? = ar¥bhi! = a, also
aAk-1pAl = ¢ geben. In A x B miifite einzeln a#*-1 = ¢ und b4! = ¢ sein, da
die Darstellung von e eindeutig ist. Es folgen die Beziehungen A/ = 0 und
m|(Ak — 1), letztere wegen Satz 9.2. Ist m = 1, so muB wieder [ = 0 sein;
aber man sicht, daB a*b! = a* die Gruppe A x B nicht erzeugen kann, da
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keine Potenz von a* gleich b ist. Ist dagegen m = 1, also (m, o) = 1, so wird
Ax B = B von b erzeugt.

¢) Es seien m und » natiirliche Zahlen. Wir betrachten zunidchst den Fall
(m,n) =1 und zeigen: Das Element ab erzeugt 4 x B. Die mn Elemente
(ab)o, (ab)l, ..., (ab)mn-1 aus 4 x B sind dann nimlich paarweise voneinander
verschieden und liefern deshalb ganz 4 x B: Aus (ab)r = (ab)5, 0 < s < r < mn,
folgt ar-sb7-3 = e oder, da die Darstellung von ¢ in 4 x B eindeutig ist,
ar—5 = b3 = ¢; dies wiederum hat nach Satz 9.2 sowohl m|(r — s) als auch
n|(r — 8) zur Folge; da m und n teilerfremd sind, muf} also sogar mn|(r — s)
gelten, und das ist fiir 0 < r — 8 < mn nur moglich, wenn r = g ist.

Zuletzt sei m, n e N und (m, n) = d > 1. Wir betrachten die natiirliche Zahl

v = %< mn und zeigen: Fiir jedes Element a¥blec A x B gilt (a*b!)? = e;
dann kann also kein Element aus 4 x B die Ordnung mn haben. Wegen der

n m
Vertauschbarkeit von @ und b wird richtig (akb?)? = (a"‘)k;”-(b")l7 = e. Damit
ist Satz 3 bewiesen.

Es ist also etwa 3¢ = 3ax 33 oder 3360 = 35x B2 = Z5x 3 x 3p.
Wiederholte Anwendung von Satz 3 liefert den

Satz 4: Es sei n = p{'p;'...p,” die eindeutige Primfaktorzerlegung von
n € N. Dann gilt
8y = 3,muxBax ... x3a

Diese direkte Zerlegung von 3, in r zyklische Faktoren ist iiberdies bis auf
ihre Reihenfolge eindeutig, da » nur so in r paarweise teilerfremde Faktoren
aus N zerlegt werden kann.

Aufgabe 1: LaBt sich &3 als direktes Produkt echter Untergruppen
schreiben ?

Aufgabe 2: Man gebe sechs verschiedene abelsche Gruppen der Ordnung
72 an.

§ 11 Abelsche Gruppen

11.1 Uber abelsche Gruppen weil man relativ gut Bescheid. Wir beschéftigen
uns zunéchst mit abelschen Gruppen, die von endlich vielen Elementen er-
zeugt werden; speziell gehéren zu ihnen die endlichen abelschen Gruppen. Es
gilt der folgende sogenannte Hauptsatz iiber abelsche Gruppen; sein Beweis er-
fordert etwas mehr Aufwand, als wir es bisher gewohnt waren.

Satz 1: Eine abelsche Gruppe G, die von endlich vielen Elementen erzeugt
wird, ist das direkte Produkt zyklischer Untergruppen.
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In Verbindung mit Satz 10.4 ergibt sich daraus noch der

Spezialfall: Jede von {€} verschiedene endliche abelsche Gruppe st das direkte
Produkt zyklischer Untergruppen von Primzahlpotenzordnung.

Beweis von Satz 1: Nach Voraussetzung besitzt G endliche Erzeugenden-
systeme(vgl.§9.3); unter ihnen gibt es Systeme mit minimaler Elementeanzahl».
Fiir jede abelsche Gruppe G, die die Voraussetzungen des Satzes erfiillt, ist
diese natiirliche Zahl n = n(G) wohldefiniert, und wir fithren den Beweis durch
vollstindige Induktion nach n. Fiir n = 1 ist der Satz richtig; es sei daher
n > 1 und der Satz fiir abelsche Gruppen mit weniger als » Erzeugenden
bereits bewiesen.

Wir betrachten simtliche méglichen Mengen {g1, g2, . . ., ga} von n Erzeugen-
den von @G. Gibt es unter ihnen eine mit der Eigenschaft, daB aus

gre ... =e
folgt: y1 = y2 = ... = yp = 0, 80 ist G das direkte Produkt der von diesen g,
erzeugten Untergruppen, weil ja dann

9r gy ... gn =91 95" - g0

nur fiir » = w1, va = u2, - .., vp = pg gilt. Die Behauptung ist in diesem Fall
also richtig; G ist dann das direkte Produkt von » unendlichen zyklischen
Gruppen.

Im folgenden kann daher angenommen werden, daf3 eine solche Menge von
Erzeugenden nicht existiert. Fir jedes {g1, ga, . . ., gu} gibt es also Beziehungen
gl gy ... g = e, in denen nicht alle y; Null sind. Man denke sich alle
diese Gleichungen fiir simtliche betrachteten Erzeugendensysteme {g1,g2, . . . ,gs}
aufgeschrieben. Da mit g}'g}* ... g& = e auch g;g;” ... ¢, = e gilt,
kommen unter den Exponenten positive vor, und unter den insgesamt in
allen diesen Gleichungen auftretenden Exponenten gibt es deshalb einen
kleinsten positiven; er sei oy > 0. Unter den vorliegenden Erzeugendensystemen
{91, g2, . . ., gn} existiert also nach einer eventuell vorgenommenen Umnume-
rierung der Indizes ein spezielles {a1, as, ..., @y} derart, daB a7y’ a3 ... a5 =e
gilt mit dem bereits fixierten a; und gewissen weiteren « € 3.

Diesem Erzeugendensystem {a;, @s, . . ., @3} wenden wir uns nun zu und zeigen
oy |o fiir alle 5. Dazu werde ein beliebiges oy mit 7 = 2 fest ausgewéhlt und mit
Rest durch «; dividiert: oy = Sy + 04, $1€3, 0 < ot < 4. Wir wollen
zeigen: g4 = 0. Nun gilt jedenfalls

Beyay s -1 0 % %y .
(@) a3" ... aifaf aitt ... 0y = e

hierbei ist wegen

A a, P! 1 AP, A 2,
al‘aé'...a,, =(a1af‘)‘a§'...af‘_1‘a,-‘ ‘p‘a,-‘;l‘...a,,
auch {alaf", as, as, ...,an} ein Erzeugendensystem von G, und wegen der

Minimalitdt von &y ist 0 < gy < a1 nicht moglich, so daB g = 0 wird. Fir
jedes ¢+ = 2 gilt also ay = fyoq mit einem f; € 3.
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Fir das Element @ = ajaf*al ... al* e @ gilt nun

a = e;
auBerdem ist mit {a;, as, . . ., as} auch {a, a3, as, ..., a,} wegen
dhdh . ab = MG gl
ein Erzeugendensystem von G. Es sei jetzt 4 die von a, Bdie von ay, ag, ..., a,

erzeugte Untergruppe von (. Es gilt gewil G = AB. Wir zeigen sogar
G = Ax B, wonach die Behauptung aus der Induktionsvoraussetzung fiir
B folgt.

Fir @ = Ax B ist noch zu zeigen: Ist g = a'b’ € G, a’' € 4, b’ e B, so ist
diese Darstellung eindeutig. Gleichwertig damit ist: Aus a*b* <e¢, a*e 4,
b* € B, folgt a* = b* = e. Eine Beziehung a’d’ = a'’b"’ oder (a'a’”~1)(b'b"'-1) = ¢
ist dann ja nur fiir ¢’ = @'’ und b’ = b"’ moglich (a’,a” € 4; V', b’ € B).

Es sei deshalb a* = a*, b* = a%a¥.. .a¥ und

a"aﬁ'aﬁ' - af,‘ = e (k ki e3).
Man dividiere k durch o; mit Rest: k =gy + 7, ¢ 6_3, 0 =r < a;. Wegen

a“ = ¢ bekommt man
ks ks k

a'az'ag’ ... a, = e;
da {a, a3, ag, ..., ay} ein Erzeugendensystem von G' und «; minimal gewahlt
war, folgt hieraus wieder r = 0. Das bedeutet a* = a¥ = (@%1)? = ¢ und da-
mit auch b* = af'abr ... af* = e, und Satz 1 ist bewiesen.

11.2 Wir wissen nun also, daB jede endliche abelsche Gruppe ein direktes Produkt
zyklischer Gruppen ist. Eine derartige Darstellung ist im allgemeinen auf
mehrere Arten moglich; nach Satz 10.3 ist ja zum Beispiel

Bax 36 = Bax 32x 38 = 32x e

Enthilt einer der auftretenden Indizes m wenigstens zwei verschiedene Prim-
faktoren, so 1at sich m in der Gestalt kI mit 1 <k <m, 1 <l <m und
(k,1) =1, also 3, in der Gestalt 3,, = 3xx 3; schreiben. Sucht man also
alle abelschen Gruppen der Ordnung 24, so braucht man nur alle direkten
Produkte zyklischer Gruppen mit Primzahlpotenzordnung anzusehen: 3gx 33,
Box Bax 33, Bax Bzx 32x 33. Wie in den Beispielen 2, 3 und der Aufgabe
2 aus § 10 iiberlegt man sich, daB dies verschiedene Gruppen sind, und
hat damit alle abelschen Gruppen der Ordnung 24 gefunden. Das Ent-
sprechende gilt fiir die bereits diskutierten abelschen Gruppen der Ordnungen
8 und 72. Wir wollen nun zeigen, da man auf dieselbe Art alle abelschen
Gruppen vorgelegter endlicher Ordnung # bestimmen kann.

Definition: Ist die QGruppe G = G1x Gax ...x Gy das direkte Produkt
zyklischer Gruppen Gy, die von g; erzeugt werden, so heift {g1, gs, .. ., gr} eine
Basis von G. Sie heift Primzahlpotenzbasts, wenn jedes gy Primzahlpotenzord-
nung hat.
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Hat nun G die Primzahlpotenzbasis {g1, g2, ..., gr} und sind y1, ps, ..., y, die
zugehérigen Primzahlpotenzordnungen, so liefert die Angabe des r-tupels
(y1, y2, . . ., yr) die genaue Information ¢ = 3, x 3, x ...x 3;_. Dabei kann
man die y; etwa noch so ordnen, dafl man mit wachsenden Potenzen der klein-
sten auftretenden Primzahl beginnt, dann die wachsenden Potenzen der
nichstgroBeren Primzahl folgen 148t und so fortfiahrt bis zum SchluB. Ist das
geschehen, so sagen wir, G sei vom Typ (y1, 2, . .., yr). Die simtlichen abel-
schen Gruppen der Ordnung 24 haben also die Typen (8, 3), (2,4, 3) und
(2, 2, 2, 3). Die Gruppe 33g0 hat nach Satz 10.4 den Typ (8, 9, 5).

Der im AnschluB an Satz 1 notierte und inzwischen erneut rekonstruierte
Spezialfall besagt: Jede von {e} verschiedene endliche abelsche Gruppe be-
sitzt wenigstens einen Typ. Wir wollen nun wie bei den abelschen Gruppen der
Ordnungen 8, 24 und 72 zeigen, daB verschiedene Typen auch zu nichtisomor-
phen Gruppen fithren. Dér Beweis dafiir ist ebenso langwierig wie der von
Satz 1; aber danach sind wir in der Lage, alle abelschen Gruppen vorge-
gebener endlicher Ordnung n aufzuschreiben: Sie entsprechen eineindeutig
den simtlichen méglichen zu der Zahl 7 gehorenden Typen.

Wir formulieren unsere Behauptung in folgender Gestalt.

Satz 2: Zwet von {e} verschiedene endliche abelsche Gruppen G, H sind dann
und nur dann tsomorph, wenn sie vom gleichen Typ sind.

Beweis: Haben G und H den gleichen Typ, so gilt natiirlich G ~ H. Es
seien daher umgekehrt G und H zwei isomorphe abelsche Gruppen der Ordnung
n = Pyps ... py (p¢ Primzahlen, 11 < p2 < ... < p;). Die Gruppe @ sei
vom Typ (x1, x2, ..., zx); es ist also zy z2 ... zx = n; die zugehorige direkte
Zerlegung sei

= Glx G2>< S S GQX G9+1X ees X Gk;

dabei habe Gy die Ordnung z;, und p sei so bestimmt, daB p; Teiler von
x1, T3, . . ., ¥ ist, aber nicht mehr von z,41, p+2, - . ., Tx; esist also 122 ... 2,
= pi. Entsprechend sei H vom Typ (y1, 93 ..., %), also g1ya ...y
= n; die direkte Zerlegung sei

H = Hyx Hyx ...x Hgx Hgy3x ...x Hy

mit zyklischen Gruppen H; der Ordnungen y;, und esgelte p1|y1, P1lye, - - -, P11y,

aber pitye+1, Pr{Yas2, - - -, P1tyy; €s ist also ¥y ... ys = P1*. Der Isomor-
phismus von G auf H sei ¢: G - H.

Nach Satz 9.3 besteht die Untergruppe U = G1x Gex ... x G, von G genau
aus allen den Elementen von @, deren Ordnung eine Potenz von pj ist; es ist
[U| = |G1]-|Gz| +++ |Go] = @122 ... z,. Analog besteht die Untergruppe
V = Hyx Hax ...x H; der Ordnung y1y2 ... ¥y von H aus allen den
Elementen von H, deren Ordnung eine Potenz von p; ist. Daher ist ¢(U) c V
und ebenso ¢ }(¥V) c U oder ¢(U)> V, demnach insgesamt ¢(U) = V: Die
Untergruppe V c H ist das ¢-isomorphe Bild von U c G. DaB |U| = |V| = p;
ist, wullten wir schon.

Da wir ganz analog aus ¢ und H auch die isomorphen Gruppen U; und V;
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aller der Elemente hiatten herausgreifen kénnen, deren Ordnung eine Potenz
von p;, 1 < § =< r, ist, wird unsere Behauptung bewiesen sein, sobald ¢ = ¢
und z; = y; fiir 1 <1 < g gezeigt ist. Um dies tun zu konnen, schieben wir
eine Hilfsbetrachtung ein: Es sei A eine abelsche Gruppe, m eine feste natiir-
liche Zahl, und Am™ bezeichne die Menge aller a™,a € A. Dann ist A™ eine
Untergruppe von 4. Ist ferner f: A - B ein Isomorphismus von 4 auf B, so
folgt sowohl f(4™) c B™ als auch f-1(Bm) c A™, insgesamt also f(4™) = Bm
oder Am ~ Bm,

Dies werden wir im folgenden benutzen. Wir sind ja, wie wir bereits festgestellt
haben, mit unserem Beweis fertig, wenn wir zeigen konnen, daf die isomorphen
Gruppen U und ¥V vom gleichen Typ sind. Wir werden aber aus der Annahme,
ihre Typen seien verschieden, einen Widerspruch ableiten.

Die Gruppe U = Gyx Ggx ... x G, habe die Basis {g1, g2, ..., go}; der Typ
von U ist (21, @3, ..., 2p), wobei alle x; Potenzen von p; sind. Die zu U iso-
morphe Gruppe V = Hyx Hyx ... x Hy habe die Basis {h1, k2, ..., kg}; der
Typ von V ist (y1,¥2, - - -, ¥¢), und auch alle diese y,; sind Potenzen von p;.
Nach der Definition des Typs ist z; ein Teiler von ;41 (1 = ¢ < ¢) und y; ein
Teiler von y;41 (1 < j<<C0); kein z; und kein y; ist Eins. Wir nehmen nun an,
es sei nicht zugleich ¢ = o und z; = y; fiir alle 4, 1 < ¢ < p; diese Annahme
miissen wir widerlegen. Bei geeigneter Wahl der Bezeichnungen wéire dann
¢ = o, und es wiirde ein m = 0 existieren derart, da x, = y4, o1 = Y51,

v Tgmmil = Yo-mil, To-m =+ Yo—m ausfillt; wegenzy x3 ... 2 = y1Y2...9s
ist m < ¢ — 1. Etwa fiir den Fall 2o p < yg—m betrachten wir die Beziehung
UZe-n = Ve-m,

Die Gruppe links hat die Basis

- Toem To=m
{g:e_m-_H, gg£m+2’ ety ggo }
und

|Uemn]| = To—m+l  Xo—mi+2 T
Lo—-m To-m Zo—m

Elemente. Die Gruppe rechts hat eine Basis der Gestalt
e, Bars, LR B LB,

8+12 °** Pg—m’ Vg-m+1’

wobei 1 < s < 6 — m und &; das erste unter den Basiselementen k3, k2, ..., kg
ist, dessen Ordnung y, groBer als 2, ist; die Elementeanzahl der rechts
stehenden Gruppe ist daher mindestens

Yo-m  Yo-mvr = Yo _ ?/a—m.lU%_'_l > |Ute-n],

To-m Lo—m To—m Lo—m

was der Isomorphie beider Gruppen widerspricht. Ist 2g—; > Yg—m, so findet
man einen analogen Widerspruch zu

Ubo-n ~ V¥a-nm,

Damit ist auch Satz 2 bewiesen.

4 Hornfeck, Algebra
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Will man also alle abelschen Gruppen der Ordnung n = p7* p3’ ... p;” be-
stimmen, so geniigt es, alle Typen (21, %, . . ., xx) mit z1z2 ... 2x = n» aufzu-
schreiben. Sind wieder 3, xo, ..., z, Potenzen von p;, etwa pf‘, pf', cee, pf‘?,
die Zahlen zy.1, 2g+2, - . ., Zx dagegen nicht,somuB oy = g1+ B2+ ... + B,
werden mit 1 < 1 < f2 < ... = f,. Die Anzahl p(x) aller derartiger Zer-
legungen einer Zahl « € N heiBt die Anzakl der Partitionen von a; soist p(l) =1,
p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7. Uber die Anzahl der abelschen Gruppen
der Ordnung = gilt daher der

Satz 3: Es gibt genau p(x) plog) ... play) abelsche Gruppen der Ordnung
n = pYps ... pr (s Primzahlen, py < pa < ... < py).

Die zahlentheoretische Funktion p(«) ist viel untersucht worden; man kennt
ihr asymptotisches Verhalten, kann ihre Werte aber nicht in einfacher Weise
explizit angeben.

Aufgabe 1: Man bestimme alle abelschen Gruppen der Ordnungen
800, 900, 1000.

§ 12 Homomorphe Bilder von Gruppen

12.1 Es sei G die additive Gruppe von 3 und A die Teilmenge der geraden, B
die der ungeraden Zahlen; ferner sei H = {0, 1} eine Gruppe der Ordnung 2
mit der Addition 0 +0 = 1+4+1 = 0,041 = 1 4+ 0 = 1. Dabei haben
wir die ganzen Zahlen 0, 1 € G von den Elementen 0, 1 von H zu unterschei-
den. Wir definieren eine Abbildung f: G - H von G auf H durch f(a) = 0 fiir
a € A und f(b) = 1 fiir b € B. Diese surjektive Abbildung f ist zwar nicht ein-
eindeutig, aber relationstreu; mit vier Fallunterscheidungen priift man sofort
fim 4+ n) = f(m) + f(n) fir alle m, » € G nach. Die Gruppe H ist ein rechne-
risch sehr grobes Bild von G und gibt nur noch die Regeln ,,gerade plus gerade
gleich gerade‘, ,,ungerade plus ungerade gleich gerade* und ,.gerade plus
ungerade gleich ungerade wieder. An Stelle eines isomorphen Bildes haben
wir nur noch ein sogenanntes homomorphes Bild H von & vor uns.

Definition: Es sei G eine multiplikativ geschriebene Gruppe und 8 eine
algebraische Struktur mit einer ebenfalls multiplikativ geschriebenen Verkniip-
fung. Dann heift 8 komomorphes Bild von @, und wir schreiben G % 8, wenn
eine surjektive Abbildung f: G —> 8 derart existiert, daf fiir alle a,be G gilt:

flab) = Ha){(b)-

Ein Homomorphismus f von G auf § ist also eine relationstreue surjektive
Abbildung. Ein Isomorphismus ist ein spezieller Homomorphismus; die ver-
mittelnde Abbildung f ist dann sogar eineindeutig. Ist das homomorphe Bild §
von @ Teilmenge einer Menge M, so sprechen wir von einem Homomorphismus
von G in M. Es kann mehrere Homomorphismen von @ in oder auf M geben.
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Wir notieren zunichst den

Satz 1: Das homomorphe Bild einer Gruppe ist eine Gruppe. Daber geht das
Einselemeni in das Einselement, und Inverse gehen in Inverse iiber. Das homo-
morphe Bild einer abelschen Gruppe ist abelsch, das homomorphe Bild einer
zyklischen Gruppe ist zyklisch.

Beweis: Es sei G5 S und f der zugehdrige Homomorphismus. Sind
81, 82, 83 Elemente aus S, so existicren Elemente g1, g2, gs € G mit f(g;) = s,
und man bekommt das assoziative Gesetz

(s12)s3 = (fg)f(g2))f(gs) = flg1g2)f(gs) = J((g192)gs)
= f(g1(g29s)) = Hg1)f(gegs) = f(91)(f(g2)f(gs)) = s(s29s)-

Also ist S eine Halbgruppe. Ist s € S und g € G ein Original von s, so wird
fle)-s = fle)f(g) = fleg) = flg) = s; also ist f(e) Linkseins von S. Weiter
wird f(g-1)-8 = flg~lg) = f(e); das Inverse von g geht also in das Links-
inverse f(g—!) von s iiber. Damit sind die ersten drei Behauptungen nach-
gewiesen. Ist G abelsch, so ist es auch S:

s152 = flg)Hg2) = flgrge) = Kgegs) = flg2)l(g1) = ses1.

Wird schlieBlich @ von g erzeugt, so besteht S aus den Potenzen von f(g) und
ist damit zyklisch.

Ein homomorphes Bild von @ ist also eine Art Photographie, die mehr oder
minder grob ausfallen kann, die wichtigsten gruppentheoretischen Details
aber noch korrekt wiedergibt. Sind 4, B, C Gruppen mit 4  Bund B x C,
so folgt 4 = C. Dazu betrachte man das Produkt gf der Homomorphismen
f:A - B und ¢g: B —> C; es definiert eine Abbildung von 4 auf C, und fir
a,be A gilt

gflad) = g(f(ab)) = g(f{(@)f(b)) = gfla) - gDb).

Wir stellen uns nun die Aufgabe, alle homomorphen Bilder einer vorgelegten
Gruppe G zu bestimmen. Diese Redewendung soll hier und spéater immer fol-
gendes bedeuten: Gesucht sind alle paarweise nicht isomorphen Gruppen H
mit G  H. Bilder, die einander isomorph sind, werden also nur einmal notiert.

Wir beginnen mit einem Beispiel. Es sei N ein Normalteiler von G' und
F = {N,aN,bN, ...} die Menge der Nebenklassen von N in G. Wir wollen
eine Multiplikation auf F durch aN - bN = abN erkliren und miissen wie
in § 9.1 nachsehen, ob das eine Definition ist: Das Produkt der Nebenklassen
aN, bN soll die Klasse sein, die das Produkt ab der Repréisentanten a, b enthilt,
und wir haben zu zeigen, daBl das Produkt abN von der speziellen Wahl der
Reprisentanten nicht abhingt. Es sei also a’ € aN, das heiit aN = a’N, und
b’ € bN, das heifit BN = b'N; mit gewissen Elementen n; des Normalteilers N
folgt dann

a't’ = any -bng = a(mb)ng = a(bng)ng = abng c abN

4
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oder a’d’ N = abN. Damit ist festgestellt: Durch die Vorschrift aV - bN = abN
ist eine Multiplikation auf F definiert. Sie ist assoziativ,

(aNbN)N = abNcN = (ab)eN = a(bc)N = aNbcN = aN(bNcN),

N wird Einselement und ¢-1N Inverses von aN € F. Also ist F eine Gruppe.
Sie ist sogar ein homomorphes Bild von @; die durch f(a) = aN definierte
Abbildung f: G - F von G auf F ist ja relationstreu:

fab) = abN = aNbN = [(a)f(b).

Diese Gruppe F nennt man die Faktorgruppe von G mach N und schreibt
F = @G/N. Die Bezeichnung fiir F deutet an: Man rechnet in G/N wie in G,
setzt aber dabei Elemente aus dem Normalteiler N gleich Eins. Wir haben
gesehen: Fir jeden Normalteiler N von G bekommen wir ein homomorphes
Bild G/N von G. Der nachstehende Homomorphiesatz fiir Gruppen besagt nun,
da8 mit den Faktorgruppen G/N von G schon alle homomorphen Bilder von
G gefunden sind.

Definition: Es seien G und H Gruppen und f ein Homomorphismus von G
auf H. Dann heifit die Teilmenge K c G aller derjenigen Elemente k € Q, deren
Bild f(k) das neutrale Element aus H ist, der Kern des Homomorphismus f.

Satz 2: Es sei G eine Gruppe. Dann gelten die folgenden Aussagen:
a) Ist N ein Normalteiler von G, so ist die Faktorgruppe G|N ein homomorphes
Bild von G.
b) Ist | ein Homomorphismus von G auf eine Gruppe H, so ist der Kern K von
| ein Normalteiler von G.
¢) Ist f: G — H ein Homomorphismus von G auf H und N sein Kern, so g¢ilt
H ~ G|N. Das heifit: Jedes homomorphe Bild H von G ist einer Faktorgruppe
G|N isomorph.
d) Ein Homomorphismus f von G auf H ist genau dann ein Isomorphismus,
wenn sein Kern K nur aus dem neutralen Element von G besteht.

Beweis:
a) Das ist bereits gezeigt worden.
b) Es seien e und e* die Einselemente der multiplikativ geschriebenen Gruppen
G und H. Nach Satz 1 gilt e € K, also K 5 £. Wir zeigen nach Satz 8.1, daB
K eine Untergruppe von @ ist. Aus g, h € K folgt ja wieder mit Satz 1

flgh™) = f(@)f(R1) = f(g)f(h)T = e*e*1 = e¥,

also gh-1 € K. Nach Satz 8.4 ist die Untergruppe K von @ sogar Normalteiler;
aus a € G und k € K folgt ja

flaka) = f@fb)fial) = fla)-e* - fla)L = e*,

also aka-1 € K und damit aKa-1 c K fiir jedes a € G.

¢) Wir betrachten ein a € G und sein Bild f(a) € H. Sicher haben alle Elemente
an aus G mit » € N dasselbe Bild; soll andrerseits ¢ = ax € G das Bild f(a)
haben, so muB f(z) = e*, also 2 € N sein. Es folgt: Genau die Elemente aus
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aN haben dasselbe Bild wie a. Durch @g(@N) = f(a) wird deshalb eine Ab-
bildung ¢: G/N - H definiert, und diese Abbildung ist bijektiv. Sie ist auch
relationstreu:

¢(aNbN) = @(abN) = f(ab) = Ha)f(b) = @(aN)p(bN).

Die Abbildung ¢ ist also ein Isomorphismus von G/N auf H.

d) Die zu Beginn von ¢) vorgenommene Analyse zeigt speziell: Der Homomor-
phismus f: G - H vermittelt genau dann eine eineindeutige Abbildung, wenn
sein Kern nur aus einem Element besteht, also K = {e} gilt. Damit ist Satz 2
bewiesen.

Wir bemerken nun noch, dal durchaus verschiedene Normalteiler einer Gruppe
isomorphe Faktorgruppen liefern konnen. Man wihle etwa die Vierergruppe
V = {e,a,b, ¢} und die Normalteiler Ny = {e, a}, Ny = {e, b}, die Faktor-
gruppen V/N; und V/N; sind als Gruppen der Ordnung 2 isomorph. Kehren
wir zu unserer oben gestellten Aufgabe zuriick, so lautet demnach das Ergeb-
nis: Die sdémtlichen homomorphen Bilder einer Gruppe G sind die voneinander
verschiedenen unter den Faktorgruppen G/N.

12.2 Wir betrachten als Beispiel die additive Gruppe 3. Da sie abelsch ist, ist
jede Untergruppe Normalteiler. AuBerdem ist 3 zyklisch und wird von 1 er-
zeugt; eine Untergruppe N ist nach Satz 9.6, Aussage a), auch zyklisch und
wird, wie der zugehorige Beweis zeigte, im Falle N == {0} von dem kleinsten
positiven Element » in N erzeugt. Die Faktorgruppe

S/N = {N:1+N’2+N7"',(n_l)+N}

ist dann nur in anderer Schreibweise die additive Restklassengruppe modulo »
aus § 9.1; am Anfang von § 12 stand der Spezialfall » = 2. Allgemein wird
8/N von 1 + N erzeugt und ist isomorph 3,. Vergrobert man das Addieren in
8 dadurch, dafl man Vielfache von =z, also die Elemente von N, gleich Null
setzt, so gelangt man zu dem Rechnen im homomorphen Bild 3/N ~ 3,.
Unser Ergebnis: Die simtlichen homomorphen Bilder von 3 sind 3 selbst und
die additiven Restklassengruppen modulon (n = 1,2,3, ...).

Aufgabe 1: G und H seien Gruppen, G'x H sei ihr direktes Produkt.
Zeige: (Gx H)[H ~ G.

Aufgabe 2: Man betrachte die additiven Gruppen € und R und zeige:
C/R ~ R

Aufgabe 3: Man bestimme alle homomorphen Bilder von 82 x 8sx 3.
Aufgabe 4: Bestimme alle Gruppen der Ordnung 6.

12.3 Wir kehren noch einmal zu den Uberlegungen des ersten Abschnitts zu-
ritick und beginnen mit der folgenden

Definition: E's sei S eine algebraische Struktur mit Elementen a, a’, b, ?’, .. .
und einer multiplikativ geschriebenen Verkniipfung. Eine auf S definierte Aqui-
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valenzrelation ,,= heift Kongruenzrelation, wenn aus a = a’ und b = b’ folgt:
ab = a'd'.

Es sei zum Beispiel § = ( eine Gruppe und N c @ ein Normalteiler. Dann wird
durch die Nebenklassen von N auf G eine Aquivalenzrelation

!

a=a <« aN=aN

definiert (Satz 8.2). Aus der Normalteilereigenschaft von N folgt, dal diese
Aquivalenzrelation sogar eine Kongruenzrelation ist: Aus a = a’, also
aN = ao’N, und b = ¥, also bN = b'N, folgt ja, wie wir im ersten Abschnitt
nachpriifen muBten, abN = a’b’N oder ab = a'b’.

Hier liegt die folgende Situation vor: Es ist ¢ = NuaN ubNu ... eine
Partition von G, und man versucht, auf {¥,aN,bN, ...} eine Verkniipfung
aN - bN = gN so einzufithren, daB} fiir alle x € aN und y € bN gilt: 2y egN;
dieser Versuch war auf der Faktorgruppe G/N gelungen. Allgemein gilt nun
der

Satz 3: Es sei S eine algebraische Struktur mit multiplikativ geschriebener
Verkniipfung und 8§ = K(a) U K(b)u K(c)u ... eine Zerlegung von S 1in
paarweise verschiedene Aquivalenzklassen mit Reprdsentanten a,b,c, ... € 8.
Genau dann definiert K(a) - K(b) = K(ab) eine Verkniipfung auf

{K(a), K(b), K(c), ...},

wenn die durch die Partition von S erklirte Aquivalenzrelation eine Kongruenaz-
relation auf S ist.

Beweis: Es sei zunichst die Aquivalenzrelation
a=a < Ka)= K@)

sogar eine Kongruenzrelation. Dann ist K(a) - K(b) = K(ab) eine Definition;
denn die rechte Seite dieser Gleichung ist unabhingig von der Wahl der Re-
prisentanten ¢ und b: Aus K(a) = K(a’), also a = a’, und K(b) = K(b"), also
b = ¥, folgt ab = a'd’, also K(ab) = K(a'd').

Definiert umgekehrt K(a) - K(b) = K(ab) eine Verkniipfung auf

{K(a), K(b), K(c), ...},
so folgt also aus K(a) = K(a') und K(b) = K(b') die Bezichung K(ab) = K(a'd’),

und das bedeutet: Aus @ = a’ und b = b’ folgt ab = a'd’. Damit ist Satz 3
bewiesen.

Nun betrachten wir den Spezialfall, daB S eine Gruppe ist.

Satz 4: Dann und nur dann ist auf einer Gruppe G eine Aquivalenzrelation
»=" sogar eine Kongruenzrelation, wenn die Aquivalenzklassen Nebenklassen
eines Normalteilers N von G sind; dabei besteht N genau aus allen g € G mit
g=e

Beweis: DaB die Nebenklassen eines Normalteilers N von @ eine Kon-
gruenzrelation auf G definieren, wurde bereits im Anschluf an die Definition
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der Kongruenzrelation gezeigt; wegen e € N besteht dabei N aus genau den-
jenigen Elementen g € G, fiir die g = e gilt. Es sei nun umgekehrt eine Kon-
gruenzrelation auf G vorgelegt und N die Menge aller g € G mit g = e. Dann
ist N eine Halbgruppe, und es ist e N. Aus ge N, also g = ¢, folgt mit
g1 = g1 noch e = g1, also g-1 € N. Also ist N sogar eine Untergruppe von
G. Fiir die Normalteilereigenschaft von N ist nun nach Satz 8.4 noch zu zeigen:
Aus g € N und a € G folgt aga~! = e. Das ergibt sich aber durch Multiplikation
der Kongruenzen a = a, g = ¢, a~! = a1. Wegen b-1 = b-1 bzw. b = b hat
man schlieBlich noch

a=b < bla=e < blacN < acbN,

und das heiBt, daB die Aquivalenzklassen die Nebenklassen von N sind.
Zusammen mit Satz 2 folgt daher in kurzer Ausdrucksweise der

Satz 5: Genau die Kongruenzrelationen auf der Gruppe G liefern die simt-
lichen homomorphen Bilder von G.

Man bekommt also alle homomorphen Bilder der Gruppe @, indem man auf
alle moglichen Arten Kongruenzrelationen auf G einfiihrt und aus den
entstehenden Partitionen @ = 4 uBu Cu ... von @ algebraische Struktu-
ren 8§ = {4, B, C, ...} bildet, auf denen dann wie folgt gerechnet wird:

AB = C < [{acdAundbeB) = abeC].

12.4 Wir sehen uns noch ein Beispiel zu Satz 3 an. Es sei » eine feste natiir-
liche Zahl und § die Teilmenge aller zu n teilerfremden Zahlen aus 3. Sind
nun a, b e 3 zu n teilerfremd, so ist es auch ab; damit wird S beziiglich der
Multiplikation aus 3 eine Halbgruppe. Ist ferner a € 3 zu » teilerfremd, so ist
es auch jedes @ + An, A € 3. Also besteht S aus der Vereinigung aller Rest-
klassen

K{a) = {a+ n: 23}

mit zu = teilerfremdem @; man nennt sie die primen Restklassen modulo n.
Fiir das Weitere halten wir uns an die folgende

Definition: Die Anzahl der natiirlichen Zahlen m mit 1 < m < n und
(m,n) = 1 set @p(n).

Danach ist also ¢(1) =1, ¢(2) = 1, ¢(3) = 2, ¢(4) = 2 und ¢(p) = p —1 fiir
Primzahlen p. In der Zahlentheorie ist @(n) unter dem Namen EULERsche
Funktion bekannt. Fiir unser festes » sei nun ¢(n) =r, und es seien
l=m<n<...<n =n die von p(n) gezihlten zu n teilerfremden
n; € N. Sind K(ng) die zugehorigen Restklassen modulo n, so wird demnach
S = Km)u K(ng)u ... u K(ny). Diese Partition definiert nach § 5 eine
Aquivalenzrelation auf S, und diese Aquivalenzrelation ist sogar eine Kon-
gruenzrelation: @ = b heiBt ja b = @ + Az mit einem 1e€3; ¢ = d heilit
d = ¢+ un mit einem pe3; es folgt bd = (a + An)(c + un) = ac + vn
mit einem » € 3, also ac = bd.
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Nach Satz 3 konnen wir also auf H = {K(m), K(ng), ..., K(ns)} durch
K(ny)K(nj) = K(nyny) eine Verkniipfung einfithren; sie ist assoziativ und kom-
mutativ wie die Verkniipfung auf S. Also ist H eine kommutative endliche
Halbgruppe mit dem Einselement K(n;). Wir zeigen, da H sogar eine Gruppe
ist. In H gilt ndmlich

he = hy = =y (h, 2,y € H);

dazu setze man h = K(n;), x = K(n;), y = K(n;) und beachte, daB aus
K(ngny) = K(nm;) die Teilbarkeitsbezichung n|nj(ns — ny) folgt, die wegen
(n,n;) = 1 und —n < ny— ny < n nur fir n; = n; moglich ist. Fiir festes
k1 € H gibt es also r verschiedene Produkte %z in H, so daB die Gleichung
hix = hy fiir alle &, hp € H 16sbar ist, und H ist eine Gruppe nach Satz 6.2.

Wir sind von der multiplikativen Halbgruppe S ausgegangen; sie wird durch
f(s) = K(s) relationstreu auf die Halbgruppe H abgebildet (s € S). Es zeigte
sich dariiber hinaus, dafl H eine abelsche Gruppe ist. Sie heiBt die prime
Restklassengruppe modulo n und wird fortan mit 9P, bezeichnet. Esist |P,|=¢(n).
Schreibt man einfach 9, = {m, ng, ..., #y}, 80 bekommt man das Ver-
kniipfungsergebnis von a, b € P, indem man die natiirlichen Zahlen @, b aus-
multipliziert und als Ergebnis den kleinsten positiven Rest ¢ nach Division
durch 7 notiert. Beispielsweise wiirde in P1a = {1, 5, 7, 11} fiir jedes z € P2
die Beziehung 22 = 1 gelten; die Gruppe P13 ist also isomorph zur Kleinschen
Vierergruppe.

Wir wollen eine Anwendung fiir das Rechnen in der primen Restklassengruppe

P, geben. Es sei a eine beliebige zu n teilerfremde ganze Zahl. Es ist a € 8,
also K(a) € Py. Satz 9.4 liefert nun

K(@)om = K(awm) = K(1).

Das heifit aber n|(a®® — 1). Dies ist der sogenannte Kleine FERMATsche Satz
der Zahlentheorie, den wir notieren wollen.

Satz 6: Es sei n eine natiirliche und a eine zu n teilerfremde ganze Zahl.
Dann gilt
nj(a¥m — 1),

Ist speziell » eine Primzahl p, so gilt fir jedes nicht durch p teilbare a € 3 die
Teilbarkeitsbeziehung p|(a?-1 — 1); man kann auch sagen: fiir alle a € 3 gilt
pl(@? — a).

Wegen Satz 6 nennt man den zugrundeliegenden Satz 9.4 auch den Kleinen
FERMATSchen Satz der Gruppentheorie.

Aufgabe 5: Es sei G die multiplikative Gruppe aller rationalen Zahlen

der Gestalt 3'5*7° (r, s, t € 3) und N der Normalteiler aller 3". Man beschreibe
G/N.

Aufgabe 6: Es sei G eine Gruppe, N c G ein Normalteiler, U c G eine
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Untergruppe, N n U = {e}, und die einzige Untergruppe H von G, die N
und U umfaBt, sei @ selbst. Man zeige: Dann gilt G/N ~ U.

Aufgabe 7: Es sei G die Menge aller durch f(z) = ax + b,aeR, beR,
a = 0, definierten Abbildungen f: ® - R von R auf sich. Ferner seien U; c G
die Teilmenge aller f € G mit @ = 1 und Uy c G die Teilmenge aller f € G mit
b = 0. Zeige:
a) U; und U; sind Untergruppen der Gruppe G. Ferner ist U; Normalteiler
von G, aber nicht Us,.
b) U ist isomorph zur multiplikativen Gruppe R (vgl. § 6.2).
¢) Esgilt G/U, ~ U,.

§ 13 Einbettung von Halbgruppen in Gruppen

13.1 Wir gehen aus von der folgenden

Definition: Eine Halbgruppe H heift regulir, wenn fiir alle Elemente
a, z, y € H die Kiirzungsregeln

ar = ay => =«
ra =ya => 2z

Y
y

i

gelten.

Insbesondere ist also jede Gruppe eine regulire Halbgruppe.

Es sei nun eine Halbgruppe H vorgelegt, und wir stellen die folgende Frage:
Gibt es eine Gruppe @G, die H umfafit ?

Wenn eine solche Gruppe ¢ existiert, so gelten in ihr die Kiirzungsregeln; die
Halbgruppe H c @ muB dann also notwendig reguldr sein. Aber man kann
Beispiele konstruieren, die zeigen, dal diese notwendige Voraussetzung iiber
H nicht auch schon hinreichend ist: Nicht jede regulire Halbgruppe H laBt
sich in eine Gruppe einbetten. Dagegen gilt der

Satz 1: Jede kommutative reguldre Halbgruppe H lift sich in eine eindeutig
bestimmite kleinste Obergruppe Q, die Quotientengruppe von H, einbetten. Das
heift: Zu einer vorgegebenen kommutativen reguliren Halbgruppe H gibt es eine
Gruppe Q mit den folgenden Eigenschaften.

Iy @ > H.

(2) Ist G eine Gruppe, die H umfaft, G > H, so gilt G > @ > H.

(3) Ist Q' eine Gruppe, die an Stelle von Q die Bedingungen (1) und (2) erfillt,
soqilt Q = Q.

Beweis: Angenommen, die Existenz einer Gruppe @ mit den Eigenschaf-
ten (1) und (2) sei bereits bewiesen. Dann gilt sicher die Eindeutigkeitsaussage
(3). Denn die Eigenschaften (1), (2) von @ liefern fiir G = @' die Beziehung
@' 5 @ > H; analog folgt aus den Eigenschaften (1), (2) von @’ fiir G = @ die
Beziehung @ > @' 5 H. Aus beidem zusammen bekommen wir @ = Q. Zu
zeigen bleibt also: Ist H eine kommutative regulire Halbgruppe, so gibt es
eine Gruppe @ mit den Eigenschaften (1) und (2).
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Um Anhaltspunkte fiir unser weiteres Vorgehen zu bekommen, nehmen wir
an, es gabe eine Gruppe G' > H. In G ist dann die Teilmenge

U = {y:ye@,yb=a,a,be H}

der Losungen aller Gleichungen yb = a mit Elementen a, b € H enthalten. Da
zu b € H ein eindeutig bestimmtes Inverses b-1 € G existiert, kénnen wir auch
schreiben:

Ug = {y:y =ab1,a,bec H}.

Es ist leicht zu sehen, daB Ug eine Untergruppe von G ist: Wegen H = £
gibt es ein @ € H, und es folgt ae~1 = ¢ € Ug; also ist Ug nicht leer, und nach
Satz 8.1 miissen wir noch zeigen: Sind y; = ab-1 und y; = cd-! Elemente aus
Ug (a,b,¢c,d e H),so ist auch y1ys! € Ug. Fiir Elemente ¢, 2 € H gilt nun in
G nach Voraussetzung gh = hg; multipliziert man hierin beide Seiten links
und rechts mit 4-1 € G, so folgt

4) h-lg =gh-1 (g, heH).

Anwendung dieser Rechenregel ergibt aber y,yz! = ab-1dc-1 = (ad)(ch)-! € Ug.
Da jedes h € H wegen h = h2h-1 auch in Ug liegt, kénnen wir also sagen: Ug
ist eine Untergruppe von G mit G' > Ug > H. Ist ferner U eine Untergruppe
von @, die H umfaBt, so muBl auch sie die Losungen aller Gleichungen yb = «a
mit a, b € H enthalten, und das heit U 5> Ug. In @ ist also Ug die kleinste
Untergruppe, die H umfaQt.

Wiren wir von einer anderen Gruppe G* > H ausgegangen, so wire ent-
sprechend

Ugr = {y*: y* € G* y*b =a, a,b, e H}

die kleinste Untergruppe von G* geworden, die H umfaft. Es ist klar, dag
beide Gruppen sich nur durch die Schreibweise voneinander unterscheiden,
Ug =~ Ug+, und deshalb nicht als voneinander verschieden angesehen zu
werden brauchen. Dann kénnen wir aber sagen: Ug ist die zu konstruierende
Gruppe Q. Wiilten wir ihre Existenz, so wire unser Satz bewiesen.

Um diesen Existenznachweis anschlieBend fiihren zu kénnen, nehmen wir fiir
den Augenblick weiterhin an, es gibe wenigstens die eine Gruppe G' 5> H, und
betrachten das Rechnenin Ug. Wannsindy; = ab-1e€ Ugundys = cd1e Uqg
(a, b, ¢, d € H) einander gleich ? Man bekommt

(5) abl = ¢cd! <« ad = bc;

denn die linke Seite geht durch Rechtsmultiplikation mit bd in die rechte und
diese durch Rechtsmultiplikation mit 5-1d-! in die linke iiber, beides auf Grund
von (4). SchlieBlich wird die Verkniipfung inUg durch

(6) (@b7)(cd-1) = (ac)(bd)~*

beschrieben, wobei neben der Kommutativitit von H wieder (4) benutzt wird.
Nun sei M die Menge H2 aller Paare (a, b) mit a, b € H. Wihrend wir noch nicht
wissen, ob die Gruppe @ = Ug existiert, wird die Existenz des cartesischen
Produkts M = H2 in der Mengenlehre axiomatisch verlangt (§ 1.3), und wir
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kénnen nun versuchen,  aus M zu konstruieren. Dabei lassen wir uns von
der Vorstellung leiten, dal aus dem Paar (a, b) der Quotient ab-1 werden soll.
Paare, die zu gleichen Quotienten fiihren, fassen wir deshalb zunichst zu
Aquivalenzklassen zusammen und definieren nach dem Vorbild (5)

(5" @b) ~ (c,d) < ad = be.

DaB dadurch auf M eine Aquivalenzrelation erklért ist, priift man unter Be-
nutzung der Kommutativitit und der Regularitdt von H leicht nach. Aus
(@,b) ~ (¢, d) und (¢, d) ~ (e, f) folgt zum Beispiel adf = bcf = bde oder
af = be, also (a, b) ~ (e, f).

AuBerdem fithren wir auf M nach dem Vorbild (6) die Multiplikation

(6) (@, b) - (¢, d) = (ac, bd)

ein. Da wir mit den Aquivalenzklassen von M rechnen wollen (jede von ihnen
reprasentiert ja einen festen Quotienten von Elementen aus H), zeigen wir:
Die Aquivalenzrelation auf M ist eine Kongruenzrelation. Aus (a, b) ~ (c,d)
und (e, f) ~ (g, k), also ad = bc und eh = fg, folgt in der Tat aedh = bfcg
oder (ae, bf) ~ (cg, dh).

Es sei nun A die Menge der Kongruenzklassen von M und [a, b] die Klasse von
(a, b). Wir erwarten, daBl 4 ein isomorphes Modell von @ ist. Zunichst wird
nach Satz 12.3 durch [a, b] - [¢, d] = [ac, bd] eine Multiplikation auf 4 erklart.
Sie ist assoziativ, weil die Multiplikation in H assoziativ ist. Wiahrend M keine
Gruppe zu sein brauchte, ist 4 eine Gruppe: Wegen H == £ gibt es ein h € H,
und [k, k] € A ist Einselement von 4; es wird ja [A, 4] - {a, b] = (ha, kb]
= [a, b], weil (ha, hb) ~ (@, b) ist; ferner ist [b, @] das Inverse von [a, b],
denn es gilt [b, a] - [a, b] = [ba, ab] = [ab, ab] = [k, k].

Jetzt betrachten wir die Teilmenge 7 c A aller Klassen der Gestalt [ak, k]
mit @ € H und dem festen € H; wir wollen zeigen: H ~ T, wobei wir uns den
Isomorphiebegriff auf Halbgruppen iibertragen denken. Durch ¢(a) = [ah, &]
wird eine Abbildung ¢ von H auf T erklirt. Diese Abbildung ist eineindeutig,
da aus p(a) = @(b) oder [ah, k] = [bh, k] oder (ak, ) ~ (bh, k) folgt: ah? = bh2,
also @ = b. SchlieBlich ist ¢ auch relationstreu,

plab) = [abh, k] = [ak, k] - [bh, k] = g(a)p(b),
also ein Isomorphismus, und es ist richtig H ~ 7.

Die Teilstruktur 7' c 4 der Gruppe A unterscheidet sich also nur durch die
Schreibweise von H. Ersetzt man daher in 4 ebenso wie in der zugehérigen
Verkniipfungstafel jedes t € T' durch sein Urbild ¢-1(¢) € H, so wird lediglich
die Bezeichnung der Elemente von 4 geindert. Die Ersetzung von T' durch H
bewirkt, daB aus 4 eine isomorphe Gruppe @ entsteht, die H umfaf3t, und wir
zeigen zuletzt, dafl @ mit der zu konstruierenden Gruppe iibereinstimmt.

In A war [k, bh] das Inverse von [bk, k], das in @ durch b € H ersetzt ist. In
@ gilt also [h, bh] = b-1. Ein belicbiges Element [a, b] € A hat die Gestalt
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(@, b] = [ah, k] - [k, bR]; als Element von @ wird daraus einfach ab-1. Es
ist also
Q ={y:y=ablabeH)

die Gruppe, deren Existenz wir nachzuweisen hatten, und damit ist Satz 1
bewiesen.

13.2 Das im Beweis von Satz 1 durchgefiihrte Konstruktionsverfahren ist fiir
dhnliche Situationen typisch und wird uns wieder begegnen; wir kénnen uns
dann kiirzer fassen. Etwas suggestiver hitte man vielleicht die Kongruenz-
klassen [a, b] wegen der multiplikativen Schreibweise und der Kommutativitédt

von H mit %, bei additiver Schreibweise von H mit (@ — b) bezeichnen kénnen.

Spezialisieren wir H zu N beziiglich der Addition, so sind wegen Satz 2.1 die
Voraussetzungen von Satz 1 erfiillt. Es wird dann @ die additive Gruppe von
3, deren Existenz und Widerspruchsfreiheit damit auf die Existenz der kom-
mutativen regularen Halbgruppe 0t (beziiglich der Addition) zuriickgefithrt
sind. Wir haben 3 aus N konstruzert.

Aufgabe 1: Jede endliche reguldre Halbgruppe ist eine Gruppe. Beweis ?

§ 14 Spezielle Ergebnisse

14.1 Wir kehren noch einmal zu unseren Uberlegungen aus § 12.1 zuriick und
betrachten einen Homomorphismus f: G - G* einer Gruppe G auf die Gruppe
G*; der Kern des Homomorphismus sei K. Dabei kniipfen wir an eine Fest-
stellung aus Satz 12.1 an: Ist U eine Untergruppe von G, so ist f(U) eine Unter-
gruppe von G¥*.

Zunichst stellen wir umgekehrt fest: Ist U* eine Untergruppe von G*, so ist
auch die Urbildmenge U = f-1(U*) eine Untergruppe von G. Das ist leicht
zu sehen. Sind e, e* die Einselemente von G, G*, so ist e* = f(e) € U*, also
e U. Aus u,ve U folgt f(uv) = f(u)f(v) € U*, also wv € U. Und das Inverse
#~1 von u € U geht vermoge f in das Inverse von f(u) € U*, also ein Element
von U*, iiber und liegt damit selbst in U.

Zusitzlich bemerken wir folgendes. Jede Untergruppe U* von G* enthélt das
Einselement e*; die Menge der Urbilder von e* ist definitionsgemdfl K. Die
Urbildgruppe U = f-}(U*) von U* ist daher eine Untergruppe von G, die K
umfaft: K cU c@.

Unter der Einwirkung von f werden nun aus & und K die Gruppen G* und
{e*}, und in dem nachstehenden Satz wird ausgesagt: Die Gruppen zwischen
G und K entsprechen eineindeutig den Gruppen zwischen G* und {e*}, also
den Untergruppen von G*.

Satz 1: Es ses f: G - G* ein Gruppenhomomorphismus von G auf G* mit
dem Kern K, ferner M die Menge aller Untergruppen U von G mit K c U c G
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und weiterhin M* die Menge aller Untergruppen U* von G*. Dann definiert
o(U) = f(U) eine bijektive Abbildung ¢: M — M*, und es ist o~ X{(U*) = f-1U*).

Beweis: Dall durch ¢(U) = f(U) eine Abbildung von M in M* erklart
ist, hatten wir bereits gesehen; es war ja f(U) ein Element von M*. Wir zeigen
als Nachstes, dafl diese Abbildung ¢: M - M* surjektiv ist. Dazu sei U* ein
beliebiges Element aus M*. Wie wir bereits wissen, ist f-1(U*) € M ; wir be-
haupten, dal f-1(U*) unter der Einwirkung von ¢ in U* iibergeht; wenn das
so ist, tritt jedes U* € M* als Bild auf, und ¢ ist surjektiv. Zu zeigen ist also

f(-YU*) = U*

Sicher gilt f(f-1(U*)) c U* (vgl. Aufgabe 3.1, Aussage b)); da aber f: G - G*
surjektiv ist, gilt auch f(f-1(U*)) > U*, und beides zusammen liefert die be-
hauptete Gleichheit.

Weiter haben wir nachzuweisen, daBl die Abbildung ¢: M — M* injektiv ist.
Dazu zeigen wir: Fir jedes U € M gilt

FUfU) = U.

Angenommen, dies ist richtig; gilt dann f(U;) = f(Us) fiir Elemente U3, Uz € M,
so folgt f-Yf(U1)) = f2f(Uz)), also Uy = Uz, und das heiBt: ¢ ist injektiv.
Die Enthaltenseinsbeziehung f-1(f(U)) > U ist wieder trivial (Aufgabe 3.1,
Aussage a)); also bleibt f-1(f(U)) c U zu zeigen. Es sei a € f-1(f(U)). Das be-
deutet: Es gibt ein € U mit f(u) = f(a). Da f ein Homomorphismus ist, folgt
durch Multiplikation mit f(u1) die Beziehung flau-l) = e¥*, also au-le K
und erst recht au—l € U oder a € U. Jedes a € f-1{f(U)) liegt also auch in U,
und es gilt insgesamt f-1(f(U)) = U.

Damit ist gezeigt: Die Abbildung ¢: M — M* ist bijektiv. Die letzte Behaup-
tung @ }(U*) = f-YU*) besagt dasselbe wie ¢(f-1(U*)) = U* oder
f(f-1(U*)) = U*, und das haben wir bereits gesehen. Damit ist Satz 1 be-
wiesen.

In Ergidnzung zu Satz 1 gilt noch der

Satz 2: Es sei f: G — G* ein Gruppenhomomorphismus von G auf G* mit
dem Kern K, ferner M die Menge aller Normalteiler N von G mit Kc N c @
und weiterhin M* die Menge aller Normalteiler N* von G*. Dann definiert
@(N) = f(N) eine bijektive Abbildung @: M — M*, und es ist p~L(N*) = f-1(N*).

Beweis: Uber Satz 1 hinaus bleibt zu zeigen, daB mit N c & auch (V)
und mit N* c G* auch f-1(N*) Normalteiler ist. Es sei also zundchst N ein
Normalteiler von @. Da sich jedes Element g* € G* in der Gestalt f(g) mit
einem g € @ schreiben lagt, wirdg*f(N)g*~1 = f(g)f(N)f(g™) = f(gNg~1) = [(N);
mit N ist also auch f(N) c G* Normalteiler. Ist umgekehrt N* ein Normal-
teiler von G* und g € G, so wird gf-}(N*)g-1 durch f auf N* abgebildet; also ist
gf~YN*)g-1 c f~YN*) fiir jedes g € G und damit nach Satz 8.4 auch f1(N*) c @
Normalteiler.

Aufgabel: Esseien K und N Normalteiler der Gruppe G mit K c N c G.
Dann gilt
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G/N ~ (G|K)/(N|K).

(Sogenannter zweiter 1somorphiesatz.) Beweis ?

14.2 Die folgenden Ergebnisse gehoren zu den elementaren Hilfsmitteln bei
vielen gruppentheoretischen Untersuchungen.

Satz 3: Ist U eine Untergruppe der Gruppe G und g € G, so ist gUg-1 eine
zu U isomorphe Untergruppe von G.

Beweis: Durch f(u) = gug—? wird eine surjektive Abbildung f: U - gUg-1
definiert. Diese Abbildung ist auch injektiv; aus guig—1 = guog-1 folgt ja
1 = ug. Ferner gilt

furug) = guiugg™ = (guig~)gueg™?) = fwa)f(ua);

das Produkt von Elementen aus gUg-1 liegt also wieder in gUg-1, und f wird
insgesamt ein Isomorphismus von U auf gUg-1. Damit ist von selbst auch
gUg-1 eine Gruppe.

Genau dann, wenn U Normalteiler von G ist, gilt gUg-! = U fir alle g G;
andernfalls gewinnt man auf diese Weise aus U weitere Untergruppen von G.

Definition: Zwei Untergruppen U, V einer Gruppe G heifien konjugiert,
wenn ein g € G mit V= gUg1 existiert. Zwei Elemente a, b aus G heifen kon-
jugiert, wenn ein g € G mit b = gag~1 existiert.

Man priift sofort nach, daB in beiden Fillen Aquivalenzrelationen definiert
werden. Die Menge aller Untergruppen von G zerféllt also in Klassen konju-
gierter, unter sich isomorpher Untergruppen; die Menge aller Elemente von
G 148t sich aufteilen in Klassen konjugierter Elemente. Derartige Aufteilungen
spielen bei gruppentheoretischen Untersuchungen eine grofie Rolle.
Konjugierte Gruppenelemente treten auch vielfach bei der Untersuchung von
Abbildungen, etwa in der Matrizentheorie, auf. Ist F eine Transformations-
gruppe der Menge M, ferner f ein Element von F und f(m) = m¥*, so kann man
sich fiir jedes m € M die Punkte m, m* durch ¢ € F in ¢(m), g(m*) transfor-
miert denken und nach einer Abbildung g € F fragen, die ¢(m) fiir jedes m € M
in @(m*) iberfithrt. Dies leistet gerade das ¢-Konjugierte g = ¢fp~1 von f.

Aufgabe 2: Es sei U eine Untergruppe der Gruppe G und D der Durch-
schnitt aller Konjugierten von U. Zeige: D ist ein Normalteiler von G.

14.3 Eine Gruppe G sei vorgelegt ; es sei g ein Element und U eine Untergruppe
von G. Wir fragen: Wie viele Konjugierte hat g in G, wie viele konjugierte
Untergruppen gibt es zu U ? Die Antworten, die wir finden werden, sind ein-
fach und werden oft verwandt.

Definition: Es set g ein Element der Gruppe G und M die Menge aller
m € G' mit mgm-1 = g oder, gleichwertig, mg = gm. Dann heifft M der Normali-
sator von ¢ € G.
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In dem folgenden Satz ist es vor allem die am SchluB getroffene Teilbarkeits-
aussage, die bei Anwendungen immer wieder eine Rolle spielt.

Satz 4: Es sei G eine Gruppe und M der Normalisator von g € Q. Dann 1ist
M etne Untergruppe von G, und die Anzahl der Konjugierten.von g ist gleich
dem Index von M in G. Ist speziell G endlich, so ist die Anzahl der Konjugier-
ten von g € G ein Teiler von |G|.

Beweis: Es ist ee M; aus my, mg e M folgt mymag = migme = gmimy,
also myma€ M,und aus me M, also gm = mg, folgt durch beiderseitige Multipli-
kation mit m-1 von links und von rechts m-1lg = gm-1, also m~t € M. Demnach
ist M eine Untergruppe von G. Liefern nun z, y € ¢ dasselbe Konjugierte von
g, ist also zgx—1 = ygy-1, so folgt ylxg = gylx, also ylx e M oder x e yM;
es liegen dann also x und y in derselben Linksnebenklasse von M. Umgekehrt:
Zwei Elemente hm; und kmg derselben Linksnebenklasse AM liefern dasselbe
Konjugierte kgh~1 von g; beispielsweise ist

(hm1)g(hma) ™t = kmagmilht = hgmymith~t = hgh-1.

Damit ist gezeigt: Die Anzahl der Konjugierten von g ist gleich dem Index
von M in @. Der Rest der Behauptung folgt aus Satz 8:3.

Definition: Eine endliche Gruppe G heifit p-Gruppe, wenn |G| eine Potenz
der Primzahl p ist.
Eine typische Anwendung von Satz 4 ist die Aussage der

Aufgabe 3: Es sei G eine p-Gruppe und Z ihr Zentrum. Dann ist Z = {e}.
Beweis ?

Wir nehmen nun die zweite oben gestellte Frage in Angriff. Wieder ist es vor
allem die Teilbarkeitsaussage von Satz 5, die in den Anwendungen von In-
teresse ist.

Definition: Es set U eine Unitergruppe der Gruppe G und M die Menge aller
meG mit mUm-1= U oder, gleichwertig, mU = Um. Dann heifit M der
Normalisator von U c G.

Satz 5: Es sei G eine Gruppe und U eine Untergruppe von G. Dann ist der
Normalisator M von U eine Untergruppe von G, und z2war ist M die umfassendste
Untergruppe von G, in der U Normalteiler ist. Die Anzahl der Konjugierten von
U st gleich dem Index von M in G. Ist speziell G endlick, so ist die Anzahl der
Konjugierten von U c G ein Teiler von |G|.

Beweis: Wie beim Beweis von Satz 4 zeigt man, dal M eine Unter-
gruppe von @ ist. Nach Definition von M gilt U c M, wobei U Normalteiler
von M ist; ebenfalls nach Definition von M gilt gU = Ug fiir jedes ge @,
g € M. Also ist M die umfassendste Untergruppe von G, in der U Normalteiler
ist. Die restlichen Behauptungen des Satzes ergeben sich wieder wie beim
Beweis von Satz 4.
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Von besonderem Interesse sind diejenigen Gruppen, die auBer {e} und sich
selbst keinen Normalteiler enthalten. Sie heiflen einfache Gruppen. Satz 5 kann
etwa angewandt werden bei der

Aufgabe 4: Es seien p und ¢ nicht notwendig verschiedene Primzahlen
und @ eine Gruppe der Ordnung pg. Dann ist G nicht einfach. Beweis ?

14.4 Sind a, b Elemente einer Gruppe @, so wird die Gleichung abx = ba durch
2 = b-la-1ba und die Gleichung yab = ba durch y = bab-la-1geldst. Die Fak-
toren z, y bewirken, da3 aus dem Produkt ab das Produkt ba wird. Elemente
der Gestalt ghg-1h-1 aus G (g, b € G) nennt man deshalb Kommutatoren.

Definition: Die von allen Kommutatoren erzeugte Untergruppe K der
Gruppe G heifit die Kommutatorgruppe von G.

Man beachte, dafl die Kommutatorgruppe K c @ von den sémtlichen Kommu-
tatoren nur erzeugt wird; die Kommutatoren fiir sich bilden im allgemeinen
keine Gruppe, weil das Produkt zweier Kommutatoren nicht wieder ein
Kommutator sein muf.

Die Bedeutung der Kommutatorgruppe beruht auf dem

Satz 6: Die Kommutatorgruppe K einer Gruppe G ist der kleinste Normal-
tesler mit abelscher Faktorgruppe: Es ist G|K eine abelsche Gruppe, und wenn
die Faktorgruppe G|N abelsch ist, so ist N ein Normalteiler von G, der K wmfapt.
Es ist also K der Durchschnitt aller Normalteiler N von G mit abelscher Falktor-

gruppe G/N.

Beweis: Wir zeigen zuniéchst, daB die Untergruppe K c G sogar Normal-
teiler ist. Dazu beginnen wir mit zwei Bemerkungen. Ist einmal ¢ = aba-1b-1
ein Kommutator, so ist es auch ¢-1 = bab—la-1; Elemente aus K haben dem-
nach die Gestalt k¥ = ¢y ¢z ... ¢y mit gewissen Kommutatoren c;. Ist ferner
¢ = aba-1b-1 ein Kommutator und ¢ ein Element aus G, so ist auch

gegt = (gag~1)(gbg—1)ga-tg-t)gblg1) = (gag~1)(gbg1)(gag~1)-L(gbg~1)~1

ein Kommutator. Fiir jedes ¥ = ¢1¢2 ... ¢, € K und jedes g e G wird also
auch

gkg~t = (gcrg)ge2g) ... (gerg™))

wieder ein Element von K, und damit ist K nach Satz 8.4 ein Normalteiler
von G.

Nun zeigen wir, daB die Faktorgruppe G/K abelsch ist. Man wihle zwei Ele-
mente aK, bK aus G/K und betrachte den Kommutator ¢ = b-'a-1ba; da er
in K liegt, konnen wir statt K auch cK schreiben und bekommen damit

aK -bK = abK = abcK = baK = bK -akK,;

die Faktorgruppe G/K ist also abelsch.

Zuletzt bleibt zu zeigen: Ist G/N abelsch und ¢ = aba-1b-1 ein Kommutator
aus G, so liegt ¢ in N. Aus der Voraussetzung folgt aber gerade a-1b-1N
= b-1la-IN oder aba-1b-1N = N, also ¢ € N. Damit ist Satz 6 bewiesen.
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Erginzend zu Satz 6 gilt noch die Aussage der

Aufgabe 5: Es sei K die Kommutatorgruppe der Gruppe G und H eine
Untergruppe von G mit K ¢ H c G. Dann ist H ein Normalteiler von G' mit
abelscher Faktorgruppe G/H. Beweis ?

§ 15 Automorphismen von Gruppen

Definition: Ein Isomorphismus f einer Gruppe G auf sich heifit Automor-
phismus von Q.

Die identische Abbildung liefert immer einen Automorphismus. Die durch
fla + b) = a — bi vermittelte Abbildung der additiven Gruppe von € auf
sich (a, b € R) ist bijektiv und relationstreu, liefert also einen Automorphismus
der additiven Gruppe von €. Die Gruppe 34 = {e, a, a?, a3} besitzt auBer der
Identitdt noch den durch f(e) = e, fla) = a3, f(a?) = a?, f(a3) = a definierten
Automorphismus. Die durch f(a) = 2a erklirte Abbildung f: 3 - 3 der addi-
tiven Gruppe von 3 in sich ist ein Isomorphismus, aber kein Automorphismus,
da sie nicht surjektiv ist. Automorphismen decken gewisse Symmetrieeigen-
schaften von Gruppen auf.

Man betrachte eine Gruppe G, wihle ein festes g € G und definiere ¢4: G > G
durch ¢@4(x) = gxg~1. Wie schon der Beweis von Satz 14.3 zeigte, ist die Ab-
bildung ¢, bijektiv und relationstreu, vermittelt also einen Automorphismus
von G. Derartige Automorphismen heiBen innere, alle anderen dufere Auto-
morphismen von G. Ein nicht identischer Automorphismus einer abelschen
Gruppe ist also ein dulBlerer Automorphismus. Genau die Normalteiler gehen
bei allen inneren Automorphismen einer Gruppe G in sich iiber (wenn auch
nicht notwendig elementweise); daher rithrt auch die iltere Bezeichnungsweise
,invariante Untergruppe‘’.

Die beiden folgenden Sétze sind ziemlich selbstverstdndlich.

Satz 1: Die Menge A aller Automorphismen einer Gruppe G ist eine Gruppe.
Beweis: Es seien f,g Elemente aus 4. Dann ist auch die Abbildung
gf: @ —» G bijektiv und, wie wir bereits aus § 12.1 wissen, relationstreu: Fiir
a,beq gilt
gf(ab) = g(f(ab)) = g(f(@){(b)) = gf(a)gf(b).

Aus f, g € 4 folgt also gf € A. Die Multiplikation in A ist assoziativ nach Satz
3.1. Die identische Abbildung liegt in A. Ist schlieBlich f € 4, so wird f-1 bi-
jektiv, und es gilt (a, b € G)

f@b) = A Ha)ff10) = fHAHQf0) = fHa)(b),
also auch f-1e 4.

Satz 2: Die Menge B aller inneren Automorphismen einer Gruppe G ist
eine Untergruppe der Automorphismengruppe A von G.

5 Hornfeck, Algebra
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Beweis: Definitionsgemaf ist B die Menge aller durch gg(x) = gzg-1
definierten Automorphismen ¢z: G - Q. Dabei ist ¢, e B die Identitit. Es
gilt ggen(x) = ghah-1g-1 = @gp(x) fir alle x € G, also pupp = @gn € B. SchlieB-
lich i;t wegen @@, = g auch das Inverse ¢;1 = ¢, Yon g, ein Element
von B.

Aufgabe 1: Es sei G eine Gruppe, 4 deren Automorphismengruppe, B
die Gruppe der inneren Automorphismen von G' und Z das Zentrum von G.
Man zeige:
a) B ist Normalteiler von 4.
b) G/Z ~ B.

§ 16* Operation einer Gruppe auf einer Menge

Es sei M eine Menge mit Elementen «, §,y, ... und G eine multiplikativ ge-
schriebene Gruppe mit Elementen a, b, ¢, .... Die folgende Definition ist so
eingerichtet, dafl man sich unter G eine Transformationsgruppe von M vor-
stellen kann.

Definition: Wir sagen, die Gruppe G operiert auf der Menge M, wenn eine
Komposition o von M mit G definiert tst, die die folgenden zwei Bedingungen
erfullt.

(1) Fiirallea, b € G und alle x € M giltdas Assoztativgesetza o (bo «) = (ab) o a.
(2) Firalleac M gilteoa = a.

Beispiel 1. Essei M = Gundaoax = aa.

Beispiel 2. Es sei M die Menge aller Teilmengen 7' c G und a0 T = aT
=pr {at:teT}.

Beispiel 3. Es sei k eine natiirliche Zahl, M die Menge aller Teilmengen
T c G mit |T| = k und wieder ao T = aT. Wegen |aT| = |T| = k ist auch
in diesem Fall a 0 T' € M, und wie in Beispiel 2 operiert G auf M.

Beispiel 4. Es sei M = ' und a 0o « = axa-l. Dann operiert G auf M = G,
denn (2) ist erfiillt und wegen abab—la-1 = (ab)x(ab)-! auch (1).

Beispiel 5. Essei M die Menge aller Untergruppen U von Gund aocU = aUa-1.
Nach Satz 14.3 ist auch aUa1e M ; durchao U = aUa"! ist also eine Kom-
position von M mit G erklart. Wie im vorigen Beispiel sind die Forderungen
(1) und (2) erfiilit.

Beispiel 6. Es sei k eine natiirliche Zahl, M die Menge aller Untergruppen
U von @ mit {U| = k und wieder a 0o U = aUa-1. Wieder nach Satz 14.3
gilt auch |ao U| = |U| = k, also @ o U € M. Auch hier liegt also eine Kom-
position von M mit @ vor, und G operiert auf M.

Wenn die Gruppe G auf der Menge M operiert, so 1iBt sich auf M in folgender
Weise eine Aquivalenzrelation einfilhren: Genau dann ist « ~ f, wenn ein
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ac@ mit B = aoa existiert. Denn nach (2) ist « ~ a; aus « ~ 8, also
B = aox mit einem ae@, folgt a-lof = a-lo(aocx) = (a~la)ox = eoax = « oder
B~a;undaus a ~ fund f ~ p,also f = aoaund y = bo g mit a, beG,
folgty = bo(aoa) = (ba)o «, also & ~ y.

Definition: Die Aquivalenzklassen von M heifen Transitivititsgebiete oder
Bahnen. Die Klasse K(a) von « € M heifit die Bahn von o und |K(«x)| die Linge
der Bahn von «.

Wir betrachten nun ein festes « € M und die Menge S = {z:2e€ @, z0ax = a}
aller derjenigen Elemente von G, die « festlassen. Man sieht sofort, dafl S eine
Untergruppe von G ist: Ausa, be S folgt (abyoa = ao(boa) = aoa = g,
also aheS; es gilt eS8, und aus a€f, also aoa = «, folgt auch
aloa = alo(@aoa) = (@la)ox = eoa =a oder a1 € 8. Die Gruppe
S heifit die Stabilitdtsuntergruppe von a. Etwa im obigen Beispiel 5 ist die
Stabilitdtsuntergruppe von U € M gerade der Normalisator von U in G. Dem
Satz 14.5 entspricht jetzt der

Satz 1: Die Gruppe G operiere auf der Menge M ; es sei a ein Element aus
M und S c G seine Stabilititsuntergruppe. Dann ist die Linge |K(a)| der Bahn
von « gleich dem Index von S in G. Ist speziell G endlich, so ist |[K(x)| ein Teiler
von |G|.

Beweis: Ist § € K(a), so gibt es ein a € G mit § = a o «, und fiir jedes
beaS,alsob = asmiteinem s € S, gilt ebenfalls boa = (as)oax = ao(soa) = aoa=4.
Es gibt also hochstens so viele Elemente in K(«) wie Nebenklassen von 8 in
G. Unser Satz ist bewiesen, wenn wir noch zeigen, dafl aus a,be G und
aoa = bo afolgt: Die Elemente a, b € G liegen in derselben Nebenklasse von
Sin G. Ausaoa = bo « ergibt sich in der Tat 1o (aoa) = alo(boa),
also &« = (a~1b) o « oder a-1b € 8 und damit b € aS.

§ 17* Die SyLowschen Sitze

Im folgenden wird eine endliche Gruppe der Ordnung % betrachtet; fiir den
Primteiler p von n gelte pfin, aber p*+1tn. Die drei SyLowschen Sitze machen
Aussagen iiber Existenz und Eigenschaften von Untergruppen der Ordnungen
p% s < r, und deren Anzahl. Unsere Beweise stiitzen sich auf die Uberlegungen
in § 16 und benutzen einen einfachen zahlentheoretischen

Hilfssatz: Ist unter den angegebenen Voraussetzungenn = ptm, so hat der
Binomialkoeffizient (;’) die Gestalt pr—*ml mit ptm und einer natirlichen Zahl
1, die bei Division durch p den Rest Eins lipt: 1 = Ap + 1, Ae3.

Beweis: Man schreibe
(n) _ n—1)n—2)... (n—(p*—1))

Pl ppt—1)p—2) ... (pP—(p*—1))

(n—-l
pf—Gm

pa__l) = pr-sml;

be
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dann bleibt zu zeigen, daB die natiirliche Zahl ! die Gestalt ip + 1 hat. In
rtpm—v
v=1 P*—v

setzen wir » = pely, mit 0 < p = o(r) < ¢ und (p, &) =1 und kiirzen im
v-ten Faktor durch pe®):

l =

_ Pl prem —t,

y=1 ps_" - tr

Dabei sind s — ¢ und erst recht » — ¢ nie Null; Ausmultiplikation ergibt also
fiir  eine Zahl der Gestalt

_ Ap+a
" Bp+a

mit 4, Be 3 und pta, da p kein ¢, teilt. Es folgt Ap 4 @ = Bpl + al oder
a(l — 1) = p(4 — IB), und p teilt die linke Seite, also I — 1.

.1
(@ = (—1)p1 zi;Il t)

Satz 1: Es sei G eine Gruppe der Ordnung n und n = prm, wobet die Prim-
zahl p in m nicht aufgehe. Dann besitzt G fiir jedes s€ 3, 0 < s < r, wenigstens
eine Untergruppe der Ordnung ps.

Beweis (WIELANDT): Bei vorgelegtem s sei M die Menge aller Teilmengen
T c G mit |T'| = p®, und G operiere auf M vermége goT' = g7 (§ 16, Bei-
spiel 3). Wir werden eine gewisse Stabilitdtsuntergruppe U von @ finden, die
genau p° Elemente hat.

Zunichst gilt bekanntlich (M| = (;) . Somit kann nicht jede Bahn von M
eine durch pr-s+! teilbare Linge haben, weil die Summe aller Bahnldngen
gleich | M|, aber (M| = (;8) auf Grund des Hilfssatzes nicht durch pr-s+1 teil-

bar ist. Es gibt also eine Bahn K ¢ M, deren Lange |K| den Primteiler p hoch-
stens in der Vielfachheit r — s enthélt; nach Satz 16.1 ist |K| ein Teiler von
n;-aus beidem zusammen folgt [K| < pr—*m.

Wir betrachten nun ein Element 7' dieser Bahn K ; die Stabilitatsuntergruppe
von T sei U c@G. Nach Satz 16.1 gilt dann ind U = |K| < p"*m; da
|U|-ind U = n = p'm ist, liefert das |U| = p3.

Andrerseits liegt nach Definition von U jedes Produkt ut (we U,teT)in T,
so daB fir jedes t e T jedenfalls Ut c T, also auch |Ut| = |U| < |T| = p*
gilt.

Beide Abschitzungen fiir |U| zusammen ergeben |U| = p3, und damit ist
Satz 1 bewiesen.

Ist also G eine Gruppe der Ordnung » = prm, so gibt es speziell mindestens
eine Untergruppe der Ordnung p und auch mindestens eine der Ordnung p".
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Definition: Die Untergruppen der Ordnung pr der Gruppe G der Ordnung
n=p'm, (p,m) =1, heifen die zur Primzahl p gehorenden Sylowgruppen
von Q.

Im Gegensatz zu der Aussage von Satz 1 hat iibrigens nicht jede Gruppe G
der Ordnung » zu jedem Teiler d von n eine Untergruppe der Ordnung d. Mit
Hilfe der Ergebnisse der Aufgaben 9.1 und 12.4 findet man zum Beispiel, dal
die alternierende Gruppe %4 der Ordnung 12 keine Untergruppe der Ordnung 6
besitzt.

Satz 2: Es sei G eine Gruppe der Ordnung n = p'm; dabei sei die Primzahl
p kein Teiler von m; es sei ferner U eine Untergruppe der Ordnung p® von G,
und V set eine zu p gehorende Sylowgruppe von G. Dann ist U Untergruppe
einer zu V konjugierten Sylowgruppe. Alle zu p gehirenden Sylowgruppen sind
konjugiert.

Beweis: Die zweite Behauptung ist der Spezialfall s = r der ersten; in
diesem Fall sind ja sowohl U als auch V zu p gehorende Sylowgruppen. Es
sei nun M die Menge aller Linksnebenklassen von ¥V, und U operiere auf M
durch uoT = uTeM (ue U, T € M). Wieder zerfiallt M in Bahnen, und
da p in |M| = m nicht aufgeht, gibt es ein aV € M (@ € @) mit einer durch pnicht
teilbaren Bahnldnge. Diese Bahnlange ist aber nach Satz 16.1 mit U an Stelle
von @ auch ein Teiler von |U| = p® und wird deshalb Eins. Das bedeutet:
Fiir jedes w € U ist uaV = aV, also uaeaV oder u € aVa-1, und das ist die
erste Behauptung U caVa-l.

Satz 3: Es sei G eine Gruppe der Ordnung n = p'm; dabei sei die Primzahl
p kein Teiler von m, und zu vorgegebenem 8 < r ses k die Anzahl aller Unter-
gruppen der Ordnung p%. Dann hat k die Gestalt »p + 1 (x = 0,1,2, ...);
fiir 8 = r gilt zusdtzlich kim.

Beweis: Ist die erste Behauptung bewiesen, so folgt (k,p) = 1 und
daraus die zweite; denn nach Satz 2 ist fir s = r die Zahl k gleich der Anzahl
der Konjugierten einer zu p gehdérenden Sylowgruppe, nach Satz 14.5 also
ein Teiler von p'm und wegen (k, p) = 1 ein Teiler von m.

Es sei nun s < r vorgegeben; zu zeigen bleibt, dal die Anzahl % aller Unter-
gruppen der Ordnung p* von G die Gestalt xp + 1 (x = 0,1,2,...) hat.
Wir zdhlen zunichst die Anzahl aller Rechtsnebenklassen mit p# Elementen
in G ab; es sind kp'3m; denn sind U; und U, Untergruppen von G und
Usa = Usb, so folgt a € Usb, also Usza = Usb = Usa oder Uy = Ub.

Wie im Beweis von Satz 1 sei nun wieder M die Menge aller Teilmengen 7' c ¢
mit |7’ = p*, und G operiere auf M durch go T = g¢gT. Wir zeigen jetzt, daBl
T genau dann eine durch pr—#+1 nicht teilbare Bahnlinge hat, wenn 7' eine
der eben abgezdhlten kp'—#m Rechtsnebenklassen aus G ist. Dazu sei zunéchst
K c M eine Bahn von M mit einer durch pr—#+1 nicht teilbaren Lénge und T'
ein Element von K. Im Beweis von Satz 1 sahen wir, daf3 die Stabilititsunter-
gruppe U von T' gerade p® Elemente hat wie T selbst. Fiir jedes t € T' galt
ferner Ut c T, und aus der Gleichheit der Elementezahlen folgt 7 = Ut. Jedes
T mit einer durch pr-s+1 nicht teilbaren Bahnldnge ist also Rechtsnebenklasse
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einer Untergruppe U der Ordnung p? von G. Ist umgekehrt 7' = Ua (a €G) eine
Rechtsnebenklasse von U und |U| = p?, so liegt 7' in M und hat U als Stabi-
litdtsuntergruppe, weil gUa = Ua genau fiir alle g € U richtig ist. Die Bahn-
linge |K(T')| = ind U = p'sm von T' = Ua ist also durch pr-5+1 nicht teil-
bar.

Es gibt also genau die oben abgezdhlten kp™—%m Teilmengen T von G' mit
|7| = p* und durch pr—8+1 nicht teilbarer Bahnlédnge. Mit den Bezeichnungen
;;) = lpr-%m Teilmengen T cG@ mit
[T| = p8, wobeil = Ap + 1, A€ 3, war. Es bleiben p™—#m(l — k) Teilmengen
T mit p# Elementen und durch pr-s+1 teilbaren Bahnldngen. Deswegen mufl
pr-s+l ein Teiler von pr—*m(l—k%), also p ein Teiler von I —k%, also
k = xp + 1, x €3, sein. Damit ist auch der dritte Sylowsche Satz bewiesen.

des Hilfssatzes gibt es i.nsgesamt(

Aufgabe 1: Man lése noch einmal Aufgabe 14.4.

§ 18* Beispiele von Gruppen

18.1 Es sei n = 3 eine natiirliche Zahl; die Ecken eines regelméBigen n-Ecks
seien etwa im Uhrzeigersinn mit 1, 2, ..., n durchnumeriert; der Mittelpunkt
des n-Ecks sei M. Die Elemente

(l 2 3 4 . n—1n
a =

123 ... 2—1 2
1 nn—1n—2... 3 2) “ndbz( )

234... o 1

aus &, haben dann eine einfache geometrische Bedeutung: Es ist a eine
Spiegelung an der durch 1 und M bestimmten Symmetrieachse und b eine

Drehung um M im Uhrzeigersinn um 27? Wir betrachten die von @ und b er-

zeugte Untergruppe D, von &,. Sie heiflt die Diedergruppe vom Index n.

Die Anschauung oder einfaches Nachrechnen zeigen sofort: @ hat die Ordnung
2 und b die Ordnung n. Auf die gleiche Weise bestétigt man bab = a; es gilt
ja bab(1l) = ba(2) = b(n) = 1 = a(l), ferner bab(t) = ba(t + 1) = b(n + 1 — 1)
=n+2—t = at)fir2 <t < n— lundbab(n) = ba(l) = b(1) = 2 = a{n).
Schreibt man ba = ab-1 = ab”-1 an Stelle von bab = a, so sicht man, daB
jedes Produkt aus Faktoren a, b, also jedes Element von D,, sich in der
Gestalt a®b#, 0 <1 <1,0 <y £n—1, schreiben 1a8t und da die An-
gaben a2 = b* = e und ba = ab-! das Rechnen in der Diedergruppe voll-
stindig bestimmen.

Wir zeigen nun noch, da keine zwei der 2n Elemente a#b#, 0 <1 <1,
0<pu=<n—1, aus D, einander gleich sind. Aus ahbt = atb# ergibt sich
a*1~h = bt~ und die Behauptung folgt, wenn gezeigt ist, daB ae = b9,
0=<0=1,0=0=<n-1, nur fir p =0 =0 moglich ist. Der Fall p =1
kann aber nicht eintreten, da ¢ das Element 1 festliBt, wasnur 30 — ¢ =+ a
leistet. Also ist ¢ = 0 und folglich auch ¢ = 0.
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Die Diedergruppe Dy hat daher genau 2n Elemente. Wegen ba = ab-1 3 ab
ist sie nicht kommutativ. Wir fassen unsere Ergebnisse zusammen.

Satz 1: Die Diedergruppe Dy (n = 3) wird von 2wei Elementen a, b nach
den Rechenregeln a? = e, b® = e, ba = ab-1 erzeugt; sie hat 2n Elemente und
18t nicht kommulativ.

Damit kennen wir fiir jede gerade Zahl 2n = 6 eine nichtkommutative Gruppe
Dy der Ordnung 2n. Nach Aufgabe 12.4 ist S3 = Ds.

Aufgabe 1: Die Diedergruppe D, enthialt mindestens n Elemente der
Ordnung 2. Beweis ?

Aufgabe 2: Zeige, daB U4 und D¢ verschiedene nichtkommutative
Gruppen der Ordnung 12 sind.

18.2 Es sei p eine Primzahl und p = 3. Wir wollen zeigen, daB 3z, und D,
die beiden einzigen Gruppen der Ordnung 2p sind.

Hat die Gruppe G die Ordnung 2p, so besitzt sie einen Normalteiler
V = {e, b2 ...,bP1} der Ordnung p (vgl. die Losung von Aufgabe 17.1).
Nach Satz 17.1 gibt es auch eine Untergruppe U = {e, a} von G der Ordnung
2, und es ist @ ¢ ¥, da V wegen 2+p keine Untergruppe U der Ordnung 2 hat.
Es folgt G|V = {V,aV}; demnach besteht G' aus den Elementen a#b4,
0=1=1,0=u=<p—1, und es gelten die Rechenregeln a2 =e und
bP = ¢. Wir zeigen, daB fiir ba nur die Werte ab oder ab-! in Frage kommen.
Im ersten Fall ist G abelsch und sogar zyklisch; denn G wird dann von dem
Element ab der Ordnung 2p erzeugt. Im zweiten Fall liegt die Diedergruppe
Dp vor.

Das Element ba kann nicht in V liegen, weil dann a € V folgen wiirde. Also
ist ba e aV oder a~tba = aba = b% 0 < 1 < p — 1, und wir behaupten, daB
2 nur 1 oder p — 1 sein kann. Aus abe = b% und a2 = e folgt aber

b = aabaa = abla = (aba)* = b¥,

also 541 =¢, und Satz 9.2 lefert p{(2 + 1)(A — 1) und damit entweder
A=1loderi = p—1.
Wir haben also den

Satz 2: Die beiden einzigen Gruppen der Ordnung 2p (p Primzahl, p = 3)
sind 32p und Dp.

18.3 Wieder sei p eine Primzahl und diesmal G eine Gruppe der Ordnung 22,
p = 2. Dann muBB @ abelsch sein: Andernfalls hitte nach Aufgabe 14.3 die
Gruppe G ein Zentrum Z = {e, b, b2, ..., bP-1} der Ordnung p; auch die
Faktorgruppe G/Z hitte dann die Ordnung p, wire also zyklisch und wiirde
von einer Nebenklasse aZ erzeugt:

GlZ = {Z,aZ,a?Z, ...,a?P"1Z}.
Jedes Element von G = ZuaZua?Zu...uvaP1Z hitte also die Gestalt
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atbh, 0 =1 =<p—1,0 = u = p— 1,und wegen b € Z wire die Multiplikation
(a’be)(aebo) = aracbube = acarbobt = (aebo)(a?bk)

in G doch kommutativ entgegen der Annahme.
Nach § 11 gibt es aber nur zwei abelsche Gruppen der Ordnung p2, und wir
haben den

Satz 3: Die beiden einzigen Gruppen der Ordnung p2 (p Primzahl) sind
Bps und 3p x 3p.

18.4 Wir konstruieren eine Gruppe der Ordnung 8. Dazu gehen wir von einer
Menge
G = {l, _1: i) _i: 7.) _7., k) _k}

von 8 Elementen aus; es handelt sich dabei um acht Symbole, deren Bezeich-
nungen sich gleich als zweckméBig herausstellen werden. Wir definieren zu-
nachst durch

141 = LY =4l = 4,1j=41=4,1k=#kl =&,
P=j2 =k =1,
i =k, ji = —Fh, jk = i, kj = —i, ki = j, ik = —j

sowie (—a)b = a(—b) = —(ab) und (—a)(—b) = ab eine Verkniipfung auf G;
dabei sei —(—¢g) = geG. Es gilt 1g = g1 = ¢ fiir jedes g € G, und wegen
(—1)(—1) = i(—) = j(—j) = k(—k) = 1 besitzt jedes ge G ein Inverses
g1e @ mit gg-1 = ¢g-1g = 1.

Um zu zeigen, dafl G eine Gruppe ist, miissen wir noch nachweisen, daf diese
Multiplikation assoziativ ist. Es wire sehr miihsam, die einzelnen Fille direkt
zu priifen. Statt dessen machen wir die Zuordnungen

. 01 04
baioa (O Yaros ()
wobei in den Matrizen die komplexen Zahlen 0, 4+ 1 und 4 ¢ stehen; mit
wenigen kurzen Rechnungen ist zu sehen, daB die Multiplikation dieser acht
Matrizen relationstreu zu der Multiplikation in G erfolgt. Zum Beispiel gilt

l'lchtlg
7 0 ’l/. 1 0 ": 0

Die Multiplikation von Matrizen ist aber assoziativ und damit auch die Ver-
kniipfung von @G. Es ist also G eine nichtkommutative Gruppe der Ordnung 8.
Sie heift die Quaternionengruppe und ist von D4 verschieden, da sie auBer —1
kein Element der Ordnung 2 besitzt (Aufgabe 1).

Beim Nachweis des Assoziativgesetzes zeigte sich die Bedeutung von Satz 3.1,
auf dem die Assoziativitdt der Multiplikation von Matrizen als einer Multipli-
kation von gewissen Abbildungen ja zuletzt beruht: In der Algebra laBt sich
ein Assoziativgesetz oft mit Hilfe von Satz 3.1 beweisen.

R
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Aufgabe 3: Die simtlichen Gruppen der Ordnung 8 sind 3s, 32 x 34,
32 x 32 x 32, D4 und die Quaternionengruppe. Beweis ?

18.5 Alle Gruppen mit Ordnungen kleiner als 12 sind uns nun bekannt. AuBer
12, 32 x 32 x 33, Dg und U4 gibt es noch eine nichtkommutative Gruppe der
Ordnung 12. Sind » < ¢ Primzahlen, und ist dabei p kein Teiler von ¢ — 1, so
gibt es iiberhaupt nur eine Gruppe der Ordnung pg, die zyklische; andernfalls
existiert noch eine nichtkommutative Gruppe der Ordnung pq. Diese Aussagen
lassen sich dhnlich beweisen wie Satz 2. Es gibt also beispielsweise nur eine
Gruppe der Ordnung 15. Es gibt relativ viele Gruppen der Ordnungen 27,
zum Beispiel vierzehn der Ordnung 16. Mit diesen Bemerkungen schliefen wir
unsere gruppentheoretischen Betrachtungen ab.

Literatur: ALEXANDROFF [2], KuroscH [14].
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Wir wenden uns nun algebraischen Strukturen mit zwei Verkniipfungen zu.
Als Modelle stehen uns dabei etwa die Strukturen 3 und £ mit den Verkniip-
fungen Addition und Multiplikation vor Augen. Es handelt sich bei beiden um
Ringe mit zusidtzlichen speziellen Eigenschaften. Aus der umfangreichen
Theorie der Ringe greifen wir nur einige Ergebnisse heraus, die standig ge-
braucht werden. Wir beginnen mit einer allgemeinen Vorbetrachtung.

§ 19 Algebraische Strukturen

Bevor wir uns speziellen Strukturen mit zwei Verkniipfungen zuwenden,
stellen wir einige allgemeine Definitionen und Sdtze auf, die nach den ent-
sprechenden Erérterungen in Kapitel 2 hinreichend plausibel geworden sind.

Definition: Es seien Sy und Sy algebraische Strukturen mit jeweils n Ver-
kniipfungen ; wir bezeichnen mit

01, 02, - . ., Oy die Verkniipfungssymbole von Sy
und mit

81, ®2, - . ., ®y die Verkniipfungssymbole von Sa.

Eine Abbildung f: S1 - Sz heifit relationstrew oder Homomorphismus von 8) in
Sa, wenn (eventuell nach einer Umnumerierung) fir jedes 1,1 <1 < n, und
alle z, y € 8y gilt:

fxory) = f(2) o f(y);

sie heifft Homomorphismus von S1 auf Sz, wenn ste zusdtzlich surjektiv ist, und
tn diesem Fall nennen wir Ss etn homomorphes Bild von 8; und schreiben
S; 3 8s.

Ein Isomorphismus von Sy tn S ist eine injektive relationstreue Abbildung
f: 81 > Sa; sie heifit Isomorphismus von Sy auf Sz, wenn sie sogar bijektiv und
relationstreu ist; in diesem Fall heifen 81 und Sg tsomorph, und wir schreiben
Sl o~ Sz.

Ein Automorphismus von 8y ist ein Isomorphismus f: Sy - S1 von Sy auf sich.
Unter einem Endomorphismus von 81 schlieflich versteht man einen Homomor-
phismus von 8y in sich.

Isomorphe Strukturen definieren wieder eine Aquivalenzklasse und werden
nicht als wesentlich voneinander verschieden angesehen. Aus 8; = S; und
8y 23 83 folgt S1 = Ss.
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Definition: Es set S eine algebraische Struktur mit den Verkniipfungen
01,02, - .., 0p und ,,= eine Aquivalenzrelation auf 8. Diese Aquivalenzrelation
heifit Kongruenzrelation, wenn fiir jedes 1,1 < 1 < n, gilt:

a=a,b=b = aoth=a opb.

Das kann man auch so interpretieren: In einer Kongruenzbeziehung aus S
diirfen die in ihr auftretenden Elemente von 8 durch kongruente ersetzt
werden (vgl. etwa die spédtere Aufgabe 20.2).

Wie Satz 15.1 beweist man den

Satz 1: Die Menge A aller Automorphismen einer algebraischen Struktur S
mit n Verkniipfungen ist eine Gruppe, die sogenannte Automorphismengruppe
von 8.

Es sei nun weiterhin 8; eine algebraische Struktur mit den Elementen
a,a,b,b,s, ... und den n Verkniipfungen oy, 0g, ..., 0s; gesucht seien alle
hemomorphen Bilder von 8;. Angenommen, auf 8 ist eine Kongruenzrelation
»="" erkldrt. Dann zerféllt S; in Kongruenzklassen. Die Menge dieser Klassen
sei Sp = {K(a), K(b), ...}. Wir erkliren auf S; die Verkniipfungen
®1, ®2, - .., ®83 durch K(a) ®; K(b) = K(a o;b); das sind wirklich Verkniip-
fungen auf 8;, weil sich nach der Definition der- Kongruenzrelation die rechten
Seiten nicht &ndern, wenn die Reprisentanten a,b von K(a), K(b) durch
andere Reprasentanten a’, b’ ersetzt werden. Fiir se S, setzen wir nun
f(s) = K(s) € Sz und definieren dadurch eine surjektive Abbildung f: S; - S..
Diese Abbildung ist relationstreun:

flaoid) = K(aoid) = K(a) e K(b) = f(a)®4 f(b).
Also gilt Sy = 8,.

Umgekehrt sei jetzt ein homomorphes Bild 83 von 8; vorgelegt, 8y ~ Ss; der
vermittelnde Homomorphismus sei f. Dann ist durch a ~ @’ < f(a) = f(a’)
eine Aquivalenzrelation auf ) erklirt; S) zerfallt in Aquivalenzklassen derart,
daB genau die Elemente einer Klasse dasselbe Bild besitzen. Diese Aquivalenz-
relation ist sogar eine Kongruenzrelation: Aus @ ~ a’ und b ~ b’ folgt

Haoid) = f(a) 8¢ f(b) = f(a') &4 f(}') = fla' o4 }'),

also 2 o0; b ~ a’ o4 b’. Wir betrachten die Menge S; = {K(a), K(b), ...} aller
dieser Kongruenzklassen und behaupten Sz ~ Ss; dabei seien die Verkniip-
fungen auf S; wie oben eingefithrt. Zunachst definiert ¢(K(a)) = f(a) eine
Abbildung ¢: Sz - S3, weil f(a) von der Wahl des Reprisentanten von K(a)
nicht abhingt, und diese Abbildung ist ersichtlich bijektiv. Sie ist auch rela-
tionstreu, und das bedeutet insgesamt Sz ~ S3. Abgesehen von Isomorphien
ist also das homomorphe Bild 83 von 8; eines der bereits oben gefundenen
homomorphen Bilder Ss.

Wir fassen zusammen.

Satz 2: Es ser Sy eine algebraische Struktur mit Elementen a,b, ... und
den n Verkniipfungen o5, 1 < 1 < n. Ferner sei auf S, eine Kongruenzrelation
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erklirt. Dann werden auf der Menge Sy = {K(a), K(), ...} der Kongruenz-
klassen von Sy durch K(a)®; K(b) = K(a o;b) ebenfalls n Verkniipfungen
®4, 1 1 < n, definiert, und es gilt Sy = Sa. Jedes homomorphe Bild von S
tst einer derart gewonnenen Struktur Sp tsomorph.

Das Aufsuchen aller homomorphen Bilder einer algebraischen Struktur 8 mit
n Verkniipfungen ist also gleichbedeutend mit der Aufgabe, alle Kongruenz-
relationen von § ausfindig zu machen.

Wie Satz 12.3 ergibt sich schlieBlich noch der

Satz 3: Es sei S eine algebraische Struktur mit Elementen a, b, ... und
den n Verkniipfungen 01,1 < ¢ < n. Ferner set 8§ = K(@)uKDd)u ... eine
Zerlegung von 8 tn paarweise verschiedene Aquivalenzklassen. Genau dann de-
finiert K(a) ® K(b) = K(a o4 b) fiir jedes i,1 < ¢ < n, eine Verkniipfung auf
der Menge {K(a), K(b), . ..} der Aquivalenzklassen, wenn die durch die Partition
von S erklirte Aquivalenzrelation eine Kongruenzrelation ist.

§ 20 Das Rechnen in Ringen
20.1 Wir beginnen mit der folgenden

Definition: Eine algebraische Struktur R mit einer additiv und einer multi-
plikativ geschriebenen Verkniipfung heifit ein Ring, wenn folgendes gilt:
(1) R ist beziiglich der Addition eine abelsche Gruppe.
(2) R ist beziiglich der Multiplikation eine Halbgruppe.
(3) Fiir alle Elemente a, b, c € R gelten die Distributivgesetze

a(b + ) = (ab) + (ac) =py ab + ac,
(b + c)a = (ba) + (ca) =ps ba + ca.

(Das Zeichen fir die Multiplikation soll also wie tiblich stirker binden als das fiir
die Addition.)
Ein Ring R heifit kommutativ, wenn fir alle a, b € R gilt: ab = ba.

Die Forderung (1) bestimmt die Eigenschaften der Addition, die Forderung (2)
beschreibt die Multiplikation; in (3) schlieflich wird ein Zusammenhang
zwischen den Verkniipfungen hergestellt.

Jeder Ring R besitzt als additiv geschriebene abelsche Gruppe genau ein Null-
element 0, das fir jedes a € R die Beziehung a + 0 = 0 + a = e erfiillt.
Enthilt ein Ring R = {0} ein Element 1 € R mit la = al = a fiir jedes a € R,
so nennen wir dieses Element Einselement von R. Es gibt Ringe ohne Eins-
element (vgl. Beispiel 2). Zwei Einselemente 1,1’ kann ein Ring R wegen
1 =1-1" = 1’ nicht besitzen.

Wie bei Gruppen erklirt man die Begriffe Unterring und echter Unterring.

Beispiel 1. Die Strukturen 3,2Q,R, € sind kommutative Ringe mit Eins-
element.
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Beispiel 2. Die Menge 23 = {...,—2n,—=,0,n,2n, ...} aller dureh ein
festes neM,n £ 1, teilbaren ganzen Zahlen ist ein kommutativer echter
Unterring von 3 ohne Einselement.

Beispiel 3. Die Menge aller reellen zweireihigen quadratischen Matrizen ist
ein nichtkommutativer Ring mit Einselement beziiglich der Matrizenaddition
und -multiplikation.

Beispiel 4. Die Menge R = {z: 2z = a + b}2,a,b €8} cR ist ein kommu-
tativer Unterring von R mit Einselement. Aus z,y € R, etwa 2 = a + b}2
und y = ¢ + d/2, folgt ja sowohl z + y = (a + ¢) + (b + d)]/2 € R als auch
zy = (ac + 2bd) + (ad + bc))2 € R; auBerdem gilt 0 € R und —z e R. Alle
weiteren Forderungen sind schon in it und damit erst recht in B c & erfillt.

Sind a, b Elemente eines Ringes R, so schreiben wir statt —(ab) wieder nur —ab.
Wir beweisen nun die bekannten Vorzeichenregeln.

Satz 1: In Ringen gelten die Rechenregeln a - 0 = 0+ @ = 0, a(—b) = (—a)b
= —ab, (—a)(—b) = ab, a(b —¢) = ab — ac und (b — c)a = ba — ca.

Beweis: Nach (3) ist a2 = a(a +0) = a2 +-a-0, also a -0 = 0, weil
die Gleichung a2 + x = a? nach Aussage c¢) von Satz 6.1 genau eine Losung =
hat; aus a2 = (e 4 0O)a folgt entsprechend 0-a = 0. Ferner gilt sowohl
ab + (—ab) = 0, als auch ab + a{(—>b) = a(d 4+ (—b)) = a-0 = 0, und wie
eben folgt a(—b) = —ab; aus ab 4 (—a)h = 0 bekommt man nach dem-
selben Muster (—a)b = —ab. Damit wird (—a)(—bd) = a(—(—b)) = ab.
SchlieBlich ist a(b — ¢) = a(b + (—=¢)) = ab + a(—¢c) = ab — ac, und analog
ergibt sich die letzte Behauptung.

Folgerung: Besitzt ein Ring R ein Einselement 1, so ist 1 4= 0.

Man kann leicht endliche Ringe konstruieren. Die wichtigsten sind die im
folgenden betrachteten Restklassenringe modulo .

Beispiel 5. Es sei n eine feste natiirliche Zahl, 3 der Ring der ganzen Zahlen
und
3, = {K(0), K(1), ..., K(n—1)}

die Menge der Restklassen modulo n. Wir zeigen, daBl die zugrundeliegende
Aquivalenzrelation

a =ad < nlle—a)
eine Kongruenzrelation auf dem Ring 3 ist: Es gelte a = a’, b = b’. Diese
Aquivalenzrelationen bedeuten die Existenz ganzer Zahlen 4, y mit a’ = a + An,
b" = b + un; fir gewisse ganze Zahlen o = 1 + u, ¢ = pa + b 4+ Aun wird
alsoa’ + b =a + b + onsowie a’d’ = ab + on,und das heiBta + b = a’ + b’
sowie ab = a’b’. Nach Satz 19.3 werden also durch

K(a) + K(b) = K(a + b), K(@)K(b) = K(ab)

eine Addition und eine Multiplikation auf der Menge 3, der Kongruenzklassen
erklart. In Erinnerung an §9.1 konnen wir sagen, daB der additiven Rest-
klassengruppe modulo #z in natiirlicher Weise noch eine Multiplikation auf-
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gepragt wurde. Wir zeigen jetzt, daB damit 3, = {K(0), K(1), ..., K(n — 1)}
ein kommutativer Ring wird. Die Forderung (1) ist nach § 9.1 erfiillt. Das
Assoziativgesetz der Multiplikation

(K(@)K(b))K(c) = K(ab)K(c) = K((ab)c)
K(a(be)) = K(a)K(be) = K(a)(K(b)K(c))

folgt aus dem entsprechenden Assoziativgesetz von 3; also gilt (2). Eine
analoge Rechnung liefert die Kommutativitdt der Multiplikation von 3,, so
daf wir fiir (3) nur noch eines der beiden Distributivgesetze nachzupriifen
brauchen:

E(@)K(®) + K(©) = K@K +c) = K(ab + ) = K(ab + ac)

K(ab) + Kac) = K(@)K(®) + K(@)K(c).

Damit wissen wir: 35 ist fiir n>>1 ein kommutativer Ring mit dem Einselement
K (1). Er heiBt der Restklassenring modulo n.Solange keine Verwechslungen mit
der zyklischen Gruppe der Ordnung # zu befiirchten sind, behalten wir firihn die
Bezeichnung 3, bei. Man addiert und multipliziert in 3, wie in 3, setzt aber
Vielfache von n gleich Null. Fiir » = 1 besteht 3, aus der Null K(0) allein
(Nullring).

Fiir die Kongruenzrelation a = @’ < n | (a — a’) pflegt man eine der beiden
Schreibweisen :

a=a"modn oder a=a'(n)

zu wahlen.

Anwendung: Wir zeigen auf zwei nur durch die Schreibweise unterschie-
dene Arten, daB 232 4 1 durch 641 teilbar ist. Beide Male gehen wir von der
Identitdit24 + 54 = 5-27 4+ 1 = 641 aus.

a) Es ist 527 = —1 (641). Denkt man sich diese Kongruenz viermal hin-
geschrieben und die linken und rechten Seiten multipliziert, so bekommt man
(5-27)4 = (—1)% mod 641 oder 54-228 =1 (641). Hierin darf man wegen
54 = —24 (641) den Faktor 5¢ durch —24 ersetzen. Das liefert —232 = 1 (641)
oder 641 | (232 + 1).

b) Im Restklassenring 3¢41 gilt K(5 - 27) = K(—1). Potenziert man beide Seiten
mit 4, so bekommt man K(54 - 2%8) = K(1). Fiir die linke Seite kann man auch
K(54) - K(2%8) oder K(—2%) - K(228) = K(—232) schreiben. Das ergibt K(—232)
= K(1) oder 641 | (232 + 1).

Oft wird man den Restklassenring 3, einfach in der Gestalt {0,1, ..., » — 1}
schreiben und dabei beachten, dal die hingeschriebenen Elemente keine ganzen
Zahlen sind.

Aufgabe 1: Man gebe die Verkniipfungstafeln des Restklassenringes 3¢
an.
Aufgabe 2: Man lose die Kongruenz 5x = 7 (13).

Aufgabe 3. Durch Rechnen im Restklassenring 3g zeige man: Keine
natiirliche Zahl » der Form 8% -+ 7 ist Summe von drei Quadratzahlen.
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20.2 Im Restklassenring 3¢ = {0,1,2,3,4,5} gilt 2-3 = 0, in 3¢ etwa
2 -8 = 0; ist » keine Primzahl, so gibt es in 3, Elemente a == 0, b == 0, deren
Produkt ab Null ist.

Definition: Ein Element a == O eines Ringes R heift linker Nullteiler, wenn
ein b0 in R existiert, so daff ab = 0 ist. Ein Element b & 0,b € R, heifit
rechter Nullteiler, wenn ein a = 0, a € R, existiert, so daff ab = 0 ist. Ein Ring R
heift nullteslerfres, wenn er keine Nullteiler enthdilt.

Ein Ring R ist also genau dann nullteilerfrei, wenn fiir alle o, be R aus ab=10
folgt: a=0 oder b=0. Nullteilerfreie Ringe sind zum Beispiel 3, Q, K, €. Das-
selbe gilt fiir die Restklassenringe 3, = {K(0), K(1), ..., K(p — 1)} mit Prim-
zahlindex p. Aus K(a)K(b) = K(ab) = K(0) folgt ja plab in 3, also etwa pla
oder K(a) = K(0).

Gilt in einem Ring ab = ac, so folgt auch fir @ 3= 0 nicht notwendig b = ¢;
in 3y giltetwa 2 - 3 =2 - 9, aber es ist 3 = 9. Ist aber R nullteilerfrei, a € R und
a = 0, so folgt aus ab = ac zuniichst a(b — ¢} = 0, also tatsachlichb —c =0
oder b = c; entsprechend wird ba = ca = b =c. Wir formulieren dieses
Ergebnis.

Satz 2: Ist R ein nullleilerfreier Ring mit Elementen a, b, c, ..., so gelten
fiir a &= O die Kiirzungsregeln

ab=ac = b=c¢, ba=ca = b=c.

Wir betrachten nun einen nullfeilerfreien Ring R 3 {0} mit Einselement und
sehen uns die Elemente 1,1 4+ 1,14+ 141, ... an. Es kénnen zwei Fille
eintreten. Entweder keines von ihnen ist Null, und das ist gleichbedeutend da-
mit, daB sie paarweise voneinander verschieden ausfallen; wir sagen dann,
R habe die Charakteristik Null und schreiben y(R) = 0. Oder es gibt ein n e N
mitl +14 ... + 1 = 0 (n Summanden 1); dann gibt es auch ein kleinstes n
dieser Art. Dieses minimale # ist zunichst ungleich Eins und muB} auflerdem eine
Primzahl p sein, weil aus #» = kl mit natiirlichen Zahlen k¥ < n, Il < n und

n i ! E
21 =31-3>1 = 0 wegen der Nullteilerfreiheit von R folgt: > 1 = 0 oder
1 1T 1 1

1
> 1 = 0. Wir sagen in diesem Fall, R habe die Charakteristik p und schreiben
1

x(R) = p.
Ist R ein Ring mit y(R) = p, ist also 1 € R und R nullteilerfrei, so verschwindet
eine Summe 7 4 7 + ... + r von m Summanden r € R, falls p in m aufgeht.

Um das einzusehen, schreibe man
r+r+...+r=1r4+1r4+...41r=Q10+4+1+4+ ... +1)r.
Es ist x(3) = 2(Q) = x®) = 2(€) = 0; fiir Primzahlen p gilt x(3,) = p.

Definition: Ein vom Nullring verschiedener kommutativer nullteilerfreier
Ring heifit Integrititsbereich.
Beispiele fiir Integritdtsbereiche waren etwa 3, Q, R, €, 3, (p Primzahl). Auch
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die Ringe in den obigen Beispielen 2 und 4 sind als Unterringe von 3 und %
Integritatsbereiche.

Wir betrachten nun einen beliebigen Ring R mit Einselement. In ihm wird die

Frage nach multiplikativen Inversen von Ringelementen sinnvoll. Wir treffen
die folgenden Verabredungen.

Definition: Es sei R etn Ring mit Einselement. Dann heifit b € R Rechts-
tnverses von a € R, wenn ab = 1 gilt. Das Element-b € R heipt Linkstnverses
von a € R, wenn ba = 1 ist. Das Element b € R heifit Inverses von a € R, wenn
ab = ba = 1 ist. Ein a € R heipt Einheit, wenn a in R ein Inverses besitzt.

Ist schlieBlich R ein beliebiger Ring und m € 3, so sind noch die nach-
stehenden Vereinbarungen praktisch: Es sei fira e R

0 firm =0
—a —a — ... — a ((—m) Summanden) fiir m < 0.

{ a + a -+ ... + a(m Summanden) firm >0
ma =

Das ist eine duflere Komposition von R mit 3; Verwechslungen mit der
Ringmultiplikation sind nicht zu befiirchten. Es gelten Rechenregeln wie
(my + ma)a = mia + mea, my(mea) = (mimg)a und m(ab) = (ma)b = a(mb)
(my, m € 3, a, b € R). Besitzt R ein Einselement, so kann man ma auch als ein
Produkt des Ringelementes

1+1+4 ...+ 1 (m Summanden) firm > 0
m={ 0 firm =0
—1—1—...—1 ((—m) Summanden) fiirm < 0

mit @ € R ansehen; m kann dann auch Nullteiler sein, wie etwa die Gleichung
34+3=(1+1)3 =2-3 = 0in 3 zeigt.

Aufgabe 4: Der Ring R enthalte wenigstens einen von Null verschiedenen
Nichtnullteiler. Dann ist das Ringaxiom a + b = b + a eine Folge der iibrigen.
Beweis ?

Aufgabe 5: Man beweise die folgenden Aussagen.
a) In Ringen gilt a(by + b2+ ... +by) = aby +aby 4 ... + ab, und
bh+b+ ... +bp)a = bha+bea+t ...+ bya.
b) In einem nullteilerfreien Ring ist ein Produkt ajaz ... @z nur Null, wenn
einer der Faktoren Null ist.
¢) In einem Ring R mit Einselement besitzt ein linker (rechter) Nullteiler kein
Links-(Rechts-)Inverses.
d) Ist 1 € R und besitzt @ € R ein Linksinverses b und ein Rechtsinverses ¢, so
ist b = ¢, und e besitzt kein von b verschiedenes Rechts- oder Linksinverses.
e) Ist 1 € R und besitzt a € R ein Inverses, so ist es eindeutig bestimmt (Be-
zeichnung: a-1).
f) Ist 1 € R und besitzt jedes a € R, a == 0, ein Inverses a1 € R, so ist R null-
teilerfrei.
g) Es sei R ein Ring mit Einselement und E c R die Menge aller Einheiten von
R. Dann ist E eine Gruppe beziiglich der Multiplikation.
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Aufgabe 6: Es sei R ein Ring mit Einselement und a € R. Zeige:
a) Ist b ein Rechtsinverses von a, so ist es auch jedes der Elemente b + (ba—1)a*
k=0,1,2,...).
b) Besitzt a genau ein Rechtsinverses b, so ist b das Inverse von a.
¢) Das Element a besitzt entweder kein Rechtsinverses, genau ein Rechts-
inverses oder unendlich viele Rechtsinverse (vgl. auch Aufgabe 25.1).

Aufgabe 7: Es sei R ein kommutativer Ring. Man beweise den binoms-
schen Lehrsatz

n
(@ +br = > (1:) al (a,b,e R,neM).
v=0

Aufgabe 8: Es sei I ein Integrititsbereich mit Einselement und Prim-
zahlcharakteristik p. Dann gelten die folgenden Rechenregeln:
a) (a+ b =aP +br,(a—b)P = a?—b? (a,bel).
b) (a + b)P* = a?* + bP* (@ —b)P* = a?* — bP* (a,bel;k =0,1,2,...).
) (mtart ... +a)» =a5+a8+ ... +4df (@l

Beweis?

20.3 Wir treffen nun eine vielfach niitzliche

Verabredung: Ist R ein Ring, so bezeichne Ry die Menge der von Null
verschiedenen Ringelemente.
Im folgenden beschiftigen wir uns mit gewissen Ringen, die besonders oft
auftreten.

Definition: Ein Ring R heifit Schiefkirper, wenn Rg eine Gruppe beziiglich
der Multiplikation tst. Ein kommutativer Schiefkérper heifit Korper. Ry heift
dann die multiplikative Gruppe des Schiefkirpers (Kdrpers).

Vielfach werden Schiefkorper auch einfach Korper genannt; ist die Multiplika-
tion kommutativ, spricht man dann von einem kommutativen Korper.

In den uns bekannten Beispielen Q, R, € liegen immer schon Koérper vor. Es
sind ja Q, R, € kommutative Ringe, und nach § 6.2 sind Qo, Re, €y Gruppen
beziiglich der Multiplikation.

Es sei § ein Schiefkérper. Dann enthélt die multiplikative Gruppe Sp ein Eins-
element 1 &= 0, und diese Eins ist Einselement von S. AuBerdem besitzt jedes
ac 8, a 30, ein Inverses a-1 € 8. Deswegen sind Gleichungen der Art ax = b
oder ya =b (a,be S8,a & 0) in § eindeutig 16sbar. Ein Schiefkérper kann
auch keine Nullteiler enthalten; denn aus ab =0 und a + 0 folgt a-1(ab)
=b=0.

Der Nachweis dafiir, daB ein Ring schon ein Schiefkérper ist, wird in den
meijsten Fillen nicht iiber die obige Definition sondern mit Hilfe des folgenden
Satzes gefiihrt.

Satz 3: Ein Ring R = {0} ist genau dann ein Schiefkorper, wenn er ein
Einselement und zu jedem a € R, a == 0, ein Inverses a-! enthdlt.

Beweis: Nach dem bereits Erorterten bleibt zu zeigen, da ein Ring
R = {0} ein Schiefkorper ist, wenn er ein Einselement und zu jedem a € R,

6 Hornfeck, Algebra
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a = 0, ein Inverses enthilt. In diesem Fall gilt aber 1 € Ry; aus a € Ry folgt
a-l € Ry; die Multiplikation in Ry ist assoziativ; schlieBlich Liegt auch das
Produkt ab von Elementen a, b € Ry wieder in Ry, weil ab = 0 den Wider-
spruch a~1(ab) = b = 0 zur Folge hitte. Es ist also Ry eine Gruppe beziiglich
der Multiplikation, was zu zeigen war.

Auch der folgende Satz ist sehr einfach.

Satz 4: Jeder endliche nullteilerfreie Ring R == {0} ist ein Schiefkérper.
Speziell 1st jeder endliche Integrititsbereich ein Korper.

Beweis: Nach Satz 2 ist Ry beziiglich der Ringmultiplikation eine
regulire Halbgruppe. Sie ist ferner endlich, nach Aufgabe 13.1 also eine

Gruppe.

Die Restklassenringe 3, (p Primzahl) sind demnach endliche Kérper. Die
iibrigen Restklassenringe 3, enthalten Nullteiler, sind also keine Kérper.
Spéter (§ 60) wird sich noch zeigen, daB jeder endliche Schiefkérper bereits
ein Korper ist. Die endlichen Koérper wiederum werden wir alle angeben
kénnen (§ 59).

Sind @ und b + 0 Korperelemente, so gilt ab-1 = b-la. An Stelle von ab-1
a

schreibt man dann auch vielfach — oder a:b. Wir zeigen nun, daB in Korpern

b
die bekannten Bruchrechenregeln gelten.
Satz 5: In Korpern gelten die Bruchrechenregeln —g = Z—z (b=+0, c=+0),
a ¢ _ac a ¢ _ad a ¢ _addbe
T T pg B FO A0, Tir =" (hed +0), o T="o" (b0,
d +0)

Beweis: Die erste Regel besagt dasselbe wie ab-1 = ac(be)-1; fiir a = 0
ist das sicher richtig; fiir @ 3= O ist es eine richtige Beziehung in der multipli-
kativen Gruppe des Korpers. Die zweite Regel besagt ab-lcd-! = ac(bd)-1;
wegen der Kommutativitdt der Multiplikation ist das ebenfalls richtig. Ebenso
gilt richtig ab-1(cd-1)-1 = ad(bc)-1. Dieletzte Regelab-1 + cd-1 = (ad+-bc)(bd)-1
schlieBlich bestétigt man, indem man rechter Hand nach dem Distributivgesetz
ausmultipliziert.

In einem Korper addiert, subtrahiert, multipliziert und dividiert man also
wie gewohnt. Diese vier Rechenoperationen bezeichnet man auch als die
rationalen Operationen.

Sind K und L Koérper mit K c L und sind die Verkniipfungen von K und L
in K dieselben, so heiBt K ein Unterkérper von L und L ein Oberkérper
von K.

Viele mathematische Theorien lassen sich in Korpern entwickeln. Dies gilt
beispielsweise fiir die Auflosung linearer Gleichungssysteme. Ebenso sind die
Determinantensitze in Korpern giiltig; als Beispiel sei die CraMERsche
Regel erwahnt. Da Korper nullteilerfreie Ringe mit Einselement sind, be-
sitzen sie eine Charakteristik. Speziell gelten fiir Korper auch die Rechen-
regeln der Aufgaben 7 und 8.
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Wir sehen uns noch einen Korper an, der an das obige Beispiel 4 erinnert.
Beispiel 6. Wie in Beispiel 4 sieht man, daf3
K={@az=a+0b)2,0,beQ}cR

ein kommutativer Unterring von R ist. Wir zeigen nach Satz 3, daB K ein
Kaorper ist. Zunichst gilt 1 € K. Ein Element a + b})/2 aus K schlieBlich, fiir
das a und b nicht beide Null sind, besitzt das Inverse

a—b)2 a b
T (@ +b2)a—0b)2) a —2B2 @ — ol 2 € K

es ist ja der Nenner a? — 2b% &= 0. Analog kann man weitere Zwischenkdorper
K mit Q c K c R angeben.

(@ + 52)

20.4 Fiir das Rechnen in Korpern geben wir noch eine einfache zahlentheore-
tische Anwendung.

Satz 6: Die natiirliche Zahl p == 1 ist dann und nur dann Primzahl, wenn
(p—1! = —1 mod p
st (sogenannie WiLsoNsche Kongruenz).

Beweis: Ist p nicht Primzahl, also p = kI mit natiirlichen Zahlen k < p
und I < p, 8o teilt k =1 den Ausdruck (p — 1)!, also nicht (p — 1)! 4 1;
erst recht kann p dann kein Teiler von (p — 1)! + 1 sein. Es bleibt also das
Bestehen der Kongruenz fiir Primzahlen p zu zeigen. Fiir p = 2 ist sie erfiillt;
es sei also p = 3.

Es sei zunéchst L ein beliebiger Korper. Wir bestimmen alle & € L mit §2 = 1.
Wir haben nach allen £ mit £2—1 = (§ —1)(§ + 1) = 0 zu suchen. Da L
nullteilerfrei ist, folgt £ = 1 oder &£ = —1. Fiir den Fall L = 3,, p = 3, be-
deutet das: Genau die beiden voneinander verschiedenen Elemente K(1) und
K(p—1) aus 38, = {K(0), K(1), K(2), ..., K(p—1)} sind ihre eigenen
Inversen; jedes andere von K(0) verschiedene Element aus 3, fallt nicht mit
seinem Inversen zusammen.

Nun bilden wir in 8, das Produkt

s = K1) K@) K@3) ... K(p—1)

und fassen rechter Hand jeden Faktor mit seinem Inversen zusammen; das
Ergebnis ist s = K(1) K(p —1). Das heifit aber K((p — 1)!) = K(p— 1)
= K(—1) oder (p — 1)! = —1 mod p.

Aufgabe 9: Man zeige das Folgende.
a) Ky = {z:z=a+b0)3,0,0eQ} und K, = {2:2 = a + b5, a,beQ)}
sind nichtisomorphe Unterkorper von R.
b) M = {#: 2 = a + b}2, a, b €Q} c R ist kein Unterkorper von R.

Aufgabe 10: Man beweise die folgenden Aussagen.
a) Jeder Schiefkorper der Charakteristik Null enthélt einen Unterkorper iso-
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morph Q, und Q enthilt keinen echten Unterkérper. (Deshalb heifit  auch
der kleinste oder der Primkorper der Charakteristik Null.)

b) Jeder Schiefkorper der Primzahlcharakteristik p enthilt einen Unterkérper
isomorph 3,, und 3, enthélt keinen echten Unterkorper. (Deshalb heifit 3,
auch der kleinste oder der Primkorper der Charakteristik p.)

Aufgabe 11: Es gibt genau einen Koérper K mit |[K| = 4. In ihm sind
die Gleichungen 22 = z + 1 losbar. Beweis ?

Aufgabe 12: Der Unterkorper K = {z:z = a + b2, a,beQ} von R
besitzt seinerseits nur die Unterkorper Q und K. Beweis ?

Aufgabe 13: Man lose das Kongruenzsystem

r+ y+ z= 2(7)
22 — 3y + 2= —1(7)
—x + 2y +32z2= 2.

Man 16se dasselbe System modulo 8. Ist es auch modulo 17 losbar ?

Aufgabe 14: Es sei S ein Schiefkérper und Z c 8 die Menge aller der-
jenigen Elemente z € S8, die mit jedem s €S vertauschbar sind: sz = zs fir
jedes s € 8. Dieses sogenannte Zentrum Z des Schiefkdrpers S ist ein Korper.
Beweis ?

§ 21 Homomorphe Bilder von Ringen

21.1 Es sei R; ein Ring mit Elementen a, b, ¢, ... und Ry eine algebraische
Struktur mit zwei Verkniipfungen, die ebenfalls additiv bzw. multiplikativ
geschrieben seien. In § 19 ist nun definiert, wann Rj ein homomorphes Bild
von R; genannt wird. Wir formulieren es noch einmal: Die algebraische
Struktur Ry heift homomorphes Bild des Ringes R;, wenn eine surjektive
relationstreue Abbildung f: Ry — Rz existiert. Die Relationstreue von f be-
steht dabei aus den beiden Forderungen

fla +b) = f(a) + f(),
f(ab) = f(a)f(b)-

Wir schreiben in diesem Fall R; 5 R; und nennen f einen Ringhomomorphis-
mus von R; auf Rs.
In Analogie zu Satz 12.1 bekommen wir zunéchst den

Satz 1: Das homomorphe Bild Ry = f(R1) eines Ringes R ist ein Ring.
Dabet geht das Nullelement von Ry in das Nullelement von Ry diber. Besitzt R
ein Einselement 1 und ist f(R1) nicht der Nullring, so ist f(1) Einselement von
Rs. Ist Ry kommutativ, so ist es auch Rg.

Beweis: Beziiglich der Addition ist Ry nach Satz 12.1 eine abelsche
Gruppe, und f(0) ist das Nullelement von Rz. Fiir die ersten beiden Behaup-
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tungen bleibt also zu zeigen, dafl sich das Assoziativgesetz der Multiplikation
und die Distributivgesetze von Ry auf Ry iibertragen. Das sieht man, da sich
jedes Element von Rj in der Gestalt f(r) mit einem r € Ry schreiben 148t, wie
im Beispiel 5 von § 20; hier schreibt man nur f statt K. Aus 1 Ry folgt
f(Df(r) = felr) = f(r) und [(r)f(1) = f(rl) = f(r), und das ist die dritte Be-
hauptung. Aus der Kommutativitit von R; folgt schlieBlich noch
@)y = f(ab) = f(ba) = f(b)f(a), also die Kommutativitit von Rs.

Als Beispiel betrachte man die Ringe 38 und 3, (§ 20, Beispiel 5). Die durch
fim) = K(m) erklarte Abbildung f: 3 > 3, definiert einen Ringhomomorphis-
mus. Dieses Beispiel zeigt auch, dafl das homomorphe Bild eines nullteiler-
freien Ringes Nullteiler besitzen kann; man wihle etwa n = 6.

21.2 Niitzlich ist fir das Folgende die
Definition: Ist R ein Ring, re Rund T c R, so sei

r+ T {ere=r+ttel}
T {:x=rt teT}

entsprechend seien T - r und T'r erkldrt.

Der nun eingefithrte Begriff des Ideals ist in der Algebra von auBerordent-
licher Bedeutung.

Definition: Eine Teilmenge o des Ringes R heift ein Ideal, wenn gilt:
(1) Es ist a eine Gruppe beziiglich der Addition.
(2) Fiir jedes r € R ist ra Cc a und ar C a.

Da in der Forderung (2) speziell r € a gewéahlt werden kann, ist ein Ideal a
gewiB ein Unterring von R; dariiber hinaus liegen die Produkte ar und ra
sogar schon dann immer in «, wenn nur einer der Faktoren a aus a stammt.
Wir bezeichnen Ideale meist mit kleinen deutschen Buchstaben.

Beispiel 1. Jeder Ring R besitzt die Ideale {0} und R.

Beispiel 2. Die simtlichen Ideale des Ringes 3 sind unter den sidmtlichen
additiven Untergruppen {0} und 23 (» = 1,2,3, ...) von 3 zu finden (vgl.
§ 12.2). Alle diese Untergruppen sind aber, wie unmittelbar zu sehen ist,
bereits Ideale von 3. Alle Ideale von 3 sind also {0} und 28 (» = 1,2,3, ...).

Beispiel 3. Ein Schiefkorper S besitzt nur die Ideale {0} und 8. Ist nimlich
a c 8 ein von {0} verschiedenes Ideal, so gibt es ein a€ a, @ 3= 0, und in S
existiert das Inverse a~! von a. Nach (2) wird also a-la = 1 € a und nun auch
s = sl € q fiir jedes s € S.

Unser Ziel ist die Bestimmung aller homomorphen Bilder eines vorgelegten
Ringes R. Der folgende Satz schafft die Moglichkeit einer Anwendung von
Satz 19.2 (vgl. auch Satz 12.4).

Satz 2: Es sei R ein Ring und ,,=* eine Aquivalenzrelation auf R. Diese
Agquivalenzrelation ist genau dann eine Kongruenzrelation, wenn die Aquiva-
lenzklassen die Nebenklassen r + a eines Ideals a ¢ R sind. Dabet ist a die Menge
aller ac R mita = 0.
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Beweis:

a) Ist ,,=‘ eine Kongruenzrelation auf R, so wird durch sie nach Satz 12.4
eine Partition auf R definiert, die aus den Nebenklassen r 4+ a eines Normal-
teilers, also einer Untergruppe a der additiven Gruppe von R besteht. Dabei
besteht a aus allen @ € R mit @ = 0. Wir haben zu zeigen: Ausac ¢ und r € R
folgt ra € a und ar € a. Dazu multipliziere man die Kongruenzen a = 0 und
r = r. E8 wird dann ra = 0 und ar = 0, also ra € a und ar € a.

b) Die Nebenklassen r + a einer additiven Untergruppe a von R definieren
eine Partition, also eine Aquivalenzrelation ,,=* auf R; erst recht gilt dies,
falls a sogar ein Ideal ist. Nach Satz 8.2 lautet die Aquivalenzrelation:

=a < a—acaq.

Esseinuna =a’'und b = b'. Zu zeigenist a + b = a’ 4 b’ und ab = a'd’.
Mit FElementen oyea lauten die Voraussetzungen ¢ = a 4+ «; und
b = b + ag. Addition liefert @' +b = @ + b + ag, alsoa +b = a’ 4 b'.
Multiplikation ergibt a’d’ = ab + aaxg + b + ajaz = ab + a4, also
ab = a'b’; dabei wurden (2) und (1) benutzt.

Eine Kongruenzrelation ,,=* auf einem Ring R ist also durch die Angabe des
Ideals a c R aller Ringelemente r mit = 0 eindeutig bestimmt. Man schreibt
deshalb @ = @’ mod a, und das bedeutet a’ —a € a. Nur im Falle R =3
haben sich an Stelle von ¢ = o’ mod »3 die bereits in § 20.1 eingefiihrten
kiirzeren Schreibweisen eingebiirgert.
Es sei R ein Ring und g ein Ideal aus R. Wir denken an die additive Struktur
von R und bezeichnen die Menge {a,r + 4,8 + @, ...} der voneinander ver-
schiedenen unter den Nebenklassen von a wie in § 12 mit R/a. Nach Satz 2
entspricht R/a einer Aufteilung von R in Kongruenzklassen, und nach Satz
19.2 werden durch
(r4+a) + (s+0a) = (r+9) + o
(rta) + (s+4a)=1rs+ a

eine Addition und eine Multiplikation auf R/a erklirt; die Addition ist be-
reits aus § 12 bekannt. Da R/a aus den verschiedenen Kongruenzklassen modu-
lo a besteht, ist die algebraische Struktur R/a auf Grund von Satz 19.2 sogar
ein homomorphes Bild des Ringes R; der zugehérige Homomorphismus ist
definiert durch f(r) = r 4+ a. Nach Satz 1 ist also R/a ein Ring. Dies recht-
fertigt die

Definition: st a ein Ideal des Ringes R, so heifit Rla der Restklassenring
von R nach a.

Man rechnet in R/a wie in R und behandelt dabei Elemente aus a wie Null.
Auch bei der folgenden Definition denken wir in erster Linie an die additive
Struktur von R.

Definition: Unter dem Kern ¥ eines Ringhomomorphismus f von R auf R*
versteht man die Menge aller r € R mit f(r) = 0.

In Analogie zu Satz 12.2 steht nun der folgende Homomorphiesalz fir Ringe;
er besagt in der Hauptsache, daB mit den Restklassenringen E/a alle homomor-
phen Bilder von R gefunden sind.
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Satz 3: Es sei R ein Ring. Dann gelten die folgenden Aussagen.
a) Ist a ein Ideal von R, so ist der Restklassenring Rfa ein homomorphes Bild
von R. Der vermittelnde Homomorphismus | lautet f(r) = r + a.
b) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern ¥, so ist £ ein
Ideal von R.
c) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern ¥, so gilt
R* ~ R/[?. Der Isomorphismus ¢: R[t — R* lautet p(r + ¥) = f(r).
d) Ein Ringhomomorphismus f von R auf R* ist genau dann ein Isomorphismus,
wenn der Kern von f nur aus der Null allein besteht.

Beweis:
a) Das wurde bereits gezeigt.
b) Nach Satz 12.2 ist ? eine additive Untergruppe von R. Aus ke fund re R
folgt ferner f(rk) = f(r)f(k) =0, also rke¥l, und f(kr) = f(k)f(r) = 0, also
kretf
¢) Nach Satz2 und Satz 19.2 ist R* einem Restklassenring von Risomorph. Wir
bezeichnen ihn mit Rja. Der vermittelnde Isomorphismus ¢: R/a — B* war
o(r + a) = f(r). Dabei besteht a aus allen denjenigen Elementen k€ R, fiir
die f(k) = f(0) die Null von R* ist: ¢ = L.
d) Die Abbildung f ist genau dann bijektiv, wenn ihr Kern {0} ist.

Beispiel 1. Ein beliobiger Ring R hat R/{0} als isomorphes und den Nullring
R/R als homomorphes Bild.

Beispiel 2. Der Ring 3 hat 8/{0} als isomorphes Bild. Die samtlichen weiteren
homomorphen Bilder 3/»3 sind die Restklassenringe 3y.

Beispiel 3. Die einzigen homomorphen Bilder eines Schiefkérpers 8 sind
8/{0}, also S selbst, und der Nullring 8/8.

21.3 Wir beschlieBen unsere Uberlegungen mit dem Analogon zu Satz 14.2
fir Ringhomomorphismen; an Stelle der Normalteiler stehen jetzt die Ideale.

Satz 4: Es set f: R — R* ein Ringhomomorphismus von R auf R* mit dem
Kern 8, ferner M die Menge aller Ideale a von R mit  c a c R und weiterhin M*
die Menge aller Ideale a* von R*. Dann definiert p(a) = f(a) eine bijektive Ab-
bildung ¢: M — M*, und es ist p~1(a*) = f-1(a*).

Beweis: Betrachtet man zundchst f als einen Homomorphismus der
additiven Gruppen von R und R*, so bleibt iiber Satz 14.1 hinaus nur zu
zeigen, daB mit a c R auch f(a) und mit a* c R* auch f-1(a*) ein Ideal ist. Es
sei also zundchst a ein Ideal von R. Da sich jedes r* € R* in der Gestalt f(r)
mit einem r e R schreiben 1a8t, wird »*f(a) = f(r){(a) = f(ra) c {{a) und
flayr* = f(a)f(r) = f(ar) c f(a); also ist die additive Untergruppe f(a) von
R* sogar ein Ideal. Ist umgekehrt a* ein Ideal von R* und r € R, so werden
rf~1(a*) und f-1(a*)r durch f in a* abgebildet; also gilt rf-1(a*) c f~1(a*) und
f1(a*)r c f~1(a*), und auch die additive Untergruppe f~1(a*) von R ist sogar ein
Ideal.
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Aufgabe 1: Man bestimme alle homomorphen Bilder des Restklassen-
ringes 3,.
Aufgabe 2: Es seien F und a Ideale des Ringes R mit f c a c R. Dann
gilt

Beweis ?

Rja =~ (B[B)/(a[f).

§ 22 Einbettung von Integritdtsbereichen in Kérper

22,1 Die folgenden Uberlegungen stehen in deutlicher Analogie zu denen in
§13. Es sei ein Ring R gegeben. Wir fragen: Wann gibt es einen Schiefkorper
8 > R? Damit das moglich ist, muB sicher R nullteilerfrei sein, weil S keine
Nullteiler enthélt. Wieder kennt man Beispiele nichtkommutativer nullteiler-
freier Ringe, die eine Einbettung in Schiefkérper nicht gestatten; aber es gilt
der wichtige

Satz 1: Jeder Integrititsbereich I lafit sich in einen eindeutig bestimmien
kleinsten Oberkdrper Q, den Quotientenkorper von I, einbetten. Das heift: Zu
etnem vorgegebenen Integrititsbereich I gibt es einen Korper @ mit folgenden
Eigenschaften.

(1) o1

(2) Ist K ein Korper, der I umfapt, K >1,s0gilt K >Q > 1.

(3) Ist @ eitn Korper, der an Stelle von Q die Bedingungen (1) und (2) erfiillt,
sogilt Q' = Q.

Beweis: Angenommen, die Existenz eines Korpers @ mit den Eigen-
schaften (1) und (2) sei bereits bewiesen. Dann gilt gewil die Eindeutigkeits-
aussage (3). Denn fiir K = @’ bekommt man Q' > @, und analog wird umge-
kehrt @ > @', insgesamt also @' = Q. Zu zeigen bleibt also die Existenz eines
Korpers @ mit den Eigenschaften (1) und (2).

Wieder nehmen wir fiir den Augenblick an, es gdbe einen Korper K 5 I; dann
enthilt er speziell die Teilmenge

a
b
Mit den Bruchrechenregeln von Satz 20.5 priift man nach, daBl Ug ein Unter-
korper von K ist. Ist ferner U ein Unterkérper von K, der I umfaBt, so liegen
in U auch die Losungen der Gleichungen yb = a,a,bel, b & 0, und das
heifit U o Ug. In K ist also Ug der kleinste Unterkorper, der I umfaBt. Wiren
wir von einem anderen Korper K* 5 I ausgegangen und héitten entsprechend
Ug» gebildet, so brauchten wir wegen Ug ~ Uk« diese beiden Korper nicht
als verschieden anzusehen. Also ist Ug der zu konstruierende Korper @.
Unsere Konstruktion muf sich an den in Uk giiltigen Rechenregeln

Uk = {yy=—,a,becl,bs+0}>1.

a c
(4) "5‘ = E < ad = bc,
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a ¢ _ad+bc

(8) 5T d T Ted
a [ ac
© bd T b

orientieren (bd = 0).
Nun bilden wir das cartesische Produkt M = I x Iy & £ aller Paare (a, b)

mit a, b € I, b == 0, stellen uns unter (a, b) den Bruch % vor und definieren
4’) (@,b) ~ (c,d) < ad = be.

Das ist eine Aquivalenzrelation auf M ; der Nachweis erfolgt wie in Aufgabe
5.2 und benutzt die Kommutativitit und in Gestalt von Satz 20.2 die Null-
teilerfreiheit von I. Die Addition und die Multiplikation auf M werden durch

(5") (@, b) + (¢, d) = (ad + be, bd),
(6') (@, b) - (¢, d) = (ac, bd)

erklart; wegen b &= 0, d 3 0 und der Nullteilerfreiheit von I ist, wie es sein
muB, bd =+ 0. Die Aquivalenzrelation auf M wird nun eine Kongruenzrelation:
Aus (a, b) ~ (a’, b’} und (¢, d) ~ (¢, d"), also ab’=ba’ und cd’ =dc’, folgt, wie
man leicht bestétigt, (ad + bc)b’'d’ = bd(a’'d’ + b'¢’) und ach’'d’ = bda'c’,
also (a,b) + (¢c,d) ~ (a',b) + (¢',d') und (a, b) - (c,d) ~ (a’, b") - (¢/, d').

Es sei A die Menge der Korigruenzklassen von M und [a, b} die Klasse von
(a, b). Nach Satz 19.3 werden durch [a,bd] + [¢,d] = [ad + bc, bd] und
[@, b] - [¢,d] = [ac, bd] eine Addition und eine Multiplikation auf 4 erklart.
Wir wollen zeigen, daB A ein Korper ist. Zur Vereinfachung der dazu notigen
Rechnungen bemerken wir, da fir ¢ 4 0 gilt: [a, b] = [ac, bc]; es ist ja
(a, b) ~ (ac,bc). Man darf also in den Klassensymbolen erweitern oder
kiirzen. Ferner gibt es wenigstens ein he I, b & 0; dieses Element A sei im
folgenden fest gewéhlt. Bei der Addition dreier Klassen kann man wegen der
Méoglichkeit des Erweiterns annehmen, die zweiten Komponenten seien alle
dieselben, und bekommt so das Assoziativgesetz

([a’d] + [bad]) + [C,d] = [a’_l'b’ d] + [c7d] = [(a+b) +ec, d]
=[a+(®+e¢),d] = [a,d]+ [b+c d] = [a,d] + ([b,d] + [c, d]).

Die Addition ist auch kommutativ, [0, /] ist Nullelement und [—a, b] additives
Inverses von [a, b]. Die Multiplikation ist ersichtlich assoziativ und kommutativ.
Es gilt das Distributivgesetz

[a,d)[b,d] + [¢,d]) = [a,d]-[b+ ¢, d] = [ab + ac, d?]
= [ab: d2] + [ac’ dZ] = [a7 d] * [b’ d] + [a, d] - [e, d]

Einselement ist [k,kled. Es gilt [a, b] = [0, k] genau dann, wenn a = 0 ist;
eine von Null verschiedene Klasse [a, b] wird also durch a = 0 gekennzeichnet,
und sie besitzt dann das Inverse [b, a] € 4.
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In dem Korper A betrachten wir die Teilmenge 7' aller Klassen der Gestalt
[ah, k), a € I. Die Summe [ah, k] + [bh, k] = [(@ + b)k, k] und das Produkt
[ah, k] - [bk, k] = [abh, k] zweier Klassen aus 7' liegen wieder in 7. Die durch
@(@) = [ah, k] definierte Abbildung ¢: I - T erweist sich als bijektiv, und
die Gleichungen g(a@ + b) = [(a + b)h, k] = [ah, k] + [bk, B] = ¢(a) + ¢(b)
und @(a@b) = [abh,h] = [ah, k] [bh, k] = @(a)p(db) zeigen ihre Relations-
trene. Also gilt 7' ~ 1.

Wir ersetzen die Teilstruktur 7’ von A durch 7 und bekommen auf diese Weise
einen zu A isomorphen Kérper @ o I. Der Korper A besteht aus allen Klassen
[a, b] = [ah, k] - [k, bh] = [ah, k] - [bk, k]-1, also Q aus allen Elementen y

der Form ab-1 = %, b 3= 0. Es ist also @ der zu konstruierende Kérper, und

Satz 1 ist bewiesen.

22.2 In § 13 wurde aus der additiven Struktur N die additive Gruppe von 3
konstruiert. Auf der Teilmenge R c 3 ist nun nach Satz 2.1 auch eine Multi-
plikation erklart. Nach den Regeln von Satz 20.1 besteht hochstens eine Mog-
lichkeit, diese Multiplikation derart auf ganz 3 auszudehnen, da 3 ein Ring
wird. Umgekehrt: Definiert man die Multiplikation gemaB Satz 20.1 auf ganz
3, 80 kann man das Erfiilltsein des Assoziativ-, Kommutativ- und Distributiv-
gesetzes dieser zweiten Verkniipfung von 3 mit Hilfe von Satz 2.1 durch wenige
Fallunterscheidungen nachpriiffen. Damit ist der kommutative Ring 3 aus 0
konstruiert. Er enthilt keine Nullteiler; denn gidbe es von Null verschiedene
a, b mit ab = 0 in 3, so auch in N, was nicht der Fall ist. Nach Satz 1 besitzt
3 also einen Quotientenkérper; wir nennen ihn  und haben damit auch den
Korper £ der rationalen Zahlen aus 9t gewonnen.

Aufgabe 1: Es sei R ein kommutativer Ring und 8 ¢ R die Menge der
von Null verschiedenen Nichtnullteiler von R. Ist § & &, so 1dBt sich R in

den Quotientenring Rg aller %, re R, s e 8, einbetten; es gilt 1 € Rs. Beweis ?

Aufgabe 2: Es seien I} und I5 isomorphe Integrititsbereiche mit den
Quotientenkérpern'@y > I; und Qg > Iz. Man zeige, daB sich der Isomorphismus
f: I1 > I3 von I auf Iz zu einem Isomorphismus ¢: @1 - @2 von ¢ auf Q.
fortsetzen 1aBt. (Das heiBt: Es gibt einen Isomorphismus ¢ von @ auf ¢
mit ¢(a) = f(a) fir jedes a € I.)

§ 23 Der komplexe Zahlkérper €

23.1 In %N ist nach § 2 eine Addition erkléirt; aber die Gleichung @ + z = b
mit a, beN braucht keine Losung z €N zu haben. In § 13 haben wir die
fehlenden Loésungen hinzukonstruiert und dadurch die additive Gruppe von
3 gewonnen. Die ebenfalls nach § 2 auf N ¢ 3 zusitzlich erklarte Multipli-
kation lieB sich, wie wir gerade sahen, auf ganz 3 fortsetzen derart, daf 3 ein
Ring wird. Aber die Gleichung ax = b, a & 0, mit a, b € 3 war im allgemeinen
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in 3 nicht lésbar. In § 22 haben wir wiederum diese Losungen hinzukonstruiert
und £ erhalten.

Ist nun ein Korper K vorgelegt, so kann man fragen, ob in ihm die Gleichung
2% 4+ 1 = O losbar ist, ob es also ein Element ¢ € K mit 2 + 1 = 0 gibt. Ist
es vorhanden, so erfiillen wegen der Nullteilerfreiheit von K genau die Elemente
-+t die Gleichung 22 + 1 = 22 — 32 = (x + ¢)(x — ¢} = 0. Ist es nicht vor-
handen, so konstruieren wir wiederum einen eindeutig bestimmten minimalen
Oberkérper E o K, in dem die Gleichung 22 + 1 = 0 losbar wird.

Satz 1: Jeder Korper K lipt sich in einen eindeutig bestimmien kleinsten
Oberkiorper B > K einbelten, in dem die Gleichung 22 - 1 = 0 lésbar ist. Das
heifit: Zu etnem vorgegebenen Korper K gibt es einen Kirper B mit folgenden
Eigenschaften:

(I) E> K.

(2) Die Gleichung 22 + 1 = 0 besitzt in E eine Lisung.

(3) Ist L 5> K ein Korper, in dem die Gleichung 22 + 1 = 0 lésbar ist, so gilt
L>E>K.

(4) Ist E' ein Korper, der an Stelle von E die Bedingungen (1), (2), (3) erfillt,
sogit B' = K.

Beweis: Die Eindeutigkeitsaussage (4) ergibt sich wie in den Beweisen
der Sétze 13.1 und 22.1. Zu zeigen bleibt also die Existenz eines Korpers £ mit
den Eigenschaften (1), (2), (3). Ist die Gleichung 22 4- 1 = 0 schon in K 16s-
bar, so ist £ = K ; wir nehmen daher an, dal —1 in K kein Quadrat ist.

Angenommen, es gibt einen Korper L 5 K mit einer Losung ¢ € L der Gleichung
22 + 1 = 0; dann enthilt L die Teilmenge

Up=f{z:iz=a 4+ bi,a,bec K} oK,
und man priift leicht nach, da Uy ein Unterkorper von L ist. Speziell liegen
wegen
(5) @+ &) + (¢ + di) = (@ +¢) + (b + d,
(6) (@ + i) - (¢ + di) = (ac —bd) + (ad + be)

Summe und Produkt zweier Elemente aus Uy, wieder in U, und das Inverse
von a + b 5 0 wird, wie die Probe bestitigt, das Element

a

__° ieUr;
a® £ b a? + b2 L

dabei ist der Nenner a2 + b2 nicht Null, weil andernfalls a® = —b2 und b & 0,

2
also doch —1 = (%) € K in K Quadrat wire im Widerspruch zur Annahme.

Ferner gilt

(7) at+b =c+di < a=cund b=d;
a—¢
d—b

wire nimlich @ 4 b¢ = ¢ + df und b =+ d, so wiirde 7 = € K folgen, was
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gerade nicht der Fall war. Ist U ein Unterkorper von L, der K und ¢ umfaBt,
so gilt gewiB U > Uy. In L ist also Uy, der kleinste Korper mit Uz > K, in dem
die Gleichung 22 + 1 = 0 16sbar ist.

Hatten wir einen anderen Korper L* 5 K mit einer Losung ¢* € L* der Glei-
chung 22 + 1 = 0 zugrundegelegt, so wiirde

Up~Uts = {2¥:2* = a + bi*,a,be K}

gelten vermoge f(a + bi) = a + bi*. Also ist U der zu konstruierende Korper
E. Wieder ist auf Grund der Beziehungen (5), (6), (7) klar, wie wir in unserer
folgenden Konstruktion vorzugehen haben.

Wir bilden das cartesische Produkt M = K x K aller (a,b) mit a,be K;
intuitiv bedeute (a, b) die Zahl @ + bi. Unsere Voriiberlegung (7) hinsichtlich
der Gleichheit zweier solcher Zahlen zeigt, daB wir eine Aquivalenzrelation auf
M nicht einzufiihren haben. Wir definieren

(5 (@,8) + (c,d) = (@ + ¢, b+ d),
(6" (@, b)* (c,d) = (ac — bd, ad + be)

und bestdtigen in kurzen Rechnungen die Ringaxiome. Die Multiplikation ist
kommutativ, (1, 0) ist Einselement, und jedes (a, b) == (0, 0) hat in M ein
Inverses. Also ist M ein Korper. Jedes (@, b) € M liBt sich in der Gestalt
(a, b) = (a, 0) + (0: b) oder

(8) (a’ b) = (a’ 0) + (b’ 0) ’ (Ov 1)

schreiben; dabei ist (0, 1)2 = (—1, 0).
Nun kommen die Anderungen der Schreibweise. Die Teilstruktur

T = {(a,0): ac K}cM

ist isomorph K; man bilde dazu einfach (a, 0) auf a ab. In M ersetzen wir T
durch K und schreiben ¢ fiir (0, 1); dann entsteht ein Erweiterungskérper
E > K, dessen Elemente nach (8) die Gestalt @ 4- bt mit @, b € K und 12 = —1
haben. Damit ist der gesuchte Korper E konstruiert und Satz 1 bewiesen.

23.2 Aus K = X entsteht auf diese Weise der komplexe Zahlkérper £ = €.
Damit haben wir, von der Struktur 9 ausgehend, abgesehen von R alle Rechen-
bereiche 3,R, R, € konstruiert und ihre Widerspruchsfreiheit auf die von
zuriickgefiihrt. Die Konstruktion von X holen wir in § 32 nach.

23.3 Ist K ein Korper, in dem ein ¢ € K existiert, das die Gleichung 22 + 1 = 0
lost, so sind, wie wir bereits wissen, ¢ und —¢ die beiden einzigen Losungen von
22 4- 1 = 0. Sie fallen genau dann zusammen, ¢ = —¢, wenn (1 + 1yi = 0,
also y(K) = 2 ist, und in diesem Fall ist einfach ¢ = 1.

Von zahlentheoretischem Interesse ist die Frage, in welchen Primkorpern 3,
die Gleichung 22 4+ 1 = 0 16sbar ist. Durch Probieren stellt man beispielsweise
fest, dafl 22 4 1 = 0 in 3, lésbar, in 33 dagegen unlésbar ist. Die Antwort
gibt der
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Satz 2: Es sei p eine Primzahl. Genau dann ist die Gleichung 22 -1 = 0
tn 3p losbar, wenn p = 2 oder p = 1 (4) ist. Oder: Genau dann ist die Kongruenz
22 = —1(p) tn ganzen Zahlen x losbar, wenn p = 2 oder p eine Primzahl der
Gestalt 4n - 1 ist.

Beweis: Der Fall p = 2 ist bereits erledigt. Wir haben weiter zu zeigen,
daB die Gleichung 22 4-1 = O fiir eine Primzahl p der Form 4n + 1 in 8,
losbar, fiir eine Primzahl p der Form 4n + 3 dagegen in 3, unlosbar ist.
a) Es sei p = 4n 4 1. Wir sind fertig, wenn wir eine natiirliche Zahl m mit
m2 = —I1(p) angeben konnen. Nach Satz 20.6 gilt nun (p — 1)! = —1I mod p.
Hierin wird modulo p

(p—1)! = 1-2-+(2n)2n + 1)(2n + 2) - - - (4n)
=1-2---2n)2n+1—p)2n +2—1p)---(4n— D)
=12 2n)(—2n)(—2n—1))---(—1)
= (2n)!(2n)!.

Wir kénnen also m = (2n)! wahlen.
b) Es sei p = 4n + 3. Wir nehmen an, es gibe ein a € 3, mit a2 = —1, und
potenzieren mit der ungeraden Zahl % Das liefert a?-1 = —1. Sicher ist a

nicht Null, liegt demnach in der multiplikativen Gruppe von 3,, die aus
p — 1 Elementen besteht. Anwendung von Satz 9.4 ergibt also a?-1 = 1. Aus
beidem zusammen folgt 1 = —1, was wegen x(3p) = 3 nicht moglich ist.

Aufgabe 1: Es sei M die Menge aller Matrizen der Gestalt

(5) wsem

auf M seien die Matrizenaddition und die Matrizenmultiplikation eingefiihrt.
Man zeige M ~ €.

Aufgabe 2: Es sei K ein Korper, in dem kein Element « mit a2 = 2
existiert. Man konstruiere einen minimalen Oberkérper E > K, der ein solches
Element enthilt.

§ 24 Endomorphismenringe abelscher Gruppen

Es sei G@ = {a,b,¢, ...} eine additiv geschriebene abelsche Gruppe und
R = {a,f,y, ...} die Menge aller Endomorphismen von @, also die Menge
aller relationstreuen Abbildungen von G in sich (vgl. § 19). Da die identische
Abbildung ¢ in R liegt, ist R nicht leer. Mit «, f € R ist wegen ofi(a + b)
= a(f(a) + B(d)) = af(a) + «B(b) auch afcR, und diese Multiplikation ist
assoziativ nach Satz 3.1; sie besitzt das Einselement &.

Wir fithren nun auf R noch eine Addition ein. Dies geschieht, wie es fiir Funktio-
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nen iblich ist, durch die Festsetzung (¢ + f)}a) = a«(a) + f(a). Wir miissen
nur nachpriifen, daB mit «, § € R auch « 4+ § ein Endomorphismus ist:

(x+ Bla + b) = «la + b) + fla 4 b) = «la) + «(b) + fla) + B(b)
= «(a) + f(a) + «(b) + B(b) = (x + B)(@) + (x + B)®).

Hierbei haben wir die Kommutativitit von G benutzt. Aus der Assoziativitit
und der Kommutativitdt der Addition in @ folgen dieselben Eigenschaften fiir
die Addition in R. Nullelement in R ist der Endomorphismus o, der jedes g € @
auf die Null abbildet: Die fiir jedes « € R und jedes a € G giiltige Bezichung
(x + o)(@) = a(a) + 0 = afa) bedeutet ja a« + 0 = o fiir jedes x € R. Ist
schlieBlich « € R, so definieren wir —« € R durch (—a)(@) = —a(a); dabei ist
—o wegen (—a)(a@ + b) = —(x(a) + a(b)) = —a(b) — (@) = —ofa) — «(b)
= (—a){@) + (—a)(b) wieder ein Endomorphismus und a + (—a«) = o.

Um zu zeigen, daB R ein Ring ist, weisen wir noch die Distributivgesetze nach.
Es ist «(8 + )(@) = «(B(a) + y(a)) = aB(a) + ay(a) = (=B + ay)(a) fir jedes
a€@, also «f +y) = «f + ay, und entsprechend erbdlt man (8 + y)a
= fa - ya. Damit haben wir den

Satz 1: Die Menge R aller Endomorphismen einer (additiv geschricbenen)
abelschen Gruppe G ist (beziiglich der oben eingefiihrten Verkniipfungen) ein Ring,
der sogenannte Endomorphismenring von G.

Allgemeiner nennt man jeden Ring von Endomorphismen einen Endomorphis-
menring. Die Endomorphismenringe haben fiir die Theorie der Ringe eine
dhnliche Bedeutung wie die Transformationsgruppen fiir die Gruppentheorie.
Es ist nicht schwer, in Analogie zu Satz 7.2 zu zeigen, dall jeder Ring einem
Endomorphismenring isomorph ist. Man benutzt dabei das Ergebnis der

Aufgabe 1: Jeder Ring R 1iBt sich in einen Ring E mit Einselement ein-
betten. Beweis ?

§ 25 Polynomringe

25.1 Unter einem Polynom versteht man in der Algebra formal zwar dasselbe,
inhaltlich aber etwas anderes als in der Analysis. Das dndert indes nichts daran,
daB die spiter von uns gewonnenen Satze doch wieder eine bekannte Gestalt
annehmen. Wir beginnen mit der

Definition: Es seien R und B* > R kommutative Ringe mit demselben Eins-
element 1 € R. Es sei oo € R*. Dann heifst ein Ausdruck der Gestall

fla) = % Gy’ = Qo + apga® 14 ... +apeR* (aye R, a® =pfl)
r=0

ein Polynom in « mit Koeffizienten aus R. Die Menge aller Polynome in o mit
Koeffizienten aus R wird mit R[o] bezeichnet.

Hierzu machen wir zwei Bemerkungen. Erstens ist es in Anlehnung an die
Gepflogenheiten in der Analysis auch in der Algebra iiblich, etwa f(«) fiir ein
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Polynom in « zu schreiben, ohne daBl man damit f als ein Symbol fiir eine Ab-
bildung ansieht. Zweitens ist die zu Beginn der Definition ausgesprochene
Voraussetzung, etwas umstandlicher formuliert, die folgende: Es seien R und
R* 5 R kommutative Ringe mit Einselementen ¢ € R* und 1 € R, und es gelte
¢ = 1. Diese letzte Forderung ist, wie man durch Beispiele zeigen kann, nicht
von selbst erfiillt (vgl. hierzu die Losung von Aufgabe 24.1). Sollten aber R*
und R sogar Integrititsbereiche sein, so ist e = 1 beweisbar: Es ist ja 1(¢ — 1)
= le—1-1=1—1 = 0, wegen der Nullteilerfreiheit von R* also ¢ = 1.
Speziell bedeutet das: Ist L ein Oberkorper von K, 8o ist das Einselement von K
auch die Eins von L. Da nun 1 € R auch Eins von R* sein soll, kann man, und
das ist der Sinn dieser Forderung, in einem Polynom f(«) Koeffizienten 1 wie
gewohnt weglassen.

Es ist klar, daB unter den genannten Voraussetzungen R[«] ein kommutativer
Unterring von R* mit dem Einselement 1 ist. Es gilt ja

n m M
(1)  Say® + Sbhyat = et mits; = ay -+ byund M = Max(n, m),
0 0 [}

n m ntm N
2 ga,a" . %:bu“" = gpza‘ mit p; = aeby + a1ba1 + ... + asbo;

dabei haben wir @y, = b, = 0 gesetzt fiir» > » und ¢ > m. Das additive Inverse
—f(e) eines Polynoms f(a)e R[«] bekommt man, indem man alle Koeffizienten
von f(«) mit einem Minuszeichen versieht, und auch die Null ist ein Polynom.

Beispiel 1. Man withle R = 3, R* = R und « = |/2. Der Ring 3[]/2] ist dann,
da die geraden Potenzen von /2 Elemente aus 3 und die ungeraden Potenzen
Elemente der Gestalt m}/2, m € 3, liefern, der Ring aus § 20.1, Beispiel 4. Zwei
Polynome in « = J/2 mit Koeffizienten aus 3 konnen also dieselben sein, auch
wenn sie nicht koeffizientenweise tibereinstimmen.

Beispiel 2. Wihlen wir R = Q, R* = R und « = }/2, so bekommen wir den
Ring Q[}/2], der, wie wir in § 20.3, Beispiel 6, sahen, sogar ein Korper ist.

Beispiel 3. Es ist R[¢] = €.

Beispiel 4. Der Ring Q[}2] besteht genau aus allen reellen Zahlen der
Gestalt @ + b}2 + ¢(}2)2 mit @, b, ceQ.

25.2 Wir gehen wieder von einem kommutativen Ring R mit 1 € R aus und
stellen die Frage: Gibt es einen kommutativen Oberring R* mit demselben
Einselement, der ein Element x € R* enthalt, das die Bedingung

3) fix) = apx® 4 agy2* 14 ... +ap =0 < a =0

(@apeR; v = 0,1,2,...,n)
erfiillt ? Das Rechnen in dem Polynomring R[x] wire dann durch das Rechnen
in R und die Forderungen (3), (4), (5) vollstandig beschrieben.

Definition: Es set R ein kommutativer Ring, 1 € R, und R* ein Oberring von
R. Ein Element x € R* heifft Unbestimmte iiber R, wenn es die drei Bedingungen
(3), (4), (B) erfiillt:
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4@1lxz=z1=a,
() rz = xr fir jedes r € R.

Wir zeigen nun, daBl es zu jedem R eine solche Unbestimmte z iiber R, also
auch den Polynomring E[x], gibt.

Satz 1: Es set R ein kommutativer Ring und 1€ R. Dann existiert ein
kommutativer Oberring R[x] > R aller Polynome f(x) tn einer Unbestimmien x
iiber R mit Koeffizienten aus R. Er besitzt ebenfalls das Einselement 1.

Beweis: Die letzte Behauptung ist, falls die iibrigen bewiesen sind,
trivial. Wir fiihren nun wieder eines unserer Konstruktionsverfahren durch.
Mengentheoretisch gesichert ist die Existenz der Menge B> aller unendlichen
Folgen (rq, 71, 72, . ..) von Elementen r; aus R (§ 1.3). Wir konnten uns unter
der Folge (ro, 71, 72, - - - Tn, Tn+1, - - . ) das Polynom rpa® + rpqan-1 4 ... + 19
vorstellen, wenn alle r, mit » > n Null waren. Also betrachten wir die Teil-
menge M c R aller derjenigen Folgen (ag, @1, @2, ...), in denen nur endlich
viele a, ungleich Null sind. Aus dieser Menge M konstruieren wir R[x].

Wir fiilhren auf M nach dem Vorbild von (1) und (2) eine Addition und eine
Multiplikation durch

(1’) (a01a’1)a2: '-') + (bO’ bl’bzy "-) = (a0+ bO’a1+b1:a’2+b2) -")’

(2:) (aO’ a1, ‘_12) . --) '(bo, b1, b2’ . ') = (po, ", P2, .--)
mit p, = aghy + abaa + ... 4 asbo

ein; dabei hat man nachzupriifen, da die Ausdriicke rechter Hand wieder
Elemente von M sind. Wir iiberlegen uns jetzt, daB wir eine Aquivalenzrelation
auf M nicht einzufiihren brauchen: Zwei Polynome f(x) und g(x) sind genau
dann gleich, wenn ihr Differenzpolynom f(x) — g(x) Null ist; nach (3) bedeutet
das, daB f(z) und g(x) koeffizientenweise iibereinstimmen miissen. Also miiite M
bis auf die Schreibweise schon unser Ring R[x] sein.

Ersichtlich ist M beziiglich der Addition eine abelsche Gruppe, weil R es ist.
Ferner ist die Multiplikation kommutativ mit dem Einselement (1,0,0, ...)e M.
Rechnet man in

((aOyaly az, -‘-) '(bOy bl, b2, ---)) .(60’ Ct, C2, . '-) = (7'0,7‘1, r2, "')

die Komponente r; aus, so bekommt man
ra = 2(abs)er GC+i+k=2;

fiir den Fall, daB der zweite und der dritte Faktor linker Hand durch Klammern
zusammengefalt waren, bekommt man

= Sauben) G+ E =1

fiir die entsprechende Komponente des Ergebnisses. Es ist aber r; = r} wegen
der Assoziativitit der Multiplikation in R, die sich damit auf M ibertragt.
Eine letzte leichte Rechnung bestitigt noch das Distributivgesetz. Also ist M

ein kommutativer Ring mit Einselement.
Nun kommen wieder die Anderungen der Schreibweise. Zunichst liefert die
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Multiplikation eines Elements aus M mit 0,1,0,0,...)e M ein einfaches
Resultat:
(ao, a, az, .. ) . (0, 1, 0, 0, . ) = (0, ap, a1, az, .. )

Auflerdem stellt man sofort fest, daBl die Teilstruktur 7' = {(r, 0,0, ...): re R}
von M isomorph R ist. Schreibt man nun fiir ein Element (ag, a1, a2, ...) e M
mit a, = 0 fiir » > n die Summe

(a0, 01,02, ...) =(30,0,0, ...) + (0,a1,0,...)+ ... 4+(0,0,...,0,a,,0,...)
und setzt (0, 1,0, 0, ...) = z, so wird

(ap, m, @3, ...) =(a0,0,0,...) 4+ (21,0,0,...) x4+ ... + (@, 0,0, ...) - 2"

Nach der Ersetzung von 7' durch R bekommen also die Elemente (ag, a1, ag, - . .)
von M die Gestalt a,z® + apy2%~1 + ... -+ ag. Die Forderungen (3), (4), (5)
sind offensichtlich erfillt. Damit ist R[x] konstruiert und Satz 1 bewiesen.
Ziemlich selbstverstindlich ist nun der

Satz 2: Es seten B und R* 5> R kommutative Ringe mit demselben Eins-
element 1 € R; ferner sei x eine Unbestimmte iiber R und o ein Element von R*.
Dann wird durch @(f(x)) = [(o) esn Homomorphismus ¢ von R[x] auf Rla]
definiert; dieser Homomorphismus ist ein Isomorphismus genau dann, wenn auch
o etne Unbestimmte diber R 1ist.

Beweis: Die Abbildung ¢ ist surjektiv und sicher relationstreu, da man
in (1) und (2) statt o auch x schreiben kann. Sie vermittelt einen Isomorphismus
genau dann, wenn ihr Kern nur aus der Null allein besteht ; das bedeutet aber:
es gilt (3) mit « an Stelle von «, oder « ist Unbestimmte iiber R.

Die am héufigsten benutzte Konsequenz von Satz 2 ist der

Satz 3 (Ersetzungssatz): Es seien R und R* > R kommutative Ringe mit dem-
selben Einselement 1 € R; ferner sei x eine Unbestimmie diber R und « ein Element
von R*. Dann geht eine auf den Verkniipfungen von R[x] beruhende Identitit
tn R[z] in eine Identitdt in R* diber, wenn in thr x durch « ersetzt wird.

Beweis: Man wende den Homomorphismus ¢ von Satz 2 auf die be-
trachtete Identitdt aus R[x] an.
Dieser Satz, der von vornherein klar ist, ist von groBer Bedeutung; wir werden
ihn oft benutzen.

25.3 Wir unterbrechen unsere Ausfiithrungen durch einige Verabredungen und
unmittelbar einsichtige Aussagen.

Sind R und R* 5> R kommutative Ringe mit demselben Einselement 1 e R
und ist « ein Element aus R*, so ist R[a] der kleinste Ring, der R und a umfaBt;
das gilt natiirlich auch fiir den Spezialfall, daB « eine Unbestimmte iiber R ist.
Man sagt auch, R[«] entsteht aus R durch Ringadjunktion von «. Sind x und y
Unbestimmte iiber R, so gilt R{x] ~ R[y] nach Satz 2. Ist x eine Unbestimmte
iiber R*, so ist R[x] ein Unterring von B*[z].

Hat f(x) € R[x] die Gestalt f(x) = apz® + ap12®1 4 ... + ap mit a, $ 0,
so heifit a, der hochste Koeffizient und ag das absolute Glied von f(x). Ein

7 Hornfeck, Algebra
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Polynom f(z) heilt normiert, wenn sein hochster Koeffizient Eins ist. Buch-
staben wie z,y, ... werden vorwiegend fiir Ringerweiterungen durch Un-
bestimmte verwandt. Statt f(z), g(x) € R[x] schreibt man oft auch nur f,ge R[z].
Spricht man von Polynomen iiber B, so meint man Polynome aus R[xz].

Fiir das Rechnen im Polynomring E[x] weisen wir noch einmal auf die Unter-
schiede zur Analysis hin. Polynome sind keine Funktionen. Ein Polynom
f(x) € B[x] in einer Unbestimmten z ist nach (3) nur Null, wenn es das Nullpoly-
nom 0 e R ist. Zwei Polynome f(x), g(x) € R{x] stimmen ebenfalls nach (3)
genau dann itberein, wenn sie koeffizientenweise iibereinstimmen. Hierauf
beruht die Methode des Koeffizientenvergleichs.

SchlieBlich gibt es auch Polynomringe ohne Einselement. Man betrachte etwa
in 3[x] den Unterring 23[x] aller Polynome mit geraden ganzen Zahlen als
Koeffizienten (vgl. auch in diesem Zusammenhang die Aufgabe 24.1).

25.4 Wir kommen zu einer weiteren

Definition: Es sei R[x] der Polynomring einer Unbestimmten x iiber R. Das
Polynom f(x) € R[zx] habe die Gestalt f(z) = apa®™ + apz®-1 + ... 4 ap mit
an & 0. Dann heift n der Grad von f(z).

Die von Null verschiedenen Elemente aus R sind also Polynome vom Grad Null;
fir das Nullpolynom ist kein Grad definiert. Polynome vom Grad Eins be-
zeichnet man auch als lineare Polynome.

Sind f(z), g(z) und f(z) + g(x) von Null verschiedene Polynome aus R[x], so gilt

(6) Grad (f(z) + g(z)) =< Max(Grad f(z), Grad g(z)).
Ist f(z)g(x) nicht Null, so bekommt man
(7 Grad (f(z)g(x)) < Grad f(z) + Grad g(z),

und in dieser letzten Beziehung steht jedenfalls dann das Gleichheitszeichen,
wenn R sogar ein Integritdatsbereich ist.

Im AnschluB hieran stellen wir noch fest: Ist I ein Integritatsbereich mit
Einselement, so ist auch I[z] ein Integritdtsbereich mit Einselement.

25.5 Wieder gehen wir von einem kommutativen Ring R mit Einselement aus;
z sei eine Unbestimmte iiber B. Dann ist auch R[x] ein kommutativer Ring mit
Einselenrent; y sei eine Unbestimmte iiber R[x]. Man sieht, daB3 y erst recht
Unbestimmte iiber R ist. Aber auch x bleibt Unbestimmte iiber R[y], wie eine
indirekte Uberlegung sogleich zeigt. Sowohl R{x][y] als auch R[y][x] bestehen
aus denselben Elementen, nimlich Summen von Ausdriicken der Gestalt rzmyn
(reR,m =20,n =0). Also gilt R[z][y] = R[y][x], und man schreibt kurz
Riz, yl.

Sind a, 8 beliebige Elemente eines kommutativen Oberringes R* 5 R mit dem-
selben Einselement 1 € R, so gilt entsprechend R[«][f] = R[f][«], und man
schreibt wieder einfach R[«, §]. Entsprechend bekommt man durch Adjunktion
der Elemente ay, a3, . . ., 2y € R* die Ringerweiterung R[oy, a2, .. ., #s] von R.
Sollten die a; simtlich Unbestimmte iiber R[«, as, ..., %-1] sein, so spricht
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man von unabhingigen Unbestimmten und schreibt etwas suggestiver etwa x;
statt 4. Die Elemente von R[a1, a2, . . ., ay] sind Summen von Elementen der
Gestalt raf'a?* ... o (re R, 0; = 0).

Natiirlich gelten die Verallgemeinerungen der Sitze 2 und 3; wir formulieren
nur die letztere.

Satz 4: Es seien B und R* > R kommutative Ringe mit demselben Eins-

element 1 € R; ferner seien x1, 2, . . ., x, unabhingige Unbestimmte iiber R und
o1, %2, . . ., Xy Blemente von R*. Dann geht eine auf den Verkniipfungen von
Rz, g, . .., x,] beruhende Identitit in Rlx1, xo, . . ., xn] tn eine Identitdt in R*

iiber, wenn in thr die x; durch die oy ersetzt werden.

Da man in den Multiplikationsformeln (2) und (5) Elemente aus R kommutativ
mit « multipliziert, wird der Ersetzungssatz natiirlich falsch, wenn man auf
die Kommutativitit von R* verzichtet.

SchlieBlich greifen wir noch einmal unsere letzte Feststellung im obigen Ab-
schnitt 4 auf. Thre wiederholte Anwendung fithrt zu dem

Satz 5: Sind 21, X3, . . ., x, unabhingige Unbestimmite iiber dem Inlegritits-
bereich I mit Einselement, so ist auch I[x1, 3, . .., 23] ein Integrititsbereich mait
Einselement.

25.6 Ein wichtiges Hilfsmittel in der Theorie der Polynomringe ist der be-
reits aus der Schule bekannte Divisionsalgorithmus. Dabei gehen wir von einem
Polynomring K[x] iiber einem Korper K aus, wihlen f(x), g(x) € K[z}, g(z) = 0,
und behaupten: Es gibt ein g(x) € K[x] und ein r(x) € K[x], so dag

f@) = qlz)g(x) + r(z)

wird, wobei entweder r(x) = 0 oder Grad r(x) < Grad g(x) ist.

Der Beweis wird durch das ibliche Verfahren geliefert, das Polynom f(x) mit
Rest durch das Polynom g(z) = 0 zu dividieren; es ist unverindert durchfiihr-
bar, weil die Quotienten der Koeffizienten beliebiger Polynome aus K[x] mit
dem hochsten Koeffizienten von g(z) wieder in K liegen. Das kann man auch
in einen Induktionsbeweis nach dem Grad von f(x)} umschreiben: Fiir f(z) = 0
ist die Behauptung mit ¢(x) = r(z) = O richtig. Fir Grad f(x) = 0 wahle man
g(z) = 0 und r(z) = f(z), falls Grad g(z) > 0 ist; bei Grad g(z) = 0 leisten

qx) = % € K und r(x) = 0 das Verlangte. Sowohl fiir f(x) = 0 als auch fir

Grad f(z) = 0 ist die Behauptung also richtig. Sie sei ferner fiir beliebige
Polynome f(x) von einem Grad kleiner als n und alle g(x) = bpa™ + by _jam-1
+ ... 4+ bg, by = 0, bereits bewiesen. Ist dann f(x) = apa® + ap—127-1 4 ...
-+ ag, an & 0, so konnen zwei Fille eintreten. Bei n << m wihle man einfach
g(x) = 0 und r(z) = f(x). Ist n = m, so wird flx) = gfx"-mg(z) + h(z) mit
m
einem k(x) € K[z}, das entweder Null ist (und in diesem Fall ist man fertig)
oder einen Grad =< » —1 hat, also nach Voraussetzung in der Gestalt h(x)
= g*(x)g9(x) + r(x) mit r{(x) =0 oder Grad r(z) < Grad g(x) geschrieben

7
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werden kann; das lefert dann aber f(x) = ¢(x)g(x) + r(x) mit g(z) = ——x”""

+ g*(z) € K[x], womit der Induktionsbeweis abgeschlossen ist. Es gllt also
der

Satz 6: Es sei K ein Korper, f(x), g(x) € K{x] und g(z) == 0. Dann existieren
q(x), r(z) € K[x] mit f(x) = q(x)g(x) + r(x), wobei entweder r(z) =0 oder
Grad r(x) < Grad g(z) ist.

Zusatz: Ist g(z) normiert, der hochste Koeffizient also Eins, so kann in der
Voraussetzung von Satz 6 der Korper K durch einen kommutativen Ring R

mit Einselement ersetzt werden, weil in diesem Fall von selbst & B~ = an € Rist.
m
Aufgabe 1: Am Beispiel des Endomorphismenringes R der additiven
Gruppe von Q[x] zeige man: Es gibt Ringe R mit Elementen » € R, die unend-
lich viele Rechtsinverse, aber kein Linksinverses besitzen. (Vgl. Aufgabe 20.6,
Aussage ¢).)

Aufgabe 2: Es sei R ein kommutativer Ring mit Einselement. Man

00
konstruiere den Ring R(z) aller formalen Potenzreihen 3 a,x?, ay€ R.
v=0

§ 26 Nulistelien von Polynomen

26.1 Wir betrachten wieder den Polynomring R[x] iiber einem kommutativen
Ring R mit 1 € R und einen kommutativen Oberring R* 5> R mit demselben
Einselement; « sei ein Element aus R* und f(x) € R[z]. Dann heiit « Nullstelle
von f(z) in R*, wenn dort f(a) = 0 gilt.

Beispiel 1. Das Polynom 22— 4 € 3[x] hat die Nullstellen 4+2€3; das
Polynom 22 — 2 € 3[x] hat die Nullstellen +}2eR >3 und 22 4 1€ 3([x]
die Nullstellen 1€ €>3.

Beispiel 2. Nach Satz 23.2 hat das Polynom xz2 + 1 € 33[x] keine Nullstelle
im Koeffizientenkérper 33. Aber nach Satz 23.1 existiert ein kleinster Ober-
korper E 0 33, in dem 22 4 1 eine Nullstelle besitzt. Die Konstruktion im
Beweis von Satz 23.1 zeigt noch, daB3 [E| = 9 ist.

Uber die Nullstellen von Polynomen gelten einige ebenso einfache wie wichtige
Sitze. Eine Konsequenz des Zusatzes zu Satz 25.6 ist zundchst der

Satz 1: Es sei R ein kommutativer Ring mit Einselement, f(x) € R{x] und
« € R eine Nullstelle von f(x). Dann gilt f(x) = q(z) * (x— a) mit einem q(x) € R[x].

Beweis: Esist jedenfalls f(z) = q(z)(x — «) + r(x) mit einem r(z) € R[x],
dasentweder verschwindet oderden Grad Null hat. Das hei8t f(x) = ¢(x)(x—a)+r
mit einem festen r € R. Ersetzen wir x durch «, so folgt r = 0.
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Hieraus wiederum ergibt sich der

Satz 2: Es sei I ein Inlegrititsbereich mit Einselement und f(x) € I[x] ein
Polynom vom Grad n. Dann hat f(x) in I héchstens n Nullstellen.
Bemerkung: Das Polynom f(z) hat also in keinem Integrititsbereich I* 51
mit dem gemeinsamen Einselement 1 € I mehr als » Nullstellen, da ja auch
f(z) € I*[x] gilt.

Beweis von Satz 2: Hat f(x) die Nullstelle «; € I, so gilt nach Satz 1
zundchst f(x) = (r — a1)qi(x) mit einem ¢i(x) € I[x]. Hat gi(z) die Nullstelle
o € I, wobei die Moglichkeit s = oy nicht ausgeschlossen ist, so wird weiter
f(®) = (x — a1)(x — a2)ge(x) mit einem go(x) € I[x]. Dieses Zerlegungsverfah-
ren werde fortgesetzt; es bricht etwa nach m Schritten ab:

fx) = (€ — )@ — ag) ... (x — am)gm(x).

Dabei sind die ; nicht notwendig verschiedene Nullstellen von f(x) in I, und
gm(z) hat keine Nullstelle in I. Mehr als diese m Nulistellen «; hat f(x) in I
nicht; denn setzt man eine beliebige Nullstelle x €l von f(x) in die hingeschrie-
bene Zerlegung ein, so mufl wegen der Nuliteilerfreiheit von I wenigstens
einer der Faktoren « — oy verschwinden. Aus m = = folgt also die Behauptung.

Satz 2 bleibt demnach richtig, wenn mehrfach auftretende Nullstellen ihrer
Vielfachheit entsprechend gezdhlt werden. Wir sagen in Zukunft, f(z) € I[x]
habe die (genau) k-fache Nullstelle o € I, wenn f(x) = (x — a)¥g(x) mit einem
q(x) € I[z], g(«) = 0, gilt. Die Zahl k£ = 0 ist definiert, weil I[x] ein Integritats-
bereich ist. Fiir das Nullpolynom wird der Begriff der Vielfachheit einer Null-
stelle nicht erklirt. Satz 2 wird falsch, wenn die Nullteilerfreiheit des Koeffi-
zientenringes nicht vorausgesetzt wird. Hierzu sehe man das

Beispiel 3. Das Polynom f(x) = 23 — x € 3¢[x] hat alle sechs Elemente
von 3¢ als Nullstellen.

Von vielfiltigem praktischen Nutzen ist schlieBlich der
Satz 3: Eine Nullstelle « € Q des normierten Polynoms
flx) = 2* 4 ag12" 1 4 ... 4 ag € 3[z]
18t eine ganze Zahl und Teiler von ag.
Beweis: Ohne Beschrinkung der Allgemeinheit sei n =1, ag &= 0 und
a = %, seM, re 3, (r,s) = 1. Multiplikation von /(%) = 0 mit s» liefert r»

+ apart-ls + ... + aps® = 0 oder r* = ks mit einem ke 3. Die natiir-
liche Zahl s teilt 77, hat aber keinen Primteiler mit r gemeinsam, muf} also
Eins sein. Daher ist « die ganze Zahl r, und aus 7(r*-1 4 ap_1r*-2 4 ... + a3)
= —ay ist zu sehen, daB ag durch r teilbar ist.

Als rationalzahlige Nullstellen des ganzzahligen normierten Polynoms
2% 4+ 2 4+ 2 kommen also nur 4-1 und 42 in Frage; demnach ist —1 die ein-
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zige Nullstelle von 25 4~ x + 2 in Q. Das Polynom #3 — « 4 2 hat iiberhaupt
keine Nullstelle in {.

Man sieht leicht, daB man Satz 3 auch zur Bestimmung der rationalzahligen
Nullstellen nicht normierter ganzzahliger Polynome verwenden kann (Auf-
gabe 1). Daraus ergibt sich schlieBlich auch seine Anwendbarkeit bei der
Suche nach allen rationalzahligen Nullstellen eines Polynoms f(x) € Q{z], das
man ja nach Multiplikation mit dem Hauptnenner der Koeffizienten durch ein
ganzzahliges Polynom ersetzen kann.

26.2 Im folgenden erkliren wir in kommutativen Ringen mit Einselement
eine formale Differentialrechnung.

Definition: Es sei R ein kommulativer Ring mit Elementen a,b, ... und
1 € R. Eine Abbildung D: R — R heifit eine Derivation oder Ableitung von R,
wenn ste die beiden folgenden Bedingungen erfiillt:
(2) D(a + b) = D{a) + D(b),
(2) D(ab) = aD(b) + bD(a).

Satz 4: Es sei R ein kommulativer Ring mit Einselement und D eine Dert-
vation von R. Dann ist D(0) = D(1) = 0, D{(—a) = —D(a), und fiir jedes
a € R und jedes n € N gilt D(a®) = na?-1D(a).

Beweis: Aus D(0) = D0 + 0) = D(0) + D(0) folgt D(0) = 0. Ferner
wird D(1) = D(1-1) =1-D(1) + 1 - D(1) = D(1) 4+ D(1), also D(1) = 0. Es
ist 0 = D(0) = D(a + (—a)) = D(a) 4+ D(—a) und damit D(—a) = —D(a).
Die letzte Behauptung ergibt sich durch vollstindige Induktion nach n.

Fir Polynomringe betrachten wir nun eine spezielle, bereits aus der Analysis
bekannte Ableitung.

Satz 5: Es sei R ein kommutativer Ring mit Einselement und R[x] der Poly-
nomring in etner Unbestimmten x iiber R. Dann wird durch

Dife)) = D( 3 an) =

eine Ablettung D: R[x] - R[x] definiert.
Beweis: Sofort zu sehen ist D(f + g) = D(f) + D(g). Ferner gilt
D(a;x* - byx?) = D(azbyx?*?) = (1 + v)arbri+r-1 = acrD(bya?)+byax?Diasz?).

n
vt =pr f(@)
1

y=

Zusammen mit (1) folgt hieraus noch
m n
D(fg) = D(Sazxt- Tha?) = D(AZa;,xl - bx?) = AZD(a;x" - byx?)
0 0 X7 %7
= Yax*D(byx?) + JhyarDiaxer) = SaxrD(3byx?) + SbyxrD(Sasxr?)
Ay Ay a v v A

oder D(fg) = fD(g) + gD(f), also (2).
Der folgende Satz wird oft gebraucht.

Satz 6: Es sei I ein Integrititsbereich mit Einselement und n eine natiir-
liche Zahl. Dann gelten die folgenden Aussagen.
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a) Hat f(x) € I[x] die genau n-fache Nullstelle x € I, so hat entweder f'(x) die
mindestens (n — 1)-fache Nullstelle « € I, oder f'(x) ist das Nullpolynom. Ist zu-
sdtzlich die Charakteristik y(I) = 0, so hat f'(x) die genau (n — 1)-fache Null-
stelle a.

b) Ist f(z) € I[z], f(x} =0, e € I und f(e) = f'(a) = 0, s0 ist « mindestens zwei-
fache Nullstelle von f(x).

Beweis:
a) Unsere Voraussetzung ist f(x) = (x — a)?q(x), g(x) € I[x], g(e) & 0. Fiir
eine beliebige Derivation D: I[x] — I{z] liefern (2) und die letzte Aussage von

Satz 4
D(f(x)) = (x — a)"D(g(x)) + q(x)D{(x — a)")
(@ — «)*D(q(x)) + n(z — «)*1q(z)D(x — «);
nach Satz 5 wird also speziell
f') = (& — a)*(x — a)g'(x) + ng(x)].

Hieraus folgen die aufgestellten Behauptungen. Fiir y(I) = 0 ist ja ng(x) &= 0,
und die eckige Klammer kann dann an der Stelle « nicht verschwinden.

b) Aus f(z) = (& — @)g(@), g(2) € I[], folgt f'(z) = (x— x)g'(@) + g(x). Das
liefert mit f'(a) = 0 auch ¢(x) =0 und somit ¢g(z) = (xr — a)g(x), g(x) € I[x}.
Also wird f(z) = (z — x)%g().

Folgerung: Die Nullstelle x € I von f(x) € I[x] ist genau dann einfach,
wenn f'(a) == 0 ist.

Aufgabe 1: Man bestimme alle rationalzahligen Nullstellen von
a) x5 — 221 4 323 — 622 + 22 — 4,
b) 323 — 222 4 6z — 4,

c) %ﬁ—x" + 22 4 2x — 1.
Aufgabe 2: Es sei p eine Primzahl. Zeige: In 3,[x] gilt

I

22—z = JJ (x—a)
ael;

Wie folgt daraus die WiLsonsche Kongruenz (Satz 20.6) ¢

Aufgabe 3: Auf dem Integritatsbereich I sei eine Ableitung D definiert.
Man zeige, daB sich D auf genau eine Weise auf den Quotientenkdrper @ von I
fortsetzen 1aBt: Es gibt genau eine Ableitung D* von @ mit D*(a) = D(a)
fiir jedes a € 1.

Aufgabe 4: Es sei p eine Primzahl. Man zeige: Die Kongruenz
™ + ap12" 14 ... +ap = Omod p (a4 € 3, pran)
hat hochstens » modulo p inkongruente Losungen « € 3.

Aufgabe 5: Ist « = a4 bic€(a,beR) Nullstelle des Polynoms
f(x) € R[x] mit reellen Koeffizienten, so auch die konjugiert-komplexe Zahl
a = a— bi. Beweis ?
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§ 27 Korpererweiterungen

27.1 Wir beginnen mit der

Definition: Es sei K ein Korper. Eine Korpererweiterung oder ein Erweite-
rungskorper E von K ist ein Oberkérper E > K von K.

Es sei nun E eine Korpererweiterung von K. Dann gibt es in E und in K je
ein Einselement, und diese Einselemente sind identisch, weil £ ein Integritéits-
bereich ist (§ 25.1). Also ist auch K[z] ein Unterring von E[x] (§ 25.3).

Definition: Es sei E eine Korpererweiterung von K und « ein Element von
E. Wenn es ein vom Nullpolynom verschiedenes f(x) € K[x] mit f(e) = O gibt,
80 heift « algebraisch iiber K, andernfalls transzendent iiber K.
Hiernach ist also eine Grofle « genau dann algebraisch iiber dem Koérper K,
wenn zweierlei gilt: Es gibt einen Erweiterungskérper E von K, der « enthalt,
und es existiert ein f(x) € K[x], f(x) == 0, mit « als Nullstelle. Speziell ist jedes
a € K algebraisch iiber K. Die Zahlen }/2 und ¢ sind algebraisch iiber Q.
Nach § 25.2 konnen wir ferner sagen: Ist o transzendent (Transzendente) iiber
K, so ist o eine Unbestimmte iiber K. Hiervon gilt auch die Umkehrung, weil
eine Unbestimmte x iiber K Element des Quotientenkorpers £ von K[x] und
E eine Korpererweiterung von K ist. Eine Transzendente iiber einem Korper
K ist also dasselbe wie eine Unbestimmte iiber K.

27.2 Wir verabreden nun eine stindig auftretende Schreibweise.

Definition: Es seien I und I* 51 Integrititsbereiche mit demselben Eins-
element und ay, ag, . .., ey Elemente aus I*. Dann bezeichnen wir den Quotienten-
korper von I[oa, op, .. ., ag] mit I{a, az, ..., o).

Wir bemerken dazu, daB I[ay, ag, ..., op] C I* ein Integritdtsbereich ist; der
f

Korper I(oq, ag, ..., o) existiert also. Er besteht aus allen Briichen 4 mit

frg9€I[o1, o2, ..., ), g &= 0. Speziell kénnen die «; unabhiéngige Unbe-
stimmte iiber I sein.

Den Ubergang von I zu I[oy, az, . . ., @] bezeichnet man als Ringadjunktion,
den von I zu I(ay, as, ..., o) als Kérperadjunktion von «y, as, ..., @p. Er-
sichtlich ist I{as, a2, ..., ay) der kleinste Korper, der I und die Elemente

a1, %z, . .., &y enthdlt; deshalb sagt man auch, er werde iiber I von den Ele-
menten ay, ag, ..., op erzeugt. Aus den folgenden Beispielen sieht man unter
anderem, daB Ringadjunktion und Kérperadjunktion zu demselben Ergebnis
fithren kénnen.

Beispiel 1. Es sei « eine Unbestimmte iliber dem Korper K. Dann gilt
K[x] c K(x), aber K[x] == K(x); denn x € K[x] besitzt in K[z] kein Inverses.
Beispiel 2. Es ist Q[}/2] = Q(}/2) (vgl. § 25.1 und § 20.3, Beispiel 6). Analog
gilt Q[V3] = Q(V3), Q] = QE), R[¢] = RE) = €.

Beispiel 3. Wir zeigen ()2, 3) = Q(}2 + V/3). Zunichst ist Q(}2 + }3)
der kleinste Korper, der  und }/2 + /3 enthélt; da auch der Korper 2(}/2, |/3)
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das Element }/2 + }/3 und ganz Q enthalt, folgt 22, }/3) >2(}2 + }/3). Um-
gekehrt ist Q(]/2, J/3) der kleinste Korper, der Q und die Elemente /2, |/3 ent-
halt. Wenn wir nachweisen konnen, da8 /2 und |/3 Elemente von ()2 + }/3)
sind, so folgt entsprechend 2(}/2, |/3) cQ(}2 + }/3) und damit insgesamt die
behauptete Gleichheit. Es gilt aber (2 4 |/3)2 = 5 + 2)6eQ()2 + |/3),
also auch J/8 e Q(J2+]3) und folglich }6(}2+13) = 3)2+2)3 eQ(J2+]3);
Subtraktion von 2(}2 + |/3) e Q(J2 + |/3) zeigt |2 €eQ(}2 + }/3), und damit
wird zuletzt auch (J2 + V3) — J2 = V3 ()2 + 3).

Spéter wird sich zeigen: Ist o algebraisch iiber K, so gilt K[«] = K(x) (§ 53).
In Beispiel 2 sind einige einfache Spezialfille dieser Aussage notiert. In Bei-
spiel 3 hat sich gezeigt, daB eine von zwei Elementen erzeugte Erweiterung
auch von einem einzigen Element erzeugt werden konnte. Auch hierauf
kommen wir noch zuriick (§ 61).

Im Anschlufl an die oben gegebene Definition machen wir schlieBlich noch eine
Bemerkung: Ist @ der Quotientenkorper von I, so gilt I(ou, ag, ..., an)
= o, a2, ..., xy). Die Elemente rechter Hand sind ja Quotienten von
Polynomen in den oy mit Koeffizienten aus @; erweitert man mit dem Haupt-
nenner aller dieser Koeffizienten, so ergeben sich Elemente aus I{oq, ag, . . ., az).
Also ist Q(oa, ag, - .., ap) C I(ag, &g, ..., &5), und die umgekehrte Enthalten-
seinsbeziehung folgt aus @ > 1.

27.3 Im folgenden betrachten wir ein Element «, das algebraisch iiber einem
Korper X ist.

Satz 1: Es sei « algebraisch iiber K. Dann existiert ein Polynom f(x) € K[x]
mit folgenden Eigenschaften.
(1) f(x) tst normiert.
(2) Es st f(a) = O.
(3) Ist g(x) € K[x] und Grad g(x) < Grad f(x), so gilt g(a) = 0.
(4) Hat f*(x) € K[z] die Eigenschafter (1), (2), (3), so gilt f*¥(x) = f(x).

Beweis: Die Menge der vom Nullpolynom verschiedenen Polynome aus
K[x] mit « als Nullstelle ist nach Definition von « nicht leer. Unter ihnen gibt
es ein Polynom h(z) = auz" + ap—12®-1 + ... 4+ ag, ap == 0, kleinsten Grades
n > 0, so daB fir jedes g(z) € K[x] mit Grad g(z) < Grad A(x) gilt: g(e) & 0.

Das Polynom f(z) = aih(x) € K[x] hat dann, weil h(ax) = 0 war, die Eigen-
n

schaften (1), (2), (3). SchlieSlich hat das Polynom d(x) = f(x) — f*(x) auch
die Nullstelle «; einen kleineren Grad als f(x) kann es nach (3) nicht haben;
andrerseits hat d(z) keinen Grad groBer oder gleich », weil f(x) und f*(x) nor-
mierte Polynome vom Grad » sind; also ist d(x) das Nullpolynom (das nach
unserer Definition aus § 25.4 keinen Grad hat), und es folgt f*(x) = f(x).

Die Eindeutigkeitsaussage (4) berechtigt zu der folgenden

Definition: Es sei o algebraisch iber dem Korper K. Dann heift das Poly-
nom f(x) aus Satz 1 das Minimalpolynom oder das definierende Polynom von «
tiber K,
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Weiter setzen wir das Folgende fest.

Definition: Es sei I ein Integrititsbereich mit Einselement, f(x) € I[x] und
Grad f(x) = 1. Dann heift f(x) irreduzibel dber I oder irreduzibel in I[x), wenn
aus f(x) = g(x)h(x) mit g(x), k(z) € I[x] folgt: Entweder g(x) oder h(z) ist ein
Element von I.

Ein iber I irreduzibles f(x) € I[x] 148t sich also héchstens durch Ausklammern
eines Elementes aus I in Faktoren aus I[x] zerlegen; andernfalls nennen wir
f(x)in I{z] oder iiber I reduzibel. Von besonderem praktischen Interesse ist nun der

Satz 2: Es sei o algebraisch iiber K. Dann gelten die folgenden Aussagen.
a) Das Minimalpolynom f(x) von o iber K ist irreduzibel in K[z).
b) Hat das Polynom P(x) € K[x] die Eigenschaften (1), (2) und ist es in K[x]
trreduzibel, so ist es das Minimalpolynom f(x) von « iiber K.

Beweis:

a) Das Element « liegt in einem Erweiterungskérper E von K. Angenommen,
es gibe Polynome g(x), k(z)c K[xr] mindestens vom Grad Eins mit
f(z) = g(x)h(z). Dann wird Satz 25.3 anwendbar; er liefert g(a)h{a) = f(a) = 0.
Das Produkt g(«)h(«) ist in E nur Null, wenn einer der Faktoren verschwindet;;
da die Grade von g(zx) und A(z) kleiner sind als Grad f(z), liefert das einen
Widerspruch zu (3).

b) Wir dividieren P(x) mit Rest durch f(z). Nach Satz 25.6 gibt es Polynome

¢(@), () € K[z] mit
P@) = ¢@)(=) + r(a),

wobei entweder Grad r(z) << Grad f(x) oder r(x) = 0 ist. Ersetzt man = durch
o, 80 bekommt man r{e) = 0; nach (3) muB also r(x) das Nullpolynom sein. Da
f(z) mindestens den Grad Eins hat und P(z) iiber K irreduzibel ist, muB weiter
¢(z) ein Element von K sein. SchlieBlich sind P(x) und f(z) normiert; also ist
sogar ¢(z) = 1 und damit P(x) = f(z).
Dieser Satz gibt Veranlassung zu der

Definition: Es sei o algebraisch iiber dem Korper K. Dann bezeichnen wir
das Minimalpolynom f(x) € K{x] von « iiber K mit f(x) = Irr (x, K). Wir sagen,
« set algebraisch vom Grad n iiber K, wenn Grad Irr (x, K) = = ist.

Ist beispielsweise « € K, so wird Irr (x, K) = 2 — a; dann ist also « algebra-
isch vom Grad Eins iiber K. Zur Bestimmung von Minimalpolynomen stiitzt
man sich in der Regel auf Satz 2. Wir betrachten einige einfache Beispiele.

Beispiel 4. Es sei « = }/2 und K = R. Dann gilt Irr (J2, R) = 2—)2 e R[=z].

Beispiel 5. Es sei « = |/2 und K = Q. Das Polynom P(z) = 22 — 2 e Q[z]
hat dann die Eigenschaften (1), (2). Es ist ferner in Q(z) irreduzibel. Um das
zu zeigen, nehmen wir fiir den Augenblick das Gegenteil an. Dann gibe es
Polynome g(x), h(z) e Q[z] mit P(z) = g(z)k(z) und Grad g(x) =1, und wir
diirfen ohne Beschriankung der Allgemeinheit zusitzlich annehmen, g(x) sei
bereits normiert: g(x) = x — a, a €Q. Das ganzzahlige normierte Polynom
P(z) = 22 — 2 hitte demnach die Nullstelle a € Q. Aus Satz 26.3 folgh sogar
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a € 3 und a|2; aber die Zahlen 41 und 42 sind keine Nullstellen von 22 — 2.
Die Annahme, P(z) sei in Q[z] reduzibel, war also falsch, und Satz 2 liefert nun
Irr (J2,9) = 22— 2.

Beispiel 6. Nach dem Muster von Beispiel 5 sieht man ohne Rechnung
Irr (J3,Q) = 22—3 und Irr(jy2,Q) = #3 —2. Analog wird Irr (i, Q)
= Irr (5, R) = 22 + 1, weil 22 4 1 keine reelle Nullstelle hat.

Beispiel 7. Es sei a = 1/%(1 +¢) und K =. Wegen af = —1 hat das

Polynom P(z) = z* + 1 eQ[x] die Eigenschaften (1), (2); wir behaupten
Irr («,Q) = 2% + 1 und miissen dazu noch zeigen, daB z% + 1 irreduzibel
iiber Q ist. Wie in Beispiel 5 sieht man, dafl 24 4 1 keinen Faktor g(z) € Q[z]
vom Grad Eins haben kann. Wir mtissen also noch nachweisen, daB auch eine
Zerlegung
zt + 1 = (22 + ax + b)(x2 + cx + d) (a,b,c,def)

in quadratische Faktoren aus [x] unmoéglich ist. Ausmultiplikation der
Klammern rechter Hand und Koeffizientenvergleich ergibt zunichst ¢ = —a
und, da b = 0 ist, d =%. Das fiilirt weiter auf a? = b + %und%—ab =0
oder die moglichen Zerlegungen

e | (22 + 7) (22 —19)

(22 4+ )22 + )22 — 2z + 1)

(2 + ¢)/2x — 1)(22 — i 2z — 1);

doch die Faktoren liegen nicht in Q[z]. Also ist 2% 4 1 irreduzibel iiber  und
Irr (¢, Q) = 2% + 1. Aber beispielsweise wird ¢ + 1 reduzibel iber Q(]/2)
oder R und Irr («, Q()/2)) = Irr(x,R) = 22— 2x + 1; die Zahl « ist also
algebraisch vom Grad 4 iiber Q und algebraisch vom Grad 2 iber Q(}2)
oder K.

27.4 Es fallt nicht leicht, ein r € R anzugeben, das transzendent iiber Q ist.
Gibt es derartige reelle Zahlen iiberhaupt ? Diese Frage kann im AnschluB} an
den folgenden Satz beantwortet werden.

Satz 3: Es sei R ein kommutativer Ring mit Einselement. Ist R abzihlbar,
80 ist es auch der Polynomring R[x].
Beweis: Es sei R abzdhlbar und M; die Menge aller Polynome f(z) € R[x]
oo

vom Grad k (k = 0). Wir zeigen die Abzahlbarkeit von M = U M}; das ist

k=0
R[z] ohne das Nullpolynom. Nach Satz 4.2 geniigt es zu zeigen, daBl jedes My
abzihlbar ist. Bezeichnen wir wieder mit Ry die Menge R ohne die Null, so
1iBt sich aber M; eineindeutig auf Ry x B x R x ... x R (k + 1 Faktoren)
abbilden, und dieses cartesische Produkt ist nach Satz 4.1 abzdhlbar, weil
jeder der Faktoren es ist.

Als Beispiel betrachte man etwa den Fall R = : Die Menge aller Polynome
mit rationalen Koeffizienten ist abzahlbar.
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Wir kommen nun auf die oben gestellte Frage zuriick. Spricht man von trans-
zendenten Zahlen schlechthin, so meint man in der Regel die reellen Zahlen r,
die transzendent iiber  sind. Die Menge aller dieser Zahlen sei B, und es sei
A die Menge aller iiber R algebraischen r€®. Dann ist An B = ¢ und
AuB = R. Nun ist die Menge Q[x] aller rationalzahligen Polynome abzihl-
bar; jedes einzelne von ihnen hat nach der Bemerkung zu Satz 26.2 héchstens
endlich viele, eventuell gar keine Nullstellen in R; die Menge A aller dieser
Nullstellen ist demnach ebenfalls abzéhlbar. Da ® = A u B nicht abzihlbar
ist (§ 4), kann also B weder endlich noch abzihlbar sein. Damit ist die Existenz
iiberabzihlbar vieler transzendenter Zahlen r nachgewiesen, ohne daBl wir in
der Lage sind, eine einzige von jhnen explizit anzugeben. Die Transzendenz
etwa von e und = wird in der Zahlentheorie gezeigt.

Zuletzt notieren wir noch eine Konsequenz von Satz 3.

Satz 4: Der Korper K sei hochstens abzihlbar. Dann ist auch jede endlich
erzeugte Erweiterung K(&1, &, . . ., &) hochstens abzdihlbar.

Beweis: Es geniigt, K(&1, &, ..., &) abzuzdhlen unter der Annahme,
K sei abzdhlbar und die Erzeugenden &, &3, .. ., &, seien unabhingige Unbe-
stimmte iber K. Mehrfache Anwendung von Satz 3 zeigt zunichst die Ab-
zahlbarkeit von K{&, &, ..., &) Dann lassen sich aber nach dem Vorbild
des Abzéhlbarkeitsbeweises fur  auch die Elemente des Quotientenkérpers
K(&, &, ..., &) nach dem Paarschema abzédhlen (§ 4).

Aufgabe 1: Essei K ein Korper. Man zeige: Mit « ist auch a2 algebraisch
iiber K und umgekehrt.

Aufgabe 2: Zeige, daB }/2 + }/3 + }/5 algebraisch iiber Q ist.

Aufgabe 3: Es sei d eine ganze Zahl. Man zeige:
a) Es ist Q[)d] = Q(J/d). 3 B
b) Ist |/d ¢Q, so wird durch ¢(a@ 4 b)/d) = a— b}/d ein Automorphismus ¢
von ()/d) definiert (a, b e Q).

Aufgabe 4: Es sei d eine ganze Zahl. Man zeige: Die Menge @ aller von
Null verschiedenen Zahlen der Gestalt 22 + dy? (z, y €) ist eine multiplika-
tive Untergruppe von .

Aufgabe 5: Man zeige:
a) Es ist Q()2, J3) = Q[}2, J3].
b) Der Korper Q(]/2, }/3) besteht aus allen reellen Zahlen der Gestalt

a+b)2+c)3+d)8  (abcdeR)

Aufgabe 6: Man gebe fiinf Zwischenkérper K mit  c K c ()2 + |/3)
an.
Aufgabe 7: Man bestimme
a) Irr (3 + }/3,9),
b) Irr (3 — /3, Q),
c) Irr (J2 + |3, 9),
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d) Irr (42 + 1,9),
e) Irr (72 + 1,2(J2).
Aufgabe 8: Man lose noch einmal den Teil b) von Aufgabe 20.9.
Aufgabe 9: Fiir welche a € 3 ist 4 + ax? + 1 reduzibel iiber  ?

§ 28* Halbgruppenringe

28.1 Fiir das Folgende erinnern wir uns wieder an die Einfiihrung des Ringes
R[x] aller Polynome in einer Unbestimmten z {iber dem kommutativen Ring
R mit dem Einselement 1. In anderer Formulierung lautet Satz 25.1: Es seien
ein kommutativer Ring R mit dem Einselement 1 und eine multiplikativ ge-
schriebene Halbgruppe der Gestalt H = {e, x, 22,23, ... } mit dem Eins-
element e vorgelegt. Dann gibt es einen eindeutig bestimmten kleinsten Ober-
ring R[H] von R, der auch H als Teilstruktur und wiederum 1 als Einselement
enthilt und in dem die Rechenregeln

) rihy+rehs+ ... b =0 o n=ro= ... =1 =0
(rv€ B, hye H, hy == by fiir ¢ &),
2) th = hrfirallerc R, he H

erfiillt sind.
Es ist nimlich R[H] = R[z). Das Element e von H findet sich in R[x] in der
Gestalt 1, und die Bedingungen (1), (2) stehen an Stelle der Bedingungen (3),
(5) aus § 25. Die Bedingung (4) aus § 25 steckt bereits in der Forderung, daB
R und R[H] dasselbe Einselement haben sollen. Die Bezelchnung R[H] soll
andeuten: Man hat ganz H zu R adjungiert.
Es seien nun wieder R ein kommutativer Ring mit dem Einselement 1 und
diesmal H eine beliebige multiplikativ geschriebene Halbgruppe mit dem Eins-
element e. Unsere Frage lautet: Gibt es auch unter diesen schwéicheren Vor-
aussetzungen iiber H einen kleinsten Oberring von R, der H als Teilstruktur
und 1 als Einselement enthilt und in dem gemé&8 (1) und (2) gerechnet wird ?
Wenn wir sie mit ja beantworten und zeigen konnen, dal dieser Oberring ein-
deutig bestimmt ist, so diirfen wir ihn etwa mit R[H] bezeichnen; er heiBt der
von R und H erzeugte Halbgruppenring.
Wie friiher bei dhnlichen Fragestellungen (vgl. etwa § 13) wollen wir zundchst
annehmen, daf} es wenigstens einen Oberring S von R mit dem Einselement 1
gibt, der H als Teilstruktur enthilt und in dem die Bedingungen (1), (2) er-
fillt sind. Wir betrachten dann die Teilmenge T c S aller endlichen Summen
der Gestalt r1hy + rohe + ... + rmbm (ry€ R, hy€ H, by == by fiir ¢ 5 ) und
zeigen, da 7' ein Unterring von 8 ist. Wahlen wir zwei Elemente aus T', so
konnen wir annehmen, daB sie aus denselben %; zusammengesetzt sind ; durch
Hinzufiigen endlich vieler Summanden der Gestalt Ok; 148t sich das immer
erreichen. Aus
(3) (rba + rehe + . ..+ rmhm) + (riky + r2h2 + ...+ 1hm)
=Mn+ma+(rz+rhe+ ... + 0w+ ro)m
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ist nun zu sehen, daB T' beziiglich der Addition eine abelsche Gruppe ist; sie
hat das Nullelement Oe, und das additive Inverse von rihy+rehe--. . . +rphimeT
ist (—r1)h + (—redhe + ... + (—7m)hm. Auch das Produkt zweier Elemente
von T wird auf Grund von {2) wieder ein Element von 7. Wir bekommen

(4a) (rh1 + roha + ... + rmhp)(ribs + rohe + ... F rRbg) = hz r(h)h:
eM

hierin ist M die Menge aller Produkte %:; und

(4b) r(h) = Zrir,

wobei iiber alle Indexpaare (¢, j) summiert wird, fiir die hsh; = h ist. Das Asso-
ziativgesetz der Multiplikation und die Distributivgesetze gelten in 8, also
erst recht in 7.

Der Ring T besteht aus allen endlichen Summen der Gestalt

(5) rk1 + rehe + ... + Tmbym (rve R, by H, by =+ by fiir ¢ 3 7).

Wihlt man m =1 und 1, = 1, so sicht man T > H. Fir m =1 und b = ¢
bekommt man eine Teilmenge R* von 7', von der man sofort sieht, da} sie ein
isomorphes Bild des Ringes R ist; wir diirfen deshalb nach einer Ersetzung
von R* durch R auch sagen: T 5 R. Ist andrerseits U c S ein Unterring von
S, der H und R umfaBt, so muf er alle Elemente der Gestalt 7k (r € R, b € H)
und damit auch alle Summen (5) enthalten: 7' c U. In 8 ist also T der kleinste
Unterring, der R und H enthélt; die Eins aus R ist Einselement auch von 7'.
Wiiren wir statt von 8 von einem anderen Oberring 8* von R ausgegangen,
in dem die Bedingungen (1), (2) erfiillt sind und der 1 als Einselement und H
als Teilstruktur enthélt, so wiirde fiir den analog 7' erklirten Unterring 7*
von S gelten: T* = T. Dabei benutzt man (1) in der Form

(6) rkitrobot ... +rmhm = ribatrihot. .. Frpkhn < rp=r, (v=12,...,m).

Wiillten wir also die Existenz von T (oder auch nur die von 8), so wire alles
bewiesen, und wir kénnten sagen: Dies ist der eindeutig bestimmte kleinste
Oberring R{H] von R mit 1 als Einselement und H als Teilstruktur, in dem die
Rechenregeln (1) und (2) gelten. Wegen der Gestalt (5) der Elemente von
R[H] nennt man R[H] auch den Halbgruppenring iber H mit Koeffizienten aus
R.

Satz 1: Es sei B ein kommulativer Ring mit dem Einselement 1 und H eine
multiplikativ geschriebene Halbgruppe mit dem Einselement e. Dann existiert der
Halbgruppenring R[H). Er umfaft R und H, enthdlt 1 als Einselement und
besteht aus allen Elementen der Gestalt (5). Man rechnet in thm nach den Regeln
(6), (3), (4).

Spezialfall: Ist H kommutativ, so ist R[H] ein kommutativer Ring. Ist
eine Unbestimmte iiber R und H = {e, z, 22, 23, ...}, so gilt R[H] = R[z].

Beweis von Satz 1: Wir konstruieren R[H] = T. Wir bemerken, daB
sich das Konstruktionsverfahren aus dem Beweis von Satz 25.1 nicht iiber-
tragen laft, da H nicht notwendig abzéhlbar zu sein braucht. Statt dessen
gehen wir von einer gewissen Menge von Abbildungen f: H - R aus und
haben dabei die Vorstellung, daf}l etwa dem Element r1k;y + rahs + r3hg aus T'
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die Abbildung f: H - R mit f(k) = r1, f(ks) =r2, f(ha) = rs und f(h) = 0 fiir
alle anderen & € H entsprechen mége. Es sei also A die Menge aller derjenigen
Abbildungen f: H - R, fir die nur an endlich vielen Stellen A € H das Bild
f(k) == 0 ist. Auf A erkliren wir eine Addition und eine Multiplikation nach
den Vorbildern (3) und (4). Es sei fiir f,ge 4

(39 (f + 9)h) = f(h) 4 g(h) fiir alle he H;

auf diese Weise ist die Summe f + g € 4 erklirt, und A wird eine abelsche
Gruppe beziiglich dieser Addition. Das Produkt von f,g € 4 im Sinn von § 3
ist gar nicht definiert; wir bezeichnen unser Produkt deshalb mit fog und
erklaren es durch

#) (fog)h) = 2f(hi)g(hy) fir alle h € H,

wobei iiber alle diejenigen Indexpaare (¢, §) summiert wird, fiir die kh; = A
ist. Da f(k;) und g(hs) nur jeweils endlich oft ungleich Null sind, steht rechter
Hand in (4’) eine endliche Summe, also ein Element aus R; aus dem gleichen
Grunde fillt auBerdem diese Summe nur fiir endlich viele 2 von Null verschie-
den aus. Das Produkt f o g der Elemente f, g von A4 liegt also wieder in 4. Die
so erklarte Multiplikation ist assoziativ, weil die Multiplikation in R es ist.
Analog priift man die Distributivgesetze nach. Also ist A ein Ring. Er enthalt
ein Einselement, nimlich die durch

ele) =1,e(h) =0fiirallehe H, h ¢

definierte Abbildung ¢ € 4.

Setzt man die Existenz des oben betrachteten Ringes T fiir den Augenblick
voraus, so gilt gewil 4 ~ T'. So haben wir die Konstruktion von 4 ja einge-
richtet. Das bedeutet, dall wir nur noch die Schreibweise der Elemente von A
éindern miissen, um 7' = R[H] zu erhalten. Unser Beweis ist abgeschlossen.

28.2 Es sei wieder R ein kommutativer Ring mit Einselement. Beispiele fiir
Halbgruppenringe sind dann etwa die Polynomringe R[x], R[x, y]; zu R[x, y]
gehort die Halbgruppe H aller Zmy™, m = 0, n = 0. Ein Halbgruppenring ist
auch der Ring R[x), %3, 3, ...] in abzéihlbar vielen unabhingigen Unbestimm-
ten z; iber R.

§ 29* Der Quaternionenschiefkérper

29.1 Es sei G die Quaternionengruppe (vgl. § 18). Den in § 23 konstruierten
komplexen Zahlkorper € = R[¢] konnte man auch wie folgt beschreiben: Er
ist der eindeutig bestimmte kleinste Oberkorper von R, der auch das Element
t € G enthélt; dabei tritt als Verkniipfungsergebnis von 32 die reelle Zahl —1
an die Stelle des Elementes —1 € G.

Geht man von dieser etwas willkiirlichen Deutung des Korpers € aus, so kann
man auch die Frage aufwerfen, ob man nicht in d4hnlicher Weise die Elemente
t, §, k aus G zu R adjungieren kann. Zwar wiirde wegen ¢j == ji die Multipli-
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kation in der betreffenden Oberstruktur von R nicht mehr kommutativ aus-
fallen; aber vielleicht liefe sich auf diese Weise der Korper R der reellen Zahlen
in einen Schiefkorper einbetten. Es ist etwas iiberraschend, da dies in der
Tat moglich ist. Die frither getroffene Wahl fiir die Bezeichnungen der Ele-
mente von G erweist sich im folgenden noch einmal als besonders suggestiv.
Wir nehmen zunéchst wieder an, es gibe einen Schiefkorper S, der &R als Teil-
struktur und auBerdem die Elemente ¢, §, k € G enthilt. Etwa die Multiplika-
tionsvorschriften 12 = —1 und ¢¢ = —j bedeuten in S: Es ist 2 das additive
Inverse von 1 € 8 und ¢k das additive Inverse von j € 8. Die Einselemente von
S und R stimmen nach § 25.1 von selbst iiberein. In Analogie zu §28, (2), moge
fiir die Multiplikation in § aulerdem noch

1) rs = ¢sr firallereR,se 8

gelten. In 8 betrachten wir nun die Teilmenge 7 aller Elemente der Gestalt

(2) a+bi+cj+ dk (@,b,c,deR; 1,4, ke ).
Die Formel
3) (a1 + azi 4 agj + aqk) 4 (br + bat 4 bgj - bak)

= (a1 + b1) + (a2 + bo)i + (a3 + b3)j + (aa + Do)k

fiir die Summe zweier Elemente aus 7' zeigt, dafl 7 eine abelsche Gruppe be-
ziiglich der Addition ist. Die Multiplikation zweier Elemente von T' fiihrt
wegen (1) auf

4) (@ +bi +cj + dk)s + 8t + uj + vk) = (as — bt — cu — dv)
+ (at + bs + cv — du)e
4+ (au + cs + dt — bv))
+ (av -+ ds + bu — ct)k.

Also ist T' ein Unterring von 8 mit dem Einselement 1. Das Assoziativgesetz
der Multiplikation und die Distributivgesetze gelten in S und damit erst recht
in T'; sie lassen sich aber auch leicht direkt nachpriifen. Tut man das, so be-
nutzt man beim assoziativen Gesetz die Assoziativitdt der Multiplikation in
der Quaternionengruppe G.

Der durch die Gestalt (2) seiner Elemente eindeutig bestimmte Ring 7' umfaBBt
R und die Elemente ¢, j, k£ aus G, und er ist der kleinste Ring dieser Art, in dem
die Multiplikationsvorschrift (1) gilt. Wir zeigen, daB 7' sogar ein Schiefkorper
ist. Dazu sei « = a + b1 4 ¢j + dk ein Element aus 7', dessen Koeffizienten

a, b, ¢, d nicht simtlich verschwinden, und @ = ¢ — bi — ¢j — dk. Mit
(4) folgt
ax = aa = a+ b2 + ¢ + d? = 0;
also ist
ol = 1 xeT

a® - b2 + ¢ | d2

das Inverse des von Null verschiedenen Elements « von 7'. Der Nachweis,
daB T ein Schiefkoérper ist, ist erbracht. AuBerdem folgt, daf « nur Null sein
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kann, wenn alle Koeffizienten verschwinden; gleichwertig damit ist

(5) ay + agt + agj + ask = by + bot + bgj 4 bak <= a, = b,
¢ =1,23,4;a, b,eR).

Wieder bleibt die Frage nach der Existenz der Struktur 7', und wieder kénnen
wir auf eine uns inzwischen geldufige Weise eine bejahende Antwort geben.
Wir bilden die Menge M = R4 aller Quadrupel (a, b, ¢, d) mit Komponenten
aus R, stellen uns unter ihnen die Elemente (2) vor und definieren eine Addition
und eine Multiplikation auf M nach den Vorbildern (3) und (4). Eine Aquivalenz-
relation brauchen wir wegen (5) auf M nicht einzufiibren. Es folgt der Nach-
weis, daB M ein Schiefkorper ist; abgesehen von der Bezeichnung der Ele-
mente handelt es sich um den zu konstruierenden Schiefkorper 7'. Wir fiithren
die einzelnen Schritte, die nach dem in § 23 gegebenen Muster ablaufen, nicht
mehr durch.

29.2 Diesen Schiefkorper, der aus allen Elementen der Gestalt (2) besteht und
in dem nach den Regeln (3), (4) und (5) gerechnet wird, bezeichnen wir in
Zukunft mit §; seine Elemente nennt man Quaternionen. Der Name Quater-
nionen stammt von dem englischen Mathematiker W. R. HamruroN (1805 —
1865); er hat sich ausfithrlich mit ihnen beschiftigt, nachdem schon Eurer
(1707—1783) mit ihnen gerechnet hatte. Der Quaternionenschiefkérper hat
in verschiedenen Disziplinen der Mathematik eine gewisse Bedeutung erlangt;
Anwendungen des Rechnens mit Quaternionen finden sich auch in der Mecha-
nik (vgl. BLascHKE [4]). Wir kommen im Rahmen der Algebra in § 55 noch
einmal auf den Schiefkorper ) zuriick, der dann eine interessante axiomatische
Beschreibung erfihrt.

Ist « = a + bt 4+ ¢j + dk ein Element von £, so nennt man

a =a—bl—cj—dke®
die zu a konjugierte Quaternion und die reelle Zahl
N(a) = ax = a® + B + ¢ 4 d?
die Norm von a. Fiir sie gilt
(6) N@N@B) = Nep) (. Be9).
Zum Beweis rechilen wir die linke Seite von (6) aus. Zunichst wird
N(@)N(B) = (aax)(8f) = «ff)x = (af)(fx); dabei wurde neben der Asso-

ziativitat der Multiplikation die Vertauschbarkeit der reellen Zahl 8 mit
a € ) benutzt. Nun gilt weiter

() of = Ba (@, Bef),

wie man nach (4) feststellt. Also bekommen wir N(«)N(f) = «f(fz) = afaf
= N(«ff), wie es in (6) behauptet war.

Der Schiefkorper § kann auch durch Adjunktion von j e G zu € gewonnen
werden. Dies siecht man, wenn man die Quaternion « = a + b + ¢j + dk.in

8 Hornfeck, Algebra
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der Gestalt « = a 4 bi + (¢ + di)j = a1 + agj schreibt (x; € €, j ¢ €). Es
gltRc€ch.

29.3 Ist K ein Korper, so gibt es nach Satz 26.2 hiochstens zwei Elemente &
in K mit der Eigenschaft &2 4 1 = 0. Aber schon fiir den Quaternionenschief-
korper §, in dem 43, +7, +k fiir £ gewdhlt werden konnen, ist das nicht
mehr richtig. Eben auf Grund von Satz 26.2 (vgl. auch § 23) ist es von vorn-
herein unmaoglich, ein j ¢ € mit der Eigenschaft j2 = —1 zu € zu adjungieren
mit dem Ziel, einen Oberkorper von € zu erhalten. Man kann zwar $ als die
Menge aller ) + agj (a1, 2 € €) auffassen, hat aber auf die Kommutativitat
der Multiplikation in § verzichtet.

Als Beispiel fiir das Rechnen in § zeigen wir noch die Existenz sogar unend-
lich vieler « € § mit a2 + 1 = 0. Wird ndmlich die Gleichung a&2-}-bé+4-¢c = 0
{a,b, c eR) durch x € H geldst: aa? + ba + ¢ = 0, so auch durch jede Qua-
ternion faf-1 (8 € H, == 0); denn es gilt

Blac?+batc)ft = afu?p-14-bfafl4c = alfuf)2-+b(fapl)+c = O.
Demnach ist etwa

NP N 21 2
(r + )k +9) = r—ilr +9) = 5 +rz4r—1

9'2—i—1z

r24+1

fiir jedes r € R eine Losung der Gleichung 2+ 1 = 0.

29.4 Wir betrachten fiir den Augenblick den Ring 3[}/—d], wobei d eine ganze
Zahl und }—d ¢ 3 sein soll. Ist « = a + b)/—d (a, b € 3) ein Element von
3[J—d], so setzen wir & = a —bJ/—d und bezeichnen die reelle Zahl
N(x) = ax = a? + db? als die Norm von «. Auch fiir diese Norm gilt

(6') N(@)N(B) = N(«p) (o, B € 3[Y—d).
Um das nachzurechnen, beachten wir die Giiltigkeit von
(7') af = af (o, B &€ 3[Y—4)).

Diese Beziehung rechnet man leicht direkt nach; sie gilt deswegen, weil wie
in Aufgabe 27.3 durch @(«) = @ ein Automorphismus von 3[}/—d] definiert
wird. Mit Hilfe von (7') wird dann N(«)N(8) = axpf = afaf = afaf = N(«f),
wie es in (6') behauptet war.

Schreibt man die Gleichung (6') mit « = a + b)—d und g = s + t|/—d
aus (a, b, 8, t € ), so lautet sie

(8) (@* + db?)(s® + dif) = (as — bid)? + d(at + bs)*.

Das ist eine Identitdt, deren Giiltigkeit man nachtriglich fiir jeden kommu-
tativen Ring bestitigt. Sie wird in der Zahlentheorie gebraucht (vgl. auch
Aufgabe 27.4). Speziell beruht der Fall ¢ = 1 auf dem Rechnen in 3[¢] oder €.

Das Produkt von Zahlen der Form 22 4 dy?2 hat-also wieder diese Gestalt. Eine
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ahnliche Aussage liefert (6). Ausgeschrieben bekommt man nach (4) die Vier-
quadrateformel

(@ + b2 4 ¢ 4 d?)(s® + 2 + u2 4 ¢?) = (as — bt — cu — dv)2
+ (at 4 bs + cv — du)?
+ (au + cs + dt — bv)?
+ (av + ds + bu — ct)?,

die sich wieder in jedem kommutativen Ring als richtig erweist. Wenn man
zeigen kann, und dies geschieht in der Zahlentheorie, daB sich jede Primzahl als
Summe von vier Quadraten aus 3 schreiben 1d8t, so liefert die aufgeschriebene
Formel den berilhmten Satz von LacrangEe (1736—1813), daB sich jedes
Produkt von Primzahlen, also jede natiirliche Zahl, als Summe von vier
Quadraten aus 3 darstellen 1a(t.

§ 30" Duale Zahlen

Eine sogenannte duale Zakl hat die Gestalt @ 4 be; dabei sind a, b reelle
Zahlen, und es gilt 2 = 0:

(1) a14ae="b+4be - a=2b (v = 1,2;ay,b,eR),
(2) (a1 + aze) + (b + boe) = (a1 + b1) + (a2 + be)e,
3) (@1 + age) * (by + bee) = aiby + (a1be + aohi)e.

Diese Forderungen definieren den kommutativen Ring D der dualen Zahlen.
Wir verzichten auf seine Konstruktion aus der Menge M = %2 nach dem
Vorbild von § 23.

Man sieht: Genau die Elemente der Gestalt re (r e R, r == 0) sind Nullteiler in
D. Das Rechnen mit dualen Zahlen gestattet hiibsche Anwendungen in der
Geometrie, die auf den deutschen Mathematiker E. Stupy (1862—1930) zu-
riickgehen (vgl. BLAsCHKE [4]).

§ 31 Angeordnete Ringe

31.1 In den Ringen 3,Q, R kann man sagen, ein gewisses Element sei positiv
oder groBer als ein anderes. Dieser Sachverhalt dient als Vorbild fir die
folgende

Definition: Ein Ring R == {0} mit Elementen a,b, ... heifit angeordnet,
wenn in R eine Relation a > 0 (lies: a grofer Null, oder: a positiv) mit folgenden
Eigenschaften erkldrt ist:

(1) Fiir jedes a € R gilt genau eine der Relationen a > 0, a = 0, —a > 0.

(2) Fira>0,b>0gqilta -+ b>0undab>0.

Die Menge P aller positiven Elemente aus R heiBt der Positivberé¢ich von R.
Eine Anordnung von R definiert also eine Partition R = Pu{0} u N von E;
dabei ist N die Menge aller r € R mit —r > 0. Ist ein Ring R auf zwei Arten

8e*



116 Ringe

angeordnet, so stimmen diese Anordnungen genau dann iiberein, wenn die zu-
gehorigen Positivbereiche dieselben sind. Gleichheiten von Anordnungen
werden so gezeigt.
Im AnschluB an die gegebene Definition treffen wir noch die folgenden weiteren
Verabredungen. Es soll @ > b (a groBer b) dasselbe heilen wie a — b > 0,
und @ < b (a kleiner b) bedeute dasselbe wie b > a. An Stelle von —r > 0
kénnen wir also auch r << 0 schreiben. SchlieBlich soll @ = b bedeuten: Es ist
entweder @ > b oder a = b. Entsprechend wird ¢ < b erklirt. Fiir jedes
Element r eines angeordneten Ringes R gilt also beispielsweise r = r.
Sind a, b Elemente eines angeordneten Ringes R, so gilt nach (1) mindestens
eine der Relationen a =< b oder b < a, und das gleichzeitige Bestehen von
a Zbund b < aist gleichwertig mita = b;ausa <bund b < ¢,alsob—a =0
und ¢ — b = 0, schlieBlich folgt vermoge (2) (b—a) + (c—b) = c—a =0
oder a =< c¢. Ein angeordneter Ring R ist also beziiglich der Relation < eine
geordnete Menge (vgl. § 1.2).
Beispiele fiir angeordnete Ringe wurden schon genannt. Jeder Unterring eines
angeordneten Ringes, etwa Q[]/2] c R, ist angeordnet. Im allgemeinen sind fiir
ein und denselben Ring R Anordnungen, wenn iiberhaupt, auf verschiedene
Arten moglich. Man betrachte etwa R = Q[z]. Eine Anordnung von fx]
erhdlt man beispielsweise, wenn man jedes von Null verschiedene f(z) € Q[«]
genau dann als positiv bezeichnet, wenn sein hochster Koeffizient ein positives
Element von £ ist. Eine ganz andere Anordnung von £[x] ergibt sich, wenn
man ein f(z) & 0 genau dann positiv nennt, wenn f(z) in R positiv ist; beim
Nachpriifen der Forderung (1) benutzt man, daB mit f(z) &= 0 auch f(z) & 0
gilt, also die Transzendenz von =z iiber .
Man kann aber auch leicht Ringe angeben, die sich nicht anordnen lassen.
Man betrachte zundchst einen angeordneten Ring R und ein re R, r 3= 0;
nach (1) gilt dann entweder r > 0 oder —r > 0, und beide Male liefert (2)
72 > 0. Von Null verschiedene Quadrate sind also in angeordneten Ringen
positiv. Ist speziell R ein angeordneter Ring mit Einselement, so folgt 1 = 12 > 0
und —1 < 0. Eine Folge davon ist, daBl beispielsweise € nicht angeordnet wer-
den kann; denn dazu miiBte einerseits 1 > 0 und andrerseits auch —1 = 2 > 0
sein im Widerspruch zu (1).
Wir wenden uns nun dem Rechnen in angeordneten Ringen zu.

Satz 1: Es sei R etn angeordneter Ring mit Elementen a,b,¢,d, ... Dann
gelten die folgenden Regeln.
a) Ausa >bundc>d folgta +c¢c> b+ d.
b) Aus a > b und ¢ > 0 folgt ac > bc und ca > cb.
¢) Ist R sogar ein Korper unda > b > 0, so folgt b-1 > a1 > 0.

Beweis:
a) Esista—b > 0,¢c—d > 0,nach (2) also (@—b) + (¢c—d) = (a + ¢)
—b+d)>0o0der a+c>b-14d.
b) Esist a — b > 0,¢ > 0, nach (2) also (¢ — b)e = ac — bc > 0 oder ac > bc;
analog wird ca > ¢b.
¢) Man beachte, dal aus ¢ > 0 auch (¢c~1)2c = ¢! > 0 folgt, und multipliziere
a > b > 0 gemil b) mit a-1b-1 > 0.
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Ist B ein angeordneter Ring, so definieren wir noch wie iiblich den Belrag |a)
von a € R; wir setzen |a] = a fir ¢ = 0 und |a] = —a fiir ¢ < 0. Es gelten
dann die Betragsrechenregeln (Aufgabe 2)

(3) ab] = ol - b, .

4) la + b| < |a] + |b| (Dreiecksungletchung),

(5) llal — || < l@ £ b| =< la| + bl

Ziemlich evident ist ferner die Giiltigkeit von

Satz 2: Eine Anordnung eines Integrititsbereiches I lifit sich auf genau eine
Weise zu einer Anordnung seines Quolientenkiorpers @ fortsetzen.

Beweis: Wiirde @ eine Anordnung gestatten, die auf der Teilstruktur
I ¢ @ mit einer vorgegebenen Anordnung iibereinstimmt, so miilte genau dann
a
b
Fortsetzung der Anordnung von I auf @ gibt, so nur diese. Ist aber

>Osein(a,beI,b=l=0),wennb2-%=ab>0inIist;wennesalsoeine

%>0 < ab>0

iiberhaupt eine Definition ? Ja; denn aus‘—; = —fioder ad = be folgt abe® = aZcd;
ist also ab positiv, so auch cd. Die gegebene Vorschrift definiert auch wirklich
eine Anordnung auf @: Die Forderung (1) ist erfiillt; aus ‘—: > 0 und Zb >0
folgt ac + bc = (a+b)c>0,alsoa j b=g
«b > 0, insgesamt also (2). Und schlieBlich liegt eine Fortsetzung der An-

c ¢
ordnung von I vor; ist namlich @ € I und @ in I positiv, so ist es wegen

—+ ;b > 0, und analog zeigt man

2
a@ spe .

a = — positiv auch in Q.
a

Will man den Ring 8 anordnen, so muf8 1 > 0 und nach (2) auch 1 +1 = 2>0,
14141 = 3> 0 usw. gelten; 3 und wegen Satz 2 dann auch £ gestatten also
nur die eine bereits bekannte Anordnung. Ist R ein angeordneter Ring, so ent-
halt er ein Element @ > 0, und nach (2) ist niemals na = 0 (n € N); die Ring-
elemente @, @ + @, @ + a + a, ... sind daher paarweise voneinander ver-
schieden. Ein angeordneter Ring R ist also unendlich. Ist speziell 1 € R, so ist
1 > 0, und R enthilt, wie man in Analogie zu Aufgabe 20.10a) zeigt, einen zu 3
isomorphen Unterring T' aller m1, m € 3. Es hat also einen Sinn zu sagen, 3
sei der kleinste angeordnete Ring mit einem Einselement. Jeder angeordnete
Korper umfaBt also 3 und damit auch , und Q 148t sich axiomatisch bis auf
Isomorphien eindeutig beschreiben als der kleinste angeordnete Korper.

31.2 Sind 0 < & < b Elemente eines angeordneten Ringes, so ist es nicht ge-
sagt, daB ein n € M derart existiert, daB na > b wird. Ein einfaches Beispiel
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dieser Art ist etwa Q[z] mit der bereits erwdhnten Anordnung, dafl ein f(x) 0
genau dann positiv sein soll, wenn der hochste Koeffizient es ist; es gilt dann
0<1l<zund n-1 < z fir jedes n € N. Solche Moglichkeiten werden in der
folgenden Definition ausgeschlossen.

Definition: Ein angeordneter Ring R mit Elementen a, b, ... heift archi-
medisch angeordnet, wenn aus 0 < a < b folgt: Es gibt ein n € Nt mit na > b.

Archimedisch angeordnete Ringe sind etwa 3, Q, Q[}/2], .

Es gibt viele angeordnete Korper. Beispielsweise 148t sich der Polynomring
R{x] wie eben beschrieben anordnen, und diese Anordnung kann nach Satz 2 zu
einer Anordnung des Oberkorpers R(z) von R fortgesetzt werden. Aber fir
archimedisch angeordnete Korper gilt bereits der Satz: Ein archimedisch an-
geordneter Korper K ist einem Unterkorper von ® isomorph. Wir wollen den
Beweis, obwohl er nicht schwierig ist, hier nicht ausfithren.

Aufgabe 1: LaBt sich 37(x) anordnen ?
Aufgabe 2: Man beweise die Betragsrechenregeln (3), (4), (5).

Aufgabe 3: Der Korper R 1iflt sich nur auf eine Weise anordnen.
Beweis ?
Aufgabe 4: Man bestimme alle Automorphismen von Q und R.

Aufgabe 5: Ein angeordneter Ring R ist nullteilerfrei. Beweis ¢

Aufgabe 6: Ein archimedisch angeordneter Ring R ist ein Integritits-
bereich. Beweis ?

§ 32* Der Kérper R der reellen Zahlen

32.1 Im Rahmen unserer bisher durchgefiihrten Uberlegungen haben wir zwar
das Rechnen in den Strukturen 3, Q, R, € als bekannt vorausgesetzt ; aber unter
der Annahme der Giiltigkeit lediglich von Satz 2.1 ergaben sich als Folge all-
gemeiner Sitze auch Existenznachweise fiir die Strukturen 3 und Q (§ 13,
§ 22), und in § 23 wurde der Korper € aus R gewonnen. Als Liicke blieb noch
der Nachweis der Existenz des Korpers R der reellen Zahlen. Die SchlieBung
dieser Liicke erfordert einen gewissen Aufwand und unterscheidet sich wesent-
lich von den friiher geiibten Konstruktionsverfahren.

Schon anschaulich vollzieht sich der Ubergang von Q zu R anders als etwa
der von 3 zu Q. Damals wurden die Losungen der Gleichungen ax = b (a, b € 3;
a =+ 0) zu 3 adjungiert. Diesmal kann man sich die Elemente von £ auf der
Zahlengeraden markiert denken und will erreichen, daf umgekehrt auch
jedem Punkt dieser Geraden ein Element r des Erweiterungskorpers & o
entspricht. Es gibt mehrere Moglichkeiten, diese Vorstellung mathematisch zu
realisieren. Methodisch am ergiebigsten ist ein Verfahren, das durch den
Konvergenzbegriff aus der Analysis nahegelegt wird und iiber die bloBe Kon-
struktion des reellen Zahlkérpers & hinaus eine allgemeine Bedeutung besitzt.
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Es geht unter anderem auf G. CanTor (1845—1918) zuriick und besteht, kurz
gesagt, in folgendem. Eine Folge rationaler Zahlen ay, fiir die das Cauchysche
Konvergenzkriterium erfiillt ist, hat immer einen Limes a € R; aber a braucht
nicht in § zu liegen. Umgekehrt gibt es zu jedem a € R eine (Cauchy-)Folge
rationaler a; mit a als Limes. Wir konstruieren nun R als die Menge aller
solcher Cauchy-Folgen aus rationalen a;; zwei derartige Folgen werden dqui-
valent sein, wenn sie denselben Limes a € ® haben. Dem wenden wir uns jetzt
im einzelnen zu. Eine andere, fiir Beweiszwecke mitunter niitzliche Konstruk-
tion des Korpers & durch sogenannte DEDERINDsche Schnitte findet man etwa
bei GraUERT-LIEB [5].

32.2 Wir beginnen mit der

Definition: Eine Folge (21, as, as, . . .) aus Q™ heift Cauchy-Folge, wenn zu
jedem positiven ¢ €Q ein N(e) € N derart existiert, daP |am — an| < & wird fiir
m, n > N(g). Eine Folge (ay, az, as, ...) eQ>® heifit Nullfolge, wenn zu jedem
positiven € € etn No(e) €N derart existiert, daf \ay| < e wird fiir n > No(e).

Eine Nullfolge (a1, @2, a3, ...) ist also eine spezielle Cauchy-Folge; denn zu
vorgegebenem & > 0 aus Q gelten fiir hinreichend groBe Indizes m, » die Un-
€

gleichungen |a,,| < 3

und la,| < %, und aus ihnen folgt

lam — @n| < |am| + laa| <e.
Eine Cauchy-Folge (a1, az, as, . ..) ist beschrinkt; das heifit, es gibt ein g eQ
derart, daB |a,| < ¢ gilt fiir jeden Index n. Fiir m, n > N(1) gilt ja |[ap—an| <1,
also fiir m > N = N(1) die Abschatzung |ans| = |(@m — an+) + an+l
=1 + |an+1|; man kann also ¢ = Max(|a1|, |a2], - .., lan|, 1 4+ lany41]) setzen.

Es sei nun M die Menge aller Cauchy-Folgen aus 2%; aus M konstruieren wir
R. Elemente (a1, ag, a3, ...) und (by, bs, bs, ...) aus M seien dquivalent, wenn
(a1 — b, @z — b2, az — b3, . ..) eine Nullfolge ist. Man iberzeugt sich, dal auf
diese Weise wirklich eine Aquivalenzrelation auf M definiert wird. Ferner seien
eine Addition und eine Multiplikation auf M durch

(ﬂ«l, az, ag, '--) + (blr b2’ b3’ -") = (al + bly az +b2; as +b31 °")

und
(@1, ag, as, ...) (b1, be, b3, ...) = (ajby, ashe, agbs, ...)

eingefiihrt; die rechten Seiten liegen wieder in M, was fiir die Summe aus
(@m + bm) — (an + ba)| = ((@m — an) + (b — ba)| = |@m — @n| + (b — bal
und fiir das Produkt aus
[@mbm — Gnby| = |@mbm — Anbm + Bpbm — apba)
= |bm(@m—an) + @a(br—b4)| < bl |@m—an| 4 lan| {bm—Dbnl

und der Beschrinktheit der |b,| und [a,] folgt.
Ist unsere Aquivalenzrelation eine Kongruenzrelation ? Da wir mit den Klassen
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rechnen wollen, miissen wir das nachpriifen. Fiir die Addition sieht man es
sofort mit Hilfe der Dreiecksungleichung. Und sind

(@1, ag, ag, ...) ~ (a1, a3, ag, ...)und (by, b, bg, ...) ~ (by, b3, b3, . ..),
so wird auch (a1by, ashs, agbs, . ..) ~ (a1by, asbs, aghs, . ..) wegen
lanbn— apbn| = lanbn — apbp + anby —azbp| < |bal - lan — an| + lay| - |bo—byl,
was fiir hinreichend groBes » kleiner als ein vorgegebenes ¢ > 0 aus Q ausfallt.
Es liegt also tatsichlich eine Kongruenzrelation vor.
Man sieht sofort, dal M ein kommutativer Ring ist. Das Nullelement in M
ist (0,0,0, ...); die dazu gehdrende Klasse ist die Menge n ¢ M aller Null-
folgen, und nach Satz 21.2 ist n ein Ideal von M. Die Menge A der Kongruenz-
klassen von M, von der wir ja erwarten, daB sie bis auf Isomorphien der Kérper
R wird, ist nach § 21 dasselbe wie M/n; als homomorphes Bild des kommutativen
Ringes M ist also auch 4 ein kommutativer Ring.
Wir wollen zeigen, da 4 sogar ein Korper ist. Die Null in 4 ist die Klasse n;
als Repridsentant kann (0,0,0,...) gewihlt werden. Entsprechend ist
(1,1,1,...) + n das Einselement. Ein von n verschiedenes Element aus 4
enthilt nur solche Folgen (aj, a5, a3, . . .), firdieeing €, 1 > ¢ > 0, existiert
mit |a,| > ¢ fir alle » > N*(g) € N; dabei hingen ¢ und N*(g) von der vorge-
legten Folge ab. Nur endlich viele a einer solchen willkiirlich dieser Klasse
entnommenen Folge (a1, a3, a4, . . .) sind also ihrem Betrage nach kleiner oder
gleich g; ersetzen wir diese a; durch Einsen, so erhalten wir den Repréisentanten
(@1, a2, ag, ...) derselben Klasse, und fir ihn gilt a, == 0 und |a,| > ¢ fir
alle ». Der Nachweis, da 4 ein Korper ist, ist erbracht, wenn wir gezeigt
haben, daBl (@, az,a3, ...) + n mit dem eben fixierten Reprisentanten

. . . 1 1
(@1, az, a3, ...) ein Inverses besitzt. Wir geben es an: (——, —y =y e ) “+ n;
a az as
. . 111 . .
wir missen nur noch nachweisen, daf o ayas eine Cauchy-Folge ist.
1 a2

Das folgt aber daraus, daB (a1, ag, as, ...) eine Cauchy-Folge ist und die
Ungleichung

! Iam_anl

|  |aman| q2

1 1
—— = [am — anl
am an |

besteht.

32.3 Ist der so konstruierte Kérper 4 nun auch das geworden, was wir haben
wollten ? Um das nachzupriifen, orientieren wir uns an der Vorstellung, der
Korper R o2 sei die Menge aller Dezimalbriiche. Zunichst ist sicher die Teil-
struktur 7' = {z: x€ 4, x = (@, a, a, ...) + n} aller durch konstante Folgen
repridsentierbaren Klassen aus A4 isomorph . Von Isomorphien abgesehen ist
also A4 ein Oberkérper von . Ferner definiert jeder Dezimalbruch, zum Beispiel
der fiir s, eine Cauchy-Folge, hier

3, 3,1, 3,14, 3,141, 3,1415, ...),

und wird so Reprisentant einer Klasse aus 4. SchlieBlich sieht man auch um-
gekehrt, daB man fiir jede Klasse aus 4 genau einen Représentanten dieser Art
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wihlen kann. Wir diirfen A als die Menge aller Dezimalbriiche ansehen.
Im folgenden stellen wir nun einige einfache Eigenschaften des in Abschnitt
32.2 konstruierten Korpers 4 fest, die, wie sich zum Schluf herausstellen
wird, ihn axiomatisch eindeutig beschreiben.

32.4 Wir wollen 4 anordnen und wéhlen ein Element (a;, az, a3, ...) + n
von 4, das nicht Null ist. Wir wissen bereits, daB dann ein g€, ¢ > 0,
existiert, so daB |a,| > g wird fiir alle n > N*(g). Da nun (a1, a2, as, . . .) eine
Cauchy-Folge ist, gilt ferner |an — a,| < 2¢ fiir alle m, n > N(2g). Aus beidem
zusammen folgt: Fir » > N = Max(N*(g), N(2¢)) haben alle a, das gleiche
Vorzeichen. Genau dann, wenn alle diese a, positiv sind, sei (a1, as, as, .. .)
+ n e A positiv. Diese Vorschrift ist eine Definition, da ein anderer Reprisen-
tant derselben Klasse sich lediglich um eine Nullfolge von (a1, @2, as, ...)
unterscheidet. Die Anordnungsaxiome aus § 31 sind ersichtlich erfillt. Und
schlieBlich wird die Anordnung von { fortgesetzt; denn (a, a, a, ...) + nel'cd
wird genau dann positiv, wenn a € in Q positiv ist.

32,5 Ist A archimedisch angeordnet? Es seien (a1,as,as, ...) + n und
(b1, b2, bs, ...) + n positive Elemente aus A. Dann gibt es positive rationale
Zahlen q1, gs, 71, r2 derart, daB fiir alle hinreichend groBen n gilt:

N << <bp<ra

Die Abschitzungen nach oben folgen daraus, daB (a1, as, a3, ...) und
(b1, ba, b3, . ..) Cauchy-Folgen sind. Da Q archimedisch angeordnet ist, gibt es
ein k € M mit kg1 > re. Dann ist aber erst recht (kay, kas, kas, . ..) + n groBer
als (b, be, bs, ...) + n. Es ist also A ein archimedisch angeordneter Korper.

32.6 Wir wenden uns noch einmal der Definition zu Beginn von Abschnitt 32.2
zu und verallgemeinern sie, indem wir  durch einen angeordneten Korper K
ersetzen.

Definition: Es sei K ein angeordneter Korper. Eine Folge (a1, as, as, - . .)
aus K heifit Cauchy-Folge, wenn zu jedem positiven € € K ein N(c) € N derart
existiert, daf \am— ay| < e wird fiir m, n > N(¢). Eine Folge (a1,as,a3, .. .) e K®
heift Nullfolge, wenn zu jedem positiven € € K ein No(c) € N derart existiert, daf
lan] < & wird fiir n > No(e). Allgemeiner heift die Folge (a1, as, a3, ...) € K*®
in K konvergent mit dem Limes a, wenn es ein a € K gibt derart, daf zu jedem
positiven e € K ein S(e) € M existiert mit |ap — a| < ¢ fiir n > S(g); man schreibt
dann lim a, = a. Ein angeordneter Kirper K heift vollstindig, wenn jede Cauchy-

r—>00

Folge (a3, as, as, ...) € K*® in K konvergent ist.

Nulifolgen sind also konvergent mit dem Limes Null.

Wir wissen, daB Q nicht vollsténdig ist. Die in Abschnitt 32.3 aufgeschriebene
Cauchy-Folge aus Q> beispielsweise ist nicht konvergent in R, da sie keine
rationale Zahl als Limes hat. Andererseits ist die betrachtete Cauchy-Folge
nach dem Cauchyschen Konvergenzkriterium aus der Analysis jedenfalls in R
konvergent wie jede Cauchy-Folge aus R*®. Dort wird also behauptet: R ist
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ein vollstindiger archimedisch angeordneter Korper. Unter dieser stindig
benutzten Voraussetzung betreibt man dann reelle Analysis.

Wir wollen nun zeigen, daf der archimedisch angeordnete Korper 4 voll-
stindig ist. Das ist nicht schwer, aber etwas umstindlich aufzuschreiben.

Es sei eine Cauchy-Folge (fi + n,fo + n,fa+ n, ...) € 4% von Elementen

A+n = (au, 012,013, ...) + n
1) fo+n = (an,as,a,...)+n
fa+n = (as1,asz, a3, ...} + 1

aus A vorgelegt. Auf Grund unserer Definition und der in Abschnitt 32.4 vor-
genommenen Anordnung von A4 hat das die folgende Bedeutung. Zu vor-
gegebenem £ > 0 aus £ gibt es ein N(¢) € M mit nachstehender Eigenschaft.
Sind 7, s natiirliche Zahlen groBer als N(e), so existiert ein A = A(r,s) e
derart, daB fir alle 1 > A gilt:

2 lara— a2 <€ (r,8 > N(g); A > A(r, 8)).

Wir denken uns ferner die Reprisentanten in (1) noch in bestimmter Weise aus-
gesucht; wir wollen, da8 die Komponenten der f; mit wachsendem A immer
weniger streuen: Lassen wir von einer Cauchy-Folge (a1, as, as, . . .) die ersten
k Komponenten weg, so wird auch (@x+1, @x+2, @x43, - . .) eine Cauchy-Folge,
die dieselbe Klasse reprasentiert. Auf diese Weise kénnen wir erreichen, da in
(1) fiir alle r, s gilt:

(3) lre — rel < ; (r, s€M).

Eine beliebige Komponente der r-ten Folge f, unterscheidet sich von der r-ten
Komponente a,, dieser Folge um weniger als pe

Unter diesen Voraussetzungen wollen wir zeigen: Die Folge

fh+nfot+nfa+n ... ed®

ist in A konvergent mit dem Limes f + ne A4, wobei f die Diagonalfolge
(a1, aze, ass, - ..) des Schemas

a; ajg a1z aia ...
a1 Qg2 A23 G24 ...
ag) agz ass as4 - - -
a4] @43 @43 Q44 . . .

................

bedeutet. Der Nachweis dafiir ist gewi dann erbracht, wenn wir das Folgende
zeigen kénnen. Zu vorgegebenem ¢ > 0 aus Q existiert ein S(e) € N derart, daB
fiir alle r, s > S(e) gilt:

(4) |@rs — ass| < & (r, s > S(e)).
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Das heiBt speziell: Wird die Folge (as1, ars, @3, .. .) in dem angeschriebenen
Schema nur hinreichend weit unten gewahlt, so unterscheidet sich a,; fir s = r
von der entsprechenden Komponente a;; der Folge (a1, azs, ass, ...) dem
Betrage nach um weniger als e. Aus den Beziehungen (3) und (4) und der
Ungleichung

[@rr — Qgs| = |arr — Ars| + |@rs — ass)

ergibt sich schlieflich von selbst noch, daB f eine Cauchy-Folge, also f - ne 4
ist.

Der ausstehende Nachweis von (4) stiitzt sich auf (2) und (3). Fiir r, s >N (%)

und hinreichend groBie 2 > A (r, s) gilt zunichst einmal
(5) ars—asal <

auf Grund von (2). Die a,; aus der r-ten Folge f, unterscheiden sich aber nach

1 . . 2
(3) von ar um hochstens pe somit untereinander um hdéchstens —, und ent-
r

sprechend unterscheiden sich die a,; der s-ten Folge um héchstens %. An Stelle

von (5) bekommen wir deswegen auch
e 2 2
Q fi—aal <5+o+2 (s> B2,

diesmal fiir alle 4 € . Hieraus ergibt sich (4) mit 2 = s und einem beliebigen

S(e) = Max (N(%), g).

32.7 Es ist also 4 ein vollstindiger archimedisch angeordneter Korper. Axio-
matisch ist nun noch ein Punkt interessant: Zwei archimedisch angeordnete
vollstindige Korper K und L sind isomorph. Wenn wir das noch beweisen, so
haben wir durch diese Angaben den Kérper 4 sogar eindeutig beschrieben.
Wir zeigen statt dessen: Ist K ein archimedisch angeordneter vollstindiger
Korper, so gilt K ~ 4.

Zunichst ist K angeordnet; nach § 31.1 diirfen wir also ¢ K voraussetzen.
Weil K sogar archimedisch angeordnet ist, gibt es iiberdies zu jedem a € K
ein neM mit n-1 = n > a, und es folgt die Existenz ganzer Zahlen m, n
mit m < @ < ». Nun kann man eine Cauchy-Folge (a1, a2, as, ...) e Q> kon-
struieren, die a als Limes hat; man wihlt etwa a; = m und halbiert das Inter-

m—}—n; gilt dann noch m < a gm

vall [m, n] durch n, so wihlt man auch

az = m, andernfalls as = n -2{—n’ und setzt das Verfahren der Intervallhal-

bierung fort.
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Durch f(a) = (a1,a2,as3, ...) + ne 4 wird nun eine Abbildung f: K - 4
definiert. Denn erstens ist (a1, @, as, ...) offenbar eine Cauchy-Folge, und
zweitens bildet eine andere gegen a konvergierende Folge (a1, @3, a3, ...)eQ™®
auf Grund der Abschitzung

lan—ail < lan—al + la—aj|

nur einen anderen Reprisentanten derselben Klasse (a;,az, a3, ...) + n.
Diese Abbildung f: K - A ist surjektiv, weil K vollstindig ist. Sie ist auch
injektiv; hitten ndmlich die voneinander verschiedenen Elemente a,b e K
dasselbe Bild (a1, as, a3, ...) + n € A, s0 hitte die Folge (a1, a2, as, - . .) die bei-
den verschiedenen Limites a und b, was wegen

la —an| + lan—2>d] 2 |a—b|
nicht méglich ist.
Die Abbildung f: K - 4 ist also bijektiv. Sie ist auch relationstren. Hierfiir

seien (a, ag, as, ...) und (by, by, b, . ..) Repriasentanten von Klassen aus A4;
nach Voraussetzung existieren in K -die Limites lim a, = @ und lim b, = b.
n=>00 n—>oo
Zu zeigen sind dann die Regeln
(7) lim (@p + b,) = lim a, 4+ lim b,
n->00 n—>00 n—>o0
und
(8) l'im anbn = lim ap * lim b”-
n—00 n—o0 n—00

Ihr Nachweis verliuft nach dem aus der Analysis bekannten Muster und
stiitzt sich auf die Ungleichungen

(7) (@n + bp) — (@ + B)| = lan—al + [by — b]
und
(8 lanbn — ab| < [ba| - lay — a| + [a] - [bp — b].

Insgesamt gilt also K ~ A.

32.8 Zuletzt ersetzen wir die in Abschnitt 32.3 betrachtete Teilstruktur
T = {@x:zed,z=(a,a,a,...) + 1} ~Q von A durch Q; den dadurch
aus A entstandenen Korper nennen wir den Korper R 52 der reellen Zahlen.
Wir fassen unsere Ergebnisse zusammen.

Satz 1: Es gibt, von Isomorphien abgesehen, genau einen archimedisch an-
geordneten vollstindigen Korper, den Korper R der reellen Zahlen.

Ergidnzend wiederholen wir: Der Ring 3 der ganzen Zahlen ist eindeutig be-
stimmt als der kleinste angeordnete Ring mit Einselement; der Korper  ist
eindeutig bestimmt als der kleinste angeordnete Korper (§ 31). Andere axioma-
tische Beschreibungen von 3 und £ hatten wir in § 13.2 und § 22.2 kennen-
gelernt.
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§ 33* Bewertete Korper

33.1 In einem angeordneten Korper K mit Elementen a, b, ... gelten nach
§ 31.1 die Betragsrechenregeln |ab] = |a| - |b] und |a@ 4 b| =< |e] 4 |b|. Thre
Bedeutung fiir die Analysis kann gar nicht hoch genug eingeschitzt werden.

Wir haben sie zum Beispiel bereits bei der Konstruktion des Korpers R in
typischer Weise gebraucht. Am Anfang der Analysis, etwa in R, stebt der
Limesbegriff, und die Theorie besteht aus den Sitzen, die, sich iiber ihn er-
geben. Es seien beispielsweise @y, b, reelle Zahlen mit lim a;, = a und

7>
lim b, = b; dann gilt lim ayb, = ab. Der Beweis beruht auf der Abschatzung
n->00 n->00

(8') aus § 32,

|@anbn —ab] = |bplap —a) 4+ alb, — b)) = |bul- lan —a| + lal - |bp — b,
die sich ihrerseits auf die beiden Betragsrechenregeln stiitzt. Will man zeigen,
daB das Produkt stetiger Funktionen wieder stetig, das Produkt differenzier-
barer Funktionen wieder differenzierbar ist, so benutzt man das gleiche Be-
weisschema.

Nun wissen wir aus § 31.1, dal der Korper € sich nicht anordnen 1a8t. Trotz-
dem kann man in ihm mit groBem Erfolg Analysis betreiben, und die zitierten
Limes-Satze gelten auch hier. Dazu definiert man den Betrag |2| einer kom-
plexen Zahl z € € als die nichtnegative reelle Wurzel aus 2z = 0 und hat damit

einen reellen ,,Wert von z; fiir komplexe Zahlen z), 23, ... soll dann lim 2z, = z
n->co

bedeuten, daB der ,,Wert*‘ von 2z, — 2 mit wachsendem % immer kleiner wird:
Zu vorgegebenem reellen & > 0 existiert ein S(¢) e M derart, daB |z, — 2| < ¢
ist fiir » > S(¢). Entscheidend ist nun, daB auf diese Weise die Betragsrechen-
regeln |ab] = |a|- |b] und |a + b| < |e| + [b| auch fiir komplexe Zahlen
a, b ihre Giiltigkeit behalten (vgl. Anhang). Als Folge davon kann man die
erwihnten Séitze auch fiir komplexe Folgen oder Funktionen aussprechen und
die alten Beweise, die auf diesen Regeln beruhen, iibernehmen.

Dieses Beispiel zeigt, dafl es sich lohnt, den Begriff der Anordnung eines
Korpers K in folgender Weise zu verallgemeinern.

Definition: Ein Kiorper K mit Elementen a, b, ... heifit bewertet, wenn eine
Abbildung ¢: K -+ W von K in einen angeordneten Korper W (meist W = R)
mit folgenden Eigenschaften vorhanden ist:

(1) ¢(0) =0; p(@) > 0 firalleaec K,a £+ 0.
(2) plab) = ¢(a) - @) fir alle a,b e K.
(3) ¢la + b) = gla) + ¢(b) fir alle a,b e K.

Es ist klar: Jeder angeordnete Korper K besitzt die durch W = K und
gla) = |a| definierte Betragsbewertung. Der Korper € 1aBt sich durch
¢(z) = + )2z € R bewerten. Eine triviale Bewertung schlieflich hat jeder
Korper K: Man setze ¢(0) = 0 und ¢(e) = 1 fiir-jédes a € K, a == 0. Zwei Be-
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wertungen ¢1: K - W und ¢y: K > W wird man genau dann als dquivalent
ansehen, wenn fiir alle a, b € K gilt:

pia) < gu(d) < g@ala) < pa(b).

Folgerungen aus (1) und (2) sind ¢(1) =1, ¢(—1) =1 und ¢(—a) = ¢(a).
Damit a8t sich wie in § 31, (5), die Dreiecksungleichung (3) in der Gestalt

lpla) — p(b)] = gla £ b) = ¢la) + ¢(b)

verallgemeinern. Schlieflich bekommt man aus (3) auch noch
a1+ aat ... +aa) £ 9l@) + 9laa) + - + glan).

33.2 Eine Folge (a1, az, a3, . ..) von Elementen a, eines durch ¢ bewerteten
Korpers K heilt Cauchy-Folge oder Fundamentalfolge, wenn zu jedem positi-
ven ec W ein N(e) €M derart existiert, daB ¢@(ay — an) < & wird fiir
m, n > N(¢). Entsprechend iibertragt man den Konvergenzbegriff. Ein Riick-
blick auf die Konstruktion, die in § 32 von £ zu R gefithrt hat, zeigt, daB auch
sie sich ohne wesentlichen zusiitzlichen Aufwand verallgemeinern liBt. Am
Ende steht das Ergebnis: Jeder bewertete Korper K besitzt einen minimalen
bewerteten Oberkorper E derart, da die Bewertung von E eine Fortsetzung
der Bewertung von K und jede Cauchy-Folge aus E* in E konvergent ist;
der Korper F ist bis auf Isomorphien eindeutig bestimmt und heiB3t die voll-
stindige Hiille von K beziiglich der Bewertung ¢. In § 32 handelte es sich um
den Spezialfall K = Q, £ =R, ¢(a) = |a|.

Wir wollen auf Einzelheiten nicht weiter eingehen, weisen aber noch auf fol-
gendes hin. Sind a, b Elemente eines bewerteten Korpers K, so darf man sich
unter g(a — b) ihre ,,Entfernung‘‘ d(a, b) vorstellen. Wir prézisieren das.

Definition: Eine Menge M von Elementen a, b, c, ... heifit ein metrischer
Raum, wenn etne Abbildung d: M x M — A des cartesischen Produktes M x M
in einen angeordneten Korper A (meist A = R) mit folgenden Eigenschaften
erkldrt ist:

(1) d(a,b) = O fiira ="b;d(a,b) > O fira =b.
(2) d(a, b) = d(b, a).
(3) dla,c) < da, b) + d(b, c).

Diese Forderungen an die Entfernung oder Metrik d(x, y) haben plausible an-
schauliche Bedeutungen; insbesondere bezieht die Dreiecksungleichung (3)
ihren Namen hierher. Ist nun K durch ¢ bewertet, so definiert ersichtlich
d(a, b) = @(a — b) eine Metrik auf K.

33.3 Welche Bewertungen gestattet beispielsweise ¢ Wir kennen bislang die
triviale und die Betragsbewertung. Weitere Bewertungen von Q erhialt man
wie folgt.

Es sei p € N eine feste Primzahl und das positive g e Q in der Gestalt %L Pk mit

zu p und untereinander teilerfremden natiirlichen Zahlen m, n geschrieben;
wir setzen dann ¢,(0) = 0 und
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oplg) = @p(—q) = p7*.

Dies definiert eine Bewertung ¢,:Q —Q von Q. Die Forderungen (1), (2) aus
33.1 sind trivialerweise erfiillt, und sind m, n, r, s ganz und teilerfremd zu p, so
folgt fiir ¥ <1 und von Null verschiedener Summe in der folgenden Klammer

m r ms + nrpl=¥
wp(h- P* + ;p‘) = %(—i P p") = p¥%, x 2k,

ns
oder gp(a + b) = Max (py(a), pp(d)) = @pla) + gp(b), also (3).
Dies nennt man eine p-adische Bewertung von Q. Etwas nachldssig gesagt, ist
ein g €  klein, wenn es durch eine hohe Potenz von p teilbar ist. Jede Wahl
von p liefert eine andere derartige Bewertung, und entgegen dem ersten
Augenschein spielen diese Bewertungen eine groBie Rolle (vgl. etwa Hasse
[6]). Weitere Bewertungen von { gibt es, wie man zeigen kann, nicht.

§ 34 Symmetrische Polynome

34.1 Wir wenden uns noch einmal Polynomringen Rz, 22, ..., 2p] in # Un-
bestimmten iiber einem kommutativen Ring R mit Einselement zu. Ein
Polynom f(x1, 2, . .., zn) € Rlx1, 2, . .., Zp] heilt symmetrisch, wenn es bei
jeder Permutation der z; unverindert bleibt, wenn also fiir jedes = € &, gilt:

[(@rq), Ta@)s o« o5 Tam) = fx1, T2, - . -, Tn).

Beispiele solcher Polynome sind etwa x1+z2+. .. 424, it +x,2, oder
Ringelemente r € R.

Weitere symmetrische Polynome, die besonders hiufig auftreten, erhdlt man
wie folgt. Man wihle eine weitere Unbestimmte z iiber R[zy, xg, . . ., 4] und
betrachte das Polynom g(x) = (z—a1)(x—=x3). . .(x—2y) € R[x1,%s,. . . ,2a][x].
Wir multiplizieren aus und setzen

g(x) = a® — ol + goa®2— 4 ... + (—1)%0p.

Jede Permutation der a; 1ld8t g(x) und damit auch die oy € R[z},%s,. . ., %] fest;
sie heiBen die elementarsymmetrischen Polynome der x1, g, . .., x, und haben
die Gestalt
o = in, gy = ‘z'zng, v, Op = X1XT3 ... Tp.
i i<j
Gegenstand unserer Erorterungen ist der folgende Hauptsatz iiber symmetrische
Polynome.

Satz 1: Jedes symmetrische Polynom f(xy, g, ..., xs) € B[, 72, . . ., )
lapt sich als Polynom in den elementarsymmeltrischen Polynomen o; schreiben:

f(xlr X2y oo uy xﬂ) € .R[O'l, 02, « .y U'n]-

Beweis: Das Polynom f(z1, 23, . . ., #p) ist eine Summe von Ausdriicken

der Gestalt rxi‘ xé‘ - xf;', reR, r &0, 44 = 0; wir schreiben diese Summe
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so auf, daB azl 3 ... 2% vor bab 2l ... 2P steht, wenn die erste nicht
verschwindende unter den Differenzen a; — 1, g — 82, . . ., xy — fn positiv
ist. Wir nehmen an, f(z1, g, . . ., 2;) habe den Grad m; das soll heiBen, da3
fiir wenigstens einen der Summanden 4; + 12 + ... 4+ 4, = m wird und die
Exponentensumme sonst immer < m ausfallt. Der triviale Fall f(2;,22,. . .,25)
= 0 ist dabei ausgeschlossen.

Der erste Summand von f(x1, 22, ..., 7s) heiBe aai' a5 ... x;*. Weil nun

f(z1, x2, . .., xp) symmetrisch ist, gilt oy = a2 = ... = ap. Denselben ersten
Summanden hat das Polynom

Xy X%y

aoy o ... 0 €R[x1, %, ..., 25)
vom Grad
(or—a2)+2(ag—ag)+ . . . +(n—1){an-1—otp)+n0tn = o1toet...+oax = m.

Wir subtrahieren es von f(z3, xa, .. ., £y) und betrachten die Differenz

d(x1, 2, ..., %) = f(@1, X2, ..., %p) —ac]” o Tt ...aon.
Es ist entweder d(x;, ®2, ..., 23) = 0, und in diesem Fall sind wir fertig,
oder das symmetrische Polynom d(z1, z2, ..., z,) hat einen Grad < m und

einen ersten Summanden ba:“lil xg' een xﬁ", der bei der verabredeten Reihen-

folge nur einer der méglichen Nachfolger von axi' z3' ... z5* sein kann.
Solche Nachfolger gibt es unter Polynomen vom Grad < m nur endlich viele.
Setzt man daher das Subtraktionsverfahren fort, so bricht es nach endlich
vielen Schritten mit einer Differenz Null ab, und Satz 1 ist bewiesen.

Dieser Beweis ist konstruktiv; er ermoglicht es, zu vorgelegtem symmetrischen
f(x1, z2, ..., xp) die gewiinschte Darstellung als Polynom in den elementar-
symmetrischen Polynomen oy(x1, 23, - . ., 2,) auch wirklich aufzufinden, selbst
wenn die Rechnung im einzelnen miithsam sein mag.

34.2 Eine der hiufigsten Anwendungen von Satz 1 beruht darauf, daB auch
das Polynom

D(xy, %2, ..., ) = [I(xs — xx)? € B[21, 22, ..., Ta]
i<k

symmetrisch ist, also eine Polynomdarstellung durch die oy(z1, 2, - . -, 25) ge-
stattet.

Es sei K ein Korper und f(z) = z% + ajz®-! 4 agx®-2 + ... + a, € K{z];
es gebe einen Erweiterungskorper £ von K, in dem f(z) die » nicht notwendig
paarweise voneinander verschiedenen Nullstellen &, &, ..., &, besitzt. Spater
wird sich zeigen, daB ein derartiger Korper £ immer existiert (§ 58). Nach
dem Beweis von Satz 26.2 gilt dann in E[x]

(&) = (x— &)z — &) ... (x — &).
Unter der Diskriminante D(f) von f(z) versteht man die Zahl
D(f) = TI(6s — &)

i<k
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Man betrachte nun die Polynomdarstellung von D(xi, xs, ..., y) durch die
oy(xy, %2, . .., xy) und ersetze in ihr die z; durch die &. Wegen

6](517 52, ey Eﬂ) = (—l)jaj

folgt, daB D(f) ein Polynom in den a4, also D(f) € K ist. Wir beachten dabei,
daB wir die Koeffizienten von f(x) so bezeichnet haben, dafl sie bis aufs Vor-
zeichen dem Polynom g(x) aus dem vorigen Abschnitt entsprechen.

Die Darstellung der Diskriminante D(f) durch die Koeffizienten a; von f(x)
erfordert einige Rechnung, die unter anderem nach dem Muster des Beweises
von Satz 1 durchgefiihrt werden kann. Wir geben zwei Resultate an:

(1) D(@? + px + q) = p2—4q;
@)  D(? + aa? + asw + as) = alal — 4ai — dalas — 27af + 18a10zas.

34.3 Die Bedeutung der Diskriminante D(f)} € K des Polynoms f(x) € K[x] be-
ruht auf den Informationen, die sie iiber die Nullstellen & € E von f(z) ver-
mittelt. Sie ist genau dann Null, wenn f(z) in F wenigstens eine mehrfache
Nullstelle hat. Wir sehen uns noch zwei Beispiele an.

Das quadratische Polynom 22 4 px -+ ¢ € R[z] hat entweder zwei konjugiert-
komplexe oder nur reelle Nullstellen &, é2; der letzte Fall tritt genau dann
ein, wenn (& — &)2 = D(22 + px + q) = p2— 49 = 0 ist, was auch die
iibliche Auflésung der quadratischen Gleichung ergibt.

Das kubische Polynom f(x) = 23 4 a12® 4+ asx + a3 € R[z] besitzt entweder
eine reelle und zwei konjugiert-komplexe oder drei reelle Nullstellen, ihrer
Vielfachheit entsprechend gezihlt; ein Polynom ungeraden Grades mit reellen
Koeffizienten hat ja, wie wir aus der Analysis wissen, mindestens eine reelle
Nullstelle. Sind alle drei Nullstellen reell, so ist sicher D(f) = 0. Umgekehrt:
Sind die Nullstellen &;, £z nicht reell und &3 € R, s0 sind (& — &3)2 und (&2 — &3)2
von Null verschiedene konjugiert-komplexe Zahlen, also (§1 — &£3)%(62 — £3)2>>0,
und mit (& — &)2 < 0 folgt D(f) = (sr—&)A(5r—£&3)2(52—&3)2 < 0. So ergibt
sich der mitunter gebrauchte

Satz 2: Das kubische Polynom 3 + a1x2 4 agsx + as € R(x) hat genau dann
dret reelle Nullstellen, wenn die Diskriminante

aja3 — 4a} — dalay — 274} + 18a10005 = 0
st.

Aufgabe 1: Es sei K ein Kérper und
fl®) = am 4+ axn-1 4 agxn-2 A ... + ay € K[z].

In dem Erweiterungskorper £ von K habe f(z) die Nullstellen &, &, ..., &a.

Man beweise die Formel
n(n—1)

@) Dif)y = (1) 2 [fEf(E) ... fé)

Literatur: v. . WAERDEN [16].

9 Hornfeck, Algebra
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Es mag zunichst iiberraschen, daBl ein ganzes Kapitel sich noch mit Ideal.
theorie beschéftigen soll. Der Homomorphiesatz fiir Ringe aus § 21 ist auch
nicht der AnlaB dafiir, obwohl er zum ersten Mal die Bedeutung des Ideal-
begriffs unterstreicht. Es wird sich vielmehr bald herausstellen, da der Ver-
such, nach dem Vorbild der elementaren Zahlentheorie in beliebigen, hier
kommutativen Ringen Satze iiber Teiler, Primelemente usw. zu gewinnen, zu
idealtheoretischen Betrachtungen fiihrt. Solchen Untersuchungen ist dieses
Kapitel gewidmet. Die Uberschrift weist auf die Methoden hin; sie hatte auch
heiBen konnen: Teilbarkeitstheorie.

§ 35 Rechenregeln

Wir betreiben in diesem Kapitel Idealtheorie in durchweg kommutativen
Ringen. Ein Ideal a des kommutativen Ringes R ist nach § 21 eine additive
Untergruppe von R mit der Eigenschaft, daB aus a € a und r € R folgt: ra € a.

35.1 Es sei R ein kommutativer Ring und M c R eine beliebige Teilmenge von
R. Dann gibt es Ideale, die M enthalten, zum Beispiel R selbst. Die Menge A
aller Ideale a aus R mit a > M ist also nicht leer. Sind a, b Ideale aus A, so ist
auch a n b e 4; ebenso ist der Durchschnitt

® = Na
acd

aller a € A ein Ideal aus A. Fiir jedes Ideal a aus Rmit a > M gilt a 0 b > M;

es ist also b das kleinste Ideal, das M enthilt. Da es immer existiert, ist die
folgende Definition sinnvoll.

Definition: Es sei M eine Teilmenge des kommutativen Ringes R; dann be-
zeichne (M) das kleinste Ideal b aus R, das M enthilt. Wir nennen (M) das von
M oder den Elementen von M erzeugte Ideal.

Aus welchen Elementen besteht (M) ? Sicher enthilt (M) alle Summen der Ge-
stalt rymy + remg 4+ ... 4 rgmy, 7s€ B, mye M; dasselbe gilt fir Summen
der Form kymj + kamy + ... + kgmg, ki € 3, m{ € M. Also enthilt (M) auch
alle Ausdriicke

(1) (rimy + rama 4+ ... + rgmy) + (kamy + kamg + ... 4 komg).

Thre Gesamtheit ist aber, wie man sofort sieht, ein Ideal aus R, das M enthilt,
und damit (M).
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Wir bemerken, daB die endlichen Summen der Gestalt >rym; fiir sich zwar
auch ein Ideal von R bilden; aber dieses Ideal braucht M nicht zu enthalten.
Das Bild vereinfacht sich etwas, wenn es in R ein Einselement gibt. Dann sind
ja die k; Ringelemente, und die zweite Summe aus (1) geht in der ersten auf.
Ist also 1 € R, so wird (M) die Menge aller endlichen Summen

(2) rymy + reme + ... 4 remg (rye R, mye M).

Da wir fast ausschlieBlich kommutative Ringe mit Einselement betrachten
werden, ist dies der wichtigste Fall.

Definition: Das Ideal a des kommutativen Ringes R heift endlich erzeugt,
wenn es eine endliche Menge M = {my, mg, ..., ms} C R mit a = (M) gibt. In
diesem Fall schreiben wir a = (my,mg,. . .,ms) und nennen M = {m1,mg,. .., ms}
eine Basis von a.

Ist also speziell B ein kommutativer Ring mit Einselement, so besteht
(m1,ms,. ..,ms) aus allen Summen der Gestalt rymyi—+rome+...-f-rsms, r; € R.
Fiir das Ideal R kann man dann R = (1) schreiben.

Die Basen endlich erzeugter Ideale sind keineswegs eindeutig bestimmt. In
3 gilt beispielsweise (4, 6) = (2).

Die Gleichheit von Idealen zeigt man oft genauso wie die von Mengen. Hier-
auf beruhen gewisse identische Umformungen, die fiir den Fall eines Ideals
(a, b) aus einem kommutativen Ring R erldutert seien. Es gelten die Regeln

(3) (a,b) = (a, —b),

4) (@,0) = (a,a + D),

letztere wegen

ra +reb+ kia + kb = (r1—re)a 4 rala + b) 4 (ky — ko)a + kala + b)
(r¢ € R, ki € 3). Fiir ¢ € (a, b) erhalt man weiter

() (2,b) = (a, b,c)

und speziell

(6) (a,0) = (a, b, ra) (re R);

diese letzte Beziehung gestattet, von rechts nach links gelesen, oft wesentliche
Vereinfachungen.

Beispiel 1. In 38 gilt (6, —9,21) = (6 —9, 6, —9,21) = (—3) = (3). Es
ist, als hitte man den g.g.T. berechnet.

Beispiel 2. In 3 gilt (—14, 35, 28) = (—14, 35, —28) = (7, —14, 35, —28)
= (7).

Beispiel 3. In 3[)—5] wird (2,1 + }—5) = (2,—1— }—5) = (2,1— [—5).
Beispiel 4. In 3[z, ylist (x —y, 2+ y) = (t—y, x + y, 22) = 2w,z + y),
aber z¢(x—y,x+y) und yé(x—y, v+ y). In Qr,y] dagegen gilt
(x—y,x—l'?/) = (2z,x+y) = (x,x‘f-?/) = (x’."/)

35.2 Ein Ideal a eines kommutativen Ringes R heilt Hauptideal, wenn ein

ac R mit a = (a) existiert. So ist (6, —9, 21) = (3) ein Hauptideal in 3; aber
(x —y, x + y) ist es weder in 3{z, y] noch in Qfz, y].

9»



132 Ideale

Definition: Ein Integrititsbereich I mit Einselement heifit Hauptidealring,
wenn jedes Ideal aus I ein Hauptideal ist.

Solche Ringe gibt es. Jeder Korper K gehort zu ihnen, da (0) und K = (1)
seine einzigen Ideale sind (§ 21, Beispiel 3). Ferner gilt der

Satz 1: 3 tst Hauptidealring.

Beweis: Das folgt aus Satz 9.6, wonach jede additive Untergruppe a
von 3 zyklisch ist. Um aber ein Muster fiir spiter zu haben, fiihren wir die
Uberlegung noch einmal durch. Ist a ein von (0) verschiedenes Ideal aus 3,
so gibt es ein kleinstes positives a € a. Wir behaupten a = (a). Zu zeigen ist:
Zu jedem b € g existiert ein ¢ € 3 mit b = ga. Division von b durch a liefert
b=qga+rn0=r<a Wegenr =b—qgacaund 0 =r<amuB r=0
sein auf Grund der Wahl von a. Damit ist b = ¢a, und es folgt Satz 1.

Ist a ein Ideal des Ringes R, so wird durch @ = b <> a — b e a eine Kon-
gruenzrelation auf R erklart, und man schreibt @ = b mod a; umgekehrt gibt
es zu jeder Kongruenzrelation auf R ein Ideal a c R derart, dafl @ = b be-
deutet: a — b e a (§ 21). Da nun in 3 jedes Ideal ein Hauptideal a = (n) ist,
kann man dort auch ¢ = b mod (») oder kiirzer ¢ = b mod #n bzw. a = b (n)
schreiben, wie wir es bereits in § 20 verabredet haben.

35.3 Wieder sei R ein kommutativer Ring; es sei I eine Indexmenge, und die
a¢ (1 € I) seien Ideale aus R. Dann gibt es ein kleinstes Ideal, das alle a; ent-
hélt, namlich
a = (Uay).
iel

Diese Feststellung erlaubt die

Definition: Es seien a; (¢ € I) Ideale des kommutativen Ringes R. Unter dem

Summenideal 3 a; versteht man das kleinste Ideal a aus R, das alle a; enthdlt.

tel
Aus welchen Elementen besteht a ? Gilt a¢ € a;, und ist 7' eine endliche Teil-
menge von I, so ist sicher s = 3 a; ein Element von a; fir die Gesamtheit
ieT
8§ aller solcher endlichen Summer; s folgt S c a. Ferner ist S ein Ideal, weil die
a; Ideale sind. Aus 8> U a4 folgt also auch §>(U a;) = a. Zusammen-
el iel

genommen haben wir a ='TS und damit den '

Satz 2: Es seien a4 (¢ € I) Ideale des kommutativen Ringes R. Dann besteht
> a4 aus allen endlichen Summen der Gestalt 3 ay, a;e ag (i € T c I, T endlich).
tel
Beispielsweise a 4 b ist die Menge allera + b,a€q, beb.

Aus der Definition folgen die Rechenregeln (a + 6) + ¢ = a + (b + ¢) und
a+b = b+ a.

Beispiel 5. In 8 gilt (6) + (9) =(6,9) = (3); esist (2) + (3) = (2,3) = (1)
und (4) 4+ (4) = (4).

Beispiel 6. In 3[}/2] hat man (2+)2)+(6+V2) = (2+)2, 6+)2) = (242,
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6412, (2—V2)(2+V2)), letzteres, weil das Produkt des Ringelements 2—/2
mit 2+ 2e(2+|/2, 6+ )/2) wieder im Ideal (24 }/2, 6 )/2) liegt. Also ergibt sich

C+VD+6+12 =@2+12.6+ 1212 = (/2
denn 2 + |2 und 6 + /2 sind in 3[}/2] Vielfache von /2.

35.4 Ein wichtiger Begriff ist der des Produktideals.

Definition: Es seien a, b Ideale des kommutativen Ringes R. Unter dem
Produkiideal ab versteht man das von allen ab, a € a, b € b, erzeugte Ideal.

Es handelt sich also nicht um das Komplexprodukt von a und b; aber Ver-
wechslungen sind nicht zu befiirchten.

Wieder ist klar: Das Ideal ab umfat die Menge S aller endlichen Summen der
Gestalt >aiby, a4 € a, by € b; aber S ist selbst schon ein Ideal und enthilt alle
ab (a € a, b € D), also auch ab. Es folgt ab = S. Wir haben also den

Satz 3: Es seien a, b Ideale des kommutativen Ringes R. Dann besteht das
Produktideal ab aus allen endlichen Summen der Gestalt Sab;, a; € a, by € b.

Analog erklart man Idealprodukte ab¢ usw. und bekommt Rechenregeln wie
(ab)c = a(bc) und ab = ba. Beim Rechnen von Beispielen benutzt man oft
den folgenden

Satz 4: Es seien A, B Teilmengen des kommutativen Ringes R; es sei AB
thr Komplexprodukt und a = (A4), b = (B). Dann 3t a + b = (4 u B) und
ab = (AB).

Beweis: Das kleinste Ideal, das A und B enthilt, enthilt auch a und 6,
also ¢ + b, und umgekehrt ist a + b o (4 v B); es gilt also a + b = (4 U B).
Ferner ist auf Grund der Definition des Produktideals ab 5(4B), und wir
zeigen noch ab c (4B): Jedes Produkt «f, a € a, § € b, hat nach (1) die Gestalt

(érm + g"k,a:xz:r:b, + g’k:b:)

mit Elementen r;, 7} € R, a4, af € 4, by, bj € B, ks, ki € 3; multipliziert man aus,
so sieht man aff € (4B); also liegt auch jede endliche Summe >ayf; (y€a, f€b)
in (4 B), und nach Satz 3 heiBt das ab c (4 B).

Beispiel 7. In 3 ist (2)(—3) = (—8) = (6).

Beispiel 8. In 3[}3] sei a = (1 + 3,1 —}3) und b = (2 + /3, }/3). Wir
wollen a + b und ab berechnen. Zuvor sehen wir, da a = (1 + /3, —2)
=+ )3 A— )31+ }3) = (1L+ V3 und b = (2, V3) = (2 V3, /33
=(1, 2, J/3, 3) = (1) Hauptideale sind. Es folgt a + b = (1) und ab = (1 + }3).
Beispiel 9. In 3[}/—5] sei ¢ = (2,1 + }—b6). Fiir aa = a2 bekommt man
4,2 + 2)—5, —4 + 2)=5) = (4,2 + 2J=5,2)—5) = (4,2, 2)=5) = (2).

Aufgabe 1: Fiir Ideale a, b4, ¢ eines kommutativen Ringes R zeige man

a) aX b = 3 ab (tel),
b) a="5bt =ach.
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Aufgabe 2: Man berechne Summe und Produkt der Ideale
a=3+YV2,3—72) und b = (24 }2,2—)2) in 3[}2].

Aufgabe 3: Es sei R ein kommutativer Ring und « ein Ideal aus R. Man
nennt die Menge

rad a = {r:re R, es gibt ein n € N mit »* € a}
das Radikal von a. Man zeige: Auch rad a ist ein Ideal aus R (das ¢ umfalit).
Aufgabe 4: Beschreibe 3[«]/(5, ) durch einen bereits bekannten Ring.

§ 36 Teilbarkeit

36.1 Wir untersuchen den Teilbarkeitsbegriff; dabei legen wir einen Integritits-
bereich R mit Einselement zugrunde. Nach § 20.2 heit ein Element a e R
Einheit, wenn es in R ein Inverses besitzt; hier bedeutet das die Existenz
eines b € R mit ab = 1. Aus Aufgabe 20.5 wissen wir: Die Menge E c R aller
Einheiten ist eine multiplikative Gruppe. Wir sehen uns zunéachst solche
Einheitengruppen an.

Beispiel 1. Ist R ein Korper K, so ist & die Menge K¢ der von Null ver-
schiedenen Korperelemente.

Beispiel 2. Fir R = 3 ist £ = {1, —1}.

Beispiel 3. Es sei R = 3[¢]. Ist a + bi (a, b € 3) eine Einheit aus 3[¢], so
gibt es eine Zahl ¢ + di (¢, d € 3) in 3[¢] mit (& + bi)(¢c + di) = 1. Dann gilt
auch (@ —bi)(c —di) = 1 (vgl. Aufgabe 27.3 und § 29.4). Multiplikation
beider Gleichungen liefert (a2 4 b2)(c2 4 d?) = 1 und, da links natiirliche Zahlen
stehen, a2 4 b2 = 1. Sind umgekehrt a, b ganze Zahlen mit a2 + 32 = 1,
also (a + bi)(@ — bi) = 1, so ist @ 4 b Einheit in 3[2]. Wir sehen also: Not-
wendig und hinreichend dafiir, da8 a + b¢ eine Einheit des GauBischen Zahl-
ringes 3[4] ist, ist a2 + b2 = 1. Es folgt £ = {1, —1, ¢, —i}.

Die Bestimmung aller Einheiten von R kann aber auch auf erhebliche Schwie-
rigkeiten stoBen. Man betrachte etwa das

Beispiel 4. Es sei R = 3[}2]. Ist a + b|/2 (a, b € 3) eine Einheit aus 3[}2],
so folgt wie in Beispiel 3 die Existenz ganzer Zahlen ¢, d mit

(0% — 2b2)(c® — 2d2) = 1.

Links stehen ganze Zahlen ; also ist entweder a2 — 2b2 = 1 oder a2 — 2b2 = —1.
Sind umgekehrt @, b ganze Zahlen mit a2 — 252 = 4-1, also

(@ + b)2)a—b)2) = +1,
80 ist @ + b]/2 eine Einheit in 3[}/2]. Notwendig und hinreichend dafiir, daB
a + b2 eine Einheit von 3[|/2] ist, ist demnach a? — 262 = 41. Man hat
also alle ganzzahligen Losungen der beiden diophantischen Gleichungen
22— 2y2 = 1 und 22 — 2y¢2 = —1 aufzusuchen und steht vor einer Aufgabe
der Zahlentheorie. Das Ergebnis ist folgendes: Die Einheitengruppe £ von
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3[)/2] besteht aus den unendlich vielen Zahlen +(}2 4 1)*»(» = 0,1,2, ...).
Daf} dies alles Einheiten sind, ist wegen (/2 + 1}(}J2 —1) = 1 unmittelbar
zu sehen.

Definition: Es set R ein Integritdtsbereich mit Einselement. Die Elemente
a, b e R heiflen assoziiert, a ~ b, wenn eine Einheit e € R mit b = ea existiert
(andernfalls: a ~ b).

Man sieht leicht, daB auf diese Weise eine Aquivalenzrelation auf R definiert
wird. Der Integrititsbereich B mit der Einheitengruppe E zerfillt in Klassen
aE,bE, cE, ... assoziierter Elemente. Die Klasse E selbst besteht aus allen
re R mit r ~ 1.

36.2 Es sei weiterhin R ein Integritdtsbereich mit Einselement. Wir nennen
b e R einen Teiler von a € R oder a ein Vielfaches von b, wenn es ein ce B
gibt mit @ = be, und schreiben bla, andernfalls bta.

Speziell ist also jedes b € R Teiler der Null; aber O|a gilt nur fir a = 0. Genau
dann ist b € R eine Einheit, wenn gilt: b|1.

Mit dem folgenden Satz beginnen die Zusammenhénge zwischen Teilbarkeits-
und Idealtheorie.

Satz 1: Es ser R ein Integrititsbereich mit Einselement, und a,b seien
Elemente aus R. Dann g¢ilt:
(1) (@)c(®) < bla.
(2) (@) = (b) < a~0b

Beweis:
(1): Esistdla < a = bc <> ac(h) < (a)c(d)
(2): Der Fall a = 0 ist trivial. Es sei also @ &= 0. Wenn a ~ b gilt, so ist ab
und bla, nach (1) also (@) = (b). Umgekehrt folgen aus (@) = (b) nach (1) die
Beziehungen bla und ab. Es existieren dann also ¢,d € B mit a = bc und
b = ad; es folgt @ = adc oder, da man in dem Integritdtsbereich R durch a #= 0
kiirzen darf, cd = 1. Speziell ist ¢ eine Einheit, also @ ~ b.

Statt bla steht also (a) c (b); der Teiler entspricht dem groBeren Ideal. Wir
sagen auch: (b) ist ein Teiler von (a). Allgemein heiBt das Ideal b ein Teiler des
Ideals a, wenn a c b gilt (vgl. auch Aufgabe 35.1, b)).

Schliellich heile b € R ein echter Teiler von a € R, wenn bla gilt, aber nicht
b ~ a. Idealtheoretisch bedeutet das: (a) c (b), aber (b) =+ (a). Allgemein sagt
man, b sei ein echter Teiler von a, wenn a c b gilt und a 3 b.

Eine oft benutzte Konsequenz von Satz 1 sei noch einmal gesondert notiert:

(3) a~b < albund ba.

36.3 Wir teilen den Integritatsbereich R mit Einselement in drei disjunkte
Teilmengen {0}, E, 4 auf: R = {0} UE u 4. Wegen 1 € E ist die Einheiten-
gruppe E nicht leer; A besteht aus allen denjenigen von Null verschiedenen
Ringelementen, die keine Einheiten sind. Genau dann ist 4 leer, wenn R ein
Korper ist. Ein Ringelement r € R nennen wir nun unzerlegbar, wenn erstens
r € A gilt und zweitens aus r = be (b, ¢ € R) folgt: entweder b oder ¢ ist Einheit.
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Es soll also nur triviale Zerlegungen von r geben. Ein r € R heiBt zerlegbar,
wenn r in A liegt und Nichteinheiten b, ¢ aus R mit r = b¢ existieren.

Beispiel 5. Die unzerlegbaren Elemente in 3 sind genau die Zahlen | p,
wobei p die Primzahlen 2, 3, 5, ... aus ©t durchlduft.

Beispiel 6. Die Zahl 5 ist also unzerlegbar in 3. Wir wollen zeigen: Sie ist
auch unzerlegbar in 3[}2], aber zerlegbar in 3[¢]. Das letztere folgt sofort aus

5 = (2 4+ #)}(2 —7); nach Beispiel 3 ist ja weder 5 noch einer der Faktoren
2 4 ¢ eine Einheit in 3[¢]. Wir betrachten nun 3[}/2]. Sicher ist auch hier 5

keine Einheit wegen% ¢ 3[)/2]. Es seien a, b, ¢, d ganze Zahlen mit

(@ + b)2)(c + d)2) = 5,

also auch (vgl. die Beispiele 3 und 4) noch (@ — b}2)(c — d)/2) = 5. Aus-
multipliziert ergibt das (a® — 2b2)(c2 — 2d?) = 25; die ganze Zahl a2 — 2b2
hat also einen der Werte 4-1, 4-5, +25. Ware

a?— 202 = (a + b)2)(@ —b)2) = +1,

so wire a + b)/2 Einheit; entsprechend wire ¢ + d}2 Einheit im Falle
a2 — 2b? = -+-25. Wenn es also eine nichttriviale Zerlegung

5 = (a + b)2)c + d}2)

in 3[}/2] geben solite, so mufl fiir die ganzen Zahlen a, b gelten: a2 — 252
= 4-5. Wir zeigen, daB das nicht méglich ist. Es miifite ja erst recht a2 — 252
= 0 im Restklassenring 35 gelten; Ausrechnen aller fiinf Fille zeigt, da8 0, 1
und —1 die simtlichen Quadrate in 35 sind ; also hat a® — 2b2 = 0 in 35 nur die
Losung @ = b = 0. Das heiit: Wenn a2 — 252 = {5 in ganzen Zahlen a, b
gelten sollte, so wiirde 5 ein Teiler von a und von b sein; das liefert aber
25|(a? — 2b2) in 3 im Widerspruch zu a2 — 2b2 = 4-5.

Beispiel 7. Es sei R = 3[|—5]. Wir wollen zeigen: Die Elemente 2, 3,
1 + J=5 und 1— =5 sind unzerlegbar, und keine zwei von ihnen sind
assoziiert. Zunichst sind es wegen

1 — 1 — 1 1. — _
§¢3[V—5], §¢3[V—5]» ﬁv—j—é = "é—EV—5 ¢ 3[)—5])

und 1—_——117:—5 = % + 16]/:5 ¢ 3[)—5] keine Einheiten. Die Annahme
(@ + b)/—=5)(c + d)—5) = 2
mit a, b, ¢c,d € 3 fithrt in bekannter Weise auf (a2 + 5b2)(c? + 5d2) = 4; da
keine der Klammern gleich 2 sein kann, folgt etwa,
a® + 5b2 = (a + b)—B8)a —b)—5) = 1;

also ist @ + b)—5 Einheit und 2 unzerlegbar. Genauso zeigt man die Un-
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zerlegbarkeit von 3. Weiter sei 1 + J—5 = (a + b)/—5)(c + d}—5) und
folglich auch 1 — }/—5 = (@ — b}/—5)(c — d}/—5); man bekommt

6 = (a% + 5b%)(c? -+ 5d2).

Wieder mu8 etwa a2 + 5b2 = 1sein,und 1 + }/—5 und zugleich auch 1 — }—5
erweisen sich als unzerlegbar. Schlieflich sind keine zwei der Elemente
2,8,1 + |/—5,1 — |/—5 assoziiert; denn keiner ihrer Quotienten liegt in
3[)—51.

Wir geben nun eine idealtheoretische Charakterisierung fiir die Unzerlegbarkeit
eines Elementes r € R, r &= 0.

Satz 2: Es set R ein Integritdisbereich mit Einselement und re R, r &= 0.
Genau dann ist r unzerlegbar, wenn (r) maximales Ideal unter den von R ver-
schiedenen Hauptidealen ist, das heifit, wenn (r) == R ist und aus (r) c(a) c R
Jolgt: (@) = (r) oder (a) = R.

Beweis: Ist r unzerlegbar, so ist r ~ 1, also (r) 3 (1) = R. Gilt weiter
(r) c(a) c R, so gibt es ein b € R mit r = ab; ist a Einheit, so wird (a) = (1)
= R; ist b Einheit, so wird (¢) = (r). Es sei nun umgekehrt (r) &= R und (r)
maximal unter den von R verschiedenen Hauptidealen. Aus r = ab folgt dann
(r) c (a) und damit entweder (a) = R = (1) oder (a) = (7). Im ersten Fall ist
a ~ 1, also @ Einheit. Im zweiten Fall ist @ ~ r oder r = ea mit einer Einheit ¢,
und wegen r & 0 und r = ae = ab folgt diesmal b = ¢ ~ 1. Aber r selbst ist
nicht Einheit wegen (r) == (1). Also ist » unzerlegbar.

36.4 Wieder sei R ein Integrititsbereich mit Einselement. Wir nennen d € R
einen gemeinsamen Teiler von a, b e R, wenn gilt: dla und dib. Gleichwertig
damit ist: (a) c (d) und () c (d), und das ist dasselbe wie (a, b) c (d).
Entsprechend definiert man einen gemeinsamen Teiler d der Elemente
@, az, ..., 8, von R; wenigstens ein solches d existiert immer, da d =1 ge-
wihlt werden kann.

Definition: Es sei R ein Integrititsbereich mit Einselement, und ay,as, . . .,an
seien Elemente aus R. Einen gemeinsamen Teiler d € R von ay, ag, . . ., Gy nennen
wir einen groften gemeinsamen Teiler (9.9.T.) von ay, as, ..., ay genau dann,
wenn fir jeden gemeinsamen Teiler 6 € R von a1, as, . . ., ay gilt: 6]d.

Idealtheoretisch bedeutet das: Fiir jeden gemeinsamen Teiler 6 von

’ . ay, az, ..., 4y
und jeden g.g.T. d gilt
(ala az, ..., an) C (d) c (é)'

Ein g.g.T. der Elemente 0, r € R ist hiernach r. Aber es ist nicht gesagt, daB zu
je zwei Elementen a, b € R ein derartiger g.g.T. existiert.

Sind d; und dp groBte gemeinsame Teiler von a3, ag, ..., a, € R, so gilt dp)d,
und d;|d; also sind dy und d assoziiert. Ist umgekehrt d; ein g.g.T. von
ai, ag, ..., a, und dz ~ dj, 8o ist auch dp ein g.g.T. von a3, ap, ..., a,. Wenn
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also die Ringelemente ay, a3, ..., a, iberhaupt einen gréBten gemeinsamen
Teiler d in R besitzen, so findet man simtliche grofiten gemeinsamen Teiler der
a; durch Aufsuchen aller Assoziierten von d, was auf die Bestimmung der
Einheitengruppe E c R hinauslauft.

Beispiel 8. Wir wissen, und es wird in Satz 3 noch einmal mithbewiesen: Zu
je zwei Elementen a, b € 3 gibt es einen g.g.T.

Beispiel 9. Es sei R = 3[}/—>5]. Wir zeigen: Es gibt in 3[}/—5] keinen g.g.T.
der Elemente @ = 6 und b = 2(1 + }/—5). Angenommen, d € 3[}/—5] wiire ein
g.2.T. von a und b. Dann wire d ein Vielfaches des gemeinsamen Teilers 2 von a
und b und auBlerdem ein Teiler von @ = 6, also d = 2¢ mit einem ¢|3. Nach
Beispiel 7 ist 3 unzerlegbar, also ¢ ~ 3 oder ¢ ~ 1. Wegen 6+2(1 + [—5) ist
¢ ~ 3 nicht moglich, und es folgt ¢ ~ 1 oder d ~ 2. Nun ist wegen

(1 + J=5)1 —}=5) = 6

auch 1 4 J/—5 ein gemeinsamer Teiler von a und b, demnach d ein Vielfaches
von 1+ )J/—5 und Teiler von b = 2(1 + |/—5), und man zeigt wie eben
d ~ 1 4 |/—5. Beides zusammen hieBe 2 ~ 1 + |/—5, und das ist nicht wahr.

Ist d ein g.g.T. von a, b € R, so heiBt das idealtheoretisch: Fiir jedes d € R
mit (a, b) c () gilt (a, b) c(d) c (). Existiert also zu vorgelegten a, b e R ein
solches d, so ist d ein g.g.T. von a und b. Man betrachte den Spezialfall, dal R
ein Hauptidealring ist. Dann gibt es ein d € R mit (@, ) = (d), und dieses d
erfiillt unsere Bedingung. Wir haben also den

Satz 3: Es ser R ein Hauptidealring. Dann besitzen je zwer Elemente a, b e B
einen g.¢.T., und die beiden folgenden Aussagen sind gleichwertig:
(1) d ist g.9.T. von a und b.
(2) (a,b) = ().

Wir hétten unsere Uberlegung genauso auch fiir mehr als zwei Elemente a, b € R
durchfithren und Satz 3 dann etwas aligemeiner hinschreiben kénnen.

Nach Satz 35.1 ist 3 Hauptidealring; zu zwei oder mehreren Elementen aus 3
gibt es also einen g.g.T., und (vgl. § 35, Beispiel 1) etwa die Idealgleichung
(6, —9, 21) = (3) liefert nun tatsdchlich einen g.g.T. 3 von 6, —9, 21. Satz 3
ist auch der Grund fiir die in der Zahlentheorie iibliche Bezeichnung d = (a, b)
des g.g2.T. d von a, b €3, die wir mit der Verabredung d = 0 bereits benutzt
haben.

Eine wichtige Folgerung aus Satz 3 ist der

Satz 4: In einem Hauptidealring R ist jeder g.g.T. d von a, b € R als Linear-
kombination d = Aa + ub mit Elementen A, u € R darstellbar.

Beispielsweise haben 35 und 26 in 3 den g.g.T. Eins; es gibt also ganze Zahlen
A, 4 mit 351 + 26y = 1; man kann etwa 1 =3 und u = —4 wihlen. Fir
spezielle Hauptidealringe, zu denen auch 3 gehort, kennt man ein allgemeines
Verfahren, solche Koeffizienten 4, y (sie sind nicht eindeutig bestimmt) aus-
zurechnen; es handelt sich um den in § 37 besprochenen Euklidischen Algorith-
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mus, der auch die Ermittlung eines g.g.T. von Elementen a, b des Ringes
erlaubt.

Nicht von vornherein selbstverstandlich ist schlielich der

Satz 5: Es set H ein Hauplidealring und R > H ein Integrititsbereich mit
demselben Einselement; ferner sei d € H ein q.g.T. der Elemente a,bc H in H.
Dann ist d auch ein g.9.T. von a, b in R.

Beweis: Es gibt Elemente 4, u € H ¢ R mit d = la +.ub. Jeder gemein.
same Teiler § € R von a und b 148t sich rechts ausklammern, geht also in d auf.

Zum SchluB} treffen wir noch eine Verabredung: Elemente @, az, . . ., a, eines
Integritatsbereiches B mit Einselement heillen teilerfremd, wenn aus d|a;
(t=D12,...,n) folgt: d ~ 1. Gleichbedeutend damit ist: Der g.g.T. von a;,
as, ..., ay existiert und ist Eins.

Aufgabe 1: Man bestimme die Einheitengruppen E; von Q[z] und E» von
30/—51

Aufgabe 2: Die Einheitengruppen E; von 3[}/3] und Bz von 3[}/5] sind
unendlich. Beweis ?

Aufgabe 3: Auf 3[|/5] sei durch N(a + b)/5) = a2 — 5b2(a, b € 3) eine
Norm definiert (vgl. § 29.4). Man zeige:
a) Fiir r, s € 3[|/5] gilt N(rs) = N(r)N(s).
b) Genau dann ist r € 3[/5] Einheit in 3[]/5], wenn N(r) = 41 ist.
c) Hinreichend dafiir, daB r € 3[}/5] unzerlegbar ist, ist die Unzerlegbarkeit
von N(r) in 3.
d) Die Elemente 1 — }/5 und 3 + |/5 sind Assoziierte, aber keine Einheiten.
e) Die Elemente 2, 3 + /5 und 3 — |/5 sind unzerlegbar, und keine zwei von
ihnen sind assoziiert.

§ 37 Gausssche Ringe, Hauptidealringe, Eukiidische Ringe

37.1 Die Teilbarkeitstheorie in 3, die in der elementaren Zahlentheorie be-
trieben wird, wird besonders einfach, weil dort dér Satz von der sogenannten
kanonischen Zerlegung in Primelemente gilt. In unserer Sprechweise besagt er
folgendes: Erstens ist jedes von Null und Einheiten 41 verschiedene m €3
als Produkt endlich vieler unzerlegbarer Elemente p; € 3 darstellbar:

m = pps... px(k 21).

Liegt zweitens eine weitere solche Darstellung m = ¢ig3 ... q; vor,soist l = %
und bei geeigneter Numerierung ¢; ~ p;. Man kann sagen, die Darstellung
m = ppe ... Px sei im wesentlichen eindeutig; ein Produkt 1 = g1z ... &
von Einheiten ¢ kann man ja rechts immer heranmultiplizieren. Beispiel:
50 =2-:5-5 = (—2)(—5)56 = (—2) - 5 - (—b) = 2(—b5)(—DH).
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Dies nehmen wir zum AnlaB fiir die folgende

Definition: Ein Integrititsbereich R mit Einselement heift ein GaupBscher
Ring oder ZPE-Ring, wenn fiir jede Nichteinheit r € R, r =+ 0, gilt:
(1) Das Element r ist Produkt unzerlegbarer Elemente pye R: r = pip2 ... px
(k=1).
(2) Ist r = quqa . . . qi eine weitere Zerlegung gemdf (1), so gilt | = k und bes
geeigneter Numerierung p1 ~ ¢1, P2 ~ q2, « .., Pk ~ qk.

DaB 3 ein GauBscher Ring ist, wird in Satz 2 noch einmal mithewiesen. Weitere
GauBsche Ringe sind uns im Moment noch nicht bekannt, wenn man von dem
trivialen Fall absieht, daB R ein Korper ist. Wir werden aber bald sehen,
daB zum Beispiel 3[}/2], 3[}/3] und 3[i] GauBsche Ringe sind (§ 38). Dagegen
sind 3[)/—5] und 3[}/5] keine GauBschen Ringe: Im ersten Fall betrachte man
das Beispiel 7 aus § 36 und die Zerlegungen

6 =2-3und 6 = (1 + J=B)(1 — J—5)

der Zahl 6 in nichtassoziierte unzerlegbare Elemente. Im zweiten Fall sehe man
4 =2-2=(3+ }J5)(3 — |/5) und Aufgabe 36.3.

Ist R ein GauBscher Ring, so nennen wir seine unzerlegbaren Elemente Prim-
elemente. GauBsche Ringe haben in der Literatur verschiedene Bezeichnungen ;
von den Anfangsbuchstaben der Worte Zerlegung, Prim-Element riihrt der
Name ZPE-Ring her. Dafl in GauBschen Ringen die Teilbarkeitstheorie so
einfach wird, liegt hauptsichlich an dem bereits in der elementaren Zahlen-
theorie immer wieder benutzten

Satz 1: Es seien a == 0, b, ¢ Elemente des Gaufschen Ringes R; die Elemente
a, b seien teilerfremd, und es gelte albc. Dann folgt alc.

Beweis: Das ist sicher richtig, falls ¢ Einheit ist. Ist ¢ = p1pa ... P&
ein Produkt von Primelementen p; und etwa aa’ = b¢, so denke man sich fiir
beide Seiten die Primfaktorzerlegungen aufgeschrieben. Da sie, abgesehen von
Einheiten als Faktoren, eindeutig sind, stehen die p; zumindest in Gestalt von
Assoziierten auch rechts. Nach Voraussetzung geht kein p; in b auf; also stecken
alle p; in der Primfaktorzerlegung von ¢, und es folgt ¢ = ac¢’ oder alc.

Je zwei Elemente a, b eines Gauflschen Ringes R haben einen g.g.T.: SchlieBen
wir die trivialen Fille ¢ = 0 oder b = 0 aus, so kénnen wir

a = epipp... P, b = nphph ... ph

mit Primelementen p;, Exponenten o; = 0, #; = 0 und Einheiten ¢, 7 schreiben.
Fir jeden gemeinsamen Teiler 6 von @ und b gilt dann

0~ p‘{lp;l e pz.

mit gewissen Exponenten 0 < y; < Min(ay, f;); wihlt man yp; = Min(ay, §;)
fiir alle ¢, so wird & ein g.g.T. Genauso verfahrt man bei mehr als zwei Elementen
a,beR.
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37.2 Wie erkennt man, ob ein Integrititsbereich R mit Einselement ein Gaul3-
scher Ring ist ? Bislang haben wir noch kein einziges Kriterium zur Hand, das
wir benutzen konnten. Eine erste wichtige Auskunft in dieser Richtung erteilt
der Satz 2. Wir beginnen mit einem

Hilfssatz: Es seien @ 5= 0, b, ¢ Elemente des Hauptidealringes H; die
Elemente a, b seien teilerfremd, und es gelte ajbc. Dann folgt alc.

Beweis: Nach Voraussetzung haben a,be H den g.g.T. Eins; nach
Satz 36.3 ist also (a, b) = (1), und es existieren 1, ue H 'mit 1 = Aa + ub
oder ¢ = Aac + ubc. Wegen albc kann man rechts a ausklammern, und das
bedeutet «ajc.

Satz 2: Jeder Hauptidealring H ist ein Gaufscher Ring.

Beweis: Wir zeigen nacheinander das Erfiilltsein der Forderungen (1),
(2) fiir Gaulische Ringe.
(1): Es sei & € H weder Null noch Einheit; gibt es ein solches % nicht, so ist H
von selbst ein GauBscher Ring. Wir zeigen, dal & ein Produkt unzerlegbarer
Elemente aus H (speziell vielleicht selbst unzerlegbar) ist. Angenommen, das
wire nicht so. Dann gidbe es Nichteinheiten dj, dz € H mit kA = dyds, und
wenigstens eines der d;, etwa da, wire nicht Produkt unzerlegbarer Elemente
aus H. Wieder gébe es Nichteinheiten d3, d4 € H mit dz = dgd4, und wenigstens
einer der Faktoren dg, d4, etwa d4, wire nicht Produkt unzerlegbarer Elemente
aus H. Man setze dieses Zerlegungsverfahren fort. Es bricht nicht ab und
liefert eine Idealteilerkette

(k) c(dg) c(dg) c(de) C ...,
in der nirgendwo das Gleichheitszeichen stehen koénnte. Wir zeigen, daB so

etwas in H nicht vorkommen kann: Zunéchst ist U (da;) wieder ein Ideal a c H;
i=1

denn zu a, b € a existiert ein n mit a, b €(dz,), und es folgt a — b e(da2y) ca
sowie ra € (dgy) C a fiir jedes r € H. Nun ist H Hauptidealring; es gibt also
ein d € H mit ¢ = (d). Dann liegt d € a in einem der Ideale der Kette, etwa
in (dgs); neben (dgs) C (d) gilt also auch (d) c (dzs) und damit (dgs) = (d). Spéte-
stens vom Index 2s an miiBte also in der Idealteilerkette das Gleichheits-
zeichen stehen, da alle (d2;) in a = (d) enthalten sind. Unsere urspriingliche
Annahme iiber » war also falsch ; die Forderung (1) fiir GauBsche Ringe ist in H
erfiillt.

(2): Es sei b = a1ap ... ax = bibg ... b; mit unzerlegbaren a4, b; € H. Die un-
zerlegbaren Elemente a), b; sind entweder assoziiert oder teilerfremd, und es
gilt a;|by(bads ... b;). Auf Grund des Hilfssatzes ist also a; ein Teiler von
b1 oder von bgbs ... b;. Aus a;|ba(bsbs ... b)) folgt genauso: a; teilt by oder
bsbg ... by usw. Es gibt also ein b; mit a;|b;, und weil a@; und b; unzerlegbar
sind, heiBt das a; ~ b;. Ohne Beschriankung der Allgemeinheit sei @; ~ b;. Aus
aas . .. ag = bibg ... b ergibt sich dann agas ... ax ~ bebs ... b;. Man setze
das Verfahren fort: as teilt bobs ... by, also eines der b;, 2 < ¢ < I; es sei etwa
as ~ bs. Zum SchluB hat man k — [ und a4 ~ b; fiir alle 4. Damit ist Satz 2
bewiesen.
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Satz 2 und Satz 35.1 zeigen, daB 3 ein GauBscher Ring ist.

Bemerkung: Die Umkehrung von Satz 2 ist falsch; nicht jeder GauBsche
Ring ist Hauptidealring. In § 42 wird sich beispielsweise zeigen, daB mit R
auch der Polynomring R[x] ein Gaulischer Ring ist; danach ist 3[x] ein GauB-
scher Ring. Aber das Ideal (2, z) c 3[x] ist kein Hauptideal; etwa aus (2,x) =(d),
d € 3[x], wirde ja folgen: d|2, d|x, also d = 41, im Gegensatz zu 1 ¢ (2, ).

37.3 Nun wire es aber nétig, wenigstens zu wissen, wann ein vorgelegter
Integritatsbereich R ein Hauptidealring ist. Einmal, namlich fiir R = 3, haben
wir einen solchen Nachweis erbracht, und es ist nun sehr bezeichnend, daB das
Schema des Beweises von Satz 35.1 auch in vielen anderen Fillen zum Ziel
fithrt. Wir sehen im folgenden ein Beispiel einer algebraischen Verallgemeine-
rung, die sinnvoll ist, weil sie in einfacher Weise zu neuen Ergebnissen fiihrt.
Worauf beruht der Beweis von Satz 35.1? Das Wesentliche war: Man konnte ein
vorgelegtes b € 3 durch jedes @ € 3, @ == 0, mit Rest r dividieren, b = ga + 7,
wobei entweder » = 0 war oder in einer geeigneten Verabredung r ,kleiner*
als a. Ringe mit einem solchen Divisionsalgorithmus sehen wir uns an.

Definition: Ein Integrititsbereich E heifit ein Euklidischer Ring, wenn eine
Abbildung w: Eo - R der Menge Eg aller a € B, a =+ 0, die sogenannte Wert-
funktion w, mit folgenden Eigenschaften existiert:

(1) Zu vorgelegten Elementen b,ac E, a &= 0, gibt es Elemente ¢q,r € E mit
b = ga + r, wobei entweder r = 0 oder w(r) < w(a) ist.

(2) Zu vorgegebenem s e R gibt es hochstens endlich viele Zahlen wy aus dem
Wertevorrat W = {w(a): a € Ey)}, die kleiner sind als s: wye W, ws < 8.

Beispiel: E = 3. Fir « € 3, « 5 0, setze man w(a) = |al.

Neben (1) ist auch die Forderung (2) wichtig; sie sichert, daB jede nicht leere
Teilmenge M c W ein kleinstes Element besitzt. Beim Beweis von Satz 35.1
fiihrte das zur Wahl von a; dabei war w(«) = |«| und M = {w(x); x€q, 2 ==0}.
Wenn wir feststellen, da3 durch w(x) = || eine Wertfunktion auf 3¢ erklirt
wird, so ist damit nicht gesagt, dal 3¢ nicht auch andere Wertfunktionen zu-
1aBt.

Ist K[x] ein Polynomring iiber einem Kérper K und f(z) € K[z}, fz) + 0, so
wahle man w(f) = Grad f(z). Der folgende Satz ist dann eine Konsequenz von
Satz 25.6.

Satz 3: Ein Polynomring K{x) iiber einem Kirper ist ein Euklidischer Ring.
Die Einheitengruppe von K[x] ist Ko; die Primelemente (vgl. Satz 2 und den
folgenden Satz 4) sind genau die in K[z] irreduziblen Polynome.
Bemerkung: Der in (1) geforderte Divisionsalgorithmus kann eindeutig sein,
muB es aber nicht. Wihrend in K[z] aus f(z) = qi(z)g(z) + ri(z) = q2()g(x)
+ ra(x), g(x) &= 0, ri(x) = 0 oder Grad ry(x) < Grad g(z), durch Subtraktion
(g2(x) — qu(x))g(x) = ri(x) — ra{x) und mit Hilfe einer Gradbetrachtung die
Eindeutigkeitsaussage ri(x) =rz(z), q1(x) = gz(x) folgt, gilt in 3 etwa 12=
2:54+2=3-5-3.
Nun iibertragen wir Satz 35.1 und seinen Beweis.

Satz 4: Jeder Euklidische Ring E ist Hauptidealring.
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Beweis: Wir haben zweierlei zu zeigen: Jedes Ideal a c E ist Hauptideal,
und 1 € E. Wir beginnen mit dem ersteren. Es sei ¢ c E und a 5= (0). Dann
gibt es auf Grund von (2) ein a € g, @ = 0, mit minimalem Wert; fiir jedes
cea, ¢ =+0, gilt wc) = w(a). Man wihle ein beliebiges b € ¢ und dividiere
durch a; man bekommt b = ga + r mit r =0 oder w(r) < w(a). Wegen
r = b— ga € a und der Wahl von a € a kann aber nicht w(r) < w(a) sein. Also
ist r = 0 oder b € (@), und das bedeutet a = (). Um noch 1 € £ nachzuweisen,
betrachten wir speziell das Ideal E = (0) und wihlen ein ¢ € &, ¢ == 0, mit
minimalem Wert. Division von e durch ¢ gemif} (1) liefert ein e € £ mit £ = ee.
Dieses e ist Einselement von £ ; denn fiir jedes r € E gilt re = ree oder r = re.

Jeder Fuklidische Ring, etwa R[], ist also Hauptidealring und damit auch
ein GaulBlscher Ring.

Bemerkung: Man kann zeigen, dal die Umkehrung von Satz 4 falsch ist;
nicht jeder Hauptidealring ist ein Euklidischer Ring.

Ein ausfiihrliches Beispiel fiir die Anwendungsméglichkeiten der hier ent-
wickelten Theorie folgt in § 38.

37.4 Wir erortern noch den bereits in § 36.4 erwahnten Euklidischen Algorith-
mus, der es unter anderem gestattet, zu zwei Elementen @, b eines Euklidi-
schen Ringes £ den g.g.T. auszurechnen, auch wenn die Primfaktorzerlegungen
von a und b vielleicht nicht bekannt sind. Wir nehmen an, a und b seien un-
gleich Null und b kein Teiler von @; damit schlieBen wir nur triviale Fille aus.
Man dividiere dann a durch b gemaB (1): a = q1b + 71, w(r1) < w(b). An-
schlieBend mache man dasselbe mit b und r; und fahre in dieser Weise fort.
Man bekommt das folgende Schema:

=qb +n , wr)<wb)
b =qgn H4r , wr) <wlr)

n qarz  + 713, w(rg) < w(r)
Tn-2 = @uafn-1+ T , wW(ra) < w(rp-1)
Tn-1 = qn+1Tn

Dabei ist r,, n = 1, der letzte nicht verschwindende Divisionsrest; das Ver-
fahren bricht ja wegen w(r1) > w(re) > w(rs) > ... und (2) nach endlich
vielen Schritten ab. Wir behaupten: r, ist ein g.g.T. von ¢ und b. Wir zeigen
als erstes: ry, teilt @ und b. Aus der letzten Zeile folgt rp|ry—1; im Falle n =1
sei dabei rg = b gesetzt. In der vorletzten Zeile kann man also rechts r, aus-
klammern und bekommt auch 7,|r,—o. Jetzt kann man auch in der dritt-
letzten Zeile rechts r, ausklammern und in dieser Weise fortfahren. Zuletzt
erscheint r, als Teiler der rechten Seiten von b und a. Zweitens sei d ein Teiler
von @ und b; zu zeigen bleibt d|r,. Zuerst kann d in 1 = a — gb rechts aus-
geklammert werden; es gilt also d|r;. Also ist 4 auch ein Teiler von b und ry,
und die zweite Zeile ro = b — gor; des Schemas liefert d|re. Als nichstes er-
gibt sich djrs, zuletzt d|r,.

Der Euklidische Ring E ist ein Hauptidealring; nach Satz 36.4 existieren also
A n€eE mit r, = Aa + ub. Solche A, u liefert der Euklidische Algorithmus
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mit. Man beginne mit der vorletzten Zeile 7, = r,_3 — g7y des Schemas;
mit Hilfe der drittletzten Zeile eliminiere man r,_y:

n = Tn-2— quln—38— Qn-17n—2) = —quTa-3 + (1 4 gngn-1)ra—2.

Unter Benutzung der néchsten Zeile eliminiert man r,-3. Zuletzt bekommt
man r, = Aa + b mit Ringelementen A, x, die aus den bekannten ¢; zu-
sammengesetzt sind.

Aufgabe 1: Jedes Ideal des Ringes 23 der geraden ganzen Zahlen ist
Hauptideal. Beweis ?

Aufgabe 2: Man zeige das Folgende.
a) f(x) = 222 4+ 2 € R[] ist ein Primelement von R[z].
b) g(x) = 2 + 1 € €[x] ist kein Primelement von €[x].

Aufgabe 3: Berechne einen g.g.T. d von 303707 und 808201. Finde
A pe3mitd = 3037074 - 808201u.

Aufgabe 4: Berechneeinen g.g.T. d(z) von f(x) = z5+zxi+fa3+22+2+
1eR[x] und g(x) = x4t + 23 4 222 4+ x 4+ 1 € R[x]. Finde A(x), u(x) € R[2] mit
d(x) = A=)f(z) + p()g(x).

§ 38* Der Ring 3lil

Wir wenden unsere Kenntnisse aus § 37 auf den Ring 3[¢] der ganzen Gaull-
schen Zahlen an und betrachten weitere Beispiele fiir die Kraft der bereit-
gestellten Methoden.

38.1 Unser Ausgangspunkt wird der

Satz 1: 3[¢] ist ein Euklidischer Ring.

Beweis: Es ist 3[¢] c € ein Integritdtsbereich. Die Elemente 2z = a -+ bs
(a, b € 3) von 3[¢] reprisentieren die Gitterpunkte in der GauBschen Zahlen-
ebene (vgl. Anhang). Wir miissen eine Wertfunktion w mit den Eigenschaften
(1), (2) aus § 37.3 angeben und versuchen es mit dem Betrag [z{ = }a2 + b2
oder dessen Quadrat N(z) = a2 4 b2. Dieser Versuch fithrt zum Ziel. Um zu
vorgegebenen zj, 22 + 0 aus 3[¢] Elemente ¢, r aus 3[¢] gemaB (1) zu finden,
fiithren wir die Division von 2z; durch zp zunédchst in Q[¢] aus,

St =arph (@ preD),

und wahlen dann den Gitterpunkt ¢ = « + f¢ («, 8 € 3) moglichst nahe bei
g*: lo* —a| < %, p*—p = —; Wir setzen ¢* = ¢q + ¢, o €Q[#], und be-

kommen 23 = ¢*23 = g2z + pzz oder 23 = gqzp | r, wobei auch r = gz;
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eine ganze Gaulsche Zahl ist. Ist nun 7 % 0, so wird wegen der Multiplikati-
vitit der Norm (vgl. Anhang bzw. § 29.4) ven Q[7] tatsichlich

N) = New) = NN = ( + PN < N

Fiir z€e3[¢], z &+ 0, setze man also w(z) = N(z). Wie wir eben festgestellt
haben, wird dadurch eine Wertfunktion w fiir 3[¢] erklirt, die die Forderung
(1) aus § 37.3 erfiillt, und es gilt auch (2), weil die Werte w(z) natiirliche Zahlen
sind.

Dieses Vorgehen ist typisch und liefert beispielsweise ganz analog, daB8 auch
3[J/—2] euklidisch ist. Das Verfahren versagt dagegen etwa bei 3[}—35]; es
ware aber zunichst noch denkbar, daBl mit Hilfe einer geeigneteren Wert-
funktion als gerade der Norm der Ring doch als euklidisch nachgewiesen
werden konnte. Aus § 37.1 wissen wir jedoch, daB 3[/—5] nicht einmal ein
GauBscher Ring ist; er kann also erst recht nicht euklidisch sein. Mit Hilfe des
Betrages der Norm als Wertfunktion ergibt das vorliegende Muster ferner,
daB 3[{}2] und 3[}/3] Euklidische Ringe sind (Aufgaben 1 und 2). Wieder ver-
sagt das Verfahren fiir 3[}/5], und da 3[]/5) nach § 37.1 kein GauBscher Ring
ist, kann auch kein anderes Erfolg haben.

Als Folge von Satz 1 notieren wir den fiir uns wichtigen

Satz 2: 3[¢] ist ein GaupPscher Ring.

38.2 Wir wollen nun die Elemente von 3[¢] sortieren. Es gibt die Null, und aus
§ 36, Beispiel 3, kennen wir die Einheitengruppe £ = {1, —1, s, —i}. Die
restlichen Zahlen sind entweder Primelemente oder in Primfaktoren zerlegbar.
Wir wollen die Primelemente von 3[¢] bestimmen und beginnen mit drei Vor-
betrachtungen:

1) Ist = Primelement in 3[¢], so ist es auch die konjugiert-komplexe Zahl 7.
Jede Zerlegung = = «f in 3[¢] ist ja mit einer Zerlegung 7 = af gleichwertig,
und beide sind sie entweder trivial (das heifit: einer der Faktoren ist eine
Einheit) oder nichttrivial.

2) Es sei p eN eine gewohnliche Primzahl aus N, und diese Primzahl sei in
3[¢] zerlegbar: p = af, » Primelement aus 3[¢}, § ~ 1. Dann gilt, wie wir
zeigen wollen, p = nw (also § = 7). Es ist ja N(p) = p? = N(#)N(B); nach
Voraussetzung sind aber # und § keine Einheiten, ihre Normen also (vgl. § 36,
Beispiel 3) nicht Eins, und aus N(x), N(8) e N folgt N(n) = nn = p.

3) Es sei n ein Primelement aus 3[¢]. Dann ist entweder az = p eine gewohn-
liche Primzahl aus 90, oder es gibt eine gewohnliche Primzahl ¢ € i mit = ~ ¢.
Um das einzusehen, schreibe man =z = n = ppe...px €N mit gewohn-
lichen Primzahlen p; e Mt und denke sich die Faktoren p; der rechten Seite
weiter in Primelemente aus 3{¢] zerlegt; vergleicht man anschlieBend die An-
zahl der Primfaktoren links und rechts, so siecht man, daB nur die Fille k = 1
und k& = 2 eintreten konnen. Das ist aber die Behauptung.

Das bedeutet zusammengefaBt: Eine normale Primzahl p € it bleibt entweder
Primelement auch in 3[¢] und liefert dann die vier assoziierten Primelemente

10 Hornfeck, Algebra
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+pund 41p in 3[7]; oder p € N zerfillt nach 1) und 2) in 3[¢] in ein Produkt
nin von Primelementen x, 7 aus 3(¢], die in Gestalt ihrer Assoziierten wieder
Primelemente aus 3[¢] ergeben. Weitere Primelemente in 3([¢] gibt es nach 3)
nicht.

Um also alle Primelemente von 3[¢] zu finden, haben wir die Primzahlen
p € N darauf zu untersuchen, ob sie in 3[¢] in der Form p = a7 zerfallen. Ist
das der Fall, so sind =, 7 und ihre Assoziierten Primelemente von 3[¢]; andern-
falls ist schon p mit seinen Assoziierten Primelement von 3[¢]. Wir sehen uns
nun die p €M in der Reihenfolge p = 2, p = 3 (4), p = 1 (4) einzeln an.

a) Es zerfallt p =2 in (1 + ¢)(1 —¢). Wegen 1 + ¢ ~ 1 —4 liefert aber

= 2 nur die insgesamt vier Primelemente 4+-14-¢ in 3[¢].

b) Ein p der Form 4n + 3 kann nichtzerfallen;denn p = ax = (a + bi)(a — bi)
wiirde 4n + 3 = a2 4 b2 (@, b € 3) zur Folge haben, was schon modulo 4 un-
moglich ist. Jedes p = 3 (4) liefert also in 3{¢] die vier Primelemente +p, 4-ip.
¢) Ein p der Gestalt 4n + 1 zerfallt in 3[¢]): Nach Satz 23.2 gibt es ein m e R
mit pl(m? ++ 1) in 3. In 3[¢] heiBt das p|(m + i)(m — 7). Wire p Primelement im
GauBschen Ring 3[¢], so miilte es einen der Faktoren m 4 7 teilen im Wider-

spruch zu % + %z ¢ 3[¢). Zu einem p = 1(4) gibt es also Zahlen a, b € 3 mit
p = (@ + bi)la—b) = a® + b2 Die Primelemente = = @ + b und

7 = a—bisind dabei nicht assoziiert, da @ und & von Null verschieden sind
und a = 4 fiir ein ungerades p unméglich ist. Jedes p = 1 (4) liefert also die
genau acht Primelemente 4-n, 447, + 7, 4-i% aus 3[7].

Simtliche Primelemente x € 3[¢] sind damit gefunden.

Dabei wurde kein & mehrfach gezidhlt; denn sind p, ¢ verschiedene Primzahlen
aus N, so konnen sie nach Satz 36.5 keinen Primteiler #» von 3[¢] gemeinsam
haben.

38.3 Unsere Untersuchung des Ringes 3[¢] erlaubt nun einige Folgerungen, die
wir wegen ihres zahlentheoretischen Interesses festhalten wollen, obwohl sie
algebraisch unwichtig sind. Die Ergebnisse aus Abschnitt 2 liefern zunichst
den

Satz 3: Es set peN eine Primzahl. Genau dann ist p = a2 + b2 eine
Summe von zwer Quadraten mit a,beM, wenn p = 2 oder p = 1 (4) wst. Ist
p = a2 + b2 und a < b, so sind die Zahlen a, b € N eindeultg bestimmd.

Allgemeiner gilt der

Satz 4: Genau dann lift sich ein m € N als Summe von zwei Quadraten aus
3 schreiben, m = a® + b2, a, b € 3, wenn die Primtetler der Form 4n 4+ 3 von
m in maximal gerader Vielfachheit in m enthalten sind.

Beweis:
a) Die Zahl m € 0t enthalte Primteiler der Form 4n 4 3 nur in gerader Viel-
fachheit: Es sei

m = p;‘I p;l .. ka . qfﬂl q;ﬁ' .. qlzﬁl

mit Primzahlen p; £ 3 (4) und ¢; = 3 (4). Nach Satz 3 ist jedes p; Summe von
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zwei Quadraten; wiederholte Anwendung von Formel (8) aus § 29.4 fiir den
Fall d = 1 zeigt, daB dann auch das Produkt

ol 2

dieser p; eine Summe 72 4 s2 von zwei Quadraten mit r, s € 3 ist. Es folgt die
Darstellbarkeit von

mo= (2 NG . @R = (P AR = (P () = a® 4 B

b) Ist m = a? 4 b2 mit a,be 3, so wird m = (a + bi)(a — be) in 3[i}; ein
Primteiler p = 3 (4) von m bleibt Primelement auch ir 3[¢] und teilt a -~ b:
und a — bt gleich oft:
a b, . a b, .
o + oot €3] < P pp? € 3[¢].
Dieses p teilt also m in gerader Vielfachheit.
Aufgabe 1: Man zeige, daBl 3[|/2] ein Euklidischer Ring ist.

Aufgabe 2: Man zeige, daB 3[}/3] ein Euklidischer Ring ist. Man zeige
weiter, daB 5 Primelement in 3{}/3] ist, aber 13 nicht. Man finde eine Prim-
faktorzerlegung von 13 in 3[}/3].

Aufgabe 3: Man schreibe die Ideale (3, 7), (4 + 44, 8¢), (2 —1,2 + 9),
(1 + ¢, 1 — ) aus 3[¢] als Hauptideale.
2 i\
Aufgabe 4: Fiir kein n € 0 gilt (jﬂ) = 1. Beweis ?

— 1

§ 39" Partialbruchzerlegung in K(x)

Aus der Analysis ist der Satz von der Partialbruchzerlegung bekannt. Man
benutzt ihn das erste Mal beim Aufsuchen von Stammfunktionen rationaler
Funktionen, und auch sonst liefert er oft nitzliche Vereinfachungen. Ohne
algebraische Hilfsmittel wird sein Beweis etwas mithsam und wenig durch-
sichtig. Wir haben inzwischen alle Mittel zur Verfiigung, um ihn allgemein
formulieren und leicht beweisen zu kénnen.

Satz 1: Es set K ein Korper, und P(x) und Q(x) == 0 seten Polynome aus

P
K[x]. Dann kann der Quotient —Qg; € K(x) geschrieben werden als Polynom
h(x) € K[x] plus einer Summe von sogenannten Partialbriichen der Form 2;((::_))'"’
wobes r(x) € K(x] und p(x) Primelement in K[z] ist, Grad r{z) < Grad p(z) oder
r(x) = O gilt und p(x)™ den Nenner Q(z) teilt. Es ist h(x) gleich Null genau dann,
wenn P(x) = 0 oder Grad P(x) < Grad Q(z) tst. Diese Partialbruchzerlegung
st eindeutig bestimmd.

10*
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Beweis: Wir nutzen aus, daB K[z} euklidisch, also sowohl Hauptideal-
ring als auch GauBscher Ring ist. Angenommen, man héatte eine Partialbruch-

P(z)
Q=)
Q(x) und addiert sie, so entsteht ein Bruch, dessen Zihler entweder Null ist
oder einen kleineren Grad als Q(z) hat; hieraus folgt die vorletzte Behauptung.
Gabe es zwei derartige Partialbruchzerlegungen, so miilten sie sich in den
Zihlern der Partialbriiche unterscheiden. Fiir ein gewisses p(x) sei £ = 1 der
maximale Exponent im Nenner, fiir den in den beiden Zerlegungen verschie-
dene Zihler r(x) und s(z) auftreten: r(z) 3 s(x). Gleichsetzen beider Zerlegun-
gen, Streichen gleicher Terme und Multiplikation mit dem Hauptnenner N(x)
liefert dann tiberall Summanden mit dem Faktor p(z), abgesehen wvon

p’g)’kzv(x) und "(('”))kzv(x) Es folgt p@)|f(x)r(x) —s(@)) in K[z] mit
flx) = ﬁ( )3‘ € K[x]; dabei sind p(x) und f(z) in K[z] teilerfremd auf Grund
der Wahl von k. Nach Satz 37.1 folgt also weiter p(z)|(r(z) — s(x)) in K{z];

hierin sind nach Voraussetzung r(z) und s(z) entweder Null oder haben Grade
kleiner als p(z); es miiBte demnach r(z) = s(z) sein im Widerspruch zur An-

nahme. Wenn es also eine solche Partialbruchzerlegung von —— Plz)
sie eindeutig bestimmt. Zu zeigen bleibt ihre Existenz. - Q)

zerlegung von ——'. Bringt man simtliche Partialbriiche auf den Hauptnenner

gibt, so ist

Es sei Q(x) = pifz)= pa(x)s ... pa(x)= eine Primfaktorzerlegung von
Q(x) € K[z], pi(x) ~ py(z) filr ¢ 5 §, nach Satz 36.3 also etwa

(P PPt - - o) = (1)
Es folgt die Existenz von Polynomen A(x), u(x) € K{x] mit
= Mx)pi(x) + p(x)pa(x) pa()™ . . . Pa(2)™.
Multiplikation mit P(x) ergibt
P(z) = g@)pi(x) + erl)pa(x)™ pale)* . .. Pa(x)™
mit Polynomen g(z), o1(z) € K[z], und es wird

Pl) _ o®)
) Q@) Pl

Wiederholung des Verfahrens mit dem zweiten Summanden aus (1) usw.
liefert schlieBlich

g(x)
pa(a)™ pa(x)™ ... Pal@)™

+

Plx)  a=) oa(z)
@ @~ pen T mEe

Nun werden die Summanden rechts in (2) jeder fiir sich weiter zerlegt. Wir
nehmen uns den ersten vor und dividieren gj(x) mit Rest durch p(z), also
ai(x) = qi(x)p1(x) + ri(x) mit ri(x) = 0 oder Grad ri(x) < Grad pi(x). Es folgt

+o Efn—’z(;) oi(@) € K[z].
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afx)  nz) I 1()

n@)s T ple)s T pyE)st
Den ersten Summanden rechts lassen wir unverdndert; den zweiten zerlegen
wir nach demselben Muster weiter und wiederholen das Verfahren, bis es ab-
bricht. Dann stehen rechts lauter Partialbriiche und als letzter Summand
eventuell ein Polynom #%;(x) € K[x]. Entsprechend zerlegt man die anderen
Summanden in (2), schreibt zuletzt hy(zx) + ho(x) + ... + kp(®) = hk(z) und
P(x)

hat die verlangte Partialbruchzerlegung von
bewiesen. Q@)

hergestellt. Damit ist Satz 1

Beispiel 1. Es sei K = €. In der komplexen Analysis zeigt man, daf jedes
Polynom f(z) € €[z] mit einem Grad = 1 eine Nullstelle in € hat. Nach Satz
26.1 ist also jedes f(z) € €[x] mit einem Grad = 2 in €[«] nichttrivial zerlegbar.
Primelemente in €fx] sind demnach genau die Polynome p(z) vom Grad Eins,
und die Zahler r(z) in Satz 1 sind Elemente aus €.

Beispiel 2. Es sei K = R. Zunichst ist jedes f(z) € R[z] mit Grad f(x) = 3
in R{x] nichttrivial zerlegbar. Hat nimlich f(x) eine reelle Nullstelle a, so gilt
flx) = (x — a)g(x) mit g(x) e R[x] und Grad g(x) = 2. Andernfalls besitzt
f(x) eine Nullstelle ¢ € €, ¢ & ¢, und nach Satz 26.1 und Aufgabe 26.5 ist
f(x) = (x — c)(x — ¢)g(x) mit Grad g{z) = 1in@[z].Setzt man—c —¢ = aeR
und cc = beR, so wird f(x) = (22 + ax + b)g(x) eine nichttriviale Zer-
legung von f(x) in R[x]; denn bei der Ausfiithrung der Division von f(x) durch
22 + ax + b in €[z] bekommt g(x) sogar reelle Koeffizienten. Die simtlichen
Primelemente p(x) in R[z] sind also genau die linearen Polynome und die
quadratischen Polynome ohne reelle Nullstellen. Die linearen p(x) haben mit
ihren Potenzen in der Partialbruchzerlegung von Satz 1 Zihler r(z) e ®; zu
den quadratischen p(x) und ihren Potenzen gehéren Zahler r(zx) der .Gestalt
r(x) = azx + b eR[z).

§ 40 Primideale

In diesem und dem nichsten Paragraphen gehen wir auf Sachverhalte ein, die
wir zum Teil auch schon im vorigen Kapitel hitten behandeln konnen. Ge-
geben sei ein kommutativer Ring R und ein Ideal p c R. Eine naheliegende
Frage ist: Wann ist der Restklassenring R/p nuliteilerfrei oder sogarein Korper %
Wir kommen hierauf zuriick.

Definition: Es set R ein kommulativer Ring und p ein Ideal aus R. Wir
nennen p etn Primideal, wenn aus abe p (a, b € R) folgt: a € p oder b € p.
Folgerung: Ist p ein Primideal und a; a3 ... a, € p (a; € R), so liegt
wenigstens eines der a; in p.
Beispiele: In 8 sind (3), (5) und (7) Primideale. In R[x] sind (z + 1) und
(2 4 1) Primideale. Ist R ein kommutativer Ring, 8o ist R ein Primideal in
R; das Ideal (0) c R ist Primideal genau dann, wenn R nullteilerfrei ist.
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Satz 1: Es sei R ein kommutativer Ring mit Elementen a, b, ... und p ein
Ideal aus R. Genau dann ist p Primideal, wenn eine der folgenden gleichwertigen
Bedingungen erfillt ist:

(I) abepundag¢yp = bep.

(2) a¢pundbéyp = abéyp.

(3) Sind a, b Ideale aus R und ab c p, so gilt « C p oder b C p.
(4) R]p ist nullteilerfres.

Beweis: In (1) und (2) liegen nur andere Formulierungen der Definition
vor. Das gilt auch fiir (4): Die Multiplikationsvorschrift in R/p lautet ja
(@ + p)b + p) = ab + p, es ist p das Nullelement, und r € p bedeutet das-
selbe wie r + p = p. Zu zeigen bleibt (1) < (3).

(1) = (3): In p gelte (1) und ab c p; ferner sei das Ideal a nicht in p enthalten.
Dann existiert ein @ € a mit @ ¢ p. Aus ab c p folgt ab € p fiir jedes b € b, also
b e p fir jedes be b oder b cp.

(3) = (1): Aus ab € p folgt (ab) = (a)(b) c p, nach (3) also (e) c p oder (b) c p
und erst recht @ € p oder b € p.

Einen Zusammenhang mit unseren Ergebnissen aus der Teilbarkeitstheorie
bildet der

Satz 2: Es set R ein Gaupscher Ring. Genau dann ist (p) c R ein Primideal,
wenn p Primelement, Null oder Einheit ist.

Beweis: Die Fille p = 0 und p ~ 1 wurden bereits im Anschlufl an die
Definition erdrtert. Es sei also (p) ein Primideal und p weder Null noch Einheit,
aber p = ab. Dann gilt ab e (p), also etwa a €(p) oder a = rp mit einem
r€ R; es folgt p = prb oder b ~ 1, und p ist Primelement. Ist umgekehrt p
ein Primelement von R und ab € (p), so teilt p im GauBschen Ring R einen der
Faktoren a oder b, und das bedeutet a € (p) oder b € (p).

Bemerkung 1: In einem beliebigen Integrititsbereich I mit Einselement er-
zeugt ein unzerlegbares Element nicht notwendig ein Primideal. Nach § 36,
Beispiel 7, ist etwa das Element 2 in I = 3[}/—5] unzerlegbar, und es gilt
6 = 2-3e(2); aber es gilt auch 6 = (1 + }J—5)(1 — }/—5), und wegen
;—; + %Vr5 ¢ 3[/—5] liegt keiner dieser Faktoren in dem Ideal (2). Also ist
(2) in 3[}/—5] kein Primideal.

Bemerkung 2: Sind a und b Ideale des kommutativen Ringes R, so ist auch
ihr Durchschnitt a n b ein Ideal aus R; aber in der Regel ist der Durchschnitt

zweier Primideale p, q ¢ R nicht wieder Primideal. Hierzu betrachte man bei-
spielsweise die Ideale p = (2) und ¢ = (3)aus R = 3; es ist ja pnq = (6).

§ 41 Maximale Ideale

41.1 Bereits in Satz 36.2 traten Ideale auf, die in einem gewissen Sinn maximal
waren, Wir geben nun die folgende
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Definition: Es ses R ein kommutativer Ring. Ein Ideal m c R, m + R,
heifit maximales Ideal, wenn fir jedes Ideal ac R mit mcacR gilt: a = m
oder a = R.

Es ist zum Beispiel (5) ein maximales Ideal in 3; jedes Ideal a o (5), a == (5),
aus 3 enthélt ja ein zu 5 teilerfremdes Element a, und es folgt a (5, @) = (1),
also @ = 3. Bei dieser Uberlegung haben wir benutzt, da8 5 Primelement und
3 Hauptidealring ist, so daB Satz 36.3 zum Ziel fiihrt; noch etwas direkter
liefert Satz 36.2 dasselbe Resultat. Wir kommen in Satz 3 darauf zuriick.

Die Bedeutung der maximalen Ideale beruht in erster Linie auf dem

Satz 1: Es sei R ein kommutativer Ring mit Einselement und m ein Ideal
aus R. Genau dann ist der Restklassenring R|m ein Kérper, wenn das Ideal m
mazximal ist.

Beweis: Es sei zundchst R/m ein Korper, also m & R. Es gelte mcacR
mit einem Ideal a 4= m aus R. Dann existiert ein ¢ € a, @ ¢ m, und das von der
Nullklasse verschiedene Element a + m e R/m besitzt nach Voraussetzung
ein Inverses b + m in R/m. Das bedeutet (@ + m)(b + m) = 1 + m. Es
folgt 1 —abemca, also (1 —ab) + ab = 1€a oder a = (1) = R, Ist um-
gekehrt m ein maximales Ideal in R und a ¢ m, so gilt m 4- (¢) = (1). Es
gibt dann also Elemente m € m und b€ R mit 1 = m + @b, und in R/m gilt
l4+m = ab+ m = {a + m)(b + m). Das heiBt: Jedes von der Nullklasse
verschiedene a + m aus R/m besitzt ein Inverses. Da R/m nicht aus der Null
allein besteht, ist demnach R/m ein Korper.

Fir die Giltigkeit von Satz 1 ist die Voraussetzung 1 € R wesentlich; er wird
ohne sie falsch. Man betrachte etwa den Ring R = 23 der geraden ganzen
Zahlen und m = (4). Das Ideal m ist maximal; aber in R/m ist 2 + (4) ein
Nullteiler. ‘

Zusammen mit Satz 40.1, Aussage (4), liefert Satz 1 noch den

Satz 2: Die maximalen Ideale eines kommutativen Ringes mit Einselement
sind Primideale.

Wir kommen weiter zu dem schon angekiindigten

Satz 3: Es sei H ein Hauptidealring und a == (0) etn Ideal aus H. Genau
dann ist das Ideal a maximal, wenn es von etnem Primelement erzeugt wird.

Beweis: Nach Voraussetzung gibt es in H nur Hauptideale; speziell ist
etwa o = (a) und a =+ 0. Die Behauptung folgt also aus Satz 36.2.

In einem Hauptidealring H ist demnach jedes von {0) und H verschiedene
Primideal sogar maximal; das zeigen Satz 40.2 und Satz 3. In einem beliebigen
kommutativen Ring R stimmt das nicht mehr, auch wenn er ein Einselement
enthilt. Als Beispiel betrachte man R = 3[x] und p = (z); auf Grund der
Definition ist p Primideal in R. Aber es gilt beispielsweise (x) c (2, x) c 3[x]
mit (z) 3 (2, z) und (2, x) =+ 3[x]; also ist p = (x) nicht maximal.

Welche homomorphen Bilder von 3 sind Koérper ? Nach Satz 1 und Satz 3
handelt es sich genau um die Restklassenringe 3/(p) ~ 3, mit Primzahlen
p = 2, was uns schon aus § 21 und § 20 bekannt ist.
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41.2 Es sei R ein kommutativer Ring mit Einselement und a =+ R ein Ideal aus
R. Wir wollen zeigen: Dann existiert in R ein maximales Ideal m o a. Intuitiv
wiirde man wohl so vorgehen: Entweder a ist bereits maximal, oder es gibt ein
Ideal b = R aus R mit a c b, b = a. Ist b maximal, so ist man fertig; andern.-
falls existiert ein Ideal ¢ c R, ¢ == R, ¢ &= b, mit a c b ¢ ¢. Wenn das Verfahren
nicht abbrechen sollte, acbcecbdc ..., so bildet man die Vereinigung v
aller Ideale der Kette; dann ist auch v ein Ideal, da zu a, b € v ein Ideal
der Kette mit a, b e ¥ existiert, also a —be¥cyv und raef cyo fir jedes
re R gilt. Es ist gewill » == R, da sonst 1 € v, also auch 1 € ¥ und demnach
F = R fur ein Ideal F der Kette gelten miiBte, was nicht der Fall ist. Aber
man kann trotzdem noch nicht sicher sein, daf8 ¥ maximal ist, da die Kette nur
abzihlbar viele Glieder enthilt. Es kénnte also sein, daB eine ndchste mit v
beginnende Kette existiert und so fort. Dall dieses Verfahren letzten Endes
doch zum Ziel fithrt, sichert eine fiir derartige Fille typische mengentheoreti-
sche SchluBweise, die wir im nachsten Abschnitt durchfithren und deren Voraus-
setzungen wir zundchst besprechen wollen. Das hier zu erérternde Beweis-
schema tritt immer wieder auf und spielt auch in der Algebra eine wichtige
Rolle.

Bei vielen mathematischen Beweisen wird, meist ohne ausdriicklichen Verweis,
das sogenannte Auswahlaxiom benutzt. Es besagt: Zu jeder Menge M von
nicht leeren Mengen A gibt es ein Vertretersystem. Wir prézisieren das.

Auswahlaxiom: Es ses M eine Menge von nicht leeren Mengen A. Dann

gibt es eine Abbildung
[ M—> U A
R AeM

mit {(A) € A fiir jedes A e M.
Die Giltigkeit dieses Auswahlpostulats erscheint vom Standpunkt der naiven
Mengenlehre aus vollig trivial. Auch noch recht plausibel, aber doch schon
weniger durchsichtig (vgl. etwa Hausporrr [9], S. 133ff.) ist der bereits in
§ 1 erwiahnte

Wohlordnungssatz: Jede Menge kann wohlgeordnet werden.

SchlieBlich sei M eine teilweise geordnete Menge. Dann nennt man ein m € M
mazximal, wenn es kein m' € M, m' &= m, mit m < m' gibt. Ein Element m e M
hei3t obere Schranke der Teilmenge T c M, wenn fir alle te T gilt: ¢t < m.
Hiermit verabreden wir die .

Definition: Eine teilweise geordnete Menge M heifit induktiv geordnet, wenn
jede Kette K ¢ M eine obere Schranke in M besitzt.

Ein wichtiger Satz der Mengenlehre, der bei vielen Beweisen in der Mathematik
als Hilfsmittel gebraucht wird, ist nun das

Zornsche Lemma: Die Menge M ser indukiiv geordnet und nicht leer.
Dann besitzt M mindestens ein maximales Element.

Dieses Zornsche Lemma wird unsere oben begonnene Uberlegung, die zum
Nachweis der Existenz eines maximalen Ideals m c R, m o qa, fiihren sollte,
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abschlieBen. Es erscheint auch vom naiven Standpunkt aus nicht mehr so
selbstverstdndlich. So kommt das folgende Resultat der Mengenlehre etwas
uberraschend: Auswahlaxiom, Wohlordnungssatz und Zornsches Lemma sind
aquivalent; postuliert man eine dieser drei Aussagen, so folgen die beiden
anderen.

Wir iibernehmen nun die Giiltigkeit des Zornschen Lemmas aus der Mengen-
lehre. Es wird in der Algebra oft in Gestalt der folgenden Verscharfung benutzt,
die wir beweisen wollen.

Satz 4: Die Menge M set induktiv geordnet und a € M. Dann gibt es ein
mazximales m € M mit a < m.

Beweis: Wir betrachten die Menge 7' c M aller te M mit a < ¢ und
wenden auf sie das Zornsche Lemma an. Eine Kette K aus 7 ist auch eine
Kette aus M und besitzt nach Voraussetzung eine obere Schranke se M.
Wegen a < s gilt s € T. Es ist also T induktiv geordnet und wegen a € T nicht
leer. Auf Grund des Zornschen Lemmas gibt es also in 7' ein maximales Element
m. Fir dieses m gilt @ < m, und m ist maximal auch in M ; denn ein von m
verschiedenes m' € M mit m < m’ wire wegen a << m << m’ bereits ein Element
von T im Widerspruch zur Wahl von m.

41.3 Wir benutzen nun Satz 4 zum Beweis des angekiindigten Existenzsatzes.

Satz 5: Es sei R ein kommutativer Ring mit Einselement und a &+ R ein
Ideal aus R. Dann gibt es in R ein maximales Ideal m mit ¢ Cc m.

Beweis: Es sei M die Menge aller von R verschiedenen Ideale aus R, und
M sei teilgeordnet durch die mengentheoretische Inklusion: a < b <> ach
(e, b € M). Dann ist, wie zu Beginn von Abschnitt 41.2 gezeigt wurde, die
Menge M sogar induktiv geordnet: Jede Kette acbcccdc ... aus M be-
sitzt die obere Schranke a ubucudu ... = ve M. Weiter gilt a € M. Nach
Satz 4 gibt es also ein maximales Ideal m in M mit a c m. Dieses m ist maxi-
males Ideal in B; denn ein von m und R verschiedenes Ideal m’ mit mc m’ c R
miiBte zu M gehoren im Widerspruch dazu, daBl m ein maximales Ideal von M
war.
Setzt man in Satz 5 speziell ¢ = (0), so bekommt man als

Folgerung: Jeder kommutative Ring mit Einselement besitzt minde-
stens ein maximales Ideal.

Aufgabe 1: Welche der Ideale (22), (23 — 222 — 22 — 3), (x + 1), (6, z),
(2, ), (3, x) aus 3[x] sind Primideale, welche sind maximal ?

Aufgabe 2: Man zeige, dal (x2 + 1) ein maximales Ideal in R[] ist und
begriinde erneut die Existenz des Korpers € der komplexen Zahlen.

Aufgabe 3: Man 16se noch einmal Aufgabe 23.2.

Aufgabe 4: Es sei w ¢ 3 eine komplexe dritte Einheitswurzel. Man zeige:
(2) ist Primideal, sogar maximales Ideal in 3[w], aber weder Primideal noch
maximales Ideal in 3[¢].
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§ 42 Der Satz von GAUsS

42.1 Wir wollen einen wichtigen Satz von Gauss beweisen, von dem schon in
§ 37.2 kurz die Rede war: Ist R ein Gaufischer Ring, so ist es auch R[x]. Wir
beginnen mit Voriiberlegungen, die auch fir sich selbst von Interesse sind.
Wir wiederholen: Sind ay, a1, a3, . . ., a, Elemente eines GauBlschen Ringes R,
80 heiBt d € R ein g.g.T. der a; € R, wenn d alle a; teilt und fiir jeden gemein-
samen Teiler & der a; gilt: 8]d. Sind d; und dz grofite gemeinsame Teiler der ay,
so sind sie assoziiert. Wenigstens ein g.g.T. d voh ag, a1, ..., a ist sicher
vorhanden, weil R ein GauBscher Ring ist (§ 37.1).

Definition: Es set R ein Gaufscher Ring und

fx) = anx® + ap12"1 + ... 4 ao € R[x].

Istde Reing.g.T.vonay, ay, ..., ay, so heifft d der Inhalt von f(x); das Polynom
f(x) heift primitiv, wenn sein Inhalt Eins ist.

Jedes von Null verschiedene f(x) € E[x] besitzt also einen bis auf Einheiten
als Faktoren eindeutig bestimmten Inhalt d(f) &= 0.

Satz 1 (Gaupsches Lemma): Es sei R ein Gaupscher Ring, und f(x) und g(x)
seten primitive Polynome aus R[x]. Dann ist auch thr Produkt f(x)g(x) primitiv.

+
Beweis: Wir setzen f(x) Z a,uxh, glx) = 2 by und f(x)g(x) mznc;,xl.
0

Wiiren f(z) und g(z) primitiv, f(x)g(x) aber nicht, so gébe es ein Primelement
p € R mit ple, fiir alle 4 und Indizes r = 0 und s = 0 mit plap, play, ...,
plar—y, prar und pibo, plb1, . . ., pbs—1, ptbs. Setzen wir noch a, = 0 fiir u > m
und b, = 0 fiir » > 7, so wird

aybs= Cr+s—(a0br+s+albr+s—1+ oot arabsii+arabs-1+ . . +Haris1b1-+ar+sbo).

Auf Grund unserer Annahmen teilt p die rechte Seite, aber keinen Faktor der
linken im Widerspruch dazu, daB R ein GauBscher Ring ist.

42.2 Wir beweisen zwei Hilfssitze.

Hilfssatz 1: Es sei R ein GaufBlscher Ring und K sein Quotientenkérper.
Dann 1i8t sich jedes f(x) € K[x], f(x) = 0, in der Gestalt f(x) = ¢ @(x) mit einem
ce K und einem primitiven ¢(x) € R[x] schreiben; sind f(x) = ¢ ¢(2) und
f(x) = d p(x) zwei derartige Darstellungen, so existiert eine Einheit ¢ von R
mit ¢(x) = e p(x) und d = ec.

b;
b

n
mit einem Hauptnenner beR und weiteren Elementen b;cR,also f(x) =%Zb,.x”,
0

Beweis: Es sei f(z) = ap2” + ap_12®-1 + ... + ao. Schreibt man a; =

und klammert den Inhalt von > b,a? € R[x] aus, so bekommt f(x) die Gestalt
f(x) = ¢ ¢(x) mit ¢ € K und einem primitiven ¢(x) € R[x]. Aus ¢ p(z) = d p(z) =0
schlieBlich folgt durch Multiplikation mit einem geeigneten Ringelement und
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anschlieflendes Kiirzen ¢’ ¢(x) = d’ y(x) mit teilerfremden ¢’,d' € R. Als In-
halte desselben Polynoms sind ¢’ und d’ auBlerdem noch assoziiert, also
Einheiten; demnach wird ¢(x) = e y(x) und folglich auch d = & mit einer
Einheit ¢ € R.

Hilfssatz 2: Essei R ein GauBscher Ring, K sei sein Quotientenkorper, und
f(x), g(x), k(x) seien von Null verschiedene Polynome aus K[x] mit f(x) = g(x)h(z).
In den Darstellungen f(x) = af*(z), g(x) = bg*(x), h(x) = ch*(x) seien f*(x),
g*(x), h*(x) primitive Polynome aus R[x] und a, b, ¢ Elemente aus K. Dann
existiert eine Einheit ¢ von B mit f*(x) = eg*(x)h*(x) und bc = ea.

Beweis: Nach Voraussetzung und auf Grund von Satz 1 sind f*(z) und
g*(x)h*(x) primitiv. Es gilt af*(x) = beg*(x)h*(x). Die Behauptung folgt also
aus Hilfssatz 1.

42.3 Der Hilfssatz 2 basiert auf Hilfssatz 1 und dem GaufBschen Lemma. Es
sind zwei Varianten dieses Hilfssatzes, die immer wieder gebraucht werden und
die wir als Sitze notieren. Sie sind durchaus nicht selbstverstandlich.

Satz 2: Es sei R ein Gaupscher Ring, K sein Quotientenkirper und f(x)€ R|x).
Das Polynom ¢(x) € R[x] sei primitiv, und es gelte @(x)|f(x) in K[z]. Dann ist
schon @(x)|f(z) in R[x].

Beweis: Wir diirfen f(x) =0 annehmen. In Hilfssatz 2 setze man
h(x) = @(x); behauptet wird dann g(x) € R[z], vorausgesetzt ¢ € R und ¢ = 1.
Es folgt richtig g(x) = bg*(x) = eag*(x) € R[x].

Satz 3: Es sei R ein GauPscher Ring und K sein Quotientenkiorper. Das
Polynom f(x) € R[x] sei in R[x] trreduzibel. Dann bleibt f(x) irreduzibel auch in
K[x]. Oder: Ist f(x) € R[x] in K[x) reduzibel, so auch in R[z].

Beweis: Es sei f(r) € R{x] und f(x) = g(x)h(x) eine nichttriviale Zerlegung
in K[x)], also Grad g(x) = 1, Grad k(z) = 1. In Hilfssatz 2 ist nun f(x) = af*(x)
mit a e R und f(x) = af*(x) = aeg*(x)h*(x), und das ist eine nichttriviale
Zerlegung von f(x) in R[x].

42.4 Nun kénnen wir den Gaussschen Satz beweisen.

Satz 4: Ist R ein Gaupscher Ring, so ist es auch der Polynomring R[x] in
etner Unbestimmiten x iiber R.

Beweis:
Wir sortieren zunéchst die Elemente von R[z]; mit B ist jedenfalls auch R[x]
ein Integritatsbereich mit Einselement. Es gibt die Null; die Einheiten sind
dieselben wie die in R, da nur ein Produkt von Polynomen vom Grad Null
den Wert Eins haben kann. Die in R unzerlegbaren Elemente bleiben gewif3
auch in R[x] unzerlegbar. Welche f(x) € R[x] sind auBerdem unzerlegbar in
R[x] ? Man schreibe f(xr) = af*(z) mit @ € B und primitivem f*(z) € R[z]. Wenn
f(x) unzerlegbar sein soll, muB einer der Faktoren eine Einheit und der andere
unzerlegbar sein. Simtliche unzerlegbaren Elemente aus R[x] sind also erstens
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die Primelemente aus R und zweitens die unzerlegbaren unter den primitiven
Polynomen.

Es ist leicht zu sehen, daB sich jedes von Null und Einheiten verschiedene
f(z) € R[x] als Produkt unzerlegbarer Elemente aus R[z] schreiben 1d83t. Zuerst
schreibe man wieder f(z) = af*(x) mit ¢ € R und primitivem f*(x); dann zerlege
man a in R in Primfaktoren. Ist f*(x) unzerlegbar oder Einheit, so ist man fertig.
Andernfalls gibt es Polynome ff(z), f3(x) € R[x] mit f*z) = ff(x)f3(z) und
Grad ff(x) < Grad f*(x), wobei auch die ff(x) primitiv sein miissen, weil es
andernfalls f*(x) nicht wire. Dieses Zerlegungsverfahren wiederholt man so
lange wie notig; es bricht nach endlich vielen Schritten ab, da lineare primitive
Polynome sicher unzerlegbar sind.

Bis hierher haben wir unsere Voriiberlegungen nicht gebraucht; erst fur
den Eindeutigkeitsnachweis miissen wir sie heranziehen. Es seien jetzt

f@) =pp2 . . . Prpr(@)@a(?) - . . gu(x) und f(2) = g2 - - - gryu(@)pa(@) - - . ys(2)

zwei derartige Zerlegungen von f(x) = 0, die p;, ¢; also Primelemente aus R
und die g4(x) und yj(x) unzerlegbare primitive Polynome aus R[z]. Dann sind

nach Satz 1 auch gi(x)@a() . . . @i(z) und yr(x)pa(x) . . . ye(x) primitiv, p1ps. . . p
und q1¢2 . . . ¢r also als Inhalte von f(z) assoziiert in R, und das ergibt, da R ein
GaufBscher Ring war, » = k und bei geeigneter Numerierung

Pr~qL P2~ Q2. P~ Gk
in R und erst recht in R[z). Kiirzen durch p1p; . .. pi liefert also

Z)P2(2) . .. i) = epa(x)ya() . . . palx)

mit einer Einheit ¢ € R.

Diese Beziehung sehen wir uns in K[z] an; dabei sei K der Quotientenkorper
von R. Nach Satz 37.3 ist K[z] euklidisch, also ein GauBscher Ring. Nach
Satz 3 sind die gi(x) und die yy(x) auch in K[x] unzerlegbar. Also gilt wieder
s = ] und bei geeigneter Numerierung

i) ~ epa(r) ~ (@), 2(2) ~ 2(), ..., ul@) ~ pil@);
aber das heifit: assoziiert in K[x]! Die Beziehung g1(x} ~ () in K{x] bedeutet:
Es gibt von Null verschiedene b, ¢ € R mit yi(x) = ngl(z); denn genau die von

Null verschiedenen Korperelemente sind Einheiten in K[x]. Nach Multiplika-
tion mit ¢ werden b und ¢ Inhalte desselben Polynoms aus R[z], also Assoziierte
in R; daher ist 2— eine Einheit in R, und das besagt ¢i(x) ~ wi(x) sogar in R[x].
Genauso folgt @a(x) ~ yalx), ..., ¢i(x) ~ yi(x) in Rfx]. Damit ist Satz 4 be-
wiesen.

Der Beweis des Satzes von Gauss stiitzte sich also mit Hilfe der Sitze 1 und 3
darauf, daB ein Polynomring iiber einem Korper ein Euklidischer Ring und
damit auch ein GauBscher Ring ist.
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42.5 Mehrfache Anwendung von Satz 4 liefert den

Satz 5: Es seien x1, g, . . .,z unabhingige Unbestimmie iiber dem Gaufp-
schen Ring R. Dann ist auch R[x1, 2, . . ., x,] ein GauPscher Ring.
Folgerungen:
1) 3[x1, xg, ..., 4] ist ein GauBscher Ring.
2) Fiir jeden Korper K ist K[xy, zo, . . ., x,] ein GauBscher Ring.
3) Ist R ein Gaufischer Ring, so ist es auch der Polynomring R[x;, 2, 3, .. .]
in abzihlbar oder beliebig vielen unabhingigen Unbestimmten z; iiber R.
Denn zu jedem f(x) € R[xy, x2, x3, . . .] existiert ein » mit f(x) € B[z1, 22, . . ., Tn]-

In Satz 5 darf nicht auf die’ Forderung verzichtet werden, daBl die z; Un-
bestimmte iiber R sind; das zeigt etwa das Beispiel 3[}/—5).

Aufgabe 1: Es sei R ein GauBscher Ring, und f(z), g(z) € R[x] seien in
Rix] teilerfremd. Man zeige: Dann ist f(x) + g(x)y € R[x, y] Primelement in

Rz, y).
Aufgabe 2: Es sei R ein Gauflscher Ring und
flx1, 22, ..., 2p) € Rl21, X3, ..., 2al, fl@r, 22, ..., %) =0,

ein homogenes Polynom vom Grad k, das heiBt, fir jeden Summanden
aryzy ... 2 =0 von f(xy,@e, ..., %n) gilt a1 + o024 ... + ap = k. Man

zeige: Jeder Teiler h(xy, x3, . . ., Zs) von f(z1, z2, . . ., Zn) ist homogen.
Aufgabe 3: Man l6se Aufgabe 38.4 ohne die Hilfsmittel von § 38.
Aufgabe 4: Fir kein n e N gilt (g—i—:)n = 1. Beweis ?

§ 43 Irreduzibilitatskriterien

43.1 Ist K ein Kérper und f(x) € K[z] irreduzibel in K[x] (vgl. § 27.3), so ist
f(x) auch Primelement in K[x]; beispielsweise ist 202 + 2 = 2(22 4 1) in R[x]
nur eine triviale Zerlegung mit der Einheit 2 € R. Ist dagegen im folgenden
R stets ein beliebiger Integritdtsbereich mit Einselement, so braucht ein in
R[z] irreduzibles f(x) € R[«] nicht mehr unzerlegbar zu sein, wie das Bei-
spiel 2224+ 2 = 2 (22 4 1) in 3[z] zeigt. Aber um herauszubekommen, ob ein
f(x) € R[z] in R[z] zerlegbar ist oder nicht, ist es meistens in erster Linie
wichtig zu wissen, ob f(z) iiber R irreduzibel ist. Derartige Untersuchungen
mull man bei den verschiedensten Gelegenheiten durchfithren. Wir wollen uns
mit einigen einfachen Irreduzibilitdtskriterien beschiftigen.

Wir betrachten einige Beispiele (vgl. hierzu auch § 27.3). Jedes lineare Polynom
ar + b € R[z] ist irreduzibel iiber R, auch wenn es vielleicht in E[x] nicht-
trivial zerlegbar ist. Das Polynom 22 — 2 ist irreduzibel in Q[x], weil es keine
Nullstelle in  hat, aber reduzibel iiber R: 22 —2 = (z + }2)(x — }/2). Bei
der Angabe ,.f(x) irreduzibel iiber R* darf also der Koeffizientenbereich nur
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fehlen, wenn er aus dem iibrigen hervorgeht; andernfalls verliert die Aussage
ihren Sinn. Das Polynom 22 4 4 ist irreduzibel iber Q oder 33, weil es in
keinem der Korper eine Nullstelle hat; aber in 35[«] gilt 224+4 = (x+1)(x—1).

Bei Irreduzibilitdtsuntersuchungen spielen einige triviale Betrachtungen oft
eine wichtige Rolle. Zum Beispiel ist es gleichgiiltig, ob man die Irreduzibilitat
von f(z) iiber R oder die von f(x + a) fiir irgendein a € R nachweist, da mit
f(z) auch f(x + a) reduzibel iiber R wire. Beispiel: Das Polynom

flx) = 24 4 4a8 4 622 + 42 + 2
ist irreduzibel iiber . Dazu setze man x 4+ 1 = y und beachte, daB

9(y) = y* + 1 eQy]
irreduzibel iiber £ ist (§ 27, Beispiel 7).
Oft kommt einem auch Satz 42.3 zu Hilfe. Wir fragen noch einmal, ob
g(y) y? + 1 in Q[y] irreduzibel ist. Das Polynom g(y) liegt schon in 3[y], und
wir wissen: Ist y* + 1 reduzibel iiber Q, so auch iiber 3. Eine Zerlegung in
3[«] miiBte aus zwei quadratischen Faktoren bestehen, fir die man nun ein-
fache Ansitze machen darf: y* 4+ 1= (y2 4+ ay + 1)»2 + by + 1). Der
Koeffizientenvergleich zeigt jetzt ganz leicht, da das mit a,be 3 nicht
moglich ist.
Noch eine Uberlegung ist oft von Nutzen. Es sei f(x) ein ganzzahliges normiertes
Polynom (ein Fall, der oft vorliegt) und f(x) irreduzibel iiber 3, fiir eine geeig-
nete Primzahl p. Dann ist f(x) auch irreduzibel iiber 3. Andernfalls gibe es ja
normierte g(z), (z) € 3[x] mit Graden ungleich Null und f(x) = g(x)h(zx), und
diese Zerlegung wiirde auch eine nichttriviale Zerlegung in 3,{x] liefern, da g(x)
und A(z) ihre Grade behalten. Als Beispiel betrachte man

f(x) = 23— 822 4 172 — 135

und wihle p = 2: Das Polynom 23 4 x + 1 hat keine Nullstelle in 33, ist also
iiber 32 und damit auch iiber 8 irreduzibel ebenso wie f(x).

43.2 In weniger einfachen Fillen hilft {iberraschend oft das folgende Irreduzi-
bilitdtskriterium von EiseNsTEIN (1823—1852).

Satz1: Es set R ein GaupPscher Ring, K sein Quotientenkorper und
fl@) = %a,, 2 € R[z). Es existiere etn Primelement pc R so, daf in R gilt:
piag, p]gt,,_l, plan-2, ..., plag, aber p2tay. Dann ist f(x) irreduzibel iber K.

Beweis: Nach Satz 42.3 brauchen wir nur die Irreduzibilitdt von f(z)
iiber R zu beweisen. Es sei

fiz) = gla)hiz) mit g(z) = 3 boze und h(z) = 3 g, g(a), h(z) € Rlz].
0 0

Wir miissen zeigen: r = 0 oder s = 0. Nach Voraussetzung ist p ein Teiler von
boco, also von by oder ¢y, aber nicht von beiden. Es sei p|by, ptco. Wegen pta,
existiert ein kleinster Index m mit ptb,, aber plb, fir u < m. Setzen wir
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cg =0 fiir 0 > s, so wird ap = buco + (bm-161 + bm—202 + ... + bocm). Das
Primelement p teilt die Klammer, aber nicht b,co, also auch nicht a,. Das
bedeutet m == n, also r = n und s = 0.

Beispiel 1. Das Polynom f(x) = 3% + 223 — 442 4 2 ist irreduzibel iiber Q.
Man wihle p = 2.

Beispiel 2. Das Polynom f(z) = x4 4 423 + 622 + 4x - 2 ist irreduzibel
iiber Q (sieche oben!). Man wihle p = 2.

Beispiel 3. Das Polynom f(z) = % + 1 ist irreduzibel iiber  (siche oben!).
Man setze x = y 4+ 1 und wihle dann p = 2. Das sieht man, chne es aufzu-
schreiben.

Beispiel 4. Das Polynom f(z) = a* —p (n€ R, p Primelement aus 3) ist

irreduzibel iiber Q. Man wahle dieses p. Fir » > 1 folgt 1]‘/5 ¢Q.
Beispiel 5. Es sei p € M eine Primzahl. Das Polynom

xP

Dy(x) = - __11 = aPl 4 gp24 ., 4 1e3[x]

x

heiBt das p-te Kreisteilungspolynom; wir kommen darauf noch zuriick. Hier
zeigen wir: Das Polynom ®)(x) ist irreduzibel iiber Q. Dazu betrachten wir das
Polynom

f@) = Dylw + 1) = (_’““—lr’—“‘—l — a1 G’) I
+ (g)xp—ii_i_ e (pf_l)eg[x].

Die (f ), 1 =<» < p— 1, sind durch p teilbare ganze Zahlen (vgl. die Losung von
Aufgabe 20.8). Das Eisenstein-Kriterium mit diesem p zeigt die Irreduzibilitit
von f(zx) bzw. Pp(z) iiber Q.

Aufgabe 1: Zeige die Irreduzibilitit von fy(z) = 23 + 1022 + 9z — 15,
fol) = 23 +622—17x 4+ 8, falx) = 2t + 223422+ 22 4+ 1 und fy(z)
= a8 + 12 iiber Q.

Aufgabe 2: Zeige die Irreduzibilitit von fi(x) = 3z% 4+ 528 — 1022
— 5z 4 15 und fo(x) = 723 — 822 17z — 135 iiber Q.

Aufgabe 3: Es sei B ein Integritatsbereich mit Einselement und

f(x) = i a, 2¥ € R[], ap =+ 0, irreduzibel iiber B. Dann ist auch
0

g@@) = S anw € R[z]

irreduzibel Giber R. Beweis ?

oMz

Aufgabe 4: Es sei R ein GauBscher Ring. Man zeige: Das Polynom
flx, y) = y® + zy® + 2293 + 22242 — 23y + 22 + z ist Primelement in Rz, y].
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§ 44 Teilbarkeitssitze in Polynomringen

Wir notieren einige speziellere Aussagen.

Satz 1: Es sev K ein Korper und E ein Oberkorper von K. Haben die Poly-
nome f(x), g(x) € K[z] in K|x] den g.9.T. Eins, so auch in E[z].
Beweis: Man wende Satz 36.5 auf den Hauptidealring H = K[x] an.

Satz 2: Das Polynom p(x) € K(x] sei trreduzibel iiber dem Kérper K. Es sei
f(@) € K[x] und E ein Erweiterungskirper von K derart, daf p(x) und f(z) in E[x)
nicht den g.9.T. Eins haben. Dann gilt bereits in K[x] die Teilbarkeitsbeziehung
P@)lf().

Beweis: Esist p(z) ein Primelement des GauBschen Ringes K[z]. Also ist
in K[x] entweder p(z) ein Teiler von f(x), oder p(x) und f(x) haben den g.g.T.
Eins. Das letztere ist aber nach Satz 1 nicht moglich.

Anwendung: Haben f(zx) € K[x] und das iber K irreduzible p(z) € K[z] in
E > K eine Nullstelle « € £ gemeinsam, so haben nach Satz 26.1 in E[x] die
Polynome p(x) und f(x) den gemeinsamen Teiler x — «, also gewiBl nicht den
g.g.T. Eins. Satz 2 liefert also p(x)|f(x) in K{x].

Satz 3: Es set K ein Korper der Charakteristik y(K) = 0; das Polynom
p(x) € K[x] sei irreduzibel iiber K. Dann hat p(x) in keinem Erweiterungskorper
E > K eine mehrfache Nullstelle.

Beweis: Wire die Behauptung falsch, so hitten nach Satz 26.6 die
Polynome p(x), p'(x) in einem geeigneten Polynomring E[x] nicht den g.g.T.
Eins, und Satz 2 ergibe p(x)|p’(x) in K[x]. Wegen Grad p'(z) < Grad p(x) oder
P'(x) = 0 bedeutet das p’(x) = 0, und das ist nicht méoglich, da wegen x(K) = 0
der Grad von p’(z) nur um genau Eins kleiner ist als der von p(x).

Bemerkung: Behauptung und Beweis von Satz 3 bleiben richtig, wenn statt
2(K) = 0 bloB p'(x) 3= 0 vorausgesetzt wird. DaB aber in Satz 3 die Voraus-
setzung y(K) = 0 nicht vollig gestrichen werden darf, zeigt das folgende

Beispiel: Es sei p € 0 eine Primzahl und y eine Unbestimmte iiber 3. Auch
t=y? ist dann eine Unbestimmte iiber 3,, und wir setzen K = 3,(¢) CE = 3,(y).
Es ist y € E, aber y ¢ K, also £ & K. Das Polynom f(z) = 2P —t e K[z] ist
irreduzibel iiber K; es ist ja K der Quotientenkorper des GauBschen Ringes
3p[t], in ihm ist ¢ ein Primelement, und mit diesem ¢ kann man das Eisenstein-
Kriterium anwenden. Aber in £ bekommt das Polynom f(x) € K[x] die p-fache
Nullstelle ; denn nach Aufgabe 20.8 gilt in E[x] die Beziehung

Hz) = a? —y? = (x —y)?.

Aufgabe 1: Genau dann hat f(x) € 3,{x] (p Primzahl) die Ableitung
f'(x) = 0, wenn ein g(x) € 3p[x] mit f(x) = g{x)? existiert. Beweis ?
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§ 45 Kreisteilungspolynome

Es sei m eine natiirliche Zahl. Wir betrachten das Polynom «™m — 1 € 3[z]. Es
zerfallt (vgl. Anhang) in €[] in Linearfaktoren:

am—1 = (@—0)r—0) ... (@ —Lm).
Dabei sind die komplexen Zahlen

Ly = em™ 1<y <m)

die samtlichen m-ten Einheitswurzeln, speziell also {,, = 1. Die ¢, bilden eine
von {; erzeugte multiplikative zyklische Gruppe G = {{3,&2, ..., {m}; es
gilt ¢, = {]. Alle diejenigen ¢ € G, die @ erzeugen, fiir die also {m =1 gilt,
aber nicht {7 = 1 mit einem r e N, r < m, nennen wir primitive m-te Einheils-
wurzeln. Nach Aufgabe 9.2 sind das genau diejenigen ¢, € @, fiir die v zu m
teilerfremd ist; auf Grund der Definition in § 12.4 ist ihre Anzahl also gleich
@(m). Die zu diesen {, mit (v, m) = 1 gehorenden Linearfaktoren von xm — 1
sondern wir in der folgenden Definition aus.

Definition: Das Polynom

(1) Oule) = II @—08) = [I (@—en™)
1svsm 1gvsm
rm)=1 (»m)=1

heifit m-tes Kreisteilungspolynom.
Folgerung: Es ist @p(x) € €[x] und Grad Pp(x) = @(m).

Wir werden zeigen: Es gilt sogar @p(x) € 3[x], und Pp(z) ist irreduzibel iiber Q.
Der Name Kreisteilungspolynom ist leicht zu erkldren. Irgendeine Nullstelle
genau dieses Polynoms mufl man kennen, um in der GauBschen Zahlenebene
die Peripherie des Kreises [z| = 1 oder den Winkel 2z in m gleiche Teile ein-
teilen zu konnen. Ist ein primitives {, bekannt, so erzeugt es G, und dem
Potenzieren von {, entspricht anschaulich eine Vervielfachung des Winkels

1%27:, bis zuletzt alle Ecken des dem Einheitskreis einbeschriebenen reguliren
m-Ecks bekannt sind.
Satz 1: Es gilt

(2) am —1 = T[] Pnlx).
neN
nlm

Beweis: Wir sehen uns noch einmal die Gruppe G = {{1, %3, ..., m}

an. Jedes ¢, € @ hat eine gewisse Ordnung n. Nach unserer Verabredung ist ¢y
dann eine primitive n-te Einheitswurzel, und nach Satz 9.3 gilt auBerdem
nim. Das heilt: Jedes Element von & ist eine primitive n-te Einheitswurzel
fiir ein gewisses # mit »|m. Umgekehrt: Ist n € M ein Teiler von m, m = kn,
und { eine primitive n-te Einheitswurzel, so gilt {» = 1, also {#* = {(m =1
oder { € G. Zusammengefaft: Die Gruppe G besteht genau aus allen primitiven

11 Hornfeck, Algebra
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n-ten Einheitswurzeln fiir alle » mit n|m. Die Formel (2) besagt, nur anders
geschrieben, dasselbe.
Folgerung: Durch Vergleich der Grade links und rechts in (2) ergibt sich

@) IZ ¢(n) = m.
nim
Satz 2: Es gilt @py(x) € 3[z].
Beweis: Vollstindige Induktion nach m. Es ist @y(z) = 2z — 1 € 3[z].
Die Behauptung sei richtig fiir alle @,(x) mit r < m; wir miissen zeigen:

Dp(z) € 3[x]. Nach (1) ist jedes Kreisteilungspolynom normiert. Auf Grund
der Induktionsvoraussetzung ist also

f@) = TI Pulx)
dim
d+m
ein normiertes Polynom aus 3{z]. Nach Satz 1 geht die Division von a7 — 1
durch f(z) in €[z] auf mit dem Ergebnis @p,(x). Fihrt man aber diese Division
gemaB § 25.6 aus, 80 bekommt Pp(x) nur ganze Zahlen als Koeffizienten, da
2™ — 1 und f(z) ganzzahlig sind und f(x) normiert ist.

Beispiele: Die Gestalt der Kreisteilungspolynome @,(x) mit Primzahlindex
m = p ist nach (1) gegeben durch

11 = zP-l4ap-24 ... 41,

(4) Pplz) = H (@—Lp) = —— TI (=4 =
Sr<p l SvYsp
wie es in § 43, Beispiel 5; verabredet war. Hiermit und durch leichte Rechnun-
gen gemaB (1) bekommt man $y(x) = 2 — 1, Po(x) = = + 1, P3(x) = a2+x+1,
Dyz) = 22+ 1,Ps(x) = 24+ 23+ a2+ x + 1, Pg(x) = 22— x -+ 1. Unter
Benutzung von (2) kann man daraus etwa
z12—1

Puln) = G BB B P Fem) o T

ermitteln.
Der folgende Satz ist uns fiir den Fall m = p (Primzahl) bereits aus § 43,
Beispiel 5, bekannt.

Satz 3: Das Polynom @y(x) ist fiir jedes m € N irreduzibel iiber Q.

Beweis: Wir unterteilen den Beweis in sieben Schritte. Dabei beginnen
wir in 1) mit einer einfachen Aussage, die wir spater verwenden.
1) Es sei f(x) € 3[x] und p eine Primzahl. Wir behaupten: Alle Koeffizienten
von f(x)? — f(x?) € 8[x] sind durch p teilbar. Das zeigt man entweder durch
Rechnen in 3p[z] oder direkt wie folgt: Fiir zwei Elemente gi(x), ga(x) € 3[x]
gilt
@ +oar = a@r+ @ inet .. +," et

mit durch p teilbaren Binomialkoeffizienten (f), 1 =» < p— 1(vgl. Aufgabe
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20.8). Es gibt also ein Polynom d(z) € 3[«] derart, daB
(91(x) + g2(2))? = q1(2)? + ga(x)? + pd(x)

geschrieben werden kann. Mehrfache Anwendung dieses Resultats auf eine
Summe von k& Summanden g;(x) € 3[x] liefert: Die Koeffizienten von

(91(2) + g2(2) + ... + grl@))? — G1(@)? — g2()? — ... — grl(2)?

n
sind durch p teilbar. Man schreibe nun f(x) = Ja,x* und setze a,z" = qi(z),

@p-127-1 = go(x) usw. Es folgt: Die Koeffizienten von
hix) = f@)? — ah(@P)r — ap_y(@P)?-1 — ... —af

sind durch p teilbar. Dasselbe gilt nach Satz 12.6 fiir die Koeffizienten von

fo(z) = (an — an)@P)* + (apy — @n-1)@P)** + ... + (af — ao).

Also sind auch die Koeffizienten von fi(z) + fa(x) = f(z)? — f(#P) durch p
teilbar.

2) Nun sei f(zx) eQ[z] ein Teiler von Pp(x) € 3[x] und Grad f(z) = 1. Nach
Satz 42.3 darf sogar f(x) € 3[x] angenommen werden, und da Pp(x) normiert ist,
diirfen wir weiter voraussetzen, auch f(x) € 3[x] sei normiert. Behauptet wird
dann f(xr) = Pm(x). Es sei im folgenden s eine natiirliche Zahl und r,(z) der
Divisionsrest von f(z®) bei Division durch f(z). Wir wollen in vier weiteren
Schritten 3), 4), 5), 6) zeigen, daB im Falle (s, m) = 1 der Rest r5(x) verschwin-
det. Die Aussage 1) wird beim Beweis der Zwischenbehauptung 4) verwandt.
Der eigentliche Beweis von Satz 3 erfolgt dann zuletzt in 7) mit Hilfe von 6).
3) Wir behaupten: Fiir jedes s € M ist rg4m(x) = r4(z). Ist ndmlich ax einer
der Summanden von f(x), so erscheint axz®# als Summand von f(x%); also enthélt
f(x3tm) — f(2%) den Term axns(am» — 1), und a2m# — 1 = (a™)=» — 1 ist durch
2™ — 1, also auf Grund der Sitze 1 und 2 durch @,,(z) und damit auch durch
f(z) teilbar. Es gilt demnach f(z2+m) — f(z?) = g(x)f(x) in 3[z]. Ist

fx?) = glx)f(x) + rs(x),

so folgt f(x*tm) = (g9(x) + ¢(x))f(x) + rs(x), und da der Divisionsalgorithmus in
[x] eindeutig ist (Bemerkung zu Satz 37.3), heit das reppm(z) = r5(x).

4) Wir behaupten weiter: Fiir alle hinreichend groBen Primzahlen p > M ist
rp(x) = 0. Denn: Nach 1) gibt es ein k(z) € 3[z] mit f(xP) — f(x)? = ph(z), und
dieses A(z) konnen wir auch in der Gestalt k(z) = q(z)f(z) + r(x) mit Polynomen
q(z), r(z) € 3[x] und Grad r(z) < Grad f(x) bzw. r(z) = 0 schreiben. Das
liefert f(z?) = /(z)? + phiz) = ()P~ + Pa@)i@) + pr(z). Also ist

rp(x) = priz).

Nach 3) gibt es aber iiberhaupt nur endlich viele voneinander verschiedene
Polynome r,(x); daher existiert das Maximum M der Betrige aller Koeffizienten
aller r4(x). Man wihle nun p > M. Da alle Koeffizienten von r,(z) = pr(z)
durch p teilbar sind, muB rp(x) = O sein.

11¢
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5) Aus ry(x) = 0 und r¢(x) = 0 folgt r5(x) = 0. Denn wegen r5(x) = 0 ist f(x?)
durch f(x), also f(x%) durch f(x*) teilbar; wegen ry(zx) = 0 ist f(z*) durch f(x)
teilbar; insgesamt ist also f(z%¢) durch f(z) teilbar.

6) Jetzt sei s e N teilerfremd zu m. Behauptet wird: r5(x) = 0. Dazu setzen
wir n = p1pe . .. Pk, wobel die p; simtliche Primzahlen < M sind, die nicht in
s aufgehen; dabei ist M die Schranke aus 4). Fiir 0 = s - mn zeigen wir nun
7o(x) = 0, und nach 3) bedeutet das gleichzeitig r5(x) = 0. Nach 4) und 5)
wiederum geniigt es fiir ro(2) = 0 zu zeigen: Jeder Primteiler von o ist groBer
als M. Dies lehrt eine leichte Fallunterscheidung: Ist p eine Primzahl < M
und p ein Teiler von s, so gilt ptn und pim, letzteres wegen (s, m) = 1, ins-
gesamt also pto; und ist p eine Primzahl < M und kein Teiler von s, so gilt
pln, also wieder pto.

7) Es ist also gezeigt: Ist s € M zu m teilerfremd, so ist f(z?) in 3[x] durch f(z)
teilbar: Es gibt ein g(x) € 3[x] mit f(x*) = g(x)f(x). Es sei nun { € € eine ge-
meinsame Nullstelle von @p(z) und f(z); wegen f(z)|Pm(x) und Grad f(z) =1
gibt es ein solches {. Es ist (m =1, aber (¥ 1 fir k=1,2,...,m—1;
als Nullstelle von @,(x) ist ja { eine primitive m-te Einheitswurzel. Die ¢(m)
Zablen (3, 1 =<s < m, (8, m)=1, sind also paarweise voneinander ver-
schieden und wegen f(z*) = g(x)f(x) gleichfalls Nullstellen von f(z) in €. Nach
Satz 26.2 folgt Grad f(x) = p(m) = Grad Pp(x); andererseits waren f(z) und
Dp(x) normierte Polynome aus 3[x] mit f(z)|Pmp(x). Zusammengenommen heiBt
das f(x) = Pp(x). Damit ist Satz 3 bewiesen.

Folgerung: In (2) steht die Primfaktorzerlegung von 2m — 1 im GauB-
schen Ring Q[x].
2n . 2n
Aufgabe 1: Man berechne cos 5 und sin 5
Aufgabe 2: Es sei { eine m-te Einheitswurzel. Man beweise

0 fi 1
(5) Lp L0t homt = i L

Aufgabe 3: Esist #1(0) = —1 und @;(0) = 1 fiir m & 1. Beweis ?
Aufgabe 4: Man beweise

(6) m =+ 1, m ungerade => Pop(x) = Dp(—=).
Aufgabe 5: Man beweise die beiden folgenden Aussagen.

(7) Ist p eine Primzahl mit p(m, so gilt Ppy(x) = Pm(xP).
Ist p eine Primzahl und k e N, so gilt

(8) Dpr(z) = 2P-VP - glp-2p—t | - 2P 4 1.
Aufgabe 6: Man bestimme die Kreisteilungspolynome @®,(x) fiir

1=m=<15.
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§ 46* NOETHERsche Ringe

Wir haben gesehen, welche besondere Rolle die Hauptidealringe spielen. Die
Idealtheorie wird in ihnen besonders einfach und gestattet zahlreiche wichtige
und niitzliche Folgerungen. Manches aus der Theorie der Hauptidealringe
Bekannte laBt sich nun auf eine allgemeinere Klasse von Ringen iibertragen,
deren Untersuchung von groBem Interesse ist. Thr Name erinnert an die
deutsche Mathematikerin EmmMy NoETHER (1882—1935), der die Idealtheorie
entscheidende Impulse verdankt.

Definition: Ein kommutativer Ring R heifit Noetherscher Ring, wenn jedes
Ideal aus R von endlich vielen Elementen erzeugt wird.
Als erste Beispiele haben wir bereits die Hauptidealringe erwahnt. Der folgende
Satz gibt drei gleichwertige Charakterisierungen Noetherscher Ringe, die
immer wieder benutzt werden.

Satz 1: Ein kommutativer Ring R ist genau dann ein Noetherscher Ring,
wenn eine der dres folgenden gleichwertigen Bedingungen erfillt ist:
(1) Jedes Ideal aus R wird von endlich vielen Elementen erzeugt (Basisbedingung).
(2) Jede aufsteigende Kette a3 C az C ag C ... von Idealen aus R wird konstant
(Teslerkettenbedingung). Das heift: Es gibt einen Index k mit

Ak = Qg+l = Qp42 = ... .

(3) Jede nicht leere Menge M von Idealen aus R enthilt wenigstens ein maximales
Element a (Maximalbedingung). Das heifit: Istbe M und a C b, so gilt a = b.
Beweis:

(1) = (2): Im Beweis von Satz 37.2 haben wir gezeigt, daBl in einem Haupt-
idealring die Teilerkettenbedingung erfiillt ist. Diese Uberlegung wieder-
holen wir. Es gelte (1); jedes Ideal aus R sei also endlich erzeugt. Ist dann
a1 Caz Cag C ... eine Idealteilerkette aus R, so ist in bekannter Weise auch
a = Uaq; ein Ideal aus R, und nach Voraussetzung wird es von endlich vielen
Elementen erzeugt: a = (a3, az, .. ., a;). Nach Definition von a gibt es ein
Ideal der Kette, das a1, ein weiteres, das ag enthilt, usw.; das groBte dieser n
Ideale sei ax. Es enthilt alle a;, also ganz a, und ist andererseits ein Teil von a;
das heillt ax = a. Also gilt ay = az41 = ags2 = .. .; die Kette wird konstant.
(2) = (3): Es sei (2) erfillt und M =+ ¢ eine Menge von Idealen aus R. Man
wihle ein a; € M. Entweder a; ist bereits maximal, und dann ist man fertig,
oder es gibt ein as € M, ag == a3, mit a1 c ag. Wieder ist entweder az maximal,
oder es existiert ein a3 e M, ag &= a2, mit a; C a3 C a3. Man setze das Ver-
fahren fort. Nach (2) bricht es mit einem ax ab, und dieses a; € M ist maximal.
(3) = (1): Es sei a ein Ideal aus R und M die Menge aller von endlich vielen
Elementen aus a erzeugten Ideale. Ferner sei b = (ay, az, .. ., @) ein maxi-
males Element aus M. Dann gilt zunichst b c a. Wiire b == a, so wiirde ein
ap+l € 4, G4 ¢ b, existieren, und es wire

bcla,as, ...,ann1)eM, b (@, a, ...,an1),

im Widerspruch zur Wahl von b. Also gilt a = b = (a1, az, . . ., @p); das Ideal
a C R ist endlich erzeugt.
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Einfach zu beweisen ist der

Satz 2: Es sei R ein Noetherscher Ring und R* ein homomorphes Bild von R.
Dann ist auch R* ein Noetherscher Ring.

Beweis: Esseiaf c af c af c ... eine aufsteigende Kette von Idealen aus
R*; wir haben zu zeigen, da8 sie konstant wird. Es sei f: B - R* der Homomor-
phismus von R auf R* und a; = f-Ya¥), az = f-1aF), a3 = f1a}), ...; aus
Satz 21.4 wissen wir, daB die a; Ideale in R sind. Sie bilden in R eine Teiler-
kette ay cazcagc ..., und diese Kette wird nach Voraussetzung konstant.
Nun wende man wieder f an. Es ist f(a;) = a¥; also wird auch die Kette
af c af c af c ... aus R* konstant.
Ein wichtiger Satz iiber Noethersche Ringe ist der berithmte Basissatz von
HivLeERT, dem wir uns in § 47 zuwenden.

Aufgabe 1: Der Ring 23 der geraden ganzen Zahlen ist ein Noetherscher
Ring. Beweis ?

§ 47* Der HiLBERTsche Basissatz

47.1 In Satz 25.5 haben wir festgestellt: Ist R ein Integrititsbereich mit Eins-
element, so auch der Polynomring R[x]. Das war trivial. Weit weniger selbst-
verstandlich war ein weiterer Ubertragungssatz dieser Art, der Satz von Gauss:
Ist R ein GauBscher Ring, so ist es auch R[x]. Der folgende HiLBERTsche
Basissatz ist ein dritter derartiger Satz; sein Beweis erregte im Jahre 1890
groBes Aufsehen.

Satz 1: Ist R ein Noetherscher Ring mit Einselement, so ist es auch R[z].

Beweis: Wir bezeichnen Ideale in R mit kleinen, Ideale in R[2] mit
groffien deutschen Buchstaben. Wir werden zeigen: Eine aufsteigende Kette
Yo c Uy c Yz C ... von Idealen aus R[x] wird konstant. Wir fiihren den Beweis
in drei Schritten.

1) Es sei ¥ c R[«] ein Ideal. Firn =0, 1,2, ... setzen wir

an = {acR: Es gibt ein f(x)e¥ der Gestalt f(z) = axn+apj27-14- ... 4 ap.};

die Menge a, enthilt also die Null und die hochsten Koeffizienten aller Poly-
nome vom Grad n aus Y. Sind f(z), g(z) Elemente aus ¥ und r € R, so gilt
f(x) — g(x) € Y und rf(x) € Y; daraus folgt: a, ist ein Ideal aus R. AuBerdem
gilt ap C apy1: Mit f(z) = az® + ap2m1 4+ ... 4+ ap € Y liegt auch

zf(z) = az®l + apg2" + ... + aex

in ¥; aus a € a, folgt also a € ay11. Wir ordnen nun dem Ideal % c R[] die
Idealteilerkette ag c a3 cagc ... aus R zu.
2) Den Idealen Y, B aus R[x] seien die Teilerketten

GpCa1CazC..., bochrchac...
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aus R zugeordnet, und es gelte Y c B, also auch ascby (»n =0,1,2,...).
Wir zeigen: Aus Yc®B und a, =0, (n =0,1,2,...) folgt bereits Y = B.
Zunichst besagt ag = by, daB U und B auber der Null auch dieselben Polynome
nullten Grades enthalten. Es sei bereits bewiesen, daB die Polynome mit
kleinerem Grad als 7 in Y und % dieselben sind. Unsere Behauptung ist durch
Induktion nach » bewiesen, wenn gezeigt wird: Jedes

flx) = axn + apq2t-1 4+ ... +ageB
ist schon ein Element von Y. Zunéchst ist a ein Element von b, = a,; demnach
gibt es auch ein g(z) = az® 4 bpg2?1 + ... + bpe U. Wegen U c B liegen
f(x) und g(z) beide in B. Also gilt auch f(x) — g(x) € B und nach Induktions-
voraussetzung sogar f(x) —g(x) € Y. Zusammen mit g(x) €Y liefert das
g(x) + (f(x) — g(x)) = f(z) € ¥, was gezeigt werden sollte.
3) Nun benutzen wir, daB R ein Noetherscher Ring ist. Essei Yo c Uy c U C ...
eine Idealteilerkette aus R[x]; wir zeigen, daB sie konstant wird. Dem Ideal %,
sei gemiB 1) die Kette agp C a1 C a2 C ... aus R zugeordnet. Wir bekommen
das folgende Schema.

Ao oo C agr  C agz C.
0 N N n
QIl a0 C an C M2 C...
n n N n
&(2 qage C a1 C Q22 C...
n n p) n
Ann =
n 0 n N !
Um @m0 C @m1 C dmz C... (-
Il 1 I It I
p N 0m+1,0C Om+11C Gm+1,2C .. {

Man sehe sich die Spaltenketten ags cajycaggc ... (2 =0,1,2,...)an. Kann
man die Existenz eines Index m nachweisen, von dem an sie alle konstant
werden: Gm¢ = Gpi1,4 = Omi2,4 = ... fir jedes ¢ = 0, so ist wegen 2) auch
Um = Umi1 = Ums2 = ... bewiesen. Nun gilt aber jedenfalls

Qo Ca3Cag2C...,

und nach Voraussetzung wird diese Kette etwa bei ap, konstant. Es folgt
Qan = Gn41, n+1 = ... und damit a,y = ag, fir alle 4, » = n; alle Ideale unter-
halb und rechts von ayy, sind gleich ap,. Mit Ausnahme hochstens der # ersten
werden also alle Spaltenketten spitestens vom Zeilenindex » an konstant. Die
endlich vielen ersten n Spaltenketten werden aber wieder auf Grund der
Voraussetzung jede fiir sich konstant; es gibt also einen Zeilenindex %, von
dem an sie alle konstant sind. Wahlt man nun fiir m das Maximum von » und %,
so sind vom Zeilenindex m an alle Spaltenketten konstant, womit Satz 1
bewiesen ist.
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47.2 Aus Satz 1 folgt der

Satz 2: Ist R ein Noetherscher Ring mit Einselement, so ist es auch der
Polynomring R[x1, zg, . . ., )

Spezialfille:
1) Ist K ein Korper, so ist K[z, 22, . .., 25} ein Noetherscher Ring.
2) 3[x1, @2, ..., p] ist ein Noetherscher Ring.

Uber Satz 2 hinaus gilt sogar der

Satz 3: Es seien R und R* > R kommulative Ringe mit demselben Eins-
element 1 € R und &, &, ..., &, Elemente aus R*. Ferner sei R ein Noetherscher
Ring. Dann ist auch R[&y, &, . . ., &) etn Noetherscher Ring.

Beweis: Esist R[x), 2, . . .,2,] ein Noetherscher Ring und R[&;, &, . . .,&x)
ein homomorphes Bild von B[z}, 23, . . ., z4] (vgl. § 25.5). Die Behauptung folgt
also aus Satz 46.2.

Also ist beispielsweise 3[)/—5] ein Noetherscher Ring. Aber 3[}/—5] ist sicher
kein Hauptidealring ; denn nach § 37.1 war es nicht einmal ein GauBscher Ring.
Umgekehrt ist nach § 42.5 der Polynomring 3[xi, x2, 23, ...] in abzédhlbar
vielen unabhéngigen Unbestimmten wohl ein GauBlscher Ring. Aber er ist
kein Noetherscher Ring; denn die Teilerkette (z1) C (x1, x2) C (1, 22, x3) C
... wird nicht konstant. Ebenfalls kein Noetherscher Ring ist der Ring 23[x]
aller Polynome mit geraden ganzen Zahlen als Koeffizienten; denn die Teiler-

kette @) c (2, 22) ¢ (2, 2z, 222) C . ..

wird nicht konstant. Wegen 23[x] ¢ 3[x] zeigt dieses Beispiel, daf ein Unter-
ring eines Noetherschen Ringes kein Noetherscher Ring zu sein braucht. Das
Beispiel zeigt weiter (vgl. Aufgabe 46.1), daB in Satz 1 auf die Bedingung 1 € R,
die im Beweisteil 1) beim Nachweis von g, C ap+1 benutzt wurde, nicht ver-
zichtet werden kann.

Literatur: KoCHEND GRFFER [12], v. D. WAERDEN [16].
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Allenthalben in der Mathematik treten Vektorrdume auf. Man begegnet ihnen
vielleicht das erste Mal, wenn man in naiver Weise rdumliche Geometrie be-
treibt. Vektoren sind in diesem Fall gerichtete Strecken, die genau dann als
einander gleich angesehen werden, wenn sie sich durch eine Parallelverschiebung
ineinander iiberfiihren lassen, und man definiert in bekannter Weise eine
Addition von Vektoren. So wird die Menge V aller Vektoren des dreidimensio-
nalen Raumes eine abelsche Gruppe. Zusdtzlich fithrt man noch eine duere
Komposition von V mit & ein: Fiir a e ® und « € V erklirt man ein Produkt
axe V.

Diese Festlegungen erweisen sich als sehr praktisch. Sie lassen sich auBerdem
leicht von ihrem anschaulichen Hintergrund 16sen. ¥V wird das cartesische
Produkt R3 mit der Addition (als az, a3) + (bla b2; b3) = (al + bl: as + b2’ a’3+b3)s
und fir aeR und « = (@1, a2,a3) € V gilt ax = (aa1, aas, aag) € V. Erneut
stellt man fest, daB V eine abelsche Gruppe beziiglich der Addition ist, und fiir
die duBere Komposition bestdtigt man sofort die Regeln (ab)a = a(ba),
(@ + b = aw + b, a(x + f) = ax + af und le = a (@, beR; a, fe V).
Diese Eigenschaften von V benutzt man zur Definition neuer algebraischer
Strukturen und nennt sie Vektorrdume.

Es stellt sich bald heraus, da8 viele urspriinglich rein geometrische Uber-
legungen in der Theorie der Vektorrdume eine Form annehmen, die An-
wendungen in den verschiedensten Zweigen der Mathematik gestattet. Wah-
rend der geometrische Hintergrund als Hilfsmittel zur Veranschaulichung er-
halten bleibt, ist auf diese Weise eine besonders wichtige Teildisziplin der
Algebra, die sogenannte lineare Algebra, entstanden, die sich ausschliefflich
mit Vektorrdumen befaBt. Auf Grund ihrer wachsenden Bedeutung erfolgt die
Beschiftigung mit ihr bereits am Beginn des Mathematikstudiums. Wir stellen
die Grundbegriffe der linearen Algebra nur in dem fiir unsere Zwecke er-
forderlichen Umfang noch einmal zusammen.

§ 48 Das Rechnen in Vektorrdumen

Definition: Es sei S ein Schiefkorper mit Elementen 1,a,b, ... und V eine
additiv geschriebene abelsche Gruppe mit Elementen «, 8, ... Dann heifit V ein
Vektorraum tiber S, genauer: linker S-Vektorraum, wenn eine Komposition von V
mit 8 (also fiir a€ 8 und a €V ein Produkt ax € V) erkldrt ist, die folgende
Eigenschaften hat:

(1) (ab)a = a(bax) (Assoziativitat).
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(2) (@ + b)a = aa + ba, T
(3) ale + B) = ax + ab. (Distributivitdt)
(4 la = a.
In (2) und (3) soll wie iiblich wieder das Zeichen fiir die Multiplikation stiarker
binden als das fiir die Addition. Die Elemente von ¥V nennen wir Vektoren, die
Elemente aus S Skalare. Man hat den Skalar 0 € § vom Nullvektor o € ¥V zu
unterscheiden.
Rechte S-Vektorraume werden entsprechend definiert.
Beispiel 1. Ein Schiefkorper § ist ein linker S-Vektorraum. Hier ist V¥ = §.
Beispiel 2. Es sei § ein Schiefkorper, » € t und V = 8#. Wir setzen

(@1, 02, ...,ap) + (b1, b2, ..., by) = (a1 + by, as + bo, ..., a5 + by)
und a(ay, ag, ..., as) = (aay, aas, ..., aa,). Dann ist V ein linker S-Vektor-
raum. Man nennt ihn den Raum der n-tupel iiber S. Spezialfall: § = R und
n = 3.
Beispiel 3. Es sei K ein Korper. Dann ist K[z] ein linker K-Vektorraum.
Beispiel 4. Es sei K ein Kérper, E 5 K ein Erweiterungskorper und £ E
algebraisch iiber K. Dann ist K[&] ein Vektorraum iiber K. Dies wird fiir uns
einer der wichtigsten Fille.
Fir das Rechnen in Vektorrdumen gelten zunichst die Satze iiber abelsche
Gruppen. Zusitzlich brauchen wir noch den

Satz 1: Es set S ein Schiefkorper mit Elementen 0,1,a, ... und V ein
8-Vektorraum mit Elementen o, «, ... Dann gelten folgende Rechenregeln:
a) a0 = Ox = o.

b) (—a = —a, (—a)e = —aa.
¢) Aus ax = o folgt a = 0 oder « = o.
Beweis:

a) Es ist a(o + 0) = ao + ao und a(o + o) = ao, also ao + ao = ao; in der
Gruppe V folgt ao = o. Analog zeigt man Ox == o.

b) In V gilt also a+(—1)a = la+(—1)a = (1 +(—1))a = O0x = o sowie
o + {(—ea) = o; in der Gruppe ¥ folgt (—1)a = —a. Ferner wird

(_a)a = ((—l)a)a = (—1)(a¢) = —au.

c) Ist ax = o und @ + 0, so folgt a-Y(ax) = (¢ a)a = la = a = o.

§ 49 Teilrdume

Eine Teilmenge U des S8-Vektorraumes ¥ nennen wir einen Teilraum von V,
wenn U Vektorraum beziiglich der Kompositionen von ¥V ist. Es ist also
U = {0} ein Teilraum jedes Vektorraumes V; dagegen ist die leere Menge £
keine Gruppe, also nie Teilraum. Niitzlich ist das folgende Analogon zu Satz 8.1.

Satz 1: Eine nicht leere Teilmenge U des linken S-Vektorraumes V ist Teil-
raum von V genau dann, wenn die beiden Bedingungen
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(1) a,elU = a+ B,
2)ae8,aclU = axecU
erfillt sind.

Beweis: Ist U ein Teilraum von V, so sind (1) und (2) gewiB erfiillt. Ist
umgekehrt U = £ eine Teilmenge von V, in der (1) und (2) gelten, so liegt
nach (2) mit & auch (—1)a = —a in U; ein a € U gibt es sicher, und mit (1)
folgt « + (—a) = o € U. Alle anderen Forderungen an U sind erfiillt, weil U
eine Teilmenge von V ist.

Man betrachte den Durchschnitt U; n Uy zweier Teilrdume Uy, Uz des Vektor-
raumes V. Wir zeigen mit Satz 1, daB er wieder ein Teilraum von V ist: Aus
a,BeUinUsfolgt o, fe Uy, alsoa + e Us(t = 1,2) oder « + e Uy n Us.
Analog bekommt man ax € Uy n Up firae 8, a € Uy n Up. Wegen o € Uy n U
ist schlieBlich U; n Ujs nicht leer. Der Durchschnitt U n Us ist also ein Teil-
raum von V. Bei dieser Argumentation hidtte man auch von mehr als zwei
Teilrdumen Uy c ¥ ausgehen konnen. Wir formulieren unser Ergebnis.

Satz 2: Sind die Uy Teilrdume des Vektorraumes V, so ist auch N Uy ein
Teilraum von V.

Eine Anwendung von Satz 2 ist die folgende. Es seien a3, ag, . . ., «, feste Vek-
toren aus ¥ und M die Menge aller Teilrdume U; von V mit {oy,ap, . . .,ar} ¢ Uy;
dabei entstammen die ¢ einer Indexmenge I. Wegen Ve M ist M nicht leer.
Der Durchschnitt U aller dieser U; € M ist ein Teilraum von V, und er ist der
kleinste, Teilraum von V¥, der alle «; enthélt: Es gilt U c Uy fiir jedes Uy e M.
Deshalb ist die folgende Definition, die zusitzlich noch den Fall r = 0 mit
einbezieht, sinnvoll.

Definition: Es seien oy, ag, .. ., oy Elemente des Vektorraumes V. Ist r = 1,
30 bezeichne [wy, a3, ..., ay] den kleinsten Teilraum von V, der {a1, xa, ..., oy}
als Teilmenge enthdlt. Ist r = 0, also {oq, ata, ..., op} = &, 80 sei endsprechend
[e1, @2, ..., 0] = {0} der Nullraum.

Esseir = 1. Aus welchen Elementen besteht U = [«, a2, . . ., «r] ? Wir schlie-
Ben wie in §35.3: Der Raum [, ag, ..., ar] enthdlt alle s;x; (s3 € 8), also
auch die Menge L aller Linearkombinationen sjon + Ssaz + ... + 8y, (82 € 8S);
das heiB3t L ¢ U. Aber nach Satz 1 ist L selbst schon ein Teilraum von ¥V, und L
enthilt alle «;; das bedeutet L 5> U. Zusammengenommen ist also U = L und
damit [oy, ag, ..., o] die Menge aller Linearkombinationen der Vektoren ay.
Wir sagen: Der Vektorraum U = [y, ag,...,0] wird von der Menge
{a1, @, . .., oy} der Vektoren «; bzw. von den Vektoren «; aufgespannt oder er-
zeugt. Die leere Menge erzeugt den Nullraum. Ein Vektorraum V heiBt endlich
erzeugt, wenn es ein r = 0 und Vektoren oy, ag, ..., ar aus ¥V mit

V = [a, 22, ..., %]
gibt.

Aufgabe 1: Es sei K ein Kérper und ¥V = K* der n-tupel-Raum iiber K.

n
Gegeben seien die m linearen homogenen Gleichungen > ayé; =0,1 <7 < m,
=1
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mit Koeffizienten ay; € K fiir die » Unbekannten £ € K. Wir nennen
(1‘1, 2, <« .y T") eV

eine Losung des Gleichungssystems, wenn es durch & = r;(1 < j < n) be-
friedigt wird. Die Menge aller dieser Lisungen sei U c V. Man zeige: U ist ein
Teilraum von V.

§ 50 Der Basissatz

Wir fithren den Begriff der linearen Unabhangigkeit ein.

Definition: Es ser S ein Schiefkorper mit Elementen s; und V ein linker
S-Vektorraum. Die r = 1 Vektoren oy, ag, . .., ar aus V heiflen linear unabhingig

4
(iiber S), wenn aus >syxy = o folgt: 8y = s = ... = 8 = 0. Eine Menge M c V

1

bzw. die Vektoren von M heiflen linear unabhingig (andernfalls: linear abhingig),
wenn je endlich viele Vektoren ay, a, . .., ar (r = 1) aus M linear unabhingig
sind.

Die leere Menge bzw. die Vektoren der leeren Menge sind hiernach linear un-
abhangig. Ein einzelner Vektor « € V ist genau dann linear unabhéngig, wenn
o = o ist. ‘

Wir formulieren nun ein einfaches
Lemma: Es sei V ein Vektorraum, und es seien die r > 1 Vektoren

a1, 02, « .., O

aus V in dieser Reihenfolge vorgelegt. Dann gelten die folgenden Aussagen.

a) Die Vektoren a, sind genau dann linear abhéngig, wenn ein «; eine Linear-

kombination der iibrigen oy (j == ¢) ist.

b) Sind alle Vektoren a, ungleich Null, so sind sie genau dann linear abhingig,

wenn ein oy eine Linearkombination der vorangehenden o4 (j < ¢) ist.
Beweis:

a) Ist oy = Z s, so folgt (—1)oy + > 827 = 0, wobei wenigstens der

¥
Koeffizient —l mcht Null ist; die Vektoren o 8ind dann also hnea,r abhangig.
Gilt umgekehrt z sjy = o und etwa s 50, so wird s;! Z 8jo5 = o oder
=1 =1
@ = Z (—srle)ag.

b) Ist em oy eine Linearkombination der o; mit § < ¢, so erst recht eine Linear-
kombination der oy mit § == ¢; die Vektoren ap sind dann also linear abhingig

auf Grund von a). Ist schlieBlich Z s;05 = 0, und sind nicht alle s; Null, so

existiert ein maximaler Index ¢ mlt 8 = 0, und da diesmal alle a, ungleich

Null sind, gilt ¢ > 1. Es folgt «; = 2 (—silsy)ay.

j=1
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Dieses Lemma liefert den

Satz 1: Der Vektorraum V = [oy, ag, ..., ar] set endlich erzeugt, und die
Vektoren p1, Ba, - - -, Pm aus V seien linear unabhingig. Dann ist r = m.

Beweis: Der Fall r = 0 ist trivial. Hs sei also r = 1. ‘Wir zeigen, daBl
schon die Anzahl der von Null verschiedenen «, mindestens gleich m ist. Der
Einfachheit halber seien also von vornherein alle «, ungleich Null; die 8,
sind es wegen ihrer Unabhéngigkeit sowieso. Nach Teil a) des Lemmas sind die
Vektoren B, aa, a9, ..., ar linear abhingig; es ist ja fn€[a, az, ..., .
Nach Teil b) des Lemmas kann man eines der «, weglassen, und die ver-
bleibenden By, af, @5, . .., 4r-1 erzeugen immer noch V. Also gilt auch
Bm-1 € [Pm> 41, %2, - - ., ap—1], und die Vektoren Sy, fm, o1, a3, - . ., a1 sind
linear abhingig nach Teil a) des Lemmas. Wieder nach Teil b) des Lemmas kann
man einen dieser Vektoren als Linearkombination der vorangehenden streichen ;
da die B, linear unabhingig sind, muBl es wieder eines der o, sein, und wir be-
kommen etwa V = [fp-1, fm. 01', @5’ ..., ar’s]. Dieses Austauschverfahren
kann wiederholt werden, solange Vektoren 8, zur Verfiigung stehen. Das be-
deutet r = m.

Definition: Die Teilmenge B = {a3, a9, ..., ap}, * =0, von V heift eine
Basis des Vektorraumes V, wenn die «p € B linear unabhingig sind und V er-
zeugen: V = [oq, ag, . .., o).

Hiernach ist £ Basis des Nullraums.

Jeder endlich erzeugte Vektorraum V = [o, a2, ..., 2], 7 =0, Dbesitzt
wenigstens eine Basis. Fiir r = 0 ist es £. Fir r = 1 bekommt man sie mit
Hilfe des Lemmas, indem man die von Null verschiedenen der Vektoren
oy, &g, - . ., &y aufschreibt und unter ihnen dann sukzessive alle diejenigen o
streicht, die Linearkombinationen der vorangehenden oy sind.

Satz 2: Es set V = [oq, a2, - - -, ar) und r = 1. Genau dann lift sich jedes
a € V eindeutig als Linearkombination der «p darstellen, wenn {a1, ag, ..., oy}
eine Basis von V ust.

Beweis: Ist {a1, g, .. ., ar} eine Basis von ¥V und a = 2803 = 28321, 80
folgt >(ss — s4)xs = o oder sy = ) fiir alle 4. Ist {ay, g, ..., %} keine Basis
von V, so gibt es Skalare ¢;, die nicht alle Null sind, mit >#;x) = o. Ist also in
diesem Fall etwa o = >sjxz, so wird auch o« = J(s3 + ¢1)as, und nicht fiir
alle 4 gilt 53 = 83 + 2.

Satz 3 (Bastissatz): Der Vektorraum V setr endlich erzeugt. Dann besitzt V
mindestens eine Basis, und je zwei Basen von V haben gleich viel Elemente.

Beweis: Dafl V wenigstens eine Basis besitzt, wurde schon gezeigt. Es
seien {0, ag, . .., ap} und {f, P2, . . ., fm} zwei Basen von V. Der Vektorraum V
wird von den «, erzeugt, und die 8, sind linear unabhingig ; Satz 1 liefert » = m.
Ferner wird V auch von den g, erzeugt, und die «, sind linear unabhéngig; das
liefert m = n. Insgesamt folgt m = =.

Nun wird die folgende Definition sinnvoll.
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Definition: Es sei V ein Vektorraum. Ist V endlich erzeugt und n = |B| die
Elementeanzahl einer Basis B von V, so heift n die Dimension von V, und wir
schretben dim V = n. Ist V nicht endlich erzeugt, so sei dim V = oo.

Die folgenden Sitze werden oft gebraucht.

Satz4: Es set dim V = »n < . Dann sind je n + 1 Vektoren aus V
linear abhingig, und je n linear unabkingige Vektoren bilden eine Basis von V.
Genau dann gilt dim V = oo, wenn es beliebig viele linear unabhdngige Vektoren
in V gibt.

Beweis: Die erste Behauptung folgt aus Satz 1. Die zweite Behauptung
ist eine Folge der ersten: Sind die Vektoren oy, ag, . .., s aus V linear unab-
hingig und ist x € V, so gibt es Skalare s, 81, 8, ..., 85, die nicht alle ver-
schwinden, mit s« + sja1 + ... + Spaxp = o; nach Voraussetzung kann s nicht
Null sein, und es wird « = Y (—s-18,)ay oder a € [y, @2, . . ., ay). Fir die letzte
Behauptung bleibt zu zeigen: Ist dim ¥V = oo, so gibt és beliebig viele linear
unabhingige Vektoren in V. Dazu wihle man ein ay€ V, o) 3 0; es wird
[n] ¢ V und [«1] 3 V wegen dim V = o0. Also existiert ein ag e V, ag ¢ [a4],
und wieder wird [a1, a2] ¢ V, [a1, a2] + V. Wegen dim ¥V = oo 148t sich dieses
Verfahren beliebig oft wiederholen, und die Vektoren o, sind linear unab-
hingig nach Teil b) des Lemmas.

Satz 5: Es set V = [oy, a2, ..., ar] endlich erzeugt, und die Vektoren
P, B2, ..., Bm aus V seien linear unabhingig. Dann gibt es eine Basis B von V
mat {f1, P2, ..., Bm} C B.

Beweis: Es gilt (81, B2, - . ., fm] c V. Steht hierin sogar das Gleichheits-
zeichen, so wird B = {f, f2, ..., fm}, und man ist fertig. Andernfalls existiert
einy1e V,y1 ¢[p1, B2, .. -, Bm]; nach Teil b) des Lemmas sind 8y, B2, - - -, fm, 11
dann linear unabhangig, und auBerdem gilt [, . .., Bm, ¥1] ¢ V. Steht hierin
das Gleichheitszeichen, so ist B = {81, .. ., Bm, 71} eine Basis der verlangten
Beschaffenheit, und man ist wieder fertig. Andernfalls kann man die Auf-
fillung von {f, B, ..., fm} fortsetzen. Dieses Verfahren bricht wegen Satz 1
nach endlich vielen Schritten ab.

Satz 6: Es se: V etn Vektorraum und U ein Teilraum von V. Dann gelten die
beiden folgenden Aussagen.
a) dim U < dim V.
b) Ausdim U =dim V < oo folgt U = V.

Beweis:
a) Wir diirfen dim ¥V = n < o0 annehmen. Dann sind nach Satz 4 je n 4 1
Vektoren aus U c V linear abhingig. Nach der Definition kann also nicht
dim U > n sein.
b) Esseidim U = dim V = » << cound B = {a, a2, ..., s} eine Basis von U.
Dann sind die a«, linear unabhéngig in V, bilden also nach Satz 4 auch eine
Basis von V. Esfolgt U = V = [ay, 2, . . ., @5].

Aufgabe 1: Man betrachte den Vektorraum ¥ = € iiber R und bestimme
dim V.
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Aufgabe 2: Man betrachte den Quaternionenschiefkorper § als Vektor-
raum V iiber R und bestimme dim V.

Aufgabe 3: Man betrachte R als Vektorraum V iiber  und bestimme
dim V.

Aufgabe 4: Es sei £ = }/2. Man betrachte Q[£] als Vektorraum V iiber Q
und bestimme dim V.

§ 51 Homomorphismen von Vektorrdumen

Es sei V ein S-Vektorraum mit Elementen o, «, 8, ... Was wollen wir unter
einem homomorphen Bild W = f(V) verstehen ? Erstens wird man verlangen,
daB f: V — W ein Homomorphismus der abelschen Gruppe V auf W ist. Nach
Satz 12.1 muB dann auch W eine etwa additiv geschriebene Gruppe sein.
Zweitens wird man fordern, da8 auch W eine Komposition mit S besitzt und
daB fira e S, a e V gilt: f(ax) = af(«). In Analogie zu unseren friitheren Uber-
legungen fiir Gruppen oder Ringe wird dann von selbst W ein S-Vektorraum.
Dazu priife man die Axiome (1) bis (4) aus § 48 nach: Es wird (ab)f(«) = f((ab)«x)
— f(a(ba)) = af(ba) = albf()), ferner (@ + b)f(a) = f((a + b)a) — flax + ba)
— f(aa) + f(ba) = af(a) + bf(a) und a(f() + f(B)) = af(x + f) = fla(x + )
= flax + af) = f(ax) + f(aB) = af(x) + af(B) sowie 1f(a) = f(lx) = f(«). An-
statt das wieder als Satz zu formulieren, richten wir diesmal unsere Definition
gleich entsprechend ein.

Definition: Der S-Vektorraum W heift homomorphes Bild f(V) des S-
Vektorraumes V, und wir schreiben V = W, wenn eine surjektive Abbildung
f: V > W mit den Eigenschaften f(a 4 B) = f(a) + f(B) und f(ax) = af(x) existiert
(aeS;a BeV). Ist die Abbildung | zusditzlich eineindeutig, so keifit W ein
tsomorphes Bild von V, und wir schreiben V ~ W.

Fritheren Vorbildern entsprechend unterscheidet man wieder zwischen Homo-
morphismen oder Isomorphismen von V auf W oder von V in W. Durch
V ~ W ist auf jeder nicht leeren Menge von Vektorriumen eine Aquivalenz-
relation erklart. Nach Satz 12.2 ist ein Homomorphismus f: V — W genau
dann ein Isomorphismus, wenn der Kern U von f aus der Null allein besteht.
Homomorphe Bilder von V kann man leicht konstruieren. Es sei dazu U ein
Teilraum von V. Dann ist U ein Normalteiler der abelschen Gruppe V. Wir
bilden die abelsche Faktorgruppe V/U und definieren fiir sie eine &uBere
Komposition mit S: Fir ae 8 und « + U € V/U gelte a(e - U) = aoc + U.
Das ist eine Definition; ist nimlich 8 + U = « + U oder « —f € U, so auch
a(x— B)e U, weil U ein Teilraum von V war, und das liefert a{x 4+ U)
= a(f + U). Diese Komposition der abelschen Gruppe V/U erfiillt die Forde-
rungen (1) bis (4) aus § 48. Damit ist ¥/U ein linker S-Vektorraum geworden.
Er heilt Faktorraum von V nach U. Man sieht ohne Rechnung, daB durch
fle) = « + U ein Homomorphismus f: ¥V - V/U von ¥V auf V/U definiert
wird.
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Nun sei umgekehrt ein Homomorphismus f: ¥V — W von ¥V auf W gegeben. Das
ist speziell auch ein Gruppenhomomorphismus. LaBt man also die Komposition
mit 8 zunéchst aufer acht, so folgt aus Satz 12.2: Ist die Untergruppe U c V
der Kern von f, so definiert p(a + U) = f(«) einen Isomorphismus ¢ der
Gruppe V/U auf die Gruppe W. Nach Satz 49.1 ist aber U sogar ein Teilraum
von V, weil mit « auch jedes ax durch f auf die Null in W abgebildet wird. Also
kann V/U als linker S-Vektorraum aufgefallt werden. Vermittelt ¢ sogar einen
Isomorphismus der Vektorraume V/U und W ? In der Tat wird auch p(a(x + U))
= glaxa + U) = flax) = af(a) = ap(a + U). Es ist also W = ¢(V[U) ein
isomorphes Bild des Faktorraumes V/U. Damit haben wir insgesamt den im
folgenden formulierten Homomorphiesatz fiir Vektorrdume gewonnen.

Satz 1: Es sei V ein Vektorraum. Fiir jeden Teilraum U c V gilt dann
V x V|U. Ist umgekehrt f ein Homomorphismus von V auf W mit dem Kern U,
80 tst U ein Teilraum von V, und es gilt W ~ V|U.
Leicht einzusehen ist der

Satz 2: Isomorphe Velktorrdume haben gleiche Dimension.

Beweis: Es sei V ~ W. Nach Satz 50.4 geniigt es zu zeigen: Sind die
Vektoren ay, o, ..., ar aus V linear unabhingig, so sind es auch ihre Bilder
of,af, ..., off in W, und umgekehrt. Dies folgt aber daraus, daB auf Grund
der Relationstreue die Beziehung >se0p = 0 in ¥V mit der Beziehung >s,ad = o*
in W gleichwertig ist.

Weiter gilt der

Satz 3: Ein S-Vektorraum V der Dimension 1 < n < oo ist dem n-tupel-
Raum 8 isomorph.

Beweis: Man wihle in V eine Basis {x1, ag, ..., ay}. Nach Satz 50.2
1aBt sich dann jedes o« € ¥V auf genau eine Weise in der Gestalt « = Js,a,
schreiben. Durch f(e) = (81, 82, .. ., 8s) wird deshalb eine Abbildung f: V - S»
definiert; sie ist injektiv und surjektiv, und es gilt offensichtlich f(a -+ B)
= f(«) + f(B) und f(ax) = af(a).

Dieser Satz fithrt uns zum Ausgangspunkt unserer geometrischen Voriiberle-
gungen zuriick. Er besagt, daB man fiir das Rechnen in einem n-dimensionalen
Vektorraum ¥ iiber § den n-tupel-Raum S” und die damit verbundene geo-
metrische Vorstellung als Modell benutzen kann.

Zuletzt notieren wir noch den

Satz 4: Sind V und W Vektorrdume der gleichen Dimension n << oo diber 8,
soqit V~W.

Beweis: Der Fall n = 0 ist trivial. Fiir 1 < n < oo sind ¥V und W nach
Satz 3 beide isomorph S».

In Satz 4 ist die Beschrinkung auf endlichdimensionale Vektorrdume ¥V und W
iiber § wesentlich. Man kann leicht Beispiele unendlichdimensionaler Vektor-
rdume V, W iiber dem gleichen Schiefkdrper S angeben, die nicht isomorph
sind.
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§ 52 Die Gradformel

Es seien S und £ > 8 Schiefkérper. Dann kénnen wir E als linken S-Vektor-
raum auffassen ; die Dimension von ¥ iiber S nennen wir den linken Grad von E
iiber 8 und schreiben dafir [E: S];.

Entsprechend kann man E als rechten S-Vektorraum ansehen und einen
rechten Grad [Z: S], definieren. Es ist nicht gesagt, daB linker und rechter
Grad von E iiber S einander gleich sind. Sind aber die Elemente von E mit
denen aus S vertauschbar, ist also beispielsweise E sogar ein Korper, so gilt
natiirlich [E: 8); = [E: 8], und wir schreiben bloB [E : §]. Derartige Dimen-
sionen sind nie Null.

Beispiele sind etwa die Aufgaben 50.1, 50.2 und 50.3; ihre Ergebnisse lauten
jetzt [€: R] = 2, [H:R] = 4, [R:Q] = oo. Fiir jeden Korper K gilt [K(x): K]
= o0; denn 1, z, 22, 28, . .. sind linear unabhingig iber K.

Wir verabreden fiir das Folgende n+ o0 = o (neM) und oo+ 0 = oco. Der
nachstehende Satz wird fiir uns eine zentrale Bedeutung bekommen.

Satz 1: Es seien F > E > 8 Schiefkorper. Dann gilt die Gradformel
[F:8, = [F:E];-[E:S].

Beweis: Wir unterscheiden drei Fille.

1) Es sei [E: 8]; = co. Zu zeigen ist [F: 8]; = oo. Das folgt aber aus Satz 50.6,
da E ein Teilraum von F iiber 8 ist.

2) Es sei [F: E]; = oo. Dann gibt es beliebig viele Vektoren aus F, die iber £
und damit erst recht iiber 8 c E linear unabhingig sind. Aus Satz 50.4 folgt
also auch hier [F: §]; = 0.

3) Essei [F:8);=m < cound [F: E]; = n < c0. Zu zeigen ist [F': 8]; = mn.
Es sei {a, g, ..., a,.} c F eine Basis von F iiber E; jedes « € F ist also dar-

stellbar als « = z eyxy mit gewissen e, € K. Ferner sei {1, 82, ..., fm} CE

=1
eine Basis von £ uber S. Es folgt, daB sich jedes e, seinerseits in der Gestalt
m

ey = Y SyuBu (Syy € S) schreiben ldBt. Zusammengenommen wird also «
u=1
= 3 $yuPucy. Die mn Elemente B, x, € F erzeugen demnach F iiber 8, und

v

wir erhalten [F: 8]; < mn. Hierin steht das Gleichheitszeichen, weil die Ele-
mente fuu, sogar linear unabhingig iiber S sind: Es gelte etwa Jtufuxy = 0
mit gewissen ¢,y € 8. Das bedeutet >(>tufu)xy = 0, und da die «, eine Basis

v u
vorr F iiber E bilden, verschwindet >t,8, € E fir jedes ». Dies wiederum

u
liefert, weil die 8, eine Basis von ¥ iiber § bilden, ,, = 0 fiir jedes » und
jedes u.
Genauso beweist man eine entsprechende rechte Gradformel.
Der folgende einfache Sachverhalt wird oft benutzt.

Satz 2: Es seien E > 8 Schiefkérper. Genau dann gilt [E: S} = 1, wenn
E =S8 wst.

12 Hornfeck, Algebra
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Beweis: Ist £ = 8, so wird E 3 {0} von 1 € § erzeugt; also gilt [E: S];
= 1. Ist umgekehrt [E: 8]; = 1, so besitzt £ eine einelementige Basis; dieses
Basiselement ist ein beliebiges von Null verschiedenes Element aus E (Satz
50.4), etwa 1 € E. Jedes Element aus E hat also die Gestalt s -1 mit einem
8€ 8. Es folgt £ c S und daraus £ = 8.

Eine Folgerung aus Satz 1 und Satz 2 ist zum Beispiel der

Satz 3: Es seien F > E D8 Schiefkorper und [F: 8] < oo. Ist dann
[E:Sli = [F:8)1,s0gilt E=F.

Beweis: Das ist ein Spezialfall von Satz 50.6, Aussage b). Oder: Die
Gradformel besagt [F: 8}y = [F: E);-[E: Sl;. Wegen [F:8]; = [E: 8]; <
darf man kiirzen und bekommt [F: E]; = 1.

Literatur: KowaLsky [13].
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Wir haben uns von Kapitel 3 an verschiedentlich mit Korpern beschiftigt.
Dabei handelte es sich fast immer entweder um das Rechnen in ihnen oder um
gewisse Existenznachweise, wie zum Beispiel die fiir die Korper 2, R, €. Auch
an anderen Stellen traten Korper K auf; wir haben beispielsweise gezeigt, daf
der Polynomring K[x] euklidisch ist. Aber derartige Aussagen betreffen nicht in
erster Linie die Struktur von Korpern, obwohl sie in den Voraussetzungen er-
scheinen. Das mochte man zunédchst auch von der Theorie der Vektorrdume
annehmen. Aber die Moglichkeit, einen Erweiterungskoérper £ von K als
Vektorraum iiber K aufzufassen, liefert nun doch auBerordentlich wichtige
Ergebnisse iiber Korpererweiterungen, denen wir uns jetzt zuwenden. Ihr
Nutzen wird sich rasch zeigen. Wir kénnen dann etwa alle endlichen Koérper
angeben oder auf die klassische Frage antworteén, ob die Dreiteilung des
Winkels mit Zirkel und Lineal méglich ist.

§ 53 Einfache Korpererweiterungen

53.1 Wir kniipfen an die Betrachtungen von § 27 an.

Definition: Eine Korpererweiterung E des Korpers K heift einfack, wenn ein
&€ E mit E = K(£) existiert.

Dabei ist dann also & entweder algebraisch oder transzendent itber K, und wir
unterscheiden dementsprechend zwischen einfachen algebraischen und ein-
fachen transzendenten Erweiterungen von K.

Beispiele einfacher Korpererweiterungen sind K(x) > K, € = R() >R,
2()2) >Q. Die Erweiterung R von Q dagegen ist sicher nicht einfach, weil
sonst R abzédhlbar wiirde nach Satz 27 4.

Eine einfache transzendente Erweiterung von K ist isomorph K(z) (§ 27).

Ist E = K(a) eine einfache algebraische Erweiterung des Korpers K, so wird
durch « genau ein Polynom p(z) = Irr(a, K) € K[z] mit den in Satz 27.1 und
Satz 27.2 beschriebenen Eigenschaften definiert; dieses Polynom ist ein Prim-
element in K[x]. Wie schon in § 27.2 erwihnt, soll nun zunichst (Satz 2) ge-
zeigt werden, dafl bereits K[«] = K(«) ist.

Satz 1: Es sei K ein Korper, « algebraisch iiber K und Irr(a, K) =.p(x). Das
Polynom f(z) € K[x] besitze a als Nullstelle. Dann gilt p(z)|f(x) in K[z].

Beweis: Die Behauptung folgt sofort aus Satz 44.2 (Anwendung). Oder
direkt: Man schreibe f(x) = ¢(x)p(x) + r(x) in K[z] mit 7(x) = O oder Grad
r(z) < Grad p(z). Ersetzt man x durch «, so sicht man, daB3 r{x) die Null-

12¢
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stelle « hat. Nach Satz 27.1 ist also Grad r(z) < Grad p(x) nicht moglich. Es
folgt r(x) = 0 und damit die Behauptung des Satzes.

Folgerung: Ist ¢: K[x] > K[«] der durch ¢(g(x)) = g(«) definierte
Homomorphismus von K[z] auf K[«], so besteht der Kern  von ¢ aus allen
Vielfachen von p(z); das heiBt ¥ = (p(x)).

Fiir den nichsten Satz geben wir zwei verschiedene Beweise.

Satz 2: Es sei K ein Kérper und « algebraisch iber K. Dann gilt K(«) = K[«].

1. Beweis: Es sei ¢ der durch ¢(f(z)) = f(«) definierte Homomorphismus
von K[z] auf K[«a] und Irr(a, K) = p(z). Dann hat ¢ den Kern ¥ = (p(z)).
Dieses Ideal ist ein maximales Ideal in K[x] nach Satz 41.3. Also ist K{z]/(p(x))
ein Korper. Wegen K[x]/(p(x)) ~ K[a] ist also auch K[«] ein Korper, und das
bedeutet Kfa] = K(a).

2. Beweis: Es ist K[«] ein kommutativer Ring mit Einselement. Wir
zeigen, daB jedes & € K[«], £ &= 0, in K[«] ein Inverses besitzt. Es ist £ == 0,
also & = f(«) mit einem f(x) € K[x], das zu p(x) = Irr(«, K) teilerfremd ist. Im
Hauptidealring K[x] gibt es also Polynome A(z), u(x) mit A(x)f(zx) + u(x)p(x)
— 1. Hierin ersetze man z durch a. Das Element & = f(«) hat also das Inverse
Ma) € Kla).

Die Elemente des Kérpers K(«) sind also Polynome in a.

Der zweite hierfiir gegebene Beweis ist weniger methodisch, dafiir aber kon-
struktiv. Er gestattet die explizite Berechnung des Inversen von & e K(a),
¢ =+ 0, iiber den Euklidischen Algorithmus (§ 37.4).

53.2 Es sei weiterhin « algebraisch iiber dem Kérper K und Irr(e, K) = p(x);
wir setzen Grad p(x) = n = 1. Jedes £ € K(«) hat nach Satz 2 die Gestalt
£ = f(x) mit einem gewissen f(z) € K[x]. Schreibt man f(x) = q(z)p(2) + r(x)
in K[z] mit r(z) = O oder Grad r(x) < Grad p(x) und ersetzt « durch «, so
sieht man: Entweder es ist & = 0, oder & 1Bt sich sogar als Polynom & = r(x)
hochstens vom Grad n — 1 in « schreiben.

FaBt man also K(x) = K[a] als Vektorraum iiber K auf, so kann man sagen:
Die Elemente 1, a, a2, . . ., a»-1 erzeugen K() iiber K. Ja, sie bilden sogar eine
Basis, da aus

apy0t-l 4 gy 00”2+ ... +ap=0

das Verschwinden aller a, € K folgt; andernfalls gibe es doch ein Polynom aus
K{z] mit einem Grad kleiner als n, das die Nullstelle « hitte, im Widerspruch
zu Satz 27.1.
Es folgt [K(«): K] = n. Jedes £ € K(a), § = 0, 1Bt sich auf genau eine Weise
(Satz 50.2) als ein Polynom héchstens vom Grad n — 1 in « schreiben; es gilt
{(ay, by € K)

n—1 n—1

Soaw® = 3 ba* < ay = by;v =0,1,2, e, n—1,

v=0 y=0 .
Speziell ist ein £ € K(«), £ = 0, genau dann schon ein Element von K, wenn es
ein Polynom vom Grad Null in « ist.
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Wir fassen zusammen.

Definition: Ist « algebraisch vom Grad n iiber dem Korper K, so schreiben
wir n = [«: K].

Satz 3: Es set a algebraisch iiber dem Kérper K. Dann gilt [K(x): K]
= [e: K].

Aufgabe 1: Man berechne das Inverse von & = (¥7)2 4+ 3 ¥7 + 1eQ(}7).

§ 54 Endliche Korpererweiterungen

Wir verwenden im folgenden die Theorie der Vektorraume und verschiedentlich
speziell die Gradformel aus § 52, um detailliertere Aussagen iiber Korper-
erweiterungen zu gewinnen. Wir beginnen mit einer grundlegenden Definition.

54.1 Definition: Die Korpererweiterung E des Korpers K heift endlich iiber K,
wenn[E: K] = n << o ust.

Beispiele endlicher Kérpererweiterungen £ von K sind nach § 53 alle ein-
fachen algebraischen Erweiterungen E = K(«). Sie sind auch weiterhin eines
unserer hiufigsten Untersuchungsobjekte. Spiiter (Satz 5) werden wir eine all-
gemeine Charakterisierung endlicher Kérpererweiterungen angeben. Zunichst
verabreden wir noch eine weitere

Definition: Die Korpererweiterung E des Korpers K heifit algebraisch iiber
K, wenn jedes o« € E algebraisch iiber K ist.
Beispiele algebraischer Erweiterungen £ von K werden durch den folgenden
Satz angegeben.

Satz 1: Eine endliche Korpererweiterung E von K ist algebraisch diber K.

Beweis: Es sei [E: K] = n < o0 und « € E. Dann sind nach Satz 50.4
die n 4+ 1 Elemente 1, «, a2, ..., a® aus E linear abhingig tber K ; es gibt also
Skalare a, € K, die nicht samtlich verschwinden, mit a,a® + ap—jx®-1 4 ...
+ ap = 0. Das heilt: Es gibt ein vom Nullpolynom verschiedenes

f@) = apz® 4+ apgxn-1 4 ... + ag € K[z]

mit f(e) = 0.

Eine einfache algebraische Erweiterung K («) von K ist also algebraisch iiber X,
so daB die von uns fiir Korpererweiterungen benutzten Begriffe ,.einfach
algebraisch” und ,,algebraisch* nicht zu Verwechslungen AnlaB geben. Da-
gegen mul umgekehrt eine algebraische Erweiterung E von K nicht notwendig
endlich, also erst recht nicht einfach algebraisch itber K sein. Dies zeigt etwa
das folgende

Beispiel: Es sei K = Q. Wir konstruieren durch unendlich viele alge-
braische Adjunktionen eine Erweiterung E von Q mit [E: Q] = oo und zeigen

o
anschlieBend, daB E algebraisch iiber Q ist. Wir setzen ay = J2eR firn =1,
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2,3, ...; nach dem Eisenstein-Kriterium fiir p = 2 ist Irr(a,, Q) = 22" — 2,
also [Qos): Q] = 2%. Es soll E aus 2 durch Adjunktion aller «, entstehen.
Dazu beachten wir, dal wegen o, = ath-.l sicher Q(ay) cQ(an+1) gilt; hierin
steht nicht das Gleichheitszeichen, da Q(«,) eine kleinere Dimension iiber
hat als Q(as:1). Wir bilden die Korperkette  c Qo) c Q(az) ¢ ... und ihre
Vereinigung £ = Q uRQ(a1) UQ(a) U ... Esist E ein Kérper; denn Elemente a,
b, c aus E liegen in gewissen Gliedern der Kette, und es existiert ein m mit
a, b, ¢ eQ(ap) c E; die Kérperaxiome fiir a, b, ¢ € ¥ sind aber im Koérper Q(an)
erfillt. Es ist [F:Q] = oo nach Satz 50.6, weil E Teilrdume Q(«,) beliebig
hoher Dimension 27 iiber 2 besitzt. Aber E ist algebraisch iiber ; denn zu
jedem « € E gibt es ein m mit « € Q(ap), und « ist algebraisch iiber Q nach
Satz 1.

Satz 2: Es sei E eine endliche Korpererweilerung von K und [E: K] = n. Es
sei « € B und [x: K} = d. Dann ist d ein Teiler von n, und es gilt £ = K(x)
genau dann, wenn d = n st

Beweis: Nach Satz 1 ist « € £ algebraisch von einem Grad d iiber K. Es
ist K c K(a) c E, und die Gradformel von Satz 52.1 liefert

n = [E: K] = [E: Ka)] - [K(«): K].

Hierin ist (Satz 53.3) [K(«): K] = d. Es folgt d|n. Genau dann gilt K(a) = E,
wenn (Satz 52.3) & = n ist.

Beigpiel: Es sei [E: K] = 3 und « ein Element von E. Hier konnen nur
zwei Fille eintreten; es ist entweder [«: K] = 3 oder [«: K] = 1. Dem ent-
spricht die Disjunktion « ¢ K oder « € K. Das Element « erzeugt genau dann ¥
iiber K, wenn « ¢ K ist. .

Ein Spezialfall von Satz 2 ist der

Satz 3: Es sei K(x) eine einfache algebraische Erweiterung des Kérpers K
und B ein Element aus K(x). Dann ist f algebraisch iiber K, es ist [: K] ein
Teiler von [a: K}, und genau dann gilt K(x) = K(B), wenn [a: K] = [8: K] ist.

Beweis: Man ersetze in Satz 2 den Erweiterungskoérper E durch K(«) und
das Element « € £ durch 8.

Uber definierende Polynome besteht noch der

Satz 4: Es seien K, L und E Korper mit E 5 L 5 K; das Element o€ E sei
algebraisch iiber K. Dann ist « auch algebraisch iiber L, es ist [a: L] < [a: K],
und in L[z} gilt Irr(a, L) | Irr(«, K).

Beweis: Es ist Irr(x, K) € L{z], also « algebraisch iiber L. Das Polynom
Irr(a, K) € L[x] hat die Nullstelle «; nach Satz 53.1 gilt also Irr(«, L) | Irr(e, K)
in L{xz]. Dies hat speziell [a: L] < [«: K] zur Folge.

54.2 Wir wollen ein notwendiges und hinreichendes Kriterium dafiir angeben,
daB die Korpererweiterung E von K endlich iiber K ist, und beginnen mit einer
Vorbemerkung. Ist £ = K(ai, o3, . .., as) und dabei «; algebraisch tber K, ap
algebraisch iiber K(ay), 3 algebraisch iiber K(xi, xg) usw., so wird bei mehr-
facher Anwendung der Gradformel in
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[E: K] = [K(oa, o2, - .., xn): Klas, @z, - .., an-1)] - [K(a, @z, - . ., )
: Koy, 02, oo vy 0tp—2)] -+ [K(1): K]

jeder Faktor rechter Hand endlich, also E endlich iiber K. Das benutzen wir
bei dem folgenden Beweis.

Satz 5: Genau dann ist die Korpererweiterung E von K endlich iber K, wenn
endlich viele iiber K algebraische a; € E derart existieren,daf E = K(oy, ag, ...,x,)
1st.

Beweis: Angenommen, die Elemente «), a3, ..., 2, aus E sind alge-
braisch iiber K, und es gilt £ = K(«, a3, ..., ap). Dann ist nach Satz 4 erst
recht «y algebraisch iiber K(x1), xs algebraisch iiber K{ay, oz) usw., und auf
Grund unserer Vorbemerkung wird [£: K] < oo. Es bleibt noch das Um-
gekehrte zu zeigen. Ist aber [E: K] = n < oo und etwa {«1, ag, . . ., xn} eine
Basis von E iiber K, so sind diese a; nach Satz 1 algebraisch iiber K ; schon alle
Linearkombinationen der «; mit Koeffizienten aus K liefern E, und erst recht
ist £ = K(og, @3, .+ . ., ¥n).

Mit Hilfe von Satz 5§ kommen wir zu einem letzten Resultat.

Satz 6: Es seien E > L > K Korper, L algebraisch iber K und € E alge-
braisch iiber L. Dann 18t o auch algebraisch iber K.

Beweis: Es sei
Irr (¢, L) = apa™® 4 apaz™® 1+ ... +a

und K* = K(ag, a1, ..., as). Die a, € L sind algebraisch iiber K ; nach Satz 5
ist also K* endlich iiber K. Wegen Irr(x, L) € K*[x] ist « algebraisch iiber
K* und damit auch K*(«) endlich iiber K*. Es folgt [K*(a): K] = [K*():
K*}: [K*: K] < 0. Also ist K*{«) endlich iiber K und damit a € K*(a) alge-
braisch iiber K nach Satz 1. ‘

Folgerung: Ist L algebraisch iiber K und E algebraisch iiber L, so ist £
auch algebraisch iiber K.

Aufgabe 1: Es sei « eine beliebige Nullstelle von 23 — 2z + 2 e Q[x]
und B = o2 — a. Man zeige Q(x) = Q(f) und bestimme Irr (8, Q).

Aufgabe 2: Bestimme [E:Q] fir £ = Q(}2, |—2), E =2(}3, 3 + ¥3),
E—Q(l+i —1+i)
=4y )

Aufgabe 3: Es sei a eine beliebige Nullstelle von 23 — 5 e Q[z]. Man
zeige Q(«, ) = Q{a + ¢) und bestimme Irr (x + %, Q).

§ 55* Der Satz von FROBENIUS

Welche endlichen Kérpererweiterungen E gestattet der Korper R der reellen
Zahlen ? Diese Frage ist leicht zu beantworten. Ist £ == R, so gibt esein x € E,
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das nicht in R liegt; da « nach Satz 54.1 algebraisch iiber R ist, heiBit das: Grad
Irr (a, ®) = 2. Andererseits haben die iiber & irreduziblen Polynome entweder
den Grad Eins oder den Grad Zwei (vgl. § 39, Beispiel 2). Also hat Irr (o, R)
die Gestalt f(r) = 22 4 pxr 4 g mit p2 — 49 < 0, und es wird & = a + b¢ mit
reellen Zahlen a und b 5= 0. Da E ein Koérper ist, liegen mit @, b und « auch

o—aund ¢ = l(az —a) in E. Ist also E eine endliche Korpererweiterung von

b
R, so gilt B = R oder E > €. Im zweiten Fall ist nach der Gradformel E auch
endlich iiber €; jedes € F ist dann also algebraisch iiber €, und es muB
[8: €] = 1 oder B € € gelten, weil alle in €[x] irreduziblen Polynome den Grad
Eins haben (vgl. § 39, Beispiel 1). Das bedeutet £ = €. Wir formulieren dieses
Ergebnis. .

Satz 1: Die beiden einzigen endlichen Kirpererweiterungen E von R sind
E=%Rund E =€

Welche Moglichkeiten bestehen, wenn man auch nichtkommutative Erweite-
rungen von R in Betracht zieht ? Beispielsweise enthilt der Schiefkérper § der
Quaternionen den reellen Zahlkdrper R, und wir wissen [§: R] = 4. Fiir diese
Erweiterung $ >R gilt noch, daB jedes k € § mit jedem r € X vertauschbar
ist: vh = hr. Der folgende Satz des deutschen Mathematikers G. FROBENIUS
{1849—1917) besagt, daB & die einzige nichtkommutative endliche Erweiterung
von R mit dieser Eigenschaft ist.

Satz 2: Es sei S o R ein Schiefkorper iiber dem Kérper R der reellen Zahlen,
jedes s € S sei mit jedem r € R vertauschbar: rs = sr, und der Grad von 8 iiber R
sei endlich: [8:R] << 0. Dann ist entweder 8 = R oder 8 = €, oder S ist der
Quaternionenschiefkorper 5.

Beweis: Wir fithren den Beweis in sechs Schritten und beginnen mit
einer Voriiberlegung.

1) Ist etwa [S: R] = n, so sind wie beim Beweis von Satz 54.1 fir jedes s S
die Elemente 1,s,s2, ...,s" linear abhingig iitber R. Obwohl s S einer
eventuell nichtkommutativen Erweiterung § von R entstammt, wollen wir
wieder sagen: Es ist Nullstelle eines nicht verschwindenden Polynoms
f(x) € R[x]; wir schreiben f(s) = 0. Man denke sich f(x) in R[x] in irreduzible
Faktoren zerlegt: f(x) = pi(x)pa(2) . . . pr(x). Wegen der Vertauschbarkeit von
s € 8 mit allen r € R gilt dann auch pi(s)pa(s) . . . Pr(s) = f(s) = 0, und aus der
Nullteilerfreiheit von S folgt pp(s) = O fiir einen gewissen Index m. Wir haben
also: Ein s € 8 ist entweder schon Element von %t oder Nullstelle eines iiber R
irreduziblen quadratischen Polynoms; jedes s € § ist Nullstelle eines quadrati-
schen Polynoms aus R[z].

2) Es sei s € S, s ¢ R. Dann gibt es nach 1) ein normiertes Polynom

a2 + pr + q e R[z], PP —4¢ <0,
mit der Nullstelle s; dieses Polynom ist sogar eindeutig bestimmt. Da s mit
allen Elementen aus R vertauschbar ist, folgt auch

ot =)
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mit einem gewissen 7 € R, r > 0. Wir ordnen nun dem Element s das Element

s* = %(s + g)

aus S zu. Fir dieses s* gilt s* ¢ R wie fiir s; aber auflerdem s*2 = —1.
3) Wir betrachten die Fille [S:R] =1 und {S:R] =2. Ist [S:R] =1, so
gilt S =R. Ist [S: R] = 2, so gibt es ein s€ 8, s ¢R; es liefert das unter 2)
definierte Element s* mit s*2 = —1. Die Menge K c § aller a 4 bs* mit
reellen a, b ist ersichtlich isomorph €. Identifizieren wir s* mit 7, so folgt
8 > € >R.Daferner [S: R] = [€: R] = 2war, ergibt sich hier § = € (Satz52.3).
4) Nun sei [S:R] > 2. Wie in 3) wird § >€ >R, aber jetzt § &= €. Es gibt
alsoeint e 8, t ¢ €; dieses ¢ definiert nach 2) ein t* € S, das ebenfalls nicht in €
liegen kann, mit ¥ = —1.
Wir zeigen zunichst, dafl #t* + #*i reell ist. Nach 1) sind ¢ 4 ¢* und ¢ — ¢*
Nullstellen reeller quadratischer Polynome; also gibt es reelle Zahlen p;, po,
q1, 92 mit

G+ %2 = — 2 4 Gt* + 1% = —py(i + 1*) —qu,

(E—t*2 = — 2 —gt* — 1% = — po(t — 1*) — qo.

Addition beider Gleichungen liefert —4 = —(p1+p2)i — (P1—p2)t* — (Q1+92).
Aus t* ¢ € folgt zunichst p; — p2 = 0; aus ¢ ¢ R ergibt sich weiter p; + p2 = 0.
Also ist p1 = p2 = 0 und etwa #t* + t*; = 2 — ¢y, mithin ot*  t*1 e K.

Mit dieser reellen Zahl 1 = #t* 4- t*; bilden wir das Element v = A1 + 2t* € S,
das wegen t* ¢ € nicht in € lidgt. Berechnet man die Produkte sy = —2 | 2it*
= it* — t*; und ui = —it* 4 t*;, so sicht man die Giiltigkeit von

1) W = —ui.
Quadriert man u, so bekommt man
w2 = —A2—4 4 20(st* +t*¥) = —A2—4 1+ 212 = 12—4eR;

aber es kann nicht 42 = 0 sein, denn dann gébe es ein @ € R mit 42 = a2, und
aus der Vertauschbarkeit von ¢ mit # wiirde 42— a2 = (v + a)(u —a) =0
und damit © = 4: a folgen im Widerspruch zu u ¢ . Also ist 42 negativ reell.
Das heillt: Es gibt ein r e R, r > 0, mit

2) u2 = —r2 (r > 0).
Wir setzen nun j = ;1 # und kommen auf Grund von (1) und (2) zu dem folgen-

den Resultat: Ist [S: R] > 2, also S o€ >R und 8 = €, s0 gibt esnebeni € §
noch ein j € 8, j ¢ €, mit den Rechenregeln j2 = ¢2 = —1 und ¢ = —ji. Die
Elemente 1, ¢, 7 sind linear unabhéngig iiber R.

5) Es sei weiterhin [S: R] > 2. Wir kniipfen an das Ergebnis von 4) an. In 8
liegen also die vier Elemente 1, ¢, und &k = ¢j. Wir zeigen, daf sie iiber R
linear unabhéingig sind. Es gelte r; + rot + r3j + 74k = 0 mit reellen Zahlen r,.
Aus r4 = 0 folgt das Verschwinden aller r,. Der Fall 74 5 0 kann aber nicht
eintreten; denn er wiirde die Existenz reeller Zahlen a, mit k = a1 + a2t + agj
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bedeuten, und Linksmultiplikation mit ¢ ergibe —j = aji—as+ag(a;+asi-+asj)
oder ajaz — az + (@1 + aeas) +(1 + a%)j =0, also speziell 1 + a§= 0, was
fiir ein ag € R nicht moéglich ist.

Nun folgt aus i2 = j2 = —1 und 4§ = —ji = k, daB die Elemente 1,4, j, k in
S multipliziert werden wie dieselben Elemente in . Zusammen mit ihrer
linearen Unabhingigkeit iiber & folgt weiter: Die Menge H c S aller a + bt
+ ¢j 4 dk mit reellen a, b, ¢, d ist isomorph . Insgesamt ergibt das: Ist
(§:R] > 2, so folgt 85 H>R. Wegen [H: R] = 4 ist also [S: R] = 3 nicht
moglich. Der Fall [S: ®] = 4 kann eintreten; es ist dann § = § (Satz 52.3).
6) Zuletzt bleibt zu zeigen, dafl [S: R] > 4 unmoglich ist. Wire [S: R] > 4,
so hieBe das § > H o R und S + H. Wie zu Beginn von 4) konnte man dann
einlel, l¢H, mit 2 = —1 finden und zeigen, daB il + & = 41,5l + Ij = A2
und k! + lk = A3 reelle Zahlen sind. Es wiirde

A3+ Agt— Ay = A3+ Aot — M
= ol + Wj + jb + lji — jil —jli
= hl—gil = 2kl
und nach Linksmultiplikation mit k daraus ! € § folgen, was gerade nicht der

Fall war. Also ist [S: ®] > 4 nicht méglich.
Damit ist Satz 2 bewiesen.

Aufgabe 1: Man gebe eine Kérpererweiterung £ von R mit [E:R]
= o0 an.

§ 56 Konstruktionen mit Zirkel und Lineal

In der klassischen Elementargeometrie spielten Konstruktionsaufgaben unter
Verwendung von Zirkel und Lineal eine groBe Rolle. Man beschéftigte sich bei-
spielsweise damit, einen Kreis zu finden, der drei gegebene Kreise beriihrt,
oder man versuchte die Konstruktion eines Drejecks aus seinen drei Hohen
oder seinen drei Winkelhalbierenden. Es zeigt sich in den genannten Fillen,
daB (wenn iiberhaupt Losungen vorhanden sind) die ersten beiden Konstruk-
tionsaufgaben mit Zirkel und Lineal 16sbar sind, die letzte dagegen nicht. Die
Moéglichkeit der Unlosbarkeit einer derartigen Aufgabe mit Zirkel und Lineal
wird von Laien oft nicht verstanden, obwohl damit nur behauptet wird, daB in
gewissen konkreten Fillen die zur Verfiigung gestellten Hilfsmittel Zirkel und
Lineal zur Losung des Problems nicht ausreichen. Wir sind jetzt in der Lage,
die Tragweite solcher Konstruktionen mit Zirkel und Lineal zu untersuchen.
Wir tun das und sprechen auch kurz von Zirkelkonstruktionen.

Allgemein sind gewisse endlich viele Punkte, Geraden und Kreise in der
Zeichenebene gegeben und gewisse endlich viele Punkte, Geraden und Kreise
gesucht. Man denke sich ein rechtwinkliges Koordinatensystem hinzugezeich-
net. Dann sind die gegebenen Stiicke durch gewisse bekannte Koordinaten
&1, &9, ..., &m (nd@mlich: ein Punkt durch zwei Koordinaten, eine Gerade durch
zwei ihrer Punkte, ein Kreis durch seinen Mittelpunkt und einen Punkt seiner



§ 56 Konstruktionen mit Zirkel und Lineal 187

Peripherie), also Strecken, fixiert, und an die Stelle der gesuchten Stiicke
treten zu konstruierende Koordinaten oder Strecken i, s, ..., 2,;. Die
Strecke der Liénge 1 sei bekannt.

Nun kann man Strecken bekannter Lingen a, b mit Zirkel und Lineal addieren
und voneinander subtrahieren; ithr Produkt p = ab gewinnt man mit Hilfe des
Strahlensatzes aus 1: ¢ = b: p, und man kann a durch b == 0 dividieren durch

Konstruktion von ¢ = ? ausbia=1: g. Da eine negative Koordinate a als

b

bekannt angesehen werden darf, wenn ihr Vorzeichen und |a| bekannt sind,
konnen wir aus dem Bekanntsein der Strecke mit der Linge 1 folgern: Jede
Strecke einer Linge r € Q 1aBt sich in endlich vielen Schritten mit Zirkel und
Lineal konstruieren. Sind auBerdem noch &, &g, ..., &, gegeben, so gilt das-
selbe fiir eine Strecke beliebiger Linge & € Q(&1, &, ..., &s). Die Voraus-
setzung fiir unsere Zirkelkonstruktion lautet also: Die Elemente des Korpers
K =R(%, &, ..., &) c R sind bekannt.

Konstruktionen mit Zirkel und Lineal beruhen nun darauf, daB man, von den
gegebenen Stiicken ausgehend, Geraden mit Geraden, Geraden mit Kreisen
oder Kreise mit Kreisen schneidet und so fortlaufend endlich viele neue Hilfs-
punkte gewinnt. Sie werden wieder durch ihre Koordinaten beschrieben, die
sich rechnerisch im ersten Fall als Losungen linearer, im zweiten und dritten
Fall als Losungen quadratischer Gleichungen ergeben. Durch die Lésung einer
linearen Gleichung mit Koeffizienten aus K konstruiert man ein Element aus K.
Dasselbe ist der Fall, wenn man eine Nullstelle eines iiber K reduziblen quadra-
tischen Polynoms aufsucht. Ist dagegen eine Koordinate 7 eines derart ge-
wonnenen Hilfspunktes Nullstelle eines iiber K irreduziblen quadratischen
Polynoms, so gilt [K(n): K] =2, und man kann anschlieBend sogar die
Elemente von K(7) als bekannt ansehen. Eine Zirkelkonstruktion lauft also
auf folgendes hinaus: Es werden gewisse Stiicke #1, 72, ..., 75 (8 = 0) mit

[K(m): K] = [K(p,m2): K(m)] = ... = [K(p,m2, . - -, 1s): K72, - - -, ms-1)] = 2

konstruiert derart, daB die gesuchten Stiicke 1, xa, ..., zn in K(n1, 72, . . ., 7s)
liegen. Auch die iibrigen Elemente des Koérpers

E = K(x1,22, ..., 25) CK(mp1, %2, - . ., s)

sind dann bekannt. Bezeichnen wir noch kurz K(u, n2, ..., ) mit Kg, so
diirfen wir in einer nun verstindlichen Terminologie sagen: Ist der Korper
E > K mit Zirkel und Lineal konstruierbar, so gibt es eine endliche Kette
KcKycKzc...cKys von Kérpern K; mit [K;: Kl = [Ko: Ki] = ...
= [Ks: Ky 3] = 2und K;0 K.

Gilt hiervon auch die Umkehrung ? Wieder sei K = Q(&y, &2, .. ., £ém) bekannt
und diesmal K; 5 K ein Kérper mit [K;: K] = 2. FolgendermaBen erweist sich,
daf K; mit Zirkel und Lineal konstruierbar ist. Es gibt ein « € K1, « ¢ K; nach
Satz 54.2 ist also [«: K] = 2 und damit K; = K(«). Der Korper K; ist bekannt,
sobald « konstruiert ist. Es sei It (z, K) = 22 + px + ¢. Hierbei sind zunéchst
P, ¢ € K noch reelle Zahlen; aber « muB} nicht reell sein. Wieder kénnen wir
sagen: Eine komplexe Zahl « = a + bi darf als bekannt angesehen werden,
wenn a, b € R bekannt sind: Die Konstruktion der Nullstellen von z2 + pxr + ¢
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lauft dann in jedem Fall auf die Ausfithrung rationaler Operationen und das
Ziehen einer Quadratwurzel VF, re®R, r > 0, hinaus. Quadratwurzeln kann
man aber bekanntlich mit Zirkel und Lineal konstruieren: Man lege etwa eine
Strecke AB der Lénge 1 + r hin, wihle einen Zwischenpunkt D so, daBl AD
bzw. DB die Lingen 1 bzw. r erhalten, schlage iiber 4B als Durchmesser einen
Halbkreis und errichte in D das Lot auf 4B, das den Halbkreis im Punkte C
treffen moge. Dann hat die Hohe CD des rechtwinkligen Dreiecks ABC die
Linge & = |r. Das folgt, wenn man etwa die Langen der Katheten AC, BC
mit b, a bezeichnet, aus dem Satz des Pythagoras: Es ist £2 = 52 — 12 und
2 = a2—12 also 282 = a2 4+ 02 —1—1r2 = (1 4+ r)2—1—1r2 = 2r oder
£ =r

Der Kérper K; o K mit [K;: K] = 2 ist also mit Zirkel und Lineal konstruier-
bar. Man betrachte einen Korper K; > K; mit [Kp: K3] = 2. Dann liegt die-
selbe Situation vor, nur konnen diesmal die Koeffizienten p, ¢ des entsprechen-
den quadratischen Polynoms auch komplex sein, und es bleibt die Frage, ob
auch die Wurzeln aus a 4 bt konstruiert werden kénnen, wenn a, b ¢ R be-
kannt sind. Schreibt man b = (sgn b) - |b], bezeichnet also das Vorzeichen von b
mit sgn b, so gilt aber

VaF b= + (|/%;+b2 + (sgn bi V—“_+1;“L+_b2)

und damit ist auch diese Frage positiv beantwortet. Damit haben wir: Sind Kj,
K, ..., K; Korper mit [K;: K] = [Ke: Kj] = ... = [K;: Kg-1] = 2, und um-
faBt K; den Erweiterungskorper £ von K, so ist £ mit Zirkel und Lineal kon-
struierbar. Dies ist die Umkehrung der oben gewonnenen Aussage. Wir fassen
sie beide zusammen.

Satz 1: Fir eine Zirkelkonstruktion seien die Stiicke des Korpers K
= Q(&1, &, - - ., &m) bekannt. Genau dann ist jedes Stiick des Erweiterungskorpers
E > K mit Zirkel und Lineal konstruierbar, wenn eine endliche Korperkette
KcKicKegc...cKy mit [K1: K] = [Ko: K1] = ... = [Ks: Ks1] = 2
und Kz o E existiert. Oder: Genau dann st ein o € € mit Zirkel und Lineal kon-
struterbar, wenn eine endliche Korperkette K c Ky c Ko c ... c Ky mit [Ky: K]
= [Ko: Ki] = ... = [K;: Kg1] = 2 und K, > K(a) existiert.

Folgerung: Nach der Gradformel gilt [K;: K] = 2%. Ist also E ¢ K; mit

Zirkel und Lineal konstruierbar, so ist jedes a € B c K, algebraisch iiber K,
und nach Satz 54.2 ist [ : K] selbst eine Potenz von 2. Ein iiber K transzenden-
tes « € € kann also mit Zirkel und Lineal nicht konstruiert werden, und das-
selbe gilt fiir ein iiber K algebraisches « € €, wenn [«: K] durch eine Prim-
zahl p 3 2 teilbar ist.
Beispiel 1. Ein Wiirfel der Kantenlinge Eins ist gegeben. Es soll die Kante «
des Wiirfels vom doppelten Volumen mit Zirkel und Lineal konstruiert werden
(sogenanntes Delisches Problem). Wir haben K = Q und Irr (¢, Q) = a3 — 2,
also [: ] = 3. Die eben notierte Folgerung zeigt, dafl diese Konstruktion
unmoglich ist.
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Beispiel 2. Ein Kreis mit dem Radius Eins ist gegeben; ein flichengleiches
Quadrat mit der Seitenlinge « soll mit Zirkel und Lineal konstruiert werden
(sogenannte Quadratur des Kreises). Es ist « = |/ n . Kénnte man « mit Zirkel
und Lineal konstruieren, so auch a? = x. Aber x= ist nicht algebraisch iiber
K = 2. Die verlangte Konstruktion ist also nicht méglich.

Beispiel 3. Ein Winkel 0 < y < = ist gegeben; der Winkel ¢ = g soll mit

Zirkel und Lineal konstruiert werden (sogenannte Dreiteilung des Winkels). Mit
 ist auch cos y bekannt und umgekehrt (Konstruktion am Einheitskreis). Wir
setzen cosyp = ¢. Fir die verlangte Zirkelkonstruktion ist also K = (c)

bekannt. Gesucht wird ¢ =§ oder, wieder gleichwertig, & = cos ¢. Nun

gilt (vgl. Anhang) ¢ = cos 3p = 4 cos3p — 3cos p =43 — 3¢; als Nullstelle von
f(x) = 423 —3x—ce K[x]

ist & also algebraisch iiber K, und wir miissen Irr (£, K) bzw. [£: K] bestimmen.
ODb f(z) iiber K irreduzibel ist, wird von der Wahl von ¢ abhangen. Es sei etwa
die reelle Zahl ¢ transzendent iiber  (vgl. § 27.4). Dann ist im Polynomring
Q[z][c] einer Unbestimmten ¢ mit Koeffizienten aus Q[x] das lineare Polynom
—c¢ + 43 — 3z irreduzibel ; also ist f(x) = 4a3 — 3x — ¢ irreduzibel in Q[c][x]
und nach Satz 42.3 auch in Q(¢)[x] = K[x]. In diesem Fall ist also [£é: K] = 3
und die geforderte Zirkelkonstruktion undurchfithrbar. Ein allgemeines Ver-
fahren der Dreiteilung eines Winkels mit Zirkel und Lineal gibt es also nicht.
Trotzdem kann natiirlich fir spezielle Winkel y die Konstruktion méglich sein.

Im Falle y = — oder ¢ = 0 beispielsweise wird f(x) = :15(412 —3) reduz1bel
iiber K =2 und Irr (¢, K) = :cz——g oder & = cos?—21/3 der kael —
kann daher mit Zirkel und Lineal gednttelt werden, was dem bekannten Sach-
verhalt entspricht, daB der Winkel -:— mit Zirkel und Lineal konstruiert wer-
den kann. Was bekommt man fiir y = %7 Man hat ¢ = %; das Polynom g(x)

= 2f(x) = 823 — 62z — 1 hat aber, wie die Substitution 2x = y und Satz 26.3
zeigen, keine Nullstelle in K =, ist also irreduzibel iiber K. Es gilt also

wieder [£: K] = 3; auch die Dreiteilung von y = % oder die Konstruktion

von ¢ = % ist nicht méglich.

Die zu Beginn dieses Beispiels durchgefithrten Uberlegungen lassen sich leicht
verallgemeinern. Es seien ein Winkel 0 <y < n und damit ¢ = cos y ge-
geben; er soll mit Zirkel und Lineal in n gleiche Teile geteilt werden. Wieder

sei ¢ transzendent iiber , ¢ = k4 und & = cos ¢. Die entsprechende Formel fiir
14 n 14 §Y

cosng gewinnt man aus dem Vergleich der Realteile in (cos ¢ - 4 sin ¢)»
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= cos ng + ¢ 8in np; diese Darstellung von cos ne durch ein Polynom in cos ¢
beginnt mit cos®p, versehen mit einem positiven Koeffizienten. Mit K = Q(c)
folgt wie oben [£: K] = n. Hochstens dann, wenn » eine Zweierpotenz ist, ist
die Konstruktion also allgemein moglich. Ist aber n = 27, so fiihrt »-malige
Halbierung von y auch wirklich zum Ziel. Damit ist der folgende Satz be-
wiesen.

Satz 2: Ein allgemeines Verfahren zur n-Teilung eines Winkels p mit Zirkel
und Lineal existiert dann und nur dann, wenn n etne Potenz von 2 ist.

Beispiel 4. Es sei p = 3 eine Primzahl. Fir welche Werte von p liBit sich
das regulire p-Eck mit Zirkel und Lineal konstruieren, also der spezielle
Winkel 2z in p gleiche Teile teilen ? Wir wissen, dal das fir p = 3 moéglich
ist; auch fiir p = 5 ist die Konstruktion sicher durchfiihrbar (vgl. das Resultat

von Aufgabe 45.1). Allgemein ist sie genau dann moglich, wenn der Winkel g
oder die primitive - -te Einheitswurzel o« = cos E— + ¢sin 2—“ mit Zirkel und

Lineal konstruierbar ist. Nach Satz 45.3 ist Irr(w Q) = ¢p(x), also [w: K]

= [0w:Q] = ¢(p) = p—1; in dem vorliegenden Fall ist ja K = Q. Die Kon-
struktion ist also hé‘)chstens dann méglich, wenn p — 1 eine Zweierpotenz
oder p eine Primzahl der Gestalt 22 4 1 ist. Eine natiirliche Zahl der Gestalt
24 41(1=1,2,3, ...) wiederum ist hochstens dann eine Primzahl, wenn 2
selbst eine Zweierpotenz 27 (v = 0, 1, 2, .. .) ist; andernfalls kann ja 2 = ab mit
natiirlichen Zahlen a, b geschrieben werden, wobei noch a ungerade und von
Eins verschieden ist, und 2% - 1 = (2%)¢ 41 hat dann den nichttrivialen
echten Teiler 2% + 1. Die verlangte Konstruktion ist also hochstens dann
durchfiihrbar, wenn p eine Primzahl der Gestalt 22 + 1 (v =0, 1, 2, ...) ist.
Die Werte » = 0, 1, 2, 3, 4 liefern sémtlich Primzahlen, namlich 3, 5, 17, 257,
65537. Aber der Fall » = 5 zeigt bereits, daBl 22* 4 1 nicht immer eine Prim-
zahl ergeben muB; aus § 20.1 ist uns bekannt, daB 22° 4 1 den Teiler 641 hat.

Ob es auBer den fiinf genannten Primzahlen der Gestalt 22° + 1 iiberhaupt
noch weitere gibt, ist ein altes und immer noch ungeléstes Problem der Zahlen-
theorie.

Beispiel 5. Wieder sei p eine Primzahl. Welche regelmiBigen p2-Ecke sind
mit Zirkel und Lineal konstruierbar ? Sicher ist das regelmaBige Viereck kon-
struierbar. Es sei daher wie eben p = 3. Dann steht die Konstruierbarkeit von

2
@ = €o8 7’: + isini—yzz zur Diskussion. Nach Satz 45.3 ist Irr (0, Q) = ()

und demnach [w:R] = @(p?). Die Zahl ¢(p?) zdhlt die zu p? teilerfremden
unter den Zahlen 1, 2, ..., p% und hat daher den Wert ¢(p?) = p2 — p. Also
ist [w: Q] = p(p — 1) durch die Primzahl p 5 2 teilbar. Somit ist das regulédre
p2-Eck fiir p = 3 nicht mit Zirkel und Lineal konstruierbar.

Nun fragen wir tiberhaupt nach denjenigen regelmaBigen n-Ecken, die mogli-
cherweise mit Zirkel und Lineal konstruierbar sind. Da aus der Konstruierbar-
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keit des kI-Ecks auch die des k-Ecks folgt, diirfen (Beispiel 4) in der Prim-
faktorzerlegung von n aufler der 2 hochstens noch Primzahlen der Gestalt
p=2+1(p=0,1,2,...) vorkommen, wenn das n-Eck nicht von vorn-
herein unkonstruierbar sein soll; dariiber hinaus zeigt Beispiel 5, daB keines

dieser p in hoherer als erster Potenz in n aufgehen darf. Wir fermulieren dieses
Ergebnis.

Definition: Die Primzahl p heift eine FERMATSChe oder GaUsssche Primzahl,
wenn sie die Gestalt 22” +1(» =0,1,2, ...) hat.

Satz 3: Wenn ein regelmifiges n-Eck mit Zirkel und Lineal konstruierbar
ist, so st entweder n eine Potenz von 2, oder die Primfaktorzerlegung von n hat
die Gestalt n = 27pap3 . .. ps, wobet r = 0 ist und die ps paarweise voneinander
verschiedene Fermatsche Primzahlen sind.

Bemerkung 1: Wenn das regelmaBige k-Eck und das regelméaBige I-Eck, also

die Winkel -21 und 2—”, konstruierbar und k und ! teilerfremd sind, so ist auch

k l
das regelmiBige kl-Eck, also der Winkel 2—’:;
1 = xk + Al mit gewissen durch den Euklidischen Algorithmus bekannten
2n 27 27

ganzen Zahlen #x, A; durch Multiplikation mit 58 bekommt man B Y I

+ 2.277’, und die Winkel rechter Hand sind bekannt.

, konstruierbar. Es gilt dann ja

Bemerkung 2: Wir wissen noch nicht, ob die in Satz 3 aufgefiihrten n-Ecke
auch wirklich konstruierbar sind. Allerdings ist das regelméBige n-Eck sicher
mit Zirkel und Lineal konstruierbar, wenn n eine Potenz von 2 ist. Wenn
auBerdem noch gezeigt werden kann, und das wird in § 69 geschehen, daB fiir
jede Fermatsche Primzahl p auch das reguldre p-Eck konstruierbar ist, so folgt
aus der eben notierten Bemerkung 1, daB sdmtliche in Satz 3 genannten regel-
maéBigen n-Ecke mit Zirkel und Lineal konstruiert werden kénnen. Die an-
geschnittene Frage ist dann also, abgesehen von dem zahlentheoretischen
Problem der Bestimmung aller Fermatschen Primzahlen, abschlieBend be-
antwortet.

Aufgabe 1: Kann man den Winkel % mit Zirkel und Lineal in fiinf
gleiche Teile teilen ?

Aufgabe 2: Man bezeichne die Seiten AB, BC, CA eines Dreiecks ABC
mit ¢, @, b; die Innenwinkel bei 4, B, C seien «, §, y, und die Winkelhalbierende
des Winkels y sei wy,. Ist das Dreieck 4 BC mit Zirkel und Lineal konstruierbar,
wenn die Stiicke
a) a,b, wy
b) ¢, b, wy
gegeben sind ¢
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§ 57 Nulistellen von Idealen

57.1 Essei K ein Korper. Bislang wurde weder benutzt noch bewiesen, dal zu
jedem f(x) € K[x] mit Grad f(z) = 0 ein Oberkorper E > K existiert, so daB f(x)
eine Nullstelle in E hat. Diese Aussage ist aber richtig, und sie soll jetzt be-
wiesen werden. Zunichst besitzt f(x) einen in K[z] irreduziblen normierten
Teiler p(x) mit Grad p(x) = 1, und es geniigt, eine Korpererweiterung £ > K
zu konstruieren, in der p(x) eine Nullstelle « hat; dann gilt auch f(«) = 0.
WiiBte man bereits die Existenz eines solchen a mit p(x) = 0, so kdnnte
E = K[«] gewédhlt werden (Satz 53.2). Es wire dann K[a] ~ K[z]/(p(x))
(1. Beweis zu Satz 53.2). Da aber der Restklassenring K[x]/(p(z)) in jedem Fall
existiert, werden wir ihn in der folgenden Konstruktion von £ als Grundlage
benutzen.

Wir sehen uns den durch g(g(z)) = g(x) + (p(x)) definjerten Homomorphismus
¢ von K[z] auf K[z]/(p(x)) an. Das Ideal (p(z)) ist im Hauptidealring. K[x]
maximal (Satz 41.3); der Restklassenring K[x}/(p(x)) ist also ein Korper.
Durch ¢ wird auch ein Homomorphismus von K auf ¢(K) c K[z]/(p(x)) defi-
niert; das Bild von a € K ist a + (p(x)), und wegen Grad p(z) = 1 besteht p(K)
nicht aus der Null (p(z)) allein. Nach § 21.2, Beispiel 3, ist deshalb ¢(K) sogar
ein isomorphes Bild von K, und wir konnen die Elemente a + (p(x)) aus ¢(K)
mit den Elementen a aus K identifizieren. Der so aus K[x]/(p(z)) durch Aus-
tausch von ¢(K) gegen K entstandene Oberkorper von K heifle £ ; das Bild von
g(x) € K[x] in E sei auch mit g*(z) bezeichnet. Schreibt man g(z) = apzn
+ ap2®1 + ... 4 ao und beachtet a¥ = a,, so wird

g*(x) = (@pa®)*+(an—12”1)*+. .. +a = ap2*ntangz*7-14-. .. f-ap = gx*).
Nun wird einerseits p(x) auf die Null abgebildet, p*(x) = 0, andrerseits ist
p*(z) = p(z*). Beides zusammen liefert p(z*) = 0. Das Element «* des Korpers

E > K ist also Nullstelle von p(z) € K[z] und damit auch von f(z). Unsere
Konstruktion liefert also die Existenz von K(x) oder etwas allgemeiner den

Satz 1: Es set K ein Korper, f(x) € K[zx] und Grad f(x) &= 0. Dann gibt es
etnen Oberkirper E von K, in dem f(x) eine Nullstelle hat.

57.2 Diese Uberlegungen lassen sich verallgemeinern. Es sei weiterhin K ein
Korper und nun K[z, 22, ...] = pr K[r] ein Polynomring in beliebig vielen
Unbestimmten «; iiber K. Ist f(r) ein Polynom aus K[r] und werden in ihm
x1, T2, ... durch ay, g, ... ersetzt, so bezeichnen wir das Resultat mit f(a). Es
sei M eine Menge von Polynomen f(r) aus K[r]. Wann gibt es einen Oberkorper
E 5 K mit Elementen a;, ay, . . ., die eine gemeinsame Nullstelle aller Polynome
aus M bilden: f{«) = O fiir alle f(x) € M ?

Im vorigen Abschnitt lag der Spezialfall einer einzigen Unbestimmten 2 vor,
und auch M bestand nur aus einem Polynom f(x). Die notwendige und hin-
reichende Bedingung fiir die Existenz von E war: Grad f(z) == 0 oder f(z) = 0.
Als Idealbeziehung geschrieben, heifit das (f(x)) + K[z].

Wir zeigen zundchst, daB im allgemeinen Fall die entsprechende Bedingung
(M) = K[r] fir das von M erzeugte Ideal ebenfalls notwendig ist fiir die
Existenz von E. Dazu schieben wir eine einfache Zwischenbetrachtung ein.
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Jedes Polynom m(r)e(M) hat die Gestalt Ai(r)fi(x)+A2(r)f2(r)+ . . . +A(x)fr(x)
mit Polynomen A,(t) € K[r] und fo(r) € M. Also ist « genau dann eine ge-
meinsame Nullstelle aller f(r) e M, wenn m(x) = 0 gilt firr jedes m(r) € (M).
Wir sagen in diesem Fall: Es ist « eine Nullstelle des Ideals (M).

Ist nun (M) = K{r], so folgt 1 € (M), und dieses Element hat keine Nullstelle.
Wir setzen nun (M) # K[r] voraus und zeigen, dal diese Bedingung auch hin-
reichend fiir die Existenz einer Nullstelle « von (M) ist. Nach Satz 41.5 existiert
in K[r] ein maximales Ideal m > (M). Im vorigen Abschnitt war m = (p(x)).
Wieder ist K[r]/m ein Korper (Satz 41.1), und aus ihm konstruieren wir E.
Man betrachte den durch ¢(g(r)) = g(r) + m definierten Homomorphismus ¢
von K[x] auf K{r]/m. Der durch ihn induzierte Homomorphismus von K auf
¢(K) ist wieder ein Isomorphismus, weil wegen m == K[r] kein von Null ver-
schiedenes a € K in m liegen kann. Wir kénnen daher die Elemente von
@(K) ¢ K[r]/m mit denen aus K identifizieren und erhalten so aus K[r]/m den
lediglich anders bezeichneten Oberkérper £ von K. Nennen wir das Bild von
g(x) € K[r] in E wieder g*(x), so gilt fiir ein beliebiges m(r) € m sowohl m*(x) = 0
als auch m*(r) = m(x*), wobei 1* eine Abkiirzung fiir ¥, 2¥, ... bedeutet. Es
folgt m(x*) = 0, und das heiBit: 2¥, ¥, ... ist eine Nullstelle von m in Z.

Wir formulieren unser Ergebnis unter Verwendung der hier benutzten Be-
zeichnungen.

Satz 2: Es sei K ein Korper, K[r] ein Polynomring in beliebig vielen Un-
bestimmten iiber K und M eine Menge von Polynomen aus K[x]. Genau dann gibt
es einen Oberkorper E von K, der eine Nullstelle des Ideals (M) enthdlt, wenn
(M) == K[x] ist.

§ 58 Zerfillungskorper

58.1 Es sei K ein Korper und f(x) = azx® + ap27?1 4 ... 4+ age K[x],
Grad f(x) = n = 1. Es liegt nahe, Satz 57.1 mehrfach anzuwenden: Es gibt
einen Korper Kj o K, der eine Nullstelle «; von f(x) enthdlt; in Ki[x] > K[z]
gilt also f(x) = (x — ou)g{z). Weiter gibt es einen Korper Kg > Kj, der eine
Nullstelle «g von g(x) € Ki[x] enthélt; in Ko[z] o Ki[x] gilt also

f@) = (@ — a1)(@ — az)h(x).

Fortsetzung des Verfahrens liefert einen Oberkorper E von K derart, daB f(x)
in E[x] in Linearfaktoren zerfallt: f(xr) = an(x — o) (x — a2) . . . (x — «p). Die
ot € E sind dabei nicht notwendig paarweise voneinander verschieden. Andere
Nullstellen hat f(x) in £ nicht. Dies gestattet, den kleinsten Teilkérper L von B
mit E 5> L 5> K anzugeben, so dafl f(x) in L[z] zerfillt: Da die «, alle in L
liegen miissen, gilt L > K(ay, ag, ..., &5), und weil f(z) in Ko, ag, . .., az){z]
schon zerfallt, folgt L = K(x, g, . . ., og).

Ist f(x) = ap schon ein Element von K, so wollen wir entsprechend sagen, da8
f(z) in L = K in Linearfaktoren zerfillt.

13 Hornfeck, Algebra
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Definition: Es set K ein Korper, f(x) € K[x] und L ein Oberkirper von K
derart, dap f(x) in L{x] in Linearfaktoren zerfillt. Genau dann heift L ein Zer-
faéllungskorper von f(x) € K[x], wenn es keinen echten Unlerkirper F wvon L
zusschen K und L gibt, so daf [(z) in F[x] zerfdllt.

Ein Zerfallungskdorper L ist also erst durch die Angabe des Polynoms f(x) und
des Polynomrings K[xz] erklirt. Beispielsweise ist (i) ein Zerfallungskérper
von z2 4 1 e Q[z], aber nicht von 2% 4 1 e R[x]; ein Zerfillungskérper von
22 + 1 e R[x] ist R({) = €; aber € ist nicht Zerfallungskdrper von 22 + 1eQ[z],
da 22 + 1 schon iiber dem echten Zwischenkérper Q(:) zwischen  und €
zerfillt,

Unsere eingangs durchgefiihrten Uberlegungen fassen wir in einem Hilfssatz
zusammen.

Hilfssatz: Essei K ein Korper und E > K ein Oberkérper von K.
a) Dann besitzt jedes f(x) € K[x] wenigstens einen Zerfallungskorper L.
b) Wenn f(z) € K[z] in E[z] in Linearfaktoren zerfallt,

f@) = an(z — o) (€ —az) ... (& — an),

so ist K(ay, ag, ..., an) ein Zerfallungskorper von f(z) € K[x].

58.2 Da man sich Korpererweiterungen E von K derart, da8 f(z) € K[z] in E[x]
in Linearfaktoren zerfillt, womdglich auf die verschiedensten Arten beschaffen
kann, mull man damit rechnen, dafl es mehrere Zerfiallungskorper von f(x) € K[x]
gibt; aber es erscheint sehr plausibel, daB sie alle isomorph sind, und es ist
unser Ziel, das zu beweisen. AnschlieBend ist es dann erlaubt, einfach von dem
Zerfallungskorper von f(x) € K[x] zu sprechen, und der Hilfssatz besagt, dafl
man ihn durch Adjunktion der Nullstellen von f(x) zu K erhalt.

Satz 1: Es seien K und L isomorphe Kb'rper und @: K — L der vermittelnde

Isomorphismus. Dann lift sich ¢ vermige a(Za,x’) = Zq)(a,)x' 2u einem Iso-
morphismus o von K[z] auf L[x] fortsetzen. ©

Beweis: Man betrachte den identischen Isomorphismus von K[z] auf
K{z] und identifiziere im Bild K[x] den Korper K mit L.

Satz 2: Es sei ¢: K - L ein Korperisomorphismus von K auf L und
a: K[x] » L[x] die in Satz 1 definierte Fortsetzung von ¢. Das Polynom f(x)e K [z]
ses irreduzibel in K[x] und habe das o-Bild g(x) € L[z).
a) Dann ist auch g(zx) irreduzibel sn L[x].
b) Ist « eine Nullstelle von f(x) und f eine Nullstelle von g(x), so lipt sich ¢
n

vermoge 1(%(1,0:’) = Sela,)® 2u einem Isomorphismus v von K(a) auf L(B) mit
0 0
der Eigenschaft t(ax) = f fortselzen.

Beweis:
a) Auf eine nichttriviale Zerlegung g(x) = gi(x)ga(x) in L{x] konnte man den
Isomorphismus ¢-! anwenden und bekdme eine nichttriviale Zerlegung

f(2) = h(z)fa(z) in K[z].
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) Es gilt K(«) ~ K[z]/(f(x)) vermoge n(Zara”) = Zaﬂ' + (f(x)) nur eine
Umbezexchnung bedeutet K[z)/(f(x)) ~ L[x]/ (g(=)) vermoge rz(Za,a:’-[—(f(x)))
= Z«p(a,)x” -+ (g(z)); und schlieBlich gilt wieder L{x]/(g(x)) ~ L(ﬂ) vermoge

ts(Zcp(a,)x' + (g(x))) = Z«p(a,)ﬂ’ Bei 71 bzw. 73 wurde die Irreduzibilitit von
/(x) bzw. g(x) benutzt (vgl den 1. Beweis von Satz 53. 2) Also ist 7 = r379m1

ein Isomorphismus von K(«) auf L(f) mit r(Za,a') = Zq)(a,)ﬂ’, und speziell
gilt 7(x) = B.

Spezialfall: Es sei K = L und ¢ der identische Automorphismus von K ;
das Polynom p(x) € K[x] seiirreduzibel in K[z], und « und g seien Nullstellen von

n
p(x). Dann definiert r(%a,az") = Jayf* einen Isomorphismus von K(x) auf
0

0

K(B), der K elementweise festliBt. Der durch eine Nullstelle eines iiber K
irreduziblen Polynoms erzeugte Erweiterungskorper K(o) hingt also strukturell
nicht von der speziellen Wahl dieser Nullstelle ab.

Beispiel 1. Es gilt R(7) ~ R(—i) und sogar R(;) = R(—). Analog ist Q(]/2) ~
2(—/2) und sogar Q(}/2) = Q(—Vﬁ).

Beispiel 2. Das Polynom p(x} = 3 — 7 ist irreduzibel uber Q und hat die
Nullstellen ay = ¥7, as = 0}/, ag = »? }/7, wobei w = — —-I- V§ ist. Wie-

der gilt Q(a1) ~ Qeg) ~ Q(«s); aber diesmal sind keine zwei dJeser Korper ein-
ander gleich: Weil die komplexen Zahlen a3, «g nicht in £(x;) liegen, kann p(x)
in Q(eq)[z] und nach Satz 1 dann auch in Q(az)[z] und Q(a3)[x] nicht in Linear-
faktoren zerfallen, und es folgt «;, ag ¢ Q{ag) und ay, xp ¢ Q(a3).

Um den néchsten Satz formulieren zu konnen, ist eine Vorbetrachtung nétig.
Es sei E ein Zerfillungskorper von f(z) € K{x], in dem f(x) lauter einfache
Nullstellen hat. Konnte es sein, daB f(x) in einem anderen Zerfillungskorper
F eine mehrfache Nullstelle besitzt ¢ Zur Beantwortung dieser Frage wihlen
wir einen Qberkorper E* von E derart, daB} f(z) und f'(x) in E*[x] in Linear-
faktoren zerfallen, etwa einen Zerfillungskorper E* von f'(x) € E[x]. Aus der
Voraussetzung und Satz 26.6, Aussage b), folgt: Die Polynome f(x) und f'(x)
haben in E*{z] und damit erst recht in K{x] den g.g.T. Eins. Nach Satz 44.1
bleibt dieser g.g.T. Eins auch in F[z]. Dann kann aber f(x) nach Aussage a)
von Satz 26.6 keine mehrfache Nullstelle in ¥ haben. Die Frage war also mit
nein zu beantworten, und die Redewendung, f(x) habe keine mehrfachen Null-
stellen, hat einen Sinn.

Satz 3: Es seien K und L tsomorphe Korper und ¢: K — L der vermittelnde
Isomorphismus; o sei die Fortsetzung dieses Isomorphismus von K[z] auf L{z]
gemdp Satz 1. Das Polynom f(zx) € K[x] habe das o-Bild g(x) € L[x), es sei E ein

13*
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Zerfallungskorper von f(x) € K[x] und F ein Zerfillungskirper von g(x) € L{x).
a) Dann kann der Isomorphismus ¢ von K auf L zu einem Isomorphismus T von
E auf F fortgeselzt werden.

b) Hat iiberdies f(x) und damit auch g(x) keine mehrfachen Nullstellen, so gibt es
genau [E : K] derartige Fortsetzungen t von ¢.

Bevor wir Satz 3 beweisen, ziehen wir gleich aus seiner Aussage a) die fiir
uns im Augenblick wichtigste Folgerung. Sie betrifft den Fall, dal K = L
und ¢ der identische Automorphismus ist; £ und ¥ sind dann zwei Zerfillungs-
korper von f(x) € K[z], und die Existenz von v bedeutet ihre Isomorphie. Zu-
sammen mit Teil a) des obigen Hilfssatzes ergibt sich also der gewiinschte

Satz 4: Es sei K ein Korper. Dann besitzt jedes f(x) € K[x] abgesehen von
Isomorphien genau einen Zerfdllungskorper.

Beweis von Satz 3:
a) Der Nachweis der Existenz von 7 wird durch einen Induktionsbeweis er-
bracht. Die Behauptung ist sicher richtig im Falle [£: K] = 1; denn wenn f(z)
in K[x] zerfillt, so zerfillt g(x) in L{x], und es gilt £ = K, F = L und 7 = ¢.
Wir setzen nun [E: K] = m. Die Induktionsvoraussetzung lautet: Die Be-
hauptung a) sei bereits bewiesen fiir beliebige Zerfallungskorper E von be-
liebigen Polynomen f(x) e K[x], sofern nur [E: 1?] < m ist. Im Falle m > 1
liegen nicht alle Nullstellen von f(x) in K, und es existiert ein in K[x] irreduzib-
ler Teiler p(z) von f(x) mit Grad p(x) = d > 1. Es gilt d{m; denn fiir eine
Nullstelle « € £ von p(z) ist [a: K] = d, und [«: K] teilt m nach Satz 54.2.
Wir bezeichnen o(p(x)) mit g(x); dann ist das Polynom ¢(z) ein Teiler von g(x)
in L[z], es ist irreduzibel in L{z] und besitzt in F eine Nullstelle 5. Nach
Satz 2 gilt K(a) ~ L(f). Nun ist erst recht £ Zerfallungskorper von f(x) e K(a)[x]
und F Zerfillungskorper von g(x) € L(f){x]. Wir haben [E: K(x)] - [K(x): K]

= m, also [E: K(«)] = Z—:; < m. Auf Grund der Induktionsvoraussetzung 148t

sich also der Isomorphismus von K(x) auf L(8), der eine Fortsetzung von ¢ war,
weiter fortsetzen zu einem Isomorphismus v von E auf F.

b) Hat f(x) nur einfache Nullstellen, so gilt nach Satz 1 fiir g(z) dasselbe. In
dem unter a) gefiihrten Induktionsbeweis gab es demnach unter dieser zu-
sitzlichen Voraussetzung bei festem « genau d Moglichkeiten fiir die Wahl
von §; denn einerseits hat g{x) dann genau d verschiedene Nullstellen § € F';
andrerseits gilt fiir eine Fortsetzung 7 von ¢ die Beziehung 7(p(«)) = ¢(r(«)) = 0,
weswegen als Bild 7(«) von « nur eine Nullstelle 8 von ¢(z) in Frage kommt.
Damit kann man die Aussage b) durch die gleiche vollstindige Induktion
nach m bestitigen: Ihre Giiltigkeit fiir m = 1 ist klar; sie sei ferner fiir
[E: K~] < m bereits bewiesen. Ist nun [E: K] =m > 1, s0 bestehen bei
festem o zunichst genau d Moglichkeiten, den Isomorphismus ¢ von K auf L
zu einem Isomorphismus von K(a) in F fortzusetzen; jede dieser Fortsetzungen

der Gestalt K(«) >~ L(8) liefert nach Induktionsvoraussetzung genau %L mogliche
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weitere Fortsetzungen 7: £ ~ F. Insgesamt ergibt das genau d - % — m Fort-
setzungen 7 von ¢. d

Beispiel 3. Es sei E der Zerfillungskorper von p(x) = #® — 7 e Qfzx]. Mit
den Bezeichnungen von Beispiel 2 gilt £ = Q(o, o2, «g). Die Adjunktion von
zwei Nullstellen oder von }7 und w geniigt: E = Q(o3, a2) = Q}7, »). Die
Gradformel zeigt [E: Q] = 6.

Beispiel 4. Es sei £ der Zerfallungskorper von p(x) = 24 + 1 eQ[x]. Jede

der vier Nullstellen iﬁ( + 1 4 %) von &4 + 1 ist eine Potenz jeder anderen. Man

bekommt also E bereits durch Adjunktion einer von ihnen: £ = ligf)
Weil p(z) irreduzibel iiber Q ist, gilt [£: Q] = 4. V

58.3 Wir greifen noch einmal einen Gedanken auf, der beim Beweis des Teils b)
von Satz 3 eine Rolle spielte.

Definition: Es sei E eine Kirpererweiterung von K. Zwes iiber K algebraische
Elemente a, f € E heifen konjugiert iiber K, wenn Irr (x, K) = Irr (8, K) ist.

Es ist klar, daB auf diese Weise eine Aquivalenzrelation unter den iiber K
algebraischen Elementen aus E erklart ist.

Beispiel 5. Es sei K = Q und £ = €. Dann sind die vier Zahlen

1 1
M= (1+14) und o34 = V—Q(—— 1+ 9)

aus € konjugiert iiber Q (vgl. Beispiel 4). Uber K = Q(}/2) dagegen sind nur
noch a3, az bzw. ag, a4 als Nullstellen von 22 — )2z + 1 bzw. 22 + 2z + 1
untereinander konjugiert, aber nicht mehr etwa oy und ag.

Satz 5: Es seien E eine endliche Korpererweiterung von K, o ein Element
aus E und o ein Automorphismus von E, der K elementweise festlift. Dann sind
o und sein Bild o(«) konjugiert iiber K.

Beweis: Nach Satz 54.1 ist « algebraisch iiber K ; es sei Irr («, K) = p(x)
n

= ia,z' Man wende ¢ an auf p(«) = Ja,a® = 0; da die a, festbleiben, folgt
0 0

a(%a,,a”) = ia,(a(a) ¥ = (. Auch o(x) ist also Nullstelle von p(x).
0 0

58.4 Wir schlieBen mit einer Bemerkung. Wie wir wissen, hat jedes nicht kon-
stante f(z) € §[x] eine Nullstelle in €, zerfillt also nach Satz 26.1 in §[x].
Der Korper € ist demnach algebraisch abgeschlossen im Sinne der folgenden

Definition: Ein Koérper K heift algebraisch abgeschlossen, wenn jedes
Polynom f(x) € K[x] in K[x] in Linearfaktoren zerfillt.

Mit Hilfe des Zornschen Lemmas 148t sich der folgende Satz von E. STEINITZ
(1871-—1928) beweisen: Jeder Korper K besitzt abgesehen von Isomorphien genau
etnen iiber K algebraischen Erweiterungskérper B, der algebraisch abgeschlossen ist.
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Wir gehen darauf nicht weiter ein.

Aufgabe 1: Es sei E der Zerfallungskorper von f(x) € K[x] und Grad
f(x) = n. Dann ist [E: K] ein Teiler von n!. Beweis ?

Aufgabe 2: Es sei F der Zerfallungskorper von f(z) € K[z], und ay,a2e B
seien konjugiert itber K. Dann gibt es einen Automorphismus t von E, der K
elementweise festliBt, mit v(on) = x2. Beweis ?

Aufgabe 3: Es sei E der Zerfillungskorper von f(z) = 24 — 423 + 242
+ 42 + 2 eQ[x] und « € € eine Nullstelle von f(x).
a) Das Polynom f(x) ist irreduzibel iiber Q. Beweis ?
b) Auch 2 — « ist eine Nullstelle von f(x). Beweis ?
c) Es gibt genau eine Fortsetzung ¢:f(a) ~ Q(x) des identischen Auto-
morphismus ¢: Q ~ Q von Q auf Q(«) mit p(a) = 2 — a. Beweis ?
d) Es sei L die Menge aller Elemente I € Q(«) mit ¢(I) = I. Dann ist L ein
Zwischenkérper von  und 2(«). Beweis ?
e) Man zeige:'L = Q(¢).
f) Man bestimme die Nullstellen von f(x).
g) Man bestimme [E: Q].

§ 59 Endliche Kérper

Wir koénnen uns nun einen Uberblick iiber die wichtigsten Eigenschaften
endlicher Korper verschaffen. Dazu brauchen wir noch den folgenden

Hilfssatz: Es sei @ eine multiplikativ geschriebene endliche abelsche
Gruppe. Dann gibt es ein g € @, fiir dessen Ordnung m gilt: am = e fiir
jedes a € G.

Beweis: Die Ordnung # von G habe die Primfaktorzerlegung

*y Xy

n=prp ... 7;
die Gruppe @ sei nach Satz 11.1 (Spezialfall) als direktes Produkt

G=(GnxGux ... xGls‘)x(Gglegzx co. % Gag)
X ou X(Grler2X “oe xGrg')

zyklischer Untergruppen Gy von Primzahlpotenzordnungen p;"¥ geschrieben.
Dabei seien die Gy so numeriert, daB my = my 41 ist. Es sei g; ein erzeugendes

Element von Gy (1 < i < r). Weil gl gl ... g = e nur fiir g}* = g = ...
= gf' = ¢ moglich ist, hat das Element g =gigz ... gr€ G die Ordnung
m = p* pg™ ... py. Dieses g € @ erfiillt die Aussage des Hilfssatzes; denn
jedes a € G 1aBt sich in der Gestalt @ = []ay mit Faktoren ay € Gy schreiben,
und dabei ist ajj = e nach Satz 9.2, alsoauch am =TJaj; = e.
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Wir erinnern noch an eine in § 20 verabredete Bezeichnungsweise: Ist K ein
Korper, so bedeute K, die Menge aller von Null verschiedenen Elemente aus K.
Oft gebraucht wird der

Satz 1: Die multiplikative Gruppe Kq eines endlichen Kérpers K ist zyklisch.
Das ist ein Spezialfall von

Satz 2: Es set K ein Korper und G eine endliche Untergruppe der multiplika-
tiven Gruppe Kgy. Dann ist Q zyklisch.

Beweis von Satz 2: Wir wenden auf @G den Hilfssatz an. Es sei ¢ € G das
Element aus dem Hilfssatz und m seine Ordnung. Jedes a € G ist dann Null-
stelle von 2m — 1 € K[x]; da es hochstens m solche Nullstellen gibt, folgt
|G| < m. Also sind 1, g, g2, ..., gm"1 alle Elemente von G, und & wird von g
erzeugt.

Satz 3: Es seten E 5 8 Schiefkorper mit |8| = q < ccund [E: 8); = n < 0.
Dann gilt |\E| = ¢n.

Beweis: Man wihle eine Basis {a1, as, ..., 25} von E iiber S und zihle
die Elemente sja; + sga2 + ... + 8pan (8y € 8) von E mit Hilfe von Satz 50.2
ab.

Ein endlicher Korper K kann nicht die Charakteristik Null haben; also gilt
#(K) = p fiir eine gewisse Primzahl p und damit K > 3;. Hierbei muB [K : 3;]
= n endlich sein. Aus Satz 3 folgt also der

Satz 4: Es set K ein endlicher Kiorper und y(K) = p. Dann ist |[K| = p®
{n eN).

Endliche Korper wurden erstmals von GaLors untersucht; sie werden deshalb
auch Galois-Felder genannt und mit GF(p®) bezeichnet, wobei in den Klam-
mern die Elementezahl steht. In diesem Zusammenhang ist die nachstehende
Existenz- und Eindeutigkeitsaussage wichtig.

Satz 5: Zu jeder Primzahl p und jeder natiirlichen Zahl n gibt es genau
einen Korper GF(p®) mit pn Elementen. Der Korper GF(p®) ist der Zerfillungs-

korper von xP° — x € 3p[2].

Beweis:

a) Es sei zunichst p» = g und K ein Korper mit ¢ Elementen. Wir zeigen,
daB K bis auf Isomorphien eindeutig bestimmt ist. Zundchst gilt K > 3,. Nach
Satz 9.4 ist a2~ = 1 fiir jedes a € Ky. Es folgt: Jedes der ¢ Elemente a € K
ist Nullstelle von 29 — x € 3;[x], und nach Aussage b) des Hilfssatzes aus § 58
wird damit K ein Zerfillungskérper von x9 — x € 3,[z]. Nach Satz 58.4 ist
also K bis auf Isomorphien eindeutig bestimmdt.

b) Bei vorgegebenen p und n ist noch die Existenz eines Kérpers K mit p»
Elementen zu zeigen. Wieder sei p® = g. Wir betrachten das Polynom
f(x) = 27 — z € 3y[x]. Wegen f'(x) = —1 und Satz 26.6 hat es nur einfache
Nullstellen. Es gibt einen Korper E > 35, so daB f(z) in E[«x] in Linearfaktoren
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zerfillt; die Menge L c E der Nullstellen von f(z) besteht also aus genau
¢ Elementen. Wir sind fertig, wenn wir zeigen: L ist ein Kérper. Dazu priifen
wir die in Frage stehenden Kérperaxiome nach. Sind «, 8 Elemente aus L,
gilt also a? = « und p¢ = g, so wird auch (« + f)? = at + 2 = a + B (vgl.
Aufgabe 20.8 b)), also « S L. Es ist 0e L. Mit a € L gilt auch —xe L;
bei p = 2 liegt das an « = —a. Aus «, § € L folgt weiter «f € L. Esist 1 € L.
SchlieBlich hat e L, « &= 0, also a? = «, noch a1 = (x?)~! = (x~1)¢, also
o1 e L, zur Folge.

Aufgabe 1: Jedes quadratische Polynom aus 33[x] zerfillt iiber GF(32).
Beweis ?

Aufgabe 2: Man bestimme alle Unterkérper von GF(p).

§ 60* Endliche Schiefkorper

Der folgende Satz stammt von M. WEDDERBURN (1882—1948); spiter fand
WitT den hier wiedergegebenen einfachen Beweis.

Satz 1: Jeder endliche Schieflorper ist ein Kirper.

Beweis: Es sei S ein endlicher Schiefkérper und Z ¢ 8 die Menge aller
derjenigen Elemente z € 8, die mit jedem s € § vertauschbar sind: sz = zs fiir
jedes s € 8. Wir missen zeigen: Z = 8. Wir wissen, dall Z ein Korper ist
(Aufgabe 20.14). Setzen wir [S: Z] = n, so lautet unsere Behauptung: n = 1.
Es sei |Z| = ¢ = 2; nach Satz 59.3 ist dann |S| = ¢». Fir ein festes s 8
betrachte man nun die Menge N(s) aller derjenigen Elemente x € S, die mit s
vertauschbar sind: sx = xs. Man priift leicht nach, dal N(s) > Z ein Schief-
korper ist. Nach Satz 59.3 ist also [N(s)| = ¢? eine Potenz von |Z| = ¢; da
ferner S > N(s), also auch |S| = ¢ eine Potenz von [N(s)| = ¢? ist, folgt zu-
sitzlich d|n. Dies nutzen wir in der folgenden gruppentheoretischen Uber-
legung aus. Wir zerlegen die multiplikative Gruppe Sp von 8 in Klassen kon-
jugierter Gruppenelemente (§ 14.2) und zéhlen die Elemente der einzelnen
Klassen ab. Insgesamt hat Sp die Ordnung |Sp| = ¢g* — 1. Nach Satz 14.4 ist
die Anzahl der Konjugierten eines s € §y gleich dem Index des Normalisators

[ J—
No(s) = {x € N(s): = == 0}; das ist also eine Zahl der Gestalt q——i mit d|n.

Wir wollen zeigen, dal die multiplikativen Gruppen von S und Z iiberein-
stimmen: Sy = Zy. Angenommen, das ist nicht der Fall. Dann wire [S: Z]
=mn > 1; auBerdem gibe es ein s e Yy, dessen Normalisator No(s) von Sp
verschieden wire; jedes s € So, das nicht in Zg liegt, leistet das. Die Klasse

m—1
Konjugierter, zu der dieses Element s gehort, hat g_—i FElemente, wobei d

ein echter Teiler von 7 ist. Es konnte sein, daB es mehrere solche Klassen gibt;
jedes der ¢ — 1 Elemente des Zentrums Zg von Sy aber bildet eine Klasse fiir
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sich. Zghlt man also die g» — 1 Elemente von Sp in dieser Weise ab, so ergibt
sich eine Gleichung

g"—1
() "—1 =q—1+qu:‘1’
in der n und ¢ von Eins verschiedene natiirliche Zahlen sind und rechter Hand
iiber gewisse echte Teiler d von n summiert wird. Unser Satz wird bewiesen
sein, wenn wir zeigen konnen, daB eine Identitét (1) unter diesen Bedingungen
nicht moglich ist.
Aus § 45 wissen wir, daB 2» — 1 = T][Pn(x) eine Zerlegung von z» — 1 in

mn
3[x] ist. Fiir einen echten Teiler d von n folgt entsprechend 22 — 1 = T] ®p(x)
i — mld

P i = @yu(x)g(x) in 3[x]. Ersetzt man « durch ¢, so sieht

man, da8 in (1) sowohl ¢g» — 1 als auch die Summe rechter Hand durch @,(q)
teilbar sind; also miiBte auch ¢ — 1 den Teiler @,(q) haben. Wir sind fertig,
wenn wir im Widerspruch dazu zeigen: Fir n > 1 ist (@p(q)] > ¢ — 1. Dazu
erinnern wir uns an die Zerlegung ®@,(x) = [[(x — ¢») in €[x], worin die , ge-
rade die @(r) primitiven n-ten Einheitswurzeln durchlaufen: Fir n > 1 ist
keine von ihnen gleich Eins, folglich |g—¢y| > g¢—1 =1 und |D(g)]
= TTlg — &y} > g — 1. Damit ist Satz 1 bewiesen.

und damit auch

§ 61 Die Satze vom primitiven Element

Wir stellen die Frage, wann ein Oberkérper E von K einfach algebraisch
iiber K ist.

61.1 Eine erste Antwort gibt der

Satz 1: Genau dann ist der Oberkirper E von K einfach algebraisch iiber K,
wenn es nur endlich viele Zwischenkiorper E > L > K gibt.

Beweis:
a) Es gebe nur endlich viele Zwischenkorper £ 5 L 5 K. Dann ist zunichst B
algebraisch iiber K: Andernfalls gibe es eine Unbestimmte 2 € E iiber K ; auch
22, x4, ... wiren dann Unbestimmte iiber K ; es gilt ¢ K(x2), da zf(z2) = g(x?)
fur Polynome f(x) und g(x) == 0 aus K[z] unmdglich ist; also hiatte man die un-
endlich vielen Zwischenkorper E > K(x) i K(?) i K(z%) i ... D K. Es ist
sogar E iiber K endlich erzeugt. Ist ndmlich oy € B, o ¢ K, so bilde man
E > K(oy) i K ; ist weiter oz € B, a3 ¢ K(a1), so bilden wir B 5 K(x1, ag) i K(n)
> K und fahren so fort. Auf Grund der Voraussetzung bricht dieser Proze8

=+
nach endlich vielen Schritten mit dem Ergebnis = K(oy, «, . . ., ar) ab. Wir

miissen zeigen: Bei geeignetem a3 kann r = 1 gewihlt werden. Nach Satz 54.5
ist £ endlich iiber K. Ist K ein endlicher Korper, so ist es auch E; die multipli-
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kative Gruppe E¢ von £ wird dann nach Satz 59.1 von einem Element « € £
erzeugt, und es gilt erst recht £ = K(x). Also sei weiterhin der Korper K un-
endlich und r die Minimalanzahl méglicher Erzeugender «p in B = K(a,
a2, ..., or). Wir haben r = 1 zu zeigen. Angenommen, es sei r > 1. Fiir jedes
a € K definieren wir dann 9, = oy + axs und betrachten einen festen Korper
K(9;). Es gilt E 5> K(93) 0 K. Da es nur endlich viele Zwischenkérper gibt,
K aber unendlich viele Elemente hat, existiert ein b € K, b + a, mit K(#;)
= K(¥s). Es folgt der Reihe nach &y K(d), s — #4 = (b — a)ag € K(D3),
az € K(8g), a1 € K(95); also gilt neben K(ay, ag) 5 K(¥,;) auch K(ai,xg) c K(d;)
und damit K(x;, az) = K(#). Das hat aber £ = K(d,, a3, g, . . ., o) mit nur
r — 1 Erzeugenden zur Folge im Widerspruch zur Wahl von r. Die Annahme
r > 1 war also falsch; ¥ ist einfach algebraisch iiber K.

b) Es sei a algebraisch iiber K und £ = K(x). Wir haben zu zeigen, da8 es nur
endlich viele Zwischenkdrper F > L 5 K gibt. Wir definieren eine Abbildung ¢
durch o(L) = Irr («, L). Wir zeigen zuerst, daBl ¢ eineindeutig ist, und dann,
daB es nur endlich viele Moglichkeiten fiir definierende Polynome Irr(«, L) mit
E 5 L > K gibt. Daraus folgt, daB es nur endlich viele Zwischenkdorper L gibt.
Wir betrachten ein L und sein Bild Irr («, L). Man adjungiere die Koeffizienten
von Irr (o, L) zu K ; es entsteht ein Korper L 5 L* 5 K. Das Polynom Irr (&, L)
ist erst recht irreduzibel in L*[x]; es gilt also Irr («x, L) = Irr (x, L*) und
speziell [E: L] = [E:L*] < . Mit £ 5L 5 L* und der Gradformel folgt
[L: L*] = 1 oder L = L*. Das besagt: Zu einem Bild Irr («, L) bekommt man
das einzig mogliche Original L dadurch, daB man die Koeffizienten von Irr («, L)
zu K adjungiert; o ist eineindeutig. Es bleibt zu zeigen,daB es nur endlich viele
Polynome Irr («, L) gibt. Nun gilt nach Satz 54.4 in L{x] und erst recht in E[x]
die Teilbarkeitsbeziechung Irr (a, L) | Irr («, K). Das Polynom Irr (x, K) be-
sitzt aber im GauBschen Ring E[z] eine eindeutige Primfaktorzerlegung und
demnach nur endlich viele normierte Teiler Irr («, L). Damit ist Satz 1 be-
wiesen.

61.2 In der Praxis wichtiger ist der folgende Satz 2; er stammt von ABEL.

Definition: Ist der Oberkorper E = K(a) von K einfach algebraisch iiber K,
80 heifit a etn primitives Element von E diber K.

Definition: Es set K ein Korper und o algebraisch iiber K. Das Element «
heifit separabel iiber K, wenn Irr («, K) nur einfache Nullstellen hat.
Bemerkung: Ist « algebraisch iiber K und y(K) = 0, so ist « schon separabel
iiber K (Satz 44.3). Das Beispiel im AnschluBl an Satz 44.3 zeigt, daB hierbei
auf die Voraussetzung y(K) = 0 nicht verzichtet werden kann.

Satz 2: Sind y1, yo, . . ., yr Separabel iiber dem Kérper K, so gibt es minde-
stens ein primitives Element & mit der Eigenschaft K(y1, ye, ..., yr) = K(B).

Beweis: Wir zeigen etwas mehr, nimlich das Folgende: Ist « algebraisch
und g separabel iiber K, so gibt es ein # mit K(«x, ) = K(8#). Daraus folgt der
Satz zunichst fiir r = 2 und dann durch Iteration allgemein. Wir kénnen uns
ferner wie beim Beweis von Satz 1 auf den Fall beschranken, da K unendlich
ist, weil andernfalls mit X auch K(y1, v2, ..., ¥r) = E endlich wire und fiir &
ein erzeugendes Element der zyklischen Gruppe Ey gewihlt werden konnte.
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Es sei nun Irr («, K) = p(x), Irr (B, K) = q(x) und F > K eine Korpererweite-
rung von K derart, daf p(z) und ¢(x) in F[z] in Linearfaktoren zerfallen:

p) = (x—o)(@—a2) ... (x —ag),

gx) = @—p)x—p2) ... (x—Bi);

dabei sei « = a; und g = ;. VoraussetzungsgemiB sind die a, nicht notwendig
paarweise voneinander verschieden, wohl aber die 8;. Wir betrachten nun fiir
s =1 und ¢t = 2 die hochstens k(! — 1) Gleichungen « -+ 28 = «, 4 «8;. Da
Pt == f ist, besteht die Gesamtheit aller Losungen 2 € K aus hochstens k(I — 1)
Elementen. Nun war K unendlich; also gibt es ein £ € K (£ ==0) mit

1) a+éfFas+Ef (s21,t=22).

Wir zeigen nun, daB 4 = o + &f ein primitives Element von K(«, §) dber K
ist. Da K(#) c K(a, f) ist, bleibt K(«, 8) c K(#) zu zeigen, und dafiir geniigt der
Nachweis von § € K(#). Dieser Nachweis wird im folgenden erbracht.

In K(#)[x] liegen die Polynome ¢(x) und f(x) = p(®# — &x); sie zerfallen beide
in F[z] in Linearfaktoren und haben 8 € F als Nullstelle. Weitere gemeinsame
Nullstellen konnten sich nur unter den f;, ¢ = 2, befinden; aber nach (1)
kommen sie nicht in Frage. Also haben ¢(z) und f(z) in F[z] den g.g.T. x — 8.
Denkt man sich einen g.g.T. von g(x) und f(x) durch den Euklidischen Algorith-
mus ermittelt, so bekommt man ein Assoziiertes n(x — ), n€ F, n = 0, von
& — B. Dieser Euklidische Algorithmus findet aber wegen ¢(x), f(x) € K(8)[x]
bereits in K(&)[x] statt, und das liefert n(z — B) € K(#)[z), also 5 € K(¥9),
7B € K(¥) und wegen % 3= 0 auch g € K(3), was noch zu zeigen war.

Damit ist Satz 2 bewiesen.

Notwendig dafiir, da E einfach algebraisch iiber K ist, ist sicher [E: K] < o0
(Satz 53.3). Dariiber hinaus ergibt sich jetzt der

Satz 3: Es sei E eine endliche Koirpererweiterung von K und yx(K) = 0.
a) Dann ist E einfach algebraisch iiber K.
b) Ferner gibt es nur endlich viele Zwischenkiérper E > L > K.

Beweis:
a) Nach Satz 54.5 ist E eine endlich erzeugte algebraische Erweiterung
Koy, a3, ..., %) von K. Der obigen Bemerkung zufolge sind die «, wegen

%(K) = 0 separabel iiber K. Man kann also Satz 2 anwenden.
b) Das folgt aus a) und Satz 1.

Bemerkung: Der Beweis von Satz 2 war konstruktiv; er gestattet die expli-
zite Bestimmung primitiver Elemente. In den meisten Fillen (vgl. etwa § 27,
Beispiel 3, und Aufgabe 54.3) wird man dabei & = 1, also # = « + B als er-
zeugendes Element fiir K(«, 8), wiahlen kénnen.

Aufgabe 1: Man bestimme ein primitives Element ¢ und sein definieren-
des Polynom Irr (4, Q) fiir (¢, |3) dber Q.

Aufgabe 2: Es sei E der Zerfallungskérper von x3 — 7 € Q[z]. Man be-
stimme ein primitives Element # von E iiber  und sein definierendes Polynom
Irr (4, Q).
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§ 62 Inseparable Polynome

Definition: Es set K ein Korper. Ein in K[x)] trreduzibles Polynom p(x)e K[x]
heifit separabel iiber K, wenn es in seinem Zerfillungskorper nur einfache Null-
stellen hat. Ein beliebiges Polynom f(z) € K[x], Grad f(x) = 1, heifft separabel
iiber K, wenn jeder Primteiler p(x) von f(x) in K[x] separabel iber K ist. Bin
Polynom f(z) € K[x], Grad f(z) = 1, das nicht separabel iiber K ist, heifit in-
separabel iiber K.

DaB es sowohl separable wie inseparable Polynome gibt, wissen wir aus § 44.
Zu der gegebenen Definition ist ferner folgendes zu bemerken. Ist f(x) € K[x]
separabel iiber K und E ein Oberkérper von K, so bleibt f(x) auch separabel
tiber E. Ist dagegen L ein Teilkorper von K und schon f(z) € L[x], so kann f(x)
separabel iiber K und gleichzeitig inseparabel iiber L sein, wie das Beispiel
aus § 44 zeigt

In § 61 haben wir bereits gesagt, wann ein Element « separabel iiber K heilt.
Ergénzend hierzu gelte noch die

Definition: Die Korpererweiterung E von K heift separabel iiber K, wenn
jedes o« € E separabel iiber K tst.

Die beiden folgenden Satze ergeben sich unmittelbar aus Satz 44.3.

Satz 1: Es set K ein Korper der Charakteristik Null und f(x) € K{z], Grad
f(x) = 1. Dann ist f(x) separabel iber K.

Satz 2: Jede algebraische Korpererweiterung E eines Korpers K der Charak-
teristik Null ist separabel iiber K.

SchlieBlich notieren wir Satz 44.3 selbst noch einmal in einer etwas scharferen
Fassung.

Satz 3: Ein iiber dem Kirper K irreduzibles Polynom p(x) € K[x] st genau
dann separabel iber K, wenn p'(x) = 0 ist.

Beweis:
a) Es sei p’(z) & 0. Hierzu vergleiche man die Bemerkung im AnschluB an.den
Beweis von Satz 44.3.
b) Es sei p(r) separabel iiber K. Wegen Grad p(x) = 1 besitzt p(x) € K[x] in
seinem Zerfillungskorper £ wenigstens eine Nullstelle. Es kann also nicht
P'(x) = 0 sein, weil in diesem Fall nach Satz 26.6 jede Nullstelle von p(x) eine
mehrfache Nullstelle wére.
Zuletzt beweisen wir noch den

Satz 4: Es sei K ein Korper mit Primzahlcharakteristik y(K) =
a) Ist f(x) € K[x] trreduzibel iber K, so gibt es ein m = 0 derart, daﬁ 7ede Null-
stelle von f(x) die gleiche Vielfachheit p™ hat. Das Polynom f(x) hat dann die
Gestalt f(x) = g(xP™) mit einem g{x) € K[x].
b) Ist « algebraisch iiber K, so gibt es ein m = O derart, daf} a?™ separabel iiber K
tst.
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Beweis:

a) Ist f(x) separabel iiber K, so werde m = 0 gewihlt. Es sei daher weiter f(x)
inseparabel iiber K, nach Satz 3 also f'(x) = 0. In einem solchen f(x) miissen
alle diejenigen Potenzen x? den Koeffizienten Null haben, fiir die ptv gilt. Es
gibt also ein ¢i(x) € K{z] mit f(x) = ¢1(zP), und g¢i(z) ist mit f(x) irreduzibel
iitber K. Das Polynom gj(x) seinerseits ist genau dann inseparabel iiber K,
wenn ein von selbst iiber K irreduzibles Polynom gs(x) € K{x] mit gi(x) = ga(x?),
also f(x) = go(x?"), existiert. Man denke sich dieses Verfahren fortgesetzt, bis es
abbricht: Es existiert eine Zahl m und ein iiber K irreduzibles separables
Polynom g,,(x) = g(x) € K[x] derart, daB f(x) = g(xP") gilt.

Ist jetzt E ein Oberkérper von K, der alle Nullstellen a von f(x) und 8, von
g(x) enthilt, so besteht in E[x] eine Zerlegung g(x) = c(x—p1) (x—ps) ... (x— Pk)
mit §; = p; fiir ¢ = § und einem ¢ € K, ¢ =+ 0. Firr f(x) bedeutet das

fle) = e(@P™— p1) (@P"— fBs) . .. (xP"— Bi).
Ersetzt man hierin « etwa durch die Nullstelle «; von f(x), so wird genau eine
der Klammern rechter Hand Null, etwa die erste: fy = of . Entsprechend
bekommt man bei geeigneter Wahl der Numerierung f2 = b~ und insgesamt

flx) = clapm— ") (@P"—of") ... (2P"—o}") (s = o fiir ¢ = §).

Nun ist y(E[x]) = p. Jede der rechts stehenden Klammern kann also nach
Aufgabe 20.8 b) umgeschrieben werden, und man bekommt das behauptete
Resultat

fx) = clx — )@ — a2)?" . . . (x — ag)?P" (o =+ oy fiir ¢ = §).

b) Man verfolge den ersten Abschnitt des in a) gefilhrten Beweises fiir das
Polynom f(x) =Irr («, K).

) Al.lfga.be 1: Es sei y eine Unbestimmte iiber 33 und K = 33(y). Man
zeige die Irreduzibilitat und Inseparabilitit von f(x) = 23 — 2y € K[x] tiber K.

Literatur: ARTIN [3], HassE [7], Hasse-KrosE [8].
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Wir haben uns im letzten Kapitel eine gewisse Ubersicht iiber Kérpererweite-
rungen E eines Korpers K verschafft. Sind nun K und E gegeben, so kann man
die Frage nach allen Zwischenkdrpern X c L c E von K und E stellen und ihre
explizite Bestimmung verlangen. Die Beantwortung dieser Frage ist aus vielen
Griinden von Interesse. Wir beschiftigen uns mit der genannten Problem-
stellung nur fiir gewisse besonders wichtige endliche Erweiterungen ¥ von K;
die Anzahl der Zwischenkérper L ist in diesen Fallen immer endlich. Die ersten
hierher gehérenden grundlegenden Untersuchungen stammen von dem
franzosischen Mathematiker E. GALolS; nach ihm ist die inzwischen sehr um-
fangreich gewordene Theorie benannt. Ihr besonderes Kennzeichen ist eine
sinnreiche Verbindung von Koérper- und Gruppentheorie. Die im folgenden
durchgefiihrte Darstellung geht auf E. ArTIN (1898—1962) zuriick.

§ 63 Isomorphismen von Koérpern
Wir beginnen mit einer

Definition: Es set: G eine multiplikativ geschriebene Gruppe und E ein
Kérper mit der multiplikativen Gruppe Eo. Gegeben seien Homomorphismen

01,02, ..., 0, von G in Eg; man nennt sie auch Charakiere von G in Ey. Sie
heifen linear unabhingig in E, wenn aus
1) a101(x) + agoe(x) + ... + apon{z) = 0

fiir gewisse feste ay, € E und alle xz € G folgt:
(2) a =az = ... = ap = 0.
Von grundlegender Bedeutung ist nun der folgende

Hilfssatz 1: Sind die Charaktere oy, 03, ..., op von G in E, paarweise
voneinander verschieden, so sind sie bereits linear unabhangig in E.

Beweis: Vollstindige Induktion nach n. Zunichst sei n = 1. Dann ist
o1(x) =+ 0; aus a;0:1(x) = 0 folgt also @) = 0. Wir nehmen nun an, die Behaup-
tung sei fiir je n Charaktere richtig; ihre Giiltigkeit muB fiir » 4 1 paarweise

voneinander verschiedene Charaktere 1,02, ...,0s+1 von G in Eg nach-
gewiesen werden. Fiir gewisse feste ay € F und alle z € G gelte

(1" a101(x) + a202(x) + ... + @p10na(@) = 0.

Wir zeigen @) =ap = ... = a, = 0; daraus folgt wie eben noch a4 = 0
und damit

2" a =a = ... = apy1 = 0.
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Es sei 7 =< n ein beliebiger fester Index; wir zeigen a; = 0. Zunichst gibt es
wegen 6y == op41 €in o € G mit 0y(x) = op41(x). Ersetzt man in (1) das = durch
azx, 80 bekommt man

3) ay01(x)or(x) + asoa(x)oa(z) + ... + @nt10n+1(x)onsalc) = O.
Multiplikation von (1’) mit op41(x) liefert
4)  aonn(a)or(z) + azonn()oe(x) + ... + @r110p11(x)on+1(x) = O.

Subtrahiert man (4) von (3), so ergibt sich

2 aloe) — ona@loss) = 0,

auf Grund der Induktionsvoraussetzung also ay(oj(a) — on41(x)) = O fiir alle
j = n, und da fiir j = ¢ die Klammer ungleich Null ist, folgt a; = 0. Damit
ist Hilfssatz 1 bewiesen.

Definition: Es seien K und E Korper und oy, oo, . . ., 6 Isomorphismen
von K tn E. Sie heifen linear unabhingig tn E, wenn die zugehiorigen Charaktere
von Ko tn Eg es sind.

Aus dem Hilfssatz folgt also der

Satz 1: Es seien K und E Korper und oy, 03, . . ., 0n paarwetse voneinander
verschiedene Isomorphismen von K in E. Dann sind o1, 62, .. ., on linear un-
abhingig in E.

Die nachstehende Verabredung ist sehr praktisch.

Definition: Es seien K und E Koérper und oy, o3, . .., 64 Isomorphismen
von K in E. Dann heifit a € K ein Fizxelement oder Fixpunkt beziiglich o,
a3, . .., Op, wenn oy(a) = o2(a) = ... = oula) gill.

Da 0 und 1 und mit ¢ und b auch a + b, ab und (falls b 3= 0) b-1 Fixelemente
sind, erhalt man sofort den

Satz 2: Es seien K und E Korper, o1, oz, . . ., oy Isomorphismen von K in E
und F c K die Menge aller Fixelemente beziiglich 01, o2, ..., op. Dann ist F ein
Korper.

Man nennt F den Fizpunktkorper von K beziiglich o1, a2, .. ., 6p. Werden zu
diesen Isomorphismen weitere hinzugenommen, so wird der neue Fixpunkt-
korper ein Teilkorper von F; 148t man einige der o, weg, so wird der Fixpunkt-
kérper der restlichen o, ein Oberkérper von F. Uber die GroBle von F gibt der
grundlegende Satz 3 Auskunft, dem wir einen elementaren Hilfssatz voran-
stellen.
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Hilfssatz 2: Es seien die mn Elemente ay; des Koérpers K und das lineare

homogene Gleichungssystem

anx: + airz + ... + ¥y = 0

a1 + aTz + ... + Aepp = 0

am1%) + Ama®2 + . . . + Ama¥n = 0
mit m < n gegeben. Dann gibt es eine Losung (x1, zg, ..., #,) € K® dieses
Systems, in der nicht alle 2; Null sind.

Beweis: Man betrachte die n Vektoren a, = (a1y, a2y, . . ., @my), 1 <v < n,
des m-tupel-Raumes ¥V = K™ (vgl. § 48). Der Raum V hat die m-elementige
Basis

{4,0,0,...,0),(,1,0,...,0),...,(0,0,0, ..., 1)},

also die Dimension m. Es ist » > m. Die n Vektoren «3, as, ..., @z aus V sind
also nach Satz 50.4 iiber K linear abhingig: Es gibt nicht simtlich verschwin-
dende 1, %9, ..., %, aus K mit xjoy + xeag + ... + 2p0, = 0€ V; dieser

Nullvektor ist (0,0, 0, ..., 0). Schreibt man die Beziehung fiir die lineare
Abhéngigkeit der a, aus, so erhélt man gerade das obige durch die speziellen x;
nichttrivial geloste Gleichungssystem.

Satz 3: Es seien o1, 03, ..., Gp paarweise voneinander verschiedene Iso-
morphismen des Korpers K in den Korper E und F c K ihr Fixpunktkorper.
Dann gilt [K: F] = n.

Beweis: Wir fithren die Annahme [K: F] = m < n auf einen Wider-
spruch. Es sei {0, ag, ..., a;} eine Basis ‘'von K tuber F und m < n. Das
System

xlol(al ) -|— xgag(al ) + e + x,,o‘,,(al ) =0
o102 ) + @200(a2) + ... + Zaoplaz) = 0

2101(am) + Zao2(am) + ... + Xponlom) =

|
o

ist dann nach Hilfssatz 2 durch nicht simtlich verschwindende x; € E l6sbar.
Im Widerspruch zu Satz 1 zeigen wir nun, daB mit diesen x; € E fiir jedes x € K
gilt:

(6) z101(x) + 2202() + ... + Tnou(x) = O.
m
Zunéchst schreibe man « = Yax; mit Koeffizienten a; € F. Diese a; sind Fix-

1
punkte. Multipliziert man die j-te Gleichung des obigen Systems mit o1(ay)

= oa(a;) = ... = op(ay), so bekommt man
zo1(@r o0 ) + weon(@y a1 ) + ... + xpou(arn) = 0
x101(@g ap ) + @pop(@z oz ) + ... 4 Taonlazaz) = 0

2101(Amem) + T202(@mom) + . .. + Tnon(@nmoem) = 0,

und Addition dieser Gleichungen liefert in der Tat die Beziehung (5). Die An-
nahme m << n war also falsch, und Satz 3 ist bewiesen.
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§ 64 Automorphismen von Kérpern

Wir spezialisieren nun die Betrachtungen von § 63. Es sei £ = K, und die
paarweise voneinander verschiedenen Isomorphismen a1, 03, .. ., 0, seien Auto-
morphismen des Korpers E. Damit der Fixpunktkérper F genau aus allen den-
jenigen Elementen a € E besteht, die unter allen o; festbleiben, oi(a) = a,
nehmen wir weiter an, einer der Automorphismen o; sei die Identitit. Nach
Satz 63.3 gilt wieder [E: F] = n. Aber im allgemeinen wird sich diese Ab-
schitzung verbessern lassen. Wenn niamlich durch eine Verkniipfung der o,
oder ¢;1 ein neuer Automorphismus o431 & 03, 1 < ¢ < n, gewonnen werden
kann, so 148t auch o, den Korper F elementweise fest, und Satz 63.3 liefert
sogar (£ : F] = n + 1, da F dann auch Fixpunktkérper der o1, 09, . . ., 0541 ist.
Das Verfahren kann nur dann nicht fortgesetzt werden, wenn die vorhandenen
o1 bereits eine Gruppe bilden. Diese Betrachtungen legen die Voraussetzungen
des folgenden Satzes nahe.

Satz 1: Es sei G eine Gruppe von n Automorphismen des Kiérpers E und F
der 2u G gehirende elementweise festbleibende Fixpunktkérper. Dann gilt
[E: F] = n.

Beweis: Es sei G = {01, 02, . .., op}. Wir beginnen mit einer Vorbetrach-
tung. Fir jedes a € E definieren wir die Spur S(«) = o1(x) + oo(x) + ...
+ op(«) und zeigen fiir sie zwei Eigenschaften. Erstens gilt fiir jedes g; € G die
Gleichung 6;(S(x)) = o01(x) + o102(2) + ... + ctop(a) = S(«), da auch
0401, 0102, . . ., 0i0n die Gruppe G ausschopfen; fiir jedes « € E ist also S(a) € F.
Zweitens verschwindet S(«) sicher nicht fiir alle « € ; andernfalls wire ja
loyfx) + Yoa(e) + ... + log(x) = O fiir alle « € £ im Widerspruch zu Satz 63.1.

Aus Satz 63.3 folgt [E: F] = n. Satz 1 ist also bewiesen, sobald [E: F] < n
gezeigt ist. Dazu wéhlen wir a1, ag, ..., & mit m > n aus £ und zeigen die
lineare Abhéngigkeit der oy € E iiber F'; nach Satz 50.4 kann dann nur [E: F]
= n sein. Zunéchst gibt es nach Hilfssatz 2 aus § 63 nicht samtlich verschwin-

dende Elemente z;, xs, ..., 2, aus E derart, daB
zio1 (o) + zeoilae) + - .. + TmorHom) = 0
(1) xozl () + zeoz o) 4 ... + wmozl(am) = O

w107 (o) + 220l e) + - .. + Tmozlem) = O
gilt, und da es auf die Numerierung der «; nicht ankommt, kann man #; == 0 an-
nehmen. Wir wissen nun: Es gibt ein « € £ mit S(«) == 0; dabeiist « & 0. Multi-
pliziert man jede der n Gleichungen (1) mit axi! 5 0, so sieht man, daB auch

die m nicht simtlich verschwindenden Elemente «, axylzs, axiles, . . ., cxiizy,
aus E an Stelle von z, 23, . . ., # in (1) eingetragen werden konnen. Bezeichnet
man sie wieder mit 2y, s, . . ., T, s0 gilt also (1) mit einem z; == 0, fiir das zu-

gitzlich S(x1) < 0 ist. Nun wende man auf die i-te Gleichung in (1) den Auto-
morphismus ¢; an (1 < ¢ < ») und addiere die so entstandenen neuen »n Glei-
chungen. Man bekommt S(z1)ay 4 S(xa)aa + ... 4- S(@m)am = 0, und hierin
stammen die S(xz¢) aus F, und 8(z1) ist ungleich Null. Die Elemente o), a2, . . ., am
aus F sind also linear abhingig iiber F, und Satz 1 ist bewiesen.

14 Hornfeck, Algebra
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§ 65 Normale Kérpererweiterungen

65.1 Es sei E ein Korper und G eine endliche Gruppe von Automorphismen
von E. Den zu @ gehorenden Fixpunktkérper F bezeichnen wir mit »(G). Nach
Satz 64.1 gilt [E: F] = |G|. Das liefert die folgende Beschreibung der Ab-
bildung x: Jeder endlichen Gruppe G von Automorphismen von E wird als
Bild %(G) ein gewisser Teilkorper F c E mit der Eigenschaft [E: F] < o zu-
geordnet. Es ist nicht gesagt und im allgemeinen auch nicht richtig, da8 jeder
Teilkérper L c E mit [E: L] < co dabei als Bild auftritt. Es gilt die Regel:
G1 c Ga = x(Gh) D x(Gy).

Ist umgekehrt F ein Teilkorper von E mit [E: F] < oo, so bilden dié Auto-
morphismen von E, die F elementweise festlassen, eine Gruppe; wir bezeichnen
sie mit y(F) und nennen sie die Automorphismengruppe von E diber F. Es gilt
[P(F)| < oo; ist ndmlich ¥’ 5 F der Fixpunktkoérper der Automorphismen aus
#F), so wird |y(F)| < [E: F'] < [E: F] < o nach Satz 63.3. Das liefert die
folgende Beschreibung der Abbildung y: Jedem Teilkérper F c B mit der
Eigenschaft [E: F] < oo wird als Bild eine gewisse endliche Gruppe G = »(F)
von Automorphismen von E zugeordnet. Es ist zuniichst nicht gesagt, daB
jede endliche Gruppe von Automorphismen von £ dabei als Bild auftritt; doch
wird sich das in der Aussage (2) des folgenden Satzes 1 als richtig herausstellen.
Es gilt die Regel: F; c Fo = y(F1) > p(F3).

Satz 1: Mt den vereinbarten Bezeichnungen gilt
(1) #(r(F) > F,
(2) ¥(=(@) = G.

Beweis: Die Beziehungen »(y(F)) > F und y(x(G)) > G folgen aus den
Definitionen von » und y. Zu zeigen bleibt also noch y(»(@)) c @ oder auch nur
ly(¢(@))| = |G|. Dazu setzen wir »(G) = F und bezeichnen den Fixpunktkérper
von y(F) mit F' > F. Satz 64.1 liefert dann |y(F)| = [E: F'] < [E: F] = |G,
also |y(d(@)| < |6].

DaB in der Aussage (1) von Satz 1 das Gleichheitszeichen stehen kann, aber
nicht muB, zeigen wir durch zwei Beispiele.

Beispiel 1. Es sei B = 2(]/2) und F = Q. Ein Automorphismus o von E, der
0 elementweise festlaBt, ist bekannt, sobald o(}/2) bekannt ist; auf diese Weise
bestimmen wir y(F). Nach Satz 58.5 kommen fiir ¢(}/2) nur Konjugierte von |/2
iiber Q, also }/2 selbst und —}/2, in Frage. Der Fall o(}2) = }/2 kann wirklich
eintreten; es ist dann o der identische Automorphismus . Dal auch der Fall
o(}J2) = —)/2 moglich ist, hat die folgenden Griinde: Erstens ist —|/2 ein
Element von 2(}2); zweitens gilt Q()/2) ~ Q(—|/2) vermége ¢ nach Satz 58.2
(Spezialfall); drittens ist es eine Abbildung von E auf E. Diesen zweiten Auto-
morphismus von E, der F elementweise festlaBt, nennen wir jetzt v; weitere
gibt es nicht. Also wird y(F) = {¢, v}. Nun bestimmen wir x(y(F)). Welche
Elemente aus ¥ bleiben unter ¢ und 7 fest ? Jedes a 4 b)/2 € E (a, b € Q) mit
b =% 0 wird durch t bewegt. Also kommen nur Elemente aus F = £ als Fix-
elemente in Frage, und es wird x(y(F)) = F.
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Beispiel 2. Es sei E = Q(}7) und F = Q. Ein Automorphismus o von E, der
9 elementweise festliBt, ist bekannt, sobald o(}/7) bekannt ist; auf diese Weise
bestimmen wir p(F). Nach Satz 58.5 kommen fiir o(}/7) nur Konjugierte von /7

iiber Q, also }/7 selbst sowie w}/7 und w? J7 (w = —% + 211/3), in Frage. Von

diesen dref Konjugierten liegt nur 7 in E. Der einzige Automorphismus von E,
der F elementweise festldBt, ist also die Identitdt e, und es wird y(F) = {e}.

Aber hier ist ersichtlich x(y(F)) = E i F.

‘Die Aussage (2) von Satz 1 zeigt, daB » die Gesamtheit aller endlichen Grup-
pen G von Automorphismen von E eineindeutig auf eine Menge gewisser
Unterkérper ¥ c £ mit {E: F] < oo abbildet; Anwendung von v liefert ja:
%(Gl) = %(Gz) = Gl = Gz.

Bei dieser Abbildung tritt ein F ¢ E mit [E: F] < oo dann und nur dann als
Bild auf, wenn in (1) das Gleichheitszeichen steht: x(y(F)) = F. Ist namlich
#(p(F)) = F, so ist F das Bild von y(F), und aus F = x(G) folgt y(F) =G
nach (2), also x(y(F)) = F.

Unterkorper F c E mit x(y(F)) & F werden in der folgenden grundlegenden
Definition ausgeschlossen.

Definition: Es sei E eine endliche Korpererweiterung des Korpers F, ferner
Y(F) die Qruppe aller derjenigen Automorphismen von E, die F elementweise fest-
lassen, und »(y(F)) der Fixpunktkorper von y(F). Genau dann heifit E normal
iiber F, wenn x(y(F)) = F ist, und in diesem Fall heifit y(F) = pr G(E|\F) die
Galotsgruppe von E iiber F.

Es ist also 2()/2) normal iiber  (Beispiel 1), aber Q(}/7) nicht normal iber
(Beispiel 2). Die Galoisgruppe {e, v} von £(]/2) iiber 2 ist zyklisch von der
Ordnung 2.

Wir notieren zunéchst den

Satz 2: Es seien E und K Korper und E normal iiber K. Dann gilt [E : K)
= |G(E|K)|.

Beweis: Die Gruppe G(E|K) = y(K) ist endlich, und sie hat »(y(K)) = K
als Fixpunktkdorper. Die Behauptung folgt also aus Satz 64.1.

65.2 Bislang ist noch nicht zu sehen, welche besondere Bedeutung diesen
Korpererweiterungen £ von K zukommen sollte, die wir noch dazu als normal
iiber K bezeichnet haben. Auch erscheint es wiinschenswert, an Stelle der
Definition eine handlichere Beschreibung fiir normale Erweiterungen kennen-
zulernen. Beiden Bediirfnissen dienen die folgenden Satze.

Satz 3: Die Korpercrweiterung E von K sei normal iiber K mit der Galovs-
gruppe (E|K).Es sei « € E und B(x) = {o(x): 6 e M E|K)} = {x1 = «, a3, . . ., 00}
die Menge aller Bilder o(x) vor a durch Automorphismen o aus G(E|K). Dann gilt
It (e, K) = (x — 1) (x — a2) . . - (& — ap)-

Beweis: Wir setzen (x — 1) (# — a2) . . . (x — ap) = p(x) € E[x]. Dieses
Polynom ist normiert und hat « als Nullstelle. Wir haben zu zeigen, daB

14*
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p(z) € K[x] und Grad p(x) = Grad Irr(«, K) ist. Ein o e G(E|K) bildet
{01, @9, . .., ap} auf sich ab, permutiert also die «, nur und 1dBt daher die
Koeffizienten von p(zx) fest; es ist, als wenn man die Faktoren des Produkts fiir
p(x) permutiert hatte. Die Koeffizienten von p(x) gehoren also zum Fixpunkt-
korper F c E von G(E|K), und da E normal iiber K ist, gilt F = K; es folgt
p(x) € K[z]. Deswegen und weil p(a} = 0 ist, gilt weiter Grad p(z) = Grad
Irr (z, K), und es bleibt zu zeigen: Grad p(x) < Grad Irr («, K). Dies wiederum

m
folgt, sobald gezeigt ist, daBl das Polynom Irr («, K) = > a,z* alle n Elemente
p=0

m
oy als Nullstellen hat. Dazu wende man o € G(E|K) auf z ayoe#t = 0 an und

beachte, da ¢(x) in 2 ay(o(a))® = 0 mit ¢ € G(E|K) alle Elemente oty € B(a)
durchlauft.

Bemerkung: In Satz 3 ist » < |G(E|K)|. Das Gleichheitszeichen steht dann
und nur dann, wenn « ein primitives Element von ¥ iiber K ist.

Satz 4: Eine normale Erweiterung E des Korpers K ist separabel iber K.

Beweis: Da E endlich iiber K ist, ist jedes o € E algebraisch iiber K, und
nach Satz 3 hat das Polynom Irr (x, K) nur einfache Nullstellen.
Ferner gilt der

Satz 5: Die Kirpererweiterung E von K sei normal iiber K und p(x) € K[x]
trreduzibel iiber K. Liegt dann eine Nullstelle von p(x) in E, so auch alle anderen.
Oder: Mit o € E liegen alle Konjugierten von o iiber K in E.

Beweis: Essei p(a) = O fiir « € E. Da das Polynom p(x) in K[xz] irreduzibel
ist, ist es bis auf einen Faktor aus K gleich Irr (x, K), und dieses Polynom zer-
fillt in E[x] in Linearfaktoren nach Satz 3.

Dieser Satz zeigt sofort, daB der reelle Korper Q(}/7) aus Beispiel 2 nicht
normal iiber £ ist; denn zwei der Kon]uglerten von }/7 iiber  sind nicht reell
und demnach mcht Elemente von Q(}/7).

Der folgende Satz gibt nun die gewiinschte Beschreibung normaler Kdorper-
erweiterungen ; auf ihm beruht ihre Bedeutung.

Satz 6: Es seien E und K Korper. Die folgenden drei Aussagen sind dann
gleichwertig.
(1) E ist eine normale Erweiterung von K.
(2) E ist Zerfallungskirper eines iber K separablen Polynoms g(zx) € K[z].
(3) E ist Zerfillungskiorper eines Polynoms f(x) € K[x] mit lauter einfachen Null-
stellen.

Beweis:
(1) = (2): Da E speziell endlich iiber K ist, gibt es nach Satz 54.5 iiber K
algebraische a1, ag, . .., ay aus E mit £ = K(ay, ag, .. ., 23). Nach Satz 4 sind

diese «,, also auch die Polynome p,(x)} = Irr (ay, K) separabel iiber K. Also
ist g(x) = pl(a:)pg(x) . Pu(x) € K[x] separabel iiber K. Da E normal iiber K
ist, zerfillt g(x) in E[x] in Linearfaktoren (Satz 5). Der Oberkorper E von K
entsteht aus K bereits durch Adjunktion eines Teils der Nullstellen von g(x),
ist also Zerfallungskorper von g(x) € K[x].
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(2) = (3): Haben p(z) und ps(x) in g(x) = pi(x)pa(x) . . . Pu(x) eine Nullstelle
B € E gemeinsam und sind die p,(x) € K[x] irreduzibel iiber K, so sind abge-
sehen von Faktoren aus K beide Polynome pi(x) und p;(x) gleich Irr (8, K).
Streicht man also in g(x) solche mehrfach aufgefiihrten Primfaktoren bis auf
jeweils einen, so entsteht ein Polynom f(x) € K[x] mit einfachen Nullstellen, da
die p,(z) nach Voraussetzung nur einfache Nullstellen haben. Man bekommt E
aus K durch Adjunktion aller Nullstellen von g(x), also auch von f(x); also ist £
auch Zerfallungskorper von f(z) € K[x].

(8) = (1): Nach Satz 54.5 ist E endlich iiber K. Man betrachte die Gruppe p(X).
Sie hat so viele Elemente, wie es Fortsetzungen des identischen Automorphis-
mus ¢: K - K auf E gibt. Aussage b) von Satz 58.3 liefert also |y(K)| = [E: K].
Es sei ferner »(y(K)) = F > K der Fixpunktkorper von y(K). Zu zeigen ist
F=K. Nach Satz 64.1 gilt |y(K)|=[E: F]. Aus EoF>K und [E: F]=[E: K]
< oo folgt aber mit der Gradformel [F: K] = 1 oder F = K.

Der wichtigste Spezialfall von Satz 6 ist der

Satz 7: Es sei K ein Korper der Charakteristik Null und E eine Korper-
erwesterung von K. Genau dann ist E normal iber K, wenn E Zerfillungskirper
eines g(x) € K[x] ist.

Beweis: Ist E normal iiber K, so ist E Zerfallungskorper eines g(x) € K[x]
nach Aussage (2) von Satz 6. Ist umgekehrt E Zerfallungskorper eines g(z) e K[z),
so ist wegen y(K) = 0 von selbst g(z) separabel iiber K (Satz 62.1). Es gelten
also die Aussagen (2) und (1) von Satz 6.

Dieser letzte Satz zeigt am deutlichsten, mit welcher Berechtigung wir von
normalen Kérpererweiterungen sprechen.

Beispiel 2. Der Korper Q(}7) war nicht normal iiber Q. Es gibt also kein
g(x) € Q[x] mit Q(}/7) als Zerfallungskorper.

§ 66 Der Hauptsatz der Galoistheorie

Wir geben uns nun eine normale Erweiterung £ des Korpers K mit der Galois-
gruppe G(E|K) = G vor, betrachten Zwischenkérper £ 5 L 5 K und Unter-
gruppen U c G und halten an den Bezeichnungen von § 65 fest: Es bedeute »(U)
den Fixpunktkérper von U, also einen gewissen Zwischenkorper von £ und K,
und es sei y(L) c G die Gruppe der Automorphismen von E, die L elementweise
festlassen. Wir wollen alle Zwischenkorper L zwischen E und K bestimmen und
Aussagen iiber sie machen. Etwas vereinfacht wird sich folgendes heraus-
stellen: Es gibt genausoviele Zwischenkorper L, wie es Untergruppen U
von @ gibt; E ist normal iiber jedem L, und L ist genau dann normal iiber K,
wenn die Gruppe y(L) c G Normalteiler in G ist.

Satz 1: Es sei E etne normale Erweiterung des Kirpers K und L ein Zwischen-
korper. Dann ist E auch normal iber L.
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Beweis: Nach Satz 65.6 ist £ Zerfallungskorper eines Polynoms f(x) € K[x]
mit einfachen Nullstellen, also auch Zerfallungskérper des Polynoms f(x)e L[]
mit einfachen Nullstellen. Wiederum nach Satz 65.6 bedeutet das: E ist normal
tiber L.
Aber L mu@ nicht normal iiber K sein. Es sei etwa E der Zerfillungskorper
von 28 — 7eQ[x]; er ist normal iiber K =  nach Satz 65.7. Der Zwischen-
korper L = (y7) ist dann, wie wir wissen, nicht normal iiber K. Genauere
Auskunft gibt der

Satz 2: Es sei E eine normale Erweiterung des Korpers K und L ein Zwischen-
korper. Genau dann ist L normal dber K, wenn fir jeden Automorphismus
o € G(E|K) gilt: o(L) = L.

Beweis: Es sei G(E|K) = G; nach Satz 65.2 gilt [£: K] = |@|; wir setzen
|G| = n. Weiter sei L ein Zwischenkorper zwischen E und K und y(L) = U;
nach Satz 1 ist £ normal iiber L, also G(E|L) = U und wieder [E: L] = |U|;
wir setzen {U| = m. Wegen U c @ gilt m|n, und mit der Gradformel wird

[L: K] = % Nach Satz 63.3 gibt es also hochstens ;;—LIsomorphismen von Lin E,

die K elementweise festlassen. Wir schieben nun zur Fortsetzung des Beweises
eine Zwischenbetrachtung ein.

Man wihle zwei Automorphismen o, v € G und beobachte ihre Wirkung auf L;
wir bezeichnen die durch sie induzierten Isomorphismen von L in E mit
o*: L > E und t*: L > E. Wann ist ¢* = 1*? Es miilite o(a) = 7(a) oder
t-1lg(x) = « fiir alle « € L, also 7-16 € U oderserU sein. Genau dann also gilt

o* = 7*, wenn ¢ und 7 in derselben Linksnebenklasse von U liegen. Es gibt—:i
solche Nebenklassen von U in G; die Automorphismen o € G liefern also ge-
nau :—; paarweise voneinander verschiedene Isomorphismen o¢* von L in E,

die K elementweise festlassen, und damit sind alle derartigen Isomorphismen
von L in E gefunden, da es, wie bereits festgestellt, mehr nicht geben kann.

. - s n
Die Menge aller dieser o* sei G*; es war {G*| = o

Es sei nun 4 die Gruppe der Autbmorphismen von L, die K elementweise fest-
lassen; nach dem eben Erdrterten gilt A c G*. Ferner sei F' c L der Fixpunkt-
korper von 4 in L. Es gilt K c F c L. Genau dann ist L normal iiber K, wenn

F =K oder [L: F]=[L: K] ist. Es war [L: K] = 7% = |G*|, und nach

Satz 64.1 ist [L: F] = |A|. Genau dann ist also L normal iiber K, wenn |4|
= |G*| oder A = G*, also jedes o* bereits ein Automorphismus von L ist:
o(L) = L. Damit ist Satz 2 bewiesen.

Das Resultat von Satz 2 ist recht instruktiv: Genau diejenigen Zwischen-
korper L sind normal iiber K, die durch die Automorphismen o e G(E|K)
elementweise vielleicht verindert, im ganzen aber nicht bewegt werden.
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Ist ¢: 4 - B eine Abbildung von A in B und T eine Teilmenge von 4, so
wollen wir auch weiterhin die Restriktion von ¢ auf T mit ¢*: T -> B be-
zeichnen. Wir notieren eine Variante von Satz 2, die mitbewiesen wurde.

Satz 3: Es sei E eine normale Erweiterung des Korpers K und L ein Zwischen-
korper. Genau dann ist L normal iiber K, wenn die Menge G* aller Restriktionen
o* der 0 € Q(E|K) auf L die Gruppe der Automorphismen von L mit dem Fixpunkt-
korper K ist: G* = G(L|K).

Der folgende Satz 4 wird gewdhnlich als der Hauptsatz der Galoistheorie be-
zeichnet; oft rechnet man auch den Inhalt der erginzenden Sétze 5 und 6 mit
dazu.

Satz 4: Es sei E eine normale Erweiterung des Kéorpers K mit der Galois-
gruppe G(E|K) = G. Mit My sei die Menge aller Untergruppen U c G, mit My
die Menge aller Zwischenkorper E > L 5 K bezeichnet. Der Fixpunktkisrper von
U e M sei x(U)e Mg; die Automorphismengruppe von E mit dem Fixpunki-
korper L € M3 sei y(L) € My1. Dann gelten die folgenden Aussagen.

(1) [E: K] = |6I.
(2) Die Abbildung »: My —~ My ist bijektiv; die Umkehrabbildung ist x—1 = y.
(3) Fiir Uy, Uz € My gilt: Uy c Ug = #(U1) D «(Uy).

Fiir Ly, Ly € My gilt: Ly ¢ Ly = y(Ia) D p(Lg).
(4) E ist normal iiber jedem Zunischenkorper L e My; es gilt G(E|L) = y(L). Es
st [E: L] = |y(L)|, und [L: K] ist gleich dem Index von y(L) in G.

Beweis:
(1): Satz 65.2.
(2): Es ist E endlich tber K, die Abbildung »: M; - M3 also eine Injektion
(§ 656.1). Da E sogar normal iiber K ist, ist £ auch normal iiber jedem L € M2
(Satz 1), und das heiBt x(y(L)) = L; jedes L € M3 hat also ein Original (L) € M,,
und die Abbildung x ist insgesamt bijektiv. Nach Satz 65.1 gilt y(»(U)) = U
fir.jedes U € M;; die Umkehrabbildung von x ist also y.
(3): Diese Regeln wurden schon in § 65.1 ausgesprochen.
(4): Die ersten beiden Behauptungen stehen in Satz 1 und der Definition der
Galoisgruppe. Es folgt [E: L] = |y(L)| nach Satz 65.2. Die Gradformel liefert

16

also[L: K

(B K=y = md B
Die wichtigste Aussage von Satz 4 ist (2). Die Bestimmung aller Zwischen-
korper E 5 L 5 K wird damit auf die Bestimmung aller Untergruppen U einer
endlichen Gruppe @ zuriickgefithrt. Wir besprechen in § 67 ein Beispiel.

Satz 5: Es sei B normal iiber K mit der Qaloisgruppe G(E|K) = G und L ein
Zwischenkdrper mit der Gruppe y(L) = U c G. Genau dann ist L normal diber K,
wenn U Normalteiler von G ist. Ist L normal iber K, so gilt G(L|K) ~ G|U.

Beweis: Wir fiilhren den Beweis in drei Schritten.
1) Es sei ¢ € G. Wir behaupten: Wenn U die Gruppe von L ist, so ist cUg-1 die
Gruppe von o(L). Zunichst ist ¢(L) ein Zwischenkérper von E und K. Zu
bestimmen ist die Menge aller v € G mit vo(x) = o(x) oder o-lvo(x) = fiir
jedes a € L. Also gilt o~lvo € U oder z e cUo-L.
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2) Nach Satz 2 ist L genau dann normal iiber K, wenn fiir alle o € G gilt:
o(L) = L. Nach 1) und Aussage (2) von Satz 4 ist das gleichwertig mit ¢Uos-1
= U fiir alle ¢ € G. Also ist L genau dann normal iiber K, wenn U Normal-
teiler in G ist.

3) Es sei nun L normal iiber K, also U Normalteiler von G. Die Galoisgruppe
G(L|K) ist dann die Gruppe G* aus Satz 3. Fiir die Restriktion (s7)* eines
Produkts o7 von Automorphismen o, v € @ auf L gilt natiirlich (67)* = o*7*.
Das bedeutet G = G*; Kern dieser Abbildung ist U. Der Homomorphiesatz
fiir Gruppen liefert also G(L|K) = G* ~ G/U.

Der Formulierung von Satz 6 stellen wir eine kurze Betrachtung voran. Sind
Uy und U, Untergruppen der Gruppe @, so gibt es wenigstens eine Unter-
gruppe H von @G, die U, und U, umfaft, nimlich ¢ selbst. Der Durchschnitt D
aller dieser H ist wieder eine Untergruppe von @, die U; und U; umfaBt, und
wegen D c H fiir alle H hat es einen Sinn zu sagen, D sei die kleinste Unter-
gruppe von G, die U; und U; enthilt; sie existiert stets. Sind analog L; und Lo
Zwischenkorper der Korper E und K, so hat es einen Sinn, von dem kleinsten
Unterkorper L von E zu sprechen, der Ly und L; umfaBt; L ist der Durch-
schnitt aller gemeinsamen Oberkérper ¥ c E von L; und Ls.

Satz 6: Es sei E normal iiber K und L der kleinste Unterkorper von E, der
die Zwischenkorper Ly und Ly von K und E enthdlt. Die Gruppen von Ly, Ly seien
y(L1) = Uy und y(Lg) = Us. Die kleinste Untergruppe von G(E|K), die Uy
und Uy umfaft, sev U. Dann gilt fiir die Fizpunktkorper
(1) (U) = ILno Ly,

(2) x(Uln Uz) = L.

Beweis:

(1): U wird von den Elementen aus U; und U; erzeugt. Automorphismen aus U
lassen also jedenfalls L; n Ly elementweise fest: »(U) > Ly n Ls. Aus U o> Uy
folgt #(U) c Ly; aus U > Uy folgt »(U) c Le. Also gilt auch »(U) c Ly n Lz und
damit x( U) = L]_ n Lg.

(2): Behauptet wird y(L) = Uy n Us. Der Korper L wird von den Elementen
aus L, und L; erzeugt. Automorphismen aus U; n Us lassen also sicher L
elementweise fest: y(L)> Uyn Us. Aus L2 Ly folgt (L) c Uy; aus Lo Ly
folgt y(L) c U,. Also gilt auch y(L) c Uy n Uz und damit y(L) = Uy n Us.

§ 67 Ein Beispiel

Gegeben sei der Korper K = Q. Wir betrachten den Zerfallungskérper £ 5 K
von f(z) = x4 — 2 eQ[z]). Nach Satz 65.7 ist E normal iiber 2. Die Null-
stellen von f(z) sind §2, ¢}2, —}2 und —i}/2; es wird also E = Q(}/2, 7). Das
Polynom zt—2 ist irreduzibel iiber L (Eisenstein-Kriterium, p = 2); es
folgt [E: K] = [Q(}2,4):Q(¥2)] - [Q}2): Q] = 2 -4 = 8. Nach Aussage (1)
von Satz 66.4 besteht also G(£|K) aus acht Elementen. Diese Galoisgruppe be-
stimmen wir zunéchst,
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Ein Automorphismus ¢ der Gruppe G(E|K) = G wirkt auf die Elemente von
E = ()2, ), 148t aber dabei die Elemente aus Q fest. Ein ¢ € G ist daher
bekannt, wenn ¢ 1/2 ) und @(s) bekannt sind. Nach Satz 58.5 gibt es fir ¢(}/2)
die Moglichkeiten }2, 1y2, —}2, —i}2, fiir ¢(¢) nur ¢ und —i. Kombiniert man
alle Moglichkeiten miteinander, so ergeben sich acht Fille, die nun simtlich
Automorphismen von £(}/2, ) liefern miissen, da andernfalls |G| < 8 ausfiele.
Nun kénnen wir G aufschreiben. Wir definieren o € G durch ¢(}2) = ¢y2 und
o(i) = ¢, ferner v€ @ durch 7(¥2) = 2 und 7(¢) = —i. Dann wird 72 der
identische Automorphismus ¢ von Q(}2, ¢). Fiir die Potenzen von ¢ bekommt
man o2(¥2) = o(iY2) = o())o(}2) = —V2,0%3) = ¢ und o3(j2) = —i}2,
63(2) = ¢ und schlieSlich ¢¢ = . Die Gruppe G besitzt also die Untergruppe
{¢, 0, 02, 63}, die ihrerseits v € G nicht enthilt, also noch die Nebenklasse
{z, 01, 6?7, 037} liefert. Damit wird G = {e, o, 02, 03, 7, o7, 0?7, 037}.
Wir untersuchen nun die Gruppe G; speziell miissen wir, um alle Zwischen-
kérper von Q(¥2,4) und Q ausfindig zu machen, alle Untergruppen von G
bestimmen. Das Rechnen in @ ist leicht zu iibersehen. Man priife nach: 7o(}2)
= 7(1}2) = ©(@)r(V2) = —iY2 = 0%2(}2) und 70(t) = —i = o3¢(i). Also gilt
=12 = ¢ und 76 = 63t = ¢~17; nach Satz 18.1 ist G also isomorph zur
Diedergruppe ®4. Untergruppen von G kénnen nur die Ordnungen 1, 2,4 und 8
haben. Die Untergruppen der Ordnung 2 sind {e, 02}, {¢, 7}, {¢, o7}, {¢, 027} und
{&, 031}; man findet sie durch Aufsuchen der Elemente 62, 7, a7, 627, 037 der
Ordnung 2 in G. Nur {e, 02} ist Normalteiler von @, die anderen Untergruppen
der Ordnung 2 sind es nicht. Durch Probieren findet man die simtlichen
Untergruppen {g, o, 62, 63}, {¢, 02, 7, 027} und {e, 02, o7, 037} der Ordnung 4; als
Untergruppen vom Index 2 sind sie alle Normalteiler. Es ergibt sich das
folgende Gruppendiagramm;‘in ihm beriicksichtigen wir die mengentheore-
tische Inklusion und kennzeichnen die Nichtnormalteiler durch einen Stern:

=

{e, ot} {e, 0%} _{e, 0% {5, 7}* {s o?}*
N NN
{e, 02,07, 0%} {e,0,0% 0% e, 0%, 7, 07}

Auf Grund der Aussagen (2) und (3) von Satz 66.4 muB es nun ein entsprechen-
des Diagramm der simtlichen zehn Zwischenkérper L von E = Q(}/2, 1) und Q
geben, und L ist genau dann normal iiber 2, wenn (Satz 66.5) die Gruppe (L)
Normalteiler von @ ist. Einige Zwischenkorper L kann man sofort hinschreiben:

(Y2, ©), Q, QY2), Q6Y2), 22, 7), Q@), ()/2), Q(E)2). Man sieht leicht, und
es wird sich gleich noch einmal herausstellen, daB sie paarweise voneinander
verschieden sind. Damit hat man acht Zwischenkérper ohne Miihe notiert. Es
fehlen nur noch zwei, die man aber nicht so leicht erraten wird. Nun entspricht
jeder Untergruppe U c G ein Zwischenkérper »(U). Trivial sind x({e}) = Q(}2,7)
und #(G) = Q. Wir bestimmen x{{¢, v}) = L. Da 2(}2) von jedem Automor-
phismus aus {¢, v} elementweise festgelassen wird, gilt E > L 5Q(y2). Nun ist
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[E:2(}2)] = 2 und nach Aussage (4) von Satz 66.4 auch [E: L] = K, 7}| = 2.
Die Gradformel liefert also L = x({e, 7}) = Q(}2). Ganz analog iiberlegt
man sich x({e, 02}) = Q(}2,4), x({e, 027}) = R(V2), «x({¢, 0, 02, 3}) = Q(2),
%({e, 6%, 7, 027}) = Q()2) und x({e, o2, o7, 031}) = Q(E}2). Die den Gruppen
{&, ot} und {¢, 37} entsprechenden Zwischenkorper kennen wir noch nicht,
und wir brauchen eine Methode, sie auszurechnen.

Das kann auf mehrere Arten geschehen. Nicht das nidchstliegende, aber ein
recht praktisches Verfahren ist das im folgenden besprochene. Es sei wieder £
normal iiber K mit der Galoisgruppe G(Z|K) = G; es sei |G| =[E: K] =n
und {o, ag, ..., an} eine Basis von E iber K. Vorgelegt sei eine Untergruppe
U={o1,02 ..., 0m} von G, und L = »(U) soll ermittelt werden. Man be-
trachte ein Element & € E und (vgl. § 64) seine Spur

Solt) = S ould)
p=1

beziiglich U. Das ist ein Element aus F, das unter allen Automorphismen aus U
festbleibt; es liegt also in L. Umgekehrt 148t sich jedes I € L in der Gestalt
l = Sy(£) mit einem geeigneten & € E schreiben, wie wir jetzt zeigen wollen. Im
Falle y(K) = 0 ist m als Element von K nicht Null, und man kann einfach

&= %l wihlen. Fir beliebiges y(K) wihle man ein « € £ mit Sy(x) == 0;

nach § 64 gibt es ein solches «, und es ist Sy(«x) € »(U); fiir das Element
l
~ Sol@) ”
von E gilt dann 8(§) = I. Damit wissen wir: Es ist L = »(U) = {Sy(¢): £ € E}.
Schreibt man & in der Form aja; + asap + ... + anay, @y € K, 80 wird Sy(&)

= a1Sylar) + a2Svlxa) + ... + anSy(ay). Es ist also L der von den Sy(ay)
aufgespannte Teilraum von E oder auch '

L= ”(U) = K(SU(dl), SU(“Z)’ ey SU(“‘IE))’
Wir kehren nun zu unserem numerischen Beispiel zuriick und brauchen jetzt

eine Basis von Q(}2, ¢) iiber Q. Um sie zu finden, geniigt eine Erinnerung an
den Beweis der Gradformel. Danach kénnen wir etwa

L, V2, (V2)%, (1203, 4, 492, 4§22, i(12)%)
als Basis von Q(}/2, 7) iiber Q wahlen.
Die Berechnungen der Zwischenkérper verlaufen jetzt ganz schematisch; wir
fiihren sie in drei Fillen durch.
1) Es sei U = {g, 0, 02, 0%}. Man bekommt Sy(l) =4, Su(}y2) = Suv((}2)?)
= Su((i20) =0, 8uy(i) =4, Sv(¥2) = Suv(i(}2)*) = Suli(}2)}) = 0, also
»(U) = 24, 0, &) = Q(2).
2) Es sei U = {¢, o7}. Man bekommt Sy(1) = 2, Sy(}2) = (1 + 9)}2, Sv((y2)?)
= 0, Su((Y2®) = (1 —i)J2B, Sul) = 0, Suli?) = (1 + HY2, Suli(j2)?)
= (Y27, Suli(h2P) = (i — 1)(J2)% also x(T) = Q1 + Y2, (1 —s)}2P,
2i(y2)2) = Q((1 + 4)y2). (Die Zahl « = (1 + 1)}2 ist eine vierte Wurzel
aus —8.)
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3) Es sei U = {g, 037}. Man bekommt Sy(1) = 2, Sy(}2) = (1 — 9)}2, Sv((}2)2)
=0, Sy((12%) = (1 + )(I2P, Suli) = 0, Su(i¥2) = (i — 1)Y2, Suli(}2))
= 2i(¥2)2, Su(i(}2)3) = (1 + 4)(}2)3, also x(U) = Q((1 — 9)¥2). (Auch (1 — ©)}2
ist eine vierte Wurzel aus —8.)

Nun konnen wir das Diagramm aller Zwischenkorper angeben; Zwischen-
korper, die nicht normal sind iiber Q, kennzeichnen wir durch einen Stern:

—— Q((M —_—

AL +H12* AL —¥Z*_— 23, 9) 212)* 232)*
2(:)2) Ql(i) A2
2
Damit ist unsere Diskussion beendet. Da jeder Automorphismus von E
= (}2, ¢) von selbst den Primkérper Q elementweise festlaBt, war @ schon
die Gruppe aller Automorphismen von E, und das abschlieBende Korper-
diagramm erfaft bereits alle Unterkorper von E.

Aufgabe 1: Man bestimme das Kérperdiagramm von Q(}2, }/3) iiber Q.
Aufgabe 2: Man bestimme alle Zwischenkérper von Q und Q(}/2, |3, V5).

Aufgabe 3: Es sei £ der Zerfallungskorper von 23 — 7 € Q[x]. Man be-
stimme das Korperdiagramm von E iiber Q.

§ 68 Automorphismen von GF(p")

Ergianzend zu §59 betrachten wir noch einmal den endlichen XKorper E
= GF(p*). Wir wollen die Gruppe G aller Automorphismen ¢ von E be-
stimmen. Zunichst léBt jeder Automorphismus ¢ den Primkdrper K = 3,
von E elementweise fest, da jedes k € K eine Summe von Einsen ist. Nach
Satz 59.3 gilt ferner [E: K] = n < 0. Gesucht ist also die Gruppe G = y(K)
aller Automorphismen von E iber K = 3.

In Satz 59.5 haben wir auerdem festgestellt, daB E der Zerféllungskérper von

f(x) = xP —x e K[z]
ist. Wegen f'(z) = —1 hat f(z) nur einfache Nullstellen. Nach Satz 65.6 ist
also E sogar normal iiber K. Die gesuchte Gruppe ist demnach die Galoisgruppe
G = E|K), und wir wissen |G| ={E: K] = n.

Satz 1: Der Korper E = GF(p») ist normal iiber seinem Primkirper K = 3p;
die Galoisgruppe G(E|K) ist zyklisch von der Ordnung n.
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Beweis: Wir haben noch zu zeigen, da G = G(E|K) zyklisch ist. Man
betrachte die durch o(a) = «? definierte Abbildung o: E — E. Aus o(a) = o(8)
folgt a? — P = (a— f)? = 0, also a = §; die Abbildung ist also injektiv
und wegen |E| < oo sogar bijektiv. Ferner gilt a(a + ) = (¢ + p)? = a? + P
= o(x) + o(f) und o(af) = o(x)o(f). Insgesamt ist demnach o ein Auto-
morphismus von E.

Wir bestimmen die Ordnung m von ¢ € @ und zeigen m = n. Da |G| = n ist,
folgt dann: G = {¢, 0,02, ..., o071} ist zyklisch. Wegen |G| = n ist sicher
m = n. Zu zeigen bleibt m = n. Zunichst gilt o7(¢) = a?" fiir jedes a € E.
Ist also o™ = ¢ der identische Automorphismus, se bedeutet das a?” = «
fir jedes a € E. Dann hitte aber g(x) = a?™ — x € E[x] genau |E| = p*
Nullstellen in £, und dazu mull p™ = p* oder m = n sein.

Damit ist Satz 1 bewiesen.

Da man aus Satz 9.6 alle Untergruppen von G kennt, kann man wie in § 67
das Gruppendiagramm aufstellen und daraus das Diagramm der Zwischen-
korper von GF(p") und 8, ableiten. Das Ergebnis ist leicht zu iibersehen und
bereits in der Losung von Aufgabe 59.2 festgehalten.

§ 69 Kreisteilungskorper

69.1 Es sei K ein Koérper und E der Zerfallungskorper von f(x) = 27 — 1eK[z].
Die Nullstellen von f(z) in £ heifien n-te Einheitswurzeln. Sie bilden eine
Gruppe I von hochstens = Elementen beziiglich der Multiplikation. Fir diese
Gruppe I gilt der

Satz 1: Es sei E der Zerfillungskirper von f(x) = 2 — 1 e K[z}, n = 1,
und I c B die multiplikative Gruppe der n-ten Einheitswurzeln. Dann ist I
zyklisch, und es gilt |I| = n genau dann, wenn die Charakteristik y(K) nicht in n
aufgeht.

Beweis: Die Gruppe I ist zyklisch nach Satz 59.2. Sie hat n Elemente
genau dann, wenn jede Nullstelle « von f(x) einfach ist. Letzteres ist genau
dann der Fall, wenn f(x) = nz”-! an der Stelle « nicht verschwindet. Da «
nicht Null ist, ist das gleichbedeutend mit y{K)tn.

Ein erzeugendes Element von I nennen wir eine primitive n-te Einheitswurzel.
Wir wihlen nun speziell K = ; dann ist E der Zerfillungskorper von
zr — 1 eQ[x]. Wir wissen: Genau dann, wenn £ mit Zirkel und Lineal kon-
struierbar ist, kann man das regelméiBige n-Eck mit Zirkel und Lineal kon-
struieren. Das ist der Hintergrund fiir die

Definition: Der Zerfillungskorper &, von a® — 1 e Q[x], n = 1, keift der
n-te Kreisteilungskorper.
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69.2 Unter Verwendung der Bezeichnungen von § 12.4 beschiftigen wir uns
noch einmal kurz mit der primen Restklassengruppe 9,. Es sei »n eine natiir-
liche Zahl und ¢(n) = r. Die Zahlen 1 =n < 72 < ... < n, = n seien die
simtlichen zu » teilerfremden n, € 9t zwischen 1 und n. Dann ist die Rest-
klassengruppe Pn = {K(m1), K(ng), ..., K(ny)} eine multiplikative Unter-
gruppe des Restklassenringes 3, = {K(1), K(2), ..., K(n)}, und es gilt der

Satz 2: Die prime Restklassengruppe P, ist abelsch; sie hat p(n) Elemente.
Ist n = p eine Primzahl, so ist Py sogar zyklisch.

Beweis: Die ersten beiden Behauptungen wurden in §12.4 bestitigt.
Dariiber hinaus ist 9P, als multiplikative Gruppe des endlichen Korpers 3,
zyklisch nach Satz 59.1.

Daf die prime Restklassengruppe modulo p zyklisch ist, ist ein wichtiger und
oft benutzter Sachverhalt. Es gibt also ein a € P, derart, daBl

spp = {1: a, a2, sy ap—Z}

gilt. Deutet man a als eine natiirliche Zahl, so besagt das, da8 fiir vorgegebenesp
bei fest gewihltem geeigneten a jede prime Restklasse modulo p einen Repré-
sentanten der Gestalt a? besitzt. Man nennt ein solches a € R eine primitive
Kongruenzwurzel modulo p. Beispiele: 2 ist primitive Wurzel modulo 5; 3 ist
primitive Wurzel modulo 17.

69.3 Wir kommen nun zu unserem Hauptresultat.

Satz 3: Der Kreisteilungskorper Ry, ist normal diber Q. Es gilt [fy: Q]
= @(n), und die Galoisgruppe G(K,Q) ist isomorph Pn.

Beweis: Nach Definition ist &, der Zerfillungskérper von 27 — 1 e Q[x];

2
er ist also normal iiber £ nach Satz 65.7. Setzen wir { = cos -nﬁ + ¢sin 7“, so

wird £, = (), und aus Grad Irr ({,R) = Grad () = ¢(n) folgt [Kx: Q]
= @(n). Zu zeigen bleibt G(K,IQ) ~ Pa.

Wir bestimmen zunichst die Galoisgruppe G(£,/Q) = G. Ein Automorphismus
¢ € G ist bekannt, sobald o({) bekannt ist. Nach Satz 58.5 kommen fiir ¢({) nur
die Nullstellen {* von @,(x) in Frage. Umgekehrt gilt &, = Q({) ~ Q({*) = &,
fiir jedes solche (* (Satz 58.2, Spezialfall); &, wird ja tiber  von jeder primi-
tiven n-ten Einheitswurzel (* erzeugt. Also definiert ¢(() = {* fiir jede der
p(n) Nullstellen {* von @Dy(x) einen Automorphismus von &, iber , und ¢

besteht aus diesen g(n) Automorphismen. Die {* sind die Zahlen {¥ = cos k%:—z

+ ¢ sin k%:f mit zu n teilerfremdem 1 < k& < n. Die Elemente der Galois-

gruppe G sind also die durch ox(l) = (* fir zu = teilerfremdes 1 =k <=
definierten Automorphismen . Zu zeigen ist G ~ P,. Wir denken uns die
Gruppe Py in Gestalt ihrer zu # teilerfremden Reprasentanten k mit 1 =k <n
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gegeben. Dann ist die durch y(ox) = &k definierte Abbildung y: G - P, bi-
jektiv. AuBerdem wird oroi() = or{?) = L¥! = {r = 0,({) oder oxo; = o, mit
dem durch 1 <7 < und r = kl(n) eindeutig bestimmten r e M, und in P,
gilt entsprechend kIl = r; das ist aber gerade die Relationstreue der Abbil-
dung y. Also ist y: G — Py, ein Isomorphismus, und Satz 3 ist bewiesen.

Beispiel 1. Die Galoisgruppe von 832 iber Q ist (vgl. § 12.4) die Vierer-
gruppe P12 = {1, 5, 7, 11}; den drei Untergruppen der Ordnung 2 entsprechen
die Zwischenkérper Q()/3), Q(:), Q(J—3).

Beispiel 2. Es sei p eine Primzahl. Wir betrachten den Kreisteilungskérper
fp. Nach Satz 3 ist &, normal iiber Q vom Grad ¢(p) = p — 1. Die Galois-

gruppe G(£p|2) ~ VP, ist zyklisch nach Satz 2. Es gilt &, = Q({) mit { = cos 2;7!

2
- ¢ 8in _7_z, und wegen [{: Q] = p—1 ist {1,¢, (2, ..., (P2} eine Basis von

fp iber Q. Mit {1,¢, 2, ..., (P2} ist auch {{, (2,3, ..., (P1} linear unab-
hingig und damit nach Satz 50.4 ebenfalls eine Basis von &, iiber Q. Diese
Basis {¢, {2, ..., {P-1} hat eine interessante Gestalt; sie besteht aus den samt-
lichen Bildern o(() eines gewissen Elementes { € &, unter den Automorphismen
g € G(£,|Q). Basen der Gestalt {¢({): o0 € G(E|K)} einer normalen Erweiterung £
von K nennt man Normalbasen. Sie sind vielfach von Nutzen. Mit einigem
Aufwand liBt sich zeigen, daB jede normale Erweiterung E eines Korpers K
eine Normalbasis besitzt.

69.4 Mit Hilfe von Satz 3 sind wir nun in der Lage, die Frage, welche regel-
miBigen n-Ecke mit Zirkel und Lineal konstruierbar sind, iiber Satz 56.3
hinaus wie folgt zu beantworten.

Satz 4 (Gauss 1796): Das regelmipfige n-Eck ist genau dann mit Zirkel und
Lineal konstruierbar, wenn n eine Potenz von 2 oder n = 2"papg . . . ps, ¥ = 0,
8 = 2, mit paarweise voneinander verschiedenen Fermatschen Primzahlen pg tst.

Beweis: Nach der Bemerkung 2 zu Satz 56.3 bleibt zu zeigen: Wenn
p = 22" 1+ 1 eine Primzahl ist, so ist das regelméaBige p-Eck mit Zirkel und
Lineal konstruierbar. Das ist der eigentlich schwierige Teil beim Beweis von
Satz 4. In diesem Fall ist nun auf Grund der Sitze 3 und 2 die Galoisgruppe
G(£,/Q) zyklisch von der Ordnung 22". Satz 9.6 liefert das vollstindige Grup-
pendiagramm
{& = U1cUacUscUgc... cUzﬂv = @

von G; die U, sind dabei Untergruppen der Ordnung 4. Dieser Kette von 27+ 1
Untergruppen U, entspricht nach Satz 66.4 eine Korperkette

8 = Lovj1d Lo Lovy>...0 10 = R,
und in ibr gilt
[R: L] = 241,
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Mit der Gradformel folgt [Lj41: L] = 2. Jetzt wird Satz 56.1 anwendbar. Er
zeigt die Konstruierbarkeit von &, und damit des regelmiBigen p-Ecks fiir
Fermatsche Primzahlen p. Damit ist Satz 4 bewiesen.

Dieser Satz steht am Ende lingerer gruppen- und korpertheoretischer Unter-
suchungen, deren Grundlagen erst im 19. Jahrhundert allmihlich gelegt
wurden. Gauss fand seinen Beweis lange Zeit zuvor im Alter von achtzehn
Jahren.

In § 70 wenden wir uns wieder einem Beispiel zu und konstruieren das regel-
méiBige Siebzehneck.

§ 70* Die Konstruktion des regelmiBigen Siebzehnecks

2; 2
Fiir den Kreisteilungskorper £17 gilt £7 = Q({) mit { = cos ,1;‘ + ¢sin " Das

17
regelmifBige Siebzehneck ist konstruierbar, sobald ¢ oder auch —;(E + ¢

2n

= cos 17 mit Zirkel und Lineal gefunden sind. Wir miissen von £ iiber die

Zwischenkorper zu 817 aufsteigen. Um die Zwischenkorper kennenzulernen,
brauchen wir nach dem Vorbild von § 67 zunédchst die Galoisgruppe G(£17|Q)
= @ und das zugehorige Gruppendiagramm.

Es ist {17 = 1.

Ein ¢ € G ist bekannt, sobald ¢({) bekannt ist. Die moglichen Bilder ¢(¢)
von ¢ sind die Nullstellen ¢, ¢2, ..., 18 von Irr ({,Q) = 218 4 215 ... 4 1,
und wegen |G| = 16 tritt auch jede Potenz " fiir ein geeignetes ¢ € G als Bild
@(¢) auf. Wir definieren nun ein spezielles ¢ € @ durch o(¢) = {3 (im Exponenten
steht eine primitive Kongruenzwurzel modulo 17). Firr die Potenzen von o
gilt dann o%(¢) = -8, 03(0) = {7, o¥({) = 4, o5() = &5, o8(() = (2, 67(()
= C—G, GB(C) = 5_1’ U9(C) = 5_3: 0'10({) = c87 UII(C) = C7» GIZ(C) = C47 0-13(C) = 5—5’
1) = 22, o13(0) = &8, o18(L) = (. Also hat ¢ die Ordnung 16, und es wird
G = {g, 9, 6%, ..., o15). Die Untergruppen von @ sind Uy = {&}, Uy = {e, 08},
Uy = {g, 04, a8, 012}, Ug = {¢, 02, a4, o8, 68, 019, 012, ol4}, Us = @G, und wir
bekommen das Gruppendiagramm

U1CU2CU4CU3CU16.
Diesem Gruppendiagramm entspricht das Koérperdiagramm
f17 = Ls>LyoLaoLlenoL; = .

Um diese L; zu berechnen, brauchen wir wie in § 67 eine Basis von 87 iiber Q.
Wir wihlen die aus § 69, Beispiel 2, bekannte Basis {Z, £, ..., £18}. Die nun
folgenden Berechnungen verlaufen nach dem Vorbild von §67. Dabei be-
zeichnen wir die Spur der Gruppe U, mit

Sy &) = Saf)  (§€ 8).



224 Galoistheorie

Der Korper Ly gehort zu Ug und wird demnach iiber  von Sg(f), Ss((2),
8s(23), ..., Ss(18) erzeugt. Diese Erzeugenden konnen auch in der Gestalt
Ss(2), Ss(a14(2)), Ss(a()), -- ., Ss(e¥(()) notiert werden; denkt man sie aus-
geschrieben, so sieht man, da sie nur aus den beiden voneinander verschie-
denen Elementen Sg({) = pr&1 und Ss(a(£)) = o(1) bestehen. Es ist

Lir=0¢ + 084440240+ 8400 4 23
ot1) = O+ 8 4L F L34 T+ L5+ 08,
Das Element {; € &7 hat unter den Automorphismen von @ nur die Bilder {;
und o(1). Nach Satz65.3 gilt daher Irr (£1,2) = Irr (0(£1),R) = (x—L1)(z—o(1));
das Element {1, das ja schon in Lj liegt, hat also ebenso wie Ly iiber Q den
Grad 2. Damit wissen wir Ly = ({1). Zur Konstruktion von ¢; brauchen
wir Irr ({1, 2) als Polynom aus Q[z]. Eine Rechnung unter Benutzung von
C+22+4 ... 4§18 =1 zeigt L10(t1) = —4 und {1 + o(81) = —1. Diese
beiden Ergebnisse bestimmen Irr ({1, Q) = 22 + # — 4. Nun waren

=@+ )+ @+ + 0+ + (8 + 08,
of)) = B+ + B+ +EE+H+ "+

beide reell, und ein Blick auf die geometrische Darstellung in der GauB3schen
Zahlenebene lehrt {3 > 0 und o(f;) < 0. Also ist ¢; die positive Nullstelle

%(Vﬁ— 1) von 22 + x — 4. Damit steht {; als Ergebnis einer Zirkelkonstruk-

tion zur Verfiigung, und Ly = Q({1) ist bekannt.

Nun betrachten wir den Kérper Ls. Er wird iiber Q erzeugt von Sy((),
84(22), ..., S4(¢18), und die paarweise voneinander verschiedenen dieser Er-
zeugenden sind S4(Z), Sa(a(£)), Sa(62(()), Sa(03(()). Ausgeschrieben haben sie
die Gestalt

Sal) =L+ {24140 = prle
o(le) = B+ B+ (345
0%fe) = {8+ {2+ 8+ 12 = pra
0l2) = T+ {847+ (6.

Unter den Automorphismen von & hat {; nur diese Bilder. Sie haben also
wieder nach Satz 65.3 alle vier dasselbe definierende Polynom

Irr (£2, Q) = (x — Lo)w — o{la)) (@ — 0%(L2))(x — 03(C2))

vom Grad 4 iber Q. Damit ist [2: Q] = [L3: Q] = 4, und {2 € L3 allein er-
zeugt L3 iiber  und erst recht iiber L. Das heiit Lz = Lg({2). Nun suchen wir
das definierende Polynom Irr ({5, Lg); wegen [Lg: Ly] = 2 hat es den Grad 2.
Die Galoisgruppe von 87 iiber Lg ist Us. Die moglichen Bilder von {3 unter
Automorphismen aus Us sind nur {2 und 62({z) = «. Erneute Anwendung von
Satz 65.3 liefert

It (o, Ln) = (& — &) (= — o).

Nun berechnet man {sa = —1; auBerdem gilt {3 + « = {;. Damit bekommt
man Irr ({s, L) = 22 — {1z — 1. Wieder sind die Nullstellen {2 und « reell,
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und es ist {2 > 0, « < 0. Also ist (o die positive Nullstelle des Polynoms
2 — Lz — 1. Mit {1 steht demnach auch {3 als Ergebnis einer Zirkelkonstruk-
tion zur Verfiigung; die Korper Ly, Ls, L3 sind nun bekannt.

Wir driicken noch o(fs) = psf € Lz durch {; und (e aus. Man priife dazu
5 1 )
3 = t1— 5 + 28 + 4 nach. Es folgt § = -é(cé — &1+ L2—4). Auch g ist

damit als Resultat einer Zirkelkonstruktion bekannt.

Der niichste Koérper ist Ly. Die paarweise voneinander verschiedenen unter
seinen Erzeugenden Sp(¢?), 1 < » < 16, iiber Q sind S3(Z), Sa(a(L)), - . ., Sa(s7(2)).
Wir kénnen uns nun kiirzer fassen: Alle diese Elemente haben den Grad 8
iiber  und den Grad 2 iiber Lg. Wir setzen Sp(l) = ¢ + (1 = prl{3 und
bekommen Ly = Ls({3) und Irr ({3, Ls) = (x — {3) (x — o*((3)) = 2® — Low 4 B.
Dabei ist o4(f3) = {4 + ¢4 die kleinere der beiden positiven Nullstellen (g,
a4(Z3) dieses Polynoms. Jetzt ist auch {3 mit Zirkel und Lineal konstruierbar;
denn {3 und § waren inzwischen bekannt.

Nun kann das regelmiBige Siebzehneck schon konstruiert werden; es ist ja
{3=1{(4{1=2cos 21—77’
Der Koérper Ls wird iiber Lg von { erzeugt, und es ist Irr (¢, Ly) = 2% — {3z + 1.

Zusammenfassung: Man konstruiere die positive Nullstelle {; von 22+«
—4, anschlieBend die positive Nullstelle {3 von 22 — {12 — 1. Aus £y und {3 kon-

1
struiere man g = —(c% — {1 + 2 —4). Dann ist {3 = 2 cos E:_z die groBere der

beiden positiven Nullstellen von 22 — Loz + f#; damit sind der Winkel i und
das regelméfBige Siebzehneck bekannt. 17

Literatur: ARTIN [3], HassE [7], Hasse-KrLoBE [8].

15 Hornfeck, Algebra



8 Auflosbare Polynome

Schon im Mittelalter war man in der Lage, die Nullstellen von Polynomen
héochstens vierten Grades explizit durch Formeln anzugeben, in denen neben
rationalen Operationen nur Wurzelzeichen verwandt werden. Obwohl diesen
Formeln kaum praktische oder theoretische Bedeutung zukommt, versuchte
man immer wieder erfolglos, auch die Nullstellen von Polynomen héheren
Grades in gleicher Weise zu bestimmen. Der zweiundzwanzigjéhrige ABEL
hatte zunichst geglaubt, die gesuchte Auflésung fiir Polynome fiinften Grades
gefunden zu haben. Aber er erkannte bald seinen Irrtum und konnte nun im
Gegenteil beweisen, daB Polynome fiinften oder hoheren Grades derartige Auf-
lsungen allgemein nicht mehr gestatten. Diese Entdeckung begriindete ABELS
ersten Ruhm, und der Beweis seines Satzes ist unser letztes Ziel. Dazu brauchen
wir noch einmal zusitzliche Uberlegungen aus der Gruppentheorie, die an
entscheidender Stelle durch unsere Kenntnisse aus der Galoistheorie erginzt
werden.

§ 71 Polynome ersten bis vierten Grades

Es sei K ein Kérper.

Die Nullstellen von x* — a € K[xz] bezeichnen wir mit dem Symbol T/E und
nennen es ein Radikal.

Definition: Das Polynom f(x) € K[x] habe in seinem Zerfillungskorper E
die nicht notwendig voneinander verschiedemen Nullstellen &y, &», ..., &, Es
heipt iiber K auflosbar, wenn jedes &y, Element esnes Korpers der Gestalt

= K('i?a_l’ ’.‘V_a;, ceny ’i;;')

tst, der durch sukzessive Adjunktion gewisser Radikale ]/a(, wte folgt aus K
entsteht:
-

am ek, azeK(VeTl) age K Val, V—) =Y ¢ ]hLu—l, ’I]7éz—2,..., a,_l).

Erganzung: Hierbei kann, wie wir es im folgenden tun wollen, ohne Be-
schrinkung der Allgemeinheit angenommen werden, daB8 die n; Primzahlen
sind.

In dieser neuen Bezeichnungsweise ist also etwa 2(}/2) ein Korper, der aus 2
durch Adjunktion irgendeiner (also nicht notwendig der reellen) Nullstelle
von 23 — 2 e Q[x] entsteht.
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Ein lineares Polynom f(z) = ax + be K[z], @ & 0, ist auflosbar; denn es
b
hat nur die Nullstelle & = — o€ K.
Satz 1: Es sei K ein Korper und y(K) = 2. Dann ist ein quadratisches
Polynom ax? + bx + ¢ € K[z], a =& 0, diber K auflosbar.
Beweis: Es sei £ eine Nullstelle des Polynoms und% = p,—‘c; =gq.In K

2
ist 2 & 0; deswegen sind in K auch die Elemente % und % definiert, und die

2 2
Bezichungen af2 4+ bt +¢=0, &2+ pf+q¢g=0 und (E-I—g) =%—q
sind gleichwertig. In einem Korper bedeutet «? = §2 dasselbe wie « = + 8.

Also wird
sy P ]/,,2_
&+ 2—ﬂ: Z q,

und beide méglichen Werte von £ haben die in der Definition verlangte Gestalt.

Die in diesem Beweis hergeleitete Auflésungsformel fiir quadratische Poly-
nome wird als einzige haufig gebraucht. Sie versagt allerdings im Falle y(K) = 2.

Satz 2: Es sei K ein Korper und y(K) 3= 2, x(K) = 3. Dann ist ein kubisches
Polynom ax8 + ba? 4+ cx + d € K{x], a = 0, iiber K auflosbar.

Beweis: Es sei £ eine Nullstelle des Polynoms und n = & 4- ﬁ% Es ge-
niigt nachzuweisen, daB 7 in einer Radikalerweiterung von K liegt; » ist defi-
niert, weil y(K) = 3 ist. Einsetzen von & = 7 —% inaf3 b2+ ct4+d=20

zeigt, daB 7 eine Gleichung der Gestalt 43 + py 4+ ¢ = 0 mit p, g € K erfiillt.
Den trivialen Fall p = 0 diirfen wir ausschlieBen. Man betrachte eine Null-

stelle £ von x2 — m:—-g. Sie ist nicht Null; fiir sie gilt also n = { — 3% Ein-
setzen in 73 + pn + ¢ = 0 liefert fiir {3 die quadratische Gleichung

und wegen y(K) =+ 2 ist Satz 1 anwendbar: Es liegt {3, also auch { und da-
mit % in einer Radikalerweiterung von K.

Fiithrt man die Berechnung von { und damit die aller méglichen Werte von 7
durch, so bekommt man die sogenannten Cardanischen Formeln fiir die Null-
stellen kubischer Polynome.

Satz 3: Es set K ein Korper und y(K) + 2, y(K) =& 3. Dann ist ein bi-

quadratisches Polynom ax* + bad + ca?2 +dx +-ec K{x], a += 0, iiber K
auflosbar.

15*
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Beweis: Es sei & eine Nullstelle des Polynoms und = & 4+ f; Es ge-

niigt nachzuweisen, daB » in einer Radikalerweiterung von K liegt; # ist
definiert, weil y(K) = 2 ist. Fir o bekommt man eine Gleichung der Gestalt
7t 4+ pp? 4+ g + r =0 mit p, ¢, 7 € K. Wir bestimmen nun { wie folgt. Es
soll in

2 2
"+t = n“+n2€+§4——n2€—%+pn2+qn+r
2 2
= [n2+%l —[(C—P)nz—qn+(%—r)]

die letzte eckige Klammer ein Quadrat [an 4 B2 werden. Das ist gesichert,
wenn nur { geméf

2 =—n(5—)

gewéhlt wird. Ein solches { existiert und liegt nach Satz 2 in einer Radikal-

erweiterung von K. Damit sind dann « und f Quadratwurzeln aus {—p

2
und i — r, also ebenfalls Radikale. Nun folgt

"+t = [772+2£]2— [on + BT
o 5] ) - o

Eine der beiden letzten Klammern muBB Null sein; nach Satz 1 liegt also % in
einer Erweiterung von K durch Radikale.

Bei Ausfiihrung der Rechnungen liefert auch dieser Beweis hochst umstand-
liche explizite Formeln fiir die Nullstellen von Polynomen vierten Grades.

§ 72 Auflésbare Gruppen

In diesem Paragraphen betrachten wir eine spezielle Sorte von Gruppen.

Definition: Eine Gruppe G = ps Ny heifit auflosbar, wenn Normalteiler N;
von Nyy (1= 1,2, ..., k) derart existieren, daf

G = No>oN1DN3D...DNi = {e}
mat abelschen Faktorgruppen Ny_;/Ny gilt.

Es ist trivial, daB abelsche Gruppen auflosbar sind; dazu schreibe man nur
G o {e}. Wir brauchen iiber auflésbare bzw. nicht auflésbare Gruppen die
folgenden Satze 2 und 3. Die allgemeine Theorie ist ziemlich umfangreich. Es
ist nicht schwer zu zeigen, daB p-Gruppen auflosbar sind; dieses Beispiel
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notieren wir als Satz 1. Sehr tief dagegen scheint eine alte Vermutung zu
liegen, deren Richtigkeit vor wenigen Jahren mit groBem Aufwand bewiesen
wurde: Jede Gruppe von ungerader Ordnung ist auflésbar.

Satz 1: Jede p-Gruppe G ist auflosbar.

Beweis: Man betrachte das Zentrum Z; von G. Nach Aufgabe 14.3 steht
dann in {e} c Z; nicht das Gleichheitszeichen; natiirlich ist {¢} Normalteiler
von Zj, und die Faktorgruppe von Z; nach {e} ist abelsch. Auflerdem ist Z,
Normalteiler von G; die Faktorgruppe G* = G/Z; ist wieder eine p-Gruppe
und besitzt also wieder nach Aufgabe 14.3 ein von der Eins verschiedenes
Zentrum, das wir nach Satz 14.1 gleich in der Gestalt Z2/Z; schreiben koénnen.
Dabei ist Z; erst recht Normalteiler der Untergruppe Zz von @, und in
{e} c Zy c Z3 steht an keiner Stelle das Gleichheitszeichen; die Faktorgruppe
Zs|Z, war das Zentrum von G*. Da Z,/Z, erst recht Normalteiler in G* ist,
ist nach Satz 14.2 auch Z; Normalteiler in G. Wir konnen also erneut die
Faktorgruppe G/Z; bilden; sie ist wieder eine p-Gruppe und gestattet es, das
Verfahren fortzusetzen. Man bekommt eine Kette {¢} c Zy c Zp c Zg C ... mit
abelschen Faktorgruppen Z;i1/Z;, die nach endlich vielen Schritten mit G
abbrechen muB, weil in ihr nirgendwo das Gleichheitszeichen steht.

Wir wenden uns nun den beiden S#tzen zu, auf die sich unsere Diskussion der
Polynome fiinften und héheren Grades stiitzen wird.

Satz 2: Das homomorphe Bild einer auflésbaren Gruppe ist auflosbar.

Beweis: Es sei G eine auflosbare Gruppe, also
G = NoDN]_DNzD . 2N = {e}

mit Normalteilern N; von N;_;(1 =<7 < k) und abelschen Faktorgruppen
N;_1/N,. Ein Homomorphismus liefere die Bilder G* von G und N} von N,.
Die N} sind wieder Gruppen und bilden die Kette

G*¥ = N}>N¥oNEfo...ONF = {e*}.

Unser Satz ist bewiesen, wenn wir zeigen konnen, daB erstens die N Normal-
teiler der N1 und zweitens die Faktorgruppen N{_i/N¥ abelsch sind. Das
erste steht im Beweis von Satz 14.2: Weil N; Normalteiler von N;_; ist, ist
auch N¥ Normalteiler von Nf.;. Das zweite ist sicher richtig, wenn wir nach-
weisen, daB N;%;/N} ein homomorphes Bild der nach Voraussetzung abelschen
Gruppe N;—1/N; ist.

Dazu bezeichnen wir mit 2, y Elemente aus N;; und nennen ihre Bilder in
N¥, entsprechend «*, y*. Als erstes behaupten wir, dal durch f(xN;) = z*N¥
eine Abbildung f: Ny_1/N; > N};/N¥ definiert wird. Angenommen, es ist zN¢
= yN;. Es folgt ylz € Ny, also (ylx)* = y*-1z* € N oder 2*N¥ = y*N¥. Es
war also f(xN;) = x*N¥ eine Definition. Die Abbildung f ist sogar surjektiv. Sie
ist auch relationstreu: f(xNyN;) = flxyN;) = (zy)*NF = 2*y* N} = 2* N} y*N¥
= f(xN)f(yN;). Damit ist gezeigt, daB N¥,/N¥ ein homomorphes Bild von
N[N, ist, und Satz 2 ist bewiesen.
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Satz 3: Fiir n = 5 st die symmetrische Gruppe S, nicht auflosbar.

Beweis: Es sei M eine Menge mit mindestens fiinf Elementen. Sind a, b, ¢
drei verschiedene Elemente aus M, so bezeichne wie in § 7 das Symbol (abc)
diejenige Transformation von M, die a in b, b in ¢, ¢ in a iiberfithrt und alle
weiteren Elemente aus M festlaBt. Wir nennen (abc) einen Dreierzyklus und
betrachten eine Gruppe G von Transformationen von M, die alle Dreierzyklen
enthilt. Wir werden folgendes zeigen: Ist NV ein Normalteiler von G und G/N
abelsch, so enthilt auch N alle Dreierzyklen. Fiir n = 5 erfiillt &, alle Voraus-
setzungen von @. Eine Kette &, = Ng> N1 >Nz > ..., in der immer N; ein
Normalteiler von N;; und N;_31/N; abelsch ist, kann dann nicht mit {e} enden,
weil jedes N; alle Dreierzyklen enthalten muB. Unser Satz wird also mit der
ausgesprochenen Behauptung bewiesen sein.

Wir betrachten einen Dreierzyklus (abc); nach Voraussetzung liegt er in G;
zu zeigen ist, daB er auch in N liegt. Man wihle zwei weitere, von a,b, ¢
verschiedene Elemente d, e aus M ; wegen | M| = 5 ist das moglich. Wir setzen
(abd) = = € G und (ace) = y € G. Die Bilder von x und y beziiglich des Homo-
morphismus von G auf G/ N mit dem Kern N seien 2*, y* € G/N. Nun sollte G/N
abelsch sein. Es gilt also a*y*ax*-ly*-1 = (xyx-ly-1)* = ¢* in G|N, folglich
zyx-ly-1 € N. Es ist aber, wenn man, wie in § 7 verabredet, die Multiplikation
von rechts nach links ausfithrt, zyz-ly-1 = (abd) (ace) (dba) (eca) = (abc), also
(abc) € N, was zu zeigen war.

Bemerkung: Es ist nicht schwer zu sehen, dai &, fir n < 5 auflosbar ist.

§ 73 Der Satz von ABEL

73.1 Wir beginnen mit der folgenden

Definition: Es set ¥ c € die Menge aller derjenigen komplexen Zahlen, die
algebraisch iber Q sind.
Auf Grund des nachstehenden Satzes nennt man U den Koérper der algebrai-
schen Zahlen.

Satz 1: U ist esn Korper.
Beweis: Esist 0e Y, 1 e Y und U eine Teilmenge des Korpers €. Das

Folgende bleibt zu zeigen: Mit o, feW gilt « + S, afe ¥, ;—‘e U, letzteres

fir 8 % 0. Nun liegen alle diese Elemente in Q(x, 8). Dieser Korper aber ist
nach Satz 54.5 endlich iiber Q, nach Satz 54.1 also algebraisch iiber Q. Das
bedeutet Q(a, 8) c A, und Satz 1 ist bewiesen.

Ebenso leicht ergibt sich der

Satz 2: U ist abzdhlbar.

Beweis: Ein f(z) eQ[x] hat hochstens endlich viele Nullstellen in €.
Satz 2 ist also bewiesen, wenn gezeigt wird, daB Q[x] abzihlbar ist. Die Abzéihl-
barkeit von Q{x] folgt aber aus der Abzéhlbarkeit von £ und Satz 27.3.
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Hilfssatz 1: Esgibt reelle Zahlen 2, 22, x3, 4, x5 derart, dafl z; transzen-
dent iiber U, xp transzendent iiber U(z;), ..., z5 transzendent tber Yz, xo,
xg, x4) ist.

Beweis: Da U abzdhlbar ist, ist es nach dem Muster des Beweises von
Satz 2 auch die Menge U* aller itber Y algebraischen komplexen Zahlen. (Wir
miissen nicht wissen, daB sogar %* = U gilt.) Da R nicht dbzihlbar ist, ist R
nicht Teilmenge von U*, so daB es ein z; € R der verlangten Beschaffenheit
gibt. Nach Satz 27.3 ist U[x1] und nach dem Paarschema aus § 4 dann auch
AY(x1) abzihlbar. Wieder bleibt die Menge U(x;)* aller tiber U(x;) algebraischen
komplexen Zahlen abzéhlbar und kann R nicht als Teilmenge enthalten. Es
folgt die Existenz eines iiber U(x;) transzendenten wxpe®R. Auch U(x1)[x2]
und Y(z;, #2) bleiben abzdhlbar, und die Fortsetzung des Verfahrens liefert
die Behauptung.

Algebraisch bedeutet Hilfssatz 1: Wir haben fiinf voneinander unabhingige
Unbestimmte 21, 22, 23, 4, 25 iiber A, und es war sogar moglich, sie als reelle
Zahlen zu wihlen.

Wir treffen nun fiir den Rest dieses Paragraphen die folgenden
Verabredungen: Die reellen Zahlen 21, x2, x3, 24, 25 seien gemafl Hilfssatz 1
fest gewihlt. Die reellen Zahlen oy, 09, 03, g4, 05 seien die elementarsymmetri-
schen Polynome ¢y = z1 + 22 + ... + x5, 62 = Z122 + 2123 + ... + Zaxs, .. .,
05 = T1xoxgrsxs in diesen z; (vgl. § 34). Es sei F der Korper F = U(o1, o2, 03,
04, 05) und k(x) das Polynom h(z) = (z — z1) (x — 22) . . . (z — 25) =25 —
0124 4 0923 — 0322 4+ 04 — 0.

Man betrachte nun den Korper %(x1, s, 23, 24, x5). Da die 2, Unbestimmte tiber
A sind, wird beispielsweise durch g(f(z1, x2, 3, 24, z5)) = f(x2, 23, 24, x5, 21) ein
Automorphismus ¢: U(x1, 2, x3, 4, 25) > U(x1, x2, x3, 24, x5) definiert. Dieser
Automorphismus ¢ 1iBt sogar den Teilkdrper F = (o1, o3, 03, 04, 05) von
A(x1, x2, 3, x4, x5) elementweise fest, und insgesamt kann man 5! derartige
Automorphismen aufschreiben. Sie bilden eine Gruppe @, die isomorph &; ist.
Fiir das Folgende praktisch ist die nach Satz 65.6 mogliche

Definition: Es sei K ein Korper, f(x) € K[x] ein diber K separables Polynom
und E der Zerfillungskorper von f(x) € K[x]. Dann verstehen wir unter der
Galoisgruppe von f(x) € K[x] die Qaloisgruppe G(E|K) von E iiber K.

Damit gilt nun (vgl. die obigen Verabredungen) der

Hilfssatz 2: Die Galoisgruppe von k(r) € Fx] ist isomorph &;.

Beweis: Es ist &(x) ein Polynom aus F[z]; es hat nur einfache Null-
stellen, ist also separabel iiber F. Daher ist es erlaubt, von der Galoisgruppe
von h(x) € F[x] zu sprechen. Der Zerfillungskérper E von h(x)e€ F[x] ist
F(x1, o, 73, x4, x5) = U(z1, 22, 23, 24, x5). Ein Automorphismus ¢ € G(E|F) ist
bekannt, sobald die p(x;) bekannt sind. Fiir die ¢(z;) kommen hochstens die
Nullstellen z; von k(x) in Frage, da Irr (24, F) ein Teiler von A(x) in F[z] ist.
Das bedeutet G(E|F) c G, wobei G die oben betrachtete Gruppe von Auto-
morphismen von E = U(x, 3, 3, x4, x5) ist. Nun laBt aber jedes ¢ € G den
Korper F elementweise fest und liegt damit bereits in G(E|F). Also gilt G(E|F)
= @G ~ @5.
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73.2 TFiir sich selbst von Interesse ist der

Satz 3: Es sei K ein Korper der Charakteristik Null, p eine Primzahl und
2P — a € K[x]. Dann ist x? — a entweder irreduzibel iber K oder hat in K eine
Nullstelle.

Beweis: Esist Q ¢ K. Wir wihlen eine primitive p-te Einheitswurzel {e€
und eine Nullstelle « von f(x) = x? — a aus einer geeigneten Korpererweite-

1

rung von K. In K(«, {) wird dann f(z) = pﬁ (x — o). Wir nehmen an, f(x)
=0

habe einen normierten Teiler g(z) e K[x] in K[z], fir den 1 =< Grad g(z)

= m < p gilt. Zu zeigen ist: Dann existiert eine Nullstelle von ]‘(x) die schon
in K liegt. Es wire g(z) ein Produkt gewisser (x — «{f) und die Konstante
g(0) = b e K abgesehen vom Vorzeichen ein Ausdruck der Gestalt Z¥am e K.
Wir setzen (¥am =ce K. Es gilt ¢? = am. Wegen (m, p) =1 existieren

A, pe3 mit im 4 up = 1. Wir behaupten: Die Zahl c*a# € K ist Nullstelle

von f(zx). Das folgt durch Ausrechnen von (cta#)P = (cP)4at? = (am)iak? =
alﬂl*‘[l? = a.

Es ist leicht zu sehen, da} dieser Satz 3 auch fiir Korper K mit y(K) =0
gilt. Dazu wahlt man in dem angegebenen Beweis an Stelle von { e € all-
gemein eine primitive p-te Einheitswurzel, deren Existenz Satz 69.1 in jedem
Fall sichert (sie wird 1 fir y(K) = p).

Wir kommen nun zu den beiden entscheidenden Hilfssitzen.

Hilfssatz 3: Es sei F der oben eingefiihrte Korper und
1 My Re__
= Fﬁ/al, Vag, veny ]/a,-)
eine normale Korpererweiterung von F, die aus F durch sukzessive Adjunktion
-
von Radikalen }/a; wie folgt entsteht:

Ry

1 1 Ny Ny Ny
amneF,ageF @al), as EF(IL/al, ]/ag), R a,-eF(]/al, Vas, ..., ]/a,_l).
Dann ist die Galoisgruppe G(E|F) von E iiber F auflosbar.

Beweis: Wir werden ausnutzen, da F alle Einheitswurzeln enthéilt; eine
Einheitswurzel ist ja algebraisch iiber Q und liegt daher in ¥ und erst recht
in F. Durch Anwendung der Sitze 66.4 und 66.5 wird dann unsere Behauptung
eine Folge von Satz 3. Wir fithren den Beweis in zwei Schritten.

1) Es sei L c € ein Kérper, der alle Einheitswurzeln enthélt, p eine Primzahl,

P _
a ein Element aus L und L* = L(Va,) eine Korpererweiterung von L durch

ein Radikal 1i’/E. Wir behaupten: L* ist normal iiber L, und die Galoisgruppe
G(L*|L) ist zyklisch. Das ist leicht zu sehen. Da ndmlich L alle Einheitswurzeln
enthélt, liegen entweder alle Nullstellen von z? — a € L{z] in L oder keine.
Im ersten Fall ist L* = L und die Behauptung trivial. Im zweiten Fall ist
nach Satz 3 das Polynom z? — ¢ irreduzibel iiber L, also [L*: L] = p. Ferner
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wird L* der Zerfillungskorper von xP — a € L[x], ist also nach Satz 65.7
normal iiber L; nach Satz 65.2 hat also G(L*|L) genau p Elemente und ist da-
mit zyklisch nach Satz 9.5.

2) Wir erinnern uns an § 71: Wie dort diirfen wir ohne Beschriankung der All-
gemeinheit annehmen, da8 die n; Primzahlen p; sind, n; = p;. Wir betrachten
die Korperkette

1 Pi__ Pa__ Pr.... Ps.. . Pr
Fc Fﬁ/al) cF(]/al, Vaz) c... CF(Val, Ves, ..., ]/a,) =EKE
und schreiben fir sie kurz F = FycFycFzc ... c Fpyy = E. Nach Vor-
aussetzung ist £ normal iiber F. Nach Satz 66.4 entspricht der Korperkette
eine Kette G(E|F) = G1 2 G2 > G3> ... 2 Gpy1 = {e} von Gruppen Gy = y(Fy),
und unser Hilfssatz ist bewiesern, sobald gezeigt ist: G441 ist Normalteiler von Gy,
und G4/Gy.q ist abelsch (1 < ¢ < 7). Wir wihlen ein festes ¢ und sehen uns die
Teilkette F; c Fy1y c E an. Nach Satz 66.4 ist £ normal iiber F; mit der
Galoisgruppe G(E|F;) = Gy; zu Fyq gehort die Gruppe Gyq1. Aus 1) wissen
wir, daB F;; normal iiber F; ist. Nach Satz 66.5 bedeutet das: Gy1 ist Normal-
teiler von G;. Es bleibt noch zu zeigen: G4/Gy.1 ist abelsch. Nun ist aber wieder
nach Satz 66.5 die Faktorgruppe Gi/Gy+1 isomorph G(Fy41|F;), und diese letzte

Gruppe ist nach 1) sogar zyklisch, also erst recht abelsch.
Damit ist Hilfssatz 3 bewiesen.

Der oben eingefiihrte Korper F hat die Charakteristik Null; jedes f(z) € F[x],
Grad f(x) = 1, ist daher separabel iiber F (Satz 62.1), und es hat somit im
folgenden letzten Hilfssatz einen Sinn, entsprechend obiger Definition von der
Galoisgruppe von f(x) € F[x] zu sprechen.

Hilfssatz 4: Es sei F der oben eingefiihrte Korper und f(x) € F[z] iiber F

auflosbar, Grad f(z) = 1. Dann ist auch die Galoisgruppe von f(z) € F[x]
auflosbar.

Beweis: Es sei £ der Zerfillungskorper von f(x) € Fx]. Wir haben zu
zeigen: Die Galoisgruppe G(E|F) ist auflosbar. Nach Voraussetzung liegen alle
Nullstellen von f(z) in einer gewissen Radikalerweiterung L von F. Das be-
deutet L > E o F. Aber dabei braucht L nicht normal iber F zu sein. Es
kommt uns deshalb zunidchst darauf an, eine Radikalerweiterung M von L zu
finden, die normal iiber F ist. Danach wird sich Hilfssatz 4 leicht beweisen
lassen. Wir definieren zunichst eine Radikalerweiterung M von L und zeigen
anschlieBend, daB sie normal iiber F ist.

Angenommen, es ist
— Ps___

L = F(pvlal, Vaz, sy 11’/'6:)
D1 ¥4 P
meF, aaeF Val),...,areF(pV;l, V(Tg,..., ]/a,_l).

P
Zuerst wird also ein gewisses Radikal |[/a; zu F adjungiert. Da F alle Ein-
heitswurzeln enthilt, liegt damit sogar jede Nullstelle von 271 — a3 € F[z] in

mit
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. Py

F (‘i/al). Das heifit: Die Adjunktion des einen Radikals Val zu F bewirkt
P n__

schon, daB jedes Radikal der Gestalt ]}al, also ]/al in allen seinen mdglichen

Interpretationen, in F(‘V a) liegt. Beim néchsten Schritt wird ein

Py
ag € F( ]/al) s
beispielsweise vielleicht
D __
R L
1— ]/a1

gewihlt und ein gewisses Radikal ’VE; zu F(Iiﬁﬁ) adjungiert; das in dem Aus-
druck fiir a; auftretende Radikal 1721‘1 hat dabei seine urspriingliche Bedeutung.
Es entsteht der Korper Fa = F(Ii/‘a—l, 1i/‘a_2). Er enthilt von selbst wieder alle
Interpretationen von ’i/l@ Denkt man sich aber in dem Ausdruck fiir a; das
Radikal 1]7&; durch ein anderes Radikal 1]’/‘11_1 ersetzt, so entsteht ein Element
afeF (’VEI) , und es ist nicht gesagt, daB auch VaTz in Fy liegt. Wir adjungieren
deshalb nicht nur zVa_g zu F(’i}&—l) , sondern zusitzlich auch noch alle Radikale
der Gestalt 1’/’;2{ fiir jedes mogliche a3. Es entsteht ein Oberkérper von Fo.
Nun folgt die fiir L vorgesehene Adjunktion von 117(1_3, und wieder adjungieren

wir anschlieBend auch alle Radikale ’]’/'53’F , wobei a] aus ag durch eine andere
Interpretation der in a3 auftretenden Wurzelzeichen entsteht. So fahren wir
fort und gelangen zum SchluB zu einer endlichen Radikalerweiterung M von L,
die so beschaffen ist, daB mit jedem Radikalausdruck « € M auch jeder an-
dere Radikalausdruck «* in M liegt, der sich aus « durch eine andere Interpre-
tation der Wurzelzeichen ergibt.

Wir konnen nun unter Verwendung neuer Bezeichnungen

Dy Py Do _
M = F( Vcls chy vy Vca)
mit
Pa1

ceF, GgEF(T/(T}), ...,c,eFﬁ?cT, 1]70_2, ey ]/Z:l)

A ___
schreiben. Wir setzen Irr (”Vc;‘, F) = P;(x) und g(z) = Pi(z)Ps(x) ... Ps(x)e F[x].
Es sei M’ der Zerfillungskorper von g(x) € F[x]; er ist normal iiber F nach
Satz 65.7. Wenn wir M’ = M zeigen konnen, so wissen wir also: M ist eine
Radikalerweiterung von F, die L und damit auch ¥ umfafit und normal ist
itber F. Es ist klar, daB M’ > M gilt. Zu zeigen wire also M’ c M. Dafir geniigt
es zu zeigen: Jede Nullstelle £ € M’ von g(x) liegt bereits in M. Man betrachte
ein solches & € M’. Eines der Py(x) ist das definierende Polynom von & iiber F,
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Pa__
etwa Irr (&, F) = Py(x) = Irr (Vc;_, F) . Nach Satz 65.3 gibt es also einen Auto-
morphismus o e G(M'|F) mit &= o(PVc_A) . Nun setze man voriibergehend

Pa__
]/0,1 = ¢, also ¢3 = aP2, und wende ¢ an; man bekommt fiir o(«) einen Aus-

Pa____ — Pa____
druck der Gestalt o(a) = Va(c;_). Das heifit: In & = o(pﬁc;,) = ]70(6,1) kann
man das ¢ unter die Wurzel ziehen; iiber die Interpretation der Wurzelzeichen
wird dabei nichts ausgesagt. Dieses Verfahren kann wegen

1 P Pa=1_
Cp € F(chl, VCz, ey Vcl“l)
eventuell wiederholt werden. Da o die Elemente aus F festliBt, bricht es
schlieBlich dadurch ab, daB zuletzt der Automorphismus ¢ nicht mehr auftritt.

Von dem Radikalausdruck pVE; unterscheidet sich also & lediglich durch eine
eventuell andere Interpretation der in ihm auftretenden Wurzelzeichen und
liegt daher nach der Konstruktion von M gemeinsam mit ihm in M. Das heillt
te M, also M' c M und damit M’ = M.

Jetzt wissen wir: Aus der Voraussetzung des Hilfssatzes folgt die Existenz
einer Radikalerweiterung M von F, die normal ist iiber F und den Zerfallungs-
korper £ von f(z) € Flx} umfaBt: M > E > F. Auch E ist normal iiber F, und
wir haben zu zeigen, da8 die Galoisgruppe G(E|F) auflosbar ist. Aus Hilfssatz 3
wissen wir, daBl G(M |F) auflésbar ist. Nach Satz 66.5 ist G(E|F) isomorph zur
Faktorgruppe G(M|F)[G(M |E). Diese wiederum ist ein homomorphes Bild der
auflésbaren Gruppe G(M|F) und damit nach Satz 72.2 auch auflésbar.

Damit ist Hilfssatz 4 bewiesen.

73.3 Ist K ein Korper der Charakteristik Null, also K 5Q, und
flx) = anz® + apa2l + ... 4 ag € K[x],

8o wollen wir Q(as, ap—1, - - ., ag) den Koeffizientenkérper von f(x) nennen. Er
ist der kleinste Teilkérper L von K mit f(x) € L[z].
Nun ergibt sich der angekiindigte

Satz 4 (ABEL 1824): Es gibt Polynome fiinften und hoheren Grades mit reellen
Koeffizienten, die iber threm Koeffizientenkirper nicht auflosbar sind.

Beweis: Man betrachte das in Abschnitt 73.1 eingefithrte Polynom
Mz) = 25— 92t + 0928 — g322 4 o4x — 05

aus F[x]; wir zeigen, daB es iiber F' nicht auflosbar ist; dann ist es erst recht
nicht auflésbar iiber seinem Koeffizientenkoérper (o1, o2, 03, 64, 65). Wiire h(x)
tiber F auflosbar, so miite die Galoisgruppe von hk(x) € F[x] auflésbar sein
(Hilfssatz 4). Die Galoisgruppe von A(x) € F[x] ist aber isomorph &; (Hilfs-
satz 2), und die Gruppe &5 ist nicht auflosbar (Satz 72.3). Also ist A(x) iiber
seinem Koeffizientenkérper nicht auflosbar, und dasselbe gilt fiir die Polynome
hoheren Grades z*h(z), & = 1.
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Die Hauptlast des Beweises von Satz 4 trégt der Hilfssatz 4, der sich vor
allem auf die Galoistheorie und an entscheidender Stelle auf Satz 72.2 stiitzt.
Der Hilfssatz 2 diente dann in Verbindung mit Satz 72.3 nur dazu, ein Polynom
mit nicht auflésbarer Galoisgruppe anzugeben. In diesem Zusammenhang sei
noch bemerkt, daBl man ohne groBe Miihe sogar ganzzahlige Polynome mit der
‘Galoisgruppe &s finden kann, zum Beispiel 5 — x—1 (vgl. v.p. WAERDEN [16]).
Also kann Satz 4 sogar so abgedndert werden, daB man in ihm das Wort
»reellen® durch ,,ganzzahligen® ersetzt. Der Koeffizientenkorper ist dann Q
selbst.

Aufgabe 1: Der Korper U ist algebraisch abgeschlossen (vgl. § 58.4).
Beweis ?

Literatur: ArTIN {3], HassE [7], HassE-KLOBE [8], V. . WAERDEN [16].



Anhang

Das Rechnen mit komplexen Zahlen

1. Es sei R die Menge der reellen, € die Menge der komplexen Zahlen. Die
Elemente aus € haben die Gestalt a + bt (@, b € R), und es wird wie folgt mit
ihnen gerechnet:

(1) a+b =c+di < a=¢b=d;
2 (@ + b))+ (c+di) = (@a+¢) + (b + d)i;
3) (@ + bi) - (¢ + di) = (ac — bd) + (ad + be)i.

Statt @ + 0¢ schreiben wir a, statt 0 + bi schreiben wir bi. Ist @ + bs &= 0,
so ist auch @ — b7 &= 0, und durch formales Erweitern mit @ — b¢ findet man

1 a—bi _a—b _ a b
atbi (@t bi)@—b) a2+ @2L8 a2 8"

dieses Resultat wird durch die Probe bestatigt.

Wir rechnen also mit komplexen Zahlen in gewohnter Weise und beachten nur
42 = —1. Dafl es einen derart hingeschriecbenen Korper € wirklich gibt, be-
darf einer Begriindung. Hierzu vergleiche man etwa § 23.

2. Es ist von groem Nutzen, sich die komplexen Zahlen in folgender Weise zu
veranschaulichen. Man wiahle in der Ebene ein rechtwinkliges Koordinaten-
system, bestehend aus einer x-Achse und einer y-Achse, und ordne der kom-
plexen Zahl z = x + yi (z, y € R) den Punkt (z, ) mit den Koordinaten z, y zu.
Durch diese Vorschrift wird € eineindeutig auf die sogenannte GaufBsche Zahlen-
ebene abgebildet. Den Punkten der z-Achse sind dabei genau die reellen Zahlen
zugeordnet, und wir bezeichnen deshalb die z-Achse als die reelle Achse; die
y-Achse heilit die imagindre Achse. Wir sagen, die komplexe Zahl z = x + y2
{(z, y € R) habe den Realteil * und den Imaginirteil y, und wir schreiben
z=1Rez y=1Imz.

Der Spiegelpunkt von z = = + i (x, y € R) an der reellen Achse ist der Punkt

-& — yti; wir bezeichnen ihn mit z und nennen z =z — yi diezu z =2 + yi
konjugiert-komplexe Zahl. Die Zahl z € € ist genau dann reell, wenn z = 7 ist.
Es ist z = 2. Die Zahl —2 findet man, indem man den Punkt z am Ursprung
spiegelt. Man bestétigt leicht die Regeln

+ 2

- 22

21 + 22 =
21y =

AR

(21, 22 € @)

4)
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Der Punkt z = z + yi (2, yeR) hat vom Ursprung die Entfernung }/2% + 42 =>0;
diese nichtnegative reelle Zahl bezeichnet man mit jz|. Es folgen die Regeln
2| = |—2| = 7z, —lz2| S Rez < |z|, —|2] = Im=z = |2|.

Der Abstand der Punkte 21, z3 € € ist |21 — 23|. Er ist ja genauso groB wie
der Abstand des Punktes 23 — 23 vom Ursprung.

Es gelten die beiden Regeln

(5) 22 = =2z,

(6) l1zel = |e1] -+ |22l

Die erste folgt unmittelbar aus den Definitionen fiir Z und |z|. Die zweite be-
sagt dasselbe wie |z122]2 = |z1[2 - 22[%, und das folgt durch Ausrechnen der
linken Seite mittels (5) und (4): |2122]2 = 2122 - 2128 = 21227122 = 2121 * 2322
= |12« |z2]2.

Sind 23, 23, 23 drei Punkte der GauBschen Zahlenebene, so gilt

|1 — 22| < |;1 — 23] + |23 — 22l

weil der Umweg von z; iiber z3 nach 23 mindestens ebenso groB ist wie die direkte
Entfernung |21 — 2|. Setzt man speziell z3 = 0 und schreibt —=z; fiir 22, so
bekommt man die Dreiecksungleichung

@) 1+ 22| = || + 22l
die man auch ohne Riickgriff auf die Anschauung bestétigen kann.

3. Wir fithren nun in der GauBlschen Zahlenebene Polarkoordinaten ein. Die
Entfernung r des Punktes z =z + yi (x, y €R) vom Ursprung haben wir
schon betrachtet: Es ist r = |z|. Fiir jeden Punkt z & 0 ist ferner bis auf
additive ganzzahlige Vielfache von 2z eindeutig ein Winkel ¢ dadurch erklért,
daB die positive reelle Achse im mathematisch positiven Sinn so lange gedreht
wird, bis sie die Verbindungsstrecke von 0 und z enthalt: Dieser Winkel sei ¢.
Wir schreiben ¢ = arg z und nennen ¢ das Argument von z; wir verabreden,
daB mit ¢ auch die reellen Zahlen ¢ + 2kz (k ganz) Argumente von z sind.
Wegen z = r cos ¢ und y = r sin ¢ bekommt z die Gestalt z =r(cosp + 2sing).
Genau dann liegt z auf dem Einheitskreis, wenn hierbei r = 1 ist.

Es seien nun zwei komplexe Zahlen

21 = ri(cosgy + isingy),
23 = ry(cosgz + ¢ 8ingy)
gegeben. Fiir ihr Produkt bekommt man

2123 = rirg[(cosg) cospe — singysings) - #(singicosps | cospisings)]

= rirz(cos(p1 + @2) + t8in (g1 + @2)).

Daraus kann man zwei Regeln ablesen. Einmal wird |z123] = rire = |21] « |22].
Das steht bereits in (6). Ferner liefert ein Vergleich der Argumente auf beiden
Seiten

(8) arg z12g = argz) + argzp (2122 = 0).
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Aus (8) folgt beispielsweise, daB cos(—e) + ¢sin(—ep) = cosp — i sing das
Inverse von cosp + ¢sing oder

1_ 1(cos i sing)
PR ¥

das Inverse von z = r(cosp + ising) & 0 ist, was man auch unmittelbar

direkt nachrechnet.

Fiir reelles ¢ definiert man

9) et = cosp + ¢sing.

Wir konnen dabei die linke Seite als eine bequeme Abkiirzung der rechten
ansehen; wegen (8) gilt auch hier das bereits aus dem Reellen vertraute

Additionstheorem
el - gfy — ellp+y),

Mehrfache Anwendung von (8) liefert auch die sogenannte MorveEsche Formel

(10) (cosp + ising)* = cos nep -+ ¢sin ne;

sie gilt fiir alle natiirlichen, ja sogar fiir alle ganzen Zahlen n. Sie gestattet
verschiedene praktische Anwendungen. Will man beispielsweise cos ng durch
cos ¢ und sin ¢ ausdriicken, so braucht man links nur den binomischen Lehr-
satz anzuwenden und anschlieBend die Realteile auf beiden Seiten zu ver-
gleichen. So bekommt man etwa cos3p = cos3p — 3cosgsin2p = 4cos3p — 3cose.
Weiter ist jede der » Zahlen

2 25
cosvz—n—i—isinv—n = é’n v»=01...,n—1)

n n

eine n-te Wurzel aus 1, wie die Probe mittels (10) zeigt. Diese n Punkte liegen
auf dem Einheitskreis und teilen ihn in n gleiche Teile. Man nennt sie n-te
Einheitswurzeln. Andere n-te Wurzeln aus 1 gibt es nicht. Wegen

2 (4
cosy =~ + isinvz—n = (cos 2z + tsmz—n)
n n n n

bilden die »n-ten Einheitswurzeln eine von cos 27” + isin%‘ erzeugte zyklische

Gruppe der Ordnung » beziiglich der Multiplikation.
Die dritten Einheitswurzeln beispielsweise sind demnach

cosO-23—n+isin0~23—n= 1,

2 _

27 .. 1 1
cosl-§+tsml 3 —§+§V§,
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2% .. 2x 1 .
cos2-§+zsm2 3 = —5——2-1/3,

man kann sie auch durch Aufsuchen der Nullstellen von

B—1l=@—1)@+z+1)
ermitteln.
Die vierten Wurzeln aus —1 = cos 7 + ¢ sin 7 sind

27

1 27 .. (m
cos(z+wz-)+zsm(z +VZ) »=0123);

wieder macht man am einfachsten die Probe nach (10). Schreibt man die
Winkelfunktionen aus, so erhilt man die simtlichen vier Werte von y—1 zu

1 .
Vﬁ(:}: 14 9).



Losungen der Aufgaben

1.1 Es sei x€ A n (B uUC). Dann ist jedenfalls z € A, und auBerdem gilt x ¢ B
oder z € C; es folgt: x € A n B oder z € A n C. Das bedeutet

An(Bul) c(AnByu(d4nC).
Istze(AnB)u(An C),sogilt z€ A und xz € Bu C, und das bedeutet
An(BuC)>AnB)udnO).

Beides zusammen liefert die erste der Behauptungen (2). Die zweite beweist man
analog.

3.1 Die Behauptungen folgen sofort aus der Definition des Urbildes:

a) [T ={xr:xzcAund f(x) e f(T)} D T.Ist etwa 4 = N, B = {0} und f(rn) = 0
fiir alle n € M, so fithrt die Wahl von T' = {1} zu f{(T)) = N + 7.

b) f(fT)) = {fiz):zxc Aund f(x) e T} c T. Ist etwa A = {0}, B = Nund f(0) = 1,
so fithrt die Wahl von T = N zu f(f-{T)) = {1} + T.

3.2 Ist ye (M uUN), so gibt es ein x€ M UN mit y = f(z); da z in M oder N
liegt, liegt f(x) in /(M) oder f(N), und y = f(z) € (M) U {(N) bedeutet

AM UN) c (M)uUf(N).

Ist y € f(M) U f(N), so gibt es8 ein x € M UN mit y = f(x); es ist also y € f(M U N)
oder
(M O N) > (M) U f(N).

Beides zusammen liefert die Behauptung a). — Ist y € f(M N N), so gilt y = f(x)
mit einem 2 € M N N, also y = f(z) € {(M) n f(N), und es folgt die Behauptung b). —
Wihltman M = {&:2eR, 2 Sz <}, N={z:2eR,0 <z <2}, A=B=R
und f(z) = sin 2,80 ist (M N N) = {0} und fM) 0 f(N) = {x:xeR, —1 <2 < 1}.

5.1 Esist (e, b) ~ (a,b) wegena + b = b + a. Aus (a, d) ~ (¢,d) folgt @ + d =
= b+ ¢, also c + b = d 4 a oder (¢, d) ~ (a, b). Schliellich gelte (a, b) ~ (c, d)
und (¢, d) ~ (e, f),alsoa +d = b + cund ¢ + } = d + ¢; man addiere diese Glei-
chungen und wende das assoziative und das kommutative Gesetzan:a + f + ¢ + d
= b+ e+ ¢+ d; Kiirzen mit ¢ 4+ d ergibt a + f = b + e, also (a, b) ~ (e, f).
Damit sind (1), (2), (3) nachgewiesen.

5.2 Es ist (a, b) ~ (a, b) wegen ab = ba. Aus (a, b) ~ (¢, d) folgt ad = be, also
¢b = da oder (c,d) ~ (a, b). SchlieSlich gelte (a,b) ~ (¢, d) und (¢, d) ~ (e, f),
also ad = bc und ¢f = de; zu zeigen ist (a, b) ~ (e, f). Sollte ¢ = 0 sein, so folgt
a = 0, weil nach Voraussetzung d nicht verschwindet; entsprechend wird e = 0;
dann gilt aber sicher (a, b) ~ (e, f). Es sei daher zusiitzlich ¢ + 0. Dann wird
adcf = bede oder afed = beed, und Division durch ¢d % 0 liefert af = be oder
(a, b) ~ (e, h-

5.3 Fiir jedes a € A4 gilt @ ~ a, und aus a, ~ a, folgt a; ~ a,. Aus a, ~ a, und
as ~ as, also fla,) = f(a,) und f(a;) = f(a,), folgt f(a,) = f(a,) oder a, ~ a,.

16 Hornfeck, Algebra
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6.1 En seien a, b Elemente aus G; zu zeigen ist ab = ba. Nach Voraussetzung
ist (ab)(ab) = e. So folgt fiir das Produkt aababb einerseits das Ergebnis a(ab)(ab)b
= aeb = ab und andrerseits (aa)ba(bb) = ba. Also gilt ab = ba. — Oder: Fiir jedes
ge@gilt g = g1 Aus a, b € G folgt also ab = (ab)~! = b-1la~! == ba.

6.2 Alle Ug enthalten das Element e. Es folgt e € D und damit D % £ Sind a, b
Elemente aus D, so auch aus Uy fur jedes ¢ € I; da die U; Untergruppen von G
sind, folgt also ab € U; fur jedes < € I und damit ab € D. Elemente a, b, c € D wer-
den in G assoziativ multipliziert, also auch in D. Wie bereits festgestellt, liegt e
in D. Ist schlieBlich ¢ € D, so auch a e Uy fiir jedes 7€ I; es folgt a—1e U; fiir
jedes ¢ € I, weil die Uy Gruppen waren, und das liefert a—! € D.

6.3 Wegen e € Z ist Z nicht leer. Sind a, b Elemente aus Z, so gilt abg = agb = gab
fiir jedes g € G, und es folgt ab € Z. Die Multiplikation in Z ist assoziativ, weil
gie es in @ ist; sie ist kommutativ nach Definition von Z. Ist a € Z, so gilt ag = ga,
also a~laga—! = a~lgaa~! oder a~lg = ga~! fiir jedes g € G und damit a1 e Z.

6.4 DaB @ eine Gruppe ist, ist klar. Ist « € G, so definiere man einen Isomorphis-
mus f von G auf H durch f(z) = log =. Die Abbildung ist injektiv, weil log x,
= log z, nur fir z, = z, gilt; sie ist surjektiv, weil jedes y € R Logarithmus einer
reellen Zahl x > 0 ist; sie ist relationstreu wegen f(zy) = f(z) + f(y).

6.5 In R, gilt aa = (—a)(—a), obwohl ¢ + —a ist;in R folgt ausa + a = b + b
immer a = b. Das wird ausgenutzt: Angenommen, f: R, - R sei ein Isomorphismus
von R, auf ® und r das Bild von ¢ e R,. Das Bild v" von —t mite dann wegen
der Eineindeutigkeit von f und ¢ + —¢ von 7 verschieden sein: ' + 7. Im Wider-
spruch hierzu wiire aber wegen der Relationstreue von f das Bild von 2 = (—)?
sowohl 7 4- 7 = 27 als auch ¥ + v’ = 2¢’ mit der Folge 7 = 7'.

8.1 U ist eine Halbgruppe in G. Es seien a, b Elemente aus U = {u,, u,, ..., ug}.
Alle Produkte au; fallen paarweise voneinander verschieden aus, liefern also wieder
ganz U. Daher ist die Gleichung az = b mit einem gewissen u, € U losbar, und
das Entsprechende gilt fiir die Gleichung ya = b. Die Behauptung folgt nun aus
Satz 6.2.

8.2 Die eine Richtung der Behauptung steht in Satz 2: Wenn M eine Unter-
gruppe von @ ist, so wird durch @ ~ b <> a~1b.€ M eine Aquivalenzrelation auf &
erklart. Zu zeigen bleibt: Wenn durch a ~ b < a-1b € M eine Aquivalenzrelation
auf @ definiert wird, so ist M C @ eine Untergruppe von G. Wegen ¢ ~ a hat man
zundchst a—'a = ee M, also M #+ &£. Sind weiter a, b Elemente von M, so auch
e g und eb; es folgt also e ~ a, ¢ ~ b und daraus a ~ b oder a—'b € M. Nach
Satz 1 ist also M eine Untergruppe von G.

8.3 Im Falle a) wiihle man etwa G unendlich und U = {e} oder, weniger trivial,
fir @ die multiplikative Gruppe R, und U = {1, —1} als Untergruppe. Im Falle
b) sei @ die additive Gruppe von R und U die additive Gruppe von ; dann kann
ind U nicht endlich sein, weil sonst (vgl. § 4) R abzidhlbar wiire wie Q.

8.4 Wir haben noch zu zeigen: Wenn die Linkszerlegung und die Rechtszerlegung
von G nach U iibereinstimmen, so ist U ein Normalteiler von G. Es sei dazu a
ein beliebiges Element aus G; wir zeigen aU = Ua. Zunéchst mufl es ein be G
mit aU = Ub geben. Es folgt a € Ub, also auch Uas = Ub und damit aU = Ua.

8.5 Nach Aufgabe 6.2 ist D eine Untergruppe von G. Nach Satz 4 haben wir zu
zeigen: Fir jedes a € G gilt aDa—! ¢ D. Zunichst ist D ¢ Ny fiir jedes t € I. Es
folgt aDa—! c aN@~! = Njy. Da das fiir jedes ¢ € I gilt, ist aDa~! auch im Durch-
schnitt D der N enthalten: aDa-! c D.
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9.1 U, enthilt die identische Permutation der Ordnung 1, die Elemente (34)(12),
(24)(13) und (23)(14) der Ordnung 2 und die Elemente (123), (132), (124), (142),
(134), (143), (234) und (243) der Ordnung 3. Beispielsweise ist (123) = (13)(12)
als Produkt zweier Transpositionen ein Element von %,, und (123)(123)(123) wird

die Identitét. .
n

9.2 Hat k mit n den gemeinsamen Teiler d > 1, 5o ist bereits (g¥)¥ = (gn)d = e,
so daf3 g* nicht die Ordnung n haben kann. Sind k und n teilerfremd, so sind
gk, g¥%, ..., gn* paarweise verschieden, liefern also ganz G: Wire gik = guk,
1 £ u £ 1 < n, 80 wiirde g(A-#k = ¢ folgen ; nach Satz 2 hiele das: n teilt (1 — u)k;
weil n zu k teilerfremd ist, bekdme man weiter: n teilt A — . Daaber0 <4 —pu < n
gilt, muB schon 4 = u sein.

10.1 Nein. Es miilte & = U x V mit |U| = 2 und |¥| = 3 sein. Dann wiren
aber U und V und damit auch &, = U x V abelsch im Widerspruch zu Satz 7.4.

10.2 Gy = 33 % 35 Gy = 32 x 3 % 390 G = 33 % 35 x 35 x By, Hy = 3y x 35 x 3,
H, = 3; x 3y x 33 x 39y Hy = 3, x 35 x 35 x 33 x 34. Die Gy sind von den Hj ver-
schieden, weil jedes G; ein Element der Ordnung 9 enthélt, ein H; dagegen nicht.
Die Gruppe G; enthilt kein Element der Ordnungen 4 oder 8; die Gruppe G, ent-
hélt zwar ein Element der Ordnung 4, aber keines der Ordnung 8; die Gruppe G,
enthilt ein Element der Ordnung 8. Die G sind also verschiedene Gruppen. Genauso
folgt es fur die Hj.

11.1 Es ist 800 = 28-52%; es gibt also p(5) - p(2) = 14 abelsche Gruppen der
Ordnung 800; ihre Typen sind (2,2,2,2,2,25), (2,2,2,4,25), (2,4,4,25), (2,2,8,25),
(2,16,25), (4,8,25), (32,25), (2,2,2,2,2,5,5), (2,2,2,4,5,5), (2,4,4,5,5), (2,2,8,5,5),
2,16,5,5), (4,8,5,5), (32,5,5). Die acht abelschen Gruppen der Ordnung 900 haben
die Typen (2,2,9,25), (4,9,25), (2,2,3,3,25), (4,3,3,25), (2,2,9,5,5), (4,9,5,5),
2,2,3,3,5,5), (4,3,3,5,5). Die neun abelschen Gruppen der Ordnung 1900 haben die
Typen (2,2, 2,125), (2,4,125), (8,125), (2, 2,2, 5, 25), (2,4, 5,25), (8, 5,25), (2,2,2,5,5,5),
(2,4,5,5,5), (8,5,5,5).

12.1 Bezeichnen g, k Elemente aus G, H, so besteht die Faktorgruppe von G x H
nach dem Normalteiler H (Satz 10.2) aus allen Nebenklassen der Gestalt ghHH = gH.
Aus g.H = g,H folgt gi'g, € H, also g7’g, € 3N H = {e} oder g, = g,. Die durch
flg) = gH vermittelte Abbildung f: G - (@ x H)/H ist daher bijektiv. Sie ist
ferner relationstreu.

12,2 Das folgt aus € ~ Rao R (§ 10, Beispiel 4) und Aufgabe 1 oder durch die
bijektive relationstreue Abbildung f: €/R - R, die vermdge f(ir + R) = r definiert
wird. Es ist ja f((iry + R) + (iry + R)) = f(i(ry + 72) + R) = 7y + 7, = fiir, + R)
+ firy + R).

12.3 Die Gruppe @ = 3, x 33 x 3, ist abelsch von der Ordnung 24 und wird von
den Elementen a, b, ¢ der Ordnungen 2, 3, 4 erzeugt. Als homomorphe Bilder
kommen nur abelsche Gruppen in Frage, deren Ordnungen Teiler von 24 sind
(Sétze 1 und 2). Davon scheidet 3, aus, weil kein Element aus @ ein Vielfaches von 8
als Ordnung hat, und man iiberlegt sich noch, daB auch 3, x 3, x 3, nicht in Frage
kommt. Nach § 11 bleiben als mogliche Bilder {e}, 35, 33, 35 x 35, 3¢ 32 X 33 = 36>
By X B 33 x B2 x 8s, 35 x3; = 312 und G selbst iibrig. Sie konnen alle auch
wirklich als homomorphe Bilder von G auftreten. Beispielsweise bekommt man
3, x 33 x 3, durch den Normalteiler {e, c?} und 3, x 3, durch den von & und c?
erzeugten Normalteiler.

16*
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12.4 Es gibt nach Satz 11.3 nur eine abelsche Gruppe der Ordnung 6, die zy-
klische. Es sei deshalb G eine nichtkommutative Gruppe der Ordnung 6; kein g € G
hat dann die Ordnung 6. Nach Aufgabe 6.1 kénnen ferner die von e verschiedenen
Elemente aus @ nicht simtlich die Ordnung 2 haben. Also existiert nach Satz 9.3
ein a € G der Ordnung 3. Die von a erzeugte Untergruppe U c @ vom Index 2
ist dann ein Normalteiler (§ 8.4), und es gilt etwa G/U = {U, bU} mit einem b € G.
Wir zeigen, daB b die Ordnung 2 hat. Die Ordnungen 1 und 6 kommen jedenfalls
nicht in Frage, und wir miissen ausschlieBen, dal3 b die Ordnung 3 hat. Nun gilt
in G/U zunéchst (bU)? = U. Hitte b die Ordnung 3, so miite auch (bU)® = U,
also bU = U sein, was nicht der Fall ist.

Wegen G = U u Ub hat G die Gestalt {e, a, a2, b, ab, a?b}. Wir kennen die Rechen-
regeln a® = b2 = e. Die Verkniipfungstafel fiir G ist festgelegt, sobald der Wert
von ba bekannt ist. Nun ist ba = a* wegen b ¢ U unmdéglich, und be = b hitte
a = e zur Folge; wire schlieBlich ba = ab, so wiirde G kommutativ. Wenn es
also iiberhaupt eine nichtkommutative Gruppe G der Ordnung 6 gibt, so nur die
eine, in der fiir die speziellen Elemente a, b die Regel ba = a?b gilt. Andrerseits
wissen wir: Es gibt eine nichtkommutative Gruppe &, der Ordnung 6.

Daraus folgt: Die beiden einzigen Gruppen der Ordnung 6 sind 3, und &,.

12.5 Ist H die Untergruppe aller Elemente 557¢ aus G, so gilt G/N ~ H. (Vgl.
Aufgabe 12.1.)

12.6 Man betrachte die Teilmenge H = U uN von G. Wir zeigen zunéchst, da H
uell

eine Untergruppe von @ ist: Wegen e € H ist H nicht leer; sind h;, = u;n, und
hy = uyn, Elemente aus H (us € U, ng€ N), 8o wird hih, = wun un, = uungn,
= (wu,)(ngn,) € H, da es auf Grund der Normalteilereigenschaft von N ein ny e v
mit n,u; = ugns gibt; die Multiplikation in H ist assoziativ wie die in G'; mit
h = une H (ue U, n e N) liegt auch A~ = n~u-! = u-ln, in H, da es wieder
wegen der Normalteilereigenschaft von N ein n, € N mit n—lu~! = u~In, gibt. Diese
Untergruppe H c G enthélt U und N, ist also nach Voraussetzung G selbst. Die
Faktorgruppe G/N besteht also aus den paarweise verschiedenen unter den Neben-
klassen N, u € U. Nun ist 4,N = u,N nur fur u;u, € N, also u;u, e Nn U = {e}
oder u, = u, moglich (x; € U). Die durch f(u) = uN definierte Abbildung f: U - G/N
ist daher bijektiv. Wegen f(u,u,) = u,u;N = u,Nu,N = f(u,)f(u,) ist sie auch
relationstreu, und das bedeutet U ~ G/N.

12,7 a) Wir zeigen zunichst, daB G eine Gruppe ist. Da die identische Abbildung
die beschriebene Gestalt hat, liegt sie in G, und G ist nicht leer. Sind f, g Elemente
aus @G und f(z) = ax + b, g(x}) = cx + d, so wird gf(x) = clax + b) + d = acx
+ be -+ d, also auch gf € @, da ac + 0 ist. Die Multiplikation in G ist assoziativ
nach Satz 3.1. SchlieBlich ist jedes fe @ eine Transformation von R, und die
Umkehrabbildung f-1: ® - R ist definiert. Wenn f(z) = ax + b ist, wird f~(x)
= (—:,x—~£, also auch f-! € G. Also ist G eine Untergruppe der Gruppe aller Trans-
formationen von R. DaB U, und U; Untergruppen von @ sind, sieht man sofort.

Es sei nun f € U, definiert durch f(z) = z + b und g € G durch g(z) = cx + d,

also gt durch%m—g . Dann folgt gfg~%x) = = + be, also gfg~1 € U;. Da f € U, und
g € @ beliebig waren, besagt Satz 8.4: U, ist Normalteiler von G. Ist dagegen
} € U, und nicht die Identitit, also f(x) = az mit @ # 1, so wird gfg~Y(z) = ax

-+ d(1 — a) und, falls d nicht Null war, gfg~! ¢ U,. Somit ist Uy kein Normalteiler
von G.
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b) Man wiihle @ € R, als Bild fur die durch f(x) = ax erklarte Abbildung f € U,.
¢) Man wende Aufgabe 12.6 an.

13.1 Die charakteristische Schluflweise tauchte bereits in Aufgabe 8.1 und in
§ 12.4 auf: Ist H = {hy, hy, ..., hy} und a € H, so fallen die Produkte ah; paarweise
voneinander verschieden aus, liefern also ganz H. Fir a, b € H wird demnach
ax = b und ganz entsprechend auch ya = b in H losbar, und Satz 6.2 liefert die
Behauptung. Dafl eine unendliche regulire Halbgruppe nicht notwendig eine
Gruppe ist, zeigt das Beispiel 0t beziiglich der Addition oder auch der Multiplikation.

14.1 1In§ 12.1 war gezeigt worden: Sind f: 4 - B bzw. g: B -» C Homomorphismen
von A auf B bzw. B auf C, so ist gf: 4 > C ein Homomorphismus von A auf C. Das
benutzen wir. Es sei zunédchst f: ¢ -~ G/K der Homomorphismus von G auf G/K
mit dem Kern K. Aus Satz 2 wissen wir, daB mit N auch f(N) = N/K Normalteiler
von (/K ist; dabei ist f(N) = N/K, weil K Normalteiler von G, also erst recht
von N ist. Nun sei weiter g: G/K - (G/K)/(N/K) der Homomorphismus von G/K
auf (G/K)/(N/K) mit dem Kern N/K. Der Homomorphismus gf: G - (G/K)/(N/K)
von G auf (G/K)/(N/K) hat also den Kern N, und der Homomorphiesatz fiir Gruppen
liefert die Behauptung (G/K)/(N/K) ~ G/N. Es ist, als ob man K herauskiirzen
konnte.

14.2 Nach Aufgabe 6.2 ist D eine Untergruppe von G. Nach Definition von D gilt
D c (h-'g)U(h—g)~! fur alle g, h € G, also hDh-! Cc gUg-! fur alle g, h € G. Hilt man
hierin % € @ fest und bildet rechter Hand den Durchschnitt uber alle ¢ € G, so er-
gibt sich hDh—1 c D fur jedes h € G. Nach Satz 8.4 ist also D ein Normalteiler
von (.

14.3 Wir teilen @ = K; UK,u ... U K, auf in Klassen konjugierter Elemente.
Aus der Definition des Zentrums folgt: Genau dann bildet ein a € @ eine Klasse
fur sich, wenn a € Z ist. Es gelte etwa ¢ € K,, also |K,| == 1. Wire Z = {e}, 80
hitte jede der Klassen K,, K,, ..., Ky mehr als ein Element. Die Zahlen |K,),
1Ksly « .., [ K| wiren nicht Eins und nach Satz 4 Teiler von |G|, nach Voraussetzung
also Vielfache von p. Dann miiite auch |K,| = |G| — |K,| — |K;] — ... — |K,]
durch p > 1 teilbar sein, was nicht der Fall ist.

14.4 Wir beginnen mit einer Vorbemerkung: Zwei voneinander verschiedene
echte Untergruppen U, V von G haben {e} als Durchschnitt. Gébe es nidmlich ein
ae UnV, a % e, so wiren nach Satz 8.3 sowohl U als auch ¥V Gruppen von Prim-
zahlordnung, und die von a erzeugte Gruppe wire wieder nach Satz 8.3 sowohl
gleich U als auch gleich V. Das hieBe U =: V, was gerade nicht der Fall war.
Enthélt nun G ein Element g der Ordnung pg, so ist G zyklisch, also abelsch,
und g? erzeugt eine Untergruppe U der Ordnung p, die dann von selbst Normal-
teiler ist. Deshalb sei weiterhin @ nicht zyklisch.

Ein beliebig gewiihltes g € G, g & ¢, hat also eine Ordnung ungleich pq, etwa p.
Es erzeugt dann eine Untergruppe U der Ordnung p, und wir nehmen an, U
sei nicht schon Normalteiler. Fiir den Normalisator M von U bedeutet das
UcMc@mit M # @; da nach Satz 8.3 jedenfalls |M| ein Teiler von |G| und ein
Vielfaches von U] ist, folgt M = U, und U hat nach Satz 5 genau ¢ Konjugierte.
Wir nennen sie U, = U, U,, U,, ..., U; auf Grund der Vorbemerkung wissen
wir Ugn U; = {e} fir ¢« + j. Es bleiben demnach pg—qg(p —1)—1 = ¢—1
Elemente von G, die nicht in den Uj liegen. Wir wihlen ein beliebiges von ihnen
und nennen es k. Dann kénnen zwei Fille eintreten.

Hat h die Ordnung g, so erzeugt es eine Untergruppe V, die auf Grund der Vor-
bemerkung gerade aus diesen restlichen ¢ — 1 Elementen und der Eins besteht
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und keine von V verschiedenen Konjugierten haben kann, weil ein derartiges
Konjugiertes dann mit einem der U; zusammenfallen miite, was zur Folge hiitte,
daB auch ¥V und U konjugiert wiiren. In diesem Fall ist also ¥V ein Normalteiler
der Ordnung gq.

Hatte schlielich & die Ordnung p, so kénnte die von k erzeugte Untergruppe ¥V wegen
q(p — 1) > ¢ — 1 nicht wieder ¢ Konjugierte haben, wire also auch diesmal ein
Normalteiler ungleich {e} und ungleich G.

14.5 Essei @* = G/K und f: G -> G* der Homomorphismus von & auf G* mit dem
Kern K. Das Bild von H ist die Untergruppe H/K von G*; da G* abelsch ist, ist
H/K sogar Normalteiler von G*; nach Satz 2 ist also auch das Original H von H/K
Normalteiler von G. Sind eH, bH Elemente aus G/H, so gilt ¢ = b-la-ba e K C H,
also H = ¢H und demnach aH - bH = abH = abcH = baH = bH - aH. Die Faktor-
gruppe G/H ist also abelsch.

15.1 a) Es sei f € A und ¢, € B; nach Satz 8.4 ist die Untergruppe B von 4 so-
gar Normalteiler von A4, wenn fpaf~'e B gezeigt wird. Nun gilt aber fgsf-(x)
= fof-¥@)a ) = f@)z/(a)! = grafe) fir alle z€ G, also fgaf ! = @y € B.
Also ist B Normalteiler von 4.

b) Wir behaupten zunéichst, da8 durch f(aZ) = @, eine Abbildung f: G/Z -~ B
definiert wird ; dazu muB gezeigt werden, daB das Bild ¢z von ¢Z von der Wahl des
Repriisentanten a von aZ nicht abhiingt. Es sei etwa aZ = bZ, also b = az mit
einem z € Z; dann wird gp(x) = azzz~la~! = axzz"la"! = azxa~l = g,(x) fir alle
z € G, also gp = @,. Es ist demnach f: G/Z - B eine Abbildung; sie ist surjektiv,
weil gZ ein Original von ¢, ist. Sie ist auch injektiv; denn aus f(aZ) = f(bZ) oder
@a = @p folgt aza—! = bxb! oder b—lax = zb—la fiir alle x € G, also b—'a € Z oder
aZ = bZ. Die Abbildung f: G/Z — B ist also bijektiv. Sie ist auch relationstreu:
/(@Z - bZ) = {(abZ) = pab = Paps = [(@2)f(bZ).

171 Wir betrachten die beiden Fille p = q und p < ¢. Ist im ersten Fall G
kommutativ, so folgt die Behauptung aus Satz 11.1 und Satz 9.6. Eine nicht-
kommutative Gruppe G der Ordnung p? wiirde nach Aufgabe 14.3 als Normalteiler
ein Zentrum der Ordnung p besitzen. Ist p < g, so besitzt @ nach Satz 1 Unter-
gruppen der Ordnung ¢; ihre Anzahl ist nach Satz 3 eine Zahl k der Gestalt xg + 1,
= € 3, die auBerdem noch p teilt. Es folgt k¥ = 1. Die eindeutig bestimmte Unter-
gruppe U von G der Ordnung q fillt also mit allen ihren Konjugierten zusammen
und ist deshalb Normalteiler.

18.1 Die n Elemente a, ab, ab?, ..., ab®-! sind paarweise verschieden und haben
die Ordnung 2.

18.2 Das folgt aus den Aufgaben 9.1 und 18.1.

18.3 DaB 3,, 34 x 3, und 3, x 3, x 3, die sdmtlichen abelschen Gruppen der
Ordnung 8 sind, ist uns aus § 11 bekannt. Wir haben also zu zeigen: Eine nicht-
kommutative Gruppe G der Ordnung 8 ist entweder die Dieder- oder die Quater-
nionengruppe. Nach Aufgabe 6.1 kann nicht jedes g € @ die Ordnung 2 haben. Da G
kein Element der Ordnung 8 enthiilt, gibt es nach Satz 9.3 ein b € G der Ordnung 4,
und als Untergruppe vom Index 2 ist U = {e, b, b2, 8%} C @ ein Normalteiler von G.
Wir schreiben G/U = (U, aU} und wissen a®U = U, also a? € U. Es kann nicht
a? = b sein, denn dann hétte a die Ordnung 8, und aus demselben Grund ist a®+ 3.
Also ist entweder a? = ¢ oder a®> = b3.

Ferner kann man das Resultat von aba-! angeben. Da U Normalteiler von G ist,
gilt zunichst aba—! € U; dariiber hinaus wird U = aUa~! sogar von aba~! erzeugt,
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und da nur b und * die Gruppe U erzeugen, ist aba-! entweder gleich b oder gleich
b3, Im ersten Fall wire aber G@ kommutativ. Also gilt aba—! = b-!. Bildet man
beiderseits die Inversen, so folgt ab-la-! = b oder ba = ab~! % ab.

Eine nichtkommutative Gruppe G der Ordnung 8 hat also die Gestalt G = U uaU
= {e, b, b2, b, a, ab, ab?, ab®}, und in QG gelten die Rechenregeln b* = ¢ und ba = ab~1.
AuBerdem ist entweder a® = e oder a? = b2 Beide Male ist das Rechnen in @
festgelegt ; es gibt also hochstens zwei nichtkommutative Gruppen G der Ordnung 8.
Da wir andrerseits zwei nichtkommutative Gruppen der Ordnung 8 kennen,
ndmlich die Diedergruppe D, und die Quaternionengruppe, ist damit alles ge-
zeigt. Die Diedergruppe D, ist durch die Rechenregeln a? = b* = ¢ und ba = ab-!
bestimmt. Gelten in G die Regeln 4 = ¢, ba = ab~! und a? = b?, s0 liegt die Quater-
nionengruppe vor; man setze etwaa = tund b = j.

20.1 +/ 012345 2
0012345 0
1/1234560 2
21234501 4
3/34501 2 0
41450123 2
5|1501234 4
20.2 Aus 5z = 7(13) und 8 = 8(13) folgt 40z = 56 oder x = 56 (13) oder

—_—
[
-~ W
~—

z = 4(13); aus x = 4 (13) folgt umgekehrt 5z = 20 =
Zahlen der Gestalt 13k + 4 losen also die Kongruenz.
20.3 Angenommen, es gibe ganze Zahlen z,y,z mit 2* 4 y? 4 22 = 8k 4 7.
In 3, wiirde K(z* + y® + 2?) = K(8k 4+ 7) oder K(z)? + K(y)* + K(z)? = K(7)
folgen. Nun gibt es in 3; die Quadrate K(0)* = K(0), K(1)® = K(1), K(2)* = K(4),
K(3)* = K(1), K(4)* = K(0), K(5)* = K(1), K(6)* = K(4), K(7)* = K(1), also K(0),
K(1) und K(4). Die moéglichen Summen mit drei Summanden K(0), K(1), K(4)
haben aber nie den Wert K(7).

20.4 KEs sei etwa ¢ € R kein linker Nullteiler und ¢ #+ 0. Sind a, b beliebige Ringele-
mente, 8o wird zundchst (—c)}(—b — a) = ¢b + ca = ¢(b + a); dabei wurden die Vor-
zeichenregeln aus Satz 1 benutzt, bei deren Beweis die Kommutativitdt der Addi-
tion nicht gebraucht wurde. Aus dem gleichen Grunde gilt auch (—¢)(—b — a)
= (—c¢)(~—a + b)) = c(a + b). Es folgt c{(a + b)— (b + a)) = 0 oder a + b
= b+ a.

20.5 Die Behauptungen a) und b) ergeben sich durch vollstindige Induktion
nach n.

¢) Es sei a € R ein linker Nullteiler; es existiert also ein b e R, b + 0, mit ab = 0.
Hitte a ein Linksinverses ¢, 8o wiirde c(ab) = 0 gelten im Widerspruch zu (ca)b
= b # 0. Analog ergibt sich die zweite Behauptung von c).

d) Man beklammere bac auf beide Arten; daraus folgt b = c¢. Aus ax = 1 folgt
bax = z = b; analog fithrt ya = 1 auf yab = y = b.

e) Das folgt aus d).

f) Das folgt aus c).

g) Wegen 1 € E ist E nicht leer. Aus a € E folgt die Existenz eines a-! € R mit
a~la = aa~! = 1, und das bedeutet auch a-1€ E. Aus a, b € E folgt (b~'a—1)ab
= ab(b—la-') = 1, also ab € E. Die Multiplikation in E ist assoziativ wie die in R.
20.6 a)Esista(b + (ba — 1)a*) = ab + (aba —a)a* = ab + (@ —a)a* = ab = 1.
b) Es ist zu zeigen, daB b auch Linksinverses ist: ba = 1. Wiire aber ba — 1 # 0,
so wire nach a) auch b + (ba— 1) * b ein Rechtsinverses von a entgegen der
Voraussetzung.

(13). Genau die ganzen
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¢) Wir haben zu zeigen: Besitzt @ auer b wenigstens ein weiteres Rechtsinverses, so
bereits unendlich viele. In diesem Fall mu8 zunédchst ba — 1 + 0 sein, weil sonst
nach Aufgabe 5d) das Element b das einzige Links- und Rechtsinverse von a wiire.
Nach a) hat a die Rechtsinversen b 4+ (ba — 1)a* (k = 0, 1, 2, . ..). Wir zeigen, daf3
sie paarweise voneinander verschieden sind. Wire b + (ba — 1) a®= b + (ba—1)um
oder (ba — 1)a™ = (ba — l)a® fiir n — m = 1 > 0, so wiirde durch Rechtsmulti-
plikation mit b® folgen: ba — 1 = (ba — 1)b} = b} — bl = 0, was gerade nicht
der Fall war.

20.7 Multipliziert man unter Beriicksichtigung der Kommutativitét von R die n
Klammern (a + b) nach dem Distributivgesetz aus, so tritt das Produkt an—vbv

gerade (:) mal als Summand auf.

20.8 a) Der Binomialkoeffizient

(P) _pp—1) - p—v+1)

, yep—1) e 1 h=v=p—1

ist eine natiirliche Zahl; der Nenner kann also weggekiirzt werden; dabei bleibt p

im Zihler stehen. Fir 1 <» < p — 1 ist also p ein Teiler von (z: >, und in einem

Integritatsbereich I der Charakteristik p ist (Zv)) als Summe von (’:) Einsen gleich

Null. Aufgabe 7 liefert also (@ + b)?» = aP 4 b?. Es folgt (@« — b)? = aP — bP
fir p = 3. Fur p = 2 wird (@ — b)? = a? 4 b? = a? — b2, weil aus y(I) = 2 folgt:
b = —b2

b) Das folgt aus a) durch Induktion nach k.

¢) Das folgt aus a) durch Induktion nach n.

20.9 a) DaB K, und K, Korper sind, sieht man wie im Falle
K = {x: 2 = a+b)2 a,be)}.

Wir nehmen an, f: K, - K, sei ein Isomorphismus von K, in K,, und fithren diese
Annahme auf einen Widerspruch. Es sei f(}J3) = r + 8)5 (r,s€ Q). Es wiirde
einerseits f(3) = f(VY3)HVY3) = 7% + 5s® + 2rs}5 folgen; andrerseits ist f(3)
= f(1 4+ 1 4+ 1) = f(1) + (1) + /(1) = 3. Das liefert 72 + 53 + 2rs}/5 = 3. Da
V5 irrational ist, muB3 rs = 0 sein. Da |3 irrational ist, kann nicht 8 = 0 sein;

also folgt » = 0. Das aber liefert 82 = ?—, was ebenfalls unmaoglich ist.
5 e}

b) Wir zeigen: Das Quadrat von » = }2 € M liegt nicht in M. Andernfalls gibe es
Elemente a, b € Q mit (%) u? + au 4+ b = 0. Multiplikation von (%) mit u liefert
wegen u® = 2 die Gleichung au? + bu 4+ 2 = 0; Multiplikation von () mit a er-
gibt au? + a?u + ab = 0. Durch Subtraktion beider Gleichungen folgt (a? — b)u
= 2 -— ab, also, da » ¢ Q ist, a2 = b und ab = 2; hieraus folgt aber a® = 2, was
fir a € Q nicht moglich ist.

20.10 a) Es sei S ein Schiefkéorper und x(S) = 0; wir betrachten die Teilmenge
M = {x: x = ml, m € 3} aller Summen von Summenden +1 oder —1 und sehen
sofort, da M ein kommutativer Unterring von S ist. Durch f(m1) = m wird dann
ein Isomorphismus f: M - 3 von M auf 3 definiert: Da k1 = I1 wegen x(S) = 0
nur fir k = I moglich ist, ist f definiert und dann von selbst bijektiv, und die Rela-
tionstreue kommt von f(k1 + 1) = f((k +1)1) = k+1 = f(kl) + f(I1) und
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f(kl - 11) = f((kI)1) = Kl
jedes s € S; es folgt xs

f(k1)f(1). In 8 gilt nun 1s = ¢l und (—1)s = &(—1) fiir
sx fir alle z € M, s € S, speziell zy-! = y~lx fir alle
z,y € M, y & 0. Das erlaubt die Schreibweise K = {z: & = ’;1, k1e3, 1 +0CS

fiir die Menge K aller Quotienten von Elementen aus M. Wieder gelten die Bruch-
rechenregeln, und man sieht, daB K ein Korper ist. Jetzt erkldren wir durch
kl

1

rl P
1= a1 genau dann, wenn

k
ks = lr oder — = % ist; demnach ist die Abbildung g definiert und wieder bi-

l
o ' kKl 7l (ks + Ir)1 k8+l’
jektiv. Ihre Relationstreue folgt aus Tl = (13)1 =

_k r  (kl rl d k1l rl _ fler)1 _Icr_ _
=7t =9%) ) ™an a) T Awr) T i

Damit ist der Unterkérper K von 8 mit K ~  gefunden. Em Unterkorper
von £ ist  selbst; denn aus 1 € U folgt zunéichst 3 ¢ U und dann Q c U.

b) Ist x(S)=p,sowird M = {&: z=ml;m = 0, 1,2, ..., p— 1} C § isomorph 3.

20.11 Angenommen, es gibt einen Koérper K mit |K| = 4. Nach Satz 9.4 gilt
dann in K zuniichst 1 + 1 + 1 + 1 = 0;esfolgt (1 + 1)(1 + 1) = O oder y(K) = 2
und damit z + x = 0 fiir jedes # € K. Additiv ist also K die Vierergruppe. Mit
einem von 0 und 1 verschiedenen « schreiben wir K = {0, 1, o, « 4+ 1}; es ist ja
a + 1von 1 und « und wegen « =+ 1 auch von Null verschieden. Fiir die multiplika-
tive Gruppe K, kommt nur die zyklische Gruppe der Ordnung 3 in Frage; speziell
gilt also a2 = « + 1 = a— 1. Wenn also ein Korper K mit |K| = 4 existiert, so
nur dieser. Indem man die wenigen nichttrivialen Félle des Distributivgesetzes
direkt nachpriift, sieht man, daf K ein Kérper ist.

20.12 Ist L ein Unterkorper von K, so gilt nach Aufgabe 10a) jedenfalls Q cLc K.
Existiert in L ein @ 4+ b}2 mit b # 0, so ist auch @ + b}2 —a = 5|2 und dann
auch b-%)2 = )2 ein Element von L und damit L = K. Andernfalls ist L = Q.

k k1
) 7 einen Isomorphismus g von K auf Q: Es gilt =

20.13 Subtraktion der zweiten Kongruenz von der ersten liefert (1) —z + 4y = 3
mod 7; multipliziert man die erste Kongruenz mit 3 und subtrahiert die dritte,
so wird (2) 4z + y = 4 mod 7; aus (1) und (2) folgt (3) 17y = 16 mod 7. Aus (3)
bekommt man (vgl. Aufgabe 20.2) y = 3 mod 7 und denn weiter x = 2 mod 7
und 2 = 4 mod 7. Dieselben Kongruenzen (1), (2), (3) bekommt man auch modulo 8
und modulo 17. Modulo 8 wird z = 6, y = 0, z = 5. Die Proben bestiitigen die
Resultate mod 7 und mod 8. Modulo 17 ist (3), also das Ausgangssystem, nicht
l6sbar. Rechnet man analog in 3,, 3,, 3,4, so gehen die Kongruenzen in Gleichungen
iiber. Da 3, ein Korper ist, kann man hier sogar versuchen, die Cramersche Regel
anzuwenden, was zu dem angegebenen Resultat fithrt. In 3,, wird die System-
determinante Null.

20.14 Esgilt 0,1 € Z. Aus z € Z folgt (—z)s .= #(—=2) fiir jedes 8 € S, also —z € Z,
und z, ¥ € Z liefert (x + y)s = w8 + ys = sx + sy = s8(x + y) fir jedes 8 € S, also
z + y € Z; somit ist Z eine abelsche Gruppe beziiglich der Addition. Aus x,y € Z
folgt nach bekanntem Muster xy € Z und, falls « # 0 ist, ! € Z. Da die Multi-
plikation in Z kommutativ ist und das Assoziativ- und das Distributivgesetz von
selbst erfiillt sind, ist Z ein Korper (Satz 3).

21.1 Aus Satz 9.6 sind die additiven Untergruppen des Restklassenringes 3, be-
kannt; sie sind Ideale, da jedes 7 € 3, Summe von Einsen, also (2) auf Grund
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von (1) erfiillt ist. Die gesuchten homomorphen Bilder sind also die Restklassen-
ringe 3,/3;; mit min. Schreibt man n = dm, so wird 3,/3m ~ 34. Die simtlichen
homomorphen Bilder des Ringes 3, sind also die Ringe 34 mit d[n.

21.2 Man geht vor wie bei Aufgabe 14.1. Sind zuniichst f: B, - R, bzw. g: Ry > Ry
Ringhomomorphismen von R, auf R, bzw. R, auf R, so ist gf: R, - R, ein Ring-
homomorphismus von R, auf R;. Der Homomorphismus f: B - R/f sei definiert
durch f(r) = r + f. Nach Satz 4 ist f(a) = a/F ein Ideal von R/f. Weiter sei der
Homomorphismus g: R/t - (R/t)/(a/t) definiert durch seinen Kern a/f. Dann hat
der Homomorphismus gf: B — (R/f)/(a/f) den Kern a, und Aussage c) von Satz 3
liefert die Behauptung.

22,1 Man iibertrigt den Beweis von Satz 1; an Stelle von I x I, steht R x S.
h

Wegen S % ¢ gibt es ein k €S, und % wird Einselement von Rg. Im allgemeinen

ist Rs kein Korper; aber Rg enthilt R und damit § und zu jedem s € § das In-

verse a%' '

22.2 Die Elemente von I, seien a,, by, ¢;, ..., die Elemente von I, entsprechend
a; = f(ay), by = f(b;), ¢a = f(cy)s ...; der Quotientenkdrper Q, bekommt die Ge-

stalt {y: y = %, a;, b, €1, b, + 0}, und analog sieht @, aus. Durch a{g—l) = %g

1 1 2

wird dann eine Abbildung @: Q, - @, definiert: Wenn -';—‘ = % ist, so folgt a,d,
1 1

= by¢, oder f(a,d,) = f(b,c,) oder a,dy = byc, und damit % = %, wie es sein mubB;
2 ]

dabei sind mit b, und d; auch b, und d, ungleich Null. Ahnlich sieht man, da8 ¢
sogar bijektiv ist. SchlieBlich ist ¢ auch relationstreu:

1 b _ (o + b _a2+b2_ a b,
At o) =) == = da) + o)
%.ﬁ)_a,bz_ al) b,

e o) e \e 0—1)

2

Ein Element a, € I,, a, # 0, tritt in @, in der Gestalt Z—l auf und hat in @, das
oo 9 . . 2
Bild a—’, also a, € I,. Der Isomorphismus ¢ ist daher eine Fortsetzung des Iso-
2
morphismus f.

23.1 Die Behauptung deckt sich im wesentlichen mit dem Inhalt der Beispiele 2
und 3 am Ende von § 6.

23.2 Die Konstruktion verlduft wie die im Beweis von Satz 1. Man setzt (a, b)
+(c,d) = (a+¢,b+d) und (a,b)(c,d) = (ac + 2bd, ad + be) und zuletzt
0,1) = a

24.1 Man geht von der Vorstellung aus, die Menge aller r + k, 7€ R, k€3,
zu konstruieren; in ihr wire R enthalten und 0 + 1 Einselement (0 € R, 1 € 3).
Es sei also M = R x 3 das cartesische Produkt von R und 3 und (r, k) + (s, I)
= (r + 8, k 4 1) die Addition, (r, k) - (8, 1) = (ré + ks + Ir, kl) die Multiplikation
auf M ; dabei sind ks und Ir die in § 20.2 erklirten Elemente aus R. Man bestétigt
ohne Miihe, da M ein Ring mit dem Einselement (0, 1) ist. Die Teilmenge 7' aller
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(7, 0) kann dann mit der isomorphen Struktur R identifiziert werden. Diese Kon-
struktion ist sogar dann moglich, wenn R schon ein Einselement hat; das (einzige)
Einselement im derart konstruierten Erweiterungsring ¥ bleibt (0, 1).

25.1 Man betrachte die durch y(f(x)) = zf(x) definierte Abbildung y: Q[z] > Q[x].
Wegen p(f + g) = w(f) + w(g) gehoért p zum Endomorphismenring R von {Qfx].
Man definiere ferner ¢: Q[z] - Q[x] durch ¢(g) = 0 fiir g €Q und

Pla, + oz + ... + anz®) = a, + ax + ax® + ... + azzr!

fir » = 1. Dann ist auch g € R. In R gilt offenbar gy — &, aber beispielsweise
yo(l) = O, also pp + e. Es ist also y ein Rechtsinverses, aber kein Linksinverses
von @ € R. Nach Aufgabe 20.6 besitzt also ¢ € B unendlich viele Rechtsinverse
und nach Aufgabe 20.5, Aussage d), kein Linksinverses.

25.2 Man geht von M = R® aus und kopiert das Konstruktionsverfahren aus
dem Beweis von Satz 25.1.

26.1 Wir wenden Satz 3 an. Durchprobieren der sechs mdglichen Fille in a)
liefert 2 €Q als einzige rationalzahlige Nullstelle. Das Polynom in b) ist zwar
nicht normiert, aber Multiplikation mit 9 und anschlieBende Untersuchung von
(3z)® — 2(3x)% + 18(3x) — 36 = ¢® — 2y% + 18y — 36 auf rationalzahlige Null-

2
stellen ergibt fiir ¥ nur 2, fir x also 3 Das Polynom in c) hat keine Nullstelle Q.

26.2 Anwendung von Satz 9.4 auf die multiplikative Gruppe von 3, zeigt, da3
jedes a € 3p, a + 0, Nullstelle von x2? — z € 3,{z] ist. Es folgt: Jedes a € 3, ist
Nullstelle des Polynoms. Wir schreiben 3, in der Gestalt {0,1,2,...,p —1}
und zerlegen z? — z = 2(xP1— 1) = z(z — l)g(x). Einsetzen von 2 liefert g(2)
= 0; dabei wird die Nullteilerfreiheit von 3, benutzt. Man bekommt also weiter
x? —zx = z(x — 1) (& — 2)h(z). Fortsetzung des Verfahrens und Vergleich der
hochsten Koeffizienten liefert zuletzt die behauptete Zerlegung. Die Wilsonsche
Kongruenz ergibt sich durch Vergleich der Koeffizienten von z als Identitit
in 3,.

26.3 Es soll gezeigt werden: Es gibt genau eine Derivation D*: @ —» Q mit D*(a)

= D(a) fir a e I. Man wﬁhle%eQ, acl, bel, b+ 0. Ist D* eine Fortsetzung

von D, so mul D*(a) = D“‘(b . %) = bD‘(%) + %D*(b), also
a bD(a) — aD(b)
(6 D‘(g) =" pm

gelten. Wenn man also eine Fortsetzung D* von D definieren kann, dann nur so.
Wir zeigen zunéchst, da8 durch () iiberhaupt eine Abbildung D*: Q — Q defi-

niert ist. Es sei also % - 5 oder ad = be; dann muB D*(%) - D*(%) oder

bD(a) — aD(b)  dD(c) — cD(d)
be = a2

nachgewiesen werden; wegen ‘bd2D(a) + ¢b2D(d) = bd(dD(a) + aD(d)) = bdD(ad)
= bdD(bc) = bd(bD(c) + c¢D(b)) = db2D(c) + ad®D(b) ist das auch richtig. Weiter
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zeigen wir, da8 die Abbildung D*: @ - @ auch wirklich eine Fortsetzung von
D: I —»1Iist:
ab bD(ab)— abD(b) abD(b) 4+ b2D(a) — abD(b)
D‘ — ) = 3
b b? b
SchlieBlich weisen wir nach, da D* eine Ableitung von @ ist: Fir ¢ + 0 gelten
die beiden Beziehungen

D*(f + 3) _ D*(a + b) _ ¢Da +b) — (@ + b)D(e) D,,(g) n D*(g),

c c c ¢ c c

D a b ¢2D(ab) — abD(c?) _ (ac*D(d) — abeD(c)) + (be2D(a) — abeD(c))
(? ';) = ct - ct

- )+ o

26.4 Behauptet wird: Das Polynom anz® + ap_12%1 + ... + @y € 3p[x], an *+ 0,
hat in 3, hochstens n Nullstellen. Das folgt aber aus Satz 2.

= D(a).

26.5 Es seien a, b reelle Zahlen. Durch ¢(a 4 bi) = ¢ — bi wird, wie zwei kurze
Rechnungen bestétigen, ein Automorphismus des Korpers € definiert. Auf diesem

”
Sachverhalt beruht die Behauptung: Es sei f(d) = X apa* = 0, ay € R; durch
v=0

n n n
Anwendung von g auf beiden Seiten folgt 2 g(aya*) = X play)(@(a))’ = 2 ay(p(x))”
v=0 v=0 r=0
= 0 oder f(p(x)) = 0, und das sollte gezeigt werden.

27.1 DaB mit a? auch « algebraisch iiber K ist, folgt unmittelbar aus der Definition.
Ist « algebraisch uber K,

ana® + @pa®l + ... +a, =0, €K, an+0,
80 bringe man die Terme mit geradem Exponenten bei « auf die rechte Seite und

quadriere. Man bekommt eine Polynomgleichung fiir «® oder ein g(x) € K[z],
g(x) + 0, mit g(a®) = 0.

27.2 Man setze 2 + |3 + JB = a. Quadrieren von a — |6 = V2 + 3 liefert
a? — 2)6ax = 2)6 und erneutes Quadrieren ot — 4}5a® + 20a? = 24. Zuletzt
quadriert man o* 4 20a? — 24 = 4}5a® und bekommt o — 40c® + 3520* — 960>
+ 576 = 0. :

27.3 a) Der Fall VdeQ ist trivial; es sei also qu.:ﬁ Die Struktur Q[Vd] be-
steht aus allen a + de mit a, beQ und ist ein kommutativer Ring mit Eins-
element. Ist a + de #+ 0, so ist wegen Vd ¢ auch a? — db? nicht Null, und
man hat noch
_ de
@+ b)d = L7 eqryd.

Nach Satz 20.3 ist also 2[]/d] sogar ein Kérper, und das bedeutet D,[Vd] Q(Vd)
b) Zunéchst ist £( Vd) Q[Vd] da ferner V—ds f gilt, ist jedes Element von D,(Vd)
eindeutig in der Gestalt a 4 de mit a, b e darstellbar. Durch ¢(a + de)
= a—de wird also eine Abbildung ¢: ()/d) > Q(]/d) definiert. Man sieht so-
fort, da sie bijektiv ist. Die Relationstreue fiir die Addition und die Multiplikation
rechnet man leicht nach. (In der Losung von Aufgabe 26.5 wurde ein dhnlicher
Sachverhalt benutzt. Dort stand R statt § und —1 an Stelle von d.)
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27.4 Sind a2 + db? und u? + dov® Elemente aus G, so ist es auch ihr Produkt
(@®+ db?) (ut+ dv?) = (@ + b)/—d)(u + v)/—d))- (@a—b|—d) (u—o)—d))
= ((au—1bvd) 4 (av + bu) || —d) - ((au—bvd) —(av + bu)|—d)
= (au—bvd)2+ d(av + bu)?,
wie sich durch Rechnen in Q(Vj) zeigt. Die Multiplikation in G ist assoziativ
wie die in Q,; es ist 1 € G. SchlieBlich wird noch

2 2y -1 a : b y

27.5 a) Ist K ein Korper, so wird K[}3] = K(|/3); der Beweis verliuft wie in
Aufga.b; 2V7§3’ a). Daraus folgt Q[}2, V3] = QUVZ1 (V3] = Q(J2) [V3]1 = Q(V2) (V3)
= Q(V ] )'

b) Nach a) besteht )2, V3) aus allen reellen Zahlen der Gestalt (@ + b}2)
+(¢+dV2)Y3 = a + by2 + ¢Y3 + d|6 mit a, b, ¢, d €.

27.6 Nach § 27, Beispiel 3, ist Q(}2 + }3) = ()2, ¥3). Fir K konnen also ge-
wiB die finf verschiedenen Kérper 2, 2(}2), Q(V3), QV6), Q(V2, V3) gewihlt
werden. Weitere Zwischenkérper gibt es, wie man zeigen kann, nicht (Aufgabe 67.1).

27.7 a), b) Es ist Irr (3 + }3,Q) = Irr (8 — |/3,Q) = x2 — 6x + 6. Das Poly-
nom ist irreduzibel iiber , weil es in  keine Nullstelle hat (vgl. § 27, Beispiel 5).
¢) Wirsetzen J2 + }3 = aund bekommen a? = 5 + 2)8 oder {a? — 5)? = oA— 10«2
+ 25 = 24. Das Polynom P(z) = z* — 1022 + 1 € Q[«] ist also normiert und hat «
als Nullstelle. Wir behaupten Irr (¢, Q) = P(x) und haben dazu noch zu zeigen,
daB P(z) irreduzibel iiber f ist. Einen Faktor g(z) € R[x] vom Grad Eins kann
P(x) nicht haben; dies zeigt man wie in § 27, Beispiel 5. Der Ansatz

20— 1022 s 1 = (22 + ax + b) (2?2 + cx + d)
schlieBlich fiihrt (vgl. § 27, Beispiel 7) auf die moglichen Zerlegungen
(22 — 5 + V24) (a* — 5 — |24)

(22 + 2)8z + 1) (22 — 2)3x + 1)
@ + 2%z — 1) (@ — 2)Zx — 1)

mit Faktoren, die nicht in Q[x] liegen.

d) Mit 24+ 1 = « wird (¢ — 1)* = 2. Man bekommt Irr (¢, ) = a* — 423
+ 622 — 4z — 1.

e) Mit {2 + 1 = a wird (@ — 1)? = }2. Man bekommt Irr (x, Q(}2)) = 22 — 2z
+ 1 —J2).

27.8 Essei 2 = u. Wir haben damals gezeigt: Es gibt kein
glx) = 2® + az + b eQz] mit gu) = 0.

Das folgt aber aus Irr (u, ) = 2* — 2 (§ 27, Beispiel 6), weil ein g(x) € Q[] kleineren
QGrades nicht « als Nullstelle haben kann.

at— 1022 + 1

27.9 Wir unterscheiden zwei Fille: Entweder f(xr) = 2% 4 ax? + 1 hat einen
Faktor g(x) = z — b € Q[x] vom Grad Eins, oder f(z) gestattet eine Zerlegung in
zwei quadratische Faktoren aus [z], die wir dann wieder als normierte Polynome
ansetzen diirfen. Im ersten Fall wire f(b) = 0, also (Satz 26.3) be 3 und b(1;
nur b = 1 und b = —1 kommen dann also in Frage. Aus b = 1, also f(1) = 0,
folgta = —2,undeswirdat — 222 + 1 = (22 — 12 = (x — 1) (2® + 22 —ax — 1);
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aus b = —1, also f(—1) = 0, folgt ebenfalls a = —2. Das Polynom f(x) hat somit
einen Linearfaktor g(z) € Qz] nur fiir a = —2. Im zweiten Fall kénnen wir gleich
von dem Ansatz

x‘+ax2+l=(x2+bm+c)(xa—ba:+l) b,ceR, ¢c + 0)

1
ausgehen ; durch Koefﬁzmntenverglelch folgt @ = ¢ + ——b2und b(c — Z) = 0.
Fir b = 0 miillte ¢ + d.le ganze Zahl a sein; man uberlegt gich, daB das nur fiir
1
¢ = + 1 moglich ist; dle Werte von a sind dann + 2. Ist schlieBlich ¢ — = 0,

8o wird entwederc = lunda = 2—5b%2(b = 0,1, 2, ...), oder es ist ¢ = —1 und
a=—2—000b=012...)

ZusammengefaBt: Das Polynom 2% 4 ax?2 + 1 (a € 3) ist genau dann reduzibel
iiber Q, wenn a die Gestalt + 2 —5b2 (b = 0, 1, 2, . ..) hat. Die zugehérigen Zer-
legungen sind dann

A+ 22—+ 1 = (2% + bxr + 1) (22— bx + 1),
2 — 24+ 0322+ 1 = (2% + b — 1) (22 —bx— 1);

genau dann, wenn in der letzten Zerlegung b = 0, also @ == —2 ist, lassen sich
die quadratischen Faktoren rechter Hand noch in Linearfaktoren aufspalten.

31.1 Nein. In einem angeordneten Ring ist wegen 1 > 0 eine Summe von Einsen
nie Null, wohl aber in 3,(z).

31.2 In (3) und (4) kann man a $ 0, b + 0 annehmen und vier leichte Fallunter-
scheidungen + @ > 0, + b > 0 machen. Die Ungleichung (5) ist eine Folge von (4):
Ersetzt man in (4) b durch —b, so bekommt man insgesamt la + b| < ja] + |bl.
Ersetzt man in (4) a durch a — b, so ergibt sich || < |a — b| + |b] oder |a| — |b|
=< la — b|; Vertauschung von a und b fihrt zu |b|— |a| < [b—a| = lja—bl,
und zusammengefaBt wird |la| — |b|]| < la — b|. Hierin kann man noch b durch
—b ersetzen und erhilt dann die linke Seite von (5).

31.3 Bei der ublichen Anordnung von R besteht der Positivbereich P aus genau
den Elementen r € R, » + 0, die sich in R als Quadrat schreiben lassen: r = s2,
8 € R. Die dadurch definierte Partition von R lautet 8 = P u {0} UN, wobei N
aus den additiven Inversen der Elemente von P besteht. Die Elemente von P
miissen, da sie Quadrate sind, bei jeder Anordnung von R positiv sein; weitere
positive Elemente von i kann es aber nach (1) nicht geben.

31.4 Ein Automorphismus f: 3 - 3 iberfihrt 1in 1, 2 =1+ 1in1+ 1 = 2,
—1in —1 usw., ld8t also 3 elementweise fest. Daher gestatten 3 und folglich auch
nur den identischen Automorphismus:

m\  fim} m
/ n] ~ fn) " n
Wir zeigen, da auch R nur den identischen Automorphismus besitzt. Dazu fithren
wir die Annahme, es gebe einen Automorphismus f: ® >R und ein r € ® mit
fr) = » #+ r, auf einen Widerspruch. Es sei etwa 7* > 7. Dann gibt es ein
eeEQ mit r < g <7 und ein se€R, 8 + 0, mit p— r = % Dea f auch einen
Automorphismus von f liefert, gilt f(¢) = p. Unsere Annahme bedeutet also
f() — f(r) < 0. Andrerseits miiBte /(o) — f(r) = fe —r) = f(s%) = f(8)* > O sein.
Die Annahme war also falsch. Den Fall ' < r behandelt man analog.

(m,neB, n* 0).
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31.5 Sind a, b Elemente aus R mit ab = 0 und etwa e + 0, so kann b nicht auch
noch von Null verschieden sein, weil dann nach (1) und (2) das Produkt ab oder
das Produkt —ab positiv, also ab von Null verschieden ausfiele.

31.6 Nach Aufgabe § ist R nullteilerfrei. Wegen der Vorzeichenregeln aus Satz20.1
braucht ab = ba nur fir Elemente a, b € R mit 0 < a < b bewiesen zu werden.
Es sei n irgendeine natiirliche Zahl. Dann existiert ein m € N mit (m — 1)b < na
< mb; nach Voraussetzung gibt es namlick Vielfache kb > na, k&M, und unter
ihnen ein kleinstes mb. Fur das beliebig gewihlte n € i folgt nun

n{ab — ba) < mb? — (m — 1)b? = b2

Da R archimedisch angeordnet ist, kann also ab — ba nicht positiv sein, und es
folgt ab — ba < 0. Analog zeigt man ba — ab < 0 und demit insgesamt ab = ba.

341 Aus f(z) = (x— &) (x— &) ... (x — &) folgt /(&) = EI;I' (& — &k), und
bis auf (Z) Vorzeichenwechsel ist ﬁ 1 (&:) gerade D(f).
=1

35.1 Auf Grund der Siitze 2 und 3 bestehen die linke und die rechte Seite in a)
genau aus allen endlichen Summen der Gestalt Zaiby, a¢ € a, b; € by; sie stimmen
also iberein. In b) ist b D bc zu zeigen, und das folgt aus Satz 3 und der Ideal-
definition.

352 Zuniichst vereinfachen wir ¢ = (3 + }2,3— J2,6,(3 + V2)(3— ¥2))
= (8+123—126171) = (1)und b = 2+ J%2— 22+ 12 (2— }2)
=(2+ 12, 2— V2, 2, 12) = (}2); dann wird a 4+ b = (1) und ab = (}2).

35.3 Sind a, b Elemente aus rad a und a™ € a, b® € q, so folgt

(e + b)m+n = (am+n+ (m -l}- n)aﬂH-ﬂ—lb + ... +(m —: n)ambn)

+ ((;n I :)am—lbn+1 + ...+ bm+n).

Die Summanden der ersten Klammer rechter Hand sind Vielfache von a™ € qa, die
der zweiten Klammer Vielfache von b% € a; sie liegen also alle in a. Es folgt
(a + bymineq, also a + berad a. Mit acrad a gilt auch —aerad a; es ist
0 erad a. Ist schlieBlich a € rad a, also etwa a™ € a, und r € R, so gilt auch rmam
= (ra)™ € qa, also ra erad a.

35.4 Man betrachte das Ideal (5, ) C 3[(x]. Es besteht aus allen Polynomen f(x)
der Gestalt f(x) = a 4 zg(z) mit a € 3, 5l und g(x) € 3[x]. Schopft man 3[x]
durch die Nebenklassen von (5, ) aus, 8o bekommt man

3[x)/(6, ) = {0 + (5,2), 1 + (5, %), 2 + (5, %), 3 + (5,%), 4 + (5, x)} = 3.
Es ist, als ob 5 und « gleich Null gesetzt wiirden.
36.1 Es ist K, = £, die multiplikative Gruppe von Q. Nach dem Vorbild von
Beispiel 3 wird £, = {1, —1}.

36.2 DurchRaten findet man: In E, liegen die Elemente +(2 + |3)*(n=0,1,2,...);
E, enthilt die Elemente +(}5 +2)*(n=0,1,2,...). Man kann zeigen, da8 dies
simtliche Elemente von E, bzw. E, sind.
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36.3 a) Vgl. § 29.4.

b) Vgl. Beispiel 4.

¢) Wenn N(r) in 3 unzerlegbar ist, so ist  nicht Null und nach b) auch keine
Einheit. Es sei r = wuv; nach Teil a) folgt N(r) = N(u)N(v) und auf Grund der
Voraussetzung etwa N(u) = + 1. Wieder nach b) ist demnach « eine Einheit.

d) Wegen N(1 — |5) &+ +1und N(3 + |/5) + +1sind 1 — |5 und 3 + |5 keine

3 5 _ .
Einheiten. Aber der Quotient i i {//5 = —2 — V5 liegt in 3[}/5] und ist wegen

N(—2 — }5) = —1 sogar Einheit.
e) Keine zwei der Elemente 2, 3 + |5, 3 — |5 haben einen Quotienten, der
in 3[}/5] liegt; sie sind also weder Einheiten noch Assoziierte. Aus

2 = (a + b}5) (c + dVB)

mit a, b, ¢, d € 3 folgt 4 = (a? — 5b?) (c® — 5d?); keine der Klammern kann +2
sein, weil das bereits modulo 5 unmoglich ist; also ist entweder a + b)5 oder
¢ + d)/5 Einheit. Genauso ergibt sich die Unzerlegbarkeit von 3 + }5 und 1 — }/5.

37.1 Es sei a # (0) ein Ideal aus 23 und a sein kleinstes positives Element,
ferner b ein beliebiges Element aus a. In 3 gelte b = ga + 7, 0 < r < a. Als end-
liche Summe von Elementen a oder —a liegt ga in a, also auch r = b—gqa. Es
muf} also » = 0 sein. Also ist b = ga € (a) oder a = (a).

37.2 a) R[z] ist ein GauBscher Ring und f(z) weder Null noch Einheit. Es ist
f(x) = 2(z% + 1) ~ 2% + 1 Primelement; denn eine nichttriviale Zerlegung von
22 4+ 1 in R[z] lieBe sich in der Gestalt 22 + 1 = (x 4 a)(x + b) mit a,beR
schreiben im Widerspruch dazu, da8 f(x) keine reelle Nullstelle hat.

b) €[x] ist ein GauBscher Ring und g(z) weder Null noch Einheit. Es gilt 22 4 1
= (z + %) (x — ¢), und keiner der Faktoren rechter Hand ist eine Einheit.

37.3 Nach etwas Rechnung liefert der Euklidische Algorithmus d = 31. Es
ist 31 = 3039-303707 -— 1142 - 808 201. Das Aufsuchen der Primfaktorzerle-
gungen 303 707 = 31 - 97 - 101 und 808 201 = 292 - 312 ist ziemlich miihsam.
37.4 Der Euklidische Algorithmus liefert d(z) = 2(z2 +xz + 1) ~ 22 4+ 2z + 1
und d(z) = (z + Df(@) + (—2* — =z + l)g(z).

38.1 Man iibertrigt den Beweis von Satz 1. Zunichst ist 3[}2] c R ein Integri-
titsbereich. Fiir « = a + b)2 (a, b € Q) setzen wir N(x) = a? — 2b%. Es zeigt sich,
daB w(x) = |N(a)| (x€ 3[J2), « + 0) als Wertfunktion fiir 3[}2] genommen wer-
den kann: Sind « und 8 # 0 Elemente aus 3[}2], so wird

g = ¢* = u* + v*|2 (u*, v* €Q);

1 1
wir wihlen ¢ = u + v}2 (u, v € 3) derart, daB |u* — uj §§und jo* — | §§
gelten, und setzen ¢* = q + ¢. Es folgt « = ¢*f = g8 + 7 (¢, r € 3[J2]) mit

1
IN(r)I = IN(eB)l = IN(IN(B)l = IN(@) - IN(B)I = 5 IN(B)I < IN(B)I.

Also erfiillt w(a) die Forderung (1) aus § 37.3 und wegen w(x) € N auch (2).

38.2 a) DaB 3[}3] euklidisch ist, zeigt man wie in Aufgabe 1. Fiir « = a + b3
(a, b € Q) setzt man N(x) = a? — 3b% und wihlt w(a) = [N(x)j (x € 3[}3], « + 0).
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3
Die entscheidende letzte Abschétzung lautet |N(r)| < ZlN(ﬂ)I < [N(B)I.

b) Angenommen, 5 wire nicht Primelement und in der Gestalt 5 = «f in 3[}/3]
nichttrivial zerlegbar. Wie in § 36, Beispiel 4, folgt, dal die Normen N(a) und
N(B) von +1 verschieden sind. Aus N(5) = 25 = N(«x)N(f) ergibt sich also N(«)
= +5.Fiira = a + b3 (@, b € 3) heiBlt das a? — 3b% = + 5; das ist aber modulo 5
nur fir ¢ = b = 0 moglich. Letzteres bedeutet 25|(a? — 3b?) im Widerspruch zu
a® — 3b2 = +5. Also ist 5 Primelement in 3[}3].

c) Esist 13 = (4 + [3) (4 — |/3), und dieselben Uberlegungen wie in § 38.2, 1),
2), zeigen, daB dies eine Primfaktorzerlegung von 13 in 3[ 3] ist.

38.3 Man bekommt (3, 1) = (¢) = (1); (4 + 44, 8¢) = (4 + 44, (4 + 43) (1 — 4)7)
=(4+4);24+42—)=2+14,2—4H2—)—2+19) =2+ 2—43
1—)=2+42—141—41) =11 +41—12%) =+ 441 + 7)) = (14 7).
Auf Grund der Sitze 37.4 und 36.3 kann man auch mit Hilfe von § 38.2 den g.g.T.
bestimmen.

38.4 Ohne algebraische Hilfsmittel ist diese Aufgabe nicht leicht. Hier wird
die Behauptung fast trivial: Es ist 5 = (2 4+ ¢) (2—4), und 2 + % und 2 — ¢ sind
nichtassoziierte Primelemente in 3[4] (§ 38.2). Wiirde (2 4 ¢)# = (2 —)* fir
ein gewisses n € N gelten, so wire die Eindeutigkeitsforderung (2) aus § 37.1 in
dem GaufBlschen Ring 3[] verletzt.

41.1 Es ist 2= x-z, aber z&(2?); es ist- 2%—22*—22x—38 = (z—3) (x*+z+ 1),
aber weder z — 3 € (z® — 222 — 22 — 3) noch 22 4+ = 4 1 e (2® — 222 — 22 — 3);
es ist 6 == 23, aber weder 2€(6,x) noch 3&(6,z); die Ideale (x?), (x®*—2x2—2x—3)
und (6, x) sind also keine Primideale und erst recht nicht maximal. Da sich jedes
f(z) € 3[z] in der Gestalt f(x) = gq(x)-(z + 1) + r, g(x) € 3[z], r € 3, schreiben
1aB8t, ist 3[z]/(x + 1) ~ 3; es ist also (z + 1) ein Primideal (Satz 40.1), aber nicht
maximal (Satz 41.1). Wegen 3[x]/(2, z) ~ 3, und 3[x]/(3, ) ~ 3, (vgl. Aufgabe 35.4)
sind (2, z) und (3, z) in 3[x] maximale Ideale und damit erst recht Primideale.

41.2 Nach Satz 37.3 ist R[x] euklidisch, also erst recht ein Hauptidealring. Das
Element 22 + 1 aus R[z] ist ein Primelement und erzeugt nach Satz 41.3 ein
maximales Ideal (x? + 1). Also ist R[x]/(x? + 1) ein Korper. Da sich jedes f(x) eR[x]
in der Gestalt f(x) = ¢(z) - (2?2 + 1) + r(z) mit g(z), 7(z) e R(x], r(z) = ax + b,
schreiben 1a8t, wird R[x]/(x? + 1) die Menge aller Klassen ax + b + (22 + 1).
Esgiltar +b+ (2 + 1) = a'z + b + (2® + 1) genau fir ¢ = a’ und b = ¥,
weil das Ideal (2 + 1) auller der Null nur Polynome vom Grad = 2 enthilt.
Das Quadrat von 2 4 (x? 4 1) ist die Klasse —1 + (z% 4 1). Durch

pa+br+ (x2+1) = a+ b

wird ein Isomorphismus von R[x)/(x% + 1) auf € definiert. In R[x}/(x? + 1) tut
man 80, als wire 2 + 1 = 0 und schreibt im iibrigen « statt <.

41.3 Man geht vor wie in Aufgabe 41.2 und betrachtet K[z]/(x®* — 2).

414 a)Esgiltw®—1=(wo—1)(0®*+ w4+ 1)=0undw + l,alsow? + v 4+ 1
= 0. Ein f(z) € 3[x] ldBt sich in der Gestalt f(x) = ¢q(x) - (x? + z+ 1) + ax + b
schreiben ; jedes Element aus 3[w] hat daher die Form aw + b (a, b € 3). Es folgt
3[w]/(2) = {(2), 1 + (2), o + (2), 1 + @ + (2)}. Das ist ein kommutativer Ring
mit Einselement. Wegen (1 + (2)) (1 + (2)) = 1 + (2) und (@ + (2)) (1 + © + (2))
= —1 4+ (2) = 1 + (2) hat jedes von Null verschiedene Element aus 3[w]}/(2) so-
gar ein Inverses, und 3[w]/(2) ist ein Koérper. Nach Satz 41.1 ist also (2) in 3[w]
ein maximales Ideal und damit erst recht ein Primideal.

17 Hornfeck, Algebra
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b) In 3[¢]ist 2 = (1 + 4) (1 — ¢) nichttrivial zerlegbar; es gilt 2 € (2), aber 1 + ¢¢(2).
Folglich ist (2) kein Primideal in 3[%] und erst recht nicht maximal.

42,1 Das Polynom f(z) + g(x)y € R[x] [y] ist linear in ¥ und het nach Voraus-
setzung in R[z] den Inhalt Eins.

42.2 Wir brauchen nur, da8 R nullteilerfrei ist. Angenommen, es sei

f(@yy Zay oo s Xn) = @y, Tpy .o us Tn) * B(Xy, Xy ..., Zp)

und % nicht homogen. Dann kann man
h(zy, gy . oo @n) = hy(Zy, Tgy ..oy Tn) + Ry(@y, Zpy ...y ) + AglZy, Ty .. .5 )

schreiben, wobei h; $ 0 homogen vom Grad r (das ist die maximale Exponenten-
summe der Summanden von k), hy + 0 homogen vom Grad & < r (das ist die
minimale Exponentensumme der Summanden von A) und jeder von Null ver-
schiedene Summand von k, von einem Grad ¢ mit 8 < ¢ < r ist. Ist g homogen, so
bekommt f die Summanden gh, + 0 und ghy + 0, die sich nicht wegheben, und
kann daher nicht homogen sein. Ist g nicht homogen, so spaltet man entsprechend
auch ¢ in drei Summanden auf und kommt zu dem gleichen Widerspruch.

42.3 Wirsotzen - — o. Bsist& — or—" und Irr (o, Q) — a) = a2?
42. irsetzen 5 = . Esls az—2.+iun e, ) =(r—a)(zt—a) =2z

6 6
— 5 + 1; o8 sei 22 — i 4+ 1 = f(z). Ist F[z] € Q[x] ein Polynom mit der Null-

stelle «, 80 ist es in Q[z] durch f(z) teilbar; dazu schreibe man F(z) = ¢(z)f(x)
+ r(z) mit g(z), r(x) e Qz], () = 0 oder Grad r(z) < Grad f(z), und ersetze x
durch «. Wiire a® = 1 fir ein n € R, so wire F(z) = z® — 1 demnach in Q[z]
durch f(z), also auch durch das primitive Polynom 5% — 6x + 5 € 3[z] teilbar.
Nun wende man Satz 2 an: Wegen F(x) € 3[z] mite bereits 522 — 6z + 5|z — 1
in 3(z] gelten; ein Vergleich der hichsten Koeffizienten zeigt aber, dal a7 — 1
= g(z) - (522 — 6x -+ 5) mit einem g(x) € 3[z] nicht maoglich ist.

3 3 8
42.4 Wie Aufgabe 42.3. Mit « = -3—i—: wird Irr(x, Q) = 22— 5% + 1, und

8x? — 8x + 5 tritt an die Stelle von 522 — 6z + 5.

43.1 In allen vier Fillen geniigt es, die Irreduzibilitdt iiber 3 nachzuweisen
(Satz 42.3). Das Polynom f,(x) ist schon iiber 3, irreduzibel, erst recht iiber 3.
Das Polynom f4x) hat keine Nullstelle in 3 (Satz 26.3) und ist folglich irreduzibel
iiber 3. Das Polynom f4(x) hat ebenfalls keine Nullstelle in 3 (Satz 26.3); man
versucht noch die beiden Ansitze fy(z}) = (2? + ax — 1) (z? + bz — 1) und
Js(x) = (@ + ax + 1) (2 + bz + 1) mit a, b € 3; der erste fuhrt auf a + b = 2
und —a — b = 2, versagt also; beim zweiten miiBte ¢ + b = 2 und ab = —1 sein,
was fiir @, b € 3 unmoglich ist. Bei f,(z) nehme man das Eisenstein-Kriterium
und p = 3.

43.2 Nach Satz 42.3 geniigt der Nachweis der Irreduzibilitédt tiber 3. Im ersten
Fall nehme man das Eisenstein-Kriterium und p = 5. Im zweiten Fall wiirde eine
Zerlegung in 3[x] auch eine in 3,[x] liefern, und die ist nicht moglich.

43.3 Wegen aqan + 0 hat auch g(z) den Grad n. Angenommen, es wire g(x)
= g,(x)g,(x) mit Polynomen g;(x), g,(x) € R[x] mindestens vom Grad Eins. Wegen
an * 0sind die konstanten Glieder von g,(x) und g,(z) ungleich Null. Im Quotienten-
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1 1 1 1
kérper R(x) wire 9'(;) = 91(;)!72( )und in R[z] dann o™ —) flz) = hiz)f(z)
eine Zerlegung von f(z) mit Grad f,(x) = Grad g,(z) und Grad f,(x) = Grad g.(z).

43.4 Man betrachte f(z,y) als Polynom in y mit Koeffizienten aus R[z] und
benutze das Eisenstein-Kriterium fir p = .

44.1 a) Ist f(x) = g(z)?, so folgt f(z) = pg(x)l’—lg’(:v) = 0 (Sétze 26.5 und 26.4).
b) Ist f'(x) = O, so hat f(z) die Gesta.lt fx) = Z'a,(zp)' Nach Satz 12.6 ist das
dasselbe wie f(x) Z(a,)l’(zl’)’ = Z(a,;n”)l’ Nun wende man Aufgabe 20.8c) an.
Es folgt f(z) = (Ea,x')r also f(z) = gz mit glz) = Zarr'

o 2
45.1 Die primitive finfte Einheitswurzel { = cos — -+ ésin ;’ ist Nullstelle

1
von A + 28 4+ 22 4+ x + 1. Also gilt({’ + r_2)+(c+f)+l = 0. Man setze
C-{—lf = u. Es folgt u? + u — 1 = 0, also, da « positiv reell ist, u =§(V3~—— 1).

2 2 _ . .
Nun gilt v = 2cos g Also wird cos 5’3 = —( J8 — 1). Daraus ergibt sich

sm ? = —1/5 + Vs.
45.2 Der Fall ¢ = list klar. Fiir{ & 1 hat dieSumme 1 + ¢ + {2 4 ... + {m-2

m__ ]
den Wert CCTI’ und hierin ist der Zdahler Null.
45.3 In (2) ersetze man x durch 0 und beweise die Behauptung durch Induktion
nach m.

45.4 Wir fithren den Beweis in drei Schritten.

1) Es sei { eine primitive m-te Einheitswurzel. Wir behaupten: Dann ist —{ eine
primitive 2m-te Einheitgwurzel. Zunichst gilt ja (—{)?2m = 1. Es sei d die Ordnung
von —{, also d|2m; behauptet wird d = 2m. Es ist d kein Teiler von m; denn
dann miite (—)™ = 1 sein im Gegensatz zu (—{)® = —{m = —1 (hier haben
wir benutzt, daB m ungerade ist). Also ist d = 26 gerade. Es folgt (—{)¢ = {4 = 1,
und die Ordnung m von ¢ teilt d. Somit ist d ein Vielfaches von m und ein Teiler
von 2m, aber wegen d+m von m verschieden. Das heiflit d = 2m.

2) Die Polynome @p(—=z) und Pon(x) aus Q{z] haben also in € > die Nullstelle
—( gemeinsam. Beide sind sie auf Grund von Satz 3 irreduzibel iber . Die An-
wendung von Satz 44.2 ergibt also sowohl @,(—x)(Pam(x) als auch Dap(x)(Pm(—)
in Q[x].

3) Da Pap(z) und Dp(xr) normierte Polynome sind, folgt Pom(x) = =+ Dp(—=).
Rechts mul das Pluszeichen stehen, wenn wir noch zeigen, daf fiur m = 3 der
Grad @(m) von @n(x) gerade ist. Dies wiederum ist auf Grund der Definition von
@(m) richtig, weil aus (d, m) = 1 auch (m —d, m) = 1 folgt und fiar m = 3 und
(d,m) = 1lgilt:m —d # d.

45.5 Durch wiederholte Anwendung von (7) folgt (8) aus (4). Wir zeigen die
Giiltigkeit von (7) in zwei Schritten.
1

~ omi 1
1) Es sei ¢ = ¢™ ' und 8 = e”‘”zm. Wegen f? = « ist  Nullstelle von @,(z?P).
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AuBerdem ist auch @p;p(f) = 0 und Ppp(r) nach Satz 3 irreduzibel iiber Q. Die
Anwendung von Satz 44.2 liefert ®@pmp(z)|Pm(zP) in Q[z]. Beide Polynome sind
normiert. Wenn wir unter 2) zeigen, da8 ihre Grade tibereinstimmen, ¢p(mp) = pg(m),
so sind sie identisch.

2) Es sei d eine natiirliche Zahl. Wegen p|m bedeuten (d, mp) = 1 und (d, m) = 1
dasselbe. Es ist also @(mp) die Anzahl aller d mit 1 <d < mp und (d, m) = 1.
In jedem der p Teilintervalle vm 4+ 1 <d <@+ 1ym (» = 0,1, ..., p—1)
liegen genau g(m) Zahlen d mit (d, m) = 1 (vgl. hierzu Abschnitt 12.4); insgesamt
wird also g(mp) = pp(m).

45.6 Die Pp(x) fur die Primzahlen m = 2,8,5,7,11, 13 folgen aus (4), fiir die Prim-
zahlpotenzen m == 4,8,9 aus (8): Dy (z) = 22 + 1, Py(z) = 2t + 1, By(z) = a*
+ 28 4 1. Far m = 6,10,14 bekommt man sie nach (6): Pz) = 22—z + 1,
Dyz) =2 —a®+ 22—+ 1, O (xr) = 22—+ 24 —2* 4 22—2 + 1. Fiur
m = 12 verwendet man (7) mit p = 2: @)y(x) = D4(z?) = 28 — 22 + 1. Aus (2)
berechnet man P (x) = 2®* —a” + a®* —2* 4+ 2 — « + 1. SchlieBlich war & (x)

=z— 1.
46.1 Vgl. Aufgabe 37.1.
49.1 Wegen (0,0, ...,0)eU ist U nicht leer. Mit (ry,7,, ...,74) und (8,,8,, ...,82)

ist auch (r, + 8;, 7 + 85, ..., 7z + 8) ein Element von U; es ist ja Zay(r; + &)
= Zayr; + Zays; = 04+ 0 = 0. Ist (r, 7y, ..., 7s) € O und ¢ € K, so gilt auch
C(ryy Ty ooy Tp) = (Cry, Ty ..., crp) € U wegen Zaycr; = cZayr; = ¢- 0 = 0. Die

Behauptung folgt also aus Satz 1.
50.1 Esist B = (1, 1} eine Basis von V, also dim V = 2.
50.2 Esist B = {1, 4,3, k} eine Basis von V, also dim V = 4.

50.3 Wire dim V = n < o0, 80 giibe es eine Basis {«,, a5, ..., an} von V, und R
wiire gleich der Menge M aller Linearkombinationen ¢,a;, + g,a, + ... + gnan,
g1 €Q. Aber nach Satz 2 li8t sich M eineindeutig auf Q7 abbilden und damit
nach Satz 4.1 abziihlen. Doch R ist nicht abzihlbar. Also ist dim ¥V = oo.

n
50.4 Die Elemente aus Q[¢] haben die Gestalt « = Yg,£” mit rationalen Koeffi-
[}

zienten q,. Wegen & = 2 lassen sie sich sogar alle in der Gestalt a%2 + b& + ¢
mit a, b, ¢ € Q schreiben. Nach § 27, Beispiel 6, ist Irr (£, Q) = 2 — 2; Satz 27.1,
Aussage (3), mit & an Stella von « und f(x) = 2® — 2 liefert: genau denn ist a2
+ b +c¢c =0, wenn a = b.= ¢ = 0 gilt. Also hat V die Basis {1, &, {2}, und es
ist dim V = 3.

53.1 Der Euklidische Algorithmus fiir die Polynome p(x) = 2® — 7 und f(z) = a2

11 11 1 1 b
i — A — = 2 — X —
+ 8z 4+ 1 aus Q[x] liefert den g.g.T. 4 1 und " (§“’ + 16% 16)I(ac)
1 7 ) 1
Y i i -1 2
(82: + 16 (x). Es folgt (vgl. den 2. Beweis von Satz 2) {1 = 22(1/7) + 44V7
5 -
— 4—4 GQ[V7].

54.1 Das Eisenstein-Kriterium mit p = 2 zeigt die Irreduzibilitdt von z® — 2z
+ 2 iiber Q. Es folgt [«: Q] = 3. Fiir # € Q(a) gilt entweder [f: Q] = 3 oder [8: Q]
= 1 (Satz 3). Wir zeigen, daB das letztere, also f = «? — x €, nicht zutrifft;
das bedeutet dann [f: Q] = 3 und folglich (Satz 3) Q(x) = Q(P). Mita? —a = fe



Lésungen der Aufgaben 261

wiire ja 22—z — B e Qfz] ein Polynom vom Grad 2 mit der Nullstelle o, was
wegen [x:] > 2 nicht moglich ist. Das Polynom Irr (8, Q) bekommt man aus
f = a?— a durch leichte Rechnungen: Zundchst wird f2 = ot — 202 + a2
= a(2¢ — 2) — 2(2a¢ — 2) 4 o® = 3a? — 6 + 4und analog §? = 16a2—28a + 18;

1 4
ausﬂundﬂzerrechnetma.na=—gﬂz+ﬂ+§unda”=———ﬂ2+2ﬂ+ , und
Einsetzen in #2 fiilhrt zu Irr (8, Q) = 2* — da? — 40 — 2.

542 Da }/—2 nicht reell ist, gilt —2 ¢ Q(]/2); andrerseits ist /—2 Nullstelle
von z? + 2en(]/2)[a:]. es folgt [Q(VZ, | —2): Q] = [Q2, J—2): AYD]-[Q(})2): Q)
2.

Fur Q( VS VB‘ + ¥3) konnen wir 2(}3, §3) schreiben. Es ist [Q()3, ¥3):2]
= [R(V3, ¥3):2(V3)] " [R(}3):2), und der zweite Faktor rechter Hand ist 2.
Wir zeigen, daB der erste Faktor gleich 3, also [Q(}3, J3 + ¥/3):2] = 6 ist. Die
Zahl 3 ist Nullstelle von 2* — 3 € Q(}3)[z], und das Polynom kenn in Q(}3)[x]
nicht zerfallen, weil es sonst eine Nullstelle & € Q(}/3) hiitte; das letztere hieBe aber
(Satz 3) [£: 2] < 2 im Widerspruch zu {£: ] = 3. Also ist Irr (¥/3, Q(}3)) = 28 — 3
und damit [(}3, ¥3):2(}3)] = 3.

. .. —1 42 1+ +7 —1+47 147
SchlieBlich ist Ve = ( ) ) also D.( T ) ) = D.( 73 ) und
[ (IV;IL, —% :Q] = 4; es ist ja ly-; Nullstelle von af 4+ 1 e Q[z], und
dieses Polynom ist irreduzibel iiber .

54.3 Wegen Q(a + 7) CR(a, t) ist fir Qe + 4) = Q(a, t) noch N(a, ¢) CQ(x + )
zu zeigen. Dafur geniigt es, 7 € Q(«x + 4) nachzuweisen, denn dann gilt auch
a4+ t—1 = ae(x 4 t). Wir setzen « + ¢ = £ und bekommen 5 = (§ — )3 = &
— 3i6%2 — 3% + 4, also, da 382 — 1 # O ist,

. B —3—5 .
i = —TE,__—IEQ(&) = Qa« + 7).

Es gilt also Q(« + %) = Q(a, ©).

Hieraus ermitteln wir den Grad von « + ¢ iiber Q. Das Element 7 vom Grad 2
uber Q liegt nicht in der Erweiterung Q(«) von  vom Grad 3, da 2 kein Teiler
von 3 ist (Satz 3); daher bleibt [¢: Q(x)] = 2, und es folgt

[R(x +19):2] = [Qax ¢): QYa)] - [Aa): Q] = 2-3 = 6.

Es sei weiterhin a + ¢ = & Da nun [£:Q] = 6 bekannt ist, geniigt es zur Er-
mittlung von Irr (§, Q), ein normiertes f(z) € Q{z] vom Grad 6 anzugeben, das &
als Nullstelle hat; dann ist von selbst f(x) = Irr (§, Q). Dazu betrachte man noch
einmal £ -—-3i62—3f + ¢ = 5 oder £ — 35— 5 = 4352 — 1) und quadriere;
man bekommt & - 952 4 25— 654 — 108 4 308 = —(9&— 642 + 1) oder
Irr (¢ + 2, ) = % + 3at — 102® 4 322 + 30x 4+ 26. DaBl dieses Polynom iiber
irreduzibel ist, ist auf direktem Wege nicht so leicht zu sehen.

55.1 fR(z).

56.1 Ja; denn das regelmiBige Dreieck und das regelméiBige Fiinfeck (vgl. Auf-
gabe 45.1) sind konstruierbar; nach der Bemerkung 1 zu Satz 3 ist a.lso auch der

2
Winkel ngonstruierbar, dessen Halbierung den gesuchten kael erglbt
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56.2 Es bedeutet nur eine Urnformulierung der Aufgabe, wenn wir sagen: In a)
und b) soll die fehlende dritte Seite gefunden werden. Dazu verschaffen wir uns
eine Formel, in der w, durch die drei Seiten ausgedriickt wird, und lésen sie an-
schlielend nach ¢ bzw. a auf. Fiir die Ermittlung dieser Formel (wegen der folgen-
den Rechnungen vergleiche man ein Lehrbuch der analytischen Geometrie) fithren

-> —> —>
wir die Vektoren AB = ¢, BC = a, CA = b ein; die von C ausgehende Winke!l-

-
halbierende w, treffe die Seite AB im Punkte D, und es sei CD = w,. Es ist nun
¢ = —b — a; also existiert eine reelle Zahl u mit

—>
(1) AD = y(—b—a).
1
Der Vektor der Linge Eins in Richtung von C nach 4 istzb; der Vektor der Léinge

1
Eins in Richtung von Cnach B ist — % da die Diagonalen eines Rhombus dessen
1 1
Winkel halbieren, zeigt -b—B — gt in die Richtung von C nach D, und es gibt eine

1 1
reelle Zahl 4 mit w, = 1(35 —-aa) oder

2 A_l>) _ b+ A 1 b 1

( ) = - + (-5 - aa).

Ein Vergleich der Koeffizienten von ¢ und b in (1) und (2) liefert 1 = a:_b b und
. 1 1 1 ) )

pn = at+ b Also haben wir Wy = ;'(35 —“;0) = &ﬂ(ab -— ba). Wir suchen die

Linge w, dieses Vektors und finden sie als Wurzel aus dem skalaren Produkt
von 1, mit sich selbst. Wegen a® = a2 und b2 = b2 gibt das zunichst

1 [
252 .
a + b V2a% ab - 2ab,
und hierin darf wegen (a + )2 = ¢2 noch 2ab durch ¢? — a? — b? ersetzt werden.
Das fiithrt zu der gesuchten Formel

1
a+ b

Nun sieht man, daB8 die Konstruktionsaufgabe a) 16sbar ist; denn (3) liefert eine
quadratische Gleichung fiir c.

Die Ausfilhrung der Konstruktion b) dagegen ist im allgemeinen mit Zirkel und
Lineal unmdéglich. Sind beispielsweise b = w, = 1 und ¢ = 2, 80 ist der Kérper K
= e, b, wy) = Q gegeben, und aus (3) folgt a® + a®*—b6a— 1 = 0; es gibt
genau ein a > 0, das diese Gleichung erfullt (1 < a < 2), und dieses @ ist zu
konstruieren. Es ist Nullstelle von f(x) = z® + #2 — 52 — 1, und dieses Polynom
hat keine rationalzahlige Nullstelle (Satz 26.3), ist also irreduzibel uber Q. Das
bedeutet [a: K] = 3 und damit zugleich die Undurchfiihrbarkeit der verlangten
Konstruktion.

Wy =

(3) wy = Yabla + b + ¢) (@ + b —c).

§8.1 Wir fithren den Beweis durch vollstindige Induktion nach n. Die Behauptung
ist richtig fiir » = 1. Sie sei bereits bewiesen fiir alle Korper K und Zer-
fallungskorper E von Polynomen f(z) e K[x] mit Grad f(z) < n. Fiir Grad f(z)
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= n > 1 unterscheiden wir zwei Fiille: 1) f(x) ist in K[x] irreduzibel; 2) es gibt
Polynome fi(z), fo(x) € K[z] mit Graden k, I = 1 und f(x) = fy(2)f;(x). Im ersten
Fall gibt es ein a € E mit fla) = 0, und es wird [E: K] = [E: K(a)] - [K(x): K]
= [E: K(«)] - n. In K(a)[x] kann man f(x) = (x — a)g(x) schreiben; dann wird E
Zerfillungskorper von g(x) € K(a)[«] und nach Induktionsvoraussetzung [E : K(a)]
ein Teiler von (n — 1)!. Also geht auch [E: K] = [£: K(x)] - » in n! auf. Im zweiten
Fall seien oy, a5, ..., ax € E die nicht notwendig paarweise voneinander ver-
schiedenen Nullstellen von f (). Dann ist K(x;, «y, ..., ax) der Zerféllungskorper
von f,(z) € K[z] und E auch Zerfillungskérper von f.(z) € K(x,, ay, ..., ag)z].
Nach der Induktionsvoraussetzung ist also [E: K(ay, ay, . .., )] ein Teiler von !
und [K(ay, oy, ..., ak): K] ein Teiler von k!, das Produkt [E : K] somit ein Teiler

k
von lik!, und diese Zahl teilt (¥ + I)! = n!, weil der Binomialkoeffizient ( Z— l)

(ke + D
= TR

5§8.2 Nach Satz 2 liBt sich der identische Automorphismus ¢: K ~ K zu einem
Isomorphismus ¢ von K(a,) auf K(a;) mit ¢(x;) = «, fortsetzen. Diesen Isomorphis-
mus betrachte man in Satz 3; es wird g(z) = f(x), und man darf F = E wiihlen, da
E sowohl Zerfillungskorper von. f(x) € K(«;)[x] als auch Zerfdllungskorper von
H(z) € K(a,)[z] ist. Jede Fortsetzung t: £ ~ E von ¢: K(«;) ~ K(a,) leistet dann
das Verlangte.

eine ganze Zahl ist.

58.3 a) Man nehme das Eisenstein-Kriterium und p = 2.

b) Durch Ausrechnen der Klammern bekommt man f(2 — «) = f(a) = 0.

¢) Es gind « und 2 — « Nullstellen desselben iiber £ irreduziblen Polynoms f(x).
Also wird durch ¢(g(a)) = ¢(2 — «) ein Isomorphismus ¢ von Q(a) auf Q(2 — «)
definiert (g(z) e Q[z]), der Q elementweise festlit. Wegen aeQ(2-— a) und
2 — a € 2(«) ist sogar Q(x) = (2 — a) und ¢ damit ein Automorphismus von Q(a).
Er hat die Eigenschaft ¢(a) = 2 — a, und aus dieser Eigenschaft folgt fiir einen
Automorphismus ¢ von Q(a) schon ¢(g(x)) = glp(x)) = g(2 — ). Also gibt es
genau eine Fortsetzung ¢ von & mit p(a) = 2 — .

d)} Wegen Q c L ist L nicht leer; speziell liegen 0 und 1 in L. Aus a, b € L folgt
pla—b) = ¢@la) —ed) = a—0>b, also a—be L, und @(ab) = ¢(a)p(b) = ab,
also abe L. Ist a€ L, a # 0, so wird @(a!) = ¢(a)~! = a7}, also ¢~! € L. Damit
sind die in Frage stehenden Koérperaxiome fiir L nachgepriift.

e) Q(«) besteht aus allen Elementen y = aa® + ba? + cx + d mit a, b, ¢, d e,
und es gilt L = {y: ¢(y) = y}. Man bekommt ¢(y) = a(2 — «)® 4+ b2 — «)?
+ ¢(2 — ) + d; Ausrechnen der Klammern und Vergleich der Koeffizienten glei-
cher Potenzen von « (vgl. § 53.2) in ¢(y) = ¢ liefert ¢ = 0 und 2b 4+ ¢ = 0, also
L = {ba®— 2ba + d: b, d eQ}. Das ist nicht ganz Q(«), aber mehr als ; wegen
[Q(e) : Q] = 4 liefert die Gradformel also [L: Q] = 2. Jedes nicht schon in  ge-
legene Element f € L erzeugt daher L iiber . Wir wihlen etwa b = 1 und d = 0,
also § = a® — 2a, und bekommen L = £(f). Man berechne §? = ot — 4a® + 4a2;
dann sieht man Irr (8, Q) = 22 — 2z + 2 und erhélt § = 1 4 4. In beiden Fallen
wird L = Q(4).

f) Fiir des erzeugende Element « von 2(x) = L(x) iiber L gilt a2 — 20t = g = 1 + 4.
Es folgt « = 1 + }J2 + 4. Jede dieser vier Zahlen ist Nullstelle von f(z), wie die
Probe durch zweimaliges Quadrieren zeigt: (x — 1)? = 2 + 4 und ((a — 1)2 — 2)2
= —1 ergibt f(a) = 0.

g) Esist E = (y2 + 4, J2—1) und, wie wir schon wissen, [Q(}2 + ?): Q] = 4.
Wir zeigen noch [Q(}2 44, J2—1): (Y2 +¢)] = 2 und damit auf Grund der
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Gradformel [E:Q)] = 8. Die Zahl }/2—3 ist Nullstelle von x2—(2—4)eQ(V2 + 1) [x];
es folgt [V2—%: QY2+ )] = 2. Zu zeigen bleibt }V2—17 ¢ Q(}2 + 7). Wegen
(Y2 + ) = () (V2 + 7) hat jedes Element vonQ(}/2 + ) die Gestalt v + v}2 + <
mit u, v € Q(4). Die Annahme }/2— 14 = u +4 v}2 + ¢ mit gewissen u, v € Q(¢) hat
v % 0 (wegen J2— ¢ ¢R(:)) und u + 0 (wegen B ¢ Q(i)) zur Folge; aber dann
ergibt sich durch Quadrieren |2 + 7 e (¢), was auch nicht der Fall ist. Also ist
V2—2 ¢2(V2 + 7) und demnach [E: ] =

§9.1 KEs sei a eine Nullstelle von 22 4 ax + b € 3,{x] und demnach [34(a): 35] = 1
oder [84(x): 33] = 2. Im ersten Fall zerfillt das Polynom bereits iiber 3, Cc GF(32%),
im zweiten ist 33(«) nach Satz 3 ein Kérper mit 32 Elementen, also GF(32).

$9.2 Essei L = GF(p") und K ein Unterkoérper von L. Dann gilt y(K) = x(L) = p.
Daher ist K = GF(p™) mit einem gewissen m € N. Nach Satz 3 ist |L| eine Potenz
von |K|; also ist notwendig m sogar ein Teiler von n. Ist nun ein Teiler m von n
vorgegeben, so zeigen wir: Es gibt genau einen Kérper K c I mit |K| = pm™.
Nach dem Beweis zu Satz 5 besteht GF(p™) aus der Gesamtheit aller Nullstellen a
von #P* —x € 3,[x] und L = GF(p") aus der Gesamtheit aller Nullstellen von
aP" — x € 3p[x]. Es sei n = dm. Durch Potenzieren mit p™ folgt aus a?® = a
zunichst ¢?'" = a, und Wiederholung des Potenzierens mit p™ fiithrt schlieSlich
zu a?*" = a?" = a. Jedes a € GF(p™) liegt also in L. Zu jedem Teiler m von n
gibt es also einen Korper K c L mit |K| = p™. Er ist eindeutig bestimmt, weil
z?™ — x € 3p[x] nur p™ Nullstellen in L besitzt.

611 & =i+ V3, Irr (6,0Q) — a* — 422 + 16.
61.2 Esist B = Q(}7, w) mit w = ——; +%V§ (vgl. § 58, Beispiel 3), und man

kann #, = o + §/7 wihlen; aber die Ermittlung von Irr (8,, Q) erfordert einige
Rechnung. Es gilt auch E = ()7, }—3), und hier erweist sich sogar das Produkt

= {7)—3 als primitives Element von E iiber Q; denn es ist #4 = 63}7, also
#7 und damit auch }—3 ein Element von (#,). Aus [E:Q] = 6 folgt demnach
[43: 2] = 6 und schlieBlich Irr (#,,Q) = * + 1323 durch Potenzieren von &,
mit 6.

62.1 Das Polynom f(x) ist irreduzibel iiber K auf Grund des Eisenstein-Kriteriums
fiir p = y. Die Inseparabilitit von f(z) iiber K folgt nun aus Satz 3. Das Polynom
f(x) € K[x] hat also in seinem Zerfillungskérper genau eine dreifach gezihlte
Nullstelle, da in Satz 4 nur m = 1 in Frage kommt.

()2, 13)
VN TN

2(12) 2(1/8)

\/

67.2 Esist E = ()2, V3, VB) der Zerfillungskérper von

67.1

A13)

(@* — 2) (2% — 3) (2% — 5) € QL)

Fiir jedes Element g der Galoisgruppe @ von E iiber f gilt g2 = e. Also ist (Auf-
gabe 6.1) G abelsch, und zwar G = 3, x 3, x 3,. Schreibt man

G = {gap,p af, ay, By, afy} mit a? = f2 = y: =
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so findet man 16 Untergruppen von G. Die 16 Zwischenkérper von & und ()2, }/3, V5)
kann man alle raten: 2, Q(}2), Q(}3), Q(}5), Q(}8), Q(V10), (}15), Q(}30), V2, V3),
22, V5). V3, V5), Q(V2, V15), 2(}3, VI0), AYB, V6), 2(V6, VI0), 2(V2, V3, V5)-

1 s
67.3 Wir setzen w = —3 +%V§ und bekommen E = Q(}7, o) und [E: Q] = 6.

Die Galoisgruppe ist die nichtkommutative Gruppe G = {g, o, o2, 1, o1, 0%} der
Ordnung 6 (¢* = %2 = ¢, 70 = o0?%), wobei o und 7 durch o(}7) = w}7, o(w) = @
und ©(}7) = }7, 1(w) = w? definiert sind. Die echten Untergruppen von @ sind
{e}, {e, 7}, {& o7}, {¢, 0%} und {¢, 6, 0%}. Man bekommt das Korperdiagramm

2(y7, w)
_ I e, S
N —
R
73.1 Es sei a € € algebraisch uber Y. Behauptet wird « € 2. Nach Satz 54.8 ist
aber « algebraisch iiber Q, und das bedeutet « € Y.



Bezeichnungen

29 |M|9 m, 3’ Q’ m’ @’ =Df (§ 1-1)
A x B, M2, M (§1.3)

~ (§6.3,§19)

Sn (§7.2)

sgn, A, (§7.3)

ind (§8.3)

3a (§9.2, §20.1)

GxH GoH (§l0.1)

(m, n), alb, atb (§10.3, § 36.2)
pla) (§11.2)

x (§12.1,§19)

G/N (§12.1)

gin), Pa (§ 12.4)

Da (§18.1)

Z(B) (§20.2)

R, (§20.3)

Irr (¢, K) (§27.3)

H (§29.2)

(M)y (mlg Mgy ooy mn) (§ 35.1)
Pm(z) (§45)

dim V (§ 50)

[EB:Sh, [E:S), [E:8] (§52)
[e: K] (§53.2)

GF(p®) (§59)

G(E\F) (§65.1)

& (§69.1)

A (§73.1)

Re z, Im 2, Z, arg z (Anhang)



Literatur

(1] ALEXANDROFF, P.S.: Einfihrung in die Mengenlehre und die Theorie der reellen
Funktionen, 6. Aufl., Deutscher Verlag der Wissenschaften, Berlin 1973.

[2] —: Einfiihrung in die Gruppentheorie, 8. Aufl., Deutscher Verlag der Wissen-
schaften, Berlin 1973.

[3] ArTIN, E.: Galoissche Theorie, 2. Aufl., Deutsch, Frankfurt a. M. 1973.
[4] BrascHKE, W.: Analytische Geometrie, 2. Aufl., Birkhduser Verlag, Basel 1954.

[3] GravEerT, H. u. LieB, L: Differential- und IntegralrechnungI,3. Aufl.,Springer,
Berlin 1973.

(6] Hasse, H.: Zahlentheorie, 3. Aufl., Akademie-Verlag, Berlin 1969.

(7] — : Héhere Algebra, 2 Biinde, 6.bzw. 5. Aufl., de Gruyter (Sammlung Gdschen),
Berlin 1969 bzw. 1967,

(8] Hass, H. u. KrLoBE, W.: dufgabensammlung zur Héheren Algebra, 3. Aufl.,
de Gruyter (Sammlung Géschen), Berlin 1961.

[9] Hauspor¥r, F.: Grundziige der Mengunlehre, Nachdruck, Chelsea, New York
1949.

[10] Jacosson, N.: Lectures in Abstract Algebra, 3 Biinde, 1. Aufl., van Nostrand,
New York 1951, 1953, 1964.

(11] KaMKkE, E.: Mengenlehre, 7. Aufl., de Gruyter (Sammlung Gdschen), Berlin
1971.

{12} KOoCHENDORFFER, R.: Einfiihrung in die Algebra, 4. Aufl., Deutscher Verlag
der Wissenschaften, Berlin 1974.

[13] KowaLsky, H..J.: Lineare Algebra, 7. Aufl., de Gruyter, Berlin 1975.

[14] KuroscH, A. G.: Gruppentheorie, Nachdruck, Akademie-Verlag, Berlin 1955.

[15] Lanpavu, E.: Grundlagen der Analysis, Neudruck, Chelsea, New York 1960.

[16] VAN DER WAERDEN, B. L.: Algebra, 2 Binde, 8. bzw. 5. Aufl,, Springer, Berlin
1971 bzw. 1967.



Namen- und Sachverzeichnis

Abbildung 17, 19

—, bijektive 18

—, injektive 18

—, surjektive 18

ABEL, N. H. (1802-1829) 10, 25, 202,
226, 235

Ableitung 102, 103

abzihlbar 19, 20, 107

ALEXANDROFF, P. S. (geb. 1896) 22, 73

algebraisch 104

— vom Grad n 108

algebraische Struktur 15, 74, 75, 76

Aquivalenzklasse 21

Aquivalenzrelation 20

ArTIN, E. (1898-1962) 5, 205, 206, 225,
236

assoziierte Elemente 135

Auswahlaxiom 152

Automorphismengruppe 65, 75, 210

Automorphismus 65, 74

—, innerer 65

Baer, R. (geb. 1902) 25
Bahn 67

Basis 47, 131, 173
Basisbedingung 165

Basissatz 173

—, Hilbertscher 166
Betragsbewertung 125
Betragsrechenregeln 117
Bewertung 125

—, p-adische 127

—, triviale 125

Bild, homomorphes 50, 74, 84
~, isomorphes 28, 50, 74
binomischer Lehrsatz 81
BrascEkE, W. (1885-1962) 113, 115
Bruchrechenregeln 82

CaxTor, G. (1845-1918) 119
Cardanische Formeln 227

CaucHY, A. (1789-1857) 119
Cauchy-Folge 119, 121, 126
CAYLEY, A. (1821-1895) 30
Charakter 206
Charakteristik 79
Cramersche Regel 82

DepEkIND, R. (1831-1916) 10, 119
Delisches Problem 188

Derivation 102, 103

Diedergruppe 70
Differentialrechnung 102
Dimension 174

Digkriminante 128, 129
Divisionsalgorithmus 99, 100
Dreiecksungleichung 117, 126, 238
Dreiteilung des Winkels 189
Durchschnitt 13

Einbettung 57, 88, 109
Einheit 80
Einheitswurzel, primitive 161, 220
Einselement 24, 25, 76
E1sENSTEIN, G. (1823-1852) 158
Endomorphismenring 93
Endomorphismus 74
Ersetzungssatz 97
Erzeugendensystem 39
erzeugendes Element 38, 39, 130
Euklidischer Algorithmus 138, 139,
143
Euklidischer Ring 139, 142
EvuLes, L. (1707-1783) 55, 113

Faktorgruppe 52
Faktorraum 175

FermaT, P. (1601-1665) 56
Fixelement 207
Fixpunktkdorper 207
FroBENIUS, G. (1849-1917) 184
Funktion 17



Namen- und Sachverzeichnis

Gavors, E. (1811-1832) 10, 199, 206

Galoisgruppe 211, 231

Gauss, C. F. (1777-1855) 10, 154, 155,
166, 222, 223

Gauflscher Ring 139, 140

Grad 98, 177

Gradformel 177

GravUErT, H. (geb. 1930) 119

groBter gemeinsamer Teiler (g.g.T.) 137

groBter gemeinschaftlicher Teiler (g.g.T.)
44

Gruppe 23

—, abelsche 25, 45, 46

-, alternierende 33

-, auflésbare 228, 229

-, einfache 64

~, symmetrische 30

-, zyklische 37, 38, 39

Halbgruppe 23, 57

—, reguldre 57

Helbgruppenring 109, 110

Hamruron, W. R. (1805-1865) 113

Hassg, H. (geb. 1898) 127, 205, 225, 236

Hauptideal 131

Hauptidealring 132, 139

Hauptsatz der Galoistheorie 215

— tiber abelsche Gruppen 45

— iiber symmetrische Polynome 127

HAuUssporFrF, F. (1868-1942) 152

HiLeerT, D. (1862-1943) 10, 166

homomorph 50, 74, 84

Homomorphiesitze 52, 75, 76, 86, 87, 176

Homomorphismus 50, 60, 61, 74, 84,
87, 175

Hiille, vollsténdige 126

Ideal 85, 130

—, endlich erzeugtes 131

Index 35

Inklusion 12

Integrititsbereich 79, 88
Inverses 24, 80
Irreduzibilitéatskriterien 157, 158
isomorph 28, 74

Isomorphismus 28, 74

Jacosson, N. (geb. 1910) 11

269

Kawmxke, E. (1890-1961) 22

Kern 52, 86

KvuEIN, F. (1849-1925) 27

Kleiner Fermatscher Satz 56
KroBg, W. 205, 225, 236
KoCHENDGRFFER, R. (geb. 1911) 168
Koeffizientenvergleich 98
Kommutator 64
Kommutatorgruppe 64
Komplexprodukt 33
Komposition, duere 15

-, innere 15

Kongruenzrelation 54, 75, 85
Kongruenzwurzel, primitive 221
konjugierte Gruppenelemente 62, 63
— Korperelemente 197

— Untergruppen 62, 63
konjugiert-komplexe Zahl 103, 237
Korper 81

—, algebraisch abgeschlossener 197
-, bewerteter 125

—, endlicher 199
Koérperadjunktion 104
Korpererweiterung 104

—, algebraische 181

-, einfache 179

-, endliche 181, 183

-, normale 211, 212, 213

—, separable 204

KowaLsky, H.-J. (geb. 1921) 178
Kreisteilungskoérper 220
Kreisteilungspolynom 159, 161
KuroscH, A. G. (geb. 1908) 25, 73

LAGRANGE, J. L. (1736-1812) 115
Lavpav, E. (1877-1938) 17
Levi, F. W, (1888-1966) 25
Lies, 1. (geb. 1939) 119

Limes 121

Linearkombination 171
Linkseins 23, 24

Linksinverses 23, 24, 80
Linksnebenklasse 34

Maximalbedingung 165
maximales Element 152
— Ideal 151



270

Menge 12

-, geordnete 14, 116

—, induktiv geordnete 152
—; teilweise geordnete 13
—, wohlgeordnete 14
Metrik 126

metrischer Raum 126
Minimalpolynom 105
Moivresche Formel 239

Nebenklasse 34

Norm 113, 114
Normalbasis 222
Normalisator 62, 63
Normalteiler 36, 61
NoOETHER, E. (1882-1935) 165
Noetherscher Ring 165
Nullraum 171
Nullring 78

Nullstelle 100

— eines Ideals 193

—, Vielfachheit 101
Nullfolge 119, 121
Nullteiler 79
nullteilerfrei 79

Partialbruchzerlegung 147
Partition 21, 50

Peano, G. (1858-1932) 16
Permutation 29

—, gerade 32

—, ungerade 32
Permutationsgruppe 30
p-Gruppe 63

Polynom 94

—, auflosbares 226

—, biquadratisches 227

—, definierendes 105

—, elementarsymmetrisches 127
-, homogenes 157

—, inseparables 204

—, irreduzibles 106

—, kubisches 129, 227

—, primitives 154

-, separables 204

—, syminetrisches 127
Polynomring 94, 95

Namen- und Sachverzeichnis

Positivbereich 115
Potenzreihe, formale 100
Primelement 140

prime Restklassengruppe 56
Primideal 149

primitives Element 202
Primkérper 84

Primzahl 17

—, Fermatsche (Gau3sche) 191
Primzahlpotenzbasis 47
Produkt, cartesisches 14

—, direktes 41, 42
Produktabbildung 18
Produktideal 133

Quadratur des Kreises 189
Quaternion 113

-, konjugierte 113
Quaternionengruppe 72
Quaternionenschiefkérper 111
Quotientenkérper 88
Quotientenring 90

Radikal 134, 226
rationale Operationen 82
Rechtseins 23, 24
Rechtsinverses 23, 24, 80
Rechtsnebenklasse 34
Repriisentant 21
Restklasse 22, 37, 77

—, prime 556
Restklassenring 78, 86
Restriktion 18

Ring 76

-, angeordneter 115, 116

—, archimedisch angeordneter 118

Ringadjunktion 97

Schiefkérper 81

—, endlicher 200

separables Element 202
Siebzehneck 223

Spur 209, 218
Stabilitdtsuntergruppe 67
StEINITZ, E. (1871-1928) 199
Stupy, E. (1862-1930) 115
Summe, direkte 43
Summenideal 132



Namen- und Sachverzeichnis

Syrow, L. (1832-1918) 67

Sylowgruppe 69
Sylowsche Sitze 68, 69

Teilbarkeit 134
Teilbarkeitstheorie 130
Teiler 135

—, echter 135

—, gemeinsamer 137
teilerfremd 139
Teilerkettenbedingung 165
Teilmenge 12

Teilraum 170
Transformation 29
Transformationsgruppe 30
Transitivititsgebiet 67
Transposition 31, 32
transzendent 104
Transzendente 104

Typ 48

Unabhiingigkeit, lineare 172
Unbestimmte 95, 96

—, unabhingige 99
Untergruppe 25, 33
unzerlegbares Element 135
Urbild 17, 18

" Vektorraum 169
Verband 15
Vereinigung 13
Verkniipfung 15

271

-, assoziative 15, 16

—, kommutative 15
Vielfaches 135
Vierergruppe 27
Vierquadrateformel 115
vollstindig 121

v. d. WAERDERN, B. L. (geb. 1903) 11,
129, 168, 236

‘WEDDERBURN, M. (1882-1948) 200

Wertfunktion 142

Wixranor, H. (geb. 1910) 68

Wilsonsche Kongruenz 83, 103

WrrT, E. (geb. 1911) 200

Wohlordnungssatz 14, 152

Zshlen, duale 115

-, ganze 12, 19, 90, 117, 124
—, ganze GauBsche 144

—, komplexe 12, 90, 92, 237
-, natiirliche 12, 16, 17, 19
-, rationale 12, 20, 90, 117, 124
—, reelle 12, 19, 118, 124
Zentrum 25, 84
Zerfallungskorper 194, 212
zerlegbares Element 136
ZrrMELO, E. (1871-1953) 14
Zirkelkonstruktion 186
Zornsches Lemma, 152
ZPE-Ring 140

zweiter Isomorphiesatz 62
Zyklus 31



Walter de Gruyter
Berlin-New York

B. Hornfeck
L. Lucht

H.J. Kowalsky

M. Barner
F. Flohr

A. Aigner

H.J. Kowalsky

H. Bauer

de Gruyter Lehrbuch

EinfUhrung in die Mathematik

GroB-Oktav. 127 Seiten. 1970. Plastik flexibel DM 18,-
ISBN 3 11 006332 8

Einflihrung in die lineare Algebra

2. Auflage

GroB-Oktav. 233 Seiten. 1974. Plastik flexibel DM 18,-
ISBN 3 11 004802 7

Analysis
2 Bénde. Gro3-Oktav. Gebunden

Band 1: 489 Seiten. 1974. DM 48,— ISBN 3 11 004691 1
Band 2: Etwa 288 Seiten. Etwa DM 36,
ISBN 3 11 004692 X (in Vorbereitung)

Zahlentheorie

GroB-Oktav. 216 Seiten. 1975. Gebunden DM 34,-
ISBN 3 11 002065 3

Vektoranalysis
2 Bande. GroB-Oktav. Plastik flexibel

Band |: 311 Seiten. 1974. DM 36,— ISBN 3 11 004643 1
Band II: 25t Seiten. 1976. DM 36,- ISBN 3 11 004642 3

Wahrscheinlichkeitstheorie und
Grundzige der MaBtheorie

2. erweiterte Auflage

GroB-Oktav. 407 Seiten. 1974. Gebunden DM 48 -
ISBN 3 11 004624 5

Preisdnderungen vorbehalten




	Vorwort
	Inhaltsverzeichnis
	Einleitung
	1. Grundlagen
	2. Gruppen
	3. Ringe
	4. Ideale
	5. Vektorräume
	6. Körpertheorie
	7. Galoistheorie
	8. Auflösbare Polynome
	Anhang
	Lösungen der Aufgaben
	Bezeichnungen
	Literatur
	Namen- und Sachverzeichnis

