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Einleitung 

Was ist Algebra ? Welche Fragen untersucht man heute in diesem Teilgebiet 
der Mathematik ? Wohl die meisten werden sich an ihren Schulunterricht er-
innern und mit dem Wort Algebra Vorstellungen verbinden, die ihr Wesen gar 
nicht oder nur am Rande beschreiben. Man denkt vielleicht an besondere 
Techniken beim Umformen oder Berechnen komplizierter Ausdrücke oder 
wartet auf eine Sammlung überraschender Methoden zur Auflösung gewisser 
Gleichungen. 
Aber all das steht zumindest nicht im Vordergrund einer Algebra, so wie sie 
heute betrieben wird. Die Motive dafür sind zum Teil recht praktischer Natur. 
Man mag sich beispielsweise darüber freuen, explizite Formeln für die Null-
stellen kubischer Polynome hinschreiben zu können; doch wird es wenige 
Mathematiker geben, die sie jemals benutzt haben. Das Interessante an diesen 
für die praktische Anwendung zu komplizierten Formeln, in denen neben 
Summen, Produkten, Differenzen und Quotienten der Polynomkoeffizienten 
nur Wurzelzeichen auftreten, ist lediglich ihre Existenz: Es ist ja keineswegs 
selbstverständlich, daß man die gesuchten Nullstellen in der beschriebenen 
Gestalt angeben kann. 
Wir kommen dem Kern der Algebra durch einfachere Beispiele näher. Man be-
trachte etwa die bekannten Bruchrechenregeln. Wenn man sie überhaupt ein-
mal sauber bewiesen hat, dann vielleicht in der Form, daß die Zähler und 
Nenner ganze Zahlen waren. Später lernt man die reellen oder die komplexen 
Zahlen kennen; wieder gelten die Bruchrechenregeln; aber man muß sie er-
neut beweisen, obwohl man ziemlich rasch sieht, daß man die alten Beweise 
ohne wesentliche Änderungen abschreiben kann. Es ist eine der Hauptaufgaben 
der Algebra, derartige Wiederholungen durch die Herleitung allgemeinerer 
Sätze zu vermeiden. In dem vorgelegten Fall würden wir etwa folgendes fest-
stellen: Wenn in einem Rechenbereich, den wir dann einen Körper nennen, ge-
wisse Voraussetzungen erfüllt sind, so gelten in ihm die Bruchrechenregeln. 
Hinterher hätte man sich nur noch zu vergewissern, daß die Menge der kom-
plexen Zahlen ein Körper ist; die Bruchrechenregeln für komplexe Zahlen er-
scheinen nun als ein Spezialfall eines Satzes der Algebra. 
Solche Möglichkeiten der Vereinfachung und Zusammenfassung mathemati-
scher Sachverhalte haben sich im Verlauf der Zeit immer häufiger ergeben, 
und sie waren keineswegs immer so vordergründiger Natur wie in dem eben 
geschilderten Beispiel. Auf diese Weise ist die Algebra zu einer Theorie der 
verschiedensten Rechenoperationen geworden und hat sich längst zu einer 
selbständigen Disziplin entwickelt, deren Weiterentwicklung eine große Be-
deutung für viele andere Gebiete der Mathematik bekommen hat. Etwas kon-
kreter gesagt, betrachtet man Mengen, auf denen gewisse Rechenoperationen 
erklärt sind, die möglichst wenige einfache Forderungen erfüllen. Man gibt 
ihnen Namen wie Gruppen, Ringe, Körper und betreibt etwa Gruppentheorie 
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als eine Theorie der Konsequenzen, die sich aus den Gruppenaxiomen ergeben. 
Weiß man dann von irgendeiner Menge von Zahlen, Matrizen, Funktionen, daß 
sie eine Gruppe ist, so kann jeder Satz der Gruppentheorie auf sie angewandt 
werden. Die wichtigsten Anwendungen der Algebra betreffen die Zahlentheorie 
und die Geometrie, und umgekehrt liefern Geometrie und Zahlentheorie viele 
Beispiele und Vorstellungen, die zu algebraischen Sätzen führen. 
Wollte man eine Geschichte dieser Entwicklung skizzieren, die zur heutigen 
Auffassung der Algebra geführt hat, so könnte man sie mit drei großen Namen 
beginnen, die uns noch oft begegnen werden: Abel (1802—1829), GAlois 
(1811—1832), Gauss (1777—1855). In der zweiten Hälfte des vergangenen 
Jahrhunderts entwickelte sich dann vor allem die Gruppentheorie, und 
Dedekind (1831—1916) begründete die Idealtheorie; aber der Übergang zum 
axiomatischen Standpunkt, der sich als so fruchtbar erwiesen hat, war all-
gemein noch nicht vollzogen. Entscheidende Impulse für diesen Durchbruch 
gingen erst von H i l be r t (1862—1943) aus; sein Einfluß auf die Gestalt der 
neuzeitlichen Mathematik kann kaum überschätzt werden. In den letzten 
Jahrzehnten ist die Hinwendung zur Abstraktion immer stärker geworden, 
und dieser Prozeß hält aus mancherlei Gründen an. Für den schöpferischen 
Mathematiker bedeutet das nicht gleichzeitig einen Verzicht auf die Anschau-
ung ; nur ihre Formen haben sich gewandelt. Letzten Endes wird jede abstrakte 
Theorie sich an konkreten Spezialfällen bewähren müssen, wenn sie lebendig 
bleiben soll. 
Es ist das Ziel dieses Buches, einen ersten Einblick in dieses umfangreiche Teil-
gebiet der Mathematik zu vermitteln; bei der Stoffauswahl beschränken wir 
uns auf einige wesentliche Ausschnitte der Algebra. Viele Fragen, die in aus-
führlicheren Darstellungen behandelt werden, bleiben deshalb unerwähnt. 
Auch die sogenannte lineare Algebra, die zusammen mit der analytischen Geo-
metrie an den Beginn eines Mathematikstudiums gehört, ist nur in dem Um-
fang wiedergegeben, in dem sie später von uns gebraucht wird. Der Leser sollte 
eine gewisse Vertrautheit im Umgang mit mathematischen Begriffsbildungen 
besitzen und vielleicht die ersten beiden Studiensemester schon hinter sich 
haben. Vorkenntnisse werden dagegen nur in ganz geringem Umfang erwartet. 
Das Rechnen mit komplexen Zahlen ist in einem Anhang, der bei Bedarf zu 
Rate gezogen werden kann, noch einmal kurz zusammengestellt. Auch das 
erste Kapitel über die Grundbegriffe der Algebra wird vieles dem Leser bereits 
Bekannte enthalten. Unbewiesen blieb lediglich der an einigen Stellen aus der 
komplexen Analysis übernommene Satz, daß jedes nichtkonstante Polynom 
mit komplexen Koeffizienten wenigstens eine komplexe Nullstelle besitzt. 
Der Text ist in Kapitel und die Kapitel sind in Paragraphen aufgeteilt. Längere 
Paragraphen werden der besseren Übersicht wegen noch einmal in Teil-
abschnitte zerlegt. Die Sätze sind in jedem Paragraphen neu durchnumeriert; 
bei Verweisen auf frühere Paragraphen wird deren Nummer vorangestellt; 
Satz 7.5 ist also Satz 5 aus § 7. Ein Verweis auf § 7.3 dagegen bedeutet den 
dritten Abschnitt von § 7. Vielen Paragraphen sind Aufgaben beigefügt; die 
Lösungen finden sich am Schluß des Buches; wenn es erlaubt schien, wurden 
sie entsprechend knapp formuliert. Von den Ergebnissen früher gestellter 
Aufgaben wird im Text des Buches mitunter Gebrauch gemacht; sie werden 
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wie die Sätze zitiert. AM Ende eines jeden Kapitels und hin und wieder auch 
in einzelnen Paragraphen stehen Literaturverweise, die zu weiterer Lektüre 
anregen sollen. Nur diese im Text genannten Bücher sind im Literaturverzeich-
nis aufgeführt. Wer sich ausführlicher mit Algebra beschäftigen will, sei ins-
besondere auf die umfangreicheren und weiterführenden Werke von JACOB-
SON [ 1 0 ] und VAN DER W A E R D E N [ 1 6 ] hingewiesen. 
Die in dem vorliegenden Buch benutzten Symbole wurden, soweit sie nicht 
allgemein geläufig sind, in einem gesonderten Verzeichnis noch einmal zu-
sammengestellt. Schließlich sind einige Paragraphen, deren Lektüre über-
schlagen werden kann, durch einen Stern gekennzeichnet. 



1 Grundlagen 

Wie bereits angedeutet, beschäftigt sich die Algebra mit dem Rechnen in ge-
eignet erklärten Mengen. Wir stellen deshalb zunächst die von uns benötigten 
Grundbegriffe der Mengenlehre zusammen, wobei wir den sogenannten naiven 
Standpunkt einnehmen: Fragen der Axiomatik werden nicht erörtert. 

§ 1 Mengen 

1.1 Unter einer Menge verstehen wir die Zusammenfassung irgendwelcher 
paarweise voneinander verschiedener Objekte, etwa Zahlen oder Buchstaben, 
zu einem Ganzen ; wir bezeichnen Mengen mit großen Buchstaben wie A, B, 
G, M. Die in der Menge A enthaltenen Objekte heißen Elemente von A; ist a 
ein Element von A, so schreiben wir a e A, andernfalls a $ A. 
Wollen wir eine Menge M explizit angeben, so zählen wir in geschweiften 
Klammern ihre Elemente auf oder beschreiben deren Gesamtheit. Beispiels-
weise enthält M\ = {1,2, 3} die Elemente 1, 2, 3; 

M2 = {(x,y): x,y reell, x* + y* = 1} 
ist die Menge aller Punkte (x,y) des Einheitskreises. Enthält eine Menge über-
haupt keine Elemente, so heißt sie leer. Wir bezeichnen die leere Menge mit 2. 
Die Anzahl der Elemente einer Menge M sei \M\. Bei unendlichen Mengen 
schreiben wir \M\ = oo; sonst ist \M\ eine nichtnegative ganze Zahl und spe-
ziell |£| = 0. 
Für einige Mengen, die wiederholt auftreten, wählen wir die folgenden festen 
Bezeichnungen. Es seien 
91 die Menge der natürlichen Zahlen, 
3 die Menge der ganzen Zahlen, 
Q. die Menge der rationalen Zahlen, 
SR die Menge der reellen Zahlen, 
2 die Menge der komplexen Zahlen. 
Ist jedes Element der Menge A auch Element der Menge B, so heißt A Teil-
menge von B oder B Obermenge von A; wir sagen auch, A sei in B enthalten, 
schreiben dafür A cB und nennen diese Relation die mengentheoretische 
Inklusion. Gleichbedeutend mit A c B sei B o A. Für jede Menge M gilt also 
M c M und 2 c M. Aus A c B und B c C folgt A c C; deshalb schreibt man 
auch fortlaufend A c B c C. So gilt etwa 9 t c 3 c Q c 3 t c < L 

Zwei Mengen A,B heißen einander gleich, A = B, wenn sie aus denselben 
Elementen bestehen, andernfalls ungleich: A + B; die Reihenfolge, in der die 
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Elemente der beiden Mengen eventuell explizit aufgeführt werden, spielt also 
keine Bolle. Die Mengen A,B sind demnach genau dann einander gleich, wenn 
A cB und A dB gelten: 

(1) A = B o AcBxmdADB. 

(Der Pfeil => bedeute, daß aus der Aussage links die Aussage rechts folgt; eine 
analoge Bedeutung habe <=. Der Doppelpfeil o steht für „=> und <="; die 
Aussagen links und rechts sind dann gleichwertig.) Die Gleichheit zweier Men-
gen wird in der Regel nach dem Schema (1) gezeigt. Die Menge A heißt echte 
Teilmenge von B, wenn A cB, aber A =(= B ist. 

Unter der Vereinigung AuB zweier Mengen A,B verstehen wir die Menge 
aller Elemente aus wenigstens einer der Mengen A oder B, 

AuB = D/{x:xeA oder x e B}; 

durch das Zeichen „=d/" (lies: definitionsgleich) weisen wir darauf hin, daß die 
linke Seite der Gleichung nur eine andere Bezeichnung für die rechte ist oder 
umgekehrt. Entsprechend wird A u B u C erklärt. Es gelten die Regeln 
(AuB)uC = Au(BuC) = AuBuC und AuB = BuA. Wir setzen 

n 
A\ u Az u . . . u An = U Av ; für die Vereinigung der Mengen Ai, A2, As, . . . 

v= 1 
00 

schreiben wir U Ax oder unter Angabe der Indexmenge besser U A^. 
A = 1 Ae9t 

Der Durchschnitt A n B der Mengen A, B wird definiert durch 

A nB = Df{x:xeA und x e B}, 

und A n B n C oder D A^ usw. haben entsprechende Bedeutungen wie für das 
ie<X 

Vereinigungszeichen. Die Mengen A, B heißen elementefremd oder diajunkt, 
wenn A n B = £ ist. Wieder gelten die Regeln (AnB)r\C = A n (B n C) 
— A n B n G und A n B = B n A. Außerdem sind auch die folgenden Dis-
tributivgesetze (2) richtig, die man nach dem Muster (1) beweist. 

Aufgabe 1: Zeige 
i l n ( 5 u C ) = ( 4 n 5 ) u ( J l n C ) , 

W Au(BnC) = (A u B) n (A u C). 

Man darf also in beiden Fällen die Klammern „ausmultiplizieren". 

1.2 Die Elemente der Mengen 3» Q. 9t lassen sich etwa nach wachsender 
Größe ordnen. So bekommt man einfache Beispiele für geordnete Mengen im 
Sinne der folgenden 

Definition: Die Menge M mit den Elementen a, b, c, ... heißt teilweise ge-
ordnet oder halbgeordnet, wenn in M eine (Ordnungs-)Belation a <b (lies: a vor 
b) mit den folgenden Eigenschaften (1), (2) erklärt ist: 
(1) Dann und nur dann gilt sowohl a <6 als auch b <a, wenn a = b ist. 
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(2) Aus a <b und b < c folgt a < c. 
Sind überdies je zwei Elemente aus M vergleichbar, gilt also zusätzlich 
(3) a,beM => a <b oder b < a, 
so heißt M geordnet oder vollständig geordnet. 
Ist also M eine halbgeordnete Menge, so gilt nach (1) speziell m < m für 
jedes m e M . 
Wie schon erwähnt, werden die Mengen 9t, G. SR durch die Relation a ^ b 
geordnet im Sinne der aufgeschriebenen Definition. 

Ein wichtiges Beispiel einer teilweise geordneten Menge ist die Menge P 
aller Teilmengen einer vorgelegten Menge M. Es sei etwa M = {1,2, 3}. Die 
sämtlichen Teilmengen von M sind Tx = £, T2 = {1}, Tz = {2}, TA = {3}, 
T5 = {1, 2}, T6 = { 1, 3}, T7 = {2, 3}, Ts = {1, 2, 3}, und man bekommt dann 
P = {T\, Tz, ..., Tg}. Als Ordnungsrelation für P wählen wir die mengen-
theoretische Inklusion: 

Tt < T} -e- Ttc T}. 
Auf Grund unserer Feststellungen im vorigen Abschnitt sind damit sicher die 
Forderungen (1) und (2) unserer Definition erfüllt. Auf diese Weise wird also 
tatsächlich P teilweise geordnet. Aber P ist dadurch nicht vollständig geord-
net ; beispielsweise gilt weder T% < Ts noch T$ < \ (3) ist verletzt. 
Im allgemeinen kann eine Menge M auf verschiedene Arten vollständig oder 
teilweise geordnet werden. Ist M teilweise geordnet, so ist es auch jede Teil-
menge T von M vermöge derselben Ordnungsrelation. Ist M teilweise und die 
nicht leere Teilmenge K c M sogar vollständig geordnet, so heißt K eine 
Kette aus M. Ketten aus der eben notierten halbgeordneten Menge P sind zum 
Beispiel {Tj, T5, Tg} und {T\, Ts, T7, Ts}. 
Ein Element a einer geordneten Menge A heißt erstes Element von A, wenn 
für jedes x e A gilt: a <x. Besitzt eine geordnete Menge A ein erstes Element 
a, so ist es nach (1) eindeutig bestimmt. Im Sinne der erwähnten Ordnung 
besitzt 91 ein erstes Element, 3 dagegen nicht. Wir heben nun gewisse geordnete 
Mengen noch besonders hervor. 

Definition: Eine geordnete Menge M heißt wohlgeordnet, wenn jede nicht 
leere Teilmenge T cM ein erstes Element besitzt. 
Sind also 9t, Q» Sft nach wachsender Größe ihrer Elemente geordnet, so ist 
9t wohlgeordnet, Q, SR dagegen sind es nicht. Eine endliche geordnete Menge 
ist bereits wohlgeordnet. 
Ein klassischer Satz der Mengenlehre, der sogenannte Wohlordnungssatz 
(ZERMELO 1904), soll hier nur mitgeteilt sein: Jede Menge kann wohlgeordnet 
werden. Erst recht kann also jede Menge M geordnet werden. 

1.3 Sind A, B zwei Mengen, so definieren wir ihr cartesisches Produkt Ax B 
durch 

Ax B = {(a,b): aeA,beB}; 
es besteht also aus allen (geordneten) Paaren (a, b), deren erste Komponente 
a aus A und deren zweite Komponente b aus B stammt; dabei gilt (a, b) 
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= (a', b') genau dann, wenn a = a! und b = b' ist. Entsprechend ist AxBx C 
eine Menge von Tripeln (a, b, c) usw.; statt Mx M schreiben wir auch M2, 
und Mn bezeichne das Produkt M x Mx ... x M aus n Faktoren M. An-
schaulich bedeutet SR2 die Menge aller Punkte der Ebene. Schließlich sei M°° 
die Menge aller unendlichen Folgen (mi, m%,mz, . . . ) von Elementen aus M. 

1.4 Es seien A und M zwei nicht leere Mengen. Wenn durch eine geeignete 
Vorschrift jedem Paar (a, m) aus Ax M genau ein m* e M zugeordnet ist, 
so nennt man diese Zuordnung eine Komposition von M mit A und schreibt mit 
einem entsprechenden Zeichen wie + , *, o usw. etwa aom — m*. Ist A - M, 
so spricht man auch von einer inneren Komposition oder einer Verknüpfung 
von M; ist A 4= M, so liegt dagegen eine äußere Komposition von M mit A 
vor. Eine Menge M =(= £ mit wenigstens einer Komposition heißt algebraische 
Struktur. Die Algebra ist im wesentlichen eine Theorie der algebraischen 
Strukturen. 
Angenommen, die Menge M besitze eine innere Komposition; diese auf M er-
klärte Verknüpfung sei bequemlichkeitshalber für den Augenblick einfach 
multiplikativ geschrieben. Man nennt sie kommutativ, wenn xy = yx für alle 
x,y e M gilt; als assoziativ wird sie bezeichnet, wenn für alle x, y, z e M gilt: 
(xy)z = x(yz). 
Beispiel 1. Man wähle A = M = 91 und als innere Komposition die Addi-
tion aom — a + m in 51. Diese Verknüpfung von 91 ist assoziativ und kom-
mutativ. 
Beispiel 2. Man wähle A = M = £ und als Verknüpfungen die Addition 
a + m und die Multiplikation a • m in So wird 3 eine Menge mit zwei asso-
ziativen und kommutativen Verknüpfungen. 
Beispiel 3. Es seien A = SR und M = SR2, und aom bedeute das übliche 
Produkt (ax, ay) des Skalars a mit dem Vektor m = (x, y). 
Beispiel 4. Wir betrachten die Menge P = {T\, TZ, . • •, T%) aus Abschnitt 2. 
Mit TT, T}BP gilt auch TTUT}EP; durch u T} wird also eine Verknüpfung 
auf P definiert, und diese Verknüpfung ist wieder assoziativ und kommutativ. 
Eine zweite ebenfalls assoziative und kommutative Verknüpfung auf P liefert 
TI n TJ. Diese beiden Verknüpfungen sind noch durch die sogenannten Ab-
sorptionsregeln 

TT u (TI n TJ) = TT , T« n (JT, u T,) = TT 

aneinander gekoppelt. Eine algebraische Struktur V mit zwei assoziativen und 
kommutativen Verknüpfungen, für die die Absorptionsregeln gelten, heißt 
ein Verband. Die Elemente des Verbandes P sind Mengen; deshalb heißt P 
auch ein Mengenverband. Die Theorie der Verbände wird in diesem Buch 
nicht behandelt. 
Wir betrachten nun eine Verknüpfung einer algebraischen Struktur S und 
schreiben sie der Einfachheit halber wieder multiplikativ. Wir setzen 
«1S2S3 = («i«2)«3, «i«2«3«4 = («i«2«3)«4 usw. e S). Damit ist das Produkt 

• -st erklärt. Es wird im allgemeinen von der Reihenfolge der Faktoren 
abhängen. 
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Besonders wichtig sind die assoziativen Verknüpfungen. Für sie besteht der 

Satz ls Ist die Verknüpfung assoziativ, so behält das Produkt s\8%.. bei 
jeder Beklammerung denselben Wert. 

Beweis: Vollständige Induktion nach k. Die Behauptung ist nach Vor-
aussetzung für k = 1,2, 3 richtig. Sie sei für k und weniger Faktoren bereits 
bewiesen. Dann bleibt zu zeigen, daß für jedes i <k die Beziehung 

(«ia2-• .«i)(«i+lS<+2-•-Sfc+l) = • -Sjfc+l 
richtig ist; auf weitere Klammern linker Hand konnte wegen der Induktions-
voraussetzung verzichtet werden. Das Assoziativgesetz und die Induktions-
voraussetzung liefern aber gerade 

(«1«2. . .«<)(Sm«i+2. . .Sjc+i) = («i«2. . .Si)((S<+l«<+2. . .«*)s*+i) 

= ((«1«2. . .«<)(Ä<+lS<+2- • -3k))Sk+l 
= («1«2. . .s*)s*+l 
= «1S2- • -Sjfc+1. 

Auf der Gültigkeit dieses Satzes beruht die Bedeutung der assoziativen Ver-
knüpfungen. Das Rechnen mit nicht assoziativen Verknüpfungen ist wegen 
der Notwendigkeit, auf die Art der Klammersetzung zu achten, sehr viel un-
bequemer. 

§ 2 Die Menge 9t der natürlichen Zahlen 

Wir sehen die algebraischen Strukturen 91, Q, 91, ß und das Rechnen mit 
den beiden Verknüpfungen Addition und Multiplikation als bekannt an. Im 
Verlauf unserer späteren Untersuchungen wird sich jedoch zeigen, wie die 
Mengen Q. 91, @ konstruiert und die Verknüpfungen Addition und Multi-
plikation in ihnen eingeführt werden können, wenn nur 9t und das Rechnen 
in 91 bekannt sind. Es erscheint deshalb angebracht, die Menge 91 und ihre 
beiden Verknüpfungen noch axiomatisch zu charakterisieren. 

Das folgende Peanoscäc Axiomensystem beschreibt die Menge 91: 
(1) l e 9 t . 

(2) Jedes n e 91 besitzt genau einen Nachfolger n* e 9t. 
(3) Es gibt kein n e 9t mit n* = 1; es ist also stets n* 4= 1 • 
(4) nf = n* => n\ = 
(5) Ist T c 9t, 1 6 T, und gilt mit t e T auch t* e T, so ist T = 9t. 

Das Axiom (1) besagt, daß 9t nicht leer ist, und es wird ein (erstes) Element 
von 9t, die Eins, angegeben. Die Forderungen (2), (3) und (4) axiomatisieren 
in anschaulich plausibler Form den Zählprozeß, und das sogenannte Induk-
tionsaxiom (5) drückt aus, daß auf diese Weise alle natürlichen Zahlen ge-
funden werden. Auf ihm beruht das dem Leser bekannte Beweisprinzip der 
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vollständigen Induktion. Aus (1), (3), (4) und (5) folgt zum Beispiel, daß für 
alle n e9t gilt: n* =(= n. Die Teilmenge T c9t aller n e9t mit n* =4= n wird 
nämlich gleich 9t. Ähnlich sieht man, daß es zu jedem n e 9t, n =4= 1, genau ein 
k e 9t mit n = k* gibt. 
Auf 9t lassen sich nun durch 
(6) n -f 1 = n*, n + m* = (n + m)* 
und 
(7) n • 1 = n, n • m* = n • m + n 
(wobei wie üblich das Zeichen für die Multiplikation stärker binden soll als 
das für die Addition) die Addition und die Multiplikation einführen. 
Dieser Aufbau ist sehr lehrreich und kann mit allen Einzelheiten im Kapitel 1 
des Buches von LANDAU [15] nachgelesen werden. Wir verzichten auf die ge-
naue Durchführung und formulieren das Ergebnis, auf das wir uns später 
stützen, als 

Satz 1: Auf 9t lassen sich durch (6) und (7) zwei Verknüpfungen, die Addi-
tion und die Multiplikation, erklären. Sie sind beide assoziativ und kommutativ. 
Für a, b, c e 9t gilt das Distributivgesetz a(b + c) = ab + ac. An Stelle der 
nicht immer ausführbaren Umkehroperationen (Subtraktion und Division) sind 
die Kürzungsregeln 

a + x = a + y => x = y 
und 

ax — ay => x = y 
erfüllt (a, x, y e 9t). 

Zum Schluß noch eine Verabredung: Eine natürliche Zahl p =)= 1 heißt Prim-
zahl, wenn aus p — mn (m, n e 9t) entweder m = 1 oder n = 1 folgt. Die Eins 
ist also keine Primzahl. 

§ 3 Abbildungen 

3.1 Eine Vorschrift /, die jedem Element a einer Menge A genau ein Element 
b einer Menge B als Bild zuordnet, heißt eine Abbildung (Funktion) von A 
in B. Wir schreiben /: A ->• B oder A -j>- B und bezeichnen das Bild b von 
a 6 A mit b = /(o). Zu vorgelegtem b e B braucht dagegen kein ae A mit 
b = f(a) zu existieren, und wenn es ein solches a gibt, muß es nicht eindeutig 
bestimmt sein; jedes a mit f(a) = b heißt Urbild oder Original von b. Mit 
f(A) bezeichnen wir die Menge aller Bilder /(a); es gilt also f(A) cB. Für 
T c A bedeute allgemein f(T) die Menge aller /(<), t e T. 
Zwei Abbildungen /i: A -+B und f%: A -+B sind genau dann einander gleich, 
/i = fe, wenn für jedes x e A gilt: fi(x) = f%{x). Gleichheiten von Abbildungen 
werden so gezeigt. 
Ist /: A B eine Abbildung von A in B und T eine Teilmenge von A, so 
ordnet / erst recht jedem Element von T genau ein Element aus B als Bild 

2 Homfeck, Algebra 
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zu und definiert damit eine Abbildung von T in B, die wir die Restriktion von 
/ auf T nennen. 
Eine Abbildung /: A -> B, bei der jedes b e B als Bild auftritt, für die also 
f(A) = B gilt, heißt Surjektion, surjektive Abbildung oder Abbildung von A 
auf B. 
Eine Abbildung f:A^*B, bei der jedes b e B höchstens einmal als Bild auf-
tritt, für die also aus f(a\) = f(az) immer a\ = a® folgt, heißt Injektion, in-
jektive oder eineindeutige Abbildung von A in B. 
Eine eineindeutige Abbildung f:A-*-B von A auf B, also eine Abbildung, die 
sowohl injektiv als auch surjektiv ist, nennt man auch bijektiv. Dann und nur 
dann, wenn zu jedem b e B genau ein Original a existiert, ist die Abbildung 
f:A->B bijektiv, und in diesem Fall schreiben wir auch a = /-1(&) an Stelle 
von b = f(a). Genau dann also besitzt die Abbildung f:A-+B eine sogenannte 
Umkehrabbildung f'1: B A , wenn sie bijektiv ist, und es gelten dann 
/-i(/(o)) = a für alle a e A und /(/-!(&)) = b für alle b e B. Wenn / bijektiv ist, 
so ist es auch /_1 . 
Unabhängig davon versteht r»an unter dem Urbild f'^T) der Menge T cB 
für eine beliebige Abbildung f : A - + B die Menge 

/- i (T) = {x:xeA und f(x) e T) 

aller derjenigen x e A, deren Bilder in T hegen. 
Die folgenden Be i sp ie le kann man sich leicht durch einfache Skizzen ver-
anschaulichen: 
1) Die durch f(x) = sina; definierte Abbildung /:9t->3t ist weder surjektiv 
noch injektiv. 
2) Die durch f((x, y)) = x definierte Abbildung /: SR2 3t ist surjektiv, aber 
nicht injektiv. 
3) Die durch f(x) = arctg x definierte Abbildung /: SR 3t ist injektiv, aber 
nicht surjektiv. 
4) Die durch f(x) = x3 definierte Abbildung /: 3t -»• Sft ist bijektiv. 

Ist schließlich M eine behebige Menge und bildet f:M^-M jedes m e M auf 
sich selbst ab, f(m) = m, so nennt man / die identische Abbildung. Wir bezeich-
nen die identische Abbildung meist mit e. 

3.2 Es seien die Abbildungen f:A^>B und g: B C gegeben; setzt man 
h(a) = g(f(a)) für jedes a e A, so wird dadurch eine Abbildung h: A -> C de-
finiert. Man bezeichnet sie als die Produktabbildung und schreibt h = gf; es 
ist also (gf)(a) = g(f(a)), und wenn Verwechslungen nicht zu befürchten sind, 
schreiben wir statt (gf)(a) auch einfach gf(a). 
Man betrachte zum Beispiel eine bijektive Abbildung f : A - * B und ihre Um-
kehrabbildung / - 1 : B -»• A. Es folgt /-1/(a) = a für alle a e A; also ist / - 1 / = EA 
die identische Abbildung von A, und entsprechend wird f f - 1 = SB die iden-
tische Abbildung von B. Für den Fall B = A können wir schreiben: 

/-!/ = ff-1 = £. 



§ 4 Abzählbarkeit 19 

Man prüft ohne Mühe nach: Sind f . A ^ - B und g: B -> C bijektive Abbildun-
gen, so ist auch die Produktabbildung g f : A - + C bijektiv. 
Gehen wir nun von drei Abbildungen /, g, h und dem Schema 

f g h 

aus, so ist das Produkt hgf = ßfh (gf) erklärt, und es gilt der wichtige 

Satz 1: Das Produkt von Abbildungen ist assoziativ. h(gf) = (hg)f. 

Beweis : Die Abbildungen h(gf) und (hg)f bilden A in D ab und haben 
auf jedes x e A dieselbe Wirkung; es ist ja h ( g f ) ( x ) = h(gf(x)) = h ( g ( f ( x ) ) ) und 
(%)/(*) = h ( g ( f ( x ) ) ) . 

Aufgabe 1: Es sei / eine Abbildung von A in. B. Man zeige: 
a) Für jede Teilmenge T c A gilt f ~ H f ( T ) ) D T. 

b) Für jede Teilmenge T c B gilt /(/^(T)) c T. 
Weder in a) noch in b) steht notwendig das Gleichheitszeichen. 

Aufgabe 2: Es seien M und N Teilmengen von A und / eine Abbildung 
von A in B. Man zeige 
a) f ( M u N ) = f ( M ) u f ( N ) , 

b ) f ( M n N ) c f ( M ) n f ( N ) ; 

an Hand eines Beispiels weise man nach, daß in b) nicht notwendig das Gleich-
heitszeichen steht. 

§ 4 Abzählbarkeit 

Eine Menge M heißt abzahlbar, wenn eine eineindeutige Abbildung von M 

auf 91 existiert, wenn sich also die Elemente von M mit Eins beginnend durch-
numerieren lassen: n%i, m®, ma, . . . , und wenn in dieser Liste kein me M fehlt. 
Ist M endlich oder abzählbar, so sagt man auch, M sei höchstens abzählbar. 

Man sieht sofort, daß eine Teilmenge einer abzählbaren Menge höchstens ab-
zählbar ist. 
Ein Beispiel einer nicht abzählbaren Menge ist SR. Schon die Teilmenge 
T — {x: x 6 SR, 0 < x sS 1} von SR ist nämlich nicht abzählbar. Um das ein-
zusehen, denke man sich jedes t e T eindeutig als unendlichen Dezimalbruch, 
zum Beispiel 0,5 = 0,4999... , geschrieben und eine Liste t\, h, h, • •. von T 
vorgelegt. Es sei nun ctj die ¿-te Ziffer hinter dem Komma von <j und 
t = 0, ¿>16263 • • • e T ein unendlicher Dezimalbruch mit bi 4= 0 und =|= o< 
(i = 1, 2, 3, . . . ) . Dann kann t in der Liste nicht vorkommen. Wäre nämlich 
t = tjc, so müßten t und in der fc-ten Ziffer hinter dem Komma überein-
stimmen, was aber auf Grund der Konstruktion gerade nicht der Fall ist. 
SR und erst recht <i sind also nicht abzählbar. Mit 91 ist dagegen auch $ abzähl-
bar, wie die Liste 0, 1, — 1,2, — 2, . . . zeigt. 
Sind die Mengen A, B abzählbar, so ist es auch A x B. Die meisten Abzählbar-
keitsbeweise beruhen auf diesem Sachverhalt. Zum Beweis schreibe man sich, 

2 
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ausgehend von zwei Listen a\, a%, aq, . . . bzw. bi, 62, 63. für A bzw. B, die 
Paare von A x B in dem quadratischen Schema 

räaJ ia j» (°s> 64) . . . 
Jä^r&iT (®4>62) («4» («4, 64) 

auf. Eine Liste von Ax B bekommt man dann, indem man die Paare den 
Pfeilen folgend notiert: (ai,6i), (01,62), (a2) h), (ai, b3),(a2,b2),{a3,61),(a^ 64),.. . 
Etwas allgemeiner können wir sagen: Sind die Mengen A, B höchstens abzähl-
bar, so ist auch ihr cartesisches Produkt Ax B höchstens abzählbar. Vollstän-
dige Induktion nach n liefert den 

Satz 1: Sind die Mengen A\, A2, ..., An höchstens abzählbar, so ist auch 
ihr cartesisches Produkt A±x A%x . . . x An höchstens abzählbar. 
Sind die Mengen Ai (i = 1, 2, 3, . . . ) abzählbar, so ist es auch deren Vereini-
gung U Ai. Dazu schreibe man sich in die i'-te Zeile eine Liste von A{ 

i£<Jt 
(i = 1,2, 3, . . . ) und durchlaufe das entstehende quadratische Schema nach 
dem obigen Vorbild; bei der Liste für U Ai hat man nur noch darauf zu achten, 
daß ein und dasselbe Element in ihr nicht mehrfach auftritt. Etwas allgemeiner 
formulieren wir den 

Satz 2: Sind die A{ endlich viele oder abzählbar viele höchstens abzählbare 
Mengen, so ist auch ihre Vereinigung U At höchstens abzahlbar. 
Die positiven rationalen Zahlen lassen sich als gekürzte Brüche mit Zähler 
und Nenner aus 9t schreiben und nach dem Paarschema abzählen. Damit wird 
schließlich auch Q abzählbar. 

§ 5 Äquivalenzrelationen 

Der Begriff der Äquivalenzrelation ist über die Algebra hinaus von zentraler 
Bedeutung. 

Definition: Auf einer Menge M 4= 2 mit Elementen a,b,c, ... sei eine 
Relation „~" erklärt, das heißt, für je zwei Elemente a,be M soll feststehen, ob 
a ~ b gilt oder nickt. Diese Relation heißt Äquivalenzrelation, wenn sie die fol-
genden drei Bedingungen erfüllt: 
(1) Für jedes ae M gilt a ~ a (Reflexivität). 
(2) Aus a ~ b folgt b ~ a (Symmetrie). 
(3) Aus a ~ b und b ~ c folgt a ~ c (Transitivität). 

Die einfachste Äquivalenzrelation ist die Gleichheit. In der Mathematik be-
steht nun oft das Bedürfnis, Dinge als einander gleich anzusehen, die es von 
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vornherein gar nicht sind. Schon in der Schule werden beispielsweise in be-
stimmten Fällen kongruente Dreiecke einfach als dieselben betrachtet. Bei 
solchen Anlässen spielen unsere anschließenden Überlegungen eine grund-
legende Rolle. 
B e i s p i e l 1. M sei die Menge aller Dreiecke des SR2, und ,, ~ " bedeute „kon-
gruent". 
B e i s p i e l 2. M sei dieselbe Menge, und bedeute „ähnlich". 
B e i s p i e l 3. M sei die Menge aller Geraden des SR3, und ,, ~ " bedeute „parallel". 
B e i s p i e l 4. M sei die Menge aller auf SR erklärten reellen Funktionen, und 
„/ ~ g" bedeute „/ — g ist konstant" (/, g e M). 

Eine Zerlegung M = A uBuCu . . . einer Menge M in paarweise disjunkte nicht 
leere Teilmengen A, B, C, . . . wollen wir eine Partition von M nennen. Eine 
solche Partition definiert in trivialer Weise eine Äquivalenzrelation a»f M: Es 
bedeute m ~ n, daß m und n in derselben Teilmenge der Partition liegen. 
Umgekehrt sei nun M vorgelegt und eine Äquivalenzrelation auf M erklärt. 
Wir wollen zeigen, daß sie in natürlicher Weise eine Partition auf M definiert. 
Dazu fuhren wir für jedes ae M die zugehörige sogenannte Äquivalenzklasse 

K(a) = {x: x e M und a ~ x) 

ein; sie ist wegen a ~ a, also a e K(a), nicht leer. Ersichtlich gilt M = U K(a). 
aeM 

Zwei Äquivalenzklassen K(a), K(b) sind nun aber entweder elementefremd 
oder identisch: Es sei c e K(a) n K(b); ist y ein beliebiges Element/ aus K(a), 
so folgt aus a ~ c, b ~ c und a ~ y mit (2) und (3) jedenfalls b ~ y, also 
K(a) c K(b), und analog wird K(a) o K(b). Mit anderen Worten: Aus 
K(a) n K(b) + i folgt K(a) = K(b). Streicht man also in M = U K(a) die 

aeM 
überzähligen Klassen rechter Hand heraus, so erhält man eine Partition von 
M. Wir fassen diese Überlegungen zusammen. 

Satz 1: Eine Äquivalenzrelation auf einer Menge M =|= £ definiert eine Par-
tition auf M und umgekehrt. 

Ist K(a) eine Äquivalenzklasse in M und b ein beliebiges Element aus K(a), 
so heißt b ein Reqyräserdant oder Vertreter von K(a). Eine Menge R c 31 heißt 
vollständiges Repräsentantensystem einer Partition von M, wenn R aus jeder 
Klasse der Partition genau einen Vertreter enthält. Sind m, n Elemente aus 
M, so gilt dann und nur dann K(m) = K(n), wenn m ~ n ist; aus der Äquiva-
lenz der Elemente wird die Gleichheit der Klassen. 
So ist es also etwa auch im obigen Beispiel 1. Die untereinander kongruenten 
Dreiecke sind äquivalent und nicht von vornherein gleich; Gleichheit gilt dann 
für die Klassen, zu denen sie gehören. 
B e i s p i e l 5. Es sei n eine fest gewählte natürliche Zahl und M — Die Re-
lation a ~ b bedeute: a — 6 ist durch n teilbar. Man prüft leicht das Erfüllt-
sein der Forderungen (1), (2), (3) nach. Es wird also M in genau n Äquivalenz-
klassen zerlegt, und zwar derart, daß alle Elemente einer Klasse bei Division 
durch n den gleichen Rest r, 0 g r < n, liefern. Diese Äquivalenzklassen heißen 
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deshalb auch Restklassen modulo n\ als vollständiges Repräsentantensystem 
kann {0, 1, 2 n— 1} gewählt werden: M = Z(0) u K{ 1) u . . . u K{n—1). 

A u f g a b e 1: Es sei M = 51 x Ol. Zeige, daß durch 

(a,b) ~ (c,d) o a + d — b + c 

eine Äquivalenzrelation auf M erklärt wird. 

A u f g a b e 2: Es sei M = {(.r, y): x e y e 3, y =)= 0}. Zeige, daß durch 

(a, b) ~ (c, d) o ad = bc 

eine Äquivalenzrelation auf M erklärt wird. 

A u f g a b e 3: Es sei / : A B eine Abbildung. Zeige, daß durch 

«i ~ a2 o f(ai) = f(a2) 

eine Äquivalenzrelation auf A erklärt wird. 

Literatur: Die Paragraphen 1—5 von A l exandbof f [1] und Kamke [11]. 



2 Gruppen 

Wir betrachten im folgenden algebraische Strukturen mit genau einer in der 
Regel multiplikativ geschriebenen Verknüpfung und beschäftigen uns mit den 
wichtigsten unter ihnen, den Gruppen. Von der Verknüpfung wird dann nur 
verlangt, daß sie assoziativ und in einem noch zu präzisierenden Sinn (Satz 
6.2) umkehrbar ist. Vorbilder für diese letzte Forderung sind etwa die Sub-
traktion als Umkehrung der Addition oder die Division als Umkehrung der 
Multiplikation. So einfache Strukturen wie Gruppen treten oft auf, und darauf 
beruht ihre Bedeutung. 

§ 6 Das Rechnen in Gruppen 

6.1 Wir beginnen mit der folgenden 
Definition: Eine Menge H =(= £ einer assoziativen Verknüpfung heißt 

eine Halbgruppe. 
Sind hi Elemente der Halbgruppe H, so gilt also immer {h-Ji^hz = h^h^hz), 
und nach Satz 1.1 behält das Produkt AiÄ2- • -hk bei jeder Beklammerung den-
selben Wert. Gruppen sind nun Halbgruppen mit den zusätzlichen nach-
stehenden Eigenschaften (1) und (2). 

Definition: Eine Menge G 4= £ »wi einer assoziativen Verknüpfung heißt 
eine Gruppe, wenn in ihr gilt: 
(1) Es existiert eine sogenannte Linkseins e e G mit ea = a für alle a eG. 
(2) Zu jedem aeG existiert ein sogenanntes Linksinverses a_1 sG mit a_1a = e. 
Die Elementeanzahl |G| heißt die Ordnung der Gruppe. 

Zunächst wäre es denkbar, daß es neben e weitere Elemente mit der Eigen-
schaft (1) in G gibt; auch geht aus (2) nicht hervor, daß zu jedem aeG nur 
genau ein Linksinverses a _ 1 vorhanden ist. Diese und andere Fragen behandelt 
der 

Satz 1: G sei eine Gruppe mit der Linkseins e. Dann gelten folgende Aus-
sagen: 
a) Ist a _ 1 ein Linksinverses von aeG, so ist es auch ein Rechtsinverses: 
ala = e => oa_1 = e. 
b) Die Linkseins e ist auch Rechtseins: Für alle aeG gilt ae = a. 
c) Es seien a und b Elemente aus G. Dann sind die Gleichungen ax = 6 und 
ya = b in G eindeutig lösbar. 
d) Es gibt in G genau ein Element e mit der Eigenschaft (1). 
e) Zu aeG gibt es genau ein a _ 1 e G mit der Eigenschaft (2). 
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f) Es ist (a-1)"1 = a. 
g) Sind «i, 02, .. .,a„ Elemente von G, so gilt (a\az.. .aB)-1 = anlanli • • • «F1-

Beweis: 
a) Es sei a ein beliebiges Element aus 0. Wir wählen nach (2) ein a_ 1 und zu 
diesem ein (o-1)-1. In G ist dann das Produkt (a-^^a^aa-1 erklärt. Wir be-
rechnen es, indem wir auf verschiedene Arten Klammern setzen. Einmal wird 
(a-1)-1(a-1o)a_1 = (a"1)_1(ea-1) = (a - 1)-1« - 1 = e. Zum anderen ergibt sich 
((a_1)_1o_1)(oa_1) = e(aa~1) = aa-1. Beides zusammen liefert a a = e. 
b) Nach a) wird ae = a(a~1a) = (ao_1)a = ea = a. 
c) Die Gleichung ax = b ist in Q lösbar: Zu aeG wähle man ein a - 1 e 0 gemäß 
(2) und setze x = a_1i>. Auf Grund von a) wird dann richtig a(a-16) = (oa_1)& 
= eb — b. Die Gleichung ist eindeutig lösbar: Aus ax = ax' (x, x' e 0) folgt 
ja (a-1a)a; = (a-1o)x' oder x = x'. Analog zeigt man die eindeutige Lösbarkeit 
von ya = b. 
d) Nach c) hat die Gleichung ya — a nur eine Lösung. 
e) Nach c) hat die Gleichung ya = e nur eine Lösung. 
f) Nach c) hat die Gleichung y a = e genau eine Lösung y in G. Definitions-
gemäß ist y = (a - 1 ) - 1 ; nach a) darf auch y = a gesetzt werden. Es folgt 
(a-i)-i = a. ' 
g) Die Gleichung y{a\ai.. .an)= e wird sowohl von (a\02.. .o«) -1 als auch von 
«n1 o^Ii • • -«r1 gelöst, und diese beiden Lösungen müssen nach c) übereinstim-
men. 

Das Rechnen in Gruppen ist nun übersichtlich geworden; es hat vieles mit der 
gewohnten Multiplikation gemeinsam; lediglich auf die Reihenfolge der Fak-
toren muß geachtet werden. Auf Grund von Satz 1 ist ferner die obige Gruppen-
definition gleichwertig mit der 

Definition: Eine Menge G =)= £ mit einer assoziativen Verknüpfung heißt 
eine Gruppe, wenn in ihr gilt: 
(!') Es existiert ein Einselement e e G mit ea = ae = a für alle ae G. 
(2') Zu jedem aeG existiert ein Inverses o_1 e G mit a~xa — aa-1 = e. 

Schließlich hätten wir oben an Stelle einer Linkseins und eines Linksinversen 
auch Rechtseins und Rechtsinverses verlangen und einen zu Satz 1 analogen 
Satz beweisen können. Gleichwertig mit den beiden bereits gegebenen ist also 
die folgende dritte 

Definition: Eine Menge (?=)=£ mit einer assoziativen Verknüpfung heißt 
eine Gruppe, wenn in ihr gilt: 
(I") Es existiert eine Rechtseins ee G mit ae = a für alle aeG. 
(2") Zu jedem aeG existiert ein Rechtsinverses a_ 1 eG mit aa-1 = e. 

Als letzte Aussage in diesem Zusammenhang notieren wir noch den 

Satz 2: Eine Gruppe kann auch definiert werden als eine Halbgruppe G, in 
der die Gleichungen ax = b und ya = b für alle a,beG lösbar sind. 
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Beweis : Nach Satz 1 sind ax — b und ya = b in einer Gruppe immer 
lösbar. Es sei daher umgekehrt G eine Halbgruppe, in der ax — b und ya = b 
stets lösbar sind. Wir haben die Forderungen (1) und (2) zu prüfen und zeigen 
als erstes die Existenz einer Linkseins e eG. Dazu sei g ein beliebiges Element 
aus G; es existiert, da 0 nicht leer ist. Wir,wählen eine Lösung von yg = g 
und nennen sie e. Ist nun a irgendein Element aus 0, so kann es in der Gestalt 
a — gx mit einem x e G geschrieben werden. Es folgt ea = (eg)x = gx = a ; 
also ist e Linkseins, und (1) ist erfüllt. Nach Voraussetzung ist ferner für jedes 
ae G die Gleichung ya = e lösbar, wie es in (2) verlangt wird. 

An die bahnbrechenden Arbeiten des norwegischen Mathematikers N. H . ABEL 
erinnert die 

Definition: Gilt für alle a,beG der Gruppe G das kommutative Gesetz 
ab = ba, so heißt G eine lcommtdative oder abelsche Gruppe. 

In einer abelschen Gruppe ist folglich das Produkt a\a^.. .an von n Gruppen-
elementen auch noch von der Reihenfolge der Faktoren unabhängig. Abelsche 
Gruppen schreibt man oft additiv. Das Verknüpfungsergebnis von a und b 
heißt dann also a b; das bezüglich dieser Verknüpfung neutrale Element e 
wird der Gewohnheit entsprechend mit 0 bezeichnet und Nullelement der 
Gruppe genannt. Schließlich steht —a an Stelle des Inversen a - 1 , und man 
definiert a + (—6) = a — b. 
In einer multiplikativ geschriebenen beliebigen Gruppe wird dagegen e viel-
fach mit 1 bezeichnet. Außerdem verwendet man die geläufigen Abkürzungen 
aa = o2, aaa = a3, (o-1)2 ---• a - 2 , a° = 1 usw. und erhält für ganze Zahlen m, n 
die Potenzrechenregeln (am)n = amn und aman = am+n. Naheliegend ist end-
lich noch die 

Definition: Eine Teilmenge U der Gruppe G heißt Untergruppe von G, wenn 
U bezüglich der in G erklärten Verknüpfung eine Gruppe ist. Die Untergruppe 
U heißt echte Untergruppe, wenn U 4= G 

Es gibt natürlich auch andere als die oben erwähnten Möglichkeiten, Gruppen 
zu definieren. Man hat verschiedentlich nach möglichst schwachen Axiomen 
gesucht, die zur Charakterisierung von Gruppen noch ausreichen. Die beson-
ders hübschen Axiomensysteme von R . BAER und F.W. LEVI findet man etwa 
b e i KUBOSCH [14 ] . 

In gruppentheoretischen Untersuchungen taucht oft das sogenannte Zentrum 
einer Gruppe auf. Wir beschreiben es in der folgenden 

Definition: Es sei G eine Gruppe. Unter dem Zentrum von G versteht man 
die Menge 

Z = {x: x e G, xg = gx für alle g BG) 

aller derjenigen Elemente xeG, die mit jedem g eG vertauschbar sind. 
A u f g a b e 1: In einer Gruppe G gelte x2 = e für jedes xeG. Zeige: Dann 

ist G abelsch. 
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Aufgabe 2: Es seien I 4= £ eine Indexmenge, G eine Gruppe und die Ui 
(i e I) Untergruppen von G. Man zeige: Auch der Durchschnitt D = fl Ui 
dieser Untergruppen ist eine Untergruppe von G. ieI 

Aufgabe 3: Es sei G eine Gruppe und Z ihr Zentrum. Man zeige, daß Z 
eine abelsche Untergruppe von G ist. 

6.2 Man kann leicht Beispiele für Gruppen angeben. Die Menge aller von 
Null verschiedenen rationalen Zahlen ist eine Gruppe bezüglich der Multipli-
kation, und dasselbe gilt für die entsprechend erklärten Mengen 9t0 und So. 
Wir nennen sie in Zukunft die multiplikativen Gruppen von £1, SR, 6. Die vollen 
Mengen ¿?> Q., Sft, @ sind Gruppen bezüglich der Addition; wir nennen sie die 
additiven Gruppen von 3, Ö, SR, ß. Alle diese Gruppen sind abelsch. Die Menge 
aller nichtsingulären reellen zweireihigen quadratischen Matrizen ist eine nicht-
kommutative Gruppe bezüglich der Matrizenmultiplikation. Beispielsweise die 
Aussagen a) und g) von Satz 1 lassen sich nun als Sätze über Matrizen deuten. 
Weiter wollen wir uns Beispiele von Gruppen endlicher Ordnung ansehen. Jede 
multiplikativ geschriebene Gruppe muß das Einselement e enthalten. Es gibt 
also genau eine Gruppe der Ordnung Eins, G = {e}, mit der Verknüpfung 
ee = e; andere Modelle unterscheiden sich von ihr nur durch die Schreibweise. 
Wollen wir auf der zweielementigen Menge G = {e, a} eine multiplikative 
Gruppenstruktur mit dem Einselement e einführen, so müssen wir ee = e, 
ea = a und ae = a definieren; wegen ae = a und Aussage c) von Satz 1 kann 
nicht auch aa den Wert a haben; wir setzen also noch aa = e. Schreiben wir 
in die erste Spalte den ersten, in die erste Zeile den zweiten Faktor, so lautet 
also die einzig mögliche Chruppentafel 

ea 
e e a 
a a e, 

und man prüft leicht nach, daß auf diese Weise wirklich eine Gruppe definiert 
wird. Es gibt also, wenn man von der Bezeichnung und der konkreten Bedeutung 
ihrer Elemente absieht, genau eine Gruppe der Ordnung 2. 
Probiert man dasselbe mit der dreielementigen Menge G — {e, a, 6}, so ergibt 
sich als einzig mögliche Gruppentafel 

ea b 
e eab 
a ab e 
b b ea. 

Zunächst stehen die Verknüpfungsresultate mit e als linkem oder rechtem 
Faktor fest. Dann kann wegen der Aussage c) aus Satz 1 in keiner Zeile oder 
Spalte der Verknüpfungsergebnisse zweimal derselbe Buchstabe stehen. Für 
aa kommen also nur b oder e in Frage; e scheidet aus, weil sonst in der dritten 
Spalte zweimal b stünde. Der Rest ergibt sich zwangsläufig. Wieder prüft man 
nach, daß auf diese Weise tatsächlich eine Gruppe, also in dem bereits erör-
terten Sinn die einzige Gruppe der Ordnung 3, entstanden ist. 
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Versucht man in gleicher Weise, auf der Menge M = {e, a, b, c} eine Gruppen-
struktur einzuführen, so liefern Fallunterscheidungen die folgenden möglichen 
Gruppentafeln. 

1 eab c 2 eab c 3 eab c 4 eab c 
e eab c e eab c e eab c e eab c 
a a e cb a a e c b a a b c e a a c e b 
b b c ea b b ca e b b c ea b b e ca 
c cba e c cb ea c c eab c cba e 

In allen vier Fällen handelt es sich wirklich um Gruppen; die Nachprüfung des 
Assoziativgesetzes macht allerdings ohne weitere Hilfsmittel schon recht viel 
Mühe. Man hat aber gar nicht vier wesentlich voneinander verschiedene 
Gruppen der Ordnung 4 gefunden! Vertauscht man nämlich in der zweiten 
Tafel a und b, ändert also lediglich diese beiden Bezeichnungen, so geht sie in 
die dritte über. Analog geht die vierte Tafel in die dritte über, wenn überall b 
statt c und c statt b geschrieben wird. Es bleiben also die beiden Tafeln 1 und 
3; sie definieren die beiden einzigen Gruppen der Ordnung 4; sie sind verschie-
den, weil in der ersten Gruppe x2 = e für jedes Gruppenelement gilt, in der 
anderen nicht. 
Die erste Gruppe G\ = {e, a, b, c}, in der immer x2 = e gilt und das Produkt 
von je zweien der Elemente a, b, c das dritte liefert, heißt nach dem deutschen 
Mathematiker F. KLEIN (1849—1925) die KLEiNsche Vierergruppe oder auch 
nur die Vierergruppe. Macht man in der dritten Gruppentafel die Umbezeich-
nung e = 0, a = 1, 6 = 2, c = 3, so erhält man mit diesen neuen Zeichen 
0, 1, 2, 3 für die zweite mögliche Gruppe Gz = {0, 1, 2, 3} der Ordnung 4 die 
Gruppentafel 

0 1 2 3 
0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2. 

Diese Darstellung wird besonders durchsichtig, wenn man die Verknüpfung 
nun additiv liest; das Ergebnis von m + n ist dann einfach der Rest bei Divi-
sion durch 4. 

Wir haben also gefunden: Es gibt je eine Gruppe der Ordnungen 1, 2, 3 und 
zwei Gruppen der Ordnung 4. Sie sind, wie die Symmetrie der Gruppentafeln 
zur Hauptdiagonale zeigt, alle abelsch. Wir werden später sehen, daß es genau 
eine Gruppe der Ordnung 5 gibt und daß sie abelsch ist, ferner, daß es genau 
zwei Gruppen der Ordnung 6, eine abelsche und eine nichtkommutative, gibt. 
Nur in Ausnahmefällen läßt sich heute die Frage nach allen Gruppen vor-
gegebener endlicher Ordnung n beantworten; auf einige dieser Fälle kommen 
wir noch zurück. Die Frage nach allen abelschen Gruppen der Ordnung n ist 
dagegen algebraisch gelöst; die Bestimmung ihrer Anzahl werden wir auf ein 
zahlentheoretisches Problem zurückführen (§ 11). 
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6.3 Es sei eine Gruppe G vorgelegt, und eine algebraische Struktur 8 habe 
eine Verknüpfung, die wir der Bequemlichkeit halber wie die von O multipli-
kativ schreiben wollen. Es möge nun außerdem eine bijektive Abbildung 
/: G S derart existieren, daß aus der Beziehung ab — c in G immer folgt: 
f(a)f(b) = /(c) in S. Offenbar unterscheiden sich die algebraischen Strukturen 
G und 8 dann nur durch die Schreibweise; jedes a e G wird lediglich durch sein 
Bild f{a) e 8 ersetzt. Beispiele für diesen Sachverhalt sind uns in Gestalt der 
Gruppen der Ordnung 4 schon im letzten Abschnitt begegnet. Er führt zu der 
folgenden 

Definition: Es seien G eine Gruppe und 8 eine algebraische Struktur mit 
einer multiplikativ geschriebenen Verknüpfung. Dann heißen G und S isomorph, 
G ~ S, wenn eine bijektive Abbildung f:G-+S derart existiert, daß für alle 
a,beG gilt: f(ab) = f(a)f(b). 

Isomorphe Gruppen unterscheiden sich also als algebraische Strukturen nur 
hinsichtlich der Bezeichnung ihrer Elemente, und wenn wir Sagen, es gebe nur 
eine Gruppe der Ordnung 3, so ist immer dieser Sachverhalt gemeint. Das 
schließt nicht aus, daß die verschiedensten konkreten Realisierungen ein und 
derselben Gruppe möglich sind. Gruppen der Ordnung 2 können sich zum Bei-
spiel dadurch unterscheiden, daß ihre Elemente in dem einen Fall Zahlen, in 
dem anderen vielleicht Abbildungen sind. Soll man schließlich alle Unter-
gruppen der Vierergruppe F = {e, a, b, c} angeben, so möchte man sie auch 
erst einmal alle sehen: {e}, {e, d], {e, b}, {e, c}, {e, a, b, c}. Daß einige von ihnen, 
nämlich {e, a}, {e, 6} und {e, c), isomorph sind, ist eine nachträgliche Feststel-
lung. Wenn wir aber später für gewisse Gruppen feste Bezeichnungen verein-
baren, wie etwa 3s für die Gruppe der Ordnung 3, so ist damit wieder das im 
vorigen Abschnitt aufgeschriebene eindeutig festgelegte abstrakte Modell ge-
meint. 
Die Eigenschaft f(ab) = f(a)f(b) der Abbildung f :G 8 nennt man Relations-
treue; f selbst heißt der Isomorphismus zwischen G und 8. Es ist durchaus 
möglich, daß es zwischen G und 8 mehrere Isomorphismen gibt. E s ist klar, 
daß das isomorphe Bild S von G wieder eine Gruppe ist. Bei der Abbildung / 
geht das Einselement von G in das Einselement von S über, und Inverse gehen 
in Inverse über. Durch die Isomorphie wird eine Äquivalenzrelation unter den 
Gruppen erklärt; isomorphe Gruppen werden von diesem bereits erörterten 
Standpunkt aus im allgemeinen nicht mehr als voneinander verschieden an-
gesehen. Dabei können, wie etwa in dem anschließenden Beispiel 1, die Ver-
knüpfungen durchaus auch mit verschiedenen Zeichen geschrieben sein, wo-
durch die Forderung der Relationstreue formal eine andere Gestalt bekommt. 
Es kann nun der Fall eintreten, daß das isomorphe Bild H einer Gruppe G 
selbst Teilmenge einer Menge M ist: H c M. Der vermittelnde Isomorphismus 
/ zwischen G und H ist dann eine eineindeutige relationstreue Abbildung von 
G auf H und von G in M. Um diese Sachverhalte zu beschreiben, sprechen wir 
in Anlehnung an die Verabredungen aus § 3 gegebenenfalls von einem Isomor-
phismus f von G auf H oder einem Isomorphismus / von G in M. 
B e i s p i e l 1. E s sei G = {z: z e z = a + bi und a, b e 3) di© Menge aller 
ganzen Gaußschen Zahlen; G ist eine Gruppe bezüglich der Addition in GE. 
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Ferner sei H die Teilmenge {a;: x = 2°36, a, b e 3} von Q; sie ist eine Gruppe 
bezüglich der Multiplikation in £1. Dann wird durch f(a + bi) = 2°36 ein 
Isomorphismus von 0 auf H oder von G in Ü definiert. Zunächst ist ja / eine 
Abbildung von 0 auf H; sie ist eineindeutig, weil aus f(a + bi) = f(c + di) 
folgt: a = c und 6 = d; sie ist relationstreu wegen 

/((a + bi) + (c + di)) = /((a + c) + (6 + d)i) 
= 2a+c3b+d = 2°36 • 2e3d 

= f(a + bi) • f{c + di). 
Beispiel 2. Es sei 0 die additive Gruppe von @ und H die Menge aller reellen 
Matrizen der Gestalt 

mit der Matrizenaddition als Verknüpfung. Dann ist G ~ H. Dazu ordne man 
dem Element a + bi e @ die aufgeschriebene Matrix zu. 
Beispiel 3. Im Anschluß an Beispiel 2 wollen wir mit Gq die multiplikative 
Gruppe €o von 6 bezeichnen. Analog sei Ho die Menge H aus Beispiel 2 ohne 
die Nullmatrix und mit der Matrizenmultiplikation als Verknüpfung. Dann 
zeigt eine leichte Rechnung, daß dieselbe Zuordnung wie in Beispiel 2 auch 
relationstreu bezüglich der Multiplikation ist:'6ro ~ Hq. ES gilt ja 

a b\ I c d\ I ac—bd ad-\-bc\ 
—b aj \—d c) = \—(ad+bc) ac—bdj. 

Aufgabe 4: Es sei G die multiplikative Gruppe aller positiven Zahlen aus 
SR und H die additive Gruppe von SR. Man zeige G ~ H. 

Aufgabe 5: Es sei SR die additive und SRo die multiplikative Gruppe der 
reellen Zahlen. Zeige: Es gibt keinen Isomorphismus / von SR auf SRo-

§ 7 Darstellungen durch Transformationsgruppen 

7.1 Vorangestellt sei die folgende 
Definition: Eine eineindeutige Abbildung /: M M einer Menge M auf 

sich heißt Transformation. Eine Transformation einer endlichen Menge M heißt 
auch Permutation. 
Auf der Hand liegt die Gültigkeit von 

Satz 1: Die Menge F aller Transformationen einer Menge M ist eine muUi-
flilcative Gruppe. 

Beweis: Das Produkt zweier Transformationen ist nach § 3.2 erklärt und 
liefert ein Element von F. Nach Satz 3.1 ist diese Multiplikation assoziativ. 
Die identische Abbildung e von M auf sich ist das Einselement von F, und 
wegen /_1/ = f f - 1 = e ist die Umkehrabbildung /-1 e F (vgl. § 3.2) das Inverse 
von f<= F. 
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Jede Gruppe, deren Elemente Transformationen sind, nennen wir nun Trans-
formationsgruppe, jede Gruppe von Permutationen Permutationsgruppe. 
Der englische Mathematiker C A Y L E Y ( 1 8 2 1 — 1 8 9 5 ) , einer der Begründer der 
Gruppentheorie, zeigte, daß sich jede Gruppe als Transformationsgruppe dar-
stellen läßt. Von ihm stammt nämlich der 

Satz 2: Jede Gruppe G ist einer Transformationsgruppe isomorph. 

Beweis: Wähle ein a e G und betrachte die durch fa(x) = ax definierte 
Abbildung fa: G ->G. Da sich nach Satz 6.1 jedes g e G in der Gestalt ax 
schreiben läßt, ist sie surjektiv; sie ist injektiv wegen 

fa(x) = fa{y) => x = y. 

Also ist fa eine Transformation von G. Für verschiedene a,beG sind auch 
fa, fb verschieden; denn aus fa = /j, folgt fa(e) = /¡>(e) oder a = b. Nun bilden 
wir die Menge F = {fa: UEG} aller dieser Transformationen und zeigen 
G ~ F. Die durch <p(a) = fa definierte Abbildung <p: G -> F ist, wie bereits 
festgestellt, bijektiv. Für die Relationstreue muß tp(ab) = q>(a)<p(b) oder 
fab = fafb gezeigt werden; es ist aber in der Tat 

fab(x) = abx = afb(x) = fafb(x) 

für alle xeG. 

7.2 Der Beweis von Satz 2 gestattet sofort die 
Folgerung: Jede endliche Gruppe läßt sich als Permutationsgruppe schrei-

ben. 
Wir betrachten zunächst die vollen Permutationsgruppen endlicher Mengen. 

Definition: Es sei M ^ Z eine endliche Menge von n Elementen. Die Gruppe 
aller Permutationen von M heißt die symmetrische Gruppe vom Index n. Wir 
bezeichnen sie in Zukunft mit 

Wir wissen also inzwischen, daß zu jeder endlichen Gruppe G eine Permuta-
tionsgruppe P und ein Index n derart existieren, daß G ~ P und P c <&„ 
gelten. Nach dem Beweis von Satz 2 kann man hierbei n — |G| wählen. 

Besonders übersichtlich ist für Permutationen die folgende Schreibweise. Man 
notiert M etwa in der Gestalt M = {1,2, .. ,,n) und / e <S„ durch 

1 2 3 . . . n \ 

«i a2 «3 • • • «»/» 

wobei a¡c = f(k) ist. Die Gruppe <S„ hat so viele Elemente, wie es Anordnungen 
der paarweise verschiedenen a* e M in der zweiten Zeile dieses Schemas gibt. 
Wir haben also den 

Sata 3: Die symmetrische Gruppe hat n\ Elemente. 

Betrachtet man etwa in die Teilmenge aller Permutationen, die das Element 
n + 1 e M festlassen, so sieht man c @»+i. 
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Die Multiplikation von Permutationen fuhren wir, ihrem Charakter als Ab-
bildungen entsprechend, von rechts nach links aus. Es seien beispielsweise 

t = (2 1 3) U n d g = (3 2 l) 

Permutationen aus ©3; wir bekommen dann 

^ = ( 2 3 l) U n d ^ = ( 3 1 2 ) + g f' 

Wegen €>„ c @»+i liefert das gleich noch den 

Satz 4: Die symmetrische Gruppe ist kommutativ für n = 1,2 und 
nichtkommutativ für n Jä; 3. 

Wir kennen also damit auch schon eine nichtkommutative Gruppe der Ordnung 
6, nämlich ©3. 

Mitunter ist eine abgekürzte Schreibweise für Permutationen empfehlenswert. 
Man betrachte etwa 

, / l 2 3 4 5 6 7 8\ ~ 
' ~~ (3 4 8 2 7 5 6 l j e 

Zunächst geht 1 in 3, 3 in 8 und 8 in 1 über; dafür schreiben wir kurz (138) 
und nennen einen solchen Ausdruck einen Zyklus. Weiter geht 2 in 4 und 4 in 
2 über; zusammen schreiben wir, wieder von rechts nach links gelesen, (24)(138), 
und schließlich wird / = (576)(24)(138). Auf diese Weise läßt sich, wie man sich 
sofort überlegt, jede Permutation als Produkt elementefremder Zyklen schrei-
ben. Bleibt ein Element fest, so liefert es einen Zyklus der Länge Eins, den 
man auch wegläßt. 

7.3 Definition: Eine Permutation 1e <Sn, die sich als Zyklus der Länge 2 
schreiben läßt, die also zwei der Zahlen 1,2, ..., n vertauscht und die übrigen 
festhält, heißt Transposition. 
Intuitiv glaubt man zu wissen, daß man jede Anordnung der Zahlen 1,2, . . . , n 
durch sukzessives Vertauschen von je zweien herstellen kann. Dies bestätigt der 

Satz 5: Jede Permutation f e <©„, n ^ 2, läßt sich als Produkt ttft-i • • • h 
von Transpositionen schreiben. Sind f = tjjtk-1 ... h und f = t'it'i... t[ 
zwei derartige Darstellungen, so sind darüber hinaus k und l entweder beide 
gerade oder beide ungerade. 

Beweis: Wir zeigen zunächst die Darstellbarkeit von / als Produkt von 
Transpositionen. Für die identische Abbildung e gilt etwa e = (12) (12). Ist 

, = /I 2 ... n 
\a\ 02 . . . an 

nicht die Identität, also etwa «i = 1, a% = 2, . . . , a^-i — A — 1, a\ k 
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(1 g X < n), so liefert Linksmultiplikation von / mit t\ = (Ao )̂ eine Permu-
tation 

_ / l 2 ... n\ 
9 ~ l&i b2 ... bn) 

mit ¿>i = l , 62 = 2, . . . , bx = A. Wiederholung des Verfahrens ergibt 
tjtfjc-1 ... hf = e mit gewissen Transpositionen t„. Es folgt / = fi*2 • • • ¿¡t, 
wie man durch Einsetzen bestätigt; es ist ja = 's. 
Zum Beweis der zweiten Behauptung verwenden wir einen Kunstgriff. Wir 
betrachten das Produkt 

P(l,2, ...,n) = (1 — 2)(1 — 3) . . . (1 — n) 
(2 — 3) . . . (2 — n) 

(n — 1 — n). 

Ersetzt man hierin für alle 1 ^ i n die Zahl i durch f(i), so bekommt man, 
da / bijektiv ist, eine Zahl 

P(/(l),/(2), . . . , / (« ) ) = cfP( 1,2 n), 

wobei Cf ein durch / e <3n eindeutig festgelegter Vorzeichenfaktor ist: c/ = + 1 
oder Cf = —1. Man überlegt sich, daß für Transpositionen t dieser Vorzeichen-
faktor et immer den Wert —1 hat. Man führe den Übergang von P( 1 ,2 n) 
zu P(f( 1), /(2) /(n)) durch Hintereinanderschaltung von h, <2 h bzw. 
ix, <2 t\ schrittweise aus. Unsere Voraussetzung war / = fcfc-i . . . t\ 
— 01-1 . . . sie liefert also c/ = (—1)* = (—l)1 und damit die Bestbehaup-
tung des Satzes. 

Ist nun / e <3n ein Produkt von k Transpositionen, so ist nach Satz 5 die Zahl 
sgn / = (—1)* durch / eindeutig bestimmt. Sie heißt das Signum der Per-
mutation. 

Definition: Ein f e @„ heißt gerade Permutation, wenn sgn / = + 1 ist, 
andernfalls ungerade Permutation. 
Für die geraden Permutationen gilt der 

Satz 6: Die Menge 21» der geraden Permutationen aus <&„, w 5: 2, ist eine 

Untergruppe von @n mit -^-n! Elementen. Sie ist kommutativ nur für n ^ 3. 

Beweis : Sind / = <i<2.. .<2* e 21» und g = . .t'2i e 21» als Produkte 
von Transpositionen geschrieben, so folgt sgn (fg) = (—1)2*+21 = 1, also 
fg e 21». Die Multiplikation aller, speziell auch der geraden Permutationen ist 
assoziativ. Die identische Permutation e = (12)(12) ist gerade. Mit 
/ = titz- • .<2* e 2i» ist auch / - 1 = hthk-x • • • h gerade. Also ist 21» eine 
Untergruppe von ©„. 
Weiter sei t eine feste Transposition aus @„. Dann läßt sich jeder geraden 
Permutation g e 21» mit tg eine ungerade zuordnen; dabei liefern gi, ¡72 6 2In 
dann und nur dann dieselben ungeraden Permutationen tgi, tg%, wenn 
gi — 92 ist. Es gibt also mindestens so viele ungerade wie gerade Permutatio-
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nen. Genauso zeigt man umgekehrt: Es gibt mindestens so viele gerade wie 
ungerade Permutationen. Aus beidem zusammen folgt |2i„| = _ (@ «I — "TT fl" 

£ 
Schließlich sind / = (142) = (14)(24) und g = (132) = (13)(23) Elemente aus 
2l4 mit fg = (24)(13) und gf = (23)(14), also fg #= gf; aus 2l„ c 2 W folgt also, 
daß 2In für n 2: 4 nicht kommutativ ist, und da 2(2, % als Gruppen der Ord-
nungen 1, 3 kommutativ sind, ist Satz 6 damit bewiesen. 
Beispielsweise ist also 2(4 eine nichtkommutative Gruppe der Ordnung 12. Man 
nennt 21» die alternierende Gruppe vom Index n. 

§ 8 Untergruppen 

8.1 Es sei eine Teilmenge U einer Gruppe 0 vorgelegt, und es soll geprüft 
werden, ob U eine Untergruppe von G ist. Bislang haben wir in einem solchen 
Fall einfach die Gruppenaxiome durchgesehen: Wenn U eine Untergruppe 
von G ist, so muß mit a,beU jedenfalls auch ab e U sein; ist u e U, so wird 
die Gleichung ux=u nur durch die Eins e aus G gelöst, so daß ferner e e U 
gelten muß; schließlich muß mit ue U auch u~l in U liegen. Diese notwendi-
gen Bedingungen sind sicher auch hinreichend, da das in ganz G gültige Asso-
ziativgesetz in U von selbst erfüllt ist. 
Mitunter läßt sich der geforderte Nachweis in folgender Weise etwas verein-
fachen. 

Satz 1: Eine nickt leere Teilmenge U einer Gruppe G ist eine Untergruppe 
von G genau dann, wenn eine der beiden folgenden gleichwertigen Bedingungen 
erfüllt ist: 
(1) Aus a,beU folgt ab-1 e U. 
(2) Aus a,beU folgt a^b e U. 

Beweis: Ist U eine Untergruppe von G, so gilt sicher (1). Wir zeigen 
nun: Wenn (1) erfüllt ist, so ist U eine Untergruppe von G. Wegen £/=)=£ 
existiert zunächst ein ue U, und es folgt mm-1 = ee U. Jetzt ergibt sich aus 
ae U weiter ea -1 = a~l e U. Sind schließlich a, b Elemente aus U, so sind es 
hiernach auch a, b'1, und man hat zuletzt noch a(i>-1)-1 = ab e U. Es ist also 
U genau dann eine Untergruppe von G, wenn (1) gilt. Ebenso zeigt man, daß 
U genau dann eine Untergruppe von G ist, wenn (2) gilt. Damit ist Satz 1 
bewiesen. 
Ist die Gruppe G endlich, so kann man oft auch mit Vorteil die in der Auf-
gabe folgende Variante von Satz 1 benutzen. 

Aufgabe 1: Eine nicht leere Teilmenge U einer endlichen Gruppe G ist 
schon Untergruppe von G, wenn aus a,beU immer folgt: ab e U. Beweis ? 

8.2 Wir treffen nun wieder einige Verabredungen. 

Definition: Es seien A und B nicht leere Teilmengen der Gruppe G. Unter 
dem Komplexprodukt AB von A, B versteht man dann die Menge aller Produkte 
ab mit ae A und b e B: 

3 Hornfeck, Algebra 
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AB =Df{x\ x eO, x = ab, a e A,b e B). 

Besonders häufig treten spezielle Komplexprodukte auf, für die sich modifi-
zierte Bezeichnungen eingebürgert haben. 

Definition: Es sei G eine Gruppe, U eine Untergruppe von G und a ein be-
liebiges Element aus G. Dann heißt 

aU = ßf{x: xeG, x = au, ue U} 

eine Linksnebenklasse und 

Ua = DF{X- XBG, x = ua, ueU] 

eine RechtsnebenMasse von U in G. 
Neuerdings wird des öfteren auch aU Rechtsnebenklasse (von a) und Ua 
Linksnebenklasse (von a) genannt. 
Die Bedeutimg der Nebenklassen von Untergruppen beruht auf dem Inhalt 
von 

Satz 2 : Es sei G eine Gruppe mit Elementen a,b,c, ... und U eine Unter-
gruppe von G. Dann gelten die nachstehenden Aussagen. 
a) Zwei Linksnebenklassen aU, bU von U sind entweder elementefremd oder 
identisch. 
b) Durch die Gesamtheit derjenigen Linksnebenklassen von U, die paarweise 
voneinander verschieden sind, wird eine Partition auf G definiert. 
c) Der durch die Linksnebenklassen von U auf G definierten Partition entspricht 
die Äquivalenzrelation 

(1) a ~ b o a~xb e U. 

Die Elemente a, b sind also genau dann äquivalent, wenn sie sich nur durch einen 
Rechtsfaktor aus U voneinander unterscheiden. 

Beweis : 
a) Haben zwei Linksnebenklassen aU, bU ein Element c = au\ = bu% ge-
meinsam («i, «2 e U), so folgt a = bu^ui1, also au = buzu^u e bU für jedes 
ue U. Das heißt aU cbU, und entsprechend zeigt man bU caU. Sind also 
aU und bU nicht elementefremd, so gilt aU = bU. 
b) Nach a) bleibt noch zu zeigen, daß die Linksnebenklassen von U ganz G 
ausschöpfen. Ist g ein Element aus G, so gilt aber g e gU. 
c) Zwei Elemente a, b sind genau dann äquivalent, a ~ 6, wenn ihre Klassen 
gleich sind: aU = bU. Durch Linksmultiplikation mit a _ 1 folgt hieraus 
U = a~lbU, und aus U = a_1bU folgt umgekehrt aU = bU. Es bedeuten 
also a ~ b und a-1bU = U dasselbe. Die Linksnebenklassen a^bU und 
eU = U wiederum sind nach a) genau dann identisch, wenn o - 16 eeU ist. 
Es gilt also (1). Die Bedingung a~lb e U besagt: Die Lösung von ax — b liegt 
in U. Da U eine Gruppe ist, sind schließlich die Bedingungen a_16 e U und 
(a_1&)_1 = 6_1a e U gleichwertig, und letzteres besagt: Die Lösung von 
a = by liegt in U. 
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Es ist klar, daß ein entsprechender Satz für die Rechtsnebenklassen einer 
Untergruppe U von 0 gilt. Die zugehörige Äquivalenzrelation lautet dann 

(1') a ~ b o ab'1 e U. 

Keine der von U verschiedenen Links- oder Rechtsnebenklassen von U ent-
hält das (in U gelegene) Einselement; nur U selbst ist also eine Untergruppe 
der Gruppe 0 . Die Rechts- und die Linksnebenklassen von U in 0 fallen im 
allgemeinen nicht zusammen; wir kommen darauf noch zurück. 
Wegen bebU und Aussage a) von Satz 2 gilt aU = bU genau dann, wenn 
b e aU ist; diese und ähnliche Umformungen werden wir später oft benutzen. 

8.3 Es sei weiterhin G eine Gruppe und U eine Untergruppe von 0 . Wir inter-
essieren uns für die Anzahl der Nebenklassen von U in G und beginnen dazu 
mit einer Vorbetrachtung. 
Setzt man q>(g) = g~l für jedes g eG, so wird dadurch eine Transformation 
q>: G ->G definiert; denn wegen <p(g~l) — g ist die Abbildung <p\ G -+G sur-
jektiv, und sie ist injektiv, weil aus gr1 = A_1 durch Inversenbildung folgt: 
g = h. Die Restriktion von <p auf U bildet also auch U eineindeutig auf U ab. 
Es sei nun I eine Menge von Indizes und 

G = U gtü (gtU n gjü = i für i 4= j) 
i£j 

die Zerlegung von G in paarweise verschiedene Linksnebenklassen gtU von 
U eG. Hierauf wenden wir q> an. Links bekommen wir <p(G) = G. Rechts 
dürfen wir <p mit dem Vereinigungszeichen vertauschen und benutzen dann 
Aussage g) von Satz 6.1 und <p{U) = U. Da <p eineindeutig ist, lautet das 
Ergebnis 

G = U UgJ1 (tfj/71 n ügf = £ für i #= j). 
tcJ 

Aus der ersten Zerlegung von G in paarweise verschiedene Linksnebenklassen 
gtU von U ist die Zerlegung von G in paarweise verschiedene Rechtsnebenklassen 
Ugj1 von U geworden; das vollständige Repräsentantensystem der gr< (i e I) 
für die Linkszerlegung liefert ein vollständiges Repräsentantensystem für die 
Rechtszerlegung in Gestalt seiner sämtlichen Inversen gi1 (i e I). 
Wenn es also genau k paarweise voneinander verschiedene Linksnebenklassen 
von U in G gibt, so gibt es ebensoviele paarweise voneinander verschiedene 
Rechtsnebenklassen; ist die Anzahl der paarweise voneinander verschiedenen 
Linksnebenklassen unendlich, so ist es auch die Anzahl der entsprechenden 
Rechtsnebenklassen. Diese Peststellungen berechtigen zu der folgenden 

Definition: Ist U eine Untergruppe der Gruppe G, so heißt die Anzahl der 
paarweise voneinander verschiedenen Nebenklassen von U in G der Index von U 
in G. 
Wir bezeichnen den Index von UinG mit ind U. I s t ö unendlich, aber U endlich, 
so ist gewiß ind U unendlich. Eine unendliche Untergruppe U einer unend-
lichen Gruppe G dagegen kann einen endlichen Index haben. Man wähle zum 

s* 
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Beispiel für G die additive Gruppe von und für U die Untergruppe der ge-
raden Zahlen; dann hat U den Index 2, und 0 wird in die Nebenklassen U 
der geraden und 1 + U = U + 1 der ungeraden Zahlen zerlegt. 

Nun wenden wir uns noch dem Fall zu, daß G endlich ist. Hier gilt der in der 
Gruppentheorie ständig gebrauchte 

Satz 3: Es sei U eine Untergruppe der endlichen Gruppe G. Dann ist die 
Ordnung \ U\ von U ein Teiler der Ordnung |G| von G. Genauer gilt |(?| = | U\ • ind U. 

B e w e i s : Wir sind fertig, wenn wir die letzte Behauptung bewiesen haben. 
Hierfür wiederum genügt es zu zeigen, daß jede Nebenklasse von U genauso 
viele Elemente hat wie U selbst. Man betrachte etwa eine Linksnebenklasse 
aU von U. Setzt man f(u) = au für jedes u e U, so bekommt man eine sur-
jektive Abbildung f : U aU, die sogar bijektiv ist, weil aus au\ = auz folgt: 
u\ = «2 («l, «2 £ U). Also gilt |aZ7| = \U\, und es folgt der Satz. 

8.4 Die Linkszerlegung und die Rechtszerlegung der Gruppe G nach der Unter-
gruppe U fallen gewiß dann zusammen, wenn für alle aeG gilt: aU = Ua. 

Definition: Eine Untergruppe U einer Gruppe G heißt Normalteiler von G, 
wenn für jedes aeG gilt: aU = Ua. 
In dieser Definition wird also im Unterschied zum Zentrum einer Gruppe nicht 
verlangt, daß jedes u e U mit jedem aeG vertauschbar sein soll; die Forde-
rung aU = Ua ist schwächer und verlangt nur die Gleichheit der Mengen 
aU und Ua. 
Beispiele für Normalteiler sind leicht anzugeben. In einer abelschen Gruppe 
ist jede Untergruppe Normalteiler. Jede Gruppe G hat {e} und G selbst als 
triviale Normalteiler. Das Zentrum einer Gruppe G ist ein Normalteiler von 
G. Ferner ist es nützlich, sich das folgende Beispiel zu merken: Ist U eine 
Untergruppe von G vom Index 2, so ist U Normalteiler von G. Um das nach-
zuweisen, genügt es, ein aeG zu betrachten, das nicht in U hegt; es gilt dann 
G = U u aU = U u Ua, also aU = Ua. 
Genau dann ist U Normalteiler von G, wenn aU = Ua für jedes aeG gilt; 
s ta t t dessen kann man auch in leicht verständlicher Bezeichnungsweise schrei-
ben: aUa= U für jedes aeG. I n dem folgenden oft gebrauchten Satz wird 
dieser Sachverhalt etwas vereinfacht. 

Satz 4: Die Untergruppe U der Gruppe G ist genau dann Normalteiler von 
G, wenn für jedes aeG gilt: aUa-1 c U. 

B e w e i s : Zu zeigen bleibt, daß U Normalteiler ist, sobald aUa~l c U für 
jedes aeG gilt. Ist a ein Element aus G, so gilt also einmal aUa-1 c U oder 
aU c Ua; zum anderen gilt auch a - 1 f7 (a - 1 ) - 1 c U oder Ua caU. Beides zu-
sammen liefert aU = Ua und damit die Normalteilereigenschaft von U. 

A u f g a b e 2: Es sei G eine Gruppe mit Elementen a,b,c, . . . und M eine 
Teilmenge von G. Zeige: Dann und nur dann definiert a ~ b o a_1b e M eine 
Äquivalenzrelation auf G, wenn M eine Untergruppe von G ist. 
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A u f g a b e 3: Man gebe je ein Beispiel einer Gruppe G mit einer Unter-
gruppe U c Cr an derart, daß 
a) |E7| endlich und ind U unendlich ist, 
b) \ü\ und ind U unendlich sind. 

A u f g a b e 4: Es sei G eine Gruppe und U eine Untergruppe von 0. Zeige: 
Dann und nur dann stimmen die Linkszerlegung und die Rechtszerlegung von 
G nach U überein, wenn U Normalteiler ist. 

A u f g a b e 5: Es seien I =(=2 eine Indexmenge, G eine Gruppe und die Nt 
(i e I) Normalteiler von G. Man zeige: Auch der Durchschnitt D = PI Ni 
dieser Normalteiler ist ein Normalteiler von G.  i e I  

§ 9 Zyklische Gruppen 

9.1 In § 6.2 hatten wir uns unter anderem die Gruppen der Ordnung 4 an-
gesehen. Die eine war die Kleinsche Vierergruppe. Die andere haben wir zu-
letzt in der Gestalt G — {0,1, 2, 3} geschrieben und die Verknüpfung additiv 
gelesen; das Verknüpfungsergebnis für zwei Elemente aus G bekam man dann, 
indem man nach normaler Addition wie in 3 den kleinsten nichtnegativen Rest 
nach Division durch 4 aufschrieb. Dieses Beispiel greifen wir auf und verall-
gemeinern es. Dabei beachten wir, daß die Elemente aus G zwar aus plau-
siblen Gründen wie die ganzen Zahlen 0,1, 2, 3 bezeichnet, daß sie aber trotz-
dem keine ganzen Zahlen sind. 
Es sei jetzt n eine beliebig gewählte feste natürliche Zahl und 

G = (Z(0),Z(1), ...,K(n— 1)} 

die Menge der Restklassen modulo n (§ 5, Beispiel 5). Wir erinnern uns: Jedes 
K(a) e G kann auch in der Gestalt K{a) = K(a + An) mit beliebigem A e 3 
geschrieben werden, weil a und a' — a + AM Repräsentanten derselben 
Klasse sind, und umgekehrt unterscheiden sich zwei Repräsentanten a, a' 
derselben Klasse stets nur durch ein Vielfaches von n. 
Auf G wollen wir nun durch 

(1) K(a) + K(b) = K(a + b) 

eine additiv geschriebene Verknüpfung einführen. Da aber die Klassen K(a), 
K(b) linker Hand mit anderen Repräsentanten auch in der Gestalt K(a'), 
K(b') geschrieben werden können, deren Summe laut (1) dann K(a' + b ) 
wäre, müssen wir, wenn durch (1) überhaupt ein eindeutiges Verknüpfungs-
ergebnis erklärt sein soll, folgendes nachweisen: Wenn K(a') = K(a) und 
K(b') = K(b) ist, so gilt K(a' + b') = K(a + b). Oder: Wenn a' = a + A» 
und b' = b + ¡m ist (A, (i e 3), so gilt K(a' + b') = IC(a + b). Das ist aber 
wegen a' + b' — a + b + (A + t i)n richtig. 
Jetzt erst wissen wir: (1) ist eine Definition. In Zukunft werden wir oft vor 
ähnlichen Situationen stehen und uns dann die entsprechende Frage vorlegen 
müssen, ob ein aufgeschriebener Ausdruck auch wirklich definiert ist. 
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Nun prüft man leicht nach, daß 0 mit der durch (1) festgelegten Verknüpfung 
eine abelsche Gruppe ist: Es ist G 4= £; es gilt das assoziative Gesetz 

(K(a) + K(b)) + K(c) = K(a + b) + K(c) 
= K({a + b) + c) 
= K(a + (6 + c)) 
= K(a) + K(b + c) = K(a) + (K(b) + K(c)) 

und analog das kommutative Gesetz; es ist K(0) das Nullelement und K(—a) 
das additive Inverse von K(a). Man nennt 0 die additive Restklassengruppe 
modulo n. Setzt man n = 4, so erhält man die eingangs erwähnte Gruppe der 
Ordnung 4 mit K(0), K( 1), K(2), K(3) an Stelle von 0, 1, 2, 3. Etwa für n = 6 
wird ÜT(4) + K(5) + K(5) — K(2); man t u t so, als rechne man in setzt 
aber Vielfache von 6 gleich Null. 
Die additive Restklassengruppe G = {K(0), K(l), ...,K(n— 1)} hat eine 
wichtige Eigenschaft: Jedes Element aus G läßt sich durch Summanden ÜL(1) 
darstellen; G besteht aus den Elementen K(l), K(l) + . . . ; dabei wird 
K(n — 1) eine Summe von n — 1 und K(0) die Summe von n Summanden 

9.2 Wir interessieren uns nun nur noch für die gruppentheoretische Struktur 
der Gruppe G aus 9.1 und nicht mehr für die spezielle Gestalt ihrer Elemente. 
Die Verknüpfung schreiben wir wieder multiplikativ und setzen etwa i f ( l ) = g. 
Dann wird G = {e, g, g2, ..., gn'1} eine Gruppe, die nur aus den Potenzen 
eines Elementes g besteht, für das gn = e gilt. Die Gruppe G ha t n Elemente; 
für n — 1 ist G = {e}. Das Rechnen in G ist klar: Es wird gkgl = gk+l, wenn 
k + l < n ist, und gkgl = gT, wenn k + l = n + r mit r 0 ist; dabei wird, 
wie bereits in § 6.1 verabredet, g° = e gesetzt. Das Inverse von gk e G ist gn~k. 
Eine Gruppe G, die nur aus den Potenzen g, g2, • • g n = e eines festen Ele-
mentes g besteht, heißt zyklische Gruppe der Ordnung n. Die im vorigen Ab-
schnitt durchgeführte Konstruktion besagt: Zu jeder natürlichen Zahl n gibt 
es eine zyklische Gruppe der Ordnung n. Sind andrerseits G = {e,g,g2,... .g^-1} 
und H = {e, h, h2, . . . , A"-1} zwei zyklische Gruppen gleicher Ordnung n, so 
wird durch f(gk) = hk ersichtlich ein 'Isomorphismus von G auf H definiert. 
Das liefert den 

Satz 1: Zu jeder natürlichen Zahl n gibt es genau eine, zyklische Gruppe der 
Ordnung n. Sie ist abelsch und isomorph zur additiven Restklassengruppe mo-
dulo n. 

Nun dürfen wir von der zyklischen Gruppe der Ordnung n sprechen und für 
sie eine feste Bezeichnung einführen: 3»- Ein Element g, aus dessen Potenzen 
3» besteht, heißt erzeugendes Element von Jn-
Zu jeder vorgegebenen endlichen Ordnung n gibt es also wenigstens eine 
Gruppe G mit |G| = n, die zyklische Gruppe 3»- Die Beispiele » 5S 4 sind uns 
demnach bereits in § 6.2 begegnet. Die Kleinsche Vierergruppe V = {e,a,b,c} 
besitzt die drei zyklischen Untergruppen {e, o}, {e, 6}, {e, c} der Ordnung 2, ist 
aber selbst nicht zyklisch. Die Menge der M-ten Einheitswurzeln aus S ist eine 
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zyklische Gruppe der Ordnung n bezüglich der Multiplikation in € als Ver-
knüpfung (vgl. Anhang). 

9.3 Wir führen nun eine oft gebrauchte Sprechweise ein. 
Definition: Eine Menge E von Elementen einer Gruppe G heißt Erzeugenden-

system von G, wenn jedes g e G, g e, als Produkt von endlich vielen Elementen ge-
schrieben werden kann, die entweder selbst oder deren Inverse in E liegen. Eine 
Gruppe G heißt zyklisch, wenn sie ein eindementiges Erzeugendensystem besitzt. 
Ist E ein Erzeugendensystem von G, so sagt man auch: Die Elemente von E er-
zeugen G. 
Die oben definierten endlichen zyklischen Gruppen sind gewiß zyklisch im 
Sinne dieser Definition. Ist umgekehrt G eine von einem Element g erzeugte 
endliche Gruppe, so ist zu zeigen, daß G auch im oben erklärten Sinn zyklisch 
ist. Zunächst muß es Exponenten k > l > 0 mit gk = gl, also gk~l = e, 
geben, weil andernfalls G unendlich wäre. Es gibt also positive Exponenten m 
mit g™ = e; den kleinsten von ihnen nennen wir n. Sind nun 1 ^ X < x ^ n 
zwei verschiedene Exponenten zwischen 1 und n, so muß g* 4= gx gelten, weil 
andernfalls gx~l = e, 0 < * — X <n, wäre im Widerspruch zur Wahl von n. 
In der Gruppe G liegen also sicher die n paarweise voneinander verschiedenen 
Elemente g, g2, ..., gn = e. Weitere davon verschiedene positive Potenzen 
von g gibt es nicht; dazu schreibe man bloß den Exponenten k in gk in der 
Gestalt k = qn + r, 0 ^ r < n (q, r e £); man bekommt gk = gingT = gr, 
also eine bereits aufgeschriebene Potenz von g. Nach Definition ist nun jedes 
Element aus G Produkt aus Faktoren g und g~l; da hier aber = gn~l gilt, 
ist also jedes Element aus 6eine positive Potenz von g oder G = {e,g,gz,... ,<7*-1}. 
Wegen gn = e ist das die im vorigen Abschnitt aufgeschriebene zyklische 
Gruppe 3„. 
Ein Beispiel einer unendlichen zyklischen Gruppe ist die additive Gruppe von 
3 mit dem Erzeugendensystem E = {1}; ein von Null verschiedenes Element 
aus 3 läßt sich ja entweder durch Summanden 1 oder durch Summanden —1 
darstellen. Schreibt man diese Gruppe wieder multiplikativ, so bekommt sie 
die Gestalt G = {gk: k e 3}- Die Existenz wenigstens einer multiplikativ ge-
schriebenen zyklischen Gruppe unendlicher Ordnung ist damit wieder ge-
sichert; das Rechnen in G ist durch gkgl = gk+l erklärt, und es gilt gr™ = e 
nur für m = 0. Ist H = {hk: ke>S} eine zweite zyklische Gruppe unendlicher 
Ordnung mit dem erzeugenden Element h, so kann hm = e nur für m = 0 
gelten, weil andernfalls H endlich würde. Wie oben vermittelt deshalb 
f(gk) = hk einen Isomorphismus von G auf H, und wir können sagen: Es gibt 
genau eine unendliche zyklische Gruppe. Sie ist abelsch und isomorph zur addi-
tiven Gruppe von ^ 
Etwa die additive Gruppe aller durch 5 teilbaren ganzen Zahlen ist zyklisch 
mit dem erzeugenden Element 5 und folglich isomorph 3, obwohl sie eine echte 
Teilmenge von 3 ist. Die additive Gruppe G aller ganzen Gaußschen Zahlen 
(vgl. § 6.3, Beispiel 1) dagegen ist sicher nicht zyklisch, da sonst alle ihre 
Punkte in der Gaußschen Zahlenebene auf einer Geraden liegen müßten. Aber 
jedes von Null verschiedene Element von G läßt sich als Summe endlich 
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vieler Summanden 1, —1, i, —i darstellen, so daß G etwa von 1 und i erzeugt 
wird. Jede Gruppe besitzt trivialerweise sich selbst als Erzeugendensystem E; 
aber man wird natürlich nach Systemen E mit möglichst kleiner Elemente-
zahl suchen. Die Kleinsche Vierergruppe V = {e, a, b, c} beispielsweise be-
sitzt das zweielementige Erzeugendensystem E = {a, b}. 

9.4 Es sei nun eine beliebige Gruppe 0 vorgelegt und g e G irgendein Element 
aus G. Wir betrachten jetzt die Menge U = {gk: } cG aller Potenzen von 
g. Zwei Fälle können eintreten. Entweder es ist g"1 = e nur für m = 0; dann 
gilt gk = gl nur für k = l, und U ist die eben betrachtete unendliche zyklische 
Gruppe. Oder es gibt ein m =|= 0 mit gm = e; dann ist auch g~m - e, so daß 
m > 0 angenommen werden darf; es folgt die Existenz eines kleinsten positi-
ven Exponenten n mit gn = e, und wir bekommen, wie bereits ausgeführt, 
mit U = {e, g, g2, ..., g71-1} die zyklische Gruppe Wir nennen in beiden 
Fällen U die von g erzeugte (zyklische) Untergruppe von G. 

Definition: Ist g ein Element der Gruppe G und, gm = e nur für m = 0, so 
heißt g eG ein Element von unendlicher Ordnung. Ist andernfalls n der kleinste 
positive Exponent mit gn = e, so sagen wir, g hohe die Ordnung n. 

Wir notieren nun einige ebenso einfache wie wichtige Sätze. 

Satz 2: Das Element g der Gruppe G habe die endliche Ordnung n. Dann gilt 
gm = e genau dann, wenn n ein Teiler von m ist. 

Beweis: Ist m = qn mit einem q e 3, so gilt natürlich gm = e. Ist umge-
kehrt g"1 = e und m = qn + r, 0 ^ r < n (q, r e so wird gm = gingT = gr 

= e, und nach Wahl von n kann nur r = 0, also n ein Teiler von m, sein. 

Satz 3: Es sei G eine endliche Gruppe der Ordnung n und g ein Element 
aus G. Dann ist die Ordnung d von g ein Teiler von n. 

Beweis: Die von g erzeugte Untergruppe U von G ist endlich wie G; sie 
hat d Elemente. Nach Satz 8.3 ist also d ein Teiler von n. 

Satz 4: Ist G eine endliche Gruppe der Ordnung n und g ein Element aus 
G, so gilt gn — e. 

Beweis: Es sei d die Ordnung von g eG. Nach Satz 3 ist d ein Teiler von 
n; nach Satz 2 gilt also gn = e. 
Nun sei eine Gruppe G von Primzahlordnung p gegeben. Wir wählen ein 
g eG, g 4= e, und betrachten die von g erzeugte zyklische Untergruppe U. 
Dann ist | U\ größer als Eins und Teiler von p, also gleich p; es folgt G = U = 
und damit der 

Satz 5: Zu jeder Primzahl p gibt es nur genau eine Gruppe der Ordnung p, 
die zyklische Gruppe 

Damit sind uns inzwischen auch die beiden einzigen Gruppen der Ordnungen 
5 und 7 bekannt. Wir kennen zwei Gruppen der Ordnung 6, und ©3, und 
wir werden noch sehen, daß es weitere nicht gibt (Aufgabe 12.4). 
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Zuletzt betrachten wir noch die Untergruppen zyklischer Gruppen. 

Satz 6s Es sei 0 eine von g erzeugte zyklische Gruppe. Dann gelten die fol-
genden Aussagen. 
a) Jede Untergruppe U von 0 ist zyklisch. 
b) Hai G = {e, g, g2, ..., gn~x) die Ordnung n, so gibt es zu jeder natürlichen 
Zahl d, die n teilt, genau eine Untergruppe Ua der Ordnung d von G; sie ist 

n 
zyklisch und wird von g^ erzeugt. Sind i\ und dz Teiler von n und di ein Teiler 
von dz, so gilt Ua1 c Ua2 und umgekehrt. 

B e w e i s : 
a) Der Fall U = {e} ist trivial. Es sei daher U 4= {e}; da mit u e U auch 
m-1 e U gilt, existiert in diesem Fall ein kleinster positiver Exponent k mit 
gk e U. Wir zeigen, daß U von gk erzeugt wird. Es sei gm ein beliebiges Element 
aus U. Wieder schreiben wir nach Division von m durch k mit Rest r den Ex-
ponenten in der Gestalt m = qk + r, 0 r < k (q, r Aus gk e U folgt 
auch g~Qk e U und damit g~ikgm = g* e U; da k minimal gewählt war, folgt 
weiter r = 0. Das heißt aber m — qk oder gm = {gk)Q, was wir zeigen wollten. 
b) Für jeden Teiler d von n kann man leicht eine Untergruppe Ua c G der 
Ordnung d aufschreiben: 

- 2— <rf_l>™ 
Ua = {e,gd,gd, ...,g <*}. 

n 
Sie ist zyklisch und wird von gd erzeugt. Um die Eindeutigkeitsaussage nach-
zuweisen, nehmen wir an, U cG sei eine Untergruppe der Ordnung d und 
gx e U. Nach Satz 4 gilt (g*)d = gM = e. Die Ordnung n von g teilt also nach 

Satz 2 den Exponenten M, und das besagt, daß X ein Vielfaches von ^ ist. Da 
d 

gx ein beliebiges Element aus U war, heißt das U c Ua; weil \ U\ = d sein sollte, 
folgt also richtig U = Ua. 
Sind schließlich d\, dz Teiler von n und di ein Teiler von dz, so folgt aus dem 
bereits Bewiesenen Uax c Ua2 c G. Die Umkehrung gilt wegen Satz 8.3. Da-
mit ist auch Satz 6 bewiesen. 

A u f g a b e 1: Man bestimme die Ordnungen der Elemente der alternie-
renden Gruppe 2I4. 

A u f g a b e 2: Es sei G = {e, g, g2, ..., g71-1} eine zyklische Gruppe der 
Ordnung n > 1. Man zeige: Ein Element gk e G ist genau dann Erzeugendes 
von G, wenn k zu n teilerfremd ist. 

§ 10 Direkte Produkte 

10.1 Wir wollen aus zwei Gruppen G, H mit Elementen gi, hj eine neue kon-
struieren. Dazu führen wir auf dem cartesischen Produkt Gx H (vgl. § 1.3) die Ver-
knüpfung (gi, hi) • (¡72, hz) = (gigz, h\hz) ein. Bezeichnen wir die Einsen aus G und H 
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etwas nachlässig beide mit e, so wird ersichtlich 6x H eine Gruppe mit dem 
Einselement (e, e). Sind G und H abelsch, so ist es auch Ox ff; sind G und H 
endlich, so wird \Gx H\ = |G| • \H\. 

Beisp ie l 1. Man wähle die Gruppen G = {e, g} und H = {e, h} der Ordnung 
2. Schreibt man sich die Verknüpfungstafel von Gx H auf und nennt die Ele-
mente (e, e), (g, e), (e, h), (g, h) von Gx H hinterher kurz e, a, b, c, so sieht man, 
daß Gx H die Kleinsche Vierergruppe ist. Nun brauchen wir auch das in 
§ 6.2 so lästige Assoziativgesetz nicht mehr nachzuprüfen. 

Angenommen, es wird eine Gruppe vorgelegt, die auf diese Weise entstanden 
ist; wir bezeichnen sie deshalb wieder mit Gx H. Man betrachte die Teil-
mengen G' = {g': g' = (g, e), geG} und H' = {h'\ h' = (e, h), heH) von 
Gx H. Darm sind, wie man sieht, G', H' zu G, H isomorphe Gruppen: G ~ G', 
H ~ H'; aber im Gegensatz zu G und H sind G' und H' Untergruppen von 
Gx H. Produkte der Gestalt g'h' mit g' e G' und h' e H ' liegen in Gx H; ihre 
Gesamtheit liefert ganz Gx H, und aus gjAi = g'^h'^ folgt g'x = g'% und h[ = h'2 
(gl e G', h[ e H'). Das heißt: Jedes Element aus Gx H läßt sich in der Gestalt 
g'h' mit g' e G' und h' e H' schreiben, und diese Darstellung ist eindeutig. 
Außerdem gilt g'h' = h'g'. 

Beisp ie l 1. In der oben konstruierten Kleinschen Vierergruppe Gx H 
= {e, a, b, c} ist G' = {e,«}, H' — {e, &}, und man hat e — ee, a = ae, 
b — eb, c = ab. 

Beide Versionen des Rechnens in Gx H unterscheiden sich nur durch die 
Schreibweise; denn die Abbildung f: Gx H G'H' auf das Komplexprodukt 
G'H', die durch f((g, h)) = (g, e) • (e, h) definiert wird, ist bijektiv, und sie ist 
auch relationstreu: 

}((gi, h) • (g2, h)) = f({gm> hh)) = (gigz, e) • (e, fah2) 
= (gi> e)(ff2, e)(e, hx){e, h2) 
= (9i, e)(e, h) • (g2, e)(e, h2) 
= h)) • /((£/2, Ä2)). 

Läßt man an den zu G, H isomorphen Modellen G', H' die Striche wieder weg, 
so ist es also erlaubt, das eingangs beschriebene Konstruktionsverfahren für 
das sogenannte direkte Produkt Gx H der Gruppen G, H wie folgt zu verein-
fachen: Man bildet die Menge aller formalen Produkte gh (g e G, he H) und 
sieht zwei von ihnen genau dann als gleich an, wenn sie komponentenweise 
übereinstimmen; man definiert gihi • g^fa = g-\g-ih\h2 und schreibt für ge nur 
g, für eh nur h. Die Gruppen G, H sind dann sogar Untergruppen ihres direkten 
Produktes. 
Das läuft auf die folgende Definition hinaus, die nun gleich den allgemeinen 
Fall des direkten Produkts aus endlich vielen Faktoren behandelt. 

Definition: Die Gruppe G heißt direktes Produkt G = TJi x U2x ... x Un 
der Untergruppen Ux, U2, ..., Un von G, wenn jedes geG genau eine Darstel-
lung der Gestalt g = uiu2 ... un (ut e Vi) besitzt und für i =)= j gilt: U(Uj = uju*. 
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Hiernach hat man also zwischen dem cartesischen Produkt U\ x Z72 der Mengen 
und dem direkten Produkt Ui x der Gruppen Ui, Uz zu unterscheiden; 
sollten Verwechslungen zu befürchten sein, werden wir sie durch einen Hin-
weis auszuschließen haben. Die direkten Produkte Ui x Uz und x Ui 
stimmen auf Grund der Definition überein; die Reihenfolge der Ü7< spielt also 
beim direkten Produkt G = i/j. x Uz* . . . x Un keine Rolle. 
Wir notieren noch unser bereits am Anfang erwähntes Resultat. 

Satz ls Ist G das direkte Produkt der (huppen U\, U21 ..., Un, so gilt 
|G| = |£7i| • \U2\ ••• \Un\. Sind die U( abelsche Gruppen, so ist auch 
G = Ui x Uz x . . . x Un abelsch. 
Bei sp ie l 1. Wie wir gesehen haben, ist die Kleinsche Vierergruppe 
V = {e, a, b, c} das direkte Produkt zweier Modelle der zyklischen Gruppe 

Dafür schreiben wir auch F = $2 * 82-
Be i sp ie l 2. Es seien U\ = {e, a}, Uz = {e, 6}, U3 = {e, c} drei Modelle der 
Gruppe £2- Ihr direktes Produkt 0 = ?2X ist dann abelsch und 
besteht aus den acht Elementen e, a, b, c, ab, ac, bc, abc. Die Verknüpfungs-
tafel von 0 ergibt sich aus der Vertauschbarkeit der Elemente a,b,c und den 
Regeln a2 = b2 = c2 = e; beispielsweise gilt (ab)(abc) = a2b2c = c. Die Gruppe 
O ist wie x nicht zyklisch; außer e hat jedes g e O die Ordnung 2. 
Be i sp ie l 3. Es seien Ui = {e, a} eine zyklische Gruppe der Ordnung 2 und 
Uz = {e, b, b2, b3} eine zyklische Gruppe der Ordnung 4. Ihr direktes Produkt 
H = ^2 x ist wieder abelsch und besteht aus den acht Elementen e, b, b2, 
b3, a, ab, ab2, atP. Das Rechnen in H ergibt sich aus der Vertauschbarkeit von 
a und b und den Regeln a2 = ö4 = e. Da in H wenigstens ein Element b der 
Ordnung 4 vorkommt, sind ^2 x ?2X jfe und ^2 x nicht isomorph, und da 
jedes Element aus H höchstens die Ordnung 4 hat, ist auch ^2* $4 nicht 
zyklisch. 
Wir kennen also inzwischen die drei abelschen Gruppen >?8. & x 34 und 

?2X $2 der Ordnung 8; in § 11 wird sich zeigen, daß es weitere abelsche 
Gruppen der Ordnung 8 nicht gibt. 
Be i sp ie l 4. Bei additiver Schreibweise wird aus dem direkten Produkt die 
direkte Summe; man verwendet für sie oft das Zeichen ©. Man betrachte etwa 
die additive Gruppe € der komplexen Zahlen mit den Untergruppen Ui = 3t 
und Uz = {2: z = ir, r e 3t}. Offenbar gilt 6 = U\®Uz, und da U\, U2 
Modelle der additiven Gruppe 9t sind, schreiben wir auch 6 = SR ® 9t. Für 
die additive Gruppe 0 c € der ganzen Gaußschen Zahlen (vgl. § 6.3, Beispiel 1) 
gilt entsprechend 0 = 3 ® 

10.2 Im folgenden geben wir ein notwendiges und hinreichendes Kriterium 
dafür, daß eine Gruppe 0 direktes Produkt zweier Untergruppen U, V ist. Es 
wird oft gebraucht. 

Satz 2: Es seien U und V Untergruppen der Gruppe G. Genau dann ist G 
das direkte Produkt von U und V, wenn die nachstehenden drei Bedingungen 
erfüllt sind: 
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(1) Für das Komplexprodukt UV gilt UV = 0. 
(2) Es ist U n V = {e}. 
(3) U und V sind Normalteiler von 0. 

B e w e i s : 
a) Es gelte O = Ux V. Dann ist (1) erfüllt und sicher auch (2) U n F = {e}; 
wäre nämlich ce U n V, c =\= e, so hätte ceG die beiden voneinander ver-
schiedenen Darstellungen c = ce und c = ec mit Faktoren aus U, V. Ferner 
sind U, V Normalteiler; ist g ein Element aus G und g = uv, ueU, v e V, 
so gilt ja etwa für U die Beziehung 

gUg-1 = uvUvhi-1 = uUvv~^u~x - uUu~l — U, 

weil nach Voraussetzung v mit jedem Element aus U vertauschbar ist. 
b) Für die Untergruppen U, V von G seien die Bedingungen (1),(2),(3) er-
füllt. Zu zeigen ist: Jedes g e G läßt sich in der Gestalt g = uv, u e U, v e V, 
schreiben, diese Darstellung ist eindeutig, und es gilt uv = vu. Die Darstell-
barkeit g = uv folgt sofort aus (1). Ist dann g = uivi = U2V2 («i e U, vt e V), 
so wird «21mx = vWi1; links steht ein Element aus U, rechts eines aus F , und 
beide sind gleich, können also nach (2) nur e sein. Es folgt die Eindeutigkeit 
ui = U2, vi = «2 der Darstellung von g. Aus (3) folgt schließlich uvu-1 e F 
und vu^v1 e U; es gilt also sowohl uvu~Yv~x = (uvw^v1 e V als auch 
m w 1 ! ! - 1 = «(ittt -1« -1) e U, mithin i i w V eU n V oder nach (2) uvu~1v~1=e, 
und das liefert noch uv = vu. 

10.3 Den größten gemeinschaftlichen Teiler (g.g.T.) d > 0 zweier ganzer Zahlen 
m, n, die nicht beide Null sind, bezeichnen wir in Zukunft auch mit (m, n); 
sind m und n beide Null, so setzen wir ihren g.g.T. (0, 0) gleich Null. Für das 
Folgende verabreden wir noch (n, 00) = n und (00, 00) - 00. Ist die ganze 
Zahl a ein Teiler der ganzen Zahl b, so schreiben wir a\b, andernfalls afb. Dies 
vorausgeschickt, gilt der 

Satz 3: Das direkte Produkt zweier zyklischer Gruppen A, B der Ordnungen 
m ^ 00, n ig 00 ist abelsch; es ist zyklisch genau dann, wenn (m, n) = 1 ist. 

B e w e i s : Daß Ax B als direktes Produkt abelscher Gruppen wieder 
abelsch ist, ist klar. Es seien nun a, b die erzeugenden Elemente von A, B. 
Wir zeigen: Im Falle (m, n) = 1 besitzt Ax B ein erzeugendes Element, sonst 
nicht. 
a) Es sei m = n = 00. Würde akbl e Ax B das direkte Produkt erzeugen 
(k, l e 3), so müßte es ein A 6 3 mit (fl,kbl)x = a*kb*1 = a geben. Das hätte 
Mc = 1 und XI = 0, also 1 = 0 zur Folge. Entsprechend müßte k — 0 gelten. 
Das Element akbl — a°b° = e erzeugt aber Ax B nicht. 
b) Es sei m e 9t und n = 00. Würde akbl e Ax B das direkte Produkt er-
zeugen (k, l e 3)> so müßte es ein A e 3 mit (a k b l ) x = alkbxl = a, also 
ai.k-ijaz = e geben. In Ax B müßte einzeln axk~1 = e und bxl — e sein, da 
die Darstellung von e eindeutig ist. Es folgen die Beziehungen AZ = 0 und 
m\(Xk — 1), letztere wegen Satz 9.2. Ist m 4= 1, so muß wieder 1 = 0 sein; 
aber man sieht, daß akbl = ak die Gruppe i x B nicht erzeugen kann, da 
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keine Potenz von ak gleich b ist. Ist dagegen m — 1, also (m, oo) = 1, so wird 
Ax B = B von b erzeugt. 
c) Es seien m und n natürliche Zahlen. Wir betrachten zunächst den Fall 
(m, n) = 1 und zeigen: Das Element ab erzeugt Ax. B. Die mn Elemente 
(ab)0, (ab)1, ..., (ab)mn~l aus Ax B sind dann nämlich paarweise voneinander 
verschieden und liefern deshalb ganz Ax B: Aus (ab)r = (ab)', 0 sS s r < mn, 
folgt ar~'br— e oder, da die Darstellung von e in A x B eindeutig ist, 
ar~* = br~s = e; dies wiederum hat nach Satz 9.2 sowohl m\(r— s) als auch 
n\(r— s) zur Folge; da m und n teilerfremd sind, muß also sogar mn\(r — s) 
gelten, und das ist für 0 ig r — s < mn nur möglich, wenn r = s, ist. 
Zuletzt sei m, n e 91 und (m, n) = d > 1. Wir betrachten die natürliche Zahl 

v = mn und zeigen: Für jedes Element akbl e Ax B gilt (akbl)v — e; 
d 

dann kann also kein Element aus Ax B die Ordnung mn haben. Wegen der 
k- l— 

Vertauschbarkeit von a und b wird richtig (akbl)v = (am) d(bn) d = e. Damit 
ist Satz 3 bewiesen. 

Es ist also etwa & = 3z x 3s oder 3̂60 = 3s>< ?72 = 3s x x 

Wiederholte Anwendung von Satz 3 liefert den 

Satz 4: Es sei n — • -P*' die eindeutige Primfaktorzerlegung von 
n e 9t. Dann gilt 

3n = SpJ.* • • • x 3pfr 

Diese direkte Zerlegung von 3« in r zyklische Faktoren ist überdies bis auf 
ihre Reihenfolge eindeutig, da n nur so in r paarweise teilerfremde Faktoren 
aus 9t zerlegt werden kann. 

A u f g a b e 1: Läßt sich ©3 als direktes Produkt echter Untergruppen 
schreiben ? 

A u f g a b e 2: Man gebe sechs verschiedene abelsche Gruppen der Ordnung 
72 an. 

§ 11 Abelsche Gruppen 

11.1 Über abelsche Gruppen weiß man relativ gut Bescheid. Wir beschäftigen 
uns zunächst mit abelschen Gruppen, die von endlich vielen Elementen er-
zeugt werden; speziell gehören zu ihnen die endlichen abelschen Gruppen. Es 
gilt der folgende sogenannte Hauptsatz über abelsche Gruppen-, sein Beweis er-
fordert etwas mehr Aufwand, als wir es bisher gewöhnt waren. 

Satz ls Eine abelsche Gruppe G, die von endlich vielen Elementen erzeugt 
wird, ist das direkte Produkt zyklischer Untergruppen. 
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In Verbindung mit Satz 10.4 ergibt sich daraus noch der 

Spezial fa l l : Jede von {e} verschiedene endliche abdscheGruppe ist das direkte 
Produkt zyklischer Untergruppen von Primzahlpotenzordnung. 

Beweis von Satz 1: Nach Voraussetzung besitzt G endliche Erzeugenden-
systeme (vgl. § 9.3); unter ihnen gibt es Systeme mit minimaler Elementearlzahl n. 
Für jede abelsche Gruppe G, die die Voraussetzungen des Satzes erfüllt, ist 
diese natürliche Zahl n = n(G) wohldefiniert, und wir führen den Beweis durch 
vollständige Induktion nach n. Für n = 1 ist der Satz richtig; es sei daher 
n > 1 und der Satz für abelsche Gruppen mit weniger als n Erzeugenden 
bereits bewiesen. 
Wir betrachten sämtliche möglichen Mengen {<71, g% gn) von n Erzeugen-
den von G. Gibt es unter ihnen eine mit der Eigenschaft, daß aus 

9i gl' ••• 9n = e 
folgt: yi = yz = . . . = yn = 0, so ist G das direkte Produkt der von diesen gx 
erzeugten Untergruppen, weil ja dann 

nur für vi = jui, = /j.2, .. .,vn = f*n gilt. Die Behauptung ist in diesem Fall 
also richtig; G ist dann das direkte Produkt von n unendlichen zyklischen 
Gruppen. 
Im folgenden kann daher angenommen werden, daß eine solche Menge von 
Erzeugenden nicht existiert. Für jedes {g\, ¡72, . . . , gn) gibt es also Beziehungen 
g\l <72' . . . = e, in denen nicht alle y< Null sind. Man denke sich alle 
diese Gleichungen für sämtliche betrachteten Erzeugendensysteme {¡71, <72,... ,gn) 
aufgeschrieben. Da mit g\l gQ ... g„m — e auch g^'g^1'. •. = e gilt, 
kommen unter den Exponenten positive vor, und unter den insgesamt in 
allen diesen Gleichungen auftretenden Exponenten gibt es deshalb einen 
kleinsten positiven; er sei ai > 0. Unter den vorliegenden Erzeugendensystemen 
{¡71, <72, . . . , gn) existiert also nach einer eventuell vorgenommenen Umnume-
rierung der Indizes ein spezielles {a\, ..., a„} derart, daß a."1 . . . a*" = e 
gilt mit dem bereits fixierten ai und gewissen weiteren a< e 
Diesem Erzeugendensystem {a\, a%, ..., an} wenden wir uns nun zu und zeigen 
ai|a< für alle i. Dazu werde ein beliebiges ocj mit i 2 fest ausgewählt und mit 
Rest durch <*i dividiert: an = ßtctx + Qi> ßi e ® ^ Qi < Wir wollen 
zeigen: gt = 0. Nun gilt jedenfalls 

(aiaiT«2 • • • a?-i<A'<+{ e; 
hierbei ist wegen 

„K nK /_ „AA. 1 ! nK—hßt K+1 K a2 ... an — ^ a( ) a^, ... a^ a,+i ... a* 

auch {oiof*, 02,03, . . . , an) ein Erzeugendensystem von G, und wegen der 
Minimalität von ai ist 0 < Qi < ai nicht möglich, so daß = 0 wird. Für 
jedes i ^ 2 gilt also an = /?<ai mit einem ßi e 3-
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Für das Element a — oio^* 03* . . . a„ e G gilt nun 

a"> = e; 

außerdem ist mit {a\, «»} auch {a, 02,09, ..., an} wegen 

Oj a2 ... an — a a2 03 ... an 

ein Erzeugendensystem von 0. Es sei jetzt A die von a, B die von «2, «3, . . . , an 
erzeugte Untergruppe von G. Es gilt gewiß G = AB. Wir zeigen sogar 
G = A x B, wonach die Behauptung aus der Induktionsvoraussetzung für 
B folgt. 
Für G = A x B ist noch zu zeigen: Ist g = a'b' eG, a' e A, b' e B, so ist 
diese Darstellung eindeutig. Gleichwertig damit ist: Aus a*b* = e, a* e A, 
b* 6 B, folgt a* — b* = e. Eine Beziehung a'b' = a"b" oder (o'o"-i)(6'i"-i) = e 
ist dann ja nur für a' = a" und b' = b" möglich (a', a" e A; b', b" e B). 
Es sei deshalb a* = ak, b* = a*' a\'.. .a*" und 

a"a$4' . . .<£• = e {k, kf e 3). 

Man dividiere k durch ai mit Best: k = q&\ + r, ? e 3, 0 ^ r < ai. Wegen 
a"1 = e bekommt man 

ara|*<4, . . . a*" = e; 

da {a, 02,03, . . . , on} ein Erzeugendensystem von G und ai minimal gewählt 
war, folgt hieraus wieder r — 0. Das bedeutet a* — a k = (a*> = e und da-
mit auch 6* = . . . afc = e, und Satz 1 ist bewiesen. 

11.2 Wir wissen nun also, daß jede endliche abelsche Gruppe ein direktes Produkt 
zyklischer Gruppen ist. Eine derartige Darstellung ist im allgemeinen auf 
mehrere Arten möglich; nach Satz 10.3 ist ja zum Beispiel 

3 i x 3e = 3 i x 32* = 3l2-
Enthält einer der auftretenden Indizes m wenigstens zwei verschiedene Prim-
faktoren, so läßt sich m in der Gestalt kl mit 1 < i: < m, 1 < Z < m und 
(k,l) = 1, also 3m in «1er Gestalt 3m = 3kx schreiben. Sucht man also 
alle abelschen Gruppen der Ordnung 24, so braucht man nur alle direkten 
Produkte zyklischer Gruppen mit Primzahlpotenzordnung anzusehen: 3s x 

?2X ?4X * 32* 32x 3s- Wie in den Beispielen 2, 3 und der Aufgabe 
2 aus § 10 überlegt man sich, daß dies verschiedene Gruppen sind, und 
hat damit alle abelschen Gruppen der Ordnung 24 gefunden. Das Ent-
sprechende gilt für die bereits diskutierten abelschen Gruppen der Ordnungen 
8 und 72. Wir wollen nun zeigen, daß man auf dieselbe Art alle abelschen 
Gruppen vorgelegter endlicher Ordnung n bestimmen kann. 

Definition: Ist die Gruppe G = GfixG^x . . . x Gr das direkte Produkt 
zyklischer Gruppen die von gt erzeugt werden, so heißt {gi, g%, ..., gr) eine 
Basis von G. Sie heißt Primzahlpotenzbasis, wenn jedes gt Primzahlpotenzord-
nung hat. 
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H a t nun G die Primzahlpotenzbasis {<71, g2, ..., gr} und sind yi, yi, ..., y r die 
zugehörigen Primzahlpotenzordnungen, so liefert die Angabe des r-tupels 
(yi, 72, • • •, Yr) die genaue Information G = x By,x • • • x Byr- Dabei kann 
man die y/ etwa noch so ordnen, daß man mit wachsenden Potenzen der klein-
sten auftretenden Primzahl beginnt, dann die wachsenden Potenzen der 
nächstgrößeren Primzahl folgen läßt und so fortfährt bis zum Schluß. Is t das 
geschehen, so sagen wir, G sei vom Typ (yi, yr). Die sämtlichen abel-
schen Gruppen der Ordnung 24 haben also die -Typen (8, 3), (2, 4, 3) und 
(2, 2, 2, 3). Die Gruppe 33«o hat nach Satz 10.4 den Typ (8, 9, 5). 
Der im Anschluß an Satz 1 notierte und inzwischen erneut rekonstruierte 
Spezialfall besagt: Jede von {e} verschiedene endliche abelsche Gruppe be-
sitzt wenigstens einen Typ. Wir wollen nun wie bei den abelschen Gruppen der 
Ordnungen 8, 24 und 72 zeigen, daß verschiedene Typen auch zu nichtisomor-
phen Gruppen führen. Der Beweis dafür ist ebenso langwierig wie der von 
Satz 1; aber danach sind wir in der Lage, alle abelschen Gruppen, vorge-
gebener endlicher Ordnung n aufzuschreiben: Sie entsprechen eineindeutig 
den sämtlichen möglichen zu der Zahl n gehörenden Typen. 
Wir formulieren unsere Behauptung in folgender Gestalt. 

Satz 2: Zwei von {e} verschiedene endliche abelsche Gruppen G, H sind dann 
und nur dann isomorph, wenn sie vom gleichen Typ sind. 

B e w e i s : Haben G und H den gleichen Typ, so gilt natürlich G ~ H. Es 
seien daher umgekehrt G und H zwei isomorphe abelsche Gruppen der Ordnung 
n = p'ip'z • • • p"' (Pi Primzahlen, pi < p% < . . . < pr). Die Gruppe G sei 
vom Typ (xi, . . . , xt); es ist also x\ x2 ... x* = n ; die zugehörige direkte 
Zerlegung sei 

Q = (?i x G2 x . . . x G s x Gg+i x . . . x Gjc; 

dabei habe die Ordnung x<, und q sei so bestimmt, daß pi Teiler von 
xi, «2, ..., xe ist, aber nicht mehr von xe+i, xe+2, • • •, es ist also x\x<i ... xg 
= p?. Entsprechend sei H vom Typ (yi, y2, ..., yi), also yiyz ... yi 
= n; die direkte Zerlegung sei 

H = Hl x X . . . X Hg X Hg+1 x ... X Hl 

mit zyklischen Gruppen H{ der Ordnungen yt, und es gelte j>i\yi, pi\yz, ..., p\\y<j> 
aber pilya+i, ptfy<j+2 Prfyr, es ist also yi y% ... ya = p"1. Der Isomor-
phismus von G auf H sei <p: G -*• H. 
Nach Satz 9.3 besteht die Untergruppe U = Gi x G2 x . . . x Ge von G genau 
aus allen den Elementen von G, deren Ordnung eine Potenz von pi ist ; es ist 
| t / | = |öi | • |C?2| ••• |C?e| = X\X2 . . . Xg. Analog besteht die Untergruppe 
V = Hi x H2 x . . . x Ha der Ordnung y\yz . . . yg von H aus allen den 
Elementen von H, deren Ordnung eine Potenz von pi ist. Daher ist <p(U) c V 
und ebenso c U oder <p{U) o V, demnach insgesamt <p(U) — V: Die 
Untergruppe V C H ist das ^-isomorphe Bild von U eG. Daß |E7| = \V\ = p"1 

ist, wußten wir schon. 
Da wir ganz analog aus G und H auch die isomorphen Gruppen Uj und Vj 
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aller der Elemente hätten herausgreifen können, deren Ordnung eine Potenz 
von p), 1 ^ j ^ r , ist, wird unsere Behauptung bewiesen sein, sobald q = a 
und X( = yi für 1 ^ i íS q gezeigt ist. Um dies tun zu können, schieben wir 
eine Hilfsbetrachtung ein: Es sei A eine abelsche Gruppe, m eine feste natür-
liche Zahl, und Am bezeichne die Menge aller am,aeA. Dann ist Am eine 
Untergruppe von A. Ist ferner /: A B ein Isomorphismus von A auf B, so 
folgt sowohl f(Am) c Bm als auch f~1(Bm) c Am, insgesamt also f(Am) — Bm 

oder Am ~ B™. 
Dies werden wir im folgenden benutzen. Wir sind ja, wie wir bereits festgestellt 
haben, mit unserem Beweis fertig, wenn wir zeigen können, daß die isomorphen 
Gruppen U und V vom gleichen Typ sind. Wir werden aber aus der Annahme, 
ihre Typen seien verschieden, einen Widerspruch ableiten. 
Die Gruppe U = (?i x G2x . . . x Oe habe die Basis {g\, <72, . . . , gß}; der Typ 
von U ist (x\, X2 Xg), wobei alle x^ Potenzen von sind. Die zu U iso-
morphe Gruppe V = H\ x Hz * . . . x Hg habe die Basis {hi, h®, . . . , ha); der 
Typ von V ist (yi, y 2, . . . , ya), und auch alle diese y f. sind Potenzen von p\. 
Nach der Definition des Typs ist xi ein Teiler von xt+i (1 ¿ i < q) und yj ein 
Teiler von y¡+1 (1 5S 7 <<r); kein xi und kein y¡ ist Eins. Wir nehmen nun an, 
es sei nicht zugleich q = a und = yt für alle i, 1 i ^ q ; diese Annahme 
müssen wir widerlegen. Bei geeigneter Wahl der Bezeichnungen wäre dann 
q fS a, und es würde ein m Sí 0 existieren derart, daß xe = ya, xe-i = ya-i, 
• ••, Xg—m+i = Va-m+1, xe-m 4= ya-mausfällt; wegen«i x2 ... xe = yi y2...y„ 
ist to ig q — 1. Etwa für den Fall xe-m < ya-m betrachten wir die Beziehung 

Die Gruppe links hat die Basis 

{(f(£-m+1> 9g-m+2> • • •• 9g° } 
und 

I JJxa „ j — a'g~m+1 .  xe-m+2 . _ . Xg 

Xg—m Xg—fn Xg—m 

Elemente. Die Gruppe rechts hat eine Basis der Gestalt 

{">, , , . . . , ng_m, <7 
wobei 1 ^ s ^ a — m und hs das erste unter den Basiselementen Ai, A2. > h a 

ist, dessen Ordnung ys größer als xe-m ist; die Elementeanzahl der rechts 
stehenden Gruppe ist daher mindestens 

V_a=m . J/tf-m+1 . . . = Va^rn . j ̂  _ _ ( ^̂  
Xg—m Xg-m Xg^m Xg-m 

was der Isomorphie beider Gruppen widerspricht. Ist xe-m > ya^m, so findet 
man einen analogen Widerspruch zu 

Damit ist auch Satz 2 bewiesen. 

4 Hornfeck, Algebra 
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Will man also alle abelschen Gruppen der Ordnung n = p*1 pl' ... pT' be-
stimmen, so genügt es, alle Typen (x\, . . . , x/c) mit x\x% ... x^ = n aufzu-
schreiben. Sind wieder x\, xz, .. .,xe Potenzen von pi, etwa pi1, pi', . . . , pi", 
die Zahlen xe+i, xe+2, .. - ,xjc dagegen nicht, so muß <*i = ßi + ßz + ... + ßg 
werden mit 1 ßi ^ ßz ^ . . . ße. Die Anzahl p(<x) aller derartiger Zer-
legungen einer Zahl a e 91 heißt die Anzahl der Partitionen von a; so ist p(\) = 1 , 
p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7. Über die Anzahl der abelschen Gruppen 
der Ordnung n gilt daher der 

Satz 3: Es gibt genau p{ai) p{txz) ... i>(«r) abelsche Gruppen der Ordnung 
n = pl'pl' ... p"' (pi Primzahlen, pi < p% < ... < pr). 

Die zahlentheoretische Funktion p(x) ist viel untersucht worden; man kennt 
ihr asymptotisches Verhalten, kann ihre Werte aber nicht in einfacher Weise 
explizit angeben. 

A u f g a b e 1: Man bestimme alle abelschen Gruppen der Ordnungen 
800, 900, 1000. 

§12 Homomorphe Bilder von Gruppen 

12.1 Es sei O die additive Gruppe von 3 und A die Teilmenge der geraden, B 
die der ungeraden Zahlen; ferner sei H = {0, 1} eine Gruppe der Ordnung 2 
mit der Addition 0 + 0 = 1 + 1 = 0 , 0 + 1 = 1 + 0 = 1. Dabei haben 
wir die ganzen Zahlen 0, 1 e G von den Elementen 0, 1 von H zu unterschei-
den. Wir definieren eine Abbildung j-.G-^-H von G auf H durch f(a) = 0 für 
a e A und f(b) = 1 für b e B. Diese surjektive Abbildung / ist zwar nicht ein-
eindeutig, aber relationstreu; mit vier Fallunterscheidungen prüft man sofort 
f(m + n) — f(m) + f(n) für alle m, n e G nach. Die Gruppe H ist ein rechne-
risch sehr grobes Bild von G und gibt nur noch die Regeln „gerade plus gerade 
gleich gerade", „ungerade plus ungerade gleich gerade" und „gerade plus 
ungerade gleich ungerade" wieder. An Stelle eines isomorphen Bildes haben 
wir nur noch ein sogenanntes homomorphes Bild H von G vor uns. 

Definition: Es sei G eine mvMiplikativ geschriebene Gruppe und S eine 
algebraische Struktur mit einer ebenfalls multiplikativ geschriebenen Verknüp-
fung. Dann heißt S homomorphes Bild von G, und wir schreiben G ^ S, wenn 
eine surjektive Abbildung f: G S derart existiert, daß für alle a, b e G gilt: 
f(ab) = f(a)f(b). 

Ein Homomorphismus / von G auf S ist also eine relationstreue surjektive 
Abbildung. Ein Isomorphismus ist ein spezieller Homomorphismus; die ver-
mittelnde Abbildung / ist dann sogar eineindeutig. Ist das homomorphe Bild S 
von G Teilmenge einer Menge M, so sprechen wir von einem Homomorphismus 
von G in M. Es kann mehrere Homomorphismen von G in oder auf M geben. 
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Wir notieren zunächst den 

Satz 1: Das homomorphe Bild einer Gruppe ist eine Gruppe. Dabei geht das 
Einselemen^ in das Einselement, und Inverse gehen in Inverse über. Das homo-
morphe Bild einer abelschen Gruppe ist abelsch, das homomorphe Bild einer 
zyklischen Gruppe ist zyklisch. 

B e w e i s : Es sei G ^ S und / der zugehörige Homomorphismus. Sind 
«i, «2, «3 Elemente aus 8, so existieren Elemente gi, g%, g^eG mit j(gi) = Su 
und man bekommt das assoziative Gesetz 

(sis2)«3 = (f(gi)f(g2))f(gz) = í(gig2)i{g<¡) = Mgigtigs) 
= ttgi&gz)) = f<gi)ttgm) = f(gi)(f(gz)f(gs)) = «i(«2«3). 

Also ist 8 eine Halbgruppe. Ist s e 8 und g e G ein Original von s, so wird 
/(e) • s = f(e)f(g) — f(eg) = f(g) = s; also ist f(e) Linkseins von 8. Weiter 
wird f(g_1) • s = fig-ig) = f(e); das Inverse von g geht also in das Links-
inverse /(¡7_1) von s über. Damit sind die ersten drei Behauptungen nach-
gewiesen. Ist G abelsch, so ist es auch S: 

sis2 = f(gi)f(g2) = figigz) = {(gm) = f(g2)f{gi) = «2«i-

Wird schließlich G von g erzeugt, so besteht 8 aus den Potenzen von f(g) und 
ist damit zyklisch. 

Ein homomorphes Bild von G ist also eine Art Photographie, die mehr oder 
minder grob ausfallen kann, die wichtigsten gruppentheoretischen Details 
aber noch korrekt wiedergibt. Sind A, B, G Gruppen mit A B und B ^ C, 
so folgt A ^ C. Dazu betrachte man das Produkt gf der Homomorphismen 
/: A B und g: B -> C; es definiert eine Abbildung von A auf C, und für 
a,beA gilt 

gf(oh) = g(f(ab)) = g(f(a)f(b)) = gf(a) • gf(b). 

Wir stellen uns nun die Aufgabe, alle homomorphen Bilder einer vorgelegten 
Gruppe G zu bestimmen. Diese Redewendung soll hier und später immer fol-
gendes bedeuten: Gesucht sind alle paarweise nicht isomorphen Gruppen H 
mit G H. Bilder, die einander isomorph sind, werden also nur einmal notiert. 

Wir beginnen mit einem Beispiel. Es sei N ein Normalteiler von G und 
F = {N, aN, bN, . . . } die Menge der Nebenklassen von N in G. Wir wollen 
eine Multiplikation auf F durch aN • bN = abN erklären und müssen wie 
in § 9.1 nachsehen, ob das eine Definition ist: Das Produkt der Nebenklassen 
aN, bN soll die Klasse sein, die das Produkt ab der Repräsentanten a, b enthält, 
und wir haben zu zeigen, daß das Produkt abN von der speziellen Wahl der 
Repräsentanten nicht abhängt. Es sei also a' e aN, das heißt aN = a'N, und 
b' e bN, das heißt bN = b'N; mit gewissen Elementen n¡ des Normalteilers N 
folgt dann 

a'b' = an\ • bn<¿ = a{n±b)n2 = a(bnz)ri2 — abn^ e abN 

i* 
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oder a'b'N = abN. Damit ist festgestellt: Durch die Vorschrift aN • bN — abN 
ist eine Multiplikation auf F definiert. Sie ist assoziativ, 

(aNbN)cN = abNcN = (ab)cN = a(bc)N = aNbcN = aN(bNcN), 

N wird Einselement und a~xN Inverses von aN e F. Also ist F eine Gruppe. 
Sie ist sogar ein homomorphes Bild von G; die durch f(a) = aN definierte 
Abbildung f:G^>F von G auf F ist ja relationstreu: 

f(ab) = abN = aNbN = f(a)f(b). 

Diese Gruppe F nennt man die Faktorgruppe von G nach N und schreibt 
F — GjN. Die Bezeichnung für F deutet an: Man rechnet in GjN wie in G, 
setzt aber dabei Elemente aus dem Normalteiler N gleich Eins. Wir haben 
gesehen: Für jeden Normalteiler N von G bekommen wir ein homomorphes 
Bild G/N von G. Der nachstehende Homomorphiesatz für Gruppen besagt nun, 
daß mit den Faktorgruppen GjN von G schon alle homomorphen Bilder von 
G gefunden sind. 

Definition: Es seien G und H Gruppen und f ein Homomorphismus von G 
auf H. Dann heißt die Teilmenge K cG aller derjenigen Elemente keG, deren 
Bild f(k) das neutrale Element aus H ist, der Kern des Homomorphismus f . 

Satz 2 : Es sei G eine Gruppe. Dann gelten die folgenden Aussagen: 
a) Ist N ein Normalteiler von G, so ist die Faktorgruppe G/N ein homomorphes 
Bild von G. 
b) Ist f ein Homomorphismus von G auf eine Gruppe H, so ist der Kern K von 
f ein Normalteiler von G. 
c) Ist f: G -> H ein Homomorphismus von G auf H und N sein Kern, so gilt 
H ~ GjN. Das heißt: Jedes homomorphe Bild H von G ist einer Faktorgruppe 
G/N isomorph. 
d) Ein Homomorphismus f von G auf H ist genau dann ein Isomorphismus, 
wenn sein Kern K nur aus dem neutralen Element von G besteht. 

Beweis: 
a) Das ist bereits gezeigt worden. 
b) Es seien e und e* die Einselemente der multiplikativ geschriebenen Gruppen 
G und H. Nach Satz 1 gilt ee K, also K 4= Wir zeigen nach Satz 8.1, daß 
K eine Untergruppe von G ist. Aus g, he K folgt ja wieder mit Satz 1 

Kg*-1) = fmh-1) = f(9)f(h)-i = e* e * - i = e* , 

also gh'1 e K. Nach Satz 8.4 ist die Untergruppe K von G sogar Normalteiler; 
aus aeG und k e K folgt ja 

f(aka-1) = f(a)f(k)f(a~i) = f(a) • e* • /(<*)-* = e* , 

also aha'1 e K und damit aKac K für jedes aeG. 
c) Wir betrachten ein aeG und sein Bild f(a) e H. Sicher haben alle Elemente 
an aus G mit ne N dasselbe Bild; soll andrerseits g = axeG das Bild f(a) 
haben, so muß f(x) = e*, also x e N sein. Es folgt: Genau die Elemente aus 



§12 Homomorphe Bilder von Gruppen 53 

aN haben dasselbe Bild wie a. Durch <p(aN) = f(a) wird deshalb eine Ab-
bildung <p: O/N H definiert, und diese Abbildung ist bijektiv. Sie ist auch 
relationstreu: 

<p(aNbN) = <p(dbN) = f(ab) = f(a)f(b) = <p{aN)<p(bN). 

Die Abbildung <p ist also ein Isomorphismus von GjN auf H. 
d) Die zu Beginn von c) vorgenommene Analyse zeigt speziell: Der Homomor-
phismus f \ G - + H vermittelt genau dann eine eineindeutige Abbildung, wenn 
sein Kern nur aus einem Element besteht, also K = {e} gilt. Damit ist Satz 2 
bewiesen. 

Wir bemerken nun noch, daß durchaus verschiedene Normalteiler einer Gruppe 
isomorphe Faktorgruppen hefern können. Man wähle etwa die Vierergruppe 
V = {e, a, b, c} und die Normalteiler N± = {e, a}, = {e, b}; die Faktor-
gruppen V/Ni und V/Nz sind als Gruppen der Ordnung 2 isomorph. Kehren 
wir zu unserer oben gestellten Aufgabe zurück, so lautet demnach das Ergeb-
nis: Die sämtlichen homomorphen Bilder einer Gruppe G sind die voneinander 
verschiedenen unter den Faktorgruppen G/N. 

12.2 Wir betrachten als Beispiel die additive Gruppe Da sie abelsch ist, ist 
jede Untergruppe Normalteiler. Außerdem ist 3 zyklisch und wird von 1 er-
zeugt; eine Untergruppe N ist nach Satz 9.6, Aussage a), auch zyklisch und 
wird, wie der zugehörige Beweis zeigte, im Falle N 4= {0} von dem kleinsten 
positiven Element n in N erzeugt. Die Faktorgruppe 

$IN = {N, 1 + N, 2 + N, ..., (»— 1) + N} 

ist dann nur in anderer Schreibweise die additive Restklassengruppe modulo n 
aus § 9.1; am Anfang von § 12 stand der Spezialfall n — 2. Allgemein wird 
3/iV von 1 + N erzeugt und ist isomorph 3»- Vergröbert man das Addieren in 
3 dadurch, daß man Vielfache von n, also die Elemente von N, gleich Null 
setzt, so gelangt man zu dem Rechnen im homomorphen Bild %/N ~ 3«-
Unser Ergebnis: Die sämtlichen homomorphen Bilder von 3 sind 3 selbst und 
die additiven Restklassengruppen modulo n ( n = 1 , 2 , 3 , . . . ) . 

A u f g a b e 1: G und H seien Gruppen, G* H sei ihr direktes Produkt. 
Zeige: (Gx H)IH ~ G. 

A u f g a b e 2: Man betrachte die additiven Gruppen ß und 3t und zeige: 
G/SR ~ 3t. 

A u f g a b e 3: Man bestimme alle homomorphen Bilder von x $3 * 

A u f g a b e 4: Bestimme alle Gruppen der Ordnung 6. 

12.3 Wir kehren noch einmal zu den Überlegungen des ersten Abschnitts zu-
rück und beginnen mit der folgenden 

Definition: Es sei S eine algebraische Struktur mit Elementen a, a', b, b', ... 
und einer muUiplikativ geschriebenen Verknüpfung. Eine auf 8 definierte Äqui-
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valenzrelation „ = " heißt Kongruenzrelation, wenn aus a = a' und b = b' folgt: 
ab = a'b'. 
Es sei zum Beispiel S = G eine Gruppe und N cG ein Normalteiler. Dann wird 
durch die Nebenklassen von N auf G eine Äquivalenzrelation 

a = a' o aN = a'N 

definiert (Satz 8.2). Aus der Normalteilereigenschaft von N folgt, daß diese 
Äquivalenzrelation sogar eine Kongruenzrelation ist: Aus a = a', also 
aN = a'N, und b = b', also bN = b'N, folgt ja, wie wir im ersten Abschnitt 
nachprüfen mußten, abN — a'b'N oder ah = a'b'. 
Hier liegt die folgende Situation vor: Es ist G = N u aN u bN u . . . eine 
Partition von G, und man versucht, auf {N, aN, bN, . . . } eine Verknüpfung 
aN • bN = gN so einzuführen, daß für alle x e aN und y e bN gilt: xy e gN\ 
dieser Versuch war auf der Faktorgruppe G/N gelungen. Allgemein gilt nun 
der 

Satz 3: Es sei S eine algebraische Struktur mit multiplikativ geschriebener 
Verknüpfung und S = K(a) u K(b) u K{c) u ... eine Zerlegung von S in 
paarweise verschiedene Äquivalenzklassen mit Repräsentanten a,b,c, . . . e S. 
Genau dann definiert K(a) • K(b) = K(ab) eine Verknüpfung auf 

{K{a), K(b), K(c), ...}, 

wenn die durch die Partition von S erklärte Äquivalenzrelation eine Kongruenz-
relation auf 8 ist. 

Beweis : Es sei zunächst die Äquivalenzrelation 

a = a' o K(a) = K(a') 

sogar eine Kongruenzrelation. Dann ist K(a) • K(b) = K(ab) eine Definition; 
denn die rechte Seite dieser Gleichung ist unabhängig von der Wahl der Re-
präsentanten a und b: Aus K(a) = K(a'), also a = a', und K(b) — K(b'), also 
b = b', folgt ab = a'b', also K(ab) = K(a'b'). 
Definiert umgekehrt K(a) • K(b) = K(ab) eine Verknüpfung auf 

{K(a), K(b), K(c), ...}, 

so folgt also aus K(a) = K(a') und K(b) = K(b') die Beziehung K(ab) = K(a'b'), 
und das bedeutet: Aus a = a! und b = b' folgt ab = a'b'. Damit ist Satz 3 
bewiesen. 

Nun betrachten wir den Spezialfall, daß S eine Gruppe ist. 

Satz 4s Dann und nur dann ist auf einer Gruppe G eine Äquivalenzrelation 
,, = " sogar eine Kongruenzrelation, wenn die Äquivalenzklassen Nebenklassen 
eines Normalteilers N von G sind-, dabei besteht N genau aus allen g e G mit 
g=e. 

Beweis : Daß die Nebenklassen eines Normalteilers N von G eine Kon-
gruenzrelation auf G definieren, wurde bereits im Anschluß an die Definition 
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der Kongruenzrelation gezeigt; wegen ee N besteht dabei N aus genau den-
jenigen Elementen g eG, für die g = e gilt. Es sei nun umgekehrt eine Kon-
gruenzrelation auf G vorgelegt und N die Menge aller g eG mit g = e. Dann 
ist N eine Halbgruppe, und es ist ee N. Aus g e N, also g = e, folgt mit 
g-1 = g~l noch e = g'1, also g-1 e N. Also ist N sogar eine Untergruppe von 
G. Für die Normalteilereigenschaft von N ist nun nach Satz 8.4 noch zu zeigen: 
Aus g e N und a e G folgt aga-1 = e. Das ergibt sich aber durch Multiplikation 
der Kongruenzen a = a, g = e, a _ 1 = a - 1 . Wegen ¿>-1 = b'1 bzw. b = b hat 
man schließlich noch 

a = b o b~xa = e o ö_1a e N o ae bN, 

und das heißt, daß die Äquivalenzklassen die Nebenklassen von N sind. 
Zusammen mit Satz 2 folgt daher in kurzer Ausdrucksweise der 

Satz 5: Genau die Kongruenzrelationen auf der Gruppe G liefern die sämt-
lichen homomorphen Bilder von G. 

Man bekommt also alle homomorphen Bilder der Gruppe G, indem man auf 
alle möglichen Arten Kongruenzrelationen auf G einführt und aus den 
entstehenden Partitionen G = A u B u C u ... von G algebraische Struktu-
ren S = {A, B, C, . . . } bildet, auf denen dann wie folgt gerechnet wird: 

AB = C o [ ( o e i u n d f c e B ) ^ « J e G]. 

12.4 Wir sehen uns noch ein Beispiel zu Satz 3 an. Es sei n eine feste natür-
liche Zahl und 8 die Teilmenge aller zu n teilerfremden Zahlen aus Sind 
nun a,b z\x n teilerfremd, so ist es auch ab; damit wird 8 bezüglich der 
Multiplikation aus 3 eine Halbgruppe. Ist ferner ae$ zu n teilerfremd, so ist 
es auch jedes a + Are, A e 3- Also besteht 8 aus der Vereinigung aller Rest-
klassen 

K(a) = {a + Are: A e 3) 

mit zu n teilerfremdem a ; man nennt sie die primen Restklassen modulo n. 
Für das Weitere halten wir uns an die folgende 

Definition: Die Anzähl der natürlichen Zahlen m mit 1 ^ m ^ n und 
(m, n) = 1 sei <f{n). 

Danach ist also <p(l) - 1, <p(2) = 1, ^(3) = 2, <p(4) = 2 und <p(p) = p — 1 für 
Primzahlen p. In der Zahlentheorie ist tp(n) unter dem Namen EuLERscAe 
Funktion bekannt. Für unser festes n sei nun rp(n) = r, und es seien 
1 = wi<w2< ••• < nr ^¡n die von <p(n) gezählten zu n teilerfremden 
Wi e 9t. Sind K(ni) die zugehörigen Restklassen modulo n, so wird demnach 
8 = K(ni) u K(n2) U . . . U K{nr). Diese Partition definiert nach § 5 eine 
Äquivalenzrelation auf S, und diese Äquivalenzrelation ist sogar eine Kon-
gruenzrelation: a = b heißt ja b = a Are mit einem Ae^; c = d heißt 
d — c + fin mit einem fi e ^; es folgt bd = (a Are)(c + /in) = ac -\-vn 
mit einem v e also ac = bd. 
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Nach Satz 3 können wir also auf H = { K ( n { ) , K(n$ K{nr)} durch 
K ( t i i ) K ( n , ] ) = K(n<nj) eine Verknüpfung einführen; sie ist assoziativ und kom-
mutativ wie die Verknüpfung auf S. Also ist H eine kommutative endliche 
Halbgruppe mit dem Einselement K ( n i ) . Wir zeigen, daß H sogar eine Gruppe 
ist. In H gilt nämlich 

hx — hy => x = y ( h , x , y e H) ; 
dazu setze man h = K ( n i ) , x — K ( j i t ) , y = K(nj) und beachte, daß aus 
K(nini) = Kinpii) die Teilbaikeitsbeziehung n\ni(nt — nj) folgt, die wegen 
(n, m) = 1 und —n <ni — rij < n nur für «< = nj möglich ist. Für festes 
hie H gibt es also r verschiedene Produkte h\x in H, so daß die Gleichung 
h\x = für alle hy, e H lösbar ist, und H ist eine Gruppe nach Satz 6.2. 

Wir sind von der multiplikativen Halbgruppe 8 ausgegangen; sie wird durch 
f(s) = K(s) relationstreu auf die Halbgruppe H abgebildet (s e S). Es zeigte 
sich darüber hinaus, daß H eine abelsche Gruppe ist. Sie heißt die prime 
Restklassengruppe modulo n und wird fortan mit ^„bezeichnet. Es ist |sPn|=9'(w)-
Schreibt man einfach tyn = {wi, «2, • • •»wr}, so bekommt man das Ver-
knüpfungsergebnis von a, b e indem man die natürlichen Zahlen a, b aus-
multipliziert und als Ergebnis den kleinsten positiven Rest q nach Division 
durch n notiert. Beispielsweise würde in 1̂2 = {1,5, 7, 11} für jedes x e 1̂2 
die Beziehung x2 = 1 gelten; die Gruppe 1̂2 ist also isomorph zur Kleinschen 
Vierergruppe. 

Wir wollen eine Anwendung für das Rechnen in der primen Restklassengruppe 
geben. Es sei a eine beliebige zu n teilerfremde ganze Zahl. Es ist a e 8, 

also K(a) e tyn- Satz 9.4 liefert nun 

K(a)«*> = Z(a«K»)) = K( 1 ) . 

Das heißt aber re|(a«=<»») — 1). Dies ist der sogenannte Kleine FERMATSCÄe Satz 
der Zahlentheorie, den wir notieren wollen. 

Satz 6 : Es sei n eine natürliche und a eine zu n teilerfremde ganze Z a h l . 
Dann gilt 

n|(a«<»> — 1). 

Ist speziell n eine Primzahl p, so gilt für jedes nicht durch p teilbare a e 3 die 
Teilbarkeitsbeziehung p\{aP~ x — 1); man kann auch sagen: für alle a e 3 gilt 
p|(a* — a). 

Wegen Satz 6 nennt man den zugrundeliegenden Satz 9.4 auch den Kleinen 
FekmatscAcm Satz der Gruppentheorie. 

Aufgabe 5: Es sei G die multiplikative Gruppe aller rationalen Zahlen 
der Gestalt 3r5*7' (r, s,te$) und N der Normalteiler aller 3r. Man beschreibe 
G / N . 

Aufgabe 6: Es sei G eine Gruppe, N cG ein Normalteiler, U c G eine 
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Untergruppe, N n U — {e}, und die einzige Untergruppe H von G, die N 
und U umfaßt, sei 0 selbst. Man zeige: Dann gilt O/N ~ U. 

A u f g a b e 7: Es sei G die Menge aller durch f(x) = ax + b, a e 3t, b e 3t, 
«4=0 , definierten Abbildungen /: 3t -> St von 3t auf sich. Ferner seien U\cQ 
die Teilmenge aller / e 0 mit a = 1 und U%cG die Teilmenge aller / e G mit 
6 = 0. Zeige: 
a) Ui und Uz sind Untergruppen der Gruppe G. Ferner ist TJ\ Normalteiler 
von G, aber nicht TJz-
b) E72 ist isomorph zur multiplikativen Gruppe 3to (vgl. § 6.2). 
c) Es gilt Gjüi ~ Uz. 

§ 1 3 Einbettung von Halbgruppen in Gruppen 

13.1 Wir gehen aus von der folgenden 

Definition: Eine Halbgruppe H heißt regulär, wenn für alle Elemente 
a, x, y e H die Kürzungsregeln 

ax — ay => x = y, 
xa = ya => x = y 

gelten. 
Insbesondere ist also jede Gruppe eine reguläre Halbgruppe. 
Es sei nun eine Halbgruppe H vorgelegt, und wir stellen die folgende Frage: 
Gibt es eine Gruppe G, die H umfaßt ? 
Wenn eine solche Gruppe G existiert, so gelten in ihr die Kürzungsregeln; die 
Halbgruppe H c G muß dann also notwendig regulär sein. Aber man kann 
Beispiele konstruieren, die zeigen, daß diese notwendige Voraussetzung über 
H nicht auch schon hinreichend ist: Nicht jede reguläre Halbgruppe H läßt 
sich in eine Gruppe einbetten. Dagegen gilt der 

Satz ls Jede kommutative reguläre Halbgruppe H läßt sich in eine eindetUig 
bestimmte kleinste Obergruppe Q, die Quotientengruppe von H, einbetten. Das 
heißt: Zu einer vorgegebenen kommutativen regulären Halbgruppe H gibt es eine 
Gruppe Q mit den folgenden Eigenschaften. 
(1) Q o H . 

(2) Ist G eine Gruppe, die H umfaßt, G D H, SO gilt G D Q D H. 
(3) Ist Q' eine Gruppe, die an Stelle von Q die Bedingungen (1) und (2) erfüllt, 
so gilt Q' = Q. 

Beweis : Angenommen, die Existenz einer Gruppe Q mit den Eigenschaf-
ten (1) und (2) sei bereits bewiesen. Dann gilt sicher die Eindeutigkeitsaussage 
(3). Denn die Eigenschaften (1), (2) von Q liefern für G = Q' die Beziehung 
Q' D QDH\ analog folgt aus den Eigenschaften (1), (2) von Q' für G = Q die 
Beziehung Q 3 Q' o H. Aus beidem zusammen bekommen wir Q' = Q. Zu 
zeigen bleibt also: Ist H eine kommutative reguläre Halbgruppe, so gibt es 
eine Gruppe Q mit den Eigenschaften (1) und (2). 



58 Gruppen 

Um Anhaltspunkte für unser weiteres Vorgehen zu bekommen, nehmen wir 
an, es gäbe eine Gruppe G o H. In G ist dann die Teilmenge 

UG = {y- y £ G, yb — a, a,b e H} 

der Lösungen aller Gleichungen yb = a mit Elementen a,beH enthalten. Da 
zu b e H ein eindeutig bestimmtes Inverses b'1 e G existiert, können wir auch 
schreiben: 

^g = {y y — ab-1, a,b e H). 

Es ist leicht zu sehen, daß UQ eine Untergruppe von G ist: Wegen H 4= 2 
gibt es ein ae H, und es folgt aa~l — e e f / c ; also ist UG nicht leer, und nach 
Satz 8.1 müssen wir noch zeigen: Sind yi = ab'1 und 2/2 = cd'1 Elemente aus 
UG (a, b,c,de H), so ist auch yiyz1 e Uq. Für Elemente g,he H gilt nun in 
G nach Voraussetzung gh = hg; multipliziert man hierin beide Seiten links 
und rechts mit h e G, so folgt 

(4) h-1g = gh-1 (g, h e H). 

Anwendung dieser Rechenregel ergibt aber y^1 = ab^dc1 = (ad^cb)'1 e UG-
Da jedes he H wegen h = h2h~l auch in UG liegt, können wir also sagen: UG 
ist eine Untergruppe von Q mit G o UQ 3 H. Ist ferner U eine Untergruppe 
von G, die H umfaßt, so muß auch sie die Lösungen aller Gleichungen yb = a 
mit a,be H enthalten, und das heißt U D UG- In G ist also UQ die kleinste 
Untergruppe, die H umfaßt. 
Wären wir von einer anderen Gruppe G* D H ausgegangen, so wäre ent-
sprechend 

UG* = {y*: y* e G*, y*b = a, a, b, e H) 

die kleinste Untergruppe von G* geworden, die H umfaßt. Es ist klar, daß 
beide Gruppen sich nur durch die Schreibweise voneinander unterscheiden, 
UG — UG*, und deshalb nicht als voneinander verschieden angesehen zu 
werden brauchen. Dann können wir aber sagen: UG ist die zu konstruierende 
Gruppe Q. Wüßten wir ihre Existenz, so wäre unser Satz bewiesen. 
Um diesen Existenznachweis anschließend führen zu können, nehmen wir für 
den Augenblick weiterhin an, es gäbe wenigstens die eine Gruppe G o H, und 
betrachten das Rechnen in UG- Wann sind yi = ab-1 e UG und y% = cd'1 € UG 
(a, b,c,de H) einander gleich ? Man bekommt 

(5) ab'1 = cd'1 o ad = bc; 

denn die linke Seite geht durch Rechtsmultiplikation mit bd in die rechte und 
diese durch Rechtsmultiplikation mit b^d-1 in die linke über, beides auf Grund 
von (4). Schließlich wird die Verknüpfung UIUG durch 

(6) (aft-iJM-1) = (ac^bd)'1 

beschrieben, wobei neben der Kommutativität von H wieder (4) benutzt wird. 
Nun sei M die Menge H2 aller Paare (a, b) mit a,be H. Während wir noch nicht 
wissen, ob die Gruppe Q = UQ existiert, wird die Existenz des cartesischen 
Produkts M = H2 in der Mengenlehre axiomatisch verlangt (§ 1.3), und wir 



§13 Einbettung von Halbgruppen in Gruppen 59 

können nun versuchen, Q aus M zu konstruieren. Dabei lassen wir uns von 
der Vorstellung leiten, daß aus dem Paar (a, b) der Quotient ab-1 werden soll. 
Paare, die zu gleichen Quotienten führen, fassen wir deshalb zunächst zu 
Äquivalenzklassen zusammen und definieren nach dem Vorbild (5) 

(5') (a, b) ~ (c,d) o ad = bc. 

Daß dadurch auf M eine Äquivalenzrelation erklärt ist, prüft man unter Be-
nutzung der Kommutativität und der Regularität von H leicht nach. Aus 
(a, b) ~ (c, d) und (c, d) ~ (e, /) folgt zum Beispiel adf — bcf = bde oder 
a/ = be, also (a, b) ~ (e, /). 

Außerdem führen wir auf M nach dem Vorbild (6) die Multiplikation 

(6') (a, b) • (c, d) = (ac,bd) 
ein. Da wir mit den Äquivalenzklassen von M rechnen wollen (jede von ihnen 
repräsentiert ja einen festen Quotienten von Elementen aus H), zeigen wir: 
Die Äquivalenzrelation auf M ist eine Kongruenzrelation. Aus (a, b) ~ (c, d) 
und (e, /) ~ (g, h), also ad = bc und eh = fg, folgt in der Tat aedh = bfcg 
oder (ae, bf) ~ (cg, dh). 
Es sei nun A die Menge der Kongruenzklassen von M und [a, 6] die Klasse von 
(a, b). Wir erwarten, daß A ein isomorphes Modell von Q ist. Zunächst wird 
nach Satz 12.3 durch [a, b] • [c, d\ — [ae, bd] eine Multiplikation auf A erklärt. 
Sie ist assoziativ, weil die Multiplikation in H assoziativ ist. Während M keine 
Gruppe zu sein brauchte, ist A eine Gruppe: Wegen H =4= £ gibt es ein he H, 
und [A, A] e A ist Einselement von A; es wird ja [A, h] • [a, 6] = [ha, hb] 
= [a, ö], weil {ha, hb) ~ (a, b) ist; ferner ist [b, a\ das Inverse von [a, 6], 
denn es gilt [i>, a] • [a, 6] = [ba, ab] = [oft, ab] = [A, A]. 
Jetzt betrachten wir die Teilmenge T c A aller Klassen der Gestalt [ah, A] 
mit ae H und dem festen he H; wir wollen zeigen: H ~ T, wobei wir uns den 
Isomorphiebegriff auf Halbgruppen übertragen denken. Durch <p(a) = [ah, A] 
wird eine Abbildung <p von H auf T erklärt. Diese Abbildung ist eineindeutig, 
da aus <p(a) = <p(b) oder [ah, h] = \bh, A] oder (ah, k) ~ (bh, h) folgt: ah2 = bh2, 
also a = b. Schließlich ist <p auch relationstreu, 

<p{ab) = [abh, A] = [ah, h] • [bh, A] = <p(a)<p{b), 

also ein Isomorphismus, und es ist richtig H ~ T. 

Die Teilstruktur T c A der Gruppe A unterscheidet sich also nur durch die 
Schreibweise von H. Ersetzt man daher in A ebenso wie in der zugehörigen 
Verknüpfungstafel jedes t e T durch sein Urbild e H, so wird lediglich 
die Bezeichnung der Elemente von A geändert. Die Ersetzung von T durch H 
bewirkt, daß aus A eine isomorphe Gruppe Q entsteht, die H umfaßt, und wir 
zeigen zuletzt, daß Q mit der zu konstruierenden Gruppe übereinstimmt. 
In A war [A, bh] das Inverse von [bh, A], das in Q durch b e H ersetzt ist. In 
Q gilt also [A, £>A] = ö_1. Ein beliebiges Element [a, b]eA hat die Gestalt 
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[o, 6] = \ah, A] • [A, bh]; als Element von Q wird daraus einfach ab'1. Es 
ist also 

Q = {y.y = o6-i ,a ,&eff} 

die Gruppe, deren Existenz wir nachzuweisen hatten, und damit ist Satz 1 
bewiesen. 

13.2 Das im Beweis von Satz 1 durchgeführte Konstruktionsverfahren ist für 
ähnliche Situationen typisch und wird uns wieder begegnen; wir können uns 
dann kürzer fassen. Etwas suggestiver hätte man vielleicht die Kongruenz-
klassen [o, 6] wegen der multiplikativen Schreibweise und der Kommutativität 

a 
von H mit —, bei additiver Schreibweise von H mit (a — b) bezeichnen können. 

b 

Spezialisieren wir H zu 9t bezüglich der Addition, so sind wegen Satz 2.1 die 
Voraussetzungen von Satz 1 erfüllt. Es wird dann Q die additive Gruppe von 
3, deren Existenz und Widerspruchsfreiheit damit auf die Existenz der kom-
mutativen regulären Halbgruppe 9t (bezüglich der Addition) zurückgeführt 
sind. Wir haben 3 aus 91 konstruiert. 

Aufgabe 1: Jede endliche reguläre Halbgruppe ist eine Gruppe. Beweis ? 

§14 Spezielle Ergebnisse 

14.1 Wir kehren noch einmal zu unseren Überlegungen aus § 12.1 zurück und 
betrachten einen Homomorphismus f: G -»• 6* einer Gruppe 0 auf die Gruppe 
G*; der Kern des Homomorphismus sei K. Dabei knüpfen wir an eine Fest-
stellung aus Satz 12.1 an: Ist U eine Untergruppe von G, so ist f(U) eine Unter-
gruppe von G*. 
Zunächst stellen wir umgekehrt fest: Ist U* eine Untergruppe von G*, so ist 
auch die Urbildmenge U = f~HU*) eine Untergruppe von G. Das ist leicht 
zu sehen. Sind e, e* die Einselemente von G, G*, so ist e* = f(e) 6 U*, also 
eeU. Aus u, v e U folgt f(uv) = f(u)f(v) e U*, also uv e U. Und das Inverse 
w1 von ueü geht vermöge / in das Inverse von f(u) e U*, also ein Element 
von U*, über und liegt damit selbst in U. 
Zusätzlich bemerken wir folgendes. Jede Untergruppe U* von G* enthält das 
Einselement e*; die Menge der Urbilder von e* ist definitionsgemäß K. Die 
Urbildgruppe U = /-1(E7*) von U* ist daher eine Untergruppe von G, die K 
umfaßt: K cU eG. 
Unter der Einwirkung von / werden nun aus G und K die Gruppen G* und 
{e*}, und in dem nachstehenden Satz wird ausgesagt: Die Gruppen zwischen 
G und K entsprechen eineindeutig den Gruppen zwischen G* und {e*}, also 
den Untergruppen von G*. 

Satz ls Es sei f: G - y G* ein Gruppenhomomorphismus von G auf G* mit 
dem Kern K, ferner M die Menge aller Untergruppen U von G mit K cU cG 
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und weiterhin M* die Menge aller Untergruppen U* von G*. Dann definiert 
<p(U) = f(U) eine bijektive Abbildung <p: M ->- M*, und es ist <p~l(U*) = /— 

B e w e i s : Daß durch <p(U) = f(U) eine Abbildung von M in M* erklärt 
ist, hatten wir bereits gesehen; es war ja f(U) ein Element von M*. Wir zeigen 
als Nächstes, daß diese Abbildung <p: M -> M* surjektiv ist. Dazu sei U* ein 
beliebiges Element aus M*. Wie wir bereits wissen, ist f~l(U*) eM; wir be-
haupten, daß /_1(?7*) unter der Einwirkung von <p in U* übergeht; wenn das 
so ist, t r i t t jedes U* e M* als Bild auf, und <p ist surjektiv. Zu zeigen ist also 

/(/-!(£/*)) = U*. 

Sicher gilt f(f~HU*)) c U* (vgl. Aufgabe 3.1, Aussage b)); da aber f:G->G* 
surjektiv ist, gilt auch /(/_1(C/*)) 3 U*, und beides zusammen liefert die be-
hauptete Gleichheit. 
Weiter haben wir nachzuweisen, daß die Abbildung <p-, M M* injektiv ist. 
Dazu zeigen wir: Für jedes U e M gilt 

f-Hf(U)) = u. 

Angenommen, dies ist richtig; gilt dann f{Ui) = /(t/2) für Elemente U\, U^sM, 
so folgt f-HKUx)) = f-HfiUz)), also Ui = U2, und das heißt: cp ist injektiv. 
Die Enthaltenseinsbeziehung /-1(/(t7)) D TJ ist wieder trivial (Aufgabe 3.1, 
Aussage a)); also bleibt f~Hf(U)) c U zu zeigen. Es sei a e/_1(/(i7)). Das be-
deutet: Es gibt ein ueU mit f(u) = f(a). Da / ein Homomorphismus ist, folgt 
durch Multiplikation mit /(w-1) die Beziehung /(aw_1) = e*, also au~l e K 
und erst recht om_1 6 U oder ae TJ. Jedes a e /-1(/(C/)) liegt also auch in U, 
und es gilt insgesamt f~Hf(U)) = U. 
Damit ist gezeigt: Die Abbildung q>: M M* ist bijektiv. Die letzte Behaup-
tung <p~HU*) = f~HU*) besagt dasselbe wie <p(f'HU*)) = ü* oder 
/(/-!(E/*)) = U*, und das haben wir bereits gesehen. Damit ist Satz 1 be-
wiesen. 
In Ergänzung zu Satz 1 gilt noch der 

Satz 2: Es sei f: G ->G* ein Gruppenhomomorphismus von G auf G* mit 
dem Kern K, ferner M die Menge aller Normalteiler N von G mit K c N cG 
und weiterhin M* die Menge aller Normalteiler N* von G*. Dann definiert 
<p{N) = f(N) eine bijektive Abbildung <p: M M*, und es ist tp-^N*) = f'x(N*). 

B e w e i s : Über Satz 1 hinaus bleibt zu zeigen, daß mit N cG auch f(N) 
und mit N* c G* auch /_1(jV*) Normalteiler ist. Es sei also zunächst N ein 
Normalteiler von G. Da sich jedes Element g* e G* in der Gestalt f(g) mit 
einem g e G schreiben läßt, wird ?*/(2%*-i = f(g)f(N)f(g~i) = f(gNg~i) = f(N); 
mit N ist also auch f(N) c G* Normalteiler. Ist umgekehrt N* ein Normal-
teiler von G* und g e G, so wird durch / auf N* abgebildet; also ist 
gj-i(N*}g-i c f-i(N*) für jedes geG und damit nach Satz 8.4 auch f~HN*) c G 
Normalteiler. 

A u f g a b e 1: Es seien K und N Normalteiler der Gruppe G mit K cN eG. 
Dann gilt 
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GjN ~ (GIK)I(NIK). 

(Sogenannter zweiter Isomorphiesatz.) Beweis ? 

14.2 Die folgenden Ergebnisse gehören zu den elementaren Hilfsmitteln bei 
vielen gruppentheoretischen Untersuchungen. 

Satz 3: Ist U eine Untergruppe der Gruppe G und g e G, so ist gUg-1 eine 
zu U isomorphe Untergruppe von G. 

Beweis : Durch f(u) = gug1 wird eine surjektive Abbildung f:U-> gUg'1 

definiert. Diese Abbildung ist auch injektiv; aus guig-1 = gv^g'1 folgt ja 
Mi = «2- Ferner gilt 

f(uiu2) = guiuzg-1 = (guig-1)(gu2g-1) = f(ui)f{u2); 

das Produkt von Elementen aus gUgliegt also wieder in gUg_1, und / wird 
insgesamt ein Isomorphismus von U auf gUg-1. Damit ist von selbst auch 
gUg-1 eine Gruppe. 

Genau dann, wenn U Normalteiler von G ist, gilt gUg~1 = U für alle g eG; 
andernfalls gewinnt man auf diese Weise aus U weitere Untergruppen von G. 

Definition: Zwei Untergruppen U, V einer Gruppe G heißen konjugiert, 
wenn ein g e G mit V = gUg-1 existiert. Zwei Elemente a, b aus G heißen kon-
jugiert, wenn ein g eG mit b = gagexistiert. 

Man prüft sofort nach, daß in beiden Fällen Äquivalenzrelationen definiert 
werden. Die Menge aller Untergruppen von G zerfallt also in Klassen konju-
gierter, unter sich isomorpher Untergruppen; die Menge aller Elemente von 
G läßt sich aufteilen in Klassen konjugierter Elemente. Derartige Aufteilungen 
spielen bei gruppentheoretischen Untersuchungen eine große Rolle. 
Konjugierte Gruppenelemente treten auch vielfach bei der Untersuchung von 
Abbildungen, etwa in der Matrizentheorie, auf. Ist F eine Transformations-
gruppe der Menge M, ferner / ein Element von F und f(m) = m*, so kann man 
sich für jedes me M die Punkte m, m* durch <p e F in <p(m), <p{m*) transfor-
miert denken und nach einer Abbildung g e F fragen, die <p(m) für jedes me M 
in <p(m*) überführt. Dies leistet gerade das ^-Konjugierte g = ffq>_1 von /. 

A u f g a b e 2: Es sei U eine Untergruppe der Gruppe G und D der Durch-
schnitt aller Konjugierten von U. Zeige: D ist ein Normalteiler von G. 

14.3 Eine Gruppe G sei vorgelegt; es sei g ein Element und U eine Untergruppe 
von G. Wir fragen: Wie viele Konjugierte hat g in G, wie viele konjugierte 
Untergruppen gibt es zu U ? Die Antworten, die wir finden werden, sind ein-
fach und werden oft verwandt. 

Definition: Es sei g ein Element der Gruppe G und M die Menge aller 
nteG mit rngm,'1 = g oder, gleichwertig, mg = gm. Dann heißt M der Normali-
sator von g eG. 
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In dem folgenden Satz ist es vor allem die am Schluß getroffene Teilbarkeits-
aussage, die bei Anwendungen immer wieder eine Rolle spielt. 

Satz 4: Es sei G eine Grwppe und M der Normalisator von g eG. Dann ist 
M eine Untergruppe von G, und die Anzahl der Konjugierten, von g ist gleich 
dem Index von M in G. Ist speziell G endlich, so ist die Anzahl der Konjugier-
ten von g eG ein Teiler von |£?|. 

Beweis : Es ist eeM\ aus m\, e M folgt m\m%g — migm2 = gm^m^, 
also WI1W.2 e M, und aus m e M, also gm = mg, folgt durch beiderseitige Multipli-
kation mit m - 1 von links und vpn rechts m~xg = gm-1, also m - 1 6 M. Demnach 
ist M eine Untergruppe von G. Liefern nun x,y eG dasselbe Konjugierte von 
g, ist also xgx'1 = ygy~l, so folgt y~lxg — gyxx, also y~xx e M oder x e yM; 
es liegen dann also x und y in derselben Linksnebenklasse von M. Umgekehrt: 
Zwei Elemente hm± und hm% derselben Linksnebenklasse hM liefern dasselbe 
Konjugierte hgh*1 von g; beispielsweise ist 

(hmilgihmi)-1 = hm^gm^h-1 = hgm\rnixh~x — hgh-1. 

Damit ist gezeigt: Die Anzahl der Konjugierten von g ist gleich dem Index 
von M in G. Der Rest der Behauptung folgt aus Satz 8?3. 

Definition: Eine endliche Gruppe G heißt p-Gruppe, wenn |i?| eine Potenz 
der Primzahl p ist. 
Eine typische Anwendung von Satz 4 ist die Aussage der 

Aufgabe 3: Es sei G eine p-Gruppe und Z ihr Zentrum. Dann ist Z 4= {e}-
Beweis ? 

Wir nehmen nun die zweite oben gestellte Frage in Angriff. Wieder ist es vor 
allem die Teilbarkeitsaussage von Satz 5, die in den Anwendungen von In-
teresse ist. 

Definition: Es sei U eine Untergruppe der Gruppe G und M die Menge aller 
me G mit mUm-1 = U oder, gleichwertig, mlJ = Um. Dann heißt M der 
Normalisator von U eG. 

Satz 5: Es sei G eine Gruppe und U eine Untergruppe von G. Dann ist der 
Normalisator M von U eine Untergruppe von G, und zwar ist M die umfassendste 
Untergruppe von G, in der U Normalteiler ist. Die Anzahl der Konjugierten von 
U ist gleich dem Index von M in G. Ist speziell G endlich, so ist die Anzahl der 
Konjugierten von U cG ein Teiler von |6?|. 

Beweis : Wie beim Beweis von Satz 4 zeigt man, daß M eine Unter-
gruppe von G ist. Nach Definition von M gilt U c M, wobei U Normalteiler 
von M ist; ebenfalls nach Definition von M gilt gU 4= Ug für jedes g eG, 
g $ M. Also ist M die umfassendste Untergruppe von G, in der U Normalteiler 
ist. Die restlichen Behauptungen des Satzes ergeben sich wieder wie beim 
Beweis von Satz 4. 
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Von besonderem Interesse sind diejenigen Gruppen, die außer {e} und sich 
selbst keinen Normalteiler enthalten. Sie heißen einfache Gruppen. Satz 5 kann 
etwa angewandt werden bei der 

Aufgabe 4: Es seien p und q nicht notwendig verschiedene Primzahlen 
und G eine Gruppe der Ordnung pq. Dann ist G nicht einfach. Beweis ? 

14.4 Sind a, b Elemente einer Gruppe G, so wird die Gleichung abx = ba durch 
x = b'^a-^-ba und die Gleichung yab = ba durch y = bab^a1 gelöst. Die Fak-
toren x, y bewirken, daß aus dem Produkt ab das Produkt ba wird. Elemente 
der Gestalt ghglh~l aus G (g, he G) nennt man deshalb Kommutatoren. 

Definition: Die von allen Kommutatoren erzeugte Untergruppe K der 
Gruppe G heißt die Kommutatorgruppe von G. 

Man beachte, daß die Kommutatorgruppe K c G von den sämtlichen Kommu-
tatoren nur erzeugt wird; die Kommutatoren für sich bilden im allgemeinen 
keine Gruppe, weil das Produkt zweier Kommutatoren nicht wieder ein 
Kommutator sein muß. 
Die Bedeutung der Kommutatorgruppe beruht auf dem 

Satz 6: Die Kommutatorgruppe K einer Gruppe G ist der kleinste Normal-
teiler mit abelscher Faktorgruppe: Es ist GjK eine abelsche Gruppe, und icenn 
die Faktorgruppe G/N abelsch ist, so ist N ein Normalteiler von G, der K umfaßt. 
Es ist also K der Durchschnitt aller Normalteiler N von G mit abelscher Faktor-
gruppe G/N. 

Beweis: Wir zeigen zunächst, daß die Untergruppe K cG sogar Normal-
teiler ist. Dazu beginnen wir mit zwei Bemerkungen. Ist einmal c = a6a -16 -1 

ein Kommutator, so ist es auch c_1 = ftafe-1«-1; Elemente aus K haben dem-
nach die Gestalt k — c\ c% ... cr mit gewissen Kommutatoren c<. Ist ferner 
c = aba-ty'1 ein Kommutator und g ein Element aus G, so ist auch 

gcg-i = (gag-mgbg-mga-ig-^igb^g-1) = (gaq-1)(gbg-i){gaq-1)-1{gbg1)-1 

ein Kommutator. Für jedes k = Ci c% ... cr e K und jedes g e G wird also 
auch 

gkg-1 = (gcig-^igcig-1) ... (gc^-1) 

wieder ein Element von K, und damit ist K nach Satz 8.4 ein Normalteiler 
von G. 
Nun zeigen wir, daß die Faktorgruppe GjK abelsch ist. Man wähle zwei Ele-
mente aK, bK aus G/K und betrachte den Kommutator c = £>-1a-16a; da er 
in K Hegt, können wir statt K auch cK schreiben und bekommen damit 

aK-bK = abK = abcK = baK - bK • aK -, 

die Faktorgruppe GjK ist also abelsch. 
Zuletzt bleibt zu zeigen: Ist G/N abelsch und c = aba^b-1 ein Kommutator 
aus G, so liegt c in N. Aus der Voraussetzung folgt aber gerade 
= b^a^N oder aba^b^N = N, also ceN. Damit ist Satz 6 bewiesen. 
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Ergänzend zu Satz 6 gilt noch die Aussage der 

Aufgabe 5: Es sei K die Kommutatorgruppe der Gruppe G und H eine 
Untergruppe von G mit K c H c G. Dann ist H ein Normalteiler von G mit 
abelscher Faktorgruppe GjH. Beweis ? 

§ 1 5 Automorphismen von Gruppen 

Definition: Ein Isomorphismus f einer Gruppe G auf sich heißt Automor-
phismus von G. 
Die identische Abbildung liefert immer einen Automorphismus. Die durch 
f(a + bi) = a — bi vermittelte Abbildung der additiven Gruppe von € auf 
sich (a, 6 e Sft) ist bijektiv und relationstreu, liefert also einen Automorphismus 
der additiven Gruppe von <L Die Gruppe = {e, a, a2, o3} besitzt außer der 
Identität noch den durch f(e) = e, f(a) = a3, f(a2) = a2, f(a3) = a definierten 
Automorphismus. Die durch f(a) = 2a erklärte Abbildung /: 3 -> 3 der addi-
tiven Gruppe von 3 in sich ist ein Isomorphismus, aber kein Automorphismus, 
da sie nicht surjektiv ist. Automorphismen decken gewisse Symmetrieeigen-
schaften von Gruppen auf. 
Man betrachte eine Gruppe G, wähle ein festes g e G und definiere <pt\ G G 
durch <pg(x) = gxg~l. Wie schon der Beweis von Satz 14.3 zeigte, ist die Ab-
bildung <pt bijektiv und relationstreu, vermittelt also einen Automorphismus 
von G. Derartige Automorphismen heißen innere, alle anderen äußere Auto-
morphismen von G. Ein nicht identischer Automorphismus einer abelschen 
Gruppe ist also ein äußerer Automorphismus. Genau die Normalteiler gehen 
bei allen inneren Automorphismen einer Gruppe G in sich über (wenn auch 
nicht notwendig elementweise); daher rührt auch die ältere Bezeichnungsweise 
„invariante Untergruppe". 
Die beiden folgenden Sätze sind ziemlich selbstverständlich. 

Satz 1: Die Menge A aller Automorphismen einer Gruppe G ist eine Gruppe. 

Beweis : Es seien /, g Elemente aus A. Dann ist auch die Abbildung 
gf\G-+G bijektiv und, wie wir bereits aus § 12.1 wissen, relationstreu: Für 
a,beG gilt 

9f("b) = g(f(ab)) = g(f(a)f(b)) = gf(a)gf(b). 

Aus f,g e A folgt also gf e A. Die Multiplikation in A ist assoziativ nach Satz 
3.1. Die identische Abbildung liegt in A. Ist schließlich / e A, so wird /_1 bi-
jektiv, und es gilt (a, b e G) 

f-Hab) = f-Hff-Ha)ff-Hb)) = f-Hf(f-Ha)f-Hb))) = f^(a)l~Hb), 

also auch /-1 6 A. 

Satz 2: Die Menge B aller inneren Automorphismen einer Gruppe G ist 
eine Untergruppe der Automorphismengruppe A von G. 

5 Hornfeck, Algebra 
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B e w e i s : Definitionsgemäß ist B die Menge aller durch <pg(x) — gxg~x  

definierten Automorphismen <pg: G G. Dabei ist <pee B die Identität. E s 
gilt <fg<ph{x) = ghxh-ig-1 = <pth(x) für alle xeG, also q)g<ph = <pgh e B. Schließ-
lich ist wegen <p <p = <pe auch das Inverse rpä1 = <p t von <pg ein Element 
von B. '  r  r  

A u f g a b e 1: Es sei G eine Gruppe, A deren Automorphismengruppe, B 
die Gruppe der inneren Automorphismen von G und Z das Zentrum von G. 
Man zeige: 
a) B ist Normalteiler von A. 
b) G/Z ~ B. 

§ 16* Operation einer Gruppe auf einer Menge 

Es sei M eine Menge mit Elementen oc,ß,y, . . . und G eine multiplikativ ge-
schriebene Gruppe mit Elementen a,b,c, . . . . Die folgende Definition ist so 
eingerichtet, daß man sich unter G eine Transformationsgruppe von M vor-
stellen kann. 

Definition: Wir sagen, die Gruppe G operiert auf der Menge M, wenn eine 
Komposition o von M mit G definiert ist, die die folgenden zwei Bedingungen 
erfüllt. 
(1) Für allea,b e G und alle a e M gilt das Assoziativgesetz a o (b o a) = (ab) o a. 
(2) Für alle aeM gilt e o a = a. 

B e i s p i e l 1. Es sei M = G und a o a = aa. 

B e i s p i e l 2. Es sei M die Menge aller Teilmengen T cG und a o T — aT 
=Df {at: t e T). 

B e i s p i e l 3. Es sei k eine natürliche Zahl, M die Menge aller Teilmengen 
T c G mit \T\ = k und wieder aoT = aT. Wegen \aT\ = \T\ = k ist auch 
in diesem Fall a o T e M, und wie in Beispiel 2 operiert G auf M. 

B e i s p i e l 4. Es sei M — G und a o « = aaor1. Dann operiert G auf M = G, 
denn (2) ist erfüllt und wegen a6a6 - 1o_ 1 = (o6)a(a£>)-1 auch (1). 

B e i s p i e l s . Es sei M die Menge aller Untergruppen U von Gund aoU = aUa 
Nach Satz 14.3 ist auch aUa-1 e M; durch ao U = aUa'1 ist also eine Kom-
position von M mit G erklärt. Wie im vorigen Beispiel sind die Forderungen 
(1) und (2) erfüllt. 

B e i s p i e l 6. Es sei k eine natürliche Zahl, M die Menge aller Untergruppen 
U von G mit ]C7| = k und wieder ao U = aUa_1. Wieder nach Satz 14.3 
gilt auch |oo U\ = |E/| = k, also ao U e M. Auch hier liegt also eine Kom-
position von M mit G vor, und G operiert auf M. 

Wenn die Gruppe G auf der Menge M operiert, so läßt sich auf M in folgender 
Weise eine Äquivalenzrelation einführen: Genau dann ist a ~ ß, wenn ein 
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aeG mit ß = a o x existiert. Denn nach (2) ist x ~ a ; aus x ~ ß, also 
ß = ao« mit einem aeG, folgt a~xoß = a_1o(ooa) = (a_1a)oa = eoa = a oder 
ß ~ x; und aus x ~ ß und ß ~ y, also ß — a o x und y = b o ß mit a, beG, 
folgt y = b o (a o a) = (ba) o x, also x ~ y. 

Definition: Die Äquivalenzhlassen von M heißen Transitivitätsgebiete oder 
Bahnen. Die Klasse K(x) von x e M heißt die Bahn von a und |Ä"(<x)| die Länge 
der Bahn von x. 

Wir betrachten nun ein festes a 6 M und die Menge S = [x: x e G, x o a = a} 
aller derjenigen Elemente von G, die a festlassen. Man sieht sofort, daß S eine 
Untergruppe von G ist: Aus a,b e 8 folgt (ab) o oc = ao(bo x) = ao x = x, 
also abe S; es gilt e e S, und aus ae S, also ao x = x, folgt auch 
a - 1 o a = a _ 1 0 ( 0 0 1 ) = (a_1a) o a = e o a = a oder a _ 1 e S. Die Gruppe 
S heißt die Stabilitätsuntergruppe von a. Etwa im obigen Beispiel 5 ist die 
Stabilitätsuntergruppe von U e M gerade der Normalisator von U in G. Dem 
Satz 14.5 entspricht jetzt der 

Satz ls Die Gruppe G operiere auf der Menge M\ es sei x ein Element aus 
M und S cG seine Stabilitätsuntergruppe. Dann ist die Länge |Ä(a)| der Bahn 
von x gleich dem Index von S in G. Ist speziell G endlich, so ist \K(a.)\ ein Teiler 
von |G|. 

B e w e i s : Ist ß e K(x), so gibt es ein aeG mit ß = ao x, und für jedes 
b ea$,alsoö = as mit einem seS, gilt ebenfalls box — (as)ox - - ao(sox) -- aox=ß. 
Es gibt also höchstens so viele Elemente in K(x) wie Nebenklassen von S in 
G. Unser Satz ist bewiesen, wenn wir noch zeigen, daß aus a,beG und 
ao x = box folgt: Die Elemente a,beG hegen in derselben Nebenklasae von 
S in G. Aus ao x = box ergibt sich in der Tat a - 1 o ( n o i ) = a - 1 o (6 o a), 
also x = (a_16) o x oder a_ 16 e S und damit b e aS. 

§ 1 7 * Die SYLOWschen Sätze 

Im folgenden wird eine endliche Gruppe der Ordnung n betrachtet; für den 
Primteiler p von n gelte pr\n, aber pr+ijtn. Die drei SYLOWschen Sätze machen 
Aussagen über Existenz und Eigenschaften von Untergruppen der Ordnungen 
p', s r, und deren Anzahl. Unsere Beweise stützen sich auf die Überlegungen 
in § 16 und benutzen einen einfachen zahlentheoretischen 

H i l f s s a t z : Ist unter den angegebenen Voraussetzungen n = prm, so hat der 

Binomialkoeffizient die Gestalt pr-'ml mit p^rn und einer natürlichen Zahl 

l, die bei Division durch p den Rest Eins läßt: l = Xp + 1, A e 

Bewe i s : Man schreibe 

\p>) p . ( p . _ i ) ( p . _ 2 ) . . . 1)) p \p>— l ) ~ P ' 
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dann bleibt zu zeigen, daß die natürliche Zahl l die Gestalt Xp + 1 hat . I n 

j PJZ:1 prm — v 
= M p s - v 

setzen wir v = p>tr mit 0 fS q = g(v) < s und (p, tr) = 1 und kürzen im 
v-ten Faktor durch pei*): 

l = " f f ^ ^ ~ t f 

V=1 P'-' — ty 

Dabei sind s — q und erst recht r — g nie Null; Ausmultiplikation ergibt also 
für l eine Zahl der Gestalt 

Av + a , viz1 

1 = ß ^ b " = ( - 1 ) p 1 n w ±>p + a 1 

mit A, B e 3 und p\a, da p kein tv teilt. Es folgt Ap + a = Bpl + cd oder 
a(l — 1) = p(A — IB), und p teilt die linke Seite, also l — 1. 

Satz 1: Es sei G eine Gruppe der Ordnung n und n = prm, wobei die Prim-
zahl p in m nicht aufgehe. Dann besitzt G für jedes s e 0 ig s r, wenigstens 
eine Untergruppe der Ordnung p». 

B e w e i s (WIELANDT): Bei vorgelegtem s sei M die Menge aller Teilmengen 
T cG mit |T| = p', und G operiere auf M vermöge g o T = gT (§ 16, Bei-
spiel 3). Wir werden eine gewisse Stabilitätsuntergruppe U von G finden, die 
genau ps Elemente hat. 

Zunächst gilt bekanntlich \M\ = . Somit kann nicht jede Bahn von M 
eine durch pr-*+i teilbare Länge haben, weil die Summe aller Bahnlängen 
gleich \M\, aber \M\ = auf Grund des Hilfssatzes nicht durch pr~*+1 teil-
bar ist. Es gibt also eine Bahn K cM, deren Länge den Primteiler p höch-
stens in der Vielfachheit r — s enthält; nach Satz 16.1 ist \K\ ein Teiler von 
n; aus beidem zusammen folgt \K\ fg pr~sm. 
Wir betrachten nun ein Element T dieser Bahn K; die Stabilitätsuntergruppe 
von T sei U c G. Nach Satz 16.1 gilt dann ind U = <±pr-*m-, da 
|E7| • ind U = n = prm ist, liefert das \U\ S: ps. 
Andrerseits liegt nach Definition von U jedes Produkt ut (u e U, t e T) in T, 
so daß für jedes teT jedenfalls UtcT, also auch |C7i| = \U\ < \T\ = p' 
gilt. 
Beide Abschätzungen für |i7| zusammen ergeben \U\ = ps, und damit ist 
Satz 1 bewiesen. 

Ist also G eine Gruppe der Ordnung n = prm, so gibt es speziell mindestens 
eine Untergruppe der Ordnung p und auch mindestens eine der Ordnung pr. 
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Definit ion: Die Untergruppen der Ordnung pr der Gruppe G der Ordnung 
n = prm, (p, m) = 1, heißen die zur Primzahl p gehörenden Sylowgruppen 
von G. 

Im Gegensatz zu der Aussage von Satz 1 hat übrigens nicht jede Gruppe G 
der Ordnung n zu jedem Teiler d von n eine Untergruppe der Ordnung d. Mit 
Hilfe der Ergebnisse der Aufgaben 9.1 und 12.4 findet man zum Beispiel, daß 
die alternierende Gruppe 3i4 der Ordnung 12 keine Untergruppe der Ordnung 6 
besitzt. 

Satz 2 : Es sei G eine Gruppe der Ordnung n = prm; dabei sei die Primzahl 
p leein Teiler von m; es sei ferner U eine Untergruppe der Ordnung p' von G, 
und V sei eine zu p gehörende Sylowgruppe von G. Dann ist U Untergruppe 
einer zu V konjugierten Sylowgruppe. Alle zu p gehörenden Sylowgruppen sind 
konjugiert. 

Beweis: Die zweite Behauptung ist der Spezialfall s = r der ersten; in 
diesem Fall sind ja sowohl U als auch V zu p gehörende Sylowgruppen. Es 
sei nun M die Menge aller Linksnebenklassen von V, und U operiere auf M 
durch uoT = uT e M (ueU, T e M). Wieder zerfällt M in Bahnen, und 
da p in |M \ — m nicht aufgeht, gibt es ein a V e M (a e G) mit einer durch p nicht 
teilbaren Bahnlänge. Diese Bahnlänge ist aber nach Satz 16.1 mit U an Stelle 
von G auch ein Teiler von |J7| = p* und wird deshalb Eins. Das bedeutet: 
Für jedes u e U ist uaV = aV, also ua e aV oder u e aVaund das ist die 
erste Behauptung U c aVa-1. 

Satz 3 : Es sei G eine Gruppe der Ordnung n — prm; dabei sei die Primzahl 
p kein Teiler von m, und zu vorgegebenem s ^ r sei k die Anzahl aller Unter-
gruppen der Ordnung p'. Dann hat k die Gestalt xp + 1 (x = 0,1, 2, . . . ) ; 
für s = r gilt zusätzlich k\m. 

Beweis: Ist die erste Behauptung bewiesen, so folgt (k, p) = 1 und 
daraus die zweite; denn nach Satz 2 ist für s = r die Zahl k gleich der Anzahl 
der Konjugierten einer zu p gehörenden Sylowgruppe, nach Satz 14.5 also 
ein Teiler von prm und wegen (k, p) = 1 ein Teiler von m. 
Es sei nun s 5S r vorgegeben; zu zeigen bleibt, daß die Anzahl k aller Unter-
gruppen der Ordnung pe von G die Gestalt xp + 1 (x = 0, 1, 2, . . . ) hat. 
Wir zählen zunächst die Anzahl aller Rechtsnebenklassen mit p3 Elementen 
in G ab; es sind kpr~sm; denn sind U± und Uz Untergruppen von G und 
U\a = so folgt a e U%b, also U?ß = U<$> = U\a oder U\ = 
Wie im Beweis von Satz 1 sei nun wieder M die Menge aller Teilmengen T cG 
mit \T\ = p', und G operiere auf M durch g o T — gT. Wir zeigen jetzt, daß 
T genau dann eine durch pr-s+i nicht teilbare Bahnlänge hat, wenn T eine 
der eben abgezählten kpT~'m Rechtsnebenklassen aus G ist. Dazu sei zunächst 
K c M eine Bahn von M mit einer durch pr~s+1 nicht teilbaren Länge und T 
ein Element von K. Im Beweis von Satz 1 sahen wir, daß die Stabilitätsunter-
gruppe U von T gerade p' Elemente hat wie T selbst. Für jedes t e T galt 
ferner Ut c T, und aus der Gleichheit der Elementezahlen folgt T = Ut. Jedes 
T mit einer durch pr-t+i nicht teilbaren Bahnlänge ist also Rechtsnebenklasse 
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einer Untergruppe U der Ordnung p> von 0. Ist umgekehrt T = Ua (aeO) eine 
Rechtsnebenklasse von U und |Z7| = p8, so liegt T in M und hat U als Stabi-
litätsuntergruppe, weil güa = Ua genau für alle g e U richtig ist. Die Bahn-
länge |K(T)\ — ind U — pr~sm von T — Ua ist also durch pr-n+i nicht teil-
bar. 
Es gibt also genau die oben abgezählten kpr~em Teilmengen T von 0 mit 
\T\ = ps und durch p r _ s + 1 nicht teilbarer Bahnlänge. Mit den Bezeichnungen 

des Hilfssatzes gibt es insgesamt = lpr~sm Teilmengen T c 0 mit 

I?1! = p*, wobei l = Xp + 1, X e war. Es bleiben pr~8m(l — k) Teilmengen 
T mit p' Elementen und durch pr~s+1 teilbaren Bahnlängen. Deswegen muß 
pr-s+1 ein Teiler von pr~sm(l — k), also p ein Teiler von l — k, also 
k — xp + 1, x e sein. Damit ist auch der dritte Sylowsche Satz bewiesen. 

Aufgabe 1: Man löse noch einmal Aufgabe 14.4. 

§ 18* Beispiele von Gruppen 

18.1 Es sei n 2: 3 eine natürliche Zahl; die Ecken eines regelmäßigen n-Ecks 
seien etwa im Uhrzeigersinn mit 1, 2 n durchnumeriert; der Mittelpunkt 
des ra-Ecks sei M. Die Elemente 

/I 2 3 4 ... n — 1 , , /I 2 3 . . . » — 1 
° = l l » » - 1 n - 2 ... 3 2) U n d 6 = U 3 4 . . . » l ) 

aus @n haben dann eine einfache geometrische Bedeutung: Es ist a eine 
Spiegelung an der durch 1 und M bestimmten Symmetrieachse und b eine 

2n 
Drehung um M im Uhrzeigersinn um . Wir betrachten die von a und b er-
zeugte Untergruppe X>n von ©». Sie heißt die Diedergruppe vom Index n. 
Die Anschauung oder einfaches Nachrechnen zeigen sofort: a hat die Ordnung 
2 und b die Ordnung n. Auf die gleiche Weise bestätigt man bab = a; es gilt 
ja 6a6(l) = ba(2) = b(n) = 1 = o(l), ferner bab(t) = ba(t + 1) = b(n + 1 — t) 
= n + 2 — t = a(i)für2 ^ i <n — Iund6a6(») = 6a(l) = b( 1) = 2 = a(n). 
Schreibt man ba = ab*1 = ab™-1 an Stelle von bab = d, so sieht man, daß 
jedes Produkt aus Faktoren a, b, also jedes Element von sich in der 
Gestalt axb", O ^ A i S l . O g^. /i f^n — 1, schreiben läßt und daß die An-
gaben o2 = bn = e und ba — abdas Rechnen in der Diedergruppe voll-
ständig bestimmen. 
Wir zeigen nun noch, daß keine zwei der 2n Elemente axb", 0 A Si 1, 
0 iS fi n — 1, aus ©„ einander gleich sind. Aus = aHi^ ergibt sich 

= bPt-Mi, und die Behauptung folgt, wenn gezeigt ist, daß ae — ba, 
— 1, nur für q — a = 0 möglich ist. Der Fall q = 1 

kann aber nicht eintreten, da a das Element 1 festläßt, was nur 6° = e 4= a 
leistet. Also ist q = 0 und folglich auch a = 0. 
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Die Diedergruppe ®„ hat daher genau 2n Elemente. Wegen ba — ab-1 =(= ab 
ist sie nicht kommutativ. Wir fassen unsere Ergebnisse zusammen. 

Satz 1: Die Diedergruppe X)n (n ^ 3) wird von zwei Elementen a, b nach 
den Rechenregeln a2 = e, bn = e, ba = ab-1 erzeugt; sie hat 2n Elemente und 
ist nicht kommutativ. 

Damit kennen wir für jede gerade Zahl 2n ^ 6 eine nichtkommutative Gruppe 
©„ der Ordnung 2n. Nach Aufgabe 12.4 ist ©3 = ©3. 

A u f g a b e 1: Die Diedergruppe S„ enthält mindestens n Elemente der 
Ordnung 2. Beweis ? 

A u f g a b e 2: Zeige, daß 3(4 und £)« verschiedene nichtkommutative 
Gruppen der Ordnung 12 sind. 

18.2 Es sei p eine Primzahl und p ^ 3. Wir wollen zeigen, daß und £>p 
die beiden einzigen Gruppen der Ordnung 2p sind. 
Hat die Gruppe 0 die Ordnung 2p, so besitzt sie einen Normalteiler 
V = {e, b, 62, . . . , bP-1} der Ordnung p (vgl. die Lösung von Aufgabe 17.1). 
Nach Satz 17.1 gibt es auch eine Untergruppe U = {e, a} von 0 der Ordnung 
2, und es ist a $ V, da V wegen 2-rp keine Untergruppe U der Ordnung 2 hat. 
Es folgt Ö/V = {V,aV}\ demnach besteht 0 aus den Elementen 
O ^ A ^ l , — 1, und es gelten die Rechenregeln o2 = e und 
bP -= e. Wir zeigen, daß für ba nur die Werte ab oder oft -1 in Frage kommen. 
Im ersten Fall ist 6 abelsch und sogar zyklisch; denn 0 wird dann von dem 
Element ab der Ordnung 2p erzeugt. Im zweiten Fall liegt die Diedergruppe 
X)p vor. 
Das Element ba kann nicht in V liegen, weil dann ae V folgen würde. Also 
ist ba e aV oder a_1ba = aha = bx, 0 ^ X ^ p — 1, und wir behaupten, daß 
X nur 1 oder p — 1 sein kann. Aus aba = und a2 = e folgt aber 

b = aabaa = ab*a = (aba)x = bx', 

also = e, und Satz 9.2 liefert p\(X + — 1) und damit entweder 
X = 1 oder X = p — 1. 
Wir haben also den 

Satz 2: Die beiden einzigen Gruppen der Ordnung 2p (p Primzahl, p ^ 3) 
sind und X)j>. 

18.3 Wieder sei p eine Primzahl und diesmal 0 eine Gruppe der Ordnung p2, 
p ^ 2. Dann muß 0 abelsch sein: Andernfalls hätte nach Aufgabe 14.3 die 
Gruppe Q ein Zentrum Z = {e, b, b2, ...,&z>-1} der Ordnung p\ auch die 
Faktorgruppe GjZ hätte dann die Ordnung p, wäre also zyklisch und würde 
von einer Nebenklasse aZ erzeugt: 

G/Z = {Z, aZ, a?Z aP-^Z}. 

Jedes Element von G — Z u aZ u o2Z u . . . u aP_1Z hätte also die Gestalt 
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a*bf, 0 5i A sS p — 1, 0 ^ /i sS p — 1, und wegen b e Z wäre die Multiplikation 

(a^b^aeb0) = a*-aeb»ba = aea^b" = (aeba)(a*b") 

in G doch kommutativ entgegen der Annahme. 
Nach § 11 gibt es aber nur zwei abelsche Gruppen der Ordnung p2, und wir 
haben den 

Satz 3: Die beiden einzigen Gruppen der Ordnung p2 (p Primzahl) sind 
und 3p x 3p-

18.4 Wir konstruieren eine Gruppe der Ordnung 8. Dazu gehen wir von einer 
Menge 

G = {1, —1, i, —i, j, —j, k, —k} 

von 8 Elementen aus; es handelt sich dabei um acht Symbole, deren Bezeich-
nungen sich gleich als zweckmäßig herausstellen werden. Wir definieren zu-
nächst durch 

1 - 1 = 1, Ii = ¿1 = i, 1 j = jl = j, 1& = M = k, 
¿2 = j2 = ¿2 = 

ij = k, ji = —k, jk = i, kj = —i, ki = j, ik —j 

sowie (—a)b = a(—6) = —(ab) und (—a)(—b) = ab eine Verknüpfung auf G; 
dabei sei —(—g) — g eG. Es gilt \g = g\ = g für jedes g e G, und wegen 
(—1)(—1) = i(—i) = j(—j) = k(—k) = 1 besitzt jedes g e G ein Inverses 
g-1 e G mit gg-1 = g~xg = 1. 
Um zu zeigen, daß G eine Gruppe ist, müssen wir noch nachweisen, daß diese 
Multiplikation assoziativ ist. Es wäre sehr mühsam, die einzelnen Fälle direkt 
zu prüfen. Statt dessen machen wir die Zuordnungen 

wobei in den Matrizen die komplexen Zahlen 0, ± 1 und i i stehen; mit 
wenigen kurzen Rechnungen ist zu sehen, daß die Multiplikation dieser acht 
Matrizen relationstreu zu der Multiplikation in G erfolgt. Zum Beispiel gilt 
richtig 

Die Multiplikation von Matrizen ist aber assoziativ und damit auch die Ver-
knüpfung von G. Es ist also G eine nichtkommutative Gruppe der Ordnung 8. 
Sie heißt die Quaternionengruppe und ist von £>4 verschieden, da sie außer —1 
kein Element der Ordnung 2 besitzt (Aufgabe 1). 
Beim Nachweis des Assoziativgesetzes zeigte sich die Bedeutung von Satz 3.1, 
auf dem die Assoziativität der Multiplikation von Matrizen als einer Multipli-
kation von gewissen Abbildungen ja zuletzt beruht: In der Algebra läßt sich 
ein Assoziativgesetz oft mit Hilfe von Satz 3.1 beweisen. 
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A u f g a b e 3: Die sämtlichen Gruppen der Ordnung 8 sind 3b> * 
3z x $2 x ^2) ®4 und die Quaternionengruppe. Beweis ? 

18.5 Alle Gruppen mit Ordnungen kleiner als 12 sind uns nun bekannt. Außer 
3i2. ?2 x x ®b und 2I4 gibt es noch eine nichtkommutative Gruppe der 
Ordnung 12. Sind p < q Primzahlen, und ist dabei p kein Teiler von q — 1, so 
gibt es überhaupt nur eine Gruppe der Ordnung pq, die zyklische; andernfalls 
existiert noch eine nichtkommutative Gruppe der Ordnung pq. Diese Aussagen 
lassen sich ähnlich beweisen wie Satz 2. Es gibt also beispielsweise nur eine 
Gruppe der Ordnung 15. Es gibt relativ viele Gruppen der Ordnungen 2M, 
zum Beispiel vierzehn der Ordnung 16. Mit diesen Bemerkungen schließen wir 
unsere gruppentheoretischen Betrachtungen ab. 

L i t e r a t u r : ALEXANDBOFF [2], KUBOSCH [14]. 
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Wir wenden uns nun algebraischen Strukturen mit zwei Verknüpfungen zu. 
Als Modelle stehen uns dabei etwa die Strukturen 3 und Q mit den Verknüp-
fungen Addition und Multiplikation vor Augen. Es handelt sich bei beiden um 
Ringe mit zusätzlichen speziellen Eigenschaften. Aus der umfangreichen 
Theorie der Ringe greifen wir nur einige Ergebnisse heraus, die ständig ge-
braucht werden. Wir beginnen mit einer allgemeinen Vorbetrachtung. 

§ 19 Algebraische Strukturen 

Bevor wir uns speziellen Strukturen mit zwei Verknüpfungen zuwenden, 
stellen wir einige allgemeine Definitionen und Sätze auf, die nach den ent-
sprechenden Erörterungen in Kapitel 2 hinreichend plausibel geworden sind. 

Definition: Es seien S\ und Sz algebraische Strukturen mit jeweils n Ver-
knüpfungen; wir bezeichnen mit 

oi, 02, . . . , o„ die Verknüpfungssymbole von 8i 

und mit 

®i, ®2, ..., die Verknüpfungssymbole von Sz. 

Eine Abbildung f: Si-^-Sz heißt relationstreu oder Homomorphismus von Si in 
S2, wenn (eventuell nach einer Umnumerierung) für jedes i, 1 5S i ^ n, und 
alle x,y e 81 gilt : 

f ( x o t y ) = f(x) f ( y ) ; 

sie heißt Homomorphismus von Si auf 82, wenn sie zusätzlich surjelctiv ist, und 
in diesem Fall nennen wir 8z ein homomorphes Bild von S± und schreiben 

Ein Isomorphismus von Si in Sz ist eine injektive relationstreue Abbildung 
f : 81 8z; sie heißt Isomorphismus von 81 auf Sz, wenn sie sogar bijektiv und 
relationstreu ist; in diesem Fall heißen Si und Sz isomorph, und wir schreiben 
Si ~ Sz. 
Ein Automorphismus von 81 ist ein Isomorphismus f : 81 -> Si von 81 auf sich. 
Unter einem Endomorphismus von 81 schließlich versteht man einen Homomor-
phismus von Si in sich. 

Isomorphe Strukturen definieren wieder eine Äquivalenzklasse und werden 
nicht als wesentlich voneinander verschieden angesehen. Aus 81 ^ Sz und 
82 ^ 83 folgt S i ^ S3. 
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Definition: Es sei S eine algebraische. Struktur mit den Verknüpfungen 
oi, 02, . . . , on und , , 3 " eine Äquivalenzrelation auf 8. Diese Äquivalenzrelation 
heißt Kongruenzrelation, wenn für jedes i, 1 ^ i ij n, gilt: 

a = a',b = b' => a o< b = a' o< b'. 

Das kann man auch so interpretieren: In einer Kongruenzbeziehung aus 8 
dürfen die in ihr auftretenden Elemente von S durch kongruente ersetzt 
werden (vgl. etwa die spätere Aufgabe 20.2). 
Wie Satz 15.1 beweist man den 

Satz 1: Die Menge A aller Automorphismen einer algebraischen Struktur S 
mit n Verknüpfungen ist eine Gruppe, die sogenannte Automorphismengruppe 
von S. 

Es sei nun weiterhin Si eine algebraische Struktur mit den Elementen 
a, a', b, b', s, ... und den n Verknüpfungen 01, 02, . . . , on ; gesucht seien alle 
homomorphen Bilder von S±. Angenommen, auf <Si ist eine Kongruenzrelation 
„ = " erklärt. Dann zerfallt S± in Kongruenzklassen. Die Menge dieser Klassen 
sei $2 = {K(a), K(b), . . . } . Wir erklären auf S2 die Verknüpfungen 
®i, ®2, . . . , ®» durch K(a) ®j K(b) = K(a o< 6); das sind wirklich Verknüp-
fungen auf $2, weil sich nach der Definition der-Kongruenzrelation die rechten 
Seiten nicht ändern, wenn die Repräsentanten a, b von K(a), K(b) durch 
andere Repräsentanten a', b' ersetzt werden. Für s e Si setzen wir nun 
f(s) = K(s) € S2 und definieren dadurch eine surjektive Abbildung /: S± -> 
Diese Abbildung ist relationstreu: 

f(a oi b) = K(a o< b) = K(a) ®, K(b) = f{a) ®t f(b). 

Also gilt Si ^ S2. 

Umgekehrt sei jetzt ein homomorphes Bild S3 von Si vorgelegt, $1 ^ S3; der 
vermittelnde Homomorphismus sei f . Dann ist durch a ~ a' o f(a) = f(a') 
eine Äquivalenzrelation auf Si erklärt; Si zerfällt in Äquivalenzklassen derart, 
daß genau die Elemente einer Klasse dasselbe Bild besitzen. Diese Äquivalenz-
relation ist sogar eine Kongruenzrelation: Aus a ~ a' und b ~ b' folgt 

f(a Oi 6) = f(a) ®< f(b) = f(a') f(b') = f[a'otb'), 

also a Oi b ~ a' o< b'. Wir betrachten die Menge S% = {K(a), K(b), . . . } aller 
dieser Kongruenzklassen und behaupten S2 — S3; dabei seien die Verknüp-
fungen auf $2 wie oben eingeführt. Zunächst definiert <p(K(a)) = f(a) eine 
Abbildung q>: S2 Sa, weil f(a) von der Wahl des Repräsentanten von K(a) 
nicht abhängt, und diese Abbildung ist ersichtlich bijektiv. Sie ist auch rela-
tionstreu, und das bedeutet insgesamt S2 — S3. Abgesehen von Isomorphien 
ist also das homomorphe Bild S3 von Si eines der bereits oben gefundenen 
homomorphen Bilder S2. 
Wir fassen zusammen. 

Satz 2: Es sei Si eine algebraische Struktur mit Elementen a,b, . . . und 
den n Verknüpfungen o<, 1 ^ i ^ n. Ferner sei auf S\ eine Kongruenzrelation 
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erklärt. Dann werden auf der Menge Sz = {K(a), K(b), ...} der Kongruenz-
Massen von Si durch K(a) K(b) — K(a 0{ b) ebenfalls n Verknüpfungen 
®i» 1 ^ i ^ w, definiert, und es gilt S\ ^ 82- Jedes homomorphe Bild von Si 
ist einer derart gewonnenen Struktur S2 isomorph. 

Das Aufsuchen aller homomorphen Bilder einer algebraischen Struktur S mit 
n Verknüpfungen ist also gleichbedeutend mit der Aufgabe, alle Kongruenz-
relationen von S ausfindig zu machen. 
Wie Satz 12.3 ergibt sich schließlich noch der 

Satz 3: Es sei S eine algebraische Struktur mit Elementen a,b, ... und 
den n Verknüpfungen oj, 1 ^ i ^ n. Ferner sei S = K(a) u K(b) u . . . eine 
Zerlegung von S in paarweise verschiedene Äquivalenzklassen. Genau dann de-
finiert K(a) K(b) = K(a o t b) für jedes i, 1 i ^ n, eine Verknüpfung auf 
der Menge {K(a), K(b), ...} der Äquivalenzklassen, wenn die durch die Partition 
von S erklärte Äquivalenzrelation eine Kongruenzrelation ist. 

§ 20 Das Rechnen in Ringen 

20.1 Wir beginnen mit der folgenden 

Definition: Eine algebraische Struktur R mit einer additiv und einer multi-
plikativ geschriebenen Verknüpfung heißt ein Ring, wenn folgendes gilt: 
(1) R ist bezüglich der Addition eine abelsche Gruppe. 
(2) R ist bezüglich der Multiplikation eine Halbgruppe. 
(3) Für alle Elemente a, b, ce R gelten die Distributivgesetze 

a(b + c) = (ab) + (ac) =/>/ ab + ac, 
(b + c)a = (ba) + (ca) =0/ ba + ca. 

(Das Zeichen für die Multiplikation soll also wie üblich stärker binden als das für 
die Addition.) 
Ein Ring R heißt kommutativ, wenn für alle a,beR gilt: ab = ba. 

Die Forderung (1) bestimmt die Eigenschaften der Addition, die Forderung (2) 
beschreibt die Multiplikation; in (3) schließlich wird ein Zusammenhang 
zwischen den Verknüpfungen hergestellt. 
Jeder Ring R besitzt als additiv geschriebene abelsche Gruppe genau ein Null-
element 0, das für jedes ae R die Beziehung a + 0 = 0 + a = a erfüllt. 
Enthält ein Ring R 4= {0} ein Element 1 e ü mit l a = a l = a für jedes ae R, 
so nennen wir dieses Element Einselement von R. Es gibt Ringe ohne Eins-
element (vgl. Beispiel 2). Zwei Einselemente 1,1' kann ein Ring R wegen 
1 = 1 - 1 ' = 1' nicht besitzen. 
Wie bei Gruppen erklärt man die Begriffe Unterring und echter Unterring. 

B e i s p i e l 1. Die Strukturen Q, 5t, 2 sind kommutative Ringe mit Eins-
element. 



§ 20 Das Rechnen in Ringen 77 

Be i sp i e l 2. Die Menge = { . . . , — 2 n,—n, 0, n, 2n, . . . } aller durch ein 
festes « =|= 1, teilbaren ganzen Zahlen ist ein kommutativer echter 
Unterring von 3 ohne Einselement. 
Be i sp i e l 3. Die Menge aller reellen zweireihigen quadratischen Matrizen ist 
ein nichtkommutativer Ring mit Einselement bezüglich der Matrizenaddition 
und -multiplikation. 
B e i s p i e l 4. Die Menge R = {x: x = a + öj/2, a, b e 3} c SÄ ist ein kommu-
tativer Unterring von 3t mit Einselement. Aus x,yeR, etwa x = a + Í>V2 
und y = c + <2|/2, folgt ja sowohl x + y = (a + c) + (b + d)]/2 § R als auch 
xy — (ac + 2bd) + (ad + 6c)|/2 e iJ; außerdem gilt 0 6 ¿Í und —a; 6 ¿2. Alle 
weiteren Forderungen sind schon in 31 und damit erst recht in R c SR erfüllt. 
Sind a, b Elemente eines Ringes R, so schreiben wir statt —(ab) wieder nur —ab. 
Wir beweisen nun die bekannten Vorzeichenregeln. 

Satz ls In Ringen gelten die Rechenregeln a • 0 = 0 • a = 0, o(—b) = (—a)b 
= —ab, (—a)(—b) = ab, a(b — c) — - ab — ac und (b — c)a = ba — ca. 

Bewei s : Nach (3) ist o2 = a(a + 0) = o2 + a • 0, also a • 0 = 0, weil 
die Gleichung a2 + x = a2 nach Aussage c) von Satz 6.1 genau eine Lösung x 
hat ; aus o2 = (a + 0)a folgt entsprechend 0 • a = 0. Ferner gilt sowohl 
ab + (—ab) = 0, als auch ab + a(—b) = a(b + (—b)) = a • 0 = 0, und wie 
eben folgt a(—b) = —ab; aus ab (—a)b = 0 bekommt man nach dem-
selben Muster (—a)b = —ab. Damit wird (—a)(—b) — a(—(—b)) — ab. 
Schließlich ist a(b — c) = a(b + (—c)) = ab + a(—c) = ab — ac, und analog 
ergibt sich die letzte Behauptung. 

F o l g e r u n g : Besitzt ein Ring R ein Einselement 1, so ist 1 4= 0. 
Man kann leicht endliche Ringe konstruieren. Die wichtigsten sind die im 
folgenden betrachteten Restklassenringe modulo n. 
Bei sp i e l 5. Es sei n eine feste natürliche Zahl, 3 der Ring der ganzen Zahlen 
und 

= { t f ( 0 ) , m . . . , JT(n—1)} 

die Menge der Restklassen modulo n. Wir zeigen, daß die zugrundeliegende 
Äquivalenzrelation 

a = a' o n\(a — a') 

eine Kongruenzrelation auf dem Ririg 3 ist: Es gelte a = a', b = b'. Diese 
Äquivalenzrelationen bedeuten die Existenz ganzer Zahlen A, ¡x mit a' = a + Am, 
V = b + fin; für gewisse ganze Zahlen Q = A + /i, a = fia + Ab + wird 
also a' + b' = a + b + gn sowie a'b' = ab + an, und das heißt a + b = + b' 
sowie ab = a'b'. Nach Satz 19.3 werden also durch 

K(a) + K(b) = K(a + b), K(a)K(b) = K(ab) 

eine Addition und eine Multiplikation auf der Menge der Kongruenzklassen 
erklärt. In Erinnerung an § 9.1 können wir sagen, daß der additiven Rest-
klassengruppe modulo n in natürlicher Weise noch eine Multiplikation auf-
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geprägt wurde. Wir zeigen jetzt, daß damit = {K(0), i i(l) , . . . , K(n— 1)} 
ein kommutativer Ring wird. Die Forderung (1) ist nach § 9.1 erfüllt. Das 
Assoziativgesetz der Multiplikation 

(.K(a)K(b))K(c) = K(ab)K(c) = K((ab)c) 
= K(a(bc)) = K(a)K(bc) = K(a)(K(b)K(c)) 

folgt aus dem entsprechenden Assoziativgesetz von 3". also gilt (2). Eine 
analoge Rechnung liefert die Kommutativität der Multiplikation von pn, so 
daß wir für (3) nur noch eines der beiden Distributivgesetze nachzuprüfen 
brauchen: 

K{a)(K(b) + K(c)) = K(a)K(b + c) = K(a(b + c)) = K(ab + ac) 
= K(ab) + K(ac) = K(a)K(b) + K(a)K(c). 

Damit wissen wir: 3» ist für n> 1 ein kommutativer Ring mit dem Einselement 
ÜT(1). Er heißt der Restklassenring modulo n. Solange keine Verwechslungen mit 
der zyklischen Gruppe der Ordnung n zu befürchten sind, behalten wir für ihn die 
Bezeichnung 3« bei- Man addiert und multipliziert in 3» wie in 3. setzt aber 
Vielfache von n gleich Null. Für n = 1 besteht 3» aus der Null K(0) allein 
(Nullring). 
Für die Kongruenzrelation a = a' o n \ (a — a') pflegt man eine der beiden 
Schreibweisen 

a = a' mod n oder a = a' (n) 

zu wählen. 

A n w e n d u n g : Wir zeigen auf zwei nur durch die Schreibweise unterschie-
dene Arten, daß 232 + 1 durch 641 teilbar ist. Beide Male gehen wir von der 
Identität 24 + 54 = 5 • 27 + 1 = 641 aus. 
a) Es ist 5 • 27 = —1 (641). Denkt man sich diese Kongruenz viermal hin-
geschrieben und die linken und rechten Seiten multipliziert, so bekommt man 
(5 • 27)4 = (_ i )4 m o ( i 641 oder 5« • 228 = 1 (641). Hierin darf man wegen 
54 = _ 2 4 (641) den Faktor 54 durch— 2* ersetzen. Das liefert —232 = 1 (641) 
oder 641 | + 1). 
b) Im Restklassenring $64i gilt K(5 • 27) = K(—1). Potenziert man beide Seiten 
mit 4, so bekommt man K(54 • 228) = K( 1). Für die linke Seite kann man auch 
Z(54) • K(228) 0der K(—24) • K{22») = K(—2™) schreiben. Das ergibt K(—2™) 
= K( 1) oder 641 | (232 + 1). 

Oft wird man den Restklassenring einfach in der Gestalt {0, 1 n — 1} 
schreiben und dabei beachten, daß die hingeschriebenen Elemente keine ganzen 
Zahlen sind. 

A u f g a b e 1: Man gebe die Verknüpfungstafeln des Restklassenringes 
an. 

A u f g a b e 2: Man löse die Kongruenz 5x = 7 (13). 

A u f g a b e 3. Durch Rechnen im Restklassenring 3s zeige man: Keine 
natürliche Zahl n der Form 8k + 7 ist Summe von drei Quadratzahlen. 
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20.2 Im Restklassenring — {0, 1, 2, 3, 4, 5} gilt 2 • 3 = 0, in 3ie etwa 
2 • 8 = 0; ist n keine Primzahl, so gibt es in $n Elemente a =|= 0, b =j= 0, deren 
Produkt ab Null ist. 

Definition: Ein Element a + 0 eines Ringes R heißt linker Nullteiler, wenn 
ein b =(= 0 in R existiert, so daß ab = 0 ist. Ein Element b =|= 0, b e R, heißt 
rechter Nullteüer, wenn ein a =|= 0, a e R, existiert, so daß ab = 0 ist. Ein Ring R 
heißt nullteilerfrei, wenn er keine Nullteiler enthält. 

Ein Bing R ist also genau dann nullteilerfrei, wenn für alle a, be R aus ab = 0 
folgt: a= 0 oder 6=0. Nullteilerfreie Ringe sind zum Beispiel 3, G> 3t. Das-
selbe gilt für die Restklassenringe 3j> = {^(0), ÜT(1) K(p — 1)} mit Prim-
zahlindex p. Aus K(a)K(b) = K(ab) — K(0) folgt ja p\ab in also etwa p\a 
oder K(a) = K( 0). 

Gilt in einem Ring ab = ac, so folgt auch für a 4= 0 nicht notwendig b = c; 
in 3x2 gilt etwa 2 • 3 = 2 • 9, aber es ist 3 4= 9- Ist aber R nullteilerfrei, a e R und 
a =f= 0, so folgt aus ab = ac zunächst a(b — c) = 0, also tatsächlich b — c = 0 
oder 6 = c; entsprechend wird ba = ca => b = c. Wir formulieren dieses 
Ergebnis. 

Satz 2: Ist R ein nuUteilerfreier Ring mit Elementen a,b,c, ..., so gelten 
für a =j= 0 die Kürzungsregeln 

ab = ac => b = c, ba = ca => b = c. 

Wir betrachten nun einen nidlteilerfreien Ring R =j= {0} mit Einselement und 
sehen uns die Elemente 1, 1 + 1, 1 + 1 + 1, . . . an. Es können zwei Fälle 
eintreten. Entweder keines von ihnen ist Null, und das ist gleichbedeutend da-
mit, daß sie paarweise voneinander verschieden ausfallen; wir sagen dann, 
R habe die Charakteristik Null und schreiben ^(Ä) = 0. Oder es gibt ein n 6 91 
mit 1 + 1 + . . . + 1 = 0 (w Summanden 1); dann gibt es auch ein kleinstes n 
dieser Art. Dieses minimale n ist zunächst ungleich Eins und muß außerdem eine 
Primzahl p sein, weil aus n = kl mit natürlichen Zahlen k <n, l < n und 
n k l k 
2 1 = = 0 wegen der Nullteilerfreiheit von R folgt: 2 1 = 0 oder 
1 1 1 I 
i 

2 1 = 0. Wir sagen in diesem Fall, R habe die Charakteristik p und schreiben 

X(R) = P-
Ist R ein Ring mit ^(i?) = p, ist also 1 e R und R nullteilerfrei, so verschwindet 
eine Summe r + r + . . . + r von m Summanden r e R, falls p in m aufgeht. 
Um das einzusehen, schreibe man r + r + . . . + r = 1 • r + 1 • r + . . . + 1 • r = (1 + 1 + . . . + 1) • r. 

Es ist x(3) = = = %(<£) = 0; für Primzahlen p gilt X(BP) = V-

Definition: Ein vom Nullring verschiedener kommutativer nuUteilerfreier 
Ring heißt Integritätsbereich. 
Beispiele für Integritätsbereiche waren etwa Q. % 3P (P Primzahl). Auch 
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die Ringe in den obigen Beispielen 2 und 4 sind als Unterringe von $ und 91 
Integritätsbereiche. 
Wir betrachten nun einen beliebigen Ring R mit Einselement. In ihm wird die 
Frage nach multiplikativen Inversen von Ringelementen sinnvoll. Wir treffen 
die folgenden Verabredungen. 

Definition: Es sei R ein Ring mit Einselement. Dann heißt b e R Rechts-
inverses von aeR, wenn ab — 1 gilt. Das Element-b e R heißt Linksinverses 
von aeR, wenn ba = 1 ist. Das Element b e R heißt Inverses von aeR, wenn 
ab = ba = 1 ist. Ein aeR heißt Einheit, wenn a in R ein Inverses besitzt. 
Ist schließlich R ein beliebiger Ring und m e s o sind noch die nach-
stehenden Vereinbarungen praktisch: Es sei für aeR 

{ a + a + ... + a (m Summanden) für m > 0 
0 für m = 0 

—a — a — ... — a ((—m) Summanden) für m < 0. 
Das ist eine äußere Komposition von R mit 3 ; Verwechslungen mit der 
Ringmultiplikation sind nicht zu befürchten. Es gelten Rechenregeln wie 
(mi + m%)a = m\a m&i, mi(m^a) = {mim^a und m(ab) = (ma)b = a(mb) 
(ra<, m 6 3, a, b e R). Besitzt R ein Einselement, so kann man ma auch als ein 
Produkt des Ringelementes 

{1 + 1 + ... + 1 (m Summanden) für m > 0 
0 für m — 0 

—1 — 1 — . . . — 1 ((—m) Summanden) für m < 0 
mit aeR ansehen; m kann dann auch Nullteiler sein, wie etwa die Gleichung 
3 + 3 = (1 + 1)3 = 2 • 3 = 0 in 3e zeigt. 

Aufgabe 4: Der Ring R enthalte wenigstens einen von Null verschiedenen 
Nichtnullteiler. Dann ist das Ringaxiom a + b = b + a eine Folge der übrigen. 
Beweis ? 

Aufgabe 5: Man beweise die folgenden Aussagen. 
a) In Ringen gilt a(b\ + 62 + • • • + bn) = ab\ + abz + ... + abn und 
(61 + 62 + ••• + b„)a = bia + bza + ... + bna. 
b) In einem nullteilerfreien Ring ist ein Produkt a\az ... an nur Null, wenn 
einer der Faktoren Null ist. 
c) In einem Ring R mit Einselement besitzt ein linker (rechter) Nullteiler kein 
Links-(Rechts-)Inverses. 
d) Ist 1 e R und besitzt aeR ein Linksinverses b und ein Rechtsinverses c, so 
ist b = c, und a besitzt kein von b verschiedenes Rechts- oder Linksinverses. 
e) Ist 1 e R und besitzt aeR ein Inverses, so ist es eindeutig bestimmt (Be-
zeichnung: a - 1 ) . 
f) Ist 1 e R und besitzt jedes a e R, a =)= 0, ein Inverses o - 1 e R, so ist R null-
teilerfrei. 
g) Es seiR ein Ring mit Einselement und E cR die Menge aller Einheiten von 
R. Dann ist E eine Gruppe bezüglich der Multiplikation. 
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A u f g a b e 6: Es sei B ein Ring mit Einselement und ae R. Zeige: 
a) Ist b ein Rechtsinverses von a, so ist es auch jedes der Elemente b + (ba—l)a* 

b) Besitzt a genau ein Rechtsinverses b, so ist b das Inverse von a. 
c) Das Element a besitzt entweder kein Rechtsinverses, genau ein Rechts-
inverses oder unendlich viele Rechtsinverse (vgl. auch Aufgabe 25.1). 

A u f g a b e 7: Es sei R ein kommutativer Ring. Man beweise den binomi-
schen Lehrsatz 

A u f g a b e 8: Es sei I ein Integritätsbereich mit Einselement und Prim-
zahlcharakteristik p. Dann gelten die folgenden Rechenregeln: 
a) (a + b)P = aP + bP, (a — b)P — av — bv (a, b e I). 
b) (a + b)v = aP' + bP\ [a — b)V = aPk — bPk (a,b e I; k = 0, 1, 2, . . . ) . 
c) («i + a2 + ... + an)P = a\ + a\ + ... + av

n (a„ 61). 
Beweis ? 

20.3 Wir treffen nun eine vielfaoh nützliche 
V e r a b r e d u n g : Ist R ein Ring, so bezeichne RQ die Menge der von Null 

verschiedenen Ringelemente. 
Im folgenden beschäftigen wir uns mit gewissen Ringen, die besonders oft 
auftreten. 

Definition: Ein Ring R heißt Schiefkörper, wenn RQ eine Gruppe bezüglich 
der Multiplikation ist. Ein kommutativer Schiefkörper heißt Körper. RQ heißt 
dann die multiplikative Gruppe des Schiefkörpers (Körpers). 
Vielfach werden Schiefkörper auch einfach Körper genannt; ist die Multiplika-
tion kommutativ, spricht man dann von einem kommutativen Körper. 
In den uns bekannten Beispielen £}, SR, S liegen immer schon Körper vor. Es 
sind ja £2, SR, 5 kommutative Ringe, und nach § 6.2 sind Qo, SRo, So Gruppen 
bezüglich der Multiplikation. 
Es sei S ein Schiefkörper. Dann enthält die multiplikative Gruppe So ein Eins-
element 1 + 0 , und diese Eins ist Einselement von S. Außerdem besitzt jedes 
a e S, a 4= 0, ein Inverses a'1 e S. Deswegen sind Gleichungen der Art ax = b 
oder ya = b (a, b e S, a 4= 0) in S eindeutig lösbar. Ein Schiefkörper kann 
auch keine Nullteiler enthalten; denn aus ab = 0 und a =)= 0 folgt a~1(ab) 

Der Nachweis dafür, daß ein Ring schon ein Schiefkörper ist, wird in den 
meisten Fällen nicht über die obige Definition sondern mit Hilfe des folgenden 
Satzes geführt. 

Satz 3: Ein Ring R 4= {0} ist genau dann ein Schief körper, wenn er ein 
Einselement und zu jedem a e R, a 4= 0, ein Inverses a_ 1 enthält. 

Beweis : Nach dem bereits Erörterten bleibt zu zeigen, daß ein Ring 
R 4= {0} ein Schiefkörper ist, wenn er ein Einselement und zu jedem a e fi, 

(4 = 0 ,1 ,2 , . . . ) 

= 6 = 0. 

6 Hornfeck, Algebra 



82 Ringe 

a =(= 0, ein Inverses enthält. In diesem Fall gilt aber 1 eRo; aus aeRo folgt 
a _ 1 e RO; die Multiplikation in RQ ist assoziativ; schließlich liegt auch das 
Produkt ab von Elementen a,b e Ro wieder in Ro, weil ab = 0 den Wider-
spruch o-1(o6) = 6 = 0 zur Folge hätte. Es ist also Ro eine Gruppe bezüglich 
der Multiplikation, was zu zeigen war. 
Auch der folgende Satz ist sehr einfach. 

Satz 4: Jeder endliche nuUteilerfreie Ring R 4= {0} ist ein Schief kör per. 
Speziell ist jeder endliche Integritätsbereich ein Körper. 

Beweis: Nach Satz 2 ist Ro bezüglich der Ringmultiplikation eine 
reguläre Halbgruppe. Sie ist ferner endlich, nach Aufgabe 13.1 also eine 
Gruppe. 
Die Restklassenringe <ip (p Primzahl) sind demnach endliche Körper. Die 
übrigen Restklassenringe >3» enthalten Nullteiler, sind also keine Körper. 
Später (§ 60) wird sich noch zeigen, daß jeder endliche Schiefkörper bereits 
ein Körper ist. Die endlichen Körper wiederum werden wir alle angeben 
können (§ 59). 
Sind a und 6 =f= 0 Körperelemente, so gilt ab-1 = b^a. An Stelle von ab'1 

a 
schreibt man dann auch vielfach — oder a:b. Wir zeigen nun, daß in Körpern 

die bekannten Bruchrechenregeln gelten. 
a ac Satz 5: In Körpern gelten die Bruchrechenregeln — = — (£> =)= 0, c 4= 0), b bc 

a c ac „ „ , a c ad „ , , a c ad 4-bc „ 

d + 0 ) . 

Beweis: Die erste Regel besagt dasselbe wie ab'1 = oc(i»c)_1; für a = 0 
ist das sicher richtig; für a =)= 0 ist es eine richtige Beziehung in der multipli-
kativen Gruppe des Körpers. Die zweite Regel besagt ab^cd-1 = ac(bd); 
wegen der Kommutativität der Multiplikation ist das ebenfalls richtig. Ebenso 
gilt richtig oft-Hcd"1)-1 = ad(6c)-i. Die letzte Regel oft-1 ± cd-1 = (ad±bc)(bd)~l 

schließlich bestätigt man, indem man rechter Hand nach dem Distributivgesetz 
ausmultipliziert. 
In einem Körper addiert, subtrahiert, multipliziert und dividiert man also 
wie gewohnt. Diese vier Rechenoperationen bezeichnet man auch als die 
rationalen Operationen. 
Sind K und L Körper mit K cL und sind die Verknüpfungen von K und L 
in K dieselben, so heißt K ein Unterkörper von L und L ein Oberkörper 
von K. 
Viele mathematische Theorien lassen sich in Körpern entwickeln. Dies gilt 
beispielsweise für die Auflösung linearer Gleichungssysteme. Ebenso sind die 
Determinantensätze in Körpern gültig; als Beispiel sei die CBAMEBsche 
Regel erwähnt. Da Körper nuUteilerfreie Ringe mit Einselement sind, be-
sitzen sie eine Charakteristik. Speziell gelten für Körper auch die Rechen-
regeln der Aufgaben 7 und 8. 
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Wir sehen uns noch einen Körper an, der an das obige Beispiel 4 erinnert. 
B e i s p i e l 6. Wie in Beispiel 4 sieht man, daß 

K = {x: x = a + a, b eÜ} cSR 

ein kommutativer Unterring von SR ist. Wir zeigen nach Satz 3, daß K ein 
Körper ist. Zunächst gilt 1 e K. Ein Element a + aus K schließlich, für 
das a und b nicht beide Null sind, besitzt das In verse 

(a + ^ = {a + m T - m = « ^ p - e 

es ist ja der Nenner a 2 — 2ö2 =(= 0. Analog kann man weitere Zwischenkörper 
K mit Q,cK c SR angeben. 

20.4 Für das Rechnen in Körpern geben wir noch eine einfache zahlentheore-
tische Anwendung. 

Satz 6: Die natürliche Zahl p ist dann und nur dann Primzahl, wenn 

(p—1)! s —1 mod p 

ist (sogenannte Wi l son«;^ Kongruenz). 

B e w e i s : Ist p nicht Primzahl, also p = kl mit natürlichen Zahlen k < p 
und l < p, so teilt k =(= 1 den Ausdruck (p— 1)!, also nicht (p— 1)! + 1; 
erst recht kann p dann kein Teiler von (p — 1)! + 1 sein. Es bleibt also das 
Bestehen der Kongruenz für Primzahlen p zu zeigen. Für p = 2 ist sie erfüllt; 
es sei also p S: 3. 
Es sei zunächst L ein beliebiger Körper. Wir bestimmen alle £ £ L mit f 2 = 1. 
Wir haben nach allen £ mit { 2 — 1 = (£ — l)(f + 1) = 0 zu suchen. Da L 
nullteilerfrei ist, folgt f = 1 oder f = —1. Für den Fall L = p ^ 3, be-
deutet das: Genau die beiden voneinander verschiedenen Elemente K( 1) und 
K(p— 1) aus % = {K(Q),K(l),K(2), ...,K(p—\)} sind ihre eigenen 
Inversen; jedes andere von K(0) verschiedene Element aus fällt nicht mit 
seinem Inversen zusammen. 
Nun bilden wir in das Produkt 

s = K( 1) K{ 2) K{ 3) ... K(p— 1) 

und fassen rechter Hand jeden Faktor mit seinem Inversen zusammen; das 
Ergebnis ist s = K(l)K(p—l). Das heißt aber K({p— 1)!) = K(p— 1) 
= K(—1) oder ( p — 1 ) ! = —1 mod p. 

A u f g a b e 9: Man zeige das Folgende. 
a) Ki = {x:x = a + &V5, a,beQ.} und = {x\x = a-\- b]/5, a, b e Q} 
sind nichtisomorphe Unterkörper von SR. 
b) M = {a::x = a a, b eQ} cSR ist kein Unterkörper von SR. 

A u f g a b e 10: Man beweise die folgenden Aussagen, 
a) Jeder Schiefkörper der Charakteristik Null enthält einen Unterkörper iso-

8 * 
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morph £}, und Q enthält keinen echten Unterkörper. (Deshalb heißt Q. auch 
der kleinste oder der Primkörper der Charakteristik Null.) 
b) Jeder Schiefkörper der Primzahlcharakteristik p enthält einen Unterkörper 
isomorph und enthält keinen echten Unterkörper. (Deshalb heißt 
auch der kleinste oder der Primkörper der Charakteristik p.) 

Aufgabe 11: Es gibt genau einen Körper K mit \K\ = 4. In ihm sind 
die Gleichungen x2 = x ± 1 lösbar. Beweis ? 

Aufgabe 12: Der Unterkörper K = {x\ x = a + a,b eQ.} von 91 
besitzt seinerseits nur die Unterkörper und K. Beweis ? 

Aufgabe 13: Man löse das Kongruenzsystem 

x + y + z = 2 (7) 
2a; — 3 y + z = —1 (7) 

—x + 2y + 3z = 2 (7). 

Man löse dasselbe System modulo 8. Ist es auch modulo 17 lösbar ? 

Aufgabe 14: Es sei S ein Schiefkörper und Z cS die Menge aller der-
jenigen Elemente z e S, die mit jedem s e S vertauschbar sind: sz = zs für 
jedes s e S. Dieses sogenannte Zentrum Z des Schiefkörpers S ist ein Körper. 
Beweis ? 

§ 21 Homomorphe Bilder von Ringen 

21.1 Es sei Ri ein Ring mit Elementen a,b,c, . . . und R<i eine algebraische 
Struktur mit zwei Verknüpfungen, die ebenfalls additiv bzw. multiplikativ 
geschrieben seien. In § 19 ist nun definiert, wann i?2 ein homomorphes Bild 
von i?i genannt wird. Wir formulieren es noch einmal: Die algebraische 
Struktur heißt homomorphes Bild des Ringes i2i, wenn eine surjektive 
relationstreue Abbildung /: i?i i?2 existiert. Die Relationstreue von / be-
steht dabei aus den beiden Forderungen 

f(a + b) = f(a) + f(b), 
t{ab) = f(a)f(b). 

Wir schreiben in diesem Fall Ri ^ Rz und nennen / einen Ringhomomorphis-
mus von i?i auf i?2-
In Analogie zu Satz 12.1 bekommen wir zunächst den 

Satz 1: Das homomorphe Bild R% = f(Ri) eines Ringes Ri ist ein Ring. 
Dabei geht das Nullelement von Ri in das Nullelement von R% über. Besitzt Ri 
ein Einselement 1 und ist f(Ri) nicht der Nullring, so ist /(1) Einselement von 
i?2- Ist Ri kommutativ, so ist es auch Rz. 

Beweis : Bezüglich der Addition ist nach Satz 12.1 eine abelsche 
Gruppe, und /(0) ist das Nullelement von i?2- Für die ersten beiden Behaup-
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tungen bleibt also zu zeigen, daß sich das Assoziativgesetz der Multiplikation 
und die Distributivgesetze von auf i?2 übertragen. Das sieht man, da sich 
jedes Element von Rz in der Gestalt f(r) mit einem r e R i schreiben läßt, wie 
im Beispiel 5 von § 20; hier schreibt man nur / statt K. Aus 1 e Ri folgt 
/(l)/(r) = /(.lr) = f(r) und f(r)f( 1) = f(rl) = /(r), und das ist die dritte Be-
hauptung. Aus der Kommutativität von Ri folgt schließlich noch 
f(a)f(b) = f(ab) = f(ba) = f(b)f(a), also die Kommutativität von R2. 
Als Beispiel betrachte man die Ringe £ und % (§ 20, Beispiel 5). Die durch 
f(m) = K(m) erklärte Abbildung /: 3 -*• 3n definiert einen Ringhomomorphis-
mus. Dieses Beispiel zeigt auch, daß das homomorphe Bild eines nullteiler-
freien Ringes Nullteiler besitzen kann; man wähle etwa n — 6. 

21.2 Nützlich ist für das Folgende die 
Definition: Ist R ein Ring, r e R und T cR, so sei 

r + T = {x: x = r + t, t e T}, 
rT = {x: x = rt, t e T}; 

entsprechend seien T + r und Tr erklärt. 

Der nun eingeführte Begriff des Ideals ist in der Algebra von außerordent-
licher Bedeutung. 

Definition: Eine Teilmenge a des Ringes R heißt ein Ideal, wenn gilt: 
(1) Es ist a eine Gruppe bezüglich der Addition. 
(2) Für jedes r eR ist ra c a und ar c a. 

Da in der Forderung (2) speziell r e « gewählt werden kann, ist ein Ideal ü 
gewiß ein Unterring von R; darüber hinaus liegen die Produkte ar und ra 
sogar schon dann immer in a, wenn nur einer der Faktoren a aus a stammt. 
Wir bezeichnen Ideale meist mit kleinen deutschen Buchstaben. 

Beispiel 1. Jeder Ring R besitzt die Ideale {0} und R. 

Beispiel 2. Die sämtlichen Ideale des Ringes ^ sind unter den sämtlichen 
additiven Untergruppen {0} und (n = 1, 2, 3, . . . ) von £ zu finden (vgl. 
§ 12.2). Alle diese Untergruppen sind aber, wie unmittelbar zu sehen ist, 
bereits Ideale von 3- Alle Ideale von j! sind also {0} und n$ (n = 1, 2, 3, . . . ) . 

Beispiel 3. Ein Schiefkörper S besitzt nur die Ideale {0} und S. Ist nämlich 
a c S ein von {0} verschiedenes Ideal, so gibt es ein a e a, a 4= 0, und in S 
existiert das Inverse a~l von a. Nach (2) wird also a~la — 1 e 0 und nun auch 
s = sl e a für jedes seS. 

Unser Ziel ist die Bestimmung aller homomorphen Bilder eines vorgelegten 
Ringes R. Der folgende Satz schafft die Möglichkeit einer Anwendung von 
Satz 19.2 (vgl. auch Satz 12.4). 

Satz 2: Es sei R ein Ring und ,, = " eine Äquivalenzrelation auf R. Diese 
Äquivalenzrelation ist genau dann eine Kongruenzrelation, wenn die Äquiva-
lenzklassen die Nebenklassen r + 0 eines Ideals a c R sind. Dabei ist a die Menge 
aller a e R mit a = 0. 
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Beweis: 
a) Ist ,, = " eine Kongruenzrelation auf R, so wird durch sie nach Satz 12.4 
eine Partition auf R definiert, die aus den Nebenklassen r + a eines Normal-
teilers, also einer Untergruppe a der additiven Gruppe von R besteht. Dabei 
besteht a aus allen a e R mit a = 0. Wir haben zu zeigen: Aus ae a und r e R 
folgt rae a und ar e a. Dazu multipliziere man die Kongruenzen a = 0 und 
r = r. Es wird dann ra = 0 und ar = 0, also rae a und ar e a. 
b) Die Nebenklassen r + a einer additiven Untergruppe a von R definieren 
eine Partition, also eine Äquivalenzrelation „ = " auf R; erst recht gilt dies, 
falls o sogar ein Ideal ist. Nach Satz 8.2 lautet die Äquivalenzrelation: 

a = a' o a! — ae a. 
Es sei nun a = a' und b — b'. Zu zeigen ist o + b = a' + b' und ab = a'b'. 
Mit Elementen a{ e a lauten die Voraussetzungen a' = a + ai und 
b' — b + o£2- Addition liefert a' + b' = a + b -f- aa, also a + 6 = a' + b'. 
Multiplikation ergibt a'b' = ab + ««2 + <*i b + xixz — ab + x 4, also 
ab = a'b' ; dabei wurden (2) und (1) benutzt. 
Eine Kongruenzrelation ,, = " auf einem Ring R ist also durch die Angabe des 
Ideals a cR aller Ringelemente r mit r = 0 eindeutig bestimmt. Man schreibt 
deshalb a = a' mod a, und das bedeutet a' — ae a. Nur im Falle R — % 
haben sich an Stelle von a = a' mod n<$ die bereits in § 20.1 eingeführten 
kürzeren Schreibweisen eingebürgert. 
Es sei R ein Ring und ö ein Ideal aus R. Wir denken an die additive Struktur 
von R und bezeichnen die Menge {a, r + ö, 3 + a, . . . } der voneinander ver-
schiedenen unter den Nebenklassen von a wie in § 12 mit Rja. Nach Satz 2 
entspricht Rja einer Aufteilung von R in Kongruenzklassen, und nach Satz 
19.2 werden durch 

(r + 0) + (« + «) = (r + s) + a, 
(r + a) • (« + a) = ra + a 

eine Addition und eine Multiplikation auf Rja erklärt; die Addition ist be-
reits aus § 12 bekannt. Da Rja aus den verschiedenen Kongruenzklassen modu-
lo a besteht, ist die algebraische Struktur Rja auf Grund von Satz 19.2 sogar 
ein homomorphes Bild des Ringes ¿2; der Zugehörige Homomorphismus ist 
definiert durch /(r) = r + a. Nach Satz 1 ist also Rja ein Ring. Dies recht-
fertigt die 

Definition: Ist a ein Ideal des Ringes R, so heißt Rja der Restklassenring 
von R nach 0. 
Man rechnet in Rja wie in R und behandelt dabei Elemente aus a wie Null. 
Auch bei der folgenden Definition denken wir in erster Linie an die additive 
Struktur von R. 

Definition: Unter dem Kern f eines Ringhomomorphismus f von R auf R* 
versteht man die Menge aller reR mit f(r) = 0. 
In Analogie zu Satz 12.2 steht nun der folgende Homomorphiesatz für Ringe; 
er besagt in der Hauptsache, daß mit den Restklassenringen Rja alle homomor-
phen Bilder von R gefunden sind. 
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Satz 3s Es sei R ein Ring. Dann gelten die folgenden Aussagen. 
a) Ist Ö ein Ideal von R, so ist der Restklassenring R/a ein homomorphes Bild 
von R. Der vermittelnde Homomorphismus f lautet f(r) = r + a. 
b) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern f, so ist f ein 
Ideal von R . 
c) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern !, so gilt 
R* ~ Rfl. Der Isomorphismus <p: R/t -> R* lautet <p(r + f ) = f(r). 
d) Ein Ringhomomorphismus f von R auf R* ist genau dann ein Isomorphismus, 
wenn der Kern von f nur aus der Null allein besteht. 

Beweis : 
a) Das wurde bereits gezeigt. 
b) Nach Satz 12.2 ist f eine additive Untergruppe von R. Aus k et und r e R 
folgt ferner f(rk) = f(r)f{k) = 0, also rk e f, und f(kr) = f(k)f(r) = 0, also 
kr s t 
c) Nach Satz2 und Satz 19.2 ist R* einem Restklassenring von Risomorph. Wir 
bezeichnen ihn mit R/a. Der vermittelnde Isomorphismus <p: R/a ->• R* war 
<p(r + a) = f(r). Dabei besteht a aus allen denjenigen Elementen keR, für 
die f(k) = /(0) die Null von R* ist: a = t. 
d) Die Abbildung / ist genau dann bijektiv, wenn ihr Kern {0} ist. 

B e i s p i e l 1. Ein beliebiger Ring R hat Rj{0} als isomorphes und den Nullring 
R/R als homomorphes Bild. 

B e i s p i e l 2. Der Ring $ hat 3/(0} als isomorphes Bild. Die sämtlichen weiteren 
homomorphen Bilder sind die Restklassenringe >3n-

B e i s p i e l 3. Die einzigen homomorphen Bilder eines Schiefkörpers 8 sind 
S/{0}, also S selbst, und der Nullring S/S. 

21.3 Wir beschließen unsere Überlegungen mit dem Analogon zu Satz 14.2 
für Ringhomomorphismen; an Stelle der Normalteiler stehen jetzt die Ideale. 

Satz 4s Es sei f:R-> R* ein Ringhomomorphismus von R auf R* mit dem 
Kern B, ferner M die Menge aller Ideale ö von R mit l c a c R und weiterhin M* 
die Menge aller Ideale a* von R*. Dann definiert rp{a) = /(a) eine bijektive Ab-
bildung <p: M M*, und es ist = /-1(a*). 

Beweis : Betrachtet man zunächst / als einen Homomorphismus der 
additiven Gruppen von R und R*, so bleibt über Satz 14.1 hinaus nur zu 
zeigen, daß mit a c R auch /(a) und mit a* c R* auch /-1(a*) ein Ideal ist. Es 
sei also zunächst Ö ein Ideal von R. Da sich jedes r* e R* in der Gestalt /(r) 
mit einem r e R schreiben läßt, wird r*f(a) = f(r)f(a) — f(ra) c f(a) und 
f(a)r* — /(a)/(r) = f(ar) c /(«); also ist die additive Untergruppe /(a) von 
R* sogar ein Ideal. Ist umgekehrt a* ein Ideal von R* und r e R, so werden 
r/_1(a*) und f~\&*)r durch / in a* abgebildet; also gilt rf~1(a*) c / -1(ö*) und 
/_1(a*)r c / -1(a*), und auch die additive Untergruppe / -1(a*) von R ist sogar ein 
Ideal. 
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A u f g a b e 1: Man bestimme alle homomorphen Bilder des Restklassen-
ringes 3„. 

A u f g a b e 2: Es seien H und a Ideale des Ringes R mit i c a c R. Dann 
gilt 

R/a ~ (i?/f)/(ü/i). 
Beweis ? 

§ 22 Einbettung von Integritätsbereichen in Körper 

22.1 Die folgenden Überlegungen stehen in deutlicher Analogie zu denen in 
§ 13. Es sei ein Ring R gegeben. Wir fragen: Wann gibt es einen Schiefkörper 
S d -R ? Damit das möglich ist, muß sicher R nullteilerfrei sein, weil S keine 
Nullteiler enthält. Wieder kennt man Beispiele nichtkommutativer nullteiler-
freier Ringe, die eine Einbettung in Schiefkörper nicht gestatten; aber es gilt 
der wichtige 

Satz 1: Jeder Integritätsbereich I läßt sich in einen eindeutig bestimmten 
kleinsten Oberkörper Q, den Quotientenkörper von I, einbetten. Das heißt: Zu 
einem vorgegebenen Integritätsbereich I gibt es einen Körper Q mit folgenden 
Eigenschaften. 
(1) Q^l-
(2) Ist K ein Körper, der I umfaßt, K 3 1 , so gilt K d Q Z> I. 
(3) Ist Q' ein Körper, der an Stelle von Q die Bedingungen (1) und (2) erfüllt, 
so gilt Q' = Q. 

Beweis: Angenommen, die Existenz eines Körpers Q mit den Eigen-
schaften (1) und (2) sei bereits bewiesen. Dann gilt gewiß die Eindeutigkeits-
aussage (3). Denn für K = Q' bekommt man Q' d Q, und analog wird umge-
kehrt Q 3 Q', insgesamt also Q' = Q. Zu zeigen bleibt also die Existenz eines 
Körpers Q mit den Eigenschaften (1) und (2). 
Wieder nehmen wir für den Augenblick an, es gäbe einen Körper K d / ; dann 
enthält er speziell die Teilmenge 

UK = {y:y = j,a,bel,b+0}3l. 

Mit den Bruchrechenregeln von Satz 20.5 prüft man nach, daß UR ein Unter-
körper von K ist. Ist ferner U ein Unterkörper von K, der I umfaßt, so hegen 
in U auch die Lösungen der Gleichungen yb = a, a, b e I, b =(= 0, und das 
heißt U D Un-InKist also TJK der kleinste Unterkörper, der I umfaßt. Wären 
wir von einem anderen Körper K* d I ausgegangen und hätten entsprechend 
UK* gebildet, so brauchten wir wegen UK — UK* diese beiden Körper nicht 
als verschieden anzusehen. Also ist UK der zu konstruierende Körper Q. 
Unsere Konstruktion muß sich an den in UK gültigen Rechenregeln 

(4) -- = — o ad = 6c, o d 
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(5) 
a c ad 4- bc 

(6) 
a c ac 
b ' d bd 

orientieren (bd =|= 0). 
Nun bilden wir das cartesische Produkt M = I x I0 4= £ aller Paare (a, b) 

Das ist eine Äquivalenzrelation auf M; der Nachweis erfolgt wie in Aufgabe 
5.2 und benutzt die Kommutativität und in Gestalt von Satz 20.2 die Null-
teilerfreiheit von I. Die Addition und die Multiplikation auf M werden durch 

erklärt; wegen 6 =(= 0, eZ =(= 0 und der Nullteilerfreiheit von / ist, wie es sein 
muß, bd 4= 0. Die Äquivalenzrelation auf M wird nun eine Kongruenzrelation: 
Aus (a,b) ~(a',b') und (c,d) ~(c',d'), also ab' = ba' und cd' = de', folgt, wie 
man leicht bestätigt, (ad + bc)b'd' = bd(a'd' + b'c') und acb'd' = bda'c', 
also (a, b) + (c, d) ~ (a', b') + (c', d') und (a, b) • (c, d) ~ (a', b') • (c', d'). 
Es sei A die Menge der Kongruenzklassen von M und [a, 6] die Klasse von 
(a, b). Nach Satz 19.3 werden durch [a, 6] + [c, d] = [ad + bc, bd] und 
[a, 6] • [c, d] — [ac, bd\ eine Addition und eine Multiplikation auf A erklärt. 
Wir wollen zeigen, daß A ein Körper ist. Zur Vereinfachung der dazu nötigen 
Rechnungen bemerken wir, daß für c =(= 0 gilt: [a, 6] = [ac,bc]; es ist ja 
(a, b) ~ (ac, bc). Man darf also in den Klassensymbolen erweitern oder 
kürzen. Ferner gibt es wenigstens ein he I, h =t= 0; dieses Element h sei im 
folgenden fest gewählt. Bei der Addition dreier Klassen kann man wegen der 
Möglichkeit des Erweiterns annehmen, die zweiten Komponenten seien alle 
dieselben, und bekommt so das Assoziativgesetz 

([«, d] + [b, d]) + [c, d] = [a + b, d] + [c, d] = [(a + b) + c, d] 

= [« + (& + c), d] = [a, d] + [b + c, d] = [a, d] + ([6, d] + [c, d]). 

Die Addition ist auch kommutativ, [0, h\ ist Nullelement und [—a, 6] additives 
Inverses von [a, i>]. Die Multiplikation ist ersichtlich assoziativ und kommutativ. 
Es gilt das Distributivgesetz 

mit a, b e I, b 4= 0, stellen uns unter (a, b) den Bruch — vor und definieren 
6 

(4') (o, b) ~ (c,d) o ad = bc. 

a 

(4') 

(5') 

(6') 

(a, 6) + (c, d) = (ad + bc, bd), 

(a, b) • (c, d) = (ac, bd) 

[o, d]([b, d] + [c, d]) == [a, d] • [6 + c, d] = [ab 4- ac, ¿2] 
= [ab, d2] 4- [ac, d2] = [o, d] • [b, d] 4- [a, d] • [c, dj. 

Einselement ist [h,K\eA. Es gilt [a, 6] = [0, A] genau dann, wenn a = 0 ist; 
eine von Null verschiedene Klasse [a, 6] wird also durch a 4= 0 gekennzeichnet, 
und sie besitzt dann das Inverse [ö, a] e A. 
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In dem Körper A betrachten wir die Teilmenge T aller Klassen der Gestalt 
[ah, h],ael. Die Summe [ah, K] + [bh, A] = [(a + b)h, A] und das Produkt 
[ah, A] • [bh, A] = [abh, A] zweier Klassen aus T liegen wieder in T. Die durch 
<p(a) = [ah, A] definierte Abbildung <p: I -> T erweist sich als bijektiv, und 
die Gleichungen <p(a + b) = [(a + b)h, A] = [ah, A] + [bh, A] = <p(a) + <p(b) 
und <p{ab) = [abh, A] = [ah, A] • [6A, A] = <p(a)<p(b) zeigen ihre Relations-
treue. Also gilt T ~ I. 
Wir ersetzen die Teilstruktur T von A durch I und bekommen auf diese Weise 
einen zu A isomorphen Körper Q d I. Der Körper A besteht aus allen Klassen 
[a, £>] = [ah, A] • [A, bh] = [ah, A] • [bh, A]-1, also Q aus allen Elementen y 

a 
der Form ab~l = —-b 4= 0. Es ist also Q der zu konstruierende Körper, und 

o 
Satz 1 ist bewiesen. 

22.2 In § 13 wurde aus der additiven Struktur 9t die additive Gruppe von 3 
konstruiert. Auf der Teilmenge 9t c 3 ist nun nach Satz 2.1 auch eine Multi-
plikation erklärt. Nach den Regeln von Satz 20.1 besteht höchstens eine Mög-
lichkeit, diese Multiplikation derart auf ganz 3 auszudehnen, daß 3 ein Ring 
wird. Umgekehrt: Definiert man die Multiplikation gemäß Satz 20.1 auf ganz 
3, so kann man das Erfülltsein des Assoziativ-, Kommutativ- und Distributiv-
gesetzes dieser zweiten Verknüpfung von 3 mit Hilfe von Satz 2.1 durch wenige 
Fallunterscheidungen nachprüfen. Damit ist der kommutative Ring 3 aus 9t 
konstruiert. Er enthält keine Nullteiler; denn gäbe es von Null verschiedene 
a, b mit ab = 0 in 3, so auch in 9t, was nicht der Fall ist. Nach Satz 1 besitzt 
3 also einen Quotientenkörper; wir nennen ihn £ und haben damit auch den 
Körper £} der rationalen Zahlen aus 9t gewonnen. 

A u f g a b e 1: Es sei R ein kommutativer Ring und S cR die Menge der 
von Null verschiedenen Nichtnullteiler von R. Ist 8 =(= so läßt sich R in 

r 
den Quotientenring Rs aller —, r e R, s e S, einbetten; es gilt 1 e Rs. Beweis ? 

s 
A u f g a b e 2: Es seien I i und 12 isomorphe Integritätsbereiche mit den 

Quotientenkörpern Qi o I i und Qz d H- Man zeige, daß sich der Isomorphismus 
/ : Ii -> I2 von Ii auf I2 zu einem Isomorphismus <p: Qi~> Q2 von Qi auf (¿2 
fortsetzen läßt. (Das heißt: Es gibt einen Isomorphismus <p von Qi auf Qz 
mit <p(a) = f(a) für jedes a e Ii.) 

§ 23 Der komplexe Zahlkörper 6 

23.1 In 9t ist nach § 2 eine Addition erklärt; aber die Gleichung a + x = b 
mit o, 6 e 9t braucht keine Lösung x e 9t zu haben. In § 13 haben wir die 
fehlenden Lösungen hinzukonstruiert und dadurch die additive Gruppe von 
3 gewonnen. Die ebenfalls nach § 2 auf 9t c 3 zusätzlich erklärte Multipli-
kation ließ sich, wie wir gerade sahen, auf ganz 3 fortsetzen derart, daß 3 ein 
Ring wird. Aber die Gleichung ax = b, a =|= 0. mit a,be 3 war im allgemeinen 
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in ^ nicht lösbar. In § 22 haben wir wiederum diese Lösungen hinzukonstruiert 
und Ü erhalten. 
Ist nun ein Körper K vorgelegt, so kann man fragen, ob in ihm die Gleichung 
x2 + 1 = 0 lösbar ist, ob es also ein Element i e K mit i2 + 1 = 0 gibt. Ist 
es vorhanden, so erfüllen wegen der Nullteilerfreiheit von K genau die Elemente 

die Gleichung x2 -f 1 = x2 — i2 — (x + i)(x — i) = 0. Ist es nicht vor-
handen, so konstruieren wir wiederum einen eindeutig bestimmten minimalen 
Oberkörper E o K, in dem die Gleichung x2 + 1 = 0 lösbar wird. 

Satz 1: Jeder Körper K läßt sich in einen eindeutig bestimmten kleinsten 
Oberkörper E d K einbetten, in dem die Gleichung x2 + 1 =0 lösbar ist. Das 
heißt: Zu einem vorgegebenen Körper K gibt es einen Körper E mit folgenden 
Eigenschaften: 
(1) EdK. 
(2) Die Gleichung + 1 = 0 besitzt in E eine Lösung. 
(3) Ist LoK ein Körper, in dem die Gleichung x2 + 1 = 0 lösbar ist, so gilt 
LoEoK. 
(4) Ist E' ein Körper, der an Stelle von E die Bedingungen (1), (2), (3) erfüllt, 
so gilt E' = E. 

B e w e i s : Die Eindeutigkeitsaussage (4) ergibt sich wie in den Beweisen 
der Sätze 13.1 und 22.1. Zu zeigen bleibt also die Existenz eines Körpers E mit 
den Eigenschaften (1), (2), (3). Ist die Gleichung x2 + 1 = 0 schon in K lös-
bar, so ist E = K; wir nehmen daher an, daß —1 in K kein Quadrat ist. 
Angenommen, es gibt einen Körper Lz>K mit einer Lösung i e L der Gleichung 
x2 + 1 = 0; dann enthält L die Teilmenge 

Ul = {«: z = a + bi, a,b e K} D K, 

und man prüft leicht nach, daß Ul ein Unterkörper von L ist. Speziell liegen 
wegen 
(5) (o + bi) + (c + di) = (a + c) + (6 + d)i, 
(6) (a + bi) • (c + di) = (ac — bd) + (ad + bc)i 
Summe und Produkt zweier Elemente aus Ul wieder in Ul, und das Inverse 
von a + bi 4= 0 wird, wie die Probe bestätigt, das Element 

a b . 
o2 + b2 a2 + 62* 

dabei ist der Nenner a2 + b2 nicht Null, weil andernfalls o2 = —b2 und b =f= 0, 

also doch —1 -= e K in K Quadrat wäre im Widerspruch zur Annahme. 

Ferner gilt 

(7) a + bi = c + di o a = c und b = d; 
Q^ Q 

wäre nämlich a + bi — c + di und b =(= d, so würde i = e K folgen, was 
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gerade nicht der Fall war. Ist U ein Unterkörper von L, der K und i umfaßt, 
so gilt gewiß U o Ul. In L ist also UL der kleinste Körper mit UL 3 K, in dem 
die Gleichung a;2 + 1 = 0 lösbar ist. 
Hätten wir einen anderen Körper L* d K mit einer Lösung i* e L* der Glei-
chung a;2 + 1 = 0 zugrundegelegt, so würde 

UL ~ UL* = {z*: z* = a + bi*, a,beK} 

gelten vermöge f(a + bi) = a + bi*. Also ist UL der zu konstruierende Körper 
E. Wieder ist auf Grand der Beziehungen (5), (6), (7) klar, wie wir in unserer 
folgenden Konstruktion vorzugehen haben. 
Wir bilden das cartesische Produkt M = K x K aller (a, b) mit a,be K \ 
intuitiv bedeute (a, b) die Zahl a + bi. Unsere Vorüberlegung (7) hinsichtlich 
der Gleichheit zweier solcher Zahlen zeigt, daß wir eine Äquivalenzrelation auf 
M nicht einzuführen haben. Wir definieren 

(5') (o, b) + (c, d) = (a + c,b + d), 

(6') (a, b) • (c, d) = (ac — bd, ad + 6c) 

und bestätigen in kurzen Rechnungen die Ringaxiome. Die Multiplikation ist 
kommutativ, (1,0) ist Einselement, und jedes (a, b) 4= (0, 0) hat in M ein 
Inverses. Also ist M ein Körper. Jedes (a, b) e M läßt sich in der Gestalt 
(a, b) = (a, 0) + (0, b) oder 

(8) (a, b) = (a, 0) + (b, 0) • (0,1) 

schreiben; dabei ist (0, l)2 = (—1, 0). 
Nun kommen die Änderungen der Schreibweise. Die Teilstruktur 

T = {(a, 0): aeK}cM 

ist isomorph K; man bilde dazu einfach (a, 0) auf a ab. In M ersetzen wir T 
durch K und schreiben i für (0, 1); dann entsteht ein Erweiterungskörper 
E d K, dessen Elemente nach (8) die Gestalt a bi mit a,be K und i2 = —1 
haben. Damit ist der gesuchte Körper E konstruiert und Satz 1 bewiesen. 

23.2 Aus K = SR entsteht auf diese Weise der komplexe Zahlkörper E = G E . 
Damit haben wir, von der Struktur 9t ausgehend, abgesehen von SR alle Rechen-
bereiche Q, SR, @ konstruiert und ihre Widerspruchsfreiheit auf die von 91 
zurückgeführt. Die Konstruktion von SR holen wir in § 32 nach. 

23.3 Ist K ein Körper, in dem ein i e K existiert, das die Gleichung x2 + 1 = 0 
löst, so sind, wie wir bereits wissen, i und — i die beiden einzigen Lösungen von 
«2 + 1 = 0 . Sie fallen genau dann zusammen, i — — i , wenn (1 + 1)» = 0, 
also %{K) = 2 ist, und in diesem Fall ist einfach i — 1. 
Von zahlentheoretischem Interesse ist die Frage, in welchen Primkörpern »3j> 
die Gleichung x2 + 1 = 0 lösbar ist. Durch Probieren stellt man beispielsweise 
fest, daß x% + 1 = 0 in lösbar, in dagegen unlösbar ist. Die Antwort 
gibt der 
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Satz 2: Es sei p eine Primzahl. Genau dann ist die Gleichung x2 + 1 = 0 
in lösbar, wenn p = 2 oder p = 1 (4) ist. Oder: Genau dann ist die Kongruenz 
x2 = —l(p) in ganzen Zahlen x lösbar, wenn p = 2 oder p eine Primzahl der 
Gestalt 4n + 1 ist. 

Beweis: Der Fall p = 2 ist bereits erledigt. Wir haben weiter zu zeigen, 
daß die Gleichung x2 + 1 = 0 für eine Primzahl p der Form 4» + 1 in 
lösbar, für eine Primzahl p der Form 4ra + 3 dagegen in unlösbar ist. 
a) Es sei p = 4n + 1. Wir sind fertig, wenn wir eine natürliche Zahl m mit 
ni2 = —1(£>) angeben können. Nach Satz 20.6 gilt nun (p — 1)! = —1 mod p. 
Hierin wird modulo p 

(p — l)! = 1 • 2 • • • (2n)(2n + l)(2w + 2) • • • (4») 
= 1 • 2 • • • (2n)(2n + 1 — p)(2n + 2 — p) • • • (4» — p) 
= 1 • 2 • • • (2n)(—2n)(—(2n — 1)) • • • (—1) 
= (2n)!(2»)!. 

Wir können also m = (2n)\ wählen. 
b) Es sei p = 4w + 3. Wir nehmen an, es gäbe ein a e mit a2 = —1, und 

p— 1 potenzieren mit der ungeraden Zahl —-—. Das liefert ai>_1 = —1. Sicher ist a ¿t 
nicht Null, liegt demnach in der multiplikativen Gruppe von 3p» die aus 
p — 1 Elementen besteht. Anwendung von Satz 9.4 ergibt also aP'1 = 1. Aus 
beidem zusammen folgt 1 = —1, was wegen x(3p) ^ 3 nicht möglich ist. 

Aufgabe 1: Es sei M die Menge aller Matrizen der Gestalt 

(J!) <a>6e3i>; 
auf M seien die Matrizenaddition und die Matrizenmultiplikation eingeführt. 
Man zeige M ~ (L 

Aufgabe 2: Es sei K ein Körper, in dem kein Element a mit a2 = 2 
existiert. Man konstruiere einen minimalen Oberkörper E o K, der ein solches 
Element enthält. 

§ 24 Endomorphismenringe abelscher Gruppen 

Es sei G — {a, b, c, . . . } eine additiv geschriebene abelsche Gruppe und 
R — {<x, ß, y, ...} die Menge aller Endomorphismen von G, also die Menge 
aller relationstreuen Abbildungen von G in sich (vgl. § 19). Da die identische 
Abbildung e in B liegt, ist R nicht leer. Mit oc, ß e R ist wegen <xß(a + b) 
= rx(ß(a) + ß(b)) = xß(a) + aß(b) auch aßeR, und diese Multiplikation ist 
assoziativ nach Satz 3.1; sie besitzt das Einselement e. 
Wir führen nun auf R noch eine Addition ein. Dies geschieht, wie es für Funktio-
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nen üblich ist, durch die Festsetzung (a + ß)(a) = x(a) + ß(a). Wir müssen 
nur nachprüfen, daß mit x, ßeR auch x + ß ein Endomorphismus ist: 

(a + ß)(a + b) = a(a + b) + ß(a + b) = a(a) + a (b) + ß(a) + ß(b) 
= a(a) + ß(a) + a(6) + /?(&) = (a + /9)(o) + (« + ß)(b). 

Hierbei haben wir die Kommutativität von G benutzt. Aus der Assoziativität 
und der Kommutativität der Addition in 0 folgen dieselben Eigenschaften für 
die Addition in R. Nullelement in R ist der Endomorphismus o, der jedes g e G 
auf die Null abbildet: Die für jedes « e i und jedes aeG gültige Beziehung 
(a + o)(a) = a(a) + 0 = a(a) bedeutet ja a + o = a für jedes x e R . Ist 
schließlich a £ R, so definieren wir —x e R durch (—a)(a) = —a(o); dabei ist 
—x wegen (—x)(a + b) = —(x(a) + x(b)) = —x(b) — x(a) = —x(a) — oc(b) 
= (—x)(a) + (—oc)(6) wieder ein Endomorphismus und a + (—«) = o. 
Um zu zeigen, daß R ein Ring ist, weisen wir noch die Distributivgesetze nach. 
Es ist x(ß + y)(a) = x(ß(ä) -)- y(a)) = aß(a) + ay(a) = (xß + xy)(a) für jedes 
aeG, also x(ß + y) = aß + xy, und entsprechend erhält man (ß + y)a 
= ßx + yx. Damit haben wir den 

Satz l s Die Menge R aller Endomorphismen einer (additiv geschriebenen) 
abdachen Gruppe G ist (bezüglich der oben eingeführten Verknüpfungen) ein Ring, 
der sogenannte Endomorphismenring von G. 

Allgemeiner nennt man jeden Ring von Endomorphismen einen Endomorphis-
menring. Die Endomorphismenringe haben für die Theorie der Ringe eine 
ähnliche Bedeutung wie die Transformationsgruppen für die Gruppentheorie. 
Es ist nicht schwer, in Analogie zu Satz 7.2 zu zeigen, daß jeder Ring einem 
Endomorphismenring isomorph ist. Man benutzt dabei das Ergebnis der 

Aufgabe 1: Jeder Ring R läßt sich in einen Ring E mit Einselement ein-
betten. Beweis ? 

§ 25 Polynomringe 

25.1 Unter einem Polynom versteht man in der Algebra formal zwar dasselbe, 
inhaltlich aber etwas anderes als in der Analysis. Das ändert indes nichts daran, 
daß die später von uns gewonnenen Sätze doch wieder eine bekannte Gestalt 
annehmen. Wir beginnen mit der 

Definition: Es seien R und R* oR kommutative Ringe mit demselben Eins-
element 1 e R. Es sei x 6 R*. Dann heißt ein Ausdruck der Gestalt 

n 

/(<*) = 2 W = an«-n + «n-l«"-1 + • • • + Oo 6 R* («» e R, X° =Df 1) 
r = 0 

ein Polynom in x mit Koeffizienten aus R. Die Menge aller Polynome in x mit 
Koeffizienten aus R wird mit i?[a] bezeichnet. 
Hierzu machen wir zwei Bemerkungen. Erstens ist es in Anlehnung an die 
Gepflogenheiten in der Analysis auch in der Algebra üblich, etwa /(a) für ein 
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Polynom in a zu schreiben, ohne daß man damit / als ein Symbol für eine Ab-
bildung ansieht. Zweitens ist die zu Beginn der Definition ausgesprochene 
Voraussetzung, etwas umständlicher formuliert, die folgende: Es seien R und 
R* D R kommutative Ringe mit Einselementen e e R* und le . f i , und es gelte 
e = 1. Diese letzte Forderung ist, wie man durch Beispiele zeigen kann, nicht 
von selbst erfüllt (vgl. hierzu die Lösung von Aufgabe 24.1). Sollten aber R* 
und R sogar Integritätsbereiche sein, so ist e — 1 beweisbar: Es ist ja l(e — 1) 
= l e — 1 - 1 = 1 — 1 = 0 , wegen der Nullteilerfreiheit von R* also e = 1. 
Speziell bedeutet das: Ist L ein Oberkörper von K, so ist das Einselement von K 
auch die Eins von L. Da nun 1 e R auch Eins von R* sein soll, kann man, und 
das ist der Sinn dieser Forderung, in einem Polynom /(a) Koeffizienten 1 wie 
gewohnt weglassen. 
Es ist klar, daß unter den genannten Voraussetzungen i?[a] ein kommutativer 
Untening von R* mit dem Einselement 1 ist. Es gilt ja 

n m M 
(1) 2°**'' + 2 V — rnit sk = ai + bx und M = Max(w, m), 

o o o 
n m n+m 

(2) Java? • 2bvaß = 2px<xx mit px = + axbx-i + ... + axb0; 
o o o 

dabei haben wir av = bß = 0 gesetzt für v > n und ¡i > m. Das additive Inverse 
—f(x) eines Polynoms /(a)e Ä[a] bekommt man, indem man alle Koeffizienten 
von /(a) mit einem Minuszeichen versieht, und auch die Null ist ein Polynom. 

Beispiel 1. Man wähle R = % R* = 3t und a = J/2. Der Ring 3[]/2] ist dann, 
da die geraden Potenzen von |/2 Elemente aus 3 und die ungeraden Potenzen 
Elemente der Gestalt mj/2, m e j , liefern, der Ring aus § 20.1, Beispiel 4. Zwei 
Polynome in a = ]/2 mit Koeffizienten aus 3 können also dieselben sein, auch 
wenn sie nicht koeffizientenweise übereinstimmen. 

Beispiel 2. Wählen wir R = Q, R* = SR und a = |/2, so bekommen wir den 
Ring Q[]/2], der, wie wir in § 20.3, Beispiel 6, sahen, sogar ein Körper ist. 

Beispiel 3. Es ist 3t[i] = £. 

Beispiel 4. Der Ring besteht genau aus allen reellen Zahlen der 
Gestalt a + b f i + c(|/2)2 mit a, b, c e ß . 

25.2 Wir gehen wieder von einem kommutativen Ring R mit 1 6 R aus und 
stellen die Frage: Gibt es einen kommutativen Oberring R* mit demselben 
Einselement, der ein Element x e R * enthält, das die Bedingung 
(3) f(x) = anx» + an-!X»-i + . . . + a o = 0 o a, = 0 

(areR; v = 0,1,2 n) 
erfüllt ? Das Rechnen in dem Polynomring ü[a;] wäre dann durch das Rechnen 
in R und die Forderungen (3), (4), (5) vollständig beschrieben. 

Definition: Es sei R ein kommutativer Ring, 1 e R, und R* ein Oberring von 
R. Ein Element x e R* heißt Unbestimmte Über R, wenn es die drei Bedingungen 
(3), (4), (5) erfüllt-. 
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(4) 1 • x = x • 1 = x, 
(5) rx = xr für jedes r e R. 
Wir zeigen nun, daß es zu jedem R eine solche Unbestimmte x über R, also 
auch den Polynomring gibt. 

Satz 1: Es sei R ein kommutativer Ring und 1 6 R. Dann existiert ein 
kommutativer Oberring R[x\ d R aller Polynome /(x) in einer Unbestimmten x 
über R mit Koeffizienten aus R. Er besitzt ebenfalls das Einselement 1. 

Beweis : Die letzte Behauptung ist, falls die übrigen bewiesen sind, 
trivial. Wir führen nun wieder eines unserer Konstruktionsverfahren durch. 
Mengentheoretisch gesichert ist die Existenz der Menge R00 aller unendlichen 
Folgen (ro, n, . . . ) von Elementen n aus R (§ 1.3). Wir könnten uns unter 
der Folge (r0, r\, r2, ..., rn, r„+1, . . . ) das Polynom rnxn + rn-xxn~l + . . . + r0 
vorstellen, wenn alle rv mit v > n Null wären. Also betrachten wir die Teil-
menge M cR°° aller derjenigen Folgen (oo, a\,a%, . . . ) , in denen nur endlich 
viele ar ungleich Null sind. Aus dieser Menge M konstruieren wir 
Wir führen auf M nach dem Vorbild von (1) und (2) eine Addition und eine 
Multiplikation durch 

(1') (oo, «1. «2, • • •) + (&o> h,h, •••) = (oo + b0, + «2 + &2, •• •), 

,„,. (oo. <*i, «2, • • •) • (&o> h , • • •) = (Po, Pl,P2,-- •) 
[ ' mit f x = aobx + axbx-i + . . . + « A 
ein; dabei hat man nachzuprüfen, daß die Ausdrücke rechter Hand wieder 
Elemente von M sind. Wir überlegen uns jetzt, daß wir eine Äquivalenzrelation 
auf M nicht einzuführen brauchen: Zwei Polynome f(x) und g(x) sind genau 
dann gleich, wenn ihr Differenzpolynom f(x) — g(x) Null ist; nach (3) bedeutet 
das, daß f(x) und g(x) koeffizientenweise übereinstimmen müssen. Also müßte M 
bis auf die Schreibweise schon unser Ring sein. 
Ersichtlich ist M bezüglich der Addition eine abelsche Gruppe, weil R es ist. 
Ferner ist die Multiplikation kommutativ mit dem Einselement (1 ,0 ,0 , . . . ) eM. 
Rechnet man in 

((Oo, «1, «2, • • •) ' (&0> bi, ¿>2, •••))• (Co, Cl, C2, . . . ) = (r<>> n, Tz, . . . ) 
die Komponente r* aus, so bekommt man 

rx = Z(aib})ck (» + / + * = 
für den Fall, daß der zweite und der dritte Faktor linker Hand durch Klammern 
zusammengefaßt waren, bekommt man 

r'x = 1fli(b)Ck) (i + j + k = A) 
für die entsprechende Komponente des Ergebnisses. Es ist aber rx = r\ wegen 
der Assoziativität der Multiplikation in R, die sich damit auf M überträgt. 
Eine letzte leichte Rechnung bestätigt noch das Distributivgesetz. Also ist M 
ein kommutativer Ring mit Einselement. 
Nun kommen wieder die Änderungen der Schreibweise. Zunächst liefert die 
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Multiplikation eines Elements aus M mit (0, 1, 0, 0, ...) e M ein einfaches 
Resultat: 

(ao, oi, o2, . . . ) • (0, 1, 0, 0, . . . ) = (0, o0, «i, o2, • • • )• 

Außerdem stellt man sofort fest, daß die Teilstruktur T = {(r, 0, 0, ...): r e R} 
von M isomorph R ist. Schreibt man nun für ein Element (ao, oi, a2, ...) e M 
mit av = 0 für v > n die Summe 

(00,01,08, . . . ) = («o,0,0, . . . ) + (0,ai,0, . . . ) + . . . + (0,0, . . . ,0 , a„, 0, . . . ) 
und setzt (0, 1, 0, 0, ...) = x, so wird 
(ao, oi, o2, . . . ) = (oo, 0, 0, . . . ) + (oi, 0, 0, . . . ) • a; + • • • + (on, 0, 0, . . . ) • x». 
Nach der Ersetzung von T durch R bekommen also die Elemente (oo, «i, 02, . . . ) 
von M die Gestalt anxn + an-\xn~x + . . . -f ao- Die Forderungen (3), (4), (5) 
sind offensichtlich erfüllt. Damit ist i?[a;] konstruiert und Satz 1 bewiesen. 
Ziemlich selbstverständlich ist nun der 

Satz 2: Es seien R und R* D R kommutative Ringe mit demselben Eins-
element 1 6 R\ ferner sei x eine Unbestimmte über R und x ein Element von R*. 
Dann wird durch <p{f(x)) — f(oc) ein Homomorphismus <p von iü[a:] auf _ß[oc] 
definiert; dieser Homomorphismus ist ein Isomorphismus genau dann, wenn auch 
x eine Unbestimmte über R ist. 

Bewei s : Die Abbildung <p ist surjektiv und sicher relationstreu, da man 
in (1) und (2) statt a auch x schreiben kann. Sie vermittelt einen Isomorphismus 
genau dann, wenn ihr Kern nur aus der Null allein besteht; das bedeutet aber: 
es gilt (3) mit <x an Stelle von x, oder a ist Unbestimmte über R. 
Die am häufigsten benutzte Konsequenz von Satz 2 ist der 

Satz 3 (Ersetzungssatz): Es seien R und R* D R kommutative Ringe mit dem-
selben Einselement 1 e R; ferner sei x eine Unbestimmte über R und x ein Element 
von R*. Dann geht eine auf den Verknüpfungen von i?[x] beruhende Identität 
in R[x] in eine Identität in R* über, wenn in ihr x durch x ersetzt wird. 

Bewei s : Man wende den Homomorphismus <p von Satz 2 auf die be-
trachtete Identität aus i?[x] an. 
Dieser Satz, der von vornherein klar ist, ist von großer Bedeutung; wir werden 
ihn oft benutzen. 

25.3 Wir unterbrechen unsere Ausführungen durch einige Verabredungen und 
unmittelbar einsichtige Aussagen. 
Sind R und R* D R kommutative Ringe mit demselben Einselement 1 e R 
und ist x ein Element aus R*, so ist ü[a] der kleinste Ring, der R und x umfaßt; 
das gilt natürlich auch für den Spezialfall, daß x eine Unbestimmte über R ist. 
Man sagt auch, R\x\ entsteht aus R durch Ringadjunktion von a. Sind x und y 
Unbestimmte über R, so gilt ~ R[y] nach Satz 2. Ist x eine Unbestimmte 
über R*, so ist ein Unterring von Ji*[a;]. 
Hat f(x) e R[x\ die Gestalt f(x) = anxn + on_\xn~x + . . . + 00 mit an 4= 0, 
so heißt an der höchste Koeffizient und 00 das absolute Glied von f(x). Ein 

7 Hornfeck, Algebra 
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Polynom f(x) heißt normiert, wenn sein höchster Koeffizient Eins ist. Buch-
staben wie x,y, . . . werden vorwiegend für Ringerweiterungen durch Un-
bestimmte verwandt. Statt/(x), g(x) e -Kfz] schreibt man oft auch nur f,geR[x], 
Spricht man von Polynomen über R, so meint man Polynome aus Ä[a:]. 
Für das Rechnen im Polynomring J?[a;] weisen wir noch einmal auf die Unter-
schiede zur Analysis hin. Polynome sind keine Funktionen. Ein Polynom 
f(x) e R[x\ in einer Unbestimmten x ist nach (3) nur Null, wenn es das Nullpoly-
nom 0 e R ist. Zwei Polynome f(x), g(x) e R\x\ stimmen ebenfalls nach (3) 
genau dann überein, wenn sie koeffizientenweise übereinstimmen. Hierauf 
beruht die Methode des Koeffizienten Vergleichs. 
Schließlich gibt es auch Polynomringe ohne Einselement. Man betrachte etwa 
in 3[2] den Unterring 2$[x] aller Polynome mit geraden ganzen Zahlen als 
Koeffizienten (vgl. auch in diesem Zusammenhang die Aufgabe 24.1). 

25.4 Wir kommen zu einer weiteren 

Definition: Es sei R[x] der Polynomring einer Unbestimmten x über R. Das 
Polynom f(x) e ii[a;] habe die Gestalt f(x) = anxn + an-ix"'1 + • • • + «o mit 
an 4= 0. Dann heißt n der Qrad von f(x). 

Die von Null verschiedenen Elemente aus R sind also Polynome vom Grad Null; 
für das Nullpolynom ist kein Grad definiert. Polynome vom Grad Eins be-
zeichnet man auch als lineare Polynome. 

Sind f(x), g(x) und f(x) + g(x) von Null verschiedene Polynome aus R\x~\, so gilt 

(6) Grad (f{x) + g(x)) ^ Max(Grad f(x), Grad g(x)). 

Ist f(x)g(x) nicht Null, so bekommt man 

(7) Grad (f(x)g{x)) < Grad f(x) + Grad g(x), 
und in dieser letzten Beziehung steht jedenfalls dann das Gleichheitszeichen, 
wenn R sogar ein Integritätsbereich ist. 
Im Anschluß hieran stellen wir noch fest: Ist I ein Integritätsbereich mit 
Einselement, so ist auch /[a;] ein Integritätsbereich mit Einselement. 

25.5 Wieder gehen wir von einem kommutativen Ring R mit Einselement aus; 
x sei eine Unbestimmte über R. Dann ist auch ii[a;] ein kommutativer Ring mit 
Einselement; y sei eine Unbestimmte über R\pc\. Man sieht, daß y erst recht 
Unbestimmte über R ist. Aber auch x bleibt Unbestimmte über R[y], wie eine 
indirekte Überlegung sogleich zeigt. Sowohl R\pc\{y\ als auch R[y\\x] bestehen 
aus denselben Elementen, nämlich Summen von Ausdrücken der Gestalt rxmyn 

(r e R,m ^ 0, w ̂  0). Also gilt /J[z][2/] = ii[«/][a;], und man schreibt kurz 
R[x, y]. 
Sind a, ß beliebige Elemente eines kommutativen Oberringes R* d R mit dem-
selben Einselement 1 e R, so gilt entsprechend R[ai\\ß] = i?[/?][a], und man 
schreibt wieder einfach ii[a, ß]. Entsprechend bekommt man durch Adjunktion 
der Elemente ai, a2, ..ctne R* die Ringerweiterung Ä[ai, a2, . . . , a«] von R. 
Sollten die <xi sämtlich Unbestimmte über R[a.\, a.% a<-i] sein, so spricht 
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man von unabhängigen Unbestimmten und schreibt etwas suggestiver etwa xi 
statt aj. Die Elemente von -R[ai, a2, ...,<*«] sind Summen von Elementen der 
Gestalt ra? '4 ' . . . a ( r e R, et > 0). 
Natürlich gelten die Verallgemeinerungen der Sätze 2 und 3; wir formulieren 
nur die letztere. 

Satz 4s Es seien R und R* d R kommutative Ringe mit demselben Eins-
element 1 e R; ferner seien x\, ..., xn unabhängige Unbestimmte über R und 
«i, <X2, ..., a» Elemente von R*. Dann geht eine auf den Verknüpfungen von 
R\xi, xz, ..., xn] beruhende Identität in R[xi, x%, ..., xn] in eine Identität in R* 
über, wenn in ihr die Xi durch die on ersetzt werden. 

Da man in den Multiplikationsformeln (2) und (5) Elemente aus R kommutativ 
mit x multipliziert, wird der Ersetzungssatz natürlich falsch, wenn man auf 
die Kommutativität von R* verzichtet. 
Schließlich greifen wir noch einmal unsere letzte Feststellung im obigen Ab-
schnitt 4 auf. Ihre wiederholte Anwendung führt zu dem 

Satz 5: Sind x\, xz, ...,«„ unabhängige Unbestimmte über dem Integritäts-
bereich I mit Einselement, so ist auch I[xi, x%, ..., xn] ein Integritätsbereich mit 
Einselement. 

25.6 Ein wichtiges Hilfsmittel in der Theorie der Polynomringe ist der be-
reits aus der Schule bekannte Divisionsalgorithmus. Dabei gehen wir von einem 
Polynomring K[x\ über einem Körper K aus, wählen f(x), g(x) e K[x\, g(x) =}= 0, 
und behaupten: Es gibt ein q(x) e K[x\ und ein r(x) e K\x\, so daß 

f{x) = q(x)g(x) + r(x) 

wird, wobei entweder r(x) = 0 oder Grad r(x) < Grad g(x) ist. 
Der Beweis wird durch das übliche Verfahren geliefert, das Polynom f(x) mit 
Rest durch das Polynom g(x) =)= 0 zu dividieren; es ist unverändert durchführ-
bar, weil die Quotienten der Koeffizienten beliebiger Polynome aus K[x] mit 
dem höchsten Koeffizienten von g(x) wieder in K liegen. Das kann man auch 
in einen Induktionsbeweis nach dem Grad von f(x) umschreiben: Für f(x) = 0 
ist die Behauptung mit q(x) = r(x) = 0 richtig. Für Grad f(x) = 0 wähle man 
q(x) = 0 und r(x) — f(x), falls Grad g(x) > 0 ist; bei Grad g(x) = 0 leisten 

ftx\ 
l(x) ^ e & u n ( i r(x) = 0 das Verlangte. Sowohl für f(x) — 0 als auch für 

9(%) 
Grad f(x) = 0 ist die Behauptung also richtig. Sie sei ferner für beliebige 
Polynome f(x) von einem Grad kleiner als n und alle g(x) — bmxm + bm~ixm 

+ . . . + 6o, bm =f= 0, bereits bewiesen. Ist dann f(x) = a»rn + a„_ix™'1 + ... 
+ «o> an =1= 0, so können zwei Fälle eintreten. Bei n < m wähle man einfach 
q(x) = 0 und r{x) = f(x). Ist n^tm, so wird f(x) = ^xn~mg{x) + h(x) mit 

bm 
einem h{x) e K[x], das entweder Null ist (und in diesem Fall ist man fertig) 
oder einen Grad ^ n — 1 hat, also nach Voraussetzung in der Gestalt h(x) 
= q*(x)g(x) + r(x) mit r(x) = 0 oder Grad r(x) < Grad g(x) geschrieben 

T 
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werden kann; das liefert dann aber f{x) = q(x)g(x) + r(x) mit q(x) = ~xn~m 

"m 
+ q*(x) e K[x\, womit der Induktionsbeweis abgeschlossen ist. Es gilt also 
der 

Satz 6: Es sei K ein Körper, f(x), g(x) e K[x\ und g(x) =(= 0. Dann existieren 
q(x), r(x) e K[x\ mit f(x) — q{x)g(x) + r(x), wobei entweder r(x) = 0 oder 
Grad r(x) < Grad g(x) ist. 

Z u s a t z : Ist g(x) normiert, der höchste Koeffizient also Eins, so kann in der 
Voraussetzung von Satz 6 der Körper K durch einen kommutativen Bing R 

mit Einselement ersetzt werden, weil in diesem Fall von selbst = ane R ist. 
om 

A u f g a b e 1: Am Beispiel des Endomorphismenringes R der additiven 
Gruppe von zeige man: Es gibt Binge R mit Elementen r e R, die unend-
lich viele Bechtsinverse, aber kein Linksinverses besitzen. (Vgl. Aufgabe 20.6, 
Aussage c).) 

A u f g a b e 2: Es sei R ein kommutativer Bing mit Einselement. Man 
00 

konstruiere den Bing R(x) aller formalen Potenzreihen 2 avXv, av e R. 
v=0 

§ 26 Nullstellen von Polynomen 

26.1 Wir betrachten wieder den Polynomring ü[a;] über einem kommutativen 
Bing R mit 1 e R und einen kommutativen Oberring R* o R mit demselben 
Einselement; a sei ein Element aus R* und f(x) e Dann heißt a Nullstelle 
von f(x) in R*, wenn dort /(a) = 0 gilt. 

B e i s p i e l 1. Das Polynom x2 — 4 e £[x] ha t die Nullstellen ± 2 e 3 ; das 
Polynom x2 — 2e$[x] ha t die Nullstellen e2fi d 3 und a:2 + 1 e 
die Nullstellen ± i e S d 

B e i s p i e l 2. Nach Satz 23.2 hat das Polynom x2 + 1 e keine Nullstelle 
im Koeffizientenkörper Aber nach Satz 23.1 existiert ein kleinster Ober-
körper E D $3, in dem x2 + 1 eine Nullstelle besitzt. Die Konstruktion im 
Beweis von Satz 23.1 zeigt noch, daß \E\ — 9 ist. 

Über die Nullstellen von Polynomen gelten einige ebenso einfache wie wichtige 
Sätze. Eine Konsequenz des Zusatzes zu Satz 25.6 ist zunächst der 

Satz 1: Es sei R ein kommutativer Ring mit Einselement, f(x) eiJ[a;] und 
xeR eine Nullstelle von f(x). Dann gilt f(x) = q(x) • (x—a) mit einem q(x) e R\x\. 

B e w e i s : Es ist jedenfalls f(x) = q(x)(x — a) + r(x) mit einem r(x) e R[x\, 
das entweder verschwindet oder den Grad Null hat. Das heißt f(x)=q(x)(x—a)+r 
mit einem festen r e R. Ersetzen wir x durch a, so folgt r = 0. 
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Hieraus wiederum ergibt sich der 

Satz 2: Es sei I ein Integritätsbereich mit Einselement und f(x) e I[x] ein 
Polynom vom Grad n. Dann hat f(x) in I höchstens n Nullstetten. 
B e m e r k u f i g : Das Polynom f(x) hat also in keinem Integritätsbereich I* d I 
mit dem gemeinsamen Einselement 1 e I mehr als n Nullstellen, da ja auch 
f(x)e I*[x] gilt. 

B e w e i s von Satz 2: H a t f(x) die Nullstelle ai e I, so gilt nach Satz 1 
zunächst f(x) = (x — <x\)qi{x) mit einem qi(x) e I[x\. Ha t qi(x) die Nullstelle 
«2 e I, wobei die Möglichkeit <xz = ai nicht ausgeschlossen ist, so wird weiter 
f(x) = (x — xi)(x — a.i)q2{x) mit einem q%(x) e I[x\. Dieses Zerlegungsverfah-
ren werde fortgesetzt; es bricht etwa nach m Schritten ab: 

f(x) = (x — ai)(x — «2) ... (x — am)qm(x). 

Dabei sind die on nicht notwendig verschiedene Nullstellen von f(x) in 7, und 
qm(x) hat keine Nullstelle in I . Mehr als diese m Nullstellen xi hat f{x) in I 
nicht; denn setzt man eine beliebige Nullstelle txel von f(x) in die hingeschrie-
bene Zerlegung ein, so muß wegen der Nullteilerfreiheit von I wenigstens 
einer der Faktoren a — a« verschwinden. Aus m sS ra folgt also die Behauptung. 

Satz 2 bleibt demnach richtig, wenn mehrfach auftretende Nullstellen ihrer 
Vielfachheit entsprechend gezählt werden. Wir sagen in Zukunft, f(x) e I\x\ 
habe die (genau) k-fache Nullstelle a e I, wenn f(x) = (x — a)kq(x) mit einem 
q(x) 61[x\, q(a) =|= 0, gilt. Die Zahl k ^ 0 ist definiert, weil I\x\ ein Integritäts-
bereich ist. Für das Nullpolynom wird der Begriff der Vielfachheit einer Null-
stelle nicht erklärt. Satz 2 wird falsch, wenn die Nullteilerfreiheit des Koeffi-
zientenringes nicht vorausgesetzt wird. Hierzu sehe man das 

B e i s p i e l 3. Das Polynom f(x) =3? — x e ¿ ^ M hat alle sechs Elemente 
von 3« als Nullstellen. 

Von vielfältigem praktischen Nutzen ist schließlich der 

Satz 3: Eine Nullstelle a e Q des normierten Polynoms 

f(x) = x* + a»-!*»-1 + . . . + a 0 e 

ist eine ganze Zahl und Teiler von OQ. 

B e w e i s : Ohne Beschränkung der Allgemeinheit sei n 1, «o =)= 0 und 

a = —, s e 5t, r 6 (r, s) — 1. Multiplikation von j = 0 mit sn liefert r11 

+ an-\rn~1s + . . . + aosn = 0 oder rn = ks mit einem k e Die natür-
liche Zahl s teilt rn, hat aber keinen Primteiler mit r gemeinsam, muß also 
Eins sein. Daher ist « die ganze Zahl r, und aus r ( r" - 1 + an-irn~2 + ... + «i) 
= —ao ist zu sehen, daß OQ durch r teilbar ist. 

Als rationalzahlige Nullstellen des ganzzahligen normierten Polynoms 
x5 + x + 2 kommen also nur ¿ 1 und ± 2 in Frage; demnach ist —1 die ein-
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zige Nullstelle von x5 + x + 2 in Q. Das Polynom x3 — x -f- 2 hat überhaupt 
keine Nullstelle in Q. 
Man sieht leicht, daß man Satz 3 auch zur Bestimmung der rationalzahligen 
Nullstellen nicht normierter ganzzahliger Polynome verwenden kann (Auf-
gabe 1). Daraus ergibt sich schließlich auch seine Anwendbarkeit bei der 
Suche nach allen rationalzahligen Nullstellen eines Polynoms f(x) e Q[a:], das 
man ja nach Multiplikation mit dem Hauptnenner der Koeffizienten durch ein 
ganzzahliges Polynom ersetzen kann. 

26.2 Im folgenden erklären wir in kommutativen Ringen mit Einselement 
eine formale Differentialrechnung. 

Definition: Es sei R ein kommutativer Ring mit Elementen a,b, ... und 
1 e R. Eine Abbildung D: R R heißt eine Derivation oder Ableitung von R, 
wenn sie die beiden folgenden Bedingungen erfüllt-. 
(.1) D{a + b) = D(a) + D(b), 
(2) D(ab) = aD(b) + bD(a). 

Satz 4 s Es sei R ein kommutativer Ring mit Einselement und D eine Deri-
vation von R. Dann ist D(0) = Z>(1) = 0, D(—a) = —D(a), und für jedes 
ae R und jedes n e 91 gilt D(an) = nan~1D(a). 

Beweis : Aus D(0) = D(0 + 0) = D(0) + I>(0) folgt Z)(0) = 0. Ferner 
wird D( 1) = D(1 • 1) = 1 • D(l) + 1 • Z>(1) = £>(1) + Z)(l), also D(l) = 0. Es 
ist 0 = Z>(0) = D(a + (—a)) = D(a) + D(—a) und damit D{—a) = —D(a). 
Die letzte Behauptung ergibt sich durch vollständige Induktion nach n. 
Für Polynomringe betrachten wir nun eine spezielle, bereits aus der Analysis 
bekannte Ableitung. 

Satz 5: Es sei R ein kommutativer Ring mit Einselement und R[x~\ der Poly-
nomring in einer Unbestimmten x über R. Dann wird durch 

D(f(x)) = D( 2 a^x") = £ va^v-i =Df f'(x) 
r=0 »=1 

eine Ableitung D: i?[a;] -> R[x\ definiert. 

Beweis : Sofort zu sehen ist D(f + g) = £>(/) + D(g). Ferner gilt 

D(akx>- • - D(aÄbfX^") = (A + v)axb^+"-1 = a^D^rX") +bvx'D(axxx). 

Zusammen mit (1) folgt hieraus noch m n 
D(fg) = DiZaix* • 2M') = D(Zaxx* • M") = ZD(aAx>- • b^c") 

0 0 A,v 

= laAxW(brX") + ZbrX'Dfax*) = 2axx>-D(2bvX>) + ?bje'D(Zaix*) 
X,v X,v X v v X 

oder D(fg) = fD(g) + gD(f), also (2). 
Der folgende Satz wird oft gebraucht. 

Satz 6: Es sei I ein Integritätsbereich mit Einselement und n eine natür-
liche Zahl. Dann gelten die folgenden Aussagen. 
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a) Hat f(x) e I[x\ die genau n-fache Nullstelle « e i , so hat entweder f'(x) die 
mindestens (n — 1 )-fache Nullstelle x e I, oder f'(x) ist das Nullpolynom. Ist zu-
sätzlich die Charakteristik -/(I) = 0, so hat f'(x) die genau (n — 1 )-fache Null-
stelle a. 
b) Ist f(x) 6 I[x\, f(x) #= 0, a e I und /(a) = /'(a) = 0, so ist a mindestens zwei-
fache Nullstelle von f(x). 

Beweis: 
a) Unsere Voraussetzung ist f(x) = (x — x)nq(x), q(x) e I[x], q(a) 4= 0. Für 
eine beliebige Derivation D: I[x\ I\x\ liefern (2) und die letzte Aussage von 
Satz 4 

D(f(x)) = (x — a)nD(q(x)) + q(x)D((x — a)») 
= (x — X )nD(q(x)) + n(x — a)n~1q(x)D(x — a); 

nach Satz 5 wird also speziell 

f'(x) = (x — x)»~i[(x — x)q'(x) + nq(x)]. 

Hieraus folgen die aufgestellten Behauptungen. Für %(I) = 0 ist ja nq(x) =j= 0, 
und die eckige Klammer kann dann an der Stelle « nicht verschwinden. 
b) Aus f(x) = (x — x)q(x), q(x) e I[x], folgt f'(x) = (x — x)q'(x) + q(x). Das 
liefert mit f(x) = 0 auch q(x) = 0 und somit q(x) = (x — <x)g(x), g(x) e /[x]. 
Also wird f(x) = (x — x)2g(x). 

F o l g e r u n g : Die Nullstelle a e I von f(x) e I\oo\ ist genau dann einfach, 
wenn /'(a) 4= 0 ist. 

A u f g a b e 1: Man bestimme alle rationalzahligen Nullstellen von 
a) x5 — 2x* + 3z3 — 6a;2 + 2x — 4, 
b) 3a;3 — 2a;2 4- 6a; — 4, 

1 ß 
c) —a;5 — a^ + x2 + 2a; — 7. o 

A u f g a b e 2: Es sei p eine Primzahl. Zeige: In ~lp[x] gilt 

xP — x = XI (x — ®)* 
06 3» 

Wie folgt daraus die WiLSONsche Kongruenz (Satz 20.6) ? 

A u f g a b e 3: Auf dem Integritätsbereich I sei eine Ableitung D definiert. 
Man zeige, daß sich D auf genau eine Weise auf den Quotientenkörper Q von I 
fortsetzen läßt: Es gibt genau eine Ableitung D* von Q mit D*(a) = D(a) 
für jedes a e l . 

A u f g a b e 4: Es sei p eine Primzahl. Man zeige: Die Kongruenz 
a»«" + Ob-i»"-1 + • • • + an = 0 mod p (at e pian) 

hat höchstens n modulo p inkongruente Lösungen xe$. 

A u f g a b e 5: Ist a = a + bi e S (o, b e3t) Nullstelle des Polynoms 
f(x) e 9t[a;] mit reellen Koeffizienten, so auch die konjugiert-komplexe Zahl 
x = a — bi. Beweis ? 
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§ 27 Körpererweiterungen 

27.1 Wir beginnen mit der 
Definit ion: Es sei K ein Körper. Eine Körpererweiterung oder ein Erweite-

rungskörper E von K ist ein Oberkörper E D K von K. 

Es sei nun E eine Körpererweiterung von K. Dann gibt es in E und in K je 
ein Einselement, und diese Einselemente sind identisch, weil E ein Integritäts-
bereich ist (§ 25.1). Also ist auch K[x] ein Unterring von E[x] (§ 25.3). 

Definit ion: Es sei E eine Körpererweiterung von K und, x ein Element von 
E. Wenn es ein vom Nullpolynom verschiedenes f(x) e K[x\ mit f(x) = 0 gibt, 
so heißt x algebraisch über K, andernfalls transzendent über K. 
Hiernach ist also eine Größe a genau dann algebraisch über dem Körper K, 
wenn zweierlei gilt: Es gibt einen Erweiterungskörper E von K, der a enthält, 
und es existiert ein f(x) e K[x], f(x) =j= 0, mit x als Nullstelle. Speziell ist jedes 
a 6 K algebraisch über K. Die Zahlen ]/2 und i sind algebraisch über Q. 
Nach § 25.2 können wir ferner sagen: Ist x transzendent (Transzendente) über 
K, so ist x eine Unbestimmte über K. Hiervon gilt auch die Umkehrung, weil 
eine Unbestimmte x über K Element des Quotientenkörpers E von K\x\ und 
E eine Körpererweiterung von K ist. Eine Transzendente über einem Körper 
K ist also dasselbe wie eine Unbestimmte über K. 

27.2 Wir verabreden nun eine ständig auftretende Schreibweise. 

Definit ion: Es seien I und I* D I Integritätsbereiche mit demselben Eins-
element und ai, a2, ..., a» Elemente aus I*. Dann bezeichnen wir den Quotienten-
körper von I[ai, ot2, ..., Xn] mit /(ai, X2, . . ., a„). 

Wir bemerken dazu, daß I[a.\, txz, ..., an] c I* ein Integritätsbereich ist; der 

Körper 7(ai, oc2> . . . , an) existiert also. Er besteht aus allen Brüchen — mit 
9 

f, g e 7[ai, a2, . . « « ] , g 4= 0. Speziell können die a 1 unabhängige Unbe-
stimmte über I sein. 
Den Übergang von I zu /[ai, a.2, . . . , an] bezeichnet man als Ringadjunktion, 
den von I zu I(xi, X2, •.., <xn) als Körperadjunktion von «1, a2, . . . , <xn. Er-
sichtlich ist /(«1, X2, . . . , 0Ln) der kleinste Körper, der I und die Elemente 
ai, a.2, • • • > <*n enthält; deshalb sagt man auch, er werde über I von den Ele-
menten «1, <X2, ..., xn erzeugt. Aus den folgenden Beispielen sieht man unter 
anderem, daß Ringadjunktion und Körperadjunktion zu demselben Ergebnis 
führen können. 

Beispiel 1. Es sei x eine Unbestimmte über dem Körper K. Dann gilt 
K[x~\ c K(x), aber K\x] 4= K(x); denn x e K[x\ besitzt in K[x\ kein Inverses. 
Beispiel 2. Es ist &[|/2] = £(|/2) (vgl. § 25.1 und § 20.3, Beispiel 6). Analog 
gilt £[1/3] = £L(]/3), Ö [ i ] = &(i), gt [ i ] = SR(t) = 6 . 

Beispiel 3. Wir zeigen 0.(1/2,1/3) =J}(|/2 + j/S). Zunächst ist Ü(|/2 + j/3) 
der kleinste Körper, der Q und ]/2 + |/3 enthält; da auch der Körper ¿(1/2, |/3) 



§ 27 Körpererweiterungen 105 

das Element ]/2+ J/3 und ganz £1 enthält, folgt Ü(|/2, |/3) 3 £(1/2 +J/3)^Um-
gekehrt ist Q(]/2, y3) der kleinste Körper, der £2 und die Elemente |/2, ]/3 ent-
hält. Wenn wir nachweisen können, daß y2 und j/3 Elemente von £l(]/2 + y5) 
sind, so folgt entsprechend £}(y2, y3) c Q(y2 + ]/3) und damit insgesamt die 
behauptete Gleichheit. Es gilt aber (]/2 + j/3]2 = 5 + 2]/6_eQ(y2 + yS), 
also auch ygeQ(y2+y3 ) und folglich ]/6(]/2+y3) = 3y2+2y3_e£l(y2+y3); 
Subtraktion von 2(y2 + |/3) eQ(j/2 + j/3) zeigt y2 e_£}(y2 + y3), und damit 
wird zuletzt auch (y2 + y3) — y2 = y3 e£(y2 + 1/3). 

Später wird sich zeigen: Ist a algebraisch über K, so gilt K\tx\ = K(y.) (§ 53). 
In Beispiel 2 sind einige einfache Spezialfälle dieser Aussage notiert. In Bei-
spiel 3 hat sich gezeigt, daß eine von zwei Elementen erzeugte Erweiterung 
auch von einem einzigen Element erzeugt werden konnte. Auch hierauf 
kommen wir noch zurück (§ 61). 
Im Anschluß an die oben gegebene Definition machen wir schließlich noch eine 
Bemerkung: Ist Q der Quotientenkörper von I, so gilt I(xi, <X2, . ..., an) 
= Q(ai, 012, • • •, ««)• Die Elemente rechter Hand sind ja Quotienten von 
Polynomen in den aci mit Koeffizienten aus Q; erweitert man mit dem Haupt-
nenner aller dieser Koeffizienten, so ergeben sich Elemente aus /(ai, <X2, • • •, <*«)• 
Also ist Q(ai, 1x2, ..., <xn) c /(ai, 012, . . . , an), und die umgekehrte Enthalten-
seinsbeziehung folgt aus Q d I. 

27.3 Im folgenden betrachten wir ein Element a, das algebraisch über einem 
Körper K ist. 

Satz 1: Es sei a algebraisch über K. Dann existiert ein Polynom f(x) e K\x\ 
mit folgenden Eigenschaften. 
(1) f(x) ist normiert. 
(2) Es ist /(a) = 0. 
(3) Ist g(x) e K[x\ und Grad g(x) < Grad f(x), so gilt g(a) 4= 0. 
(4) Hat f*(x) e K[x] die Eigenschaften (1), (2), (3), so gilt f*(x) = f(x). 

Beweis : Die Menge der vom Nullpolynom verschiedenen Polynome aus 
K[x] mit a als Nullstelle ist nach Definition von a nicht leer. Unter ihnen gibt 
es ein Polynom h(x) = anxn + an-\xn~^ + ... + ao, an 4= 0, kleinsten Grades 
n > 0, so daß für jedes g(x) e K[x] mit Grad g(x) < Grad h(x) gilt: g(tx) 4= 0. 

Das Polynom f(x) = —h(x) e K\x\ hat dann, weil A(a) = 0 war, die Eigen-
an 

Schäften (1), (2), (3). Schließlich hat das Polynom d{x) = f(x)—f*(x) auch 
die Nullstelle a; einen kleineren Grad als f(x) kann es nach (3) nicht haben; 
andrerseits hat d(x) keinen Grad größer oder gleich n, weil f(x) und f*(x) nor-
mierte Polynome vom Grad n sind; also ist d(x) das Nullpolynom (das nach 
unserer Definition aus § 25.4 keinen Grad hat), und es folgt f*(x) = f(x). 
Die Eindeutigkeitsaussage (4) berechtigt zu der folgenden 

Definition: Es sei x algebraisch über dem Körper K. Dann heißt das Poly-
nom f(x) aus Satz 1 das Minimalpolynom oder das definierende Polynom von a 
über K. 
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Weiter setzen wir das Folgende fest. 
Definition: Es sei I ein Integritätsbereich mit Einselement, f(x) e I[x\ und 

Grad f(x) 1. Dann heißt f(x) irreduzibel über I oder irreduzibel in I[x], wenn 
aus f(x) = g(x)h(x) mit g(x), h(x) e I[x~\ folgt: Entweder g(x) oder h(x) ist ein 
Element von I. 
Ein über I irreduzibles f(x) e I[x] läßt sich also höchstens durch Ausklammern 
eines Elementes aus I in Faktoren aus I[x~\ zerlegen; andernfalls nennen wir 
f(x) in I\x~\ oder über I reduzibel. Von besonderem praktischen Interessò ist nun der 

Satz 2: Es sei tx algebraisch über K. Dann gelten die folgenden Aussagen. 
a) Das Minimalpolynom f(x) von x über K ist irreduzibel in K\x\. 
b) Hat das Polynom P(x) e K[x\ die Eigenschaften (1), (2) und ist es in K[x] 
irreduzibel, so ist es das Minimalpolynom f(x) von a über K. 

Beweis : 
a) Das Element x liegt in einem Erweiterungskörper E von K. Angenommen, 
es gäbe Polynome g{x), h(x) e K[x] mindestens vom Grad Eins mit 
f(x) = g(x)h(x). Dann wird Satz 25.3 anwendbar; er liefert g(<x)h(a) = /(a) = 0. 
Das Produkt g(oc.)h(a.) ist in E nur Null, wenn einer der Faktoren verschwindet ; 
da die Grade von g(x) und h(x) kleiner sind als Grad/(a;), liefert das einen 
Widerspruch zu (3). 
b) Wir dividieren P(x) mit Rest durch f(x). Nach Satz 25.6 gibt es Polynome 
q(x), r(x) e K\x\ mit 

P(x) = q(x)f(x) + r(x), 

wobei entweder Grad r(x) < Grad f(x) oder r(x) = 0 ist. Ersetzt man x durch 
a, so bekommt man r(a) = 0 ; nach (3) muß also r(x) das Nullpolynom sein. Da 
f(x) mindestens den Grad Eins hat und P(x) über K irreduzibel ist, muß weiter 
q(x) ein Element von K sein. Schließlich sind P(x) und f(x) normiert; also ist 
sogar q(x) - = 1 und damit P(x) = f(x). 
Dieser Satz gibt Veranlassimg zu der 

Definition: Es sei a algebraisch über dem Körper K. Dann bezeichnen wir 
das Minimalpolynom f(x) g K[x] von a. über K mit f(x) = Irr (a, K). Wir sagen, 
a sei algebraisch vom Grad n über K, wenn Grad Irr (a, K) — n ist. 

Ist beispielsweise « e i , so wird Irr (a, K) = x — a; dann ist also a algebra-
isch vom Grad Eins über K. Zur Bestimmung von Minimalpolynomen stützt 
man sich in der Regel auf Satz 2. Wir betrachten einige einfache Beispiele. 

Be i sp ie l 4. Es sei a = j/2 und K = 3t. Dann gilt Irr (y2,3t) = x—e 3t[a;]. 

Be i sp ie l 5. Es sei x = j/2 und K = £J. Das Polynom P(x) = ufi — 2 eÜ[x] 
hat dann die Eigenschaften (1), (2). Es ist ferner in irreduzibel. Um das 
zu zeigen, nehmen wir für den Augenblick das Gegenteil an. Dann gäbe es 
Polynome g(x), h(x) e£l[a:] mit P(x) = g(x)h(x) und Gradua;) = 1, und wir 
dürfen ohne Beschränkung der Allgemeinheit zusätzlich annehmen, g(x) sei 
bereits normiert: g(x) = x — a, a eQ.. Das ganzzahlige normierte Polynom 
P(x) = xz — 2 hätte demnach die Nullstelle a e Q . Aus Satz 26.3 folgt sogar 
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a e ̂  und a|2; aber die Zahlen ± 1 und ± 2 sind keine Nullstellen von x2 — 2. 
Die Annahme, P(x) sei in Ü[x] reduzibel, war also falsch, und Satz 2 liefert nun 
Irr(y2 ,Q) = x2 — 2 . 
Be isp ie l 6. Nach dem Muster von Beispiel 5 sieht man ohne Rechnung 
Irr (1/3, Ü) = x2 — 3 und Irr (y/5,Q) - x̂  — 2. Analog wird Irr(», Q) 
== Irr (t, SR) = x2 + 1, weil x2 + 1 keine reelle Nullstelle hat. 

Be ispie l 7. Es sei a = -^(1 + i) und K = Q. Wegen a4 = —1 hat das 
V2 

Polynom P(x) = ¡c4 + 1 eQ[a;] die Eigenschaften (1), (2); wir behaupten 
Irr (a, Q.) = x4 + 1 und müssen dazu noch zeigen, daß x4 + 1 irreduzibel 
über Q ist. Wie in Beispiel 5 sieht man, daß x4 + 1 keinen Faktor g(x) e 
vom Grad Eins haben kann. Wir müssen also noch nachweisen, daß auch eine 
Zerlegung 

x4 + 1 = (x2 + ax + b)(x2 + cx + d) (a, b, c, deQ) 
in quadratische Faktoren aus £[x] unmöglich ist. Ausmultiplikation der 
Klammern rechter Hand und Koeffizientenvergleich ergibt zunächst c = —a 

1 1 a 
und, da b =|= 0 ist, d = —. Das führt weiter auf a2 — b + ~r und — — ab = 0 

o o o 
oder die möglichen Zerlegungen 

xi + 1 = {x2 + i) (X2 — i) 
= (x2 + 1fax + l)(x2 — |/2x + 1) 
= (x2 + i]/%x — l)(x2 — — 1); 

doch die Faktoren liegen nicht in Q[x], Also ist xi + 1 irreduzibel über Q und 
Irr (a, Q) = x* + 1. Aber beispielsweise wird x4 + 1 reduzibel über Q(]/2) 
oder SR und Irr (a, Ü(|/2)) = Irr (a, SR) = x2 — J/2x + 1; die Zahl a ist also 
algebraisch vom Grad 4 über £} und algebraisch vom Grad 2 über Q,(]/2) 
oder SR. 

27.4 Es fallt nicht leicht, ein r e SR anzugeben, das transzendent über Q ist. 
Gibt es derartige reelle Zahlen überhaupt ? Diese Frage kann im Anschluß an 
den folgenden Satz beantwortet werden. 

Satz 3 : Es sei R ein kommutativer Ring mit Einsdement, Ist R abzählbar, 
so ist es auch der Polynomring R[x\. 

Beweis : Es sei R abzählbar und M^ die Menge aller Polynome /(x) e Ä[x] 
00 

vom Grad k (k ^ 0). Wir zeigen die Abzählbarkeit von M = U M*-, das ist 
*=o 

R\X\ ohne das Nullpolynom. Nach Satz 4.2 genügt es zu zeigen, daß jedes M* 
abzählbar ist. Bezeichnen wir wieder mit RO die Menge R ohne die Null, so 
läßt sich aber M* eineindeutig auf RQ x R x R x . . . x Ä (Jfe + 1 Faktoren) 
abbilden, und dieses cartesische Produkt ist nach Satz 4.1 abzahlbar, weil 
jeder der Faktoren es ist. 
Als Beispiel betrachte man etwa den Fall R = Q: Die Menge aller Polynome 
mit rationalen Koeffizienten ist abzählbar. 
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Wir kommen nun auf die oben gestellte Frage zurück. Spricht man von trans-
zendenten Zahlen schlechthin, so meint man in der Regel die reellen Zahlen r, 
die transzendent über £i sind. Die Menge aller dieser Zahlen sei B, und es sei 
A die Menge aller über Q algebraischen r e Sft. Dann ist A n B = 2 und 
A u B = SR. Nun ist die Menge Q[ar] aller rationalzahligen Polynome abzähl-
bar; jedes einzelne von ihnen hat nach der Bemerkung zu Satz 26.2 höchstens 
endlich viele, eventuell gar keine Nullstellen in SR; die Menge A aller dieser 
Nullstellen ist demnach ebenfalls abzählbar. Da Sft = A u B nicht abzählbar 
ist (§ 4), kann also B weder endlich noch abzählbar sein. Damit ist die Existenz 
überabzählbar vieler transzendenter Zahlen r nachgewiesen, ohne daß wir in 
der Lage sind, eine einzige von ihnen explizit anzugeben. Die Transzendenz 
etwa von e und n wird in der Zahlentheorie gezeigt. 
Zuletzt notieren wir noch eine Konsequenz von Satz 3. 

Satz 4: Der Körper K sei höchstens abzählbar. Dann ist auch jede endlich 
erzeugte Erweiterung i, £2, ..., f») höchstens abzählbar. 

B e w e i s : Es genügt, K(£1, £2, ••• ,£») abzuzählen unter der Annahme, 
K sei abzählbar und die Erzeugenden I2, • ••>£« seien unabhängige Unbe-
stimmte über K. Mehrfache Anwendung von Satz 3 zeigt zunächst die Ab-
zählbarkeit von K[£ 1, £2, • • •, £»]• Dann lassen sich aber nach dem Vorbild 
des Abzählbarkeitsbeweises für Q auch die Elemente des Quotientenkörpers 

£2, • • f«) nach dem Paarschema abzählen (§ 4). 

A u f g a b e 1: Es sei K ein Körper. Man zeige: Mit a ist auch a2 algebraisch 
über K und umgekehrt. 

A u f g a b e 2: Zeige, daß j/2 + |/3 + ]/5 algebraisch über £} ist. 

A u f g a b e 3: Es sei d eine ganze Zahl. Man zeige: 
a) Es ist_Q[|/S] = QQ/d). 
b) Ist yd $ £2, so wird durch <p(a + b]/d) — a — b]/d ein Automorphismus tp 
von definiert (a, b eQ.). 

A u f g a b e 4: Es sei d eine ganze Zahl. Man zeige: Die Menge G aller von 
Null verschiedenen Zahlen der Gestalt x2 + dy2 (x, t / e Q ) ist eine multiplika-
tive Untergruppe von Qo. 

A u f g a b e 5: Man zeige: 
a) Es ist 0(1/2, ]/3) = Ö[y2, ]/3]. 

b) Der Körper y3) besteht aus allen reellen Zahlen der Gestalt 

a + 6y3 + cy3 + d]/B (a, b,c,de Q). 

A u f g a b e 6: Man gebe fünf Zwischenkörper K mit & c K c£} (y2 + y3) an. 
A u f g a b e 7: Man bestimme 

a) Irr (3 + 
b) Irr (3 — 13,Q), 
c) I r r ( y 2 + y 5 , £ l ) , 
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d) I r r ( i / 2 + 1,Q), 
e) I r r ( j / 2 + l,Q(]/2)). 

A u f g a b e 8: Man löse noch einmal den Teil b) von Aufgabe 20.9. 
A u f g a b e 9: Für welche a e £ ist x* + a x 2 + 1 reduzibel über £> ? 

§ 28* Halbgruppenringe 

28.1 Für das Folgende erinnern wir uns wieder an die Einführung des Ringes 
R[x\ aller Polynome in einer Unbestimmten x über dem kommutativen Ring 
R mit dem Einselement 1. In anderer Formulierung lautet Satz 25.1: Es seien 
ein kommutativer Ring R mit dem Einselement 1 und eine multiplikativ ge-
schriebene Halbgruppe der Gestalt H — {e, x, xz, x3, ... } mit dem Eins-
element e vorgelegt. Dann gibt es einen eindeutig bestimmten kleinsten Ober-
ring R\H] von R, der auch H als Teilstruktur und wiederum 1 als Einselement 
enthält und in dem die Rechenregeln 

(1) r\hi + r2h2 + ... + rmhm = 0 o n = r2 = . . . = rm = 0 
(rr e R, hre H, ht =j= hj für i =)= j), 

(2) rh = hr für alle r e R, he H 
erfüllt sind. 
Es ist nämlich /?[//] = R[x\. Das Element e von H findet sich in Ä[x] in der 
Gestalt 1, und die Bedingungen (1), (2) stehen an Stelle der Bedingungen (3), 
(5) aus § 25. Die Bedingung (4) aus § 25 steckt bereits in der Forderung, daß 
R und i?[ZT] dasselbe Einselement haben sollen. Die Bezeichnung R[H] soll 
andeuten: Man hat ganz H zu R adjungiert. 
Es seien nun wieder R ein kommutativer Ring mit dem Einselement 1 und 
diesmal H eine beliebige multiplikativ geschriebene Halbgruppe mit dem Eins-
element e. Unsere Frage lautet: Gibt es auch unter diesen schwächeren Vor-
aussetzungen über H einen kleinsten Oberring von R, der H als Teilstruktur 
und 1 als Einselement enthält und in dem gemäß (1) und (2) gerechnet wird ? 
Wenn wir sie mit ja beantworten und zeigen können, daß dieser Oberring ein-
deutig bestimmt ist, so dürfen wir ihn etwa mit R\H~\ bezeichnen; er heißt der 
von R und H erzeugte Halbgruppenring. 
Wie früher bei ähnlichen Fragestellungen (vgl. etwa § 13) wollen wir zunächst 
annehmen, daß es wenigstens einen Oberring S von R mit dem Einselement 1 
gibt, der H als Teilstruktur enthält und in dem die Bedingungen (1), (2) er-
füllt sind. Wir betrachten dann die Teilmenge T c S aller endlichen Summen 
der Gestalt r\h\ + rrfi2 + • • • + rmhm {Tv £ R, hve H, A< 4= hj für i =)= j) und 
zeigen, daß T ein Unterring von 8 ist. Wählen wir zwei Elemente aus T, so 
können wir annehmen, daß sie aus denselben h( zusammengesetzt sind; durch 
Hinzufügen endlich vieler Summanden der Gestalt 0A* läßt sich das immer 
erreichen. Aus 
(3\ (»"lAi + r2h2 + ... + rmhm) + (rJAi + + ... + r'mhm) 
K ' = (n + r[)h1 + (j-2 + r'2)h2 + ... + (rm + r'm)hm 
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ist nun zu sehen, daß T bezüglich der Addition eine abelsche Gruppe ist; sie 
hat das Nullelement Oe, und das additive Inverse von . . . -{-rmhmeT 
ist (—ri)hi + (—r2)h2 + ... + (—rm)hm. Auch das Produkt zweier Elemente 
von T wird auf Grund von (2) wieder ein Element von T. Wir bekommen 

(4a) (nAi + r2h2 + ... + rmAm)(r^i + r2h2 + • • • + r'mhm) = £ r(h)h '• 
heM 

hierin ist M die Menge aller Produkte hihj und 

(4b) r(h) = Inr}, 
wobei über alle Indexpaare (i, j) summiert wird, für die hihj = h ist. Das Asso-
ziativgesetz der Multiplikation und die Distributivgesetze gelten in S, also 
erst recht in T. 
Der Bing T besteht aus allen endlichen Summen der Gestalt 
(5) nh + r2h2 + . . . + rmhm (r„ eR,hve H, ht =(= h} für i =f= j). 
Wählt man m = 1 und r\ = 1, so sieht man T D H. Für m = 1 und h\ = e 
bekommt man eine Teilmenge R* von T, von der man sofort sieht, daß sie ein 
isomorphes Bild des Ringes R ist; wir dürfen deshalb nach einer Ersetzung 
von R* durch R auch sagen: T d R. Ist andrerseits U c 8 ein Unterring von 
S, der H und R umfaßt, so muß er alle Elemente der Gestalt rh (r e R, h e H) 
und damit auch alle Summen (5) enthalten: T c U. In S ist also T der kleinste 
Unterring, der R und H enthält; die Eins aus R ist Einselement auch von T. 
Wären wir statt von S von einem anderen Oberring S* von R ausgegangen, 
in dem die Bedingungen (1), (2) erfüllt sind und der 1 als Einselement und H 
als Teilstruktur enthält, so würde für den analog T erklärten Unterring T* 
von 8 gelten: T* = T. Dabei benutzt man (1) in der Form 

(6) riÄi+r2Ä2+... +rmhm = ^ 1 + ^ 2 + . . . +r'mhm o rr=r'p (v=l,2 m). 

Wüßten wir also die Existenz von T (oder auch nur die von S), so wäre alles 
bewiesen, und wir könnten sagen: Dies ist der eindeutig bestimmte kleinste 
Oberring R[H] von R mit 1 als Einselement und H als Teilstruktur, in dem die 
Rechenregeln (1) und (2) gelten. Wegen der Gestalt (5) der Elemente von 
ü[i i] nennt man R[H] auch den Haibgruppenring über H mit Koeffizienten aus 
R. 

Satz 1: Es sei R ein kommutativer Ring mit dem Einselement 1 und H eine 
multiplikativ geschriebene Halbgruppe mit dem Einselement e. Dann existiert der 
Haibgruppenring R[H], Er umfaßt R und H, enthält 1 als Einselement und 
besteht aus allen Elementen der Gestalt (5). Man rechnet in ihm nach den Regeln 
(6), (3), (4). 
Spezia l fa l l : Ist H kommutativ, so ist iü[/7] ein kommutativer Ring. Ist x 
eine Unbestimmte über R und H = {e, x, x2, x3, }, so gilt ii[H] = R\x\. 

Beweis von Satz 1: Wir konstruieren R[H] = T. Wir bemerken, daß 
sich das Konstruktionsverfahren aus dem Beweis von Satz 25.1 nicht über-
tragen läßt, da H nicht notwendig abzählbar zu sein braucht. Statt dessen 
gehen wir von einer gewissen Menge von Abbildungen f : H ^ - R aus und 
haben dabei die Vorstellung, daß etwa dem Element riAi + r2h2 + r$hz aus T 
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die Abbildung f: H -> R mit f(hi) = n, /(A2) = r2, f(h3) = r3 und f(h) = 0 für 
alle anderen he H entsprechen möge. Es sei also A die Menge aller derjenigen 
Abbildungen f:H^-R, für die nur an endlich vielen Stellen he H das Bild 
f(h) 4= 0 ist. Auf A erklären wir eine Addition und eine Multiplikation nach 
den Vorbildern (3) und (4). Es sei für f,geA 

auf diese Weise ist die Summe / + g e A erklärt, und A wird eine abelsche 
Gruppe bezüglich dieser Addition. Das Produkt von f,g e A im Sinn von § 3 
ist gar nicht definiert; wir bezeichnen unser Produkt deshalb mit / o g und 
erklären es durch 

wobei über alle diejenigen Indexpaare (i, j) summiert wird, für die hihj = h 
ist. Da /(Ä<) und gQij) nur jeweils endlich oft ungleich Null sind, steht rechter 
Hand in (4') eine endliche Summe, also ein Element aus R; aus dem gleichen 
Grunde fällt außerdem diese Summe nur für endlich viele h von Null verschie-
den aus. Das Produkt / o g der Elemente /, g von A liegt also wieder in A. Die 
so erklärte Multiplikation ist assoziativ, weil die Multiplikation in R es ist. 
Analog prüft man die Distributivgesetze nach. Also ist A ein Ring. Er enthält 
ein Einselement, nämlich die durch 

e(e) = 1, e(h) = 0 für alle heH,h^e 
definierte Abbildung ee A. 
Setzt man die Existenz des oben betrachteten Ringes T für den Augenblick 
voraus, so gilt gewiß A ~ T. So haben wir die Konstruktion von A ja einge-
richtet. Das bedeutet, daß wir nur noch die Schreibweise der Elemente von A 
ändern müssen, um T = zu erhalten. Unser Beweis ist abgeschlossen. 

28.2 Es sei wieder R ein kommutativer Ring mit Einselement. Beispiele für 
Halbgruppenringe sind dann etwa die Polynomringe R[x\, R\x, y] \ zu R\x, y] 
gehört die Halbgruppe H aller xmyn, m 0, n S: 0. Ein Halbgruppenring ist 
auch der Ring i2[a;i, «3, . . . ] in abzählbar vielen unabhängigen Unbestimm-
ten X( über R. 

§ 29* Der Quaternionenschiefkörper 

29.1 Es sei G die Quaternionengruppe (vgl. § 18). Den in § 23 konstruierten 
komplexen Zahlkörper € = könnte man auch wie folgt beschreiben: Er 
ist der eindeutig bestimmte kleinste Oberkörper von SR, der auch das Element 
i e G enthält; dabei tritt als Verknüpfungsergebnis von i2 die reelle Zahl —1 
an die Stelle des Elementes —1 e G. 
Geht man von dieser etwas willkürlichen Deutung des Körpers CE aus, so kann 
man auch die Frage auf werfen, ob man nicht in ähnlicher Weise die Elemente 
i, j, k aus ö zu 9t adjungieren kann. Zwar würde wegen ij 4= ji die Multipli-

(3') (/ + 0)(A) = f(h) + g(h) für alle heH; 

(4') (/ o g)(h) = 2f(ht)g(hj) für aUe heH, 
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kation in der betreffenden Oberstruktur von SR nicht mehr kommutativ aus-
fallen ; aber vielleicht ließe sich auf diese Weise der Körper SR der reellen Zahlen 
in einen Schiefkörper einbetten. Es ist etwas überraschend, daß dies in der 
Tat möglich ist. Die früher getroffene Wahl für die Bezeichnungen der Ele-
mente von G erweist sich im folgenden noch einmal als besonders suggestiv. 
Wir nehmen zunächst wieder an, es gäbe einen Schiefkörper S, der SR als Teil-
struktur und außerdem die Elemente i , j , k e G enthält. Etwa die Multiplika-
tionsvorschriften i2 = —1 und ik = — j bedeuten ih S: Es ist i2 das additive 
Inverse von 1 e 8 und ik das additive Inverse von j e S. Die Einselemente von 
S und SR stimmen nach § 25.1 von selbst überein. In Analogie zu §28, (2), möge 
für die Multiplikation in S außerdem noch 

(1) rs = sr für alle r e SR, s e S 

gelten. In S betrachten wir nun die Teilmenge T aller Elemente der Gestalt 

( 2 ) a + bi + c j + die (a, b , c , d e ^ - , i , j , k B G). 

Die Formel 

i 3 \ (»1 + a2i + a z j + a4k) + (bx + b2i + b3j + b t k ) 
V ' = («i + öi) + («2 + b2)i + («3 + h ) j + («4 + bA)k 

für die Summe zweier Elemente aus T zeigt, daß T eine abelsche Gruppe be-
züglich der Addition ist. Die Multiplikation zweier Elemente von T führt 
wegen (1) auf 

(4) (a + bi + c j + dk)(s + ti + u j + vk) = (as — bt — cu — dv) 

+ (at + bs + cv — du)i 

+ (au + es + dt — bv)j 

+ (av + ds + bu — ct)k. 

Also ist T ein Unterring von S mit dem Einselement 1. Das Assoziativgesetz 
der Multiplikation und die Distributivgesetze gelten in 8 und damit erst recht 
in T; sie lassen sich aber auch leicht direkt nachprüfen. Tut man das, so be-
nutzt man beim assoziativen Gesetz die Assoziativität der Multiplikation in 
der Quaternionengruppe G. 
Der durch die Gestalt (2) seiner Elemente eindeutig bestimmte Ring T umfaßt 
SR und die Elemente i, j, k aus G, und er ist der kleinste Ring dieser Art, in dem 
die Multiplikationsvorschrift (1) gilt. Wir zeigen, daß T sogar ein Schiefkörper 
ist. Dazu sei a = a + bi + cj + dk ein Element aus T, dessen Koeffizienten 
a, b, c, d nicht sämtlich verschwinden, und cc = a — bi — cj — dk. Mit 
(4) folgt 

«ä = xa. = a2 + ¿>2 + c2 + d2 4= 0; 
also ist 

a - 1 = 1 a 6 T 
a 2 + ¿2 + C2 + d2 K 

das Inverse des von Null verschiedenen Elements a von T. Der Nachweis, 
daß T ein Schiefkörper ist, ist erbracht. Außerdem folgt, daß a nur Null sein 
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kann, wenn alle Koeffizienten verschwinden; gleichwertig damit ist 

(5) ai + azi + «3j + = h + &2i + bzj + b/Jc o av — bv 
(v = 1, 2, 3, 4; av, 6„e3t). 

Wieder bleibt die Frage nach der Existenz der Struktur T, und wieder können 
wir auf eine uns inzwischen geläufige Weise eine bejahende Antwort geben. 
Wir bilden die Menge M = SR4 aller Quadrupel (a, b, c, d) mit Komponenten 
aus SR, stellen uns unter ihnen die Elemente (2) vor und definieren eine Addition 
und eine Multiplikation auf M nach den Vorbildern (3) und (4). Eine Äquivalenz -
relation brauchen wir wegen (5) auf M nicht einzuführen. Es folgt der Nach-
weis, daß M ein Schiefkörper ist; abgesehen von der Bezeichnung der Ele-
mente handelt es sich um den zu konstruierenden Schiefkörper T. Wir führen 
die einzelnen Schritte, die nach dem in § 23 gegebenen Muster ablaufen, nicht 
mehr durch. 

29.2 Diesen Schiefkörper, der aus allen Elementen der Gestalt (2) besteht und 
in dem nach den Regeln (3), (4) und (5) gerechnet wird, bezeichnen wir in 
Zukunft mit Jj; seine Elemente nennt man Quaikrnionen. Der Name Quater-
nionen stammt von dem englischen Mathematiker W. R . HAMILTON (1805 — 
1865); er hat sich ausführlich mit ihnen beschäftigt, nachdem schon EULER 
(1707—1783) mit ihnen gerechnet hatte. Der Quaternionenschiefkörper hat 
in verschiedenen Disziplinen der Mathematik eine gewisse Bedeutung erlangt; 
Anwendungen des Rechnens mit Quaternionen finden sich auch in der Mecha-
nik (vgl. BLASCHKE [4]). Wir kommen im Rahmen der Algebra in § 55 noch 
einmal auf den Schiefkörper Jj zurück, der dann eine interessante axiomatische 
Beschreibung erfährt. 
Ist a. — a + bi + cj + dk ein Element von Jp, so nennt man 

ä = a — bi — cj — dke S? 

die zu a konjugierte Quaternion und die reelle Zahl 

N(a) = aä = «2 + &2 + c2 + ¿2 

die Norm von a. Für sie gilt 

(6) N(a)N(ß) = N(txß) (*, ß e 

Zum Beweis rechnen wir die linke Seite von (6) aus. Zunächst wird 
N(oc)N(ß) = (ax)(ßß) = x(ßß)x = (<xß)(ßä); dabei wurde neben der Asso-
ziativität der Multiplikation die Vertauschbarkeit der reellen Zahl ßß mit 
« e Sp benutzt. Nun gilt weiter 

(7) ^ = (a ,ßeS>), 

wie man nach (4) feststellt. Also bekommen wir N(a)N(ß) = xß(ßä) = otßtxß 
= N(xß), wie es in (6) behauptet war. 
Der Schiefkörper Jp kann auch durch Adjunktion von j eG zu 6 gewonnen 
werden. Dies sieht man, wenn man die Quaternion « = o + W + cj + dk.ia 

8 Hornfeck, Algebra 
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der Gestalt a = a + bi + (c + di)j = ai + «2/ schreibt (a< e CE, / $ <§). Es 
gilt SR c & c Jp. 

29.3 Ist K ein Körper, so gibt es nach Satz 26.2 höchstens zwei Elemente f 
in K mit der Eigenschaft g2 + 1 = 0 . Aber schon für den Quaternionenschief-
körper Sp, in dem ±k für f gewählt werden können, ist das nicht 
mehr richtig. Eben auf Grund von Satz 26.2 (vgl. auch § 23) ist es von vorn-
herein unmöglich, ein j $ <1 mit der Eigenschaft j2 = —1 zu € zu adjungieren 
mit dem Ziel, einen Oberkörper von CE zu erhalten. Man kann zwar J j als die 
Menge aller ai + 1x2) («1,X2 £ £) auffassen, hat aber auf die Kommutativität 
der Multiplikation in Jj> verzichtet. 
Als Beispiel für das Rechnen in jj> zeigen wir noch die Existenz sogar unend-
lich vieler tx.eS} mit a2 + 1 = 0 . Wird nämlich die Gleichung a£2-f£>f+c = 0 
(a, b, c eSR) durch a e ^ gelöst: aa2 + bat. + c = 0, so auch durch jede Qua-
ternion ßaß-1 (ß e J j , ß =|= 0); denn es gilt 

ß(aa?+boi+c)ß-i = aßx^+bßxß^+c = atftxß-^+btftxß-^+c = 0. 

Demnach ist etwa 

(r + j)~H(r + j) = - j)i(r + j) = + - ^ k 

für jedes r e SR eine Lösung der Gleichung f 2 + 1 = 0. 

29.4 Wir betrachten für den. Augenblick den Ring £?[]/—d], wobei d eine ganze 
Zahl und ]/—d $ 3 sein soll. Ist x = a + &]/—d (a, b e £) ein Element von 
3 t V — s o setzen wir a = a — &]/—d und bezeichnen die reelle Zahl 
N(tx) = «« = a2 + db2 als die Norm von tx. Auch für diese Norm gilt 

(6') N(x)N(ß) = N(ocß) (x, ß e 

Um das nachzurechnen, beachten wir die Gültigkeit von 

(7') rf = xß {x,ße%[ V=3])-

Diese Beziehung rechnet man leicht direkt nach; sie gilt deswegen, weil wie 
in Aufgabe 27.3 durch qp(<x) = x ein Automorphismus von —d ] definiert 
wird. Mit Hilfe von (7') wird dann N(x)N(ß) = tzccßß = xßxß = aßxß = N(xß), 
wie es in (6') behauptet war. 
Schreibt man die Gleichung (6') mit a = a + &]/—d und ß = 3 + 'V—d 
aus (a, b,s,te 3), so lautet sie 

(8) (a2 + db2)(s2 + dt2) = (aa — btdf + d{at + 6s)2. 

Das ist eine Identität, deren Gültigkeit man nachträglich für jeden kommu-
tativen Ring bestätigt. Sie wird in der Zahlentheorie gebraucht (vgl. auch 
Aufgabe 27.4). Speziell beruht der Fall d = 1 auf dem Rechnen in -S[i] oder <5. 
Das Produkt von Zahlen der Form x2 + dy2 hat also wieder diese Gestalt. Eine 
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ähnliche Aussage liefert (6), Ausgeschrieben bekommt man nach (4) die Vier-
quadrateformel 

(«2 + &2 + C2 + D2)(.S2 + <2 M2 + „2) = FA _ B T _ C M _ 
+ (at + 6s + cv — du)2 

+ (au + es + dt — bv)2 

+ (av + ds + bu — et)2, 

die sich wieder in jedem kommutativen Ring als richtig erweist. Wenn man 
zeigen kann, und dies geschieht in der Zahlentheorie, daß sich jede Primzahl als 
Summe von vier Quadraten aus 3 schreiben läßt, so liefert die aufgeschriebene 
Formel den berühmten Satz von LAGBANGE ( 1 7 3 6 — 1 8 1 3 ) , daß sich jedes 
Produkt von Primzahlen, also jede natürliche Zahl, als Summe von vier 
Quadraten aus 3 darstellen läßt. 

§ 30* Duale Zahlen 

Eine sogenannte duale Zahl hat die Gestalt a + be; dabei sind a, b reelle 
Zahlen, und es gilt e2 = 0: 
(1) «i + o2s = bi + b2e O av = bv (v = 1, 2; ar, brefR), 
(2) («i + a2e) + (&i + b2e) = (oi + h) + (a2 + b2)e, 
(3) (ai + a2e) • (h + b2e) = afa + (ai&2 + a2bi)e. 
Diese Forderungen definieren den kommutativen Ring D der dualen Zahlen. 
Wir verzichten auf seine Konstruktion aus der Menge M = SR2- nach dem 
Vorbild von § 23. 
Man sieht: Genau die Elemente der Gestalt re (r e 3t, r =(= 0) sind Nullteiler in 
D. Das Rechnen mit dualen Zahlen gestattet hübsche Anwendungen in der 
Geometrie, die auf den deutschen Mathematiker E. S T U D Y (1862—1930) zu-
rückgehen (vgl. B L A S C H K E [ 4 ] ) . 

§ 31 Angeordnete Ringe 

31.1 In den Ringen Q, 3t kann man sagen, ein gewisses Element sei positiv 
oder größer als ein anderes. Dieser Sachverhalt dient als Vorbild für die 
folgende 

Definition: Ein Bing R 4= {0} mit Elementen a,b, ... heißt angeordnet, 
wenn in R eine Relation a > 0 (lies: a größer Null, oder: a positiv) mit folgenden 
Eigenschaften erklärt ist: 
(1) Für jedes ae R gilt genau eine der Relationen a > 0, a = 0, — a > 0. 
(2) Für a > 0, b > 0 gilt a + b > 0 und ab > 0. 
Die Menge P aller positiven Elemente aus R heißt der Positivber€ich von R. 
Eine Anordnung von R definiert also eine Partition R = P u{0}u N von R \ 
dabei ist N die Menge aller r e R mit —r > 0. Ist ein Ring R auf zwei Arten 

8 
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angeordnet, so stimmen diese Anordnungen genau dann überein, wenn die zu-
gehörigen Positivbereiche dieselben sind. Gleichheiten von Anordnungen 
werden so gezeigt. 
Im Anschluß an die gegebene Definition treffen wir noch die folgenden weiteren 
Verabredungen. Es soll a > b (a größer b) dasselbe heißen wie a — b > 0, 
und a <b (a kleiner b) bedeute dasselbe wie b > a. An Stelle von —r > 0 
können wir also auch r < 0 schreiben. Schließlich soll a 6 bedeuten: Es ist 
entweder a > b oder a = b. Entsprechend wird a ^b erklärt. Für jedes 
Element r eines angeordneten Ringes R gilt also beispielsweise r r. 
Sind a, b Elemente eines angeordneten Ringes R, so gilt nach (1) mindestens 
eine der Relationen a f^b oder b a, und das gleichzeitige Bestehen von 
a fS b und b ^ o ist gleichwertig mit a=b\ aus a f^b und b c, also b — a 0 
und c — b 0, schließlich folgt vermöge (2) (b — a) + (c — b) = c — a ^ O 
oder a c. Ein angeordneter Ring R ist also bezüglich der Relation fS eine 
geordnete Menge (vgl. § 1.2). 
Beispiele für angeordnete Ringe wurden schon genannt. Jeder Unterring eines 
angeordneten Ringes, etwa Ü[y2] c SR, ist angeordnet. Im allgemeinen sind für 
ein und denselben Ring R Anordnungen, wenn überhaupt, auf verschiedene 
Arten möglich. Man betrachte etwa R = £l[a;]. Eine Anordnung von 
erhält man beispielsweise, wenn man jedes von Null verschiedene f{x) e Q[a;] 
genau dann als positiv bezeichnet, wenn sein höchster Koeffizient ein positives 
Element von £1 ist. Eine ganz andere Anordnung von Q[a;] ergibt sich, wenn 
man ein f(x) 4= 0 genau dann positiv nennt, wenn f(n) in SR positiv ist; beim 
Nachprüfen der Forderung (1) benutzt man, daß mit f(x) 4= 0 auch f(ji) =(= 0 
gilt, also die Transzendenz von n über £}. 
Man kann aber auch leicht Ringe angeben, die sich nicht anordnen lassen. 
Man betrachte zunächst einen angeordneten Ring R und ein r e R, r 4= 0; 
nach (1) gilt dann entweder r > 0 oder —r > 0, und beide Male liefert (2) 
r2 > 0. Von Null verschiedene Quadrate sind also in angeordneten Ringen 
positiv.Ist speziellii ein angeordneter Ring mit Einselement, so folgt 1 = l 2 > 0 
und —1 < 0. Eine Folge davon ist, daß beispielsweise 6 nicht angeordnet wer-
den kann; denn dazu müßte einerseits 1 > 0 und andrerseits auch —1 = »2 > 0 
sein im Widerspruch zu (1). 
Wir wenden uns nun dem Rechnen in angeordneten Ringen zu. 

Satz ls Es sei R ein angeordneter Ring mit Elementen a, b,c,d, ... Dann 
gelten die folgenden Regeln. 
a) Aus a>b und c > d folgt a + c > b + d. 
b) Aus a> b und c > 0 folgt ac > bc und ca > cb. 
c) Ist R sogar ein Körper und a > b > 0, so folgt b'1 > a~l > 0. 

B e w e i s : 
a) Es ist o — b > 0, c — d > 0, nach (2) also (a — b) + (c — d) = {a + c) 
— (6 + d) > 0 oder a + c > b + d. 
b) Es ist a — b > 0, c > 0, nach (2) also (a — b)c — ac — bc > 0 oder ac > bc-, 
analog wird ca > cb. 
c) Man beachte, daß aus c > 0 auch (c_1)2c = c"1 > 0 folgt, und multipliziere 
a > b > 0 gemäß b) mit a^b'1 > 0. 
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Ist R ein angeordneter Ring, so definieren wir noch wie üblich den Betrag |a| 
von ae R; wir setzen |a| = a für a 2g 0 und |a| = —a für a < 0. Es gelten 
dann die Betragsrechenregeln (Aufgabe 2) 
(3) \ab\ = \a\ • \b\, 
(4) ja + &| g \a\ + |6| (Dreiecksungleichung), 
(5) | | a | — ± 6 | ^ | a | +|6|. 
Ziemlich evident ist ferner die Gültigkeit von 

Satz 2: Eine Anordnung eines Integritätsbereiches I läßt sich auf genau eine 
Weise zu einer Anordnung seines Quotientenhörpers Q fortsetzen. 

Beweis: Würde Q eine Anordnung gestatten, die auf der Teilstruktur 
I c Q mit einer vorgegebenen Anordnung übereinstimmt, so müßte genau dann 

— > 0 sein (a, b e I, b + 0)> wenn b2 • ^ = ab > 0 in I ist; wenn es also eine 
b b 
Fortsetzung der Anordnung von I auf Q gibt, so nur diese. Ist aber 

Y > 0 o ab > 0 
b 

a c 
überhaupt eine Definition ? J a ; denn aus — = — oder ad = bc folgt abc2 = a2cd; 

b d 
ist also ab positiv, so auch cd. Die gegebene Vorschrift definiert auch wirklich 

a b 
eine Anordnung auf Q: Die Forderung (1) ist erfüllt; aus — > 0 und — > 0 

. ». 7. C C 
o + o a b 

folgt ac + bc = (a + b)c> 0, also = —|— >0 , und analog zeigt man 
, c c c 

a b 
> 0, insgesamt also (2). Und schließlich liegt eine Fortsetzung der An-

c c 
Ordnung von I vor; ist nämlich a e I und a in I positiv, so ist es wegen 

a2 
a = — positiv auch in Q. 

a 

Will man den Bing 3 anordnen, so muß 1 > 0 und nach (2) auch 1 + 1 = 2> 0, 
1 + 1 + 1 = 3>0 usw. gelten; 3 und wegen Satz 2 dann auchQ gestatten also 
nur die eine bereits bekannte Anordnung. Ist R ein angeordneter Ring, so ent-
hält er ein Element o > 0, und nach (2) ist niemals na = 0 (n eWl); die Ring-
elemente a, a + a, a + a + a, ... sind daher paarweise voneinander ver-
schieden. Ein angeordneter Ring R ist also unendlich. Ist speziell 1 e R, so ist 
1 > 0, und R enthält, wie man in Analogie zu Aufgabe 20.10 a) zeigt, einen zu 3 
isomorphen Unterring T aller ml, m e Es hat also einen Sinn zu sagen, 
sei der kleinste angeordnete Ring mit einem Einselement. Jeder angeordnete 
Körper umfaßt also 3 und damit auch £}, und £1 läßt sich axiomatisch bis auf 
Isomorphien eindeutig beschreiben als der kleinste angeordnete Körper. 

31.2 Sind 0 < a < b Elemente eines angeordneten Ringes, so ist es nicht ge-
sagt, daß ein n e 91 derart existiert, daß na > b wird. Ein einfaches Beispiel 
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dieser Art ist etwa Q[a;] mit der bereits erwähnten Anordnung, daß ein f(x) 4= 0 
genau dann positiv sein soll, wenn der höchste Koeffizient es ist; es gilt dann 
0 < 1 < x und n • 1 < x für jedes n e 91. Solche Möglichkeiten werden in der 
folgenden Definition ausgeschlossen. 

Definition: Ein angeordneter Ring R mit Elementen a,b, ... heißt archi-
medisch angeordnet, wenn aus 0 < a < b folgt: Es gibt ein n e 91 mit na > b. 
Archimedisch angeordnete Ringe sind etwa 3> G, £ü[j/2], 3t. 
Es gibt viele angeordnete Körper. Beispielsweise läßt sich der Polynomring 
SR[z] wie eben beschrieben anordnen, und diese Anordnung kann nach Satz 2 zu 
einer Anordnung des Oberkörpers 9t(x) von SR fortgesetzt werden. Aber für 
archimedisch angeordnete Körper gilt bereits der Satz: Ein archimedisch an-
geordneter Körper K ist einem Unterkörper von SR isomorph. Wir wollen den 
Beweis, obwohl er nicht schwierig ist, hier nicht ausführen. 

Aufgabe 1: Läßt sich &{x) anordnen? 

Aufgabe 2 : Man beweise die Betragsrechenregeln (3), (4), (5). 

Aufgabe 3 : Der Körper SR läßt sich nur auf eine Weise anordnen. 
Beweis ? 

Aufgabe 4 : Man bestimme alle Automorphismen von £} und SR. 

Aufgabe 5 : Ein angeordneter Ring R ist nullteilerfrei. Beweis ? 

Aufgabe 6 : Ein archimedisch angeordneter Ring R ist ein Integritäts-
bereich. Beweis ? 

§ 32* Der Körper 3t der reellen Zahlen 

32.1 Im Rahmen unserer bisher durchgeführten Überlegungen haben wir zwar 
das Rechnen in den Strukturen Q, SR, 6 als bekannt vorausgesetzt; aber unter 
der Annahme der Gültigkeit lediglich von Satz 2.1 ergaben sieh als Folge all-
gemeiner Sätze auch Existenznachweise für die Strukturen «3 und £1 (§ 13, 
§ 22), und in § 23 wurde der Körper € aus SR gewonnen. Als Lücke blieb noch 
der Nachweis der Existenz des Körpers SR der reellen Zahlen. Die Schließung 
dieser Lücke erfordert einen gewissen Aufwand und unterscheidet sich wesent-
lich von den früher geübten Konstruktionsverfahren. 
Schon anschaulich vollzieht sich der Übergang von Q zu SR anders als etwa 
der von 3 zu Q. Damals wurden die Lösungen der Gleichungen ax — b (a,b e 3 ; 
a 4= 0) zu 3 adjungiert. Diesmal kann man sich die Elemente von Q auf der 
Zahlengeraden markiert denken und will erreichen, daß umgekehrt auch 
jedem Punkt dieser Geraden ein Element r des Erweiterungskörpers SR 3 Q 
entspricht. Es gibt mehrere Möglichkeiten, diese Vorstellung mathematisch zu 
realisieren. Methodisch am ergiebigsten ist ein Verfahren, das durch den 
Konvergenzbegriff aus der Analysis nahegelegt wird und über die bloße Kon-
struktion des reellen Zahlkörpers SR hinaus eine allgemeine Bedeutung besitzt. 
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Es geht unter anderem auf G . C a n t o b ( 1 8 4 6 — 1 9 1 8 ) zurück und besteht, kurz 
gesagt, in folgendem. Eine Folge rationaler Zahlen <n, für die das Cauchysche 
Konvergenzkriterium erfüllt ist, hat immer einen Lomes a e 9t; aber a braucht 
nicht in Q zu liegen. Umgekehrt gibt es zu jedem a e 9t eine (Cauchy-)Folge 
rationaler a< mit a als Limes. Wir konstruieren nun 9t als die Menge aller 
solcher Cauchy-Folgen aus rationalen a<; zwei derartige Folgen werden äqui-
valent sein, wenn sie denselben Limes a e 9t haben. Dem wenden wir uns jetzt 
im einzelnen zu. Eine andere, für Beweiszwecke mitunter nützliche Konstruk-
tion des Körpers 9t durch sogenannte ÜEDEKiNDsche Schnitte findet man etwa 
be i G r a t j e b t - L i e b [5] . 

32.2 Wir beginnen mit der 

Definition: Eine Folge («i, «2» «8, • • •) aus heißt Cauchy-Folge, wenn zu 
jedem positiven e e Q ein N(e) e 9t derart existiert, daß \am — an\ < e wird für 
m,n> N(e). Eine Folge («i, «2. ®3> • • •) eG°° heißt Nullfolge, wenn zu jedem 
positiven eeQ. ein No(e) e9t derart existiert, daß \an\ < e wird für n > Nq(e). 

Eine Nullfolge (01, 02, «3, . . . ) ist also eine spezielle Cauchy-Folge; denn zu 
vorgegebenem e > 0 aus Q gelten für hinreichend große Indizes m, n die Un-

e b gleichungen \am\ < — und \an\ < —, und aus ihnen folgt 
¿1 2t 

\am — an\ ^ Knl + W < e. 
Eine Cauchy-Folge (a\, a2, 03, . . . ) ist beschränkt; das heißt, es gibt ein q eQ 
derart, daß \an\ q gilt für jeden Index n. Fürm, n > N(l) gilt ja \am—an\<1, 
also für m>N = iV(l) die Abschätzung \am\ = \(om — ajv+i) + «at+iI 
^ 1 + |aiv+i|; man kann also q = Max(|ai|, • • •, 1 + |«am-iI) setzen. 

Es sei nun M die Menge aller Cauchy-Folgen aus ; aus M konstruieren wir 
9t. Elemente («i, «3, . . . ) und (61, t% &3, • • •) aus M seien äquivalent, wenn 
(ai — 61, a% — 62. «3 — 63, . . . ) eine Nullfolge ist. Man überzeugt sich, daß auf 
diese Weise wirklich eine Äquivalenzrelation auf M definiert wird. Ferner seien 
eine Addition und eine Multiplikation auf M durch 

(ai, a2, «3, • • •) + (61, b2,h, •••) = («i + 61, <H + h, a3 + b3, ...) 
und 

(ai, a2, a3, . . . ) • (&i, b2, h, • • •) = (a-ih, «262, «363, • • •) 

eingeführt; die rechten Seiten liegen wieder in M, was für die Summe aus 

I(«I» + bm) — (o„ + bn)\ = \(am — an) + (bm — b„)[ ^ \am — an| + \bm — b„| 

und für das Produkt aus 

I ambm anf>n \ — I am.bm — anbm anf>m — anbn I 
= Ibm(om—an) + a„(bm—ft„)| iS |6m|- \am—an\ + \an\• \bm—bn\ 

und der Beschränktheit der \bm\ und \an\ folgt. 
Ist unsere Äquivalenzrelation eine Kongruenzrelation ? Da wir mit den Klassen 
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rechnen wollen, müssen wir das nachprüfen. Für die Addition sieht man es 
sofort mit Hilfe der Dreiecksungleichung. Und sind 

(«l, «2, «3, • • •) ~ («i, «2. °3> • • •) und (bi, b2, 63, . . . ) ~ (6J, ¿>2» &3> • • • )> 
so wird auch (a\bi, 0262, «363, . . . ) ~ {a[b[, a'Jb'2, «363, . . . ) wegen 
\arfin—a'nKil = IanK — a'J>n + — a'nb'nI ^ |6„| • |o» — <1 + Kl • \bn—b'nI, 
was für hinreichend großes n kleiner als ein vorgegebenes e > 0 aus Q. ausfällt. 
Es liegt also tatsächlich eine Kongruenzrelation vor. 
Man sieht sofort, daß M ein kommutativer Ring ist. Das Nullelement in M 
ist (0, 0, 0, . . . ) ; die dazu gehörende Klasse ist die Menge n c M aller Null-
folgen, und nach Satz 21.2 ist rt ein Ideal von M. Die Menge A der Kongruenz-
klassen von M, von der wir ja erwarten, daß sie bis auf Isomorphien der Körper 
SR wird, ist nach § 21 dasselbe wie M/n; als homomorphes Bild des kommutativen 
Ringes M ist also auch A ein kommutativer Ring. 
Wir wollen zeigen, daß A sogar ein Körper ist. Die Null in A ist die Klasse n; 
als Repräsentant kann (0 ,0 ,0 , . . . ) gewählt werden. Entsprechend ist 
(1 ,1 ,1 , . . . ) + n das Einselement. Ein von n verschiedenes Element aus A 
enthält nur solche Folgen (oi, a'2> a'3, . . .), für die ein q e £2, 1 > q > 0, existiert 
mit > q für alle n > N*(q) e 91; dabei hängen q und N*(q) von der vorge-
legten Folge ab. Nur endlich viele a{ einer solchen willkürlich dieser Klasse 
entnommenen Folge (a{, a'2, «3, . . . ) sind also ihrem Betrage nach kleiner oder 
gleich q ; ersetzen wir diese durch Einsen, so erhalten wir den Repräsentanten 
(«i, <Z2, 03, . . . ) derselben Klasse, und für ihn gilt an 4= 0 und \an\ > q für 
alle n. Der Nachweis, daß A ein Körper ist, ist erbracht, wenn wir gezeigt 
haben, daß («i, 02,03, . . . ) + n mit dem eben fixierten Repräsentanten 

(«i, az, «3, ) ein Inverses besitzt. Wir geben es an: . . . ) + tt; 
\oi «2 ®3 / 

noch nachweisen, daß (—, —, —, . . . ) eine Cauchy-Folge ist. 
\oi 02 03 / 

Das folgt aber daraus, daß (ai, o2, ®3» • • •) eine Cauchy-Folge ist und die 
Ungleichung 

I 1 1 ! \am an | 1 
I = —j 1— < l«m — anl 1 dm an\ \<hnfln\ T 

besteht. 

32.3 Ist der so konstruierte Körper A nun auch das geworden, was wir haben 
wollten ? Um das nachzuprüfen, orientieren wir uns an der Vorstellung, der 
Körper SR d Q sei die Menge aller Dezimalbrüche. Zunächst ist sicher die Teil-
struktur T = {x: x e A, x = (a, a, a, ...) + n> aller durch konstante Folgen 
repräsentierbaren Klassen aus A isomorph Q. Von Isomorphien abgesehen ist 
also A ein Oberkörper von £}. Ferner definiert jeder Dezimalbruch, zum Beispiel 
der für n, eine Cauchy-Folge, hier 

(3, 3,1, 3,14, 3,141, 3,1415, . . . ) , 

und wird so Repräsentant einer Klasse aus A. Schließlich sieht man auch um-
gekehrt, daß man für jede Klasse aus A genau einen Repräsentanten dieser Art 
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wählen kann. Wir dürfen A als die Menge aller Dezimalbrüche ansehen. 
Im folgenden stellen wir nun einige einfache Eigenschaften des in Abschnitt 
32.2 konstruierten Körpers A fest, die, wie sich zum Schluß herausstellen 
wird, ihn axiomatisch eindeutig beschreiben. 

32.4 Wir wollen A anordnen und wählen ein Element (oi, «2, «3, . . . ) + n 
von A, das nicht Null ist. Wir wissen bereits, daß dann ein qeQ, q > 0, 
existiert, so daß |a„| > 2 wird für alle n > N*(q). Da nun (ai, 02,03, . . . ) eine 
Cauchy-Folge ist, gilt ferner \om — an\ < 2q für alle m,n> N(2q). Aus beidem 
zusammen folgt: Für n > N = Max(N*(q), N(2q)) haben alle a„ das gleiche 
Vorzeichen. Genau dann, wenn alle diese an positiv sind, sei («i, «2, «3, • • •) 
+ n 6 A positiv. Diese Vorschrift ist eine Definition, da ein anderer Repräsen-
tant derselben Klasse sich lediglich um eine Nullfolge von (oi, 02,03, ) 
unterscheidet. Die Anordnungsaxiome aus § 31 sind ersichtlich erfüllt. Und 
schließlich wird die Anordnung von G fortgesetzt; denn (a,a,a, . . . ) + n eTcA 
wird genau dann positiv, wenn a e G in £ positiv ist. 

32.5 Ist A archimedisch angeordnet ? Es seien (ai, «2,03, . . . ) + n und 
(bi, 62, 63, . . . ) + n positive Elemente aus A. Dann gibt es positive rationale 
Zahlen qi, r\, derart, daß für alle hinreichend großen ».gilt: 

2i < an < qz, n<bn< r2. 
Die Abschätzungen nach oben folgen daraus, daß (oi, 02,03, . . . ) und 
(61, 62, 63, . . . ) Cauchy-Folgen sind. Da £ archimedisch angeordnet ist, gibt es 
ein k e 51 mit kq\ > r2. Dann ist aber erst recht (ko\, ka2, kas, . . . ) + n größer 
als (bi, bz, bs, . . . ) + "• Es ist also A ein archimedisch angeordneter Körper. 

32.6 Wir wenden uns noch einmal der Definition zu Beginn von Abschnitt 32.2 
zu und verallgemeinern sie, indem wir Q durch einen angeordneten Körper K 
ersetzen. 

Definition: Es sei K ein angeordneter Körper. Eine Folge (ai, 02,03, ...) 
aus K°° heißt Cauchy-Folge, wenn zu jedem positiven e e K ein N(e) e derart 
existiert, daß |Om— an\ < e wird für m,n> N(e). Eine Folge («1,02,03,... )eK°° 
heißt Nullfolge, wenn zu jedem positiven e e K ein Nq(b) e derart existiert, daß 
\an\ < e wird für n > N0(e). Allgemeiner heißt die Folge (oi, 02, 03, . . . ) e K°° 
in K konvergent mit dem Limes a, wenn es ein a e K gibt derart, daß zu jedem 
positiven e e K ein 8(e) e 9t existiert mit \an — o| < e für n > S(e); man schreibt 
dann lim av = o. Ein angeordneter Körper K heißt vollständig, wenn jede Cauchy-

v-t-oo 
Folge (oi, 02,03, ...) e K°° in K konvergent ist. 

Nullfolgen sind also konvergent mit dem Limes Null. 
Wir wissen, daß Q, nicht vollständig ist. Die in Abschnitt 32.3 aufgeschriebene 
Cauchy-Folge aus beispielsweise ist nicht konvergent in Q, da sie keine 
rationale Zahl als Limes hat. Andererseits ist die betrachtete Cauchy-Folge 
nach dem Cauchyschen Konvergenzkriterium aus der Analysis jedenfalls in SR 
konvergent wie jede Cauchy-Folge aus SR00. Dort wird also behauptet: Sit ist 
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ein vollständiger archimedisch angeordneter Körper. Unter dieser ständig 
benutzten Voraussetzung betreibt man dann reelle Analysis. 
Wir wollen nun zeigen, daß der archimedisch angeordnete Körper A voll-
ständig ist. Das ist nicht schwer, aber etwas umständlich aufzuschreiben. 

Es sei eine Cauchy-Folge (fi n, /2 n, /s n, . . . ) 6 ^4°° von Elementen 

h + n = (an, «12, «13, • • • ) .+ n 
(1) h + n = («21,022, a23, . . . ) + " 

/3 + n = (031,032, «33> . . . ) + n 

aus A vorgelegt. Auf Grund unserer Definition und der in Abschnitt 32.4 vor-
genommenen Anordnung von A hat das die folgende Bedeutung. Zu vor-
gegebenem e > 0 aus Q gibt es ein N(e) e 91 mit nachstehender Eigenschaft. 
Sind r, s natürliche Zahlen größer als N(e), so existiert ein A = A(r, s) e 51 
derart, daß für alle X > A gilt: 

(2) |an — an| < e (r, s > N(e); X > A(r, «)). 
Wir denken uns ferner die Repräsentanten in (1) noch in bestimmter Weise aus-
gesucht; wir wollen, daß die Komponenten der fx mit wachsendem A immer 
weniger streuen: Lassen wir von einer Cauchy-Folge (oj, 02, 03, . . . ) die ersten 
k Komponenten weg, so wird auch (a*+i, 2, ajt+3, . . . ) eine Cauchy-Folge, 
die dieselbe Klasse repräsentiert. Auf diese Weise können wir erreichen, daß in 
(1) für alle r, s gilt: 

(3) \ar, — arr| < - (r,ae 91). r 
Eine beliebige Komponente der r-ten Folge fr unterscheidet sich von der r-ten 

Komponente arr dieser Folge um weniger als —. r 
Unter diesen Voraussetzungen wollen wir zeigen: Die Folge 

(/1 + n,/a + n , / 3 + n, . . . ) e 4 « 
ist in A konvergent mit dem Limes / + neA, wobei / die Diagonalfolge 
(au, 022, 033, . . . ) des Schemas 

au ai2 013 «14 . . . 
°21 a22 023 «24 . . . 
«31 a32 a33 034 . . . 
041 «42 043 <Jt44 . . . 

bedeutet. Der Nachweis dafür ist gewiß dann erbracht, wenn wir das Folgende 
zeigen können. Zu vorgegebenem e > 0 aus £} existiert ein S(e) e 9t derart, daß 
für alle r,s> S(e) gilt: 

(4) |ars — ass| < e (r,a > %)). 
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Das heißt speziell: Wird die Folge (ari, ar2, ar3, . . . ) in dem angeschriebenen 
Schema nur hinreichend weit unten gewählt, so unterscheidet sich ars für s ^ r 
von der entsprechenden Komponente ass der Folge (an, <122, «33, . . . ) dem 
Betrage nach um weniger als e. Aus den Beziehungen (3) und (4) und der 
Ungleichung 

|«rr— a»«l iä IOrr — ars\ + |«rs — «ssl 

ergibt sich schließlich von selbst noch, daß / eine Cauchy-Folge, also / + n e A 
ist. 

Der ausstehende Nachweis von (4) stützt sich auf (2) und (3). Für r, 

und hinreichend große X > A (r, s) gilt zunächst einmal 

(5) \<hi — asX\ < ~ 

auf Grund von (2). Die arx aus der r-ten Folge fr unterscheiden sich aber nach 
1 2 

(3) von arr um höchstens —, somit untereinander um höchstens —, und ent-

2 
sprechend unterscheiden sich die asx der s-ten Folge um höchstens —. An Stelle 

s 
von (5) bekommen wir deswegen auch 

(6) \arx — asX\ + ^ + ^ (r,i>iv(i)), 

diesmal für alle A e 9t. Hieraus ergibt sich (4) mit A = s und einem beliebigen 

S(e) ^ Mm(ä(|) ,|) . 

32.7 Es ist also A ein vollständiger archimedisch angeordneter Körper. Axio-
matisch ist nun noch ein Punkt interessant: Zwei archimedisch angeordnete 
vollständige Körper K und L sind isomorph. Wenn wir das noch beweisen, so 
haben wir durch diese Angaben den Körper A sogar eindeutig beschrieben. 
Wir zeigen statt dessen: Ist K ein archimedisch angeordneter vollständiger 
Körper, so gilt K ~ A. 
Zunächst ist K angeordnet; nach § 31.1 dürfen wir also Q. c K voraussetzen. 
Weil K sogar archimedisch angeordnet ist, gibt es überdies zu jedem a e K 
ein n e 51 mit n • 1 = n> a, und es folgt die Existenz ganzer Zahlen m, n 
mit m < a < n. Nun kann man eine Cauchy-Folge («i, «2» 03» • • •) e kon-
struieren, die a als Limes hat; man wählt etwa a\ — m und halbiert das Inter-

TU | fi ffy I ^ 
vall \m, n] durch — - — ; gilt dann noch m sS a — - — , so wählt man auch 

¿t Z 

«2 = m, andernfalls «2 = —5—, und setzt das Verfahren der Intervallhal-¿i 
bierung fort. 
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Durch f(a) — (01,02,03, ...) + n e A wird nun eine Abbildung f:K-+A 
definiert. Denn erstens ist («1,02.03, . . . ) offenbar eine Cauchy-Folge, und 
zweitens bildet eine andere gegen o konvergierende Folge (o{, 02, 03, . . . ) 
auf Grund der Abschätzung 

|o„ — «; | ^ |o„ — a\ + \a — a'n\ 

nur einen anderen Repräsentanten derselben Klasse (01,02,03, . . . ) + n. 
Diese Abbildung /: K A ist surjektiv, weil K vollständig ist. Sie ist auch 
injektiv; hätten nämlich die voneinander verschiedenen Elemente o, b e K 
dasselbe Bild (01,02,03, . . . ) + n e A, so hät te die Folge (01,02,03, . . . ) die bei-
den verschiedenen Limites a und b, was wegen 

|o —o„| + |o„ — b\ ^ |o — b\ 
nicht möglich ist. 
Die Abbildung f: K A ist also bijektiv. Sie ist auch relationstreu. Hierfür 
seien (oi, 02, 03, ) und (61, 62, ¿>3, . . . ) Repräsentanten von Klassen aus A; 
nach Voraussetzung existieren in K -die Limites lim an = a und lim bn — b. 

»->•00 n-*-oo 

Zu zeigen sind dann die Regeln 

(7) lim (o„ + ¿>B) = lim o„ + lim bn 
n-*oo n->co n > oo 

und 

(8) lim anbn = lim an • lim 6„. 
n—*oo n—*oo n-+oo 

Ihr Nachweis verläuft nach dem aus der Analysis bekannten Muster und 
stützt sich auf die Ungleichungen 

(7') |(o„ + bn) — (o + 6)| ^ |o„ — o| + |6„ — 6| 

und 

(8') |anbn — ab\ ^ |6n| • |on — o| + |o| • |6» — 6|. 

Insgesamt gilt also K ~ A. 

32.8 Zuletzt ersetzen wir die in Abschnitt 32.3 betrachtete Teilstruktur 
T = {x: x e A, x = (o, o, o, . . . ) + rt> ~ Q von A durch Q; den dadurch 
aus A entstandenen Körper nennen wir den Körper SR DQ der reellen Zahlen. 
Wir fassen unsere Ergebnisse zusammen. 

Satz 1: Es gibt, von Isomorphien abgesehen, genau einen archimedisch an-
geordneten vollständigen Körper, den Körper SR der redien Zahlen. 

Ergänzend wiederholen wir: Der Ring 3 der ganzen Zahlen ist eindeutig be-
stimmt als der kleinste angeordnete Ring mit Einselement; der Körper ist 
eindeutig bestimmt als der kleinste angeordnete Körper (§31). Andere axioma-
tische Beschreibungen von 3 und Ü hatten wir in § 13.2 und § 22.2 kennen-
gelernt. 
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§ 33* Bewertete Körper 

33.1 In einem angeordneten Körper K mit Elementen a,b, . . . gelten nach 
§ 31.1 die Betragsrechenregeln \ab\ = |a| • |6| und |o + ò| SS \a\ -f- |6|. Ihre 
Bedeutung für die Analysis kann gar nicht hoch genug eingeschätzt werden. 
Wir haben sie zum Beispiel bereits bei der Konstruktion des Körpers 91 in 
typischer Weise gebraucht. Am Anfang der Analysis, etwa in SR, steht der 
Limesbegriff, und die Theorie besteht aus den Sätzen, die. sich über ihn er-
geben. Es seien beispielsweise a„, bn reelle Zahlen mit lim an = a und 

lim bn = b; dann gilt Um anbn = ab. Der Beweis beruht auf der Abschätzung 
oo n-+ oo 

(8') aus § 32, 

Ianbn — ab\ = \bn(an — a) + a(b„ — 6)| ^ |6„| • |an — a\ + |a| • |6„ — 6|, 

die sich ihrerseits auf die beiden Betragsrechenregeln stützt. Will man zeigen, 
daß das Produkt stetiger Funktionen wieder stetig, das Produkt differenzier-
barer Funktionen wieder differenzierbar ist, so benutzt man das gleiche Be-
weisschema. 
Nun wissen wir aus § 31.1, daß der Körper @ sich nicht anordnen läßt. Trotz-
dem kann man in ihm mit großem Erfolg Analysis betreiben, und die zitierten 
Limes-Sätze gelten auch hier. Dazu definiert man den Betrag |z| einer kom-
plexen Zahl z 6 <5 als die nichtnegative reelle Wurzel aus zz 0 und hat damit 
einen reellen „Wert" von z ; für komplexe Zahlen zi, Z2, . . . soll dann lim z„ = z 

n-*oo 
bedeuten, daß der „Wert" von z„ — z mit wachsendem n immer kleiner wird: 
Zu vorgegebenem reellen e > 0 existiert ein S(e) e 91 derart, daß \zn — z\ < e 
ist für n > S(e). Entscheidend ist nun, daß auf diese Weise die Betragsrechen-
regeln |oò| = \a\ • |6| und \a + 6| iS |a| + [¿>[ auch für komplexe Zahlen 
a, b ihre Gültigkeit behalten (vgl. Anhang). Als Folge davon kann man die 
erwähnten Sätze auch für komplexe Folgen oder Funktionen aussprechen und 
die alten Beweise, die auf diesen Regeln beruhen, übernehmen. 
Dieses Beispiel zeigt, daß es sich lohnt, den Begriff der Anordnung eines 
Körpers K in folgender Weise zu verallgemeinern. 

Definition: Ein Körper K mit Elementen a,b, ... heißt bewertet, wenn eine 
Abbildung <p: K -+W von K in einen angeordneten Körper W (meist W = SR) 
mit folgenden Eigenschaften vorhanden ist: 

(1) ^,(0) = 0; <p(a) > 0 für alle a e K, a + 0. 
(2) <p{ab) = <p(a) • tp(b) für alle a,beK. 
(3) <p(a + b) g <p(a) + <p(b) für alle a,be K. 

Es ist klar: Jeder angeordnete Körper K besitzt die durch W = K und 
<p(a) — |a| definierte Betragsbewertung. Der Körper <5 läßt sich durch 
<p(z) = + yzz e SR bewerten. Eine triviale Bewertung schließlich hat jeder 
Körper K: Man setze <?s(0) = 0 und <p(a) = 1 für jédes a e K, a 4= 0. Zwei Be-
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Wertungen <pi~. K -> W und <p2- K W wird man genau dann als äquivalent 
ansehen, wenn für alle a,b e K gilt: 

<pi(a) < 9?i(ö) o <p2(a) < 952(6). 
Folgerungen aus (1) und (2) sind 95(1) = 1, <p{—1) = 1 und <p(—a) — <p(a). 
Damit läßt sich wie in § 31, (5), die Dreiecksungleichung (3) in der Gestalt 

— <p(b)\ ^ <P(" ±b) < <p{a) + cp(b) 

verallgemeinern. Schließlich bekommt man aus (3) auch noch 

<p(a 1 + «2 + • • • + o») ^ <p(a 1) + 95(02) + ... + <p(a„). 

33.2 Eine Folge («i, «3, . . . ) von Elementen ar eines durch <p bewerteten 
Körpers K heißt Cauchy-Folge oder Fundamentalfolge, wenn zu jedem positi-
ven e e W ein N(e) e 9t derart existiert, daß <p(om — an) < e wird für 
m,n> N(e). Entsprechend überträgt man den Konvergenzbegriff. Ein Rück-
blick auf die Konstruktion, die in § 32 von Q zu SR geführt hat, zeigt, daß auch 
sie sich ohne wesentlichen zusätzlichen Aufwand verallgemeinern läßt. Am 
Ende steht das Ergebnis: Jeder bewertete Körper K besitzt einen minimalen 
bewerteten Oberkörper E derart, daß die Bewertung von E eine Fortsetzung 
der Bewertung von K und jede Cauchy-Folge aus E00 in E konvergent ist; 
der Körper E ist bis auf Isomorphien eindeutig bestimmt und heißt die voll-
ständige Hülle von K bezüglich der Bewertung q>. In § 32 handelte es sich um 
den Spezialfall K = Q., E = 3t, <p(a) = |o|. 
Wir wollen auf Einzelheiten nicht weiter eingehen, weisen aber noch auf fol-
gendes hin. Sind a, b Elemente eines bewerteten Körpers K, so darf man sich 
unter <p(a — b) ihre „Entfernung" d(a, b) vorstellen. Wir präzisieren das. 

Definition: Eine Menge M von Elementen a,b,c, ... heißt ein metrischer 
Raum, wenn eine Abbildung d: M x M A des cartesischen Produktes M x M 
in einen angeordneten Körper A (meist A = SR) mit folgenden Eigenschaften 
erklärt ist: 
(1) d(a, b) = 0 für a = b\ d(a, b) > 0 für a 4= b. 
(2) d(a, b) = d(b, a). 
(3) d(a, c) ^ d(a, b) + d(b, c). 
Diese Forderungen an die Entfernung oder Metrik d(x, y) haben plausible an-
schauliche Bedeutungen; insbesondere bezieht die Dreiecksungleichung (3) 
ihren Namen hierher. Ist nun K durch <p bewertet, so definiert ersichtlich 
d(a, b) = <p(a — b) eine Metrik auf K. 

33.3 Welche Bewertungen gestattet beispielsweise Q ? Wir kennen bislang die 
triviale und die Betragsbewertung. Weitere Bewertungen von Q erhält man 
wie folgt. 

Es sei p e Ut eine feste Primzahl und das positive q e Ö in der Gestalt —pk mit 
n 

zu p und untereinander teilerfremden natürlichen Zahlen m, n geschrieben; 
wir setzen dann 953,(0) = 0 und 
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<pp(q) = <pp(—q) = pk-

Dies definiert eine Bewertung <pP:£l^-Q. von Q. Die Forderungen (1), (2) aus 
33.1 sind trivialerweise erfüllt, und sind m, n, r, s ganz und teilerfremd zu p, so 
folgt für k l und von Null verschiedener Summe in der folgenden Klammer 

Im . r (ms + nrpl'K .\ ^ , 
<PP\ „ P + 7 P = M P = P~*> x ^ k> \n s I \ Tis ! 

oder <pp(a + 6) ^ Max (<pp(a), <pP(b)) iS <pp(a) + <pp(b), also (3). 
Dies nennt man eine p-adische Bewertung von £}. Etwas nachlässig gesagt, ist 
ein qeQ. klein, wenn es durch eine hohe Potenz von p teilbar ist. Jede Wahl 
von p liefert eine andere derartige Bewertung, und entgegen dem ersten 
Augenschein spielen diese Bewertungen eine große Rolle (vgl. etwa HASSE 
[6]). Weitere Bewertungen von £l gibt es, wie man zeigen kann, nicht. 

§ 34 Symmetrische Polynome 

34.1 Wir wenden uns noch einmal Polynomringen R\xi, x%, ..., xn] in n Un-
bestimmten über einem kommutativen Ring R mit Einselement zu. Ein 
Polynom f(xi, X2, ..., xn) e R\xi, xn] heißt symmetrisch, wenn es bei 
jeder Permutation der X{ unverändert bleibt, wenn also für jedes n e gilt: 

/(«;rtl), X„(2), .. . ., XMn)) = f(x i , X2, ..., Xn). 

Beispiele solcher Polynome sind etwa x\-\-x%-\-... -j-xn, «1+^2+ • • • ~\~xn oder 
Ringelemente r e R. 
Weitere symmetrische Polynome, die besonders häufig auftreten, erhält man 
wie folgt. Man wähle eine weitere Unbestimmte x über R[x\, x%, . . . , « „ ] und 
betrachte das Po lynom g(x) = (x—x\)(x—£2) • • •(x—xn) e R\x\,x2,...,x„][x]. 
Wir multiplizieren aus und setzen 

g(x) = x» — ctix""1 + a2xn~2 b • • • + (— l ) " f f » . 

Jede Permutation der xj läßt g(x) und damit auch die ffj e R[x1,2:2, •. .,xn] fest; 
sie heißen die elementarsymmetrischen Polynome der xi, »2, .. .,xn und haben 
die Gestalt 

= = 1xtxh • • on = XiXZ ... xn. 
i i<j 

Gegenstand unserer Erörterungen ist der folgende Hauptsatz über symmetrische 
Polynome. 

Satz l s Jedes symmetrische Polynom f(x 1, xn) e -ß[a;i, x%, ..., xn] 
läßt sich als Polynom in den elementarsymmetrischen Polynomen Cj schreiben: 

f(x 1, Xi, ..., Xn) £ Ä[oi, 02, ..., ff»]. 

Beweis: Das Polynom f(x1, ..., xn) ist eine Summe von Ausdrücken 
der Gestalt rx\' • • • x^, reR,r=|= 0, Aj 0; wir schreiben diese Summe 
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so auf, daß a x . . . vor b x i 1 X o ' . . . x^" steht, wenn die erste nicht 
verschwindende unter den Differenzen ai — ßi, a2 — /?2, . . . , ocn — ßn positiv 
ist. Wir nehmen an, f(x1, . . . , xn) habe den Grad m; das soll heißen, daß 
für wenigstens einen der Summanden Ai + + . . . + An = m wird und die 
Exponentensumme sonst immer sS m ausfällt. Der triviale Fall f(x1,2:2, • • • ,#«) 
= 0 ist dabei ausgeschlossen. 
Der erste Summand von f ( x i , x 2 , . . . , x n ) heiße, a x * 1 x"2' . . . x „ " . Weil nun 
f(x1, X2, . . . , x„) symmetrisch ist, gilt ai a2 sl • • • ^ <x„. Denselben ersten 
Summanden hat das Polynom 

a a l l ~ " ' . . . e . r 2 , . . . , x n ] 

vom Grad 
(ai—a2)+2(ot2—a3)+ • • • +(n—l)(a„-i—a„)+wa„ = a i + a 2 + . . . + a „ m. 
Wir subtrahieren es von f(x1, X2, . . . , xn) und betrachten die Differenz 

d ( x 1 , X 2 , . . . , x n ) = f ( x i , x 2 , . . . , x n ) — a a l l ~ " ' • • • 

Es ist entweder d(x\, X2, . . . , xn) = 0, und in diesem Fall sind wir fertig, 
oder das symmetrische Polynom d(x1, X2, . • x n ) hat einen Grad iS m und 
einen ersten Summanden bxj1 . . . der bei der verabredeten Reihen-
folge nur einer der möglichen Nachfolger von ax* 1 xQ . . . x^" sein kann. 
Solche Nachfolger gibt es unter Polynomen vom Grad iS m nur endlich viele. 
Setzt man daher das Subtraktionsverfahren fort, so bricht es nach endlich 
vielen Schritten mit einer Differenz Null ab, und Satz 1 ist bewiesen. 
Dieser Beweis ist konstruktiv; er ermöglicht es, zu vorgelegtem symmetrischen 
f(x1, Xz Xn) die gewünschte Darstellung als Polynom in den elementar-
symmetrischen Polynomen o t ( x i , X 2 , • . . , x n ) auch wirklich aufzufinden, selbst 
wenn die Rechnung im einzelnen mühsam sein mag. 

34.2 Eine der häufigsten Anwendungen von Satz 1 beruht darauf, daß auch 
das Polynom 

D ( x 1, X 2 , . . . , x n ) = n(s< —  x k ) 2 e R [ X ! , X 2 , . . . , X n ] 
i < k 

symmetrisch ist, also eine Polynomdarstellung durch die cr<(xi, x% x n ) ge-
stattet. 
Es sei K ein Körper und f ( x ) = x n + a \ x n ~ x + a2xn~2 + . . . + a n e K [ x ~ ] ; 

es gebe einen Erweiterungskörper E von K , in dem f(x) die n nicht notwendig 
paarweise voneinander verschiedenen Nullstellen fi, £2, • • •, f» besitzt. Später 
wird sich zeigen, daß ein derartiger Körper E immer existiert (§ 58). Nach 
dem Beweis von Satz 26.2 gilt dann in E[x] 

f ( x ) = ( x — h ) ( x — h ) . . . ( x — £ „ ) . 

Unter der D i s k r i m i n a n t e D ( f ) von f ( x ) versteht man die Zahl 

m = ro - f*)2-
i < k 
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Man betrachte nun die Polynomdarstellung von D(xi, xz, ..., xn) durch die 
oi(xi, X2, ..., xn) und ersetze in ihr die x\ durch die Wegen 

f») = (— l ) }aj 

folgt, daß D(f) ein Polynom in den aj, also D(f) e K ist. Wir beachten dabei, 
daß wir die Koeffizienten von f{x) so bezeichnet haben, daß sie bis aufs Vor-
zeichen dem Polynom g(x) aus dem vorigen Abschnitt entsprechen. 
Die Darstellung der Diskriminante D(f) durch die Koeffizienten aj von f(x) 
erfordert einige Rechnung, die unter anderem nach dem Muster des Beweises 
von Satz 1 durchgeführt werden kann. Wir geben zwei Resultate an: 

(1) D(x2 + px + q) = p2 — 4q; 

(2) D( xz + a\x2 + a%x + as) = ofo | — 4 — 4a®a3 — 21 a\ + 18aia2a3. 

34.3 Die Bedeutung der Diskriminante D(f) e K des Polynoms f(x) e K[x\ be-
ruht auf den Informationen, die sie über die Nullstellen Ute E von f(x) ver-
mittelt. Sie ist genau dann Null, wenn f(x) in E wenigstens eine mehrfache 
Nullstelle hat. Wir sehen uns noch zwei Beispiele an. 
Das quadratische Polynom x2 + px + q e 9t[a;] hat entweder zwei konjugiert-
komplexe oder nur reelle Nullstellen h , h'> der letzte Fall t r i t t genau dann 
ein, wenn (fi — = D(x2 + px + q) = p2 — 4q i ; 0 ist, was auch die 
übliche Auflösung der quadratischen Gleichung ergibt. 
Das kubische Polynom f(x) = x3 + ®i£2 + a^x + 03 e 9t[a;] besitzt entweder 
eine reelle und zwei konjugiert-komplexe oder drei reelle Nullstellen, ihrer 
Vielfachheit entsprechend gezählt; ein Polynom ungeraden Grades mit reellen 
Koeffizienten hat ja, wie wir aus der Analysis wissen, mindestens eine reelle 
Nullstelle. Sind alle drei Nullstellen reell, so ist sicher D(f) 2g 0. Umgekehrt: 
Sind die Nullstellen £1, h nicht reell und £3 e SR, so sind (fi — kz)2 und (£2 —13)2 

von Null verschiedene konjugiert-komplexe Zahlen, also (fi — £3)2(?2 — fs) 2 >0, 
und mit (h — h)2 < 0 folgt D(f) = (h—h)2(h—h)2(h—&)2 < 0. So ergibt 
sich der mitunter gebrauchte 

Satz 2: Das kubische Polynom x3 + aix2 + a^x + 03 e 9t[a:] hat genau dann 
drei reelle Nullstellen, wenn die Diskriminante 

a\a\ — 4a | — 4afa3 — 21 a\ + 18^10203 0 

ist. 

A u f g a b e 1: Es sei K ein Körper und 

f(x) = xn + aix"-1 + d2Xn~2 + ... + an e K\x\ 

In dem Erweiterungskörper E von K habe f(x) die Nullstellen f i , Man beweise die Formel 

(3) D(f) = ( - 1 ) ~ ^ m ) f ' ( h ) • • • /'(£»)• 

Literatur: v. D. W a e r d e n [16]. 

9 Hornfeck, Algebra 
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Es mag zunächst überraschen, daß ein ganzes Kapitel sich noch mit Ideal-
theorie beschäftigen soll. Der Homomorphiesatz für Ringe aus § 21 ist auch 
nicht der Anlaß dafür, obwohl er zum ersten Mal die Bedeutung des Ideal-
begriffs unterstreicht. Es wird sich vielmehr bald herausstellen, daß der Ver-
such, nach dem Vorbild der elementaren Zahlentheorie in beliebigen, hier 
kommutativen Ringen Sätze über Teiler, Primelemente usw. zu gewinnen, zu 
idealtheoretischen Betrachtungen führt. Solchen Untersuchungen ist dieses 
Kapitel gewidmet. Die Überschrift weist auf die Methoden hin; sie hätte auch 
heißen können: Teilbarkeitstheorie. 

§ 35 Rechenregeln 

Wir betreiben in diesem Kapitel Idealtheorie in durchweg kommutativen 
Ringen. Ein Ideal fl des kommutativen Ringes R ist nach § 21 eine additive 
Untergruppe von R mit der Eigenschaft, daß aus ae et und r e R folgt: ra e a. 

35.1 Es sei R ein kommutativer Ring und M cR eine beliebige Teilmenge von 
R. Dann gibt es Ideale, die M enthalten, zum Beispiel R selbst. Die Menge A 
aller Ideale a aus R mit a d M ist also nicht leer. Sind a, b Ideale aus A, so ist 
auch a n b e i ; ebenso ist der Durchschnitt 

t> = n a 
aeA 

aller aeA ein Ideal aus A. Für jedes Ideal a aus R mit aoM gilt a d f> o M; 
es ist also b das kleinste Ideal, das M enthält. Da es immer existiert, ist die 
folgende Definition sinnvoll. 

Definition: Es sei M eine Teilmenge des kommutativen Ringes R\ dann be-
zeichne (M) das Ideinste Ideal b aus R, das M enthält. Wir nennen (M) das von 
M oder den Elementen von M erzeugte Ideal. 

Aus welchen Elementen besteht (M) ? Sicher enthält (M) alle Summen der Ge-
stalt nmi + f2i»2 + . . . + reme, ueR, rrii e M; dasselbe gilt für Summen 
der Form kim'i + kzm'2 + . . . + kam'a, kt e  m'i 6 M. Also enthält (M) auch 
alle Ausdrücke 

(1) (nmi + r2m2 + ... + reme) + (kim[ + k^m^ + ... + kam'a). 

Ihre Gesamtheit ist aber, wie man sofort sieht, ein Ideal aus R, das M enthält, 
und damit (M). 
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Wir bemerken, daß die endlichen Summen der Gestalt 2r<mi für sich zwar 
auch ein Ideal von R bilden; aber dieses Ideal braucht M nicht zu enthalten. 
Das Bild vereinfacht sich etwas, wenn es in R ein Einselement gibt. Dann sind 
ja die ki Ringelemente, und die zweite Summe aus (1) geht in der ersten auf. 
Ist also 1 e R, so wird ( I i ) die Menge aller endlichen Summen 

(2) rjmi + r2ni2 + . . . + reme (rv eR, mre M). 

Da wir fast ausschließlich kommutative Ringe mit Einselement betrachten 
werden, ist dies der wichtigste Fall. 

Definition: Das Ideal a des kommutativen Ringes R heißt endlich erzeugt, 
wenn es eine endliche Menge M = {m\, 2 ms} c R mit a ~ (M) gibt. In 
diesem Fall schreiben wir a — (m\,m<i,... ,ms) und nennen M = {m\,m<i,.. .,ms} 
eine Basis von a. 

Ist also speziell R ein kommutativer Ring mit Einselement, so besteht 
(mi,»»2,... ,ms) aus allen Summen der Gestalt rimi+r2»i2+ . . . +rsmg, ri e R. 
Für das Ideal R kann man dann R = (1) schreiben. 
Die Basen endlich erzeugter Ideale sind keineswegs eindeutig bestimmt. In 
3 gilt beispielsweise (4, 6) = (2). 
Die Gleichheit von Idealen zeigt man oft genauso wie die von Mengen. Hier-
auf beruhen gewisse identische Umformungen, die für den Fall eines Ideals 
(a, b) aus einem kommutativen Ring R erläutert seien. Es gelten die Regeln 

(3) (a,b) = (a,—b), 
(4) (o, b) = (a,a + b), 
letztere wegen 
r\a + r<ib + k\a + k%b = (rj — r2)« + ri(a + b) + (^1 — ¿2)« + (« + b) 
(ri e R, kt e •$). Für c e (a, b) erhält man weiter 
(5) (a,b) = (a,b,c) 
und speziell 
(6) (a,b) = (a, b, ra) (reR); 
diese letzte Beziehung gestattet, von rechts nach links gelesen, oft wesentliche 
Vereinfachungen. 
Be ispie l 1. In 3 gilt ( 6 , - 9 , 2 1 ) = ( 6 - 9 , 6 , - 9 , 2 1 ) = (—3) = (3). Es 
ist, als hätte man den g.g.T. berechnet. 
Be ispie l 2. In 3 gilt (—14, 35, 28) = (—14, 35, —28) = (7, —14, 35, —28) 
= <7)- _ _ _ _ _ _ 
Be isp ie l 3. In 3[]/—5] wird ( 2 , 1 + ]/—5) = (2,—1— ]/—5) = (2 ,1— ]/—5). 
Be i sp ie l 4. In y] ist (x — y, x + y) = (x — y, x + y, 2x) = (2x, x + y), 
aber x — y, x + y) und y $ (x — y, x + y). In £}[.r, y] dagegen gilt 
(x — y, x + y) = (2x, x + y) = (x, x + y) = (x, y). 

35.2 Ein Ideäl a eines kommutativen Ringes R heißt Hauptideal, wenn ein 
aeR mit a = (a) existiert. So ist (6, —9, 21) = (3) ein Hauptideal in 3 ; aber 
(x — y, x + y) ist es weder in y\ noch in 5}[a;, y\. 

9* 
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Definition: Ein Integritätsbereich I mit Einselement heißt Hauptidealring, 
wenn jedes Ideal aus I ein Hauptideal ist. 

Solche Ringe gibt es. Jeder Körper K gehört zu ihnen, da (0) und K = (1) 
seine einzigen Ideale sind (§ 21, Beispiel 3). Ferner gilt der 

Satz ls ^ Hauptidealring. 

Beweis : Das folgt aus Satz 9.6, wonach jede additive Untergruppe a 
von ^ zyklisch ist. Um aber ein Muster für später zu haben, führen wir die 
Überlegung noch einmal durch. Ist a ein von (0) verschiedenes Ideal aus 3. 
so gibt es ein kleinstes positives a e a. Wir behaupten a = (a). Zu zeigen ist: 
Zu jedem be a existiert ein q e 3 mit b = qa. Division von b durch a liefert 
b - qa + T, 0 5S r < a. Wegen r = b — qae a und 0 r < a muß r = 0 
sein auf Grund der Wahl von o. Damit ist b = qa, und es folgt Satz 1. 

Ist a ein Ideal des Ringes R, so wird durch a ~ b o a — b e a eine Kon-
gruenzrelation auf R erklärt, und man schreibt a = b mod o; umgekehrt gibt 
es zu jeder Kongruenzrelation auf R ein Ideal a c R derart, daß a = b be-
deutet: a — b e a (§ 21). Da nun in 3 jedes Ideal ein Hauptideal o = (n) ist, 
kann man dort auch a = b mod (n) oder kürzer a = b mod n bzw. a = b (n) 
schreiben, wie wir es bereits in § 20 verabredet haben. 

35.3 Wieder sei R ein kommutativer Ring; es sei I eine Indexmenge, und die 
01 (i e I) seien Ideale aus R. Dann gibt es ein kleinstes Ideal, das alle a< ent-
hält, nämlich 

o = (Uo, ) . 
»ej 

Diese Feststellung erlaubt die 

Definition: Es seien a< (i e I) Ideale des kommutativen Ringes R. Unter dem 
Summenideal 2 <*i versteht man das kleinste Ideal a aus R, das alle a< enthält. 

iel 
Aus welchen Elementen besteht a ? Gilt a< e a<, und ist T eine endliche Teil-
menge von I, so ist sicher s = 2 e i n Element von a; für die Gesamtheit 

ieT 
S aller solcher endlichen Summen s folgt S c a. Ferner ist 8 ein Ideal, weil die 
at Ideale sind. Aus S o U o< folgt also auch 8 o ( U a«) = a. Zusammen-

iel <6/ 
genommen haben wir a = S und damit den 

Satz 2: Es seien a< (i e I) Ideale des kommutativen Ringes R. Dann besteht 
2 fli aus allen endlichen Summen der Gestalt 2 «<> «j e a< (i e T c I, T endlich). 
iel 
Beispielsweise o + b ist die Menge aller a + b, o e a , beb. 
Aus der Definition folgen die Rechenregeln (o + 6) + c = a + (b + c) und 
a + b = b + 0. 
B e i s p i e l 5. In $ gilt (6) + (9) = (6, 9) = (3); es ist (2) + (3) = (2, 3) = (1) 
und (4) + (4) = (4). 
B e i s p i e l 6. In hat man ( 2 + y 2 ) + ( 6 + y 2 ) = (2+y2, 6+V3) = (2+y2, 
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6+]/2, (2—yS)(2+J/5)), letzteres, weil das Produkt des Ringelements 2—J/2 
mit 2+y5e(2+y2, 6+]/2) wieder im Ideal (2+y2, 6+y2) liegt. Also ergibt sich 

(2 + yg) + (6 + ys) = (2 + ys, 6 + ys, y2) = (y2); 

denn 2 + y2 und 6 + y2 sind in Vielfache von y2. 

35.4 Ein wichtiger Begriff ist der des Produktideals. 

Definition: Es seien a, 6 Ideale des kommutativen Ringes R. Unter dem 
Produktideal ob versteht man das von allen ab, a e a,b e h, erzeugte Ideal. 
Es handelt sich also nicht um das Komplexprodukt von a und b; aber Ver-
wechslungen sind nicht zu befürchten. 
Wieder ist klar: Das Ideal ab umfaßt die Menge S aller endlichen Summen der 
Gestalt 2a(&i, a< e a, i>< e b; aber 8 ist selbst schon ein Ideal und enthält alle 
ab (a e a, b e b), also auch öb. Es folgt ab = S. Wir haben also den 

Satz 3: Es seien a, b Ideale des kommutativen Ringes R. Dann besteht das 
Produldideal üb aus allen endlichen Summen der Gestalt ̂ afii, at e a, e b. 

Analog erklärt man Idealprodukte abc usw. und bekommt Rechenregeln wie 
(ab)c = a(bc) und öb = ba. Beim Rechnen von Beispielen benutzt man oft 
den folgenden 

Satz 4: Es seien A, B Teilmengen des kommutativen Ringes R\ es sei AB 
ihr Komplexprodukt und a = (A), b = (B). Dann ist a + b = (A u B) und 
ab = (AB). 

Beweis: Das kleinste Ideal, das A und B enthält, enthält auch a und b, 
also ö + b, und umgekehrt ist a + b d (A U B); es gilt also a + 6 = ( i u ü ) . 
Ferner ist auf Grund der Definition des Produktideals ab 3 (AB), und wir 
zeigen noch ab c (AB): Jedes Produkt aß, a e a, ß e b, hat nach (1) die Gestalt 

&rtat + iha'-i&r'ibi + ZW) 
l 1 1 1 

mit Elementen rf, r< e R, at, a- e A, b(, b{ e B, kt, k{ e multipliziert man aus, 
so sieht man aß e (AB); also liegt auch jede endliche Summe ^ajßj (ocjea, ßjsV) 
in (AB), und nach Satz 3 heißt das ab c (AB). 
Beispiel 7. In 3 ist (2)(—3) = (—6) = (6). 
Beispiel 8. In £[y3] sei « = (1 + y3,1 — y3) und b = (2 + yS, y3). Wir 
wollen a + b und ab berechnen. Zuvor sehen wir, daß a = (1 + y3, —2) 
= (i + ys, (i — ysxi + ys» = a + ys) u n d » = (2, ys) = (2, ys, ysys) 
= (1,2,1/3, 3) = (1) Hauptideale sind. Es folgt q + b = (1) und ab = (1 + W). 
Beispiel 9. In ¿$[y—5] sei a = (2,1 + ]/—5). Für aa = a2 bekommt man 
(4, 2 + 2y=5, + 2y=5) = (4, 2 + 2y=5 ,2y=5) = (4, 2, 2y=ö) = (2). 

Aufgabe 1: Für Ideale a, bi, c eines kommutativen Ringes R zeige man 

a) 
b) 

«Z&« = 2<»i»( (iel), 
a = bc => a c b. 
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Aufgabe 2: Man berechne Summe und Produkt der Ideale 
a = (3 + ys, 3 — ]/2) und 6 = (2 + ]/% 2 — ]/2) in 3[y2]. 

Aufgabe 3: Es seilt ein kommutativer Ring und o ein Ideal aus R. Man 
nennt die Menge 

rad a = {r: re R, es gibt ein n e 9t mit rn e a} 
das Radikal von a. Man zeige: Auch rad a ist ein Ideal aus R (das a umfaßt). 

Aufgabe 4: Beschreibe $[x]ft5, x) durch einen bereits bekannten Ring. 

§ 36 Teilbarkeit 

36.1 Wir untersuchen den Teilbarkeitsbegriff; dabei legen wir einen Integritäts-
bereich R mit Einselement zugrunde. Nach § 20.2 heißt ein Element a e R 
Einheit, wenn es in R ein Inverses besitzt; hier bedeutet das die Existenz 
eines b e R mit ab = 1. Aus Aufgabe 20.5 wissen wir: Die Menge E cR aller 
Einheiten ist eine multiplikative Gruppe. Wir sehen uns zunächst solche 
Einheitengruppen an. 

Beispie l 1. Ist R ein Körper K, so ist E die Menge Ko der von Null ver-
schiedenen Körperelemente. 
Be isp ie l 2. Für R = ¡3 ist E = {1, —1}. 
Beispie l 3. Es sei R = JM- Ist a + bi (a, b e 3) eine Einheit aus so 
gibt es eine Zahl c + di (c, d e 3) in 3W mit + bi)(c + di) = 1. Dann gilt 
auch (a — bi)(c — di) = 1 (vgl. Aufgabe 27.3 und § 29.4). Multiplikation 
beider Gleichungen liefert (o2 + 62)(c2 + d2) = 1 und, da links natürliche Zahlen 
stehen, a2 + b2 = 1. Sind umgekehrt a, b ganze Zahlen mit a2 + b2 = 1, 
also (o + bi)(a — bi) — 1, so ist a + bi Einheit in Wir sehen also: Not-
wendig und hinreichend dafür, daß a + bi eine Einheit des Gaußschen Zahl-
ringes 3[i] ist, ist a2 + 62 = 1. Es folgt E = {1, —1, i, —i}. 
Die Bestimmimg aller Einheiten von R kann aber auch auf erhebliche Schwie-
rigkeiten stoßen. Man betrachte etwa das 
Beisp ie l 4. Es sei R = Ist a + b]/2 (a, be%) eine Einheit aus ¿![]/3], 
so folgt wie in Beispiel 3 die Existenz ganzer Zahlen c, d mit 

(a2 — 2&2)(c2 _ 2d2) = 1. 

Links stehen ganze Zahlen; also ist entweder o2 — 2b2 = 1 oder a2 — 2b2 = —1. 
Sind umgekehrt a, b ganze Zahlen mit a2 — 262 = ¿ 1 , also 

(a + &y3)(a —&y 2) = ± 1 , 
so ist a + ¿>y2 eine Einheit in 3[y2]. Notwendig und hinreichend dafür, daß 
a + &y2 eine Einheit von ist, ist demnach a2 — 2b2 = ±1. Man hat 
also alle ganzzahligen Lösungen der beiden diophantischen Gleichungen 
x2 — 2y2 - 1 und x2 — 2y2 = —1 aufzusuchen und steht vor einer Aufgabe 
der Zahlentheorie. Das Ergebnis ist folgendes: Die Einheitengruppe E von 
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3[]/2] besteht aus den unendlich vielen Zahlen ±(J/2 ± 1)» (n = 0, 1, 2, . . . ) . 
Daß dies alles Einheiten sind, ist wegen ( + l ) (y2— 1) = 1 unmittelbar 
zu sehen. 

Definition: Es sei R ein Integritätsbereich mit Einselement. Die Elemente 
a,beR heißen assoziiert, a ~ b, wenn eine Einheit e 6 R mit b = ea existiert 
(andernfalls: a * b). 
Man sieht leicht, daß auf diese Weise eine Äquivalenzrelation auf R definiert 
wird. Der Integritätsbereich R mit der Einheitengruppe E zerfällt in Klassen 
aE, bE, cE, ... assoziierter Elemente. Die Klasse E selbst besteht aus allen 
r e R mit r ~ 1. 

36.2 Es sei weiterhin R ein Integritätsbereich mit Einselement. Wir nennen 
b e R einen Teiler von a e R oder a ein Vielfaches von b, wenn es ein ce R 
gibt mit a = bc, und schreiben b\a, andernfalls 6-fa. 
Speziell ist also jedes b e R Teiler der Null; aber 0|o gilt nur für a = 0. Genau 
dann ist b e R eine Einheit, wenn gilt: 6|1. 
Mit dem folgenden Satz beginnen die Zusammenhänge zwischen Teilbarkeits-
und Idealtheorie. 

Satz ls Es sei R ein Integritätsbereich mit Einselement, und a, b seien 
Elemente aus R. Dann gilt: 
(.1) (a)c(b) o b\a. 
(2) (o) = (b) o a ~b. 

Beweis : 
(1): Es ist b\a a = bc o ae(b) o (a)c(b). 
(2): Der Fall a = 0 ist trivial. Es sei also a =(= 0. Wenn a ~ b gilt, so ist a\b 
und b\a, nach (1) also (o) = (b). Umgekehrt folgen aus (a) = (&) nach (1) die 
Beziehungen b\a und a\b. Es existieren dann also c,deR mit a = bc und 
b = ad; es folgt a = ade oder, da man in dem Integritätsbereich R durch a 4= 0 
kürzen darf, cd = 1. Speziell ist c eine Einheit, also a ~ b. 
Statt b\a steht also (a) c (b); der Teiler entspricht dem größeren Ideal. Wir 
sagen auch: (b) ist ein Teiler von (a). Allgemein heißt das Ideal b ein Teiler des 
Ideals a, wenn a c h gilt (vgl. auch Aufgabe 35.1, b)). 
Schließlich heiße beR ein echter Teiler von aeR, wenn b\a gilt, aber nicht 
b ~ a. Idealtheoretisch bedeutet das: (a) c (¿>), aber (b) =f= (<z). Allgemein sagt 
man, 6 sei ein echter Teiler von a, wenn a c b gilt und a =j= b. 
Eine oft benutzte Konsequenz von Satz 1 sei noch einmal gesondert notiert: 

(3) a ~ b o a\b und b\a. 

36.3 Wir teilen den Integritätsbereich R mit Einselement in drei disjunkte 
Teilmengen {0}, E, A auf: R = {0} u E u A. Wegen 1 e E ist die Einheiten-
gruppe E nicht leer; A besteht aus allen denjenigen von Null verschiedenen 
Ringelementen, die keine Einheiten sind. Genau dann ist A leer, wenn R ein 
Körper ist. Ein Ringelement r e R nennen wir nun unzerlegbar, wenn erstens 
r e A gilt und zweitens aus r = bc (b, c 6 R) folgt: entweder b oder c ist Einheit. 
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Es soll also nur triviale Zerlegungen von r geben. Ein r BR heißt zerlegbar, 
wenn r in A liegt und Nichteinheiten b, c aus R mit r = bc existieren. 
Be i sp i e l 5. Die unzerlegbaren Elemente in 3 sind genau die Zahlen 
wobei p die Primzahlen 2, 3, 5, . . . aus 91 durchläuft. 
Be i sp i e l 6. Die Zahl 5 ist also unzerlegbar in Wir wollen zeigen: Sie ist 
auch unzerlegbar in $[y2], aber zerlegbar in Das letztere folgt sofort aus 
5 = (2 + *)(2 — i); nach Beispiel 3 ist ja weder 5 noch einer der Faktoren 
2 eine Einheit in $[»]. Wir betrachten nun Sicher ist auch hier 5 

keine Einheit wegen^ $ 3[]/2]. Es seien a, b, c, d ganze Zahlen mit o 
(a + &yS)(c + d]/ 2) = 5, 

also auch (vgl. die Beispiele 3 und 4) noch (o — b]/^)(c — (¿y2) = 5. Aus-
multipliziert ergibt das (a2 — 2b2)(c2 — 2d2) — 25; die ganze Zahl o2 — 2b2 

hat also einen der Werte ± 1 , ± 5 , ±25. Wäre 

a2 — 262 = (a + 6]/2)(a — &y2) = ± 1 , 

so wäre a + i>y2 Einheit; entsprechend wäre c + d]/% Einheit im Falle 
o2 — 262 = ±25. Wenn es also eine nichttriviale Zerlegung 

5 = (a + b]/2)(c + <Zy5) 

in 3ty2] geben sollte, so muß für die ganzen Zahlen a, b gelten: a2 — 262 

= ± 5 . Wir zeigen, daß das nicht möglich ist. Es müßte ja erst recht a2 — 262 

= 0 im Restklassenring 3s gelten; Ausrechnen aller fünf Fälle zeigt, daß 0, 1 
und —1 die sämtlichen Quadrate in sind; also hat o2 — 262 = 0 in nur die 
Lösung a = b = 0. Das heißt: Wenn a2 — 2ö2 = ± 5 in ganzen Zahlen a, b 
gelten sollte, so würde 5 ein Teiler von a und von b sein; das liefert aber 
25|(a2 — 2b2) in 3 im Widerspruch zu a2 — 262 = ± 5 . 

B e i s p i e l 7. Es sei R = 3ty—6]. Wir wollen zeigen: Die Elemente 2, 3, 
1 + y—5 und 1 — y—5 sind unzerlegbar, und keine zwei von ihnen sind 
assoziiert. Zunächst sind es wegen 

und = — 4- h — 5 £ BW—51 keine Einheiten. Die Annahme 
1 —y—5 6 6 ' J 

[a + &y=5)(c + d]/=5) = 2 

mit a, b, c, d e 3 führt in bekannter Weise auf (a2 + 5b2)(c2 + 5d2) = 4; da 
keine der Klammern gleich 2 sein kann, folgt etwa 

o2 + 5 b2 = (a + i>y=5)(a — b]/—5) = 1; 

also ist a + i>y—5 Einheit und 2 unzerlegbar. Genauso zeigt man die Un-
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zerlegbarkeit von 3. Weiter sei 1 + ]/—5 = (o + &]/—5)(c + d]/—5) und 
folglich auch 1 — ]/—5 = (o — 6]/—5)(c — d]j—5); man bekommt 

6 = (o2 + 562)(c2 + 5 dt). 

Wieder muß etwa o2 + 562 = 1 sein, und 1 + ]j—5 und zugleich auch 1 — ]/—5 
erweisen sich als unzerlegbar. Schließlich sind keine zwei der Elemente 
2, 3, 1 + V—5, 1 — ]/—5 assoziiert; denn keiner ihrer Quotienten liegt in 
3 [y=5] . 

Wir geben nun eine idealtheoretische Charakterisierung für die Unzerlegbarkeit 
eines Elementes r e R, r 4= 0. 

Salz 2: Es sei R ein Integritätsbereich mit Einselement und r £ Ä, r =j= 0. 
Qenau dann ist r unzerlegbar, wenn (r) maximales Ideal unter den von R ver-
schiedenen Hauptidealen ist, das heißt, wenn (r) =j= R ist und aus (r) c (a) c R 
folgt: (a) = (r) oder (a) = R. 

B e w e i s : Is t r unzerlegbar, so ist r f 1, also (r) =)= (1) = -ß. Gilt weiter 
(r) c (o) c R, so gibt es ein b e R mit r = ab; ist a Einheit, so wird (a) = (1) 
= R\ ist b Einheit, so wird (a) = (r). Es sei nun umgekehrt (r) =|= R und (r) 
maximal unter den von R verschiedenen Hauptidealen. Aus r — ab folgt dann 
(r) c (a) und damit entweder (a) = R — (1) oder (o) = (r). I m ersten Fall ist 
a ~ 1, also a Einheit. Im zweiten Fall ist a ~ r oder r = ea mit einer Einheit e, 
und wegen r =)= 0 und r = ae = ab folgt diesmal b = e ~ 1. Aber r selbst ist 
nicht Einheit wegen (r) 4= (!)• Also ist r unzerlegbar. 

36.4 Wieder sei R ein Integritätsbereich mit Einselement. Wir nennen de R 
einen gemeinsamen Teiler von a,b e R, wenn gilt: d\a und d\b. Gleichwertig 
damit ist: (a) c (d) und (6) c (d), und das ist dasselbe wie (o, b) c (d). 
Entsprechend definiert man einen gemeinsamen Teiler d der Elemente 
«i> «2» • • • > an von R; wenigstens ein solches d existiert immer, da d = 1 ge-
wählt werden kann. 

Definition: Es sei R ein Integritätsbereich mit Einselement, und a\,ai an 
seien Elemente aus R. Einen gemeinsamen Teiler de R von a\, 02, • • •, ®» nennen 
wir einen größten gemeinsamen Teiler (g.g.T.) von a%, «2, ..., an genau dann, 
wenn für jeden gemeinsamen Teiler de R von 01, «2» • • •. an gilt: d\d. 

Idealtheoretisch bedeutet das: Für jeden gemeinsamen Teiler ö von 

«1. «2 o» 
und jeden g.g.T. d gilt 

(01, a2, ..., an) c (d) c (d). 

Ein g.g.T. der Elemente 0, r 6 R ist hiernach r. Aber es ist nicht gesagt, daß zu 
je zwei Elementen a,beR ein derartiger g.g.T. existiert. 
Sind di und <i% größte gemeinsame Teiler von «i, «2, . . a n e R, so gilt d%\di 
und di\di\ also sind d\ und ¿2 assoziiert. Is t umgekehrt di ein g.g.T. von 
01, «2, ..., an und ~ di, so ist auch d% ein g.g.T. von 01, a%, ..., an. Wenn 
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also die Ringelemente a\, az, ..., an überhaupt einen größten gemeinsamen 
Teiler d in R besitzen, so findet man sämtliche größten gemeinsamen Teiler der 
di durch Aufsuchen aller Assoziierten von d, was auf die Bestimmung der 
Einheitengruppe E c R hinausläuft. 
Be i sp i e l 8. Wir wissen, und es wird in Satz 3 noch einmal mitbewiesen: Zu 
je zwei Elementen a,b e 3 gibt es einen g.g.T. 
Be i sp i e l 9. Es sei R = 3[V~5]. Wir zeigen: Es gibt in 3[y—5] keinen g.g.T. 
der Elemente a = 6 und b = 2(1 + V—5). Angenommen, d e $[]/—5] wäre ein 
g.g.T. von a und b. Dann wäre d ein Vielfaches des gemeinsamen Teilers 2 von a 
und b und außerdem ein Teiler von a = 6, also d = 2c mit einem c|3. Nach 
Beispiel 7 ist 3 unzerlegbar, also c ~ 3 oder c ~ 1. Wegen 6f2(l + ]/—5) ist 
c ~ 3 nicht möglich, und es folgt c ~ 1 oder d ~ 2. Nun ist wegen 

(i + y=5)( i - y = 5 ) = e 

auch 1 + V—5 ein gemeinsamer Teiler von a und b, demnach d ein Vielfaches 
von 1 + y—5 und Teiler von b = 2(1 + y—5), und man zeigt wie eben 
d ~ 1 + y—5. Beides zusammen hieße 2 ~ 1 + ]/—5, und das ist nicht wahr. 

Ist d ein g.g.T. von a,beR, so heißt das idealtheoretisch: Für jedes öeR 
mit (a, b) c (d) gilt (a, b) c (d) c (6). Existiert also zu vorgelegten a,beR ein 
solches d, so ist d ein g.g.T. von a und b. Man betrachte den Spezialfall, daß R 
ein Hauptidealring ist. Dann gibt es ein de R mit (a, b) = (d), und dieses d 
erfüllt unsere Bedingung. Wir haben also den 

Satz 3: Es sei R ein Hauptidealring. Dann besitzen je zwei Elemente a, b e R 
einen g.g.T., und die beiden folgenden Aussagen sind gleichwertig: 
(1) d ist g.g.T. von a und b. 
(.2) (a, b) = (d). 

Wir hätten unsere Überlegung genauso auch für mehr als zwei Elemente a,beR 
durchführen und Satz 3 dann etwas allgemeiner hinschreiben können. 
Nach Satz 35.1 ist ^ Hauptidealring; zu zwei oder mehreren Elementen aus 3 
gibt es also einen g.g.T., und (vgl. §35, Beispiel 1) etwa die Idealgleichung 
(6, —9, 21) = (3) liefert nun tatsächlich einen g.g.T. 3 von 6, —9, 21. Satz 3 
ist auch der Grund für die in der Zahlentheorie übliche Bezeichnung d = (a, b) 
des g.g.T. d von a, b e >}, die wir mit der Verabredung d 0 bereits benutzt 
haben. 
Eine wichtige Folgerung aus Satz 3 ist der 

Satz 4: In einem Hauptidealring R ist jeder g.g.T. d von a,beR als I/inear-
kombination d = hb + ftb mit Elementen A, ¡u eR darstellbar. 

Beispielsweise haben 35 und 26 in 3 den g.g.T. Eins; es gibt also ganze Zahlen 
X, fi mit 351 + 26/tt = 1; man kann etwa A = 3 und fi — —4 wählen. Für 
spezielle Hauptidealringe, zu denen auch 3 gehört, kennt man ein allgemeines 
Verfahren, solche Koeffizienten A, ß (sie sind nicht eindeutig bestimmt) aus-
zurechnen ; es handelt sich um den in § 37 besprochenen Euklidischen Algorith-
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mus, der auch die Ermittlung eines g.g.T. von Elementen a,b des Ringes 
erlaubt. 
Nicht von vornherein selbstverständlich ist schließlich der 

Satz 5 s Es sei H ein Hauptidealring und R 3 H ein Integritätsbereich mit 
demselben Einselement-, ferner sei de H ein g.g.T. der Elemente a,b e H in H. 
Dann ist d auch ein g.g.T. von a, b in R. 

B e w e i s : Es gibt Elemente A, fi e H c R mit d = Xa -\-.fib. Jeder gemein-
same Teiler 6 e R von a und b läßt sich rechts ausklammern, geht also in d auf. 

Zum Schluß treffen wir noch eine Verabredung: Elemente «i, «2 an eines 
Integritätsbereiches R mit Einselement heißen teilerfremd, wenn aus d|a< 
(i = 1,2, ..., n) folgt: d ~ 1. Gleichbedeutend damit ist: Der g.g.T. von oi, 
«2, .. .,an existiert und ist Eins. 

A u f g a b e 1: Man bestimme die Einheitengruppen E i von und E i von 
S t v ^ ] . 

A u f g a b e 2: Die Einheitengruppen E\ von $[1/3] und E% von ^tV^] sind 
unendlich. Beweis ? 

A u f g a b e 3: Auf 3[|/5] sei durch N(a + b]/5) = a? — 5b2 {a, be$) eine 
Norm definiert (vgl. § 29.4). Man zeige: 
a) Für r,se 3[]/5] güt N(rs) = N(r)N(s). 
b) Genau dann ist r e 3L1/5] Einheit in ^[j/5], wenn N(r) = ¿ 1 ist. 
c) Hinreichend dafür, daß r e 3[]/5] unzerlegbar ist, ist die Unzerlegbarkeit 
von N(r) in 3-
d) Die Elemente 1 — |/5 und 3 + y5 sind Assoziierte, aber keine Einheiten. 
e) Die Elemente 2, 3 + 1/5 und 3 — j/5 sind unzerlegbar, und keine zwei von 
ihnen sind assoziiert. 

§ 37 GAUSSsche Ringe, Hauptidealringe, Euklidische Ringe 

37.1 Die Teilbarkeitstheorie in die in der elementaren Zahlentheorie be-
trieben wird, wird besonders einfach, weil dort dér Satz von der sogenannten 
kanonischen Zerlegung in Primelemente gilt. In unserer Sprechweise besagt er 
folgendes: Erstens ist jedes von Null und Einheiten ¿ 1 verschiedene m e j 
als Produkt endlich vieler unzerlegbarer Elemente pi e ^ darstellbar: 

m = pipz ... Pk(k ^ 1). 

Liegt zweitens eine weitere solche Darstellung m = qiq% ... qi vor, so ist l = Ic 
und bei geeigneter Numerierung qt ~ pi- Man kann sagen, die Darstellung 
m = pip2 .. • pic sei im wesentlichen eindeutig; ein Produkt 1 = «162 • • • e* 
von Einheiten ei kann man ja rechts immer heranmultiplizieren. Beispiel: 
50 = 2 • 5 • 5 = (—2)(—5)5 = (—2) • 5 • (—5) = 2(—5)(—5). 
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Dies nehmen wir zum Anlaß für die folgende 

Definition: Ein Integritätsbereich R mit Einselement heißt ein Gaußscher 
Ring oder ZPE-Ring, wenn für jede Nichteinheit r e R,r =|= 0, gilt: 
(1) Das Element r ist Produkt unzerlegbarer Elemente pi e R: r = pip¿ ... pt 
(k ^ 1). 
(2) Ist r = q±qz •.. qi eine weitere Zerlegung gemäß (1), so gilt l = k und bei 
geeigneter Numerierung pi ~ qi, p% ~ qz, ..., pn ~ q¡c-

Daß 3 ein Gaußscher Ring ist, wird in Satz 2 noch einmal mitbewiesen. Weitere 
Gaußsche Ringe sind uns im Moment noch nicht bekannt, wenn man von dem 
trivialen Fall absieht, daß R ein Körper ist. Wir werden aber bald sehen, 
daß zum Beispiel 3[y2], 3[y3] und ^[i] Gaußsche Ringe sind (§ 38). Dagegen 
sind $[]/—5] und ¿3[]/5] keine Gaußschen Ringe: Im ersten Fall betrachte man 
das Beispiel 7 aus § 36 und die Zerlegungen 

6 = 2 • 3 und 6 = (1 + y^öHl — y=5) 

der Zahl 6 in nichtassoziierte unzerlegbare Elemente. Im zweiten Fall sehe man 
4 = 2 • 2 = (3 + y5)(3 — ]/5) und Aufgabe 36.3. 
Ist R ein Gaußscher Ring, so nennen wir seine unzerlegbaren Elemente Prim-
elemente. Gaußsche Ringe haben in der Literatur verschiedene Bezeichnungen; 
von den Anfangsbuchstaben der Worte Zerlegung, Prim-Element rührt der 
Name ZPE-Ring her. Daß in Gaußschen Ringen die Teilbarkeitstheorie so 
einfach wird, liegt hauptsächlich an dem bereits in der elementaren Zahlen-
theorie immer wieder benutzten 

Satz 1: Es seien a 4= 0, b, c Elemente des Gaußschen Ringes R; die Elemente 
a, b seien teilerfremd, und es gelte a\bc. Dann folgt a\c. 

Beweis : Das ist sicher richtig, falls a Einheit ist. Ist a = pipz • • • pic 
ein Produkt von Primelementen pi und etwa aa' = 6c, so denke man sich für 
beide Seiten die Primfaktorzerlegungen aufgeschrieben. Da sie, abgesehen von 
Einheiten als Faktoren, eindeutig sind, stehen die pi zumindest in Gestalt von 
Assoziierten auch rechts. Nach Voraussetzung geht kein pt in b auf; also stecken 
alle pt in der Primfaktorzerlegung von c, und es folgt c = ac' oder a\c. 

Je zwei Elemente a, b eines Gaußschen Ringes R haben einen g. g.T.: Schließen 
wir die trivialen Fälle a = 0 oder 6 = 0 aus, so können wir 

a = PI' ... Pl>, b = rip^pfy ... pß-

mit Primelementen pi, Exponenten an ^ 0, ßi ¡2 0 und Einheiten e, r¡ schreiben. 
Für jeden gemeinsamen Teiler ó von a und 6 gilt dann 

«5 ~ pYipv. . . . pl" 

mit gewissen Exponenten 0 ^ Min(aj, ßt); wählt man y< = Min(ai, ßi) 
für alle i, so wird á ein g. g.T. Genauso verfährt man bei mehr als zwei Elementen 
a,beR. 
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37.2 Wie erkennt man, ob ein Integritätsbereich R mit Einselement ein Gauß-
scher Ring ist ? Bislang haben wir noch kein einziges Kriterium zur Hand, das 
wir benutzen könnten. Eine erste wichtige Auskunft in dieser Richtung erteilt 
der Satz 2. Wir beginnen mit einem 

Hil fssatz : Es seien a 4= 0, 6, c Elemente des Hauptidealringes H\ die 
Elemente a, 6 seien teilerfremd, und es gelte a\bc. Dann folgt a\c. 

Beweis: Nach Voraussetzung haben a,beH den g.g.T. Eins; nach 
Satz 36.3 ist also (a, b) = (1), und es existieren X, fie H mit 1 = Xa + fib 
oder c = Xac + /xbc. Wegen a\bc kann man rechts a ausklammern, und das 
bedeutet a\c. 

Satz 2: Jeder Hauptidealring H ist ein Gaußscher Ring. 
Beweis : Wir zeigen nacheinander das Erfülltsein der Forderungen (1), 

(2) für Gaußsche Ringe. 
(1): Es sei h e H weder Null noch Einheit; gibt es ein solches h nicht, so ist H 
von selbst ein Gaußscher Ring. Wir zeigen, daß h ein Produkt unzerlegbarer 
Elemente aus H (speziell vielleicht selbst unzerlegbar) ist. Angenommen, das 
wäre nicht so. Dann gäbe es Nichteinheiten di, dze H mit h = d\d%, und 
wenigstens eines der du etwa wäre nicht Produkt unzerlegbarer Elemente 
aus H. Wieder gäbe es Nichteinheiten dz,d±eH mit dz = «¿3̂ 4, und wenigstens 
einer der Faktoren ds, di, etwa du, wäre nicht Produkt unzerlegbarer Elemente 
aus H. Man setze dieses Zerlegungsverfahren fort. Es bricht nicht ab und 
liefert eine Idealteilerkette 

(h)c(dk)c(di)c(d6)c ..., 

in der nirgendwo das Gleichheitszeichen stehen könnte. Wir zeigen, daß so 
00 

etwas in H nicht vorkommen kann: Zunächst ist U {<hk) wieder ein Ideal o c i ; 
A=1 

denn zu a,bea existiert ein n mit a, b e (d^n), und es folgt a — b e (dzn) c <* 
sowie ra e (d%n) c a für jedes r e H. Nun ist H Hauptidealring; es gibt also 
ein de H mit a = (d). Dann hegt d e a in einem der Ideale der Kette, etwa 
in (¿2S); neben (¿2,) c (d) gilt also auch (d) c (¿2») und damit (¿2«) = (d). Späte-
stens vom Index 2s an müßte also in der Idealteilerkette das Gleichheits-
zeichen stehen, da alle (<h>) in 0 = (d) enthalten sind. Unsere ursprüngliche 
Annahme über h war also falsch; die Forderung (1) für Gaußsche Ringe ist in H 
erfüllt. 
(2): Es sei h = aia% ... a* = 6162 . . . bi mit unzerlegbaren au bj e H. Die un-
zerlegbaren Elemente 01, 61 sind entweder assoziiert oder teilerfremd, und es 
gilt 01161(6263 • • • 6j). Auf Grund des Hilfssatzes ist also «i ein Teiler von 
61 oder von ¿>263 . . . 6j. Aus «1162(6364 . . . 6j) folgt genauso: a\ teilt 62 oder 
6364 . . . 6{ usw. Es gibt also ein 6( mit ai|6j, und weil ai und 6< unzerlegbar 
sind, heißt das a\ ~ 6j. Ohne Beschränkung der Allgemeinheit sei a\ ~ 61. Aus 
«i«2 •.. a/c — 6162 . . . bi ergibt sich dann 0203 . . . a* ~ 6263 . . . 6j. Man setze 
das Verfahren fort: «2 teilt 6263 . . . 6j, also eines der 6<, 2 ^ i ^ Z; es sei etwa 
«2 ~ 62. Zum Schluß hat man k = l und ~ 6j für alle i. Damit ist Satz 2 
bewiesen. 
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Satz 2 und Satz 35.1 zeigen, daß 3 ein Gaußscher Ring ist. 
B e m e r k u n g : Die Umkehrung von Satz 2 ist falsch; nicht jeder Gaußsche 
Ring ist Hauptidealring. In § 42 wird sich beispielsweise zeigen, daß mit R 
auch der Polynomring ein Gaußscher Ring ist; danach ist ein Gauß-
scher Ring. Aber das Ideal (2, x) c $[x] ist kein Hauptideal; etwa aus (2,x) = (d), 
de 3M, würde ja folgen: d\2, d\x, also d = ¿ 1 , im Gegensatz zu 1 $ (2, x). 

37.3 Nun wäre es aber nötig, wenigstens zu wissen, wann ein vorgelegter 
Integritätsbereich R ein Hauptidealring ist. Einmal, nämlich für R — haben 
wir einen solchen Nachweis erbracht, und es ist nun sehr bezeichnend, daß das 
Schema des Beweises von Satz 35.1 auch in vielen anderen Fällen zum Ziel 
führt. Wir sehen im folgenden ein Beispiel einer algebraischen Verallgemeine-
rung, die sinnvoll ist, weil sie in einfacher Weise zu neuen Ergebnissen führt. 
Worauf beruht der Beweis von Satz 35.1 ? Das Wesentliche war: Man konnte ein 
vorgelegtes b e £ durch jedes a e a =j= 0, mit Rest r dividieren, b = qa + r, 
wobei entweder r = 0 war oder in einer geeigneten Verabredung r „kleiner" 
als a. Ringe mit einem solchen Divisionsalgorithmus sehen wir uns an. 

Definition: Ein Integritätsbereich E heißt ein Euklidischer Ring, wenn eine 
Abbildung w: Eo -»-SR der Menge EQ aller ae E, a 4= 0, die sogenannte Wert-
funktion w, mit folgenden Eigenschaften existiert: 
(1) Zu vorgelegten Elementen b,ae E, a 4= 0, gibt es Elemente q,reE mit 
b = qa r, wobei entweder r = 0 oder w(r) < w(a) ist. 
(2) Zu vorgegebenem s e SR gibt es höchstens endlich viele Zahlen W( aus dem 
Wertevorrat W = [w(a): a e E0}, die kleiner sind als s: W{G W,wt < s. 
Bei sp i e l : E = Für a e « 4= 0, setze man w(a) = |a|. 
Neben (1) ist auch die Forderung (2) wichtig; sie sichert, daß jede nicht leere 
Teilmenge M c W ein kleinstes Element besitzt. Beim Beweis von Satz 35.1 
führte das zur Wahl von o; dabei war w(<x) = |a| und M = aea , «=j=0}. 
Wenn wir feststellen, daß durch w(ct) = |a| eine Wertfunktion auf 3o erklärt 
wird, so ist damit nicht gesagt, daß 3o nicht auch andere Wertfunktionen zu-
läßt. 
Ist K[x\ ein Polynomring über einem Körper K und f(x) e K[x], f(x) 4= 0, so 
wähle man w(f) = Grad f(x). Der folgende Satz ist dann eine Konsequenz von 
Satz 25.6. 

Satz 3: Ein Polynomring K[x] über einem Körper ist ein Euklidischer Ring. 
Die Einheitengruppe von K\x\ ist Kq ; die Primelemente (vgl. Satz 2 und den 
folgenden Satz 4) sind genau die in K\x\ irreduziblen Polynome. 
B e m e r k u n g : Der in (1) geforderte Divisionsalgorithmus kann eindeutig sein, 
muß es aber nicht. Während in K[x] aus f(x) = qi(x)g(x) + ri(a;) = qz{x)g{x) 
+ r2(x), g(x) 4= o, rt(x) — 0 oder Grad rt(x) < Grad g(x), durch Subtraktion 
(g2(«) — qi(^))g{x) = r\(x) — r2(x) und mit Hilfe einer Gradbetrachtung die 
Eindeutigkeitsaussage ri(x) = r2(x), q\(x) = q2(x) folgt, gilt in 3 etwa 12 = 
2 - 5 + 2 = 3 - 5 - 3 . 
Nun übertragen wir Satz 35.1 und seinen Beweis. 

Satz 4: Jeder Euklidische Ring E ist Hauptidealring. 
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Beweis: Wir haben zweierlei zu zeigen: Jedes Ideal a c E ist Hauptideal, 
und 1 e E. Wir beginnen mit dem ersteren. Es sei a c E und a 4= (0). Dann 
gibt es auf Grund von (2) ein a e o, a =j= 0, mit minimalem Wert; für jedes 
c e et, c =j= 0, gilt w(c) w(a). Man wähle ein beliebiges b e a und dividiere 
durch a; man bekommt b — qa + r mit r = 0 oder w(r) < w(a). Wegen 
r = b — qae a und der Wahl von ae a kann aber nicht w(r) < w(a) sein. Also 
ist r = 0 oder b e (a), und das bedeutet et = (a). Um noch 1 e E nachzuweisen, 
betrachten wir speziell das Ideal E 4= (0) und wählen ein e e E, e 4= 0, mit 
minimalem Wert. Division von e durch e gemäß (1) liefert ein es E mit e = ee. 
Dieses e ist Einselement von E; denn für jedes r e E gilt re = res oder r = re. 

Jeder Euklidische Ring, etwa 3t[a;], ist also Hauptidealring und damit auch 
ein Gaußscher Ring. 
Bemerkung: Man kann zeigen, daß die Umkehrung von Satz 4 falsch ist; 
nicht jeder Hauptidealring ist ein Euklidischer Ring. 
Ein ausführliches Beispiel für die Anwendungsmöglichkeiten der hier ent-
wickelten Theorie folgt in § 38. 

37.4 Wir erörtern noch den bereits in § 36.4 erwähnten Euklidischen Algorith-
mus, der es unter anderem gestattet, zu zwei Elementen et, b eines Euklidi-
schen Ringes E den g.g.T. auszurechnen, auch wenn die Primfaktorzerlegungen 
von a und b vielleicht nicht bekannt sind. Wir nehmen an, a und b seien un-
gleich Null und b kein Teiler von a\ damit schließen wir nur triviale Fälle aus. 
Man dividiere dann a durch b gemäß (1): a = q±b + 1, w(r\) < w(b). An-
schließend mache man dasselbe mit b und r± und fahre in dieser Weise fort. 
Man bekommt das folgende Schema: 

a = qib + n » wiri) < w(b) 
b = qzn + r2 , w(r2) < w(ri) 
n = q&z + r3 , w(r3) < w(r2) 

rn-2 = qnrn-1 + rn , w{rn) < w(rn-x) 
Tn-\ — (¡n+lrn 

Dabei ist rn, n 1, der letzte nicht verschwindende Divisionsrest; das Ver-
fahren bricht ja wegen w(ri) > w(r2) > w(rz) > . . . und (2) nach endlich 
vielen Schritten ab. Wir behaupten: rn ist ein g.g.T. von a und b. Wir zeigen 
als erstes: rn teilt a und b. Aus der letzten Zeile folgt rn[r„_i; im Falle n = 1 
sei dabei ro = b gesetzt. In der vorletzten Zeile kann man also rechts rn aus-
klammern und bekommt auch rn\rn-z. Jetzt kann man auch in der dritt-
letzten Zeile rechts rn ausklammern und in dieser Weise fortfahren. Zuletzt 
erscheint r„ als Teiler der rechten Seiten von b und a. Zweitens sei d ein Teiler 
von a und b; zu zeigen bleibt d\rn. Zuerst kann d in r\ = a — qb rechts aus-
geklammert werden; es gilt also d\r\. Also ist d auch ein Teiler von b und r\, 
und die zweite Zeile r2 = b — q%r\ des Schemas liefert d\r%. Als nächstes er-
gibt sich d\rs, zuletzt d\rn. 
Der Euklidische Ring E ist ein Hauptidealring; nach Satz 36.4 existieren also 
A, fieE mit rn = Xa + /ib. Solche A, fi liefert der Euklidische Algorithmus 
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mit. Man beginne mit der vorletzten Zeile rn = rn-2 — qnrn-i des Schemas; 
mit Hilfe der drittletzten Zeile eliminiere man rn-\: 

rn = rn- 2 — qniTn-3 — 1n-lrn-2) = —q-nTn-Z + (1 + 

Unter Benutzung der nächsten Zeile eliminiert man r»_2. Zuletzt bekommt 
man rn = Xa + mit Ringelementen X, ¡x, die aus den bekannten qi zu-
sammengesetzt sind. 

Aufgabe 1: Jedes Ideal des Ringes der geraden ganzen Zahlen ist 
Hauptideal. Beweis ? 

Aufgabe 2: Man zeige das Folgende. 
a) f{x) = 2a;2 + 2 e 9t[x] ist ein Primelement von 9t[x], 
b) g(x) = x2 + 1 e ist kein Primelement von 

Aufgabe 3: Berechne einen g.g.T. d von 303707 und 808201. Finde 
X, n e $ mit d = 303 707A + 808 201,«. 

Aufgabe 4: Berechneeinen g.g.T. d(x) von f(x) = x 5 + x 4 + x 3 + x 2 + a ; + 
leSR[a;] und g(x) = x* + x* + 2x2 + x + 1 e «R|>]. Finde X(x), p(x) e $R[a;] mit 
d(x) = X(x)j(x) + /i(x)g(x). 

§ 38* Der Ring Stil 

Wir wenden unsere Kenntnisse aus § 37 auf den Ring der ganzen Gauß-
schen Zahlen an und betrachten weitere Beispiele für die Kraft der bereit-
gestellten Methoden. 

38.1 Unser Ausgangspunkt wird der 

Satz ls ^[i] ist ein Euklidischer Ring. 

Beweis : Es ist 3M c ß ein Integritätsbereich. Die Elemente 2 = a + bi 
(a, be%) von £[t] repräsentieren die Gitterpunkte in der Gaußschen Zahlen-
ebene (vgl. Anhang). Wir müssen eine Wertfunktion w mit den Eigenschaften 
(1), (2) aus § 37.3 angeben und versuchen es mit dem Betrag (z| = ]/a2 + b2 

oder dessen Quadrat N(z) = a2 -)- b2. Dieser Versuch führt zum Ziel. Um zu 
vorgegebenen zi, 22 =t= 0 aus Elemente q, r aus gemäß (1) zu finden, 
führen wir die Division von 21 durch 22 zunächst in £}[t] aus, 

^ = q* = a * + ß*i (x*,ß*eQ), 
22 

und wählen dann den Gitterpunkt q = a. -{- ßi {et, ß e 3) möglichst nahe bei 

q*: |a* — a| \ß* — ß\ 5S Wir setzen q* = q + q, q eQ[i], und be-
¿t z 

kommen 21 = q*Z2 = qzz + QZ2 oder 21 = qzz + r, wobei auch r = qz% 
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eine ganze Gaußsche Zahl ist. Ist nun r 4= 0, so wird wegen der Multiplikati-
vität der Norm (vgl. Anhang bzw. § 29.4) von Q.[i] tatsächlich 

N(r) = N(QZ2) = N(Q)N(Z2) ^ (-*- + < N(z2). 

Für z e ¿J[*]f 2 4= 0, setze man also w(z) = N(z). Wie wir eben festgestellt 
haben, wird dadurch eine Wertfunktion w für 3W erklärt, die die Forderung 
(1) aus § 37.3 erfüllt, und es gilt auch (2), weil die Werte w(z) natürliche Zahlen 
sind. 

Dieses Vorgehen ist typisch und liefert beispielsweise ganz analog, daß auch 
3tV—2] euklidisch ist. Das Verfahren versagt dagegen etwa bei 3tV—5]; es 
wäre aber zunächst noch denkbar, daß mit Hilfe einer geeigneteren Wert-
funktion als gerade der Norm der Ring doch als euklidisch nachgewiesen 
werden könnte. Aus § 37.1 wissen wir jedoch, daß j?[V—5] nicht einmal ein 
Gaußscher Ring ist; er kann also erst recht nicht euklidisch sein. Mit Hilfe des 
Betrages der Norm als Wertfunktion ergibt das vorliegende Muster ferner, 
daß 3[y2] und 3[]/3] Euklidische Ringe sind (Aufgaben 1 und 2). Wieder ver-
sagt das Verfahren für ^tV^L und da 3tV5] nach § 37.1 kein Gaußscher Ring 
ist, kann auch kein anderes Erfolg haben. 
Als Folge von Satz 1 notieren wir den für uns wichtigen 

Satz 2: 3W wi ein Gaußscher Ring. 

38.2 Wir wollen nun die Elemente von 3[*] sortieren. Es gibt die Null, und aus 
§ 36, Beispiel 3, kennen wir die Einheitengruppe E = {1,—1, i,—i}. Die 
restlichen Zahlen sind entweder Primelemente oder in Primfaktoren zerlegbar. 
Wir wollen die Primelemente von ^[i] bestimmen und beginnen mit drei Vor-
betrachtungen: 
1) Ist n Primelement in 3M> so ist es auch die konjugiert-komplexe Zahl n. 
Jede Zerlegung n = txß in $[»] ist ja mit einer Zerlegung n = xß gleichwertig, 
und beide sind sie entweder trivial (das heißt: einer der Faktoren ist eine 
Einheit) oder nichttrivial. 
2) Es sei p e 9t eine gewöhnliche Primzahl aus 9t, und diese Primzahl sei in 

zerlegbar: p = nß, n Primelement aus 3W> ß * 1- Dann gilt, wie wir 
zeigen wollen, p = nn (also ß = n). Es ist ja N(p) = p2 = N(7i)N(ß); nach 
Voraussetzung sind aber n und ß keine Einheiten, ihre Normen also (vgl. § 36, 
Beispiel 3) nicht Eins, und aus N(n), N(ß) e 9t folgt N(ti) = nn — p. 
3) Es sei n ein Primelement aus Dann ist entweder nn = p eine gewöhn-
liche Primzahl aus 9t, oder es gibt eine gewöhnliche Primzahl q e 9t mit n ~ q. 
Um das einzusehen, schreibe man nn = n = P1P2... e 9t mit gewöhn-
lichen Primzahlen pj e 9t und denke sich die Faktoren pj der rechten Seite 
weiter in Primelemente aus 3M zerlegt; vergleicht man anschließend die An-
zahl der Primfaktoren links und rechts, so sieht man, daß nur die Fälle k — 1 
und k = 2 eintreten können. Das ist aber die Behauptung. 
Das bedeutet zusammengefaßt: Eine normale Primzahl p e 9t bleibt entweder 
Primelement auch in £[»] und liefert dann die vier assoziierten Primelemente 

10 Hornfeck, Algebra 
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±p und ±ip in 3[i]; oder p e 9t zerfällt nach 1) und 2) in 3M in ein Produkt 
Tin von Primelementen n, n aus 3M> die in Gestalt ihrer Assoziierten wieder 
Primelemente aus 3M ergeben. Weitere Primelemente in 3[i] gibt es nach 3) 
nicht. 
Um also alle Primelemente von 3W zu finden, haben wir die Primzahlen 
p e 9t darauf zu untersuchen, ob sie in 3W in der Form p = Tin zerfallen. Ist 
das der Fall, so sind n, n und ihre Assoziierten Primelemente von 3M; andern-
falls ist schon p mit seinen Assoziierten Primelement von 3[i], Wir sehen uns 
nun die p e9t in der Reihenfolge p = 2, p = 3 (4), p = 1 (4) einzeln an. 
a) Es zerfällt p — 2 in (1 + »)(1 — i). Wegen 1 + i ~ 1 — i liefert aber 
p = 2 nur die insgesamt vier Primelemente ± 1 in 3M-
b) Ein p der Form 4n + 3 kann nicht zerfallen; denn p = nn = (a + bi)(a — bi) 
würde 4w -f- 3 = a2 + b2 (a, b e 3) zur Folge haben, was schon modulo 4 un-
möglich ist. Jedes p = 3 (4) liefert also in 3W die vier Primelemente ±p, ~ip. 
c) Ein p der Gestalt 4» + 1 zerfällt in >$[*]: Nach Satz 23.2 gibt es ein m e ? t 
mit p\(m2 + 1) in 3- In 3M heißt das p\(m -(- i)(m — i). Wäre p Primelement im 
Gaußschen Ring 3M, so müßte es einen der Faktoren m ± i teilen im Wider-
spruch zu — ± — i $ 3[i]. Zu einem p = 1(4) gibt es also Zahlen a, b mit 

V P 
p = (a + bi)(a—bi) = a2 + b2. Die Primelemente n = a + bi und 
n = a—bi sind dabei nicht assoziiert, da a und b von Null verschieden sind 
und a = ±b für ein ungerades p unmöglich ist. Jedes p = 1 (4) liefert also die 
genau acht Primelemente z tn , ¿¿7t aus 3M-
Sämtliche Primelemente n e 3[i] sind damit gefunden. 
Dabei wurde kein n mehrfach gezählt; denn sind p, q verschiedene Primzahlen 
aus 91, so können sie nach Satz 36.5 keinen Primteiler n von 3W gemeinsam 
haben. 

38.3 Unsere Untersuchung des Ringes 3M erlaubt nun einige Folgerungen, die 
wir wegen ihres zahlentheoretischen Interesses festhalten wollen, obwohl sie 
algebraisch unwichtig sind. Die Ergebnisse aus Abschnitt 2 liefern zunächst 
den 

Satz 3: Es sei p e 91 eine, Primzahl. Genau dann ist p = a2 b2 eine 
Summe von zwei Quadraten mit a,b e 9t, wenn p — 2 oder p = 1 (4) ist. Ist 
p = a2 + 62 und a ¿ 6 , so sind die Zahlen a, b e 9t eindeutig bestimmt. 
Allgemeiner gilt der 

Satz 4: Genau dann läßt sich ein m e 9t als Summe von zwei Quadraten aus 
3 schreiben, m = o2 + b2, a, b e 3, wenn die Primteiler der Form 4w + 3 von 
m in maximal gerader Vielfachheit in m enthalten sind. 

Beweis : 
a) Die Zahl m e 9t enthalte Primteiler der Form 4ra + 3 nur in gerader Viel-
fachheit: Es sei 

m = p? p\' ... pl'-q^q?' ... tff' 

mit Primzahlen pt $ 3 (4) und qj = 3 (4). Nach Satz 3 ist jedes pi Summe von 
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zwei Quadraten; wiederholte Anwendung von Formel (8) aus § 29.4 für den 
Fall d = 1 zeigt, daß dann auch das Produkt 

vT Vi' ••• Plk 

dieser pt eine Summe r2 + s2 von zwei Quadraten mit r, s e 3 ist. Es folgt die 
Darstellbarkeit von 

m = (r2 + s2)(gf' qß
2> ... qß

t'f = (r2 + s2)t2 = (rtf + (st)2 = a2 + b2. 

b) Ist m = a2 + b2 mit a,be$, so wird m = (a + bi)(a — bi) in 3['i]; ein 
Primteiler p = 3 (4) von m bleibt Primelement auch in und teilt a + bi 
und a — bi gleich oft: 

a b . a b . 
p ß - ^ p ß l € ^ ^ pß-p0l£2w-

Dieses p teilt also m in gerader Vielfachheit. 

A u f g a b e 1: Man zeige, daß ein Euklidischer Ring ist. 

A u f g a b e 2: Man zeige, daß ein Euklidischer Ring ist. Man zeige 
weiter, daß 5 Primelement in 3[V3] ist, aber 13 nicht. Man finde eine Prim-
faktorzerlegung von 13 in 3[yS]. 

A u f g a b e 3: Man schreibe die Ideale (3, i), (4 + 4t, 8 i) , (2 — i, 2 + i), 
(1 + i, 1 — i) aus als Hauptideale. 

(2 + i\n 

A u f g a b e 4: Für kein n e 91 gilt 17, . = 1. Beweis? 

§ 39* Partialbruchzerlegung in K(x) 

Aus der Analysis ist der Satz von der Partialbruchzerlegung bekannt. Man 
benutzt ihn das erste Mal beim Aufsuchen von Stammfunktionen rationaler 
Funktionen, und auch sonst liefert er oft nützliche Vereinfachungen. Ohne 
algebraische Hilfsmittel wird sein Beweis etwas mühsam und wenig durch-
sichtig. Wir haben inzwischen alle Mittel zur Verfügung, um ihn allgemein 
formulieren und leicht beweisen zu können. 

Satz 1: Es sei K ein Körper, und P(x) und Q(x) =j= 0 seien Polynome aus 

lynon 

r(x) 

P(x) K\x\. Dann kann der Quotient n/ ^ e K(x) geschrieben werden als Polynom 

h(x) e K[x\ plus einer Summe von sogenannten Partialbrüchen der Form ^ 

wobei r(x) e K[x\ und p(x) Primelement in K[x] ist, Grad r(x) < Grad p(x) oder 
r(x) — 0 gilt und p(x)m den Nenner Q(x) teilt. Es ist h(x) gleich Null genau dann, 
wenn P(x) = 0 oder Grad P(x) < Grad Q(x) ist. Diese Partialbruchzerlegung 
ist eindeutig bestimmt. 

10* 
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Beweis : Wir nutzen aus, daß K\pc\ euklidisch, also sowohl Hauptideal-
ring als auch Gaußscher Ring ist. Angenommen, man hätte eine Partialbruch-

Pia;) 
Zerlegung von Q^y Bringt man sämtliche Partialbrüche auf den Hauptnenner 

Q(x) und addiert sie, so entsteht ein Bruch, dessen Zähler entweder Null ist 
oder einen kleineren Grad als Q(x) hat; hieraus folgt die vorletzte Behauptung. 
Gäbe es zwei derartige Partialbruchzerlegungen, so müßten sie sich in den 
Zählern der Partialbrüche unterscheiden. Für ein gewisses p(x) sei k ^ 1 der 
maximale Exponent im Nenner, für den in den beiden Zerlegungen verschie-
dene Zähler r(x) und s(x) auftreten: r(x) 4= s(x). Gleichsetzen beider Zerlegun-
gen, Streichen gleicher Terme und Multiplikation mit dem Hauptnenner N(pc) 
liefert dann überall Summanden mit dem Faktor p(x), abgesehen von 

^%N{x) und - ^ ^ ( x ) . Es folgt p(x)\f(x)(r(x) — s(x)) in K[x] mit 
p(pc)k p(x)k 

N(x) 
j(x) = e ; dabei sind p(x) und f(x) in K[x] teilerfremd auf Grund p(x)K 
der Wahl von k. Nach Satz 37.1 folgt also weiter p(a;)|(r(x) — s(x)) in K[x\\ 
hierin sind nach Voraussetzung r(x) und s(x) entweder Null oder haben Grade 
kleiner als p(x); es müßte demnach r(x) = s(x) sein im Widerspruch zur An-

P(x) 
nähme. Wenn es also eine solche Partialbruchzerlegung von gibt, so ist 
sie eindeutig bestimmt. Zu zeigen bleibt ihre Existenz. ) 
Es sei Q(x) = pi{x)*> p2(z)a' • • • Pn(x)x" eine Primfaktorzerlegung von 
Q(x) e K[x], pi(x) f pj(x) für i 4= j, nach Satz 36.3 also etwa 

. i t P ? • • • f t ) = (!)• 

Es folgt die Existenz von Polynomen X(x), p(x) e K\x\ mit 

1 = l(x)pi(x)*i + ¡u(x)p2(x)*' ps(x)*' ... pn(x)x". 

Multiplikation mit P(x) ergibt 

P(x) = g(x)pi(x)'* + Qi(x)p2{x)^ pz(x)^ ... pn(x)"' 

mit Polynomen g{x), qi(x) e K\x\, und es wird 

m P f r ) = QiW , 9(x) 
W Q(xj pi(x)*i ^ p2(x)* pa(x)" ... pn(x)'- • 

Wiederholung des Verfahrens mit dem zweiten Summanden aus (1) usw. 
liefert schließlich 

( 2 ) W ) = + S r ö * + • •' + S M * e , ( x ) e X [ 4 

Nun werden die Summanden rechts in (2) jeder für sich weiter zerlegt. Wir 
nehmen uns den ersten vor und dividieren qi{x) mit Rest durch pi(x), also 
Qi(x) = qi(x)pi(x) + ri{x) mit ri(x) = 0 oder Grad ri(x) < Grad pi(x). Es folgt 
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ei{x) n(x) 
Pi(x)"• Pi{x)*i 

Den ersten Summanden rechts lassen wir unverändert; den zweiten zerlegen 
wir nach demselben Muster weiter und wiederholen das Verfahren, bis es ab-
bricht. Dann stehen rechts lauter Partialbrüche und als letzter Summand 
eventuell ein Polynom hi(x) e K\x\. Entsprechend zerlegt man die anderen 
Summanden in (2), schreibt zuletzt h\(x) + Ji2(x) + ... + hn(x) = h(x) und 

Pix) hat die verlangte Partialbruchzerlegung von hergestellt. Damit ist Satz 1 

Beispiel 1. Es sei K = In der komplexen Analysis zeigt man, daß jedes 
Polynom f(x) e G>[a;] mit einem Grad 2g 1 eine Nullstelle in ß hat. Nach Satz 
26.1 ist also jedes f(x) e 6[a;] mit einem Grad ^ 2 in nichttrivial zerlegbar. 
Primelemente in Q E [ x ] sind demnach genau die Polynome p(x) vom Grad Eins, 
und die Zähler r(x) in Satz 1 sind Elemente aus (i. 

Beispiel 2. Es sei K = SR. Zunächst ist jedes f(x) eSR[a;] mit Grad j(x) 3 
in SR[«] nichttrivial zerlegbar. Hat nämlich f(x) eine reelle Nullstelle a, so gilt 
/(x) = (x — a)g(x) mit g(x) e SR[a;] und Grad g(x) > 2. Andernfalls besitzt 
f(x) eine Nullstelle c e S, c =# c, und nach Satz 26.1 und Aufgabe 26.5 ist 
f(x) = (x — c)(x — c)y(a;) mit Grad g(x) ^ 1 in @[a;]. Setzt man—c — c = aeSR 
und cc = beiR, so wird f(x) = (x2 + ax + b)g(x) eine nichttriviale Zer-
legung von f(x) in SR[a;]; denn bei der Ausführung der Division von f(x) durch 
x2 + ax + b in €[«] bekommt g(x) sogar reelle Koeffizienten. Die sämtlichen 
Primelemente p(x) in 9t[z] sind also genau die linearen Polynome und die 
quadratischen Polynome ohne reelle Nullstellen. Die linearen p(x) haben mit 
ihren Potenzen in der Partialbruchzerlegung von Satz 1 Zähler r(x) e SR; zu 
den quadratischen p(x) und ihren Potenzen gehören Zähler r(x) der .Gestalt 
r(x) = ax + b eSR|>]. 

§ 40 Primideale 

In diesem und dem nächsten Paragraphen gehen wir auf Sachverhalte ein, die 
wir zum Teil auch schon im vorigen Kapitel hätten behandeln können. Ge-
geben sei ein kommutativer Ring R und ein Ideal p c R. Eine naheliegende 
Frage ist: Wann ist der Restklassenring nullteilerfrei oder sogar ein Körper ? 
Wir kommen hierauf zurück. 

Definition: Es sei R ein kommutativer Ring und p ein Ideal aus R. Wir 
nennen p ein Primideal, wenn aus ab e p (a,b e R) folgt: a e p oder b e p. 

Folgerung: Ist p ein Primideal und a\ a® ... an e p (a< e R), so liegt 
wenigstens eines der a< in p. 
Beispiele: In $ sind (3), (5) und (7) Primideale. In SRfz] sind (x + 1) und 
(xz + 1) Primideale. Ist R ein kommutativer Ring, so ist R ein Primideal in 
R; das Ideal (0) c R ist Primideal genau dann, wenn R nullteilerfrei ist. 

bewiesen. Q(x) 
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Satz 1: Es sei R ein kommutativer Ring mit Elementen a,b, ... und p ein 
Ideal aus R. Genau dann ist p Primideal, wenn eine der folgenden gleichwertigen 
Bedingungen erfüllt ist: 
(1) ab e p und a § p => b e p. 
(2) a $ p und b $ p => ab $ p. 
(3) Sind a, b Ideale aus R und ab c p, so gilt <t c p oder £> c p. 
(4) ii/p ist nullteilerfrei. 

Beweis : In (1) und (2) liegen nur andere Formulierungen der Definition 
vor. Das gilt auch für (4): Die Multiplikationsvorschrift in R/p lautet ja 
(a + p)(b + p) = ab + p, es ist p das Nullelement, und r e p bedeutet das-
selbe wie r + p = p. Zu zeigen bleibt (1) o (3). 
(1) => (3): In p gelte (1) und üb c p; ferner sei das Ideal a nicht in p enthalten. 
Dann existiert ein a e a mit a $ p. Aus ab c p folgt ab E p für jedes beb, also 
b e p für jedes beb oder b c p. 
(3) => (1): Aus ab e p folgt (ab) — (a)(b) c p, nach (3) also (o) c p oder (b) c p 
und erst recht a e p oder b e p. 
Einen Zusammenhang mit unseren Ergebnissen aus der Teilbarkeitstheorie 
bildet der 

Satz 2: Es sei R ein Gaußscher Ring. Genau dann ist (p) c R ein Primideal, 
wenn p Primelement, Null oder Einheit ist. 

Beweis : Die Fälle p = 0 und p ~ 1 wurden bereits im Anschluß an die 
Definition erörtert. Es sei also (p) ein Primideal und p weder Null noch Einheit, 
aber p = ah. Dann gilt ab e (p), also etwa o e (p) oder a — rp mit einem 
r e R ; es folgt p = prb oder b ~ 1, und p ist Primelement. Ist umgekehrt p 
ein Primelement von R und ab e (p), so teilt p im Gaußschen Ring R einen der 
Faktoren a oder b, und das bedeutet a e (p) oder b e(p). 
B e m e r k u n g 1: In einem beliebigen Integritätsbereich I mit Einselement er-
zeugt ein unzerlegbares Element nicht notwendig ein Primideal. Nach § 36, 
Beispiel 7, ist etwa das Element 2 in I = —5] unzerlegbar, und es gilt 
6 = 2 • 3 e (2); aber es gilt auch 6 = (1 + ]/^5)(l — ]/—5), und wegen 

^ ^ ]/—5 $ ¿?[j/—5] liegt keiner dieser Faktoren in dem Ideal (2). Also ist 

(2) in 3[]/~5] kein Primideal. 
B e m e r k u n g 2: Sind a und b Ideale des kommutativen Ringes R, so ist auch 
ihr Durchschnitt a n b ein Ideal aus R; aber in der Regel ist der Durchschnitt 
zweier Primideale p, q c JR nicht wieder Primideal. Hierzu betrachte man bei-
spielsweise die Ideale p = (2) und q = (3) aus R = 3'» es ist ja p n q = (6). 

§ 41 Maximale Ideale 

41.1 Bereits in Satz 36.2 traten Ideale auf, die in einem gewissen Sinn maximal 
waren. Wir geben nun die folgende 
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Definition: Es sei R ein kommutativer Ring. Ein Ideal m c R, m 4= R, 
heißt maximales Ideal, wenn für jedes Ideal a c R mit m c a c ü gilt: a — m 
oder a = R. 
Es ist zum Beispiel (5) ein maximales Ideal in 3; jedes Ideal a D (5), a 4= (5), 
aus ^ enthält ja ein zu 5 teilerfremdes Element a, und es folgt a D (5, a) = (1), 
also a = Bei dieser Überlegung haben wir benutzt, daß 5 Primelement und 
3 Hauptidealring ist, so daß Satz 36.3 zum Ziel führt ; noch etwas direkter 
liefert Satz 36.2 dasselbe Resultat. Wir kommen in Satz 3 darauf zurück. 
Die Bedeutung der maximalen Ideale beruht in erster Linie auf dem 

Satz 1: Es sei R ein kommutativer Ring mit Einselement und m ein Ideal 
aus R. Genau dann ist der Restklassenring R/m ein Körper, wenn das Ideal m 
maximal ist. 

Beweis : Es sei zunächst R/m ein Körper, also m 4= R. Es gelte mcacü 
mit einem Ideal a =|= irt aus R. Dann existiert ein a e a, a $ m, und das von der 
Nullklasse verschiedene Element a + rrteÄ/m besitzt nach Voraussetzung 
ein Inverses b + m in R/m. Das bedeutet (a + m){b + m) = 1 + m. Es 
folgt 1 — ab e m c a, also (1 — ab) + ah = 1 e a oder a = (1) = R. Ist um-
gekehrt m ein maximales Ideal in R und a $ m, so gilt m + (a) = (1). Es 
gibt dann also Elemente m e m und b e R mit 1 = m + ab, und in R/m gilt 
l + nt = a6 + m = (a + m)(& + m). Das heißt: Jedes von der Nullklasse 
verschiedene a + m aus Rjm besitzt ein Inverses. Da R/m nicht aus der Null 
allein besteht, ist demnach Rjm ein Körper. 
Für die Gültigkeit von Satz 1 ist die Voraussetzung 1 e R wesentlich; er wird 
ohne sie falsch. Man betrachte etwa den Ring R = der geraden ganzen 
Zahlen und m = (4). Das Ideal m ist maximal; aber in R/m ist 2 + (4) ein 
Nullteiler. 
Zusammen mit Satz 40.1, Aussage (4), liefert Satz 1 noch den 

Satz 2: Die maximalen Ideale eines kommutativen Ringes mit Einselement 
sind Primideale. 
Wir kommen weiter zu dem schon angekündigten 

Satz 3: Es sei H ein Hauptidealring und et 4= (0) ein Ideal aus H. Genau 
dann ist das Ideal a maximal, wenn es von einem Primelement erzeugt wird. 

Beweis : Nach Voraussetzung gibt es in H nur Hauptideale; speziell ist 
etwa a = (a) und « 4 = 0 . Die Behauptung folgt also aus Satz 36.2. 
In einem Hauptidealring H ist demnach jedes von (0) und H verschiedene 
Primideal sogar maximal; das zeigen Satz 40.2 und Satz 3. In einem beliebigen 
kommutativen Ring R stimmt das nicht mehr, auch wenn er ein Einselement 
enthält. Als Beispiel betrachte man R — $[x] und p = (x); auf Grund der 
Definition ist p Primideal in R. Aber es gilt beispielsweise (x) c (2, x) c 
mit (x) 4= (2, x) und (2, x) 4= ; also ist p = (x) nicht maximal. 
Welche homomorphen Bilder von 3 sind Körper? Nach Satz 1 und Satz 3 
handelt es sich genau um die Restklassenringe 3/(p) — 3j> m i t Primzahlen 
p 2, was uns schon aus § 21 und § 20 bekannt ist. 
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41.2 Es sei R ein kommutativer Ring mit Einselement und a =)= R ein Ideal aus 
R. Wir wollen zeigen: Dann existiert in R ein maximales Ideal m D a. Intuitiv 
würde man wohl so vorgehen: Entweder a ist bereits maximal, oder es gibt ein 
Ideal t> =(= R aus R mit u c 6, 6 =}= a. Ist 6 maximal, so ist man fertig; andern-
falls existiert ein Ideal ccÄ,c=4=.ß,c4=&, mit a c 6 c c. Wenn das Verfahren 
nicht abbrechen sollte, a c f c c c c f c c . . . , so bildet man die Vereinigung t> 
aller Ideale der Kette; dann ist auch ö ein Ideal, da zu a, b e ö ein Ideal f 
der Kette mit a, b e f existiert, also a — b e f c t> und ra e f c x> für jedes 
r e R gilt. Es ist gewiß t> =j= R, da sonst I s t ) , also auch 1 e f und demnach 
f = R für ein Ideal f der Kette gelten müßte, was nicht der Fall ist. Aber 
man kann trotzdem noch nicht sicher sein, daß ö maximal ist, da die Kette nur 
abzählbar viele Glieder enthält. Es könnte also sein, daß eine nächste mit o 
beginnende Kette existiert und so fort. Daß dieses Verfahren letzten Endes 
doch zum Ziel führt, sichert eine für derartige Fälle typische mengentheoreti-
sche Schluß weise, die wir im nächsten Abschnitt durchführen und deren Voraus-
setzungen wir zunächst besprechen wollen. Das hier zu erörternde Beweis-
schema tritt immer wieder auf und spielt auch in der Algebra eine wichtige 
Rolle. 
Bei vielen mathematischen Beweisen wird, meist ohne ausdrücklichen Verweis, 
das sogenannte Auswahlaxiom benutzt. Es besagt: Zu jeder Menge M von 
nicht leeren Mengen A gibt es ein Vertretersystem. Wir präzisieren das. 

Auswahlaxiom: Es sei M eine Menge von nicht leeren Mengen A. Dann 
gibt es eine Abbildung 

/: M U A 
AtM 

mit f(A) e A für jedes A e M. 

Die Gültigkeit dieses Auswahlpostulats erscheint vom Standpunkt der naiven 
Mengenlehre aus völlig trivial. Auch noch recht plausibel, aber doch schon 
weniger durchsichtig (vgl. etwa HAUSDORFF [9], S. 133ff.) ist der bereits in 
§ 1 erwähnte 

Wohlordnungssatz: Jede Menge kann wohlgeordnet werden. 
Schließlich sei M eine teilweise geordnete Menge. Dann nennt man ein m e M 
maximal, wenn es kein m' e M, m' 4= m> mit m < ml gibt. Ein Element m 6 M 
heißt obere Schranke der Teilmenge T c M, wenn für alle t e T gilt: t < m. 
Hiermit verabreden wir die 

Definition: Eine teilweise geordnete Menge M heißt induktiv geordnet, wenn 
jede Kette K c M eine obere Schranke in M besitzt. 

Ein wichtiger Satz der Mengenlehre, der bei vielen Beweisen in der Mathematik 
als Hilfsmittel gebraucht wird, ist nun das 

ZoRNsche Lemma: Die Menge M sei induktiv geordnet und nickt leer. 
Dann besitzt M mindestens ein maximales Element. 
Dieses Zornsche Lemma wird unsere oben begonnene Überlegung, die zum 
Nachweis der Existenz eines maximalen Ideals m c f i , m D a, führen sollte, 
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abschließen. Es erscheint auch vom naiven Standpunkt aus nicht mehr so 
selbstverständlich. So kommt das folgende Resultat der Mengenlehre etwas 
überraschend: Auswahlaxiom, Wohlordnungssatz und Zornsches Lemma sind 
äquivalent; postuliert man eine dieser drei Aussagen, so folgen die beiden 
anderen. 
Wir übernehmen nun die Gültigkeit des Zornschen Lemmas aus der Mengen-
lehre. Es wird in der Algebra oft in Gestalt der folgenden Verschärfung benutzt, 
die wir beweisen wollen. 

Satz 4 s Die Menge M sei induktiv geordnet und a e M. Dann gibt es ein 
maximales m 6 M mit a < m. 

Beweis : Wir betrachten die Menge T cM aller t e M mit a < t und 
wenden auf sie das Zornsche Lemma an. Eine Kette K aus T ist auch eine 
Kette aus M und besitzt nach Voraussetzung eine obere Schranke s e M. 
Wegen a < s gilt s e T. Es ist also T induktiv geordnet und wegen aeT nicht 
leer. Auf Grund des Zornschen Lemmas gibt es also in T ein maximales Element 
m. Für dieses m gilt a < m, und m ist maximal auch in M; denn ein von m 
verschiedenes m' e M mit m < m' wäre wegen a < m < m! bereits ein Element 
von T im Widerspruch zur Wahl von m. 

41.3 Wir benutzen nun Satz 4 zum Beweis des angekündigten Existenzsatzes. 

Satz 5 s Es sei R ein kommutativer Ring mit Einselement und a =|= R ein 
Ideal aus R. Dann gibt es in R ein maximales Ideal m mit a c m. 

Beweis : Es sei M die Menge aller von R verschiedenen Ideale aus R, und 
M sei teilgeordnet durch die mengentheoretische Inklusion: o < 6 o a c b 
(a, 6 e M). Dann ist, wie zu Beginn von Abschnitt 41.2 gezeigt wurde, die 
Menge M sogar induktiv geordnet: Jede Kette a c b c c c & c . . . aus M be-
sitzt die obere Schranke a u b u c u & u . . . = t> e M. Weiter gilt a e M. Nach 
Satz 4 gibt es also ein maximales Ideal m in M mit a c m. Dieses m ist maxi-
males Ideal in R; denn ein von m und R verschiedenes Ideal m' mit m c m' c R 
müßte zu M gehören im Widerspruch dazu, daß m ein maximales Ideal von M 
war. 
Setzt man in Satz 5 speziell a = (0), so bekommt man als 

F o l g e r u n g : Jeder kommutative Ring mit Einselement besitzt minde-
stens ein maximales Ideal. 

A u f g a b e 1: Welche der Ideale (x2), (z3 — 2z2 — 2x — 3), (x + 1), (6, x), 
(2, x), (3, x) aus 3 M sind Primideale, welche sind maximal ? 

A u f g a b e 2: Man zeige, daß (a;2 + 1) ein maximales Ideal in 5t[x] ist und 
begründe erneut die Existenz des Körpers @ der komplexen Zahlen. 

A u f g a b e 3: Man löse noch einmal Aufgabe 23.2. 

A u f g a b e 4: Es sei cu $ 3 eine komplexe dritte Einheitswurzel. Man zeige: 
(2) ist Primideal, sogar maximales Ideal in 3[w]> aber weder Primideal noch 
maximales Ideal in >3[i]-



154 Ideale 

§ 42 Der Satz von GAUSS 

42.1 Wir wollen einen wichtigen Satz von GAUSS beweisen, von dem schon in 
§ 37.2 kurz die Rede war: Ist R ein Gaußscher Ring, so ist es auch R\x\. Wir 
beginnen mit Vorüberlegungen, die auch für sich selbst von Interesse sind. 
Wir wiederholen: Sind OQ, a\, ..., an Elemente eines Gaußschen Ringes R, 
so heißt de R ein g.g.T. der a< 6 R, wenn d alle oj teilt und für jeden gemein-
samen Teiler d der oj gilt: ö\d. Sind d\ und d2 größte gemeinsame Teiler der au 
so sind sie assoziiert. Wenigstens ein g,g.T. d von OQ, «I, ...,an ist sicher 
vorhanden, weil R ein Gaußscher Ring ist (§ 37.1). 

Definition: Es sei R ein Gaußscher Ring und 

f(x) = anxn + an- ix"-1 + ... + oo e R\pc\. 

Ist de R ein g. g.T. von «o, «l an, so heißt d der InhaM von f(x); das Polynom, 
f(x) heißt primitiv, wenn sein Inhalt Eins ist. 
Jedes von Null verschiedene }{x) e R\x] besitzt also einen bis auf Einheiten 
als Faktoren eindeutig bestimmten Inhalt d(f) 4= 0. 

Satz 1 (Gaußsches Lemma): Es sei R ein Gaußscher Ring, und f(x) und g(x) 
seien primitive Polynome aus Dann ist auch ihr Produkt f(x)g(x) primitiv. 

m n w+w 
B e w e i s : Wir setzen f(x) = 2 a ^ , g(x) = 2 bvxv und f(x)g(x) = 2 cxc*. 

o o o 
Wären f(x) und g(x) primitiv, f(x)g(x) aber nicht, so gäbe es ein Primelement 
peR mit p\cx für alle X und Indizes r lä: 0 und s 5: 0 mit p\ao, p\a\, ..., 
p\ar-i, pfar und p\bo, p\b\, ..., p\bs-i, p-fbs. Setzen wir noch aß — 0 für fi > m 
und br = 0 für v > n, so wird 
arbs=cr+3—(ao&r+«+ai&r+s-i+ • • • + a r - i & s + i + a r + A - i + . . . +a r + s-1&i+a r + s&o). 

Auf Grund unserer Annahmen teilt p die rechte Seite, aber keinen Faktor der 
linken im Widerspruch dazu, daß R ein Gaußscher Ring ist. 

42.2 Wir beweisen zwei Hilfssätze. 
H i l f s s a t z 1: Es sei R ein Gaußscher Ring und K sein Quotientenkörper. 

Dann läßt sich jedes f(x) e K\x\, f(x) =|= 0, in der Gestalt f(x) — c <p(x) mit einem 
ceK und einem primitiven <p(x) e ii[x] schreiben; sind f(x) = c <p(x) und 
f{z) = d f(x) zwei derartige Darstellungen, so existiert eine Einheit e von R 
mit (p{x) = e f(x) und d = ec. 

bi B e w e i s : Es sei f(x) = anxn + an-iz"-1 + . . . + ao- Schreibt man Of = r b 
1 » 

mit einem Hauptnenner beR und weiteren Elementen 6{eii,also f(x) =—ybvxv, 
b o 

und klammert den Inhalt von 2 bvxv e i2[a;] aus, so bekommt f(x) die Gestalt 
f(x) = c <p(x) mit c e K und einem primitiven <p(x) e Ä[a:]. Aus c <p(x) = d y(x) =|= 0 
schließlich folgt durch Multiplikation mit einem geeigneten Ringelement und 
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anschließendes Kürzen c' <p(x) = d' ip(x) mit teilerfremden c', d' e R. Als In-
halte desselben Polynoms sind c' und d' außerdem noch assoziiert, also 
Einheiten; demnach wird q>(x) — e y(x) und folglich auch d = ec mit einer 
Einheit e e R. 

H i l f s s a t z 2: Es sei R ein Gaußscher Ring, K sei sein Quotientenkörper, und 
f(x), g(x), h(x) seien von Null verschiedene Polynome aus K[x\ mit f(x) = g(x)h(x). 
In den Darstellungen f(x) = af*(x), g(x) = bg*(x), h(x) = ch*(x) seien f*(x), 
g*(x), h*(x) primitive Polynome aus R[x\ und a, b, c Elemente aus K. Dann 
existiert eine Einheit s von R mit f*(x) — eg*(x)h*(x) und bc = ea. 

Bewei s : Nach Voraussetzung und auf Grund von Satz 1 sind f*(x) und 
g*(x)h*(x) primitiv. Es gilt af*(x) = bcg*(x)h*(x). Die Behauptung folgt also 
aus Hilfssatz 1. 

42.3 Der Hilfssatz 2 basiert auf Hilfssatz 1 und dem Gaußschen Lemma. Es 
sind zwei Varianten dieses Hilfssatzes, die immer wieder gebraucht werden und 
die wir als Sätze notieren. Sie sind durchaus nicht selbstverständlich. 

Satz 2: Es sei R ein Gaußscher Ring, K sein Quotientenkörper und f(x)eR[x]. 
Das Polynom <p(x) e R[x] sei 'primitiv, und es gelte <p(x)\f(x) in K[x\. Dann ist 
schon <p(x)\j(x) in R\x~\. 

Bewei s : Wir dürfen /(«)=)= 0 annehmen. In Hilfssatz 2 setze man 
h(x) = <p(x); behauptet wird dann g(x) e ii[a;], vorausgesetzt ae R und c = 1. 
Es folgt richtig g(x) = bg*(x) — eag*(x) e R[x\. 

Satz 3: Es sei R ein Gaußscher Ring und K sein Quotientenkör'per. Das 
Polynom, f(x) 6 R\x\ sei in irreduzibel. Dann bleibt f(x) irreduzibel auch in 
K[x\. Oder: Ist f(x) e R\x\ in K[x\ reduzibel, so auch in 

Bewei s : Es sei f(x) e R[x~\ und f(x) — g(x)h(x) eine nichttriviale Zerlegung 
in K[x~\, also Grad g(x) ^ 1, Grad h(x) ^ 1. In Hilfssatz 2 ist nun f(x) = af*(x) 
mit ae R und f(x) = af*(x) = aeg*(x)h*(x), und das ist eine nichttriviale 
Zerlegung von f(x) in R\x~[. 

42.4 Nun können wir den GAtrssschen Satz beweisen. 

Satz 4s Ist R ein Gaußscher Ring, so ist es auch der Polynomring in 
einer Unbestimmten x über R. 

Beweis : 
Wir sortieren zunächst die Elemente von -ß[a;]; mit R ist jedenfalls auch 
ein Integritätsbereich mit Einselement. Es gibt die Null; die Einheiten sind 
dieselben wie die in R, da nur ein Produkt von Polynomen vom Grad Null 
den Wert Eins haben kann. Die in R unzerlegbaren Elemente bleiben gewiß 
auch in R[x~\ unzerlegbar. Welche f(x) e R[x\ sind außerdem unzerlegbar in 
R\pc\ % Man schreibe f(x) = af*(x) mit aeR und primitivem f*(x) e R\x\. Wenn 
f(x) unzerlegbar sein soll, muß einer der Faktoren eine Einheit und der andere 
unzerlegbar sein. Sämtliche unzerlegbaren Elemente aus B[a;] sind also erstens 
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die Primelemente aus R und zweitens die unzerlegbaren unter den primitiven 
Polynomen. 
Es ist leicht zu sehen, daß sich jedes von Null und Einheiten verschiedene 
f(x) e ii[a;] als Produkt unzerlegbarer Elemente aus R[x\ schreiben läßt. Zuerst 
schreibe man wieder f(x) = af*(x) mit ae R und primitivem f*(x); dann zerlege 
man a in R in Primfaktoren. Ist f*(x) unzerlegbar oder Einheit, so ist man fertig. 
Andernfalls gibt es Polynome f*(x), f*(x) e mit f*(x) = f*(x)f*(x) und 
Grad f f ( x ) < Grad f*(x), wobei auch die f*(x) primitiv sein müssen, weil es 
andernfalls f*(x) nicht wäre. Dieses Zerlegungsverfahren wiederholt man so 
lange wie nötig; es bricht nach endlich vielen Schritten ab, da lineare primitive 
Polynome sicher unzerlegbar sind. 
Bis hierher haben wir unsere Vorüberlegungen nicht gebraucht; erst für 
den Eindeutigkeitsnachweis müssen wir sie heranziehen. Es seien jetzt 

f(x) = p!p2 • • • Pk<Pl(x)V2(x) • • • <Pl(x) und f(x) = qiqz . . . qr^>i(x)Vz(x) • • • Vs(x) 

zwei derartige Zerlegungen von f(x) =j= 0, die pi, qj also Primelemente aus R 
und die <pt(x) und y>j(x) unzerlegbare primitive Polynome aus R[x]. Dann sind 
nach Satz 1 auch <pi(x)<p2,(x) • • • <Pi(x) und y>i{x)y>2(x) ... y>s(x) primitiv, pipz... pn 
und qiq2 ... qr also als Inhalte von f(x) assoziiert in R, und das ergibt, da R ein 
Gaußscher Ring war, r = k und bei geeigneter Numerierung 

pi ~ qi, P2 ~ • • •. Pk ~ 9k 

in R und erst recht in Ä[a;]. Kürzen durch pipz • • • Pk liefert also 

<p\{x)(p2(x) ... <pi{x) = eyi{x)y>2(x) .. . y>,(x) 

mit einer Einheit s e R. 
Diese Beziehung sehen wir uns in K[x] an; dabei sei K der Quotientenkörper 
von R. Nach Satz 37.3 ist K[x~\ euklidisch, also ein Gaußscher Ring. Nach 
Satz 3 sind die 9 (̂2;) und die y>](x) auch in K[x\ unzerlegbar. Also gilt wieder 
s = l und bei geeigneter Numerierung 

(pi(x) ~ expi(x) ~ fi(x), <p2(x) ~ y)z(x), .. .,<pi(x) ~ y>i(x); 

aber das heißt: assoziiert in K[x]\ Die Beziehung <pi(x) ~ y>i(x) in K[x\ bedeutet: 

Es gibt von Null verschiedene b,ce R mit y>i(x) = — <pi(x); denn genau die von 
c 

Null verschiedenen Körperelemente sind Einheiten in K[x\. Nach Multiplika-
tion mit c werden b und c Inhalte desselben Polynoms aus R[x\, also Assoziierte 
in R; daher ist — eine Einheit in R, und das besagt <pi{x) ~ y>i(x) sogar in R[x]. 

c 
Genauso folgt <fz(x) ~ y>2(x), ..., <pi(x) ~ y>i(x) in ii[x]. Damit ist Satz 4 be-
wiesen. 

Der Beweis des Satzes von GAUSS stützte sich also mit Hilfe der Sätze 1 und 3 
darauf, daß ein Polynomring über einem Körper ein Euklidischer Ring und 
damit auch ein Gaußscher Ring ist. 
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42.5 Mehrfache Anwendung von Satz 4 liefert den 

Satz 5 s Es seien xi,x2, ..., xn unabhängige Unbestimmte über dem Gau fi-
schen Ring R. Dann ist auch Ä[.ri, ..., xn] ein Gaußscher Ring. 

F o l g e r u n g e n : 
1) xi, ..., xn] ist ein Gaußscher Ring. 
2) Für jeden Körper K ist K[xi, x^, ..., xn] ein Gaußscher Ring. 
3) Ist R ein Gaußscher Ring, so ist es auch der Polynomring R\x\, x%, X3, ... ] 
in abzählbar oder beliebig vielen unabhängigen Unbestimmten über R. 
Denn zu jedem f(x) e ü[a;i, x-i, £3, . . . ] existiert ein n mit f(x) e -R[xi, x2, ..., xn]. 

In Satz 5 darf nicht auf die' Forderung verzichtet werden, daß die x< Un-
bestimmte über R sind; das zeigt etwa das Beispiel $[]/—5]. 

A u f g a b e 1: Es sei R ein Gaußscher Ring, und f(x), g(x) e ii[a;] seien in 
iJ[ar] teilerfremd. Man zeige: Dann ist f(x) + g(x)yeR\x,y\ Primelement in 
R[x, yl 

A u f g a b e 2: Es sei R ein Gaußscher Ring und 

f(x 1, x2, ..., x„) e R[x 1, xn], f(xi, x2 x„) 4= 0, 

ein homogenes Polynom vom Grad k, das heißt, für jeden Summanden 
ax°ix2 . . . 4= 0 von f(xi, x2, ..., xn) gilt ai + ct% + . . . + a» = k. Man 
zeige: Jeder Teiler h(x1, x2, ..., xn) von f(xi, x2, ..x„) ist homogen. 

A u f g a b e 3: Man löse Aufgabe 38.4 ohne die Hilfsmittel von § 38. 

A u f g a b e 4: Für kein n e 91 gilt = 1. Beweis ? 

§ 43 Irreduzibilitätskriterien 

43.1 Ist K ein Körper und f(x) e X[a;] irreduzibel in K[x] (vgl. § 27.3), so ist 
f(x) auch Primelement in K\x\; beispielsweise ist 2a;2 + 2 = 2(x2 + 1) in SRfat] 
nur eine triviale Zerlegung mit der Einheit 2 6 9?. Ist dagegen im folgenden 
R stets ein beliebiger Integritätsbereich mit Einselement, so braucht ein in 
R[x\ irreduzibles f(x) e nicht mehr unzerlegbar zu sein, wie das Bei-
spiel 2a;2 + 2 = 2 (x2 + 1) in 3[ar] zeigt. Aber um herauszubekommen, ob ein 
f(x) £ R[x~\ in R[x~\ zerlegbar ist oder nicht, ist es meistens in erster Linie 
wichtig zu wissen, ob f(x) über R irreduzibel ist. Derartige Untersuchungen 
muß man bei den verschiedensten Gelegenheiten durchführen. Wir wollen uns 
mit einigen einfachen Irreduzibilitätskriterien beschäftigen. 
Wir betrachten einige Beispiele (vgl. hierzu auch § 27.3). Jedes lineare Polynom 
ax + b e R[x] ist irreduzibel über R, auch wenn es vielleicht in ii[a;] nicht-
trivial zerlegbar ist. Das Polynom x2 — 2 ist irreduzibel in Q[a:], weil es keine 
Nullstelle in £} hat, aber reduzibel über 9t: x2 — 2 = (z + j/2)(a; — J/5). Bei 
der Angabe ,,f(x) irreduzibel über R" darf also der Koeffizientenbereich nur 
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fehlen, wenn er aus dem übrigen hervorgeht; andernfalls verliert die Aussage 
ihren Sinn. Das Polynom x2 + 4 ist irreduzibel über Q, oder weil es in 
keinem der Körper eine Nullstelle hat ; aber in 3sM gilt £2-)-4 = (x+l)(,r—1). 

Bei Irreduzibilitätsuntersuchungen spielen einige triviale Betrachtungen oft 
eine wichtige Rolle. Zum Beispiel ist es gleichgültig, ob man die Irreduzibilität 
von f(x) über R oder die von f(x + a) für irgendein ae R nachweist, da mit 
f(x) auch f(x + a) reduzibel über R wäre. Beispiel: Das Polynom 

f ( x ) = x* + 4x3 + 6z2 + 4x + 2 
ist irreduzibel über Q. Dazu setze man x + 1 = y und beachte, daß 

g ( y ) = y4 + 1 e a [ y ] 

irreduzibel über ist (§ 27, Beispiel 7). 
Oft kommt einem auch Satz 42.3 zu Hilfe. Wir fragen noch einmal, ob 
g ( y ) = y4 + 1 in irreduzibel ist. Das Polynom g ( y ) liegt schon in £[«/], und 
wir wissen: Ist y* + 1 reduzibel über £}, so auch über Eine Zerlegung in 

müßte aus zwei quadratischen Faktoren bestehen, für die man nun ein-
fache Ansätze machen darf: y4 + 1 = ( y 2 + a y ^ 1 )(y2 + by i !)• Der 
Koeffizientenvergleich zeigt jetzt ganz leicht, daß das mit a,be% nicht 
möglich ist. 
Noch eine Überlegung ist oft von Nutzen. Es sei f(x) ein ganzzahliges normiertes 
Polynom (ein Fall, der oft vorliegt) und f(x) irreduzibel über 3j> für eine geeig-
nete Primzahl p. Dann ist f(x) auch irreduzibel über 3- Andernfalls gäbe es ja 
normierte g ( x ) , h ( x ) e mit Graden ungleich Null und f ( x ) = g{x)h(x), und 
diese Zerlegung würde auch eine nichttriviale Zerlegung in >$p[x] liefern, da g ( x ) 

und h(x) ihre Grade behalten. Als Beispiel betrachte man 

f ( x ) = a;3 — 8z2
 + l l x — 135 

und wähle p = 2: Das Polynom x3 + x + 1 hat keine Nullstelle in 3-2, ist also 
über und damit auch über 3 irreduzibel ebenso wie f(x). 

43.2 In weniger einfachen Fällen hilft überraschend oft das folgende Irreduzi-
bilitätskriterium von EISENSTEIN (1823—1852). 

Satz 1: Es sei R e i n Gaußscher R i n g , K s e i n Quotientenkörper und » 
f ( x ) = ~2.ayxv e R [ x ] , Es e x i s t i e r e e i n Primelement p e R s o , d a ß i n R g i l t : 

o 
p\an, p|a»-i, p\an-2, • • •, p\ao, aber p2-fao. Dann ist f ( x ) irreduzibel über I i . 

Bewei s : Nach Satz 42.3 brauchen wir nur die Irreduzibilität von f(x) 
über R zu beweisen. Es sei 

r 8 
f ( x ) = g ( x ) h ( x ) mit g ( x ) = 2 bexß und h ( x ) = 2 c a x a , g ( x ) , h ( x ) e i2[a;]. 

o o 
Wir müssen zeigen: r — 0 oder s = 0. Nach Voraussetzung ist p ein Teiler von 
60Co, also von oder Co, aber nicht von beiden. Es sei p\bo, pico- Wegen p - f a n 

existiert ein kleinster Index m mit p i b m , aber p\bß für [i < m. Setzen wir 
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c „ = 0 für a > s, so wird am = bmc0 + (bm-ici + bm~2c2 + . . . + boCm). Das 
Primelement p teilt die Klammer, aber nicht bmco, also auch nicht am. Das 
bedeutet m = n, also r = n und s — 0. 

Beispie l 1. Das Polynom f(x) = 3a;5 + 2z3 — 4x2 + 2 ist irreduzibel über Q. 
Man wähle p = 2. 
Beispie l 2. Das Polynom f(x) = x* + 4a:3 + 6a;2 + 4a; + 2 ist irreduzibel 
über £} (siehe oben!). Man wähle p — 2. 
Beispie l 3. Das Polynom f(x) = x* + 1 ist irreduzibel über Q (siehe oben!). 
Man setze x = y + 1 und wähle dann p = 2. Das sieht man, ohne es aufzu-
schreiben. 
Beispie l 4. Das Polynom f(x) = xn — p (n e^t, p Primelement aus 3) ist 

n 
irreduzibel über Q. Man wähle dieses p. Für n > 1 folgt J!p $ Q. 
Beispie l 5. Es sei p e 9t eine Primzahl. Das Polynom 

xp 1 
®p(*) = i ^ r r = x V ~ x + x V ~ 2 + • • • + 1 e 

heißt das p-te Kreisteilungspolynom; wir kommen darauf noch zurück. Hier 
zeigen wir: Das Polynom &p(x) ist irreduzibel über Q. Dazu betrachten wir das 
Polynom 

f(x) = 0P(X + 1) = = z*-1 + ( i ) 

Die 1 g v g p — 1, sind durch p teilbare ganze Zahlen (vgl. die Lösung von 

Aufgabe 20.8). Das Eisenstein-Kriterium mit diesem p zeigt die Irreduzibilität 
von }(x) bzw. &p(x) über Q. 

Aufgabe 1: Zeige die Irreduzibilität von fi(x) = a? + 10a;2 + 9a;— 15, 
h(x) = a? + 6a;2 — 17a; + 8, f 3 ( x ) = x* + 2a? + x2 + 2x + 1 und f 4 ( x ) 
= .r6 + 12 über Q. 

Aufgabe 2: Zeige die Irreduzibilität von fi(x) = Sx4 5a? — 10a;2 

— 5a; + 15 und f2(x) = 7a? — 8a;2 + 17a; — 135 über Q. 
Aufgabe 3: Es sei R ein Integritätsbereich mit Einselement und 

n 
f ( x ) — Z a r x " e R[pc], an =)= 0, irreduzibel über R. Dann ist auch 

o 
n 

g{x) = ^,an-fXv e R [ x \ 
o 

irreduzibel über R. Beweis ? 

Aufgabe 4: Es sei R ein Gaußscher Ring. Man zeige: Das Polynom 
f ( x , y) = y6 + xyh + 2xy* + 2x2y2 — v?y + x2 + x ist Primelement in R\x, y\. 
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§ 44 Teilbarkeitssätze in Polynomringen 

Wir notieren einige speziellere Aussagen. 

Satz 1: Es sei K ein Körper und E ein Oberkörper von K. Haben die Poly-
nome f(x), g(z) e K[x\ in K[x] den g.g.T. Eins, so auch in E[x], 

B e w e i s : Man wende Satz 36.5 auf den Hauptidealring H = K\x\ an. 

Satz 2: Das Polynom p(x) e sei irreduzibel über dem Körper K. Es sei 
f(x) e K\_x] und E ein Erweiterungskörper von K derart, daß p(x) und f(x) in E\pc] 
nicht den g.g.T. Eins haben. Dann gilt bereits in K\x] die Teilbarkeitsbeziehung 
p(x)\f(x). 

B e w e i s : Es ist p(x) ein Primelement des Gaußschen Ringes K[x]. Also ist 
in K\x] entweder p(x) ein Teiler von f(x), oder p(x) und f(x) haben den g.g.T. 
Eins. Das letztere ist aber nach Satz 1 nicht möglieh. 

A n w e n d u n g : Haben f(x) e K\x\ und das über K irreduzible p(x) e K[x\ in 
E d K eine Nullstelle a e E gemeinsam, so haben nach Satz 26.1 in E[x] die 
Polynome p(x) und f(x) den gemeinsamen Teiler x — a, also gewiß nicht den 
g.g.T. Eins. Satz 2 liefert also p(x)\f(x) in K[x], 

Satz 3: Es sei K ein Körper der Charakteristik x(K) = Polynom 
p(x) e K[x] sei irreduzibel über K. Dann hat p(x) in keinem Erweiterungskörper 
E d K eine mehrfache Nullstelle. 

B e w e i s : Wäre die Behauptung falsch, so hätten nach Satz 26.6 die 
Polynome p{x), p'(x) in einem geeigneten Polynomring E[x] nicht den g.g.T. 
Eins, und Satz 2 ergäbe p(x)\p'(x) in K[x], Wegen Grad p'(x) < Grad p(x) oder 
p\x) — 0 bedeutet das p'(x) = 0, und das ist nicht möglich, da wegen x(K) — 0 
der Grad von p'(x) nur um genau Eins kleiner ist als der von p(x). 

B e m e r k u n g : Behauptung und Beweis von Satz 3 bleiben richtig, wenn s tat t 
X ( K ) = 0 bloß p'(x) =(= 0 vorausgesetzt wird. Daß aber in Satz 3 die Voraus-
setzung %{K) = 0 nicht völlig gestrichen werden darf, zeigt das folgende 

B e i s p i e l : Es sei p e eine Primzahl und y eine Unbestimmte über Auch 
t = yi> ist dann eine Unbestimmte über 3p, und wir setzen K = $P(t) cE — ~$p(y). 
Es ist y e E, aber y § K, also E =|= K. Das Polynom f(x) = x* — t e K[x] ist 
irreduzibel über K\ es ist ja K der Quotientenkörper des Gaußschen Ringes 
3j>[<], in ihm ist t ein Primelement, und mit diesem t kann man das Eisenstein-
Kriterium anwenden. Aber in E bekommt das Polynom f(x) e K[x\ die p-fache 
Nullstelle y; denn nach Aufgabe 20.8 gilt in E[x] die Beziehung 

f(x) — xJ> — yP = (x — y)P. 

A u f g a b e 1: Genau dann hat f(x)e$p[x] (p Primzahl) die Ableitung 
f'(x) = 0, wenn ein g(x) e $p[x] mit f(x) = g{x)v existiert. Beweis ? 
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§ 45 Kreisteilungspolynome 

Es sei m eine natürliche Zahl. Wir betrachten das Polynom xm — 1 e $[x]. Es 
zerfällt (vgl. Anhang) in @[a;] in Linearfaktoren: 

x™—l = (ar — fi)(®—fg) . . . (» — £•„). 

Dabei sind die komplexen Zahlen 

C„ = e»&! (1 sS v ^ m) 

die sämtlichen m-ten Einheitswurzeln, speziell also Cm = 1- Die Cr bilden eine 
von f i erzeugte multiplikative zyklische Gruppe ß = {Ci,C2 Cm}; es 
gilt Cr = Ci- Alle diejenigen £ e ö, die ö erzeugen, für die also Cm = 1 gilt, 
aber nicht f r = 1 mit einem r e 91, r < m, nennen wir primitive m-te Einheits-
ivurzeln. Nach Aufgabe 9.2 sind das genau diejenigen Cr e G, für die v zu m 
teilerfremd ist; auf Grund der Definition in § 12.4 ist ihre Anzahl also gleich 
<p(m). Die zu diesen Cv mit (v, m) = 1 gehörenden Linearfaktoren von xm — 1 
sondern wir in der folgenden Definition aus. 

Definition: Das Polynom 

(1) 0m(x) = r r w = n ( z - ^ 2 * 4 ) 
(»,m)=l (»,m)=l 

heißt m-tes Kreisteilungspolynom. 
F o l g e r u n g : Es ist 0m(x) e und Grad 0m(x) = <p(m). 

Wir werden zeigen: Es gilt sogar 0m(x) e -i[x], und 0m(x) ist irreduzibel über 
Der Name Kreisteilungspolynom ist leicht zu erklären. Irgendeine Nullstelle 
genau dieses Polynoms muß man kennen, um in der Gaußschen Zahlenebene 
die Peripherie des Kreises \z\ = 1 oder den Winkel 2n in m gleiche Teile ein-
teilen zu können. Ist ein primitives Cr bekannt, so erzeugt es G, und dem 
Potenzieren von Cr entspricht anschaulich eine Vervielfachung des Winkels 
v 

—2TI, bis zuletzt alle Ecken des dem Einheitskreis einbeschriebenen regulären 
m 
m-Ecks bekannt sind. 

Satz 1: Es gilt (2) — 1 = n <*»(*)• 
neStt 
n| m 

Beweis : Wir sehen uns noch einmal die Gruppe G = {Ci, Cz, • • •, Cm) 
an. Jedes Cr s ö hat eine gewisse Ordnung n. Nach unserer Verabredung ist Cr 
dann eine primitive n-te Einheitswurzel, und nach Satz 9.3 gilt außerdem 
n\m. Das heißt: Jedes Element von G ist eine primitive n-te Einheitswurzel 
für ein gewisses n mit n\m. Umgekehrt: Ist n 6 91 ein Teiler von m, m = hn, 
und C eine primitive n-te Einheitswurzel, so gilt Cn — 1, also Cnk = Cm = 1 
oder f e (?. Zusammengefaßt: Die Gruppe G besteht genau aus allen primitiven 

11 Homfeck, Algebra 
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w-ten Einheitswurzeln für alle n mit n\m. Die Formel (2) besagt, nur anders 
geschrieben, dasselbe. 
F o l g e r u n g : Durch Vergleich der Grade links und rechts in (2) ergibt sich 

(3) 2 <p(n) = m. 
n|m 

Satz 2s Es gilt 0m(x) e 3 0 ] . 

B e w e i s : Vollständige Induktion nach m. Es ist &i(x) = x — 1 6 3 M -
Die Behauptung sei richtig für alle <Pr{x) mit r < m; wir müssen zeigen: 
<Pm(x) e Nach (1) ist jedes Kreisteilungspolynom normiert. Auf Grund 
der Induktionsvoraussetzung ist also 

f(x) = Jl0d(x) 
d\m 

ein normiertes Polynom aus $[x]. Nach Satz 1 geht die Division von xm — 1 
durch f(x) in auf mit dem Ergebnis &m(x). Führ t man aber diese Division 
gemäß § 25.6 aus, so bekommt <Pm(x) nur ganze Zahlen als Koeffizienten, da 
xm — i u n ( j f{x) ganzzahlig sind und f(x) normiert ist. 

B e i s p i e l e : Die Gestalt der Kreisteilungspolynome &p(x) mit Primzahlindex 
m — p ist nach (1) gegeben durch 

1 xp—1 
(4) 0p(x) = n ( * - £ ' ) = ~ t n = — r = x f - i + ^ - H . . . + i , 

lä»<|> x —MäfSp * 1 

wie es in § 43, Beispiel verabredet war. Hiermit und durch leichte Rechnun-
gen gemäß (1) bekommt man &i(x) = x — 1, 02(x) = x + 1, <t>zix) = a : 2 + x + l , 
&4(x) = x2 + 1 , 0 s ( x ) = xt + xZ + x^ + x + l , 06(x) = x2 — x + 1. Unter 
Benutzung von (2) kann man daraus etwa 

x12 1 
/ ß 1 0 / ~ \ _ _ ~ 4 r 2 _L_ 1 

12V ' 01{x)02{x)03(X)04(x) 4>e(x) ^ 

ermitteln. 
Der folgende Satz ist uns für den Fall m = p (Primzahl) bereits aus § 43, 
Beispiel 5, bekannt. 

Satz 3: Das Polynom $>m(x) ist für jedes m eUt irreduzibd über Q. 

B e w e i s : Wir unterteilen den Beweis in sieben Schritte. Dabei beginnen 
wir in 1) mit einer einfachen Aussage, die wir später verwenden. 
1) Es sei f(x) e $[x] und p eine Primzahl. Wir behaupten: Alle Koeffizienten 
von f(x)P — /(x*>) e 3[a;] sind durch p teilbar. Das zeigt man entweder durch 
Rechnen in ^p[x] oder direkt wie folgt: Für zwei Elemente gi(x), g2(x) e 3 M 
gilt 

mit durch p teilbaren Binomialkoeffizienten 1 ^ v i j p — 1 (vgl. Aufgabe 
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20.8). Es gibt also ein Polynom d(x) e 3 M derart, daß 

(gi(x) + gz(x))P = gi(x)P + g2(x)v + pd(x) 

geschrieben werden kann. Mehrfache Anwendung dieses Resultats auf eine 
Summe von 1c Summanden gi(x) e %[x] liefert: Die Koeffizienten von 

(gi(x) + gz{x) + . . . + gk{x))p — gi(*)p — gzW — . . . — gk(x)v 

n 
sind durch p teilbar. Man schreibe nun f(x) = ~2<ipX' und setze anxn = gi(x), 

o 
an-ia;n_1 = gz(x) usw. Es folgt: Die Koeffizienten von 

h ( x ) = f(x)P - a?n{xv)n - aU(xP)»-i - . . . - a% 

sind durch p teilbar. Dasselbe gilt nach Satz 12.6 für die Koeffizienten von 

f2(x) = K — an)(x*)« + (ati — an-i)(xp)n~1 + . . . + K — « o ) -

Also sind auch die Koeffizienten von fi(x) + fe(x) = f(x)v — f(xP) durch p 
teilbar. 
2) Nun sei f(x) eQ[a;] ein Teiler von 0m(x) £ 3 M und Grad f(x) ^ 1. Nach 
Satz 42.3 darf sogar f(x) e -i[x] angenommen werden, und da 0m(x) normiert ist, 
dürfen wir weiter voraussetzen, auch f(x) 6 ^>[x] sei normiert. Behauptet wird 
dann f(x) — &m(x). Es sei im folgenden s eine natürliche Zahl und r,(x) der 
Divisionsrest von j(x') bei Division durch f(x). Wir wollen in vier weiteren 
Schritten 3), 4), 5), 6) zeigen, daß im Falle (s, m) = 1 der Rest rs(x) verschwin-
det. Die Aussage 1) wird beim Beweis der Zwischenbehauptung 4) verwandt. 
Der eigentliche Beweis von Satz 3 erfolgt dann zuletzt in 7) mit Hilfe von 6). 
3) Wir behaupten: Für jedes ist rs+m(x) = r,(x). Ist nämlich axn einer 
der Summanden von f(x), so erscheint axns als Summand von f(x'); also enthält 
f(x'+m) — f ( x ' ) den Term axns(xmn — 1), und xmn — 1 = (xm)n — 1 ist durch 
xm — 1, also auf Grund der Sätze 1 und 2 durch 0m(x) und damit auch durch 
f(x) teilbar. Es gilt demnach j(x'+m) — f(xs) = q(x)f(x) in Ist 

f(x>) = g(x)f(x) + rs(x), 

so folgt f(xs+m) = (g(x) + q(x))f(x) + rs(x), und da der Divisionsalgorithmus in 
£}[«] eindeutig ist (Bemerkung zu Satz 37.3), heißt das re+m(x) = r,(x). 
4) Wir behaupten weiter: Für alle hinreichend großen Primzahlen p > M ist 
rv(x) = 0. Denn: Nach 1) gibt es ein h(x) e 3 0 ] mit f(xv) — j(x)v = ph(x), und 
dieses h(x) können wir auch in der Gestalt h(x) = q(x)f(x) + r(x) mit Polynomen 
q(x), r(x) e $[x] und Grad r(x) < Grad f(x) bzw. r(x) = 0 schreiben. Das 
liefert f(xP) = f(x)P + ph(x) = (/(a;)»-1 + pq(x))f(x) + pr\x). Also ist 

rP(x) = pr(x). 

Nach 3) gibt es aber überhaupt nur endlich viele voneinander verschiedene 
Polynome rs(x); daher existiert das Maximum M der Beträge aller Koeffizienten 
aller rs(x). Man wähle nun p > M. Da alle Koeffizienten von rp(x) = pr(x) 
durch p teilbar sind, muß rp(x) = 0 sein. 

XI* 
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5) Aus rs(x) = 0 und rt(x) = 0 folgt rst(x) = 0. Denn wegen rs(x) = 0 ist f(x>) 
durch f(x), also f(xst) durch f(x l) teilbar; wegen rt(x) — 0 ist f(x l) durch f(x) 
teilbar; insgesamt ist also f(xst) durch f(x) teilbar. 

6) Jetzt sei a e 91 teilerfremd zu m. Behauptet wird: rs(x) = 0. Dazu setzen 
wir n = pip2 ... J>ic, wobei die pt sämtliche Primzahlen ^ M sind, die nicht in 
s aufgehen; dabei ist M die Schranke aus 4). Für o = 8 + mn zeigen wir nun 
r„(x) = 0, und nach 3) bedeutet das gleichzeitig r3(x) = 0. Nach 4) und 5) 
wiederum genügt es für rg(x) = 0 zu zeigen: Jeder Primteiler von o ist größer 
als M. Dies lehrt eine leichte Fallunterscheidung: Ist p eine Primzahl M 
und p ein Teiler von s, so gilt p\n und p-fm, letzteres wegen (s, m) = 1, ins-
gesamt also p-fcr; und ist p eine Primzahl M und kein Teiler von s, so gilt 
p\n, also wieder p-fa. 
7) Es ist also gezeigt: Ist s e 91 zu m teilerfremd, so ist f(xs) in %[x] durch f(x) 
teilbar: Es gibt ein g(x) e mit f(x') = g(x)f(x). Es sei nun f e GE eine ge-
meinsame Nullstelle von 0m{x) und f(x); wegen f(x)\0m(x) und Grad f(x) 1 
gibt es ein solches f . Es ist f " = 1, aber £k 4= 1 für k = 1, 2, . . . , m — 1; 
als Nullstelle von 0m(x) ist ja f eine primitive ra-te Einheitswurzel. Die <p(m) 
Zahlen Cs, 1 Sa s < m, {s, m) = 1, sind also paarweise voneinander ver-
schieden und wegen f(x*) = g(x)f(x) gleichfalls Nullstellen von f(x) in Nach 
Satz 26.2 folgt Grad f(x) ^ <p(m) = Grad 0m{x); andererseits waren f(x) und 
0m(x) normierte Polynome aus £[x] mit f(x)\0m(x). Zusammengenommen heißt 
das f(x) — 0m{x). Damit ist Satz 3 bewiesen. 

F o l g e r u n g : In (2) steht die Primfaktorzerlegung von xm — 1 im Gauß-
schen Ring &[#]. 

2n 2ti 
A u f g a b e 1: Man berechne cos — und sin —. 

5 5 
A u f g a b e 2: Es sei f eine m-te Einheitswurzel. Man beweise 

(5) i + + = + 

A u f g a b e 3: Es ist Ö>i(0) = —1 und #¿,(0) = 1 für m 4= 1. Beweis ? 

A u f g a b e 4: Man beweise 

(6) m =}= 1, m ungerade => 02m(x) = ®m{—x). 

A u f g a b e 5: Man beweise die beiden folgenden Aussagen. 

(7) Ist p eine Primzahl mit p\m, so gilt 0mp(x) = 0m(xv). 

Ist p eine Primzahl und k e Sft, so gilt 

( 8 ) 0Pu(x) = zfP-DP1-1 + x^-Vp1-' + ... + xP1" + 1. 

A u f g a b e 6: Man bestimme die Kreisteilungspolynome 0m{x) für 

1 < m <, 15. 
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§ 46* NOETHERsche Ringe 

Wir haben gesehen, welche besondere Rolle die Hauptidealringe spielen. Die 
Idealtheorie wird in ihnen besonders einfach und gestattet zahlreiche wichtige 
und nützliche Folgerungen. Manches aus der Theorie der Hauptidealringe 
Bekannte läßt sich nun auf eine allgemeinere Klasse von Ringen übertragen, 
deren Untersuchung von großem Interesse ist. Ihr Name erinnert an die 
deutsche Mathematikerin EMMY NOETHER ( 1882—1935 ) , der die Idealtheorie 
entscheidende Impulse verdankt. 

Definition: Ein kommutativer Ring R heißt Noetherscher Ring, wenn jedes 
Ideal aus R von endlich vielen Elementen erzeugt wird. 
Als erste Beispiele haben wir bereits die Hauptidealringe erwähnt. Der folgende 
Satz gibt drei gleichwertige Charakterisierungen Noetherscher Ringe, die 
immer wieder benutzt werden. 

Satz ls Ein kommutativer Ring R ist genau dann ein Noetherscher Ring, 
wenn eine der drei folgenden gleichwertigen Bedingungen erfüllt ist: 
(1) Jedes Ideal aus R wird von endlich vielen Elementen erzeugt (Basisbedingung). 
(2) Jede aufsteigende Kette Di c <¡2 c 03 c . . . von Idealen aus R wird konstant 
(Teilerkettenbedingung). Das heißt: Es gibt einen Index k mit 

Oft = <tfc+l = Ofc+2 = • • • • 
(3) Jede nicht leere Menge M von Idealen aus R enthält wenigstens ein maximales 
Element a (Maximalbedingung). Das heißt: Ist b e M und a c b, so gilt a = b. 

Beweis : 
(1) => (2): Im Beweis von Satz 37.2 haben wir gezeigt, daß in einem Haupt-
idealring die Teilerkettenbedingung erfüllt ist. Diese Überlegung wieder-
holen wir. Es gelte (1); jedes Ideal aus R sei also endlich erzeugt. Ist dann 
ai c a2 c ö3 c . . . eine Idealteilerkette aus R, so ist in bekannter Weise auch 
a = Uai ein Ideal aus R, und nach Voraussetzung wird es von endlich vielen 
Elementen erzeugt: a = (ai,a2, ...,an). Nach Definition von a gibt es ein 
Ideal der Kette, das a\, ein weiteres, das a<i enthält, usw.; das größte dieser n 
Ideale sei a*. Es enthält alle Oj, also ganz a, und ist andererseits ein Teil von 0; 
das heißt a* = a. Also gilt a* = a^+i = 2 = . . •; die Kette wird konstant. 
(2) => (3): Es sei (2) erfüllt und M 4= £ eine Menge von Idealen aus R. Man 
wähle ein ai e M. Entweder ai ist bereits maximal, und dann ist man fertig, 
oder es gibt ein O2 6 M, <12 4= ÜJ, mit ÖI C A2- Wieder ist entweder 02 maximal, 
oder es existiert ein 03 e M, 03 4= 02, mit m c 02 c 03. Man setze das Ver-
fahren fort. Nach (2) bricht es mit einem a* ab, und dieses a* e M ist maximal. 
(3) => (1): Es sei a ein Ideal aus R und M die Menge aller von endlich vielen 
Elementen aus a erzeugten Ideale. Ferner sei b = (ai, a2, . . . , an) ein maxi-
males Element aus M. Dann gilt zunächst b c 0. Wäre b o, so würde ein 
an+\ e a, o„+i £ b, existieren, und es wäre 

b c (ai, «2, ..., an+1) e M, b 4= (au a2, ..., an+1), 
im Widerspruch zur Wahl von b. Also gilt a = b = (ax, a2, . . . , an); das Ideal 
a c R ist endlich erzeugt. 
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Einfach zu beweisen ist der 

Satz 2: Es sei R ein Noetherscher Ring und R* ein homomorphes Bild von R. 
Dann ist auch R* ein Noetherscher Ring. 

Beweis : Es sei a* c a* c a* c . . . eine aufsteigende Kette von Idealen aus 
R*; wir haben zu zeigen, daß sie konstant wird. Es sei /: Ä R* der Homomor-
phismus von R auf R* und ai = /_1(of), ü2 = f~\a*), <»3 = /-1(os), • • •; aus 
Satz 21.4 wissen wir, daß die üi Ideale in R sind. Sie bilden in R eine Teiler-
kette ai c fl2 c Ö3 c . . . , und diese Kette wird nach Voraussetzung konstant. 
Nun wende man wieder / an. Es ist /(oj) = a * ; also wird auch die Kette 
of c a ' c a * c . . . aus R* konstant. 
Ein wichtiger Satz über Noethersche Ringe ist der berühmte Basissatz von 
H i l be r t , dem wir uns in § 47 zuwenden. 

Aufgabe 1: Der Ring 2 J der geraden ganzen Zahlen ist ein Noetherscher 
Ring. Beweis ? 

§ 47* Der HlLBERTsche Basissatz 

47.1 In Satz 25.5 haben wir festgestellt: Ist R ein Integritätsbereich mit Eins-
element, so auch der Polynomring ii[a;]. Das war trivial. Weit weniger selbst-
verständlich war ein weiterer Übertragungssatz dieser Art, der Satz von Gauss: 
Ist R ein Gaußscher Ring, so ist es auch R\x\. Der folgende HiLBEBTsche 
Basissatz ist ein dritter derartiger Satz; sein Beweis erregte im Jahre 1890 
großes Aufsehen. 

Satz ls Ist R ein Noetherscher Ring mit Einselement, so ist es auch R\x\. 

B e w e i s : Wir bezeichnen Ideale in R mit kleinen, Ideale in i?[a;] mit 
großen deutschen Buchstaben. Wir werden zeigen: Eine aufsteigende Kette 
SIo c 2ii c 3(2 c . . . von Idealen aus Ä[a;] wird konstant. Wir führen den Beweis 
in drei Schritten. 
1) Es sei 2t c JZ[a;] ein Ideal. Für n = 0 ,1 , 2, . . . setzen wir 

0n = {aeR: Es gibt ein /(a;)e2l der Gestalt f(x) = axn+an-iXn~1+ ... +00.} ; 

die Menge an enthält also die Null und die höchsten Koeffizienten aller Poly-
nome vom Grad n aus 21. Sind ^(x) Elemente aus 2t und r s R, so gilt 
f(x) —g{x) e 2t und rf(x) e 21; daraus folgt: 0» ist ein Ideal aus R. Außerdem 
gilt a„ c a„+i: Mit f(x) = axn + «„-ix™-1 + . . . + ao e 2t liegt auch 

xf{x) = axn+1 + an-ixn + ... + OQX 

in 2t; aus a e an folgt also a e a„+i. Wir ordnen nun dem Ideal 2t c R\x\ die 
Idealteilerkette 00 c 01 c <xz c . . . aus R zu. 
2) Den Idealen 2t, 58 aus seien die Teilerketten 

Oo c ai c a% c . . . , bo c 61 c 62 c . . . 
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aus R zugeordnet, und es gelte 31 c S3, also auch an c bn (ra = 0 ,1 , 2, . . . ) . 
Wir zeigen: Aus 21 c 35 und an = bn (n = 0 ,1 , 2, . . . ) folgt bereits 2f = 93. 
Zunächst besagt ao = &o> daß 21 und 85 außer der Null auch dieselben Polynome 
nullten Grades enthalten. Es sei bereits bewiesen, daß die Polynome mit 
kleinerem Grad als n in 21 und 83 dieselben sind. Unsere Behauptung ist durch 
Induktion nach n bewiesen, wenn gezeigt wird: Jedes 

f(x) = axn + o„_ix»-1 + ... + ao e 83 
ist schon ein Element von 2(. Zunächst ist a ein Element von &„ = u„; demnach 
gibt es auch ein g(x) = axn + bn-ixn~x + . . . + ^o e 2i. Wegen 21 c 85 liegen 
f(x) und g(x) beide in 85. Also gilt auch f(x) — g(x) e 85 und nach Induktions-
voraussetzung sogar f(x) — g(x) e 2i. Zusammen mit g(x) e 2i liefert das 
g(x) + (f(x) — g(x)) = f(x) e 2i, was gezeigt werden sollte. 
3) Nun benutzen wir, daß R ein Noetherscher Ring ist. Es sei Sio c 2ii c 2(2 c . . . 
eine Idealteilerkette aus ; wir zeigen, daß sie konstant wird. Dem Ideal 2le 
sei gemäß 1) die Kette öpo c a f i c a ^ c . . . aus R zugeordnet. Wir bekommen 
das folgende Schema. 

% Ö00 C <»01 c Ö02 C . . 
n n n n 
2li Ü10 c au c Ö12 C . . 
n n n n 
2i2 Ö20 c «21 c 022 C . . 
n n n n 

n n n n 
2tm OrnO c Cml c 0m2 C . . 

II 
2Im+i 

II II II II 
2Im+i Om+1,0 c Om+1,1 C Om+1,2 C . . 

II II II II 
Man sehe sich die Spaltenketten ooj c au c «2« c . . . (i = 0, 1, 2, . . . ) an. Kann 
man die Existenz eines Index m nachweisen, von dem an sie alle konstant 
werden: ami = am+i,j = am+2,< = . . . für jedes i S; 0, so ist wegen 2) auch 
2Im = 2ijn+i = 2ij»+2 = . . . bewiesen. Nun gilt aber jedenfalls 

üoo c öii c °22 c . . . , 
und nach Voraussetzung wird diese Kette etwa bei o„n konstant. Es folgt 
ann = <tn+i, n+i = • • • *md damit aßf = ann für alle ju,v ^ n; alle Ideale unter-
halb und rechts von ann sind gleich ann- Mit Ausnahme höchstens der n ersten 
werden also alle Spaltenketten spätestens vom Zeilenindex n an konstant. Die 
endlich vielen ersten n Spaltenketten werden aber wieder auf Grund der 
Voraussetzung jede für sich konstant; es gibt also einen Zeilenindex k, von 
dem an sie alle konstant sind. Wählt man nun für m das Maximum von n und k, 
so sind vom Zeilenindex m an alle Spaltenketten konstant, womit Satz 1 
bewiesen ist. 
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47.2 Aus Satz 1 folgt der 

Satz 2: Ist R ein Noetherscher Ring mit Einselement, so ist es auch der 
Polynomring R\xi, a'2> ..., .r„]. 

S p e z i a l f ä l l e : 
1) Ist K ein Körper, so ist K[x\, . . . , £„] ein Noetherscher Ring. 
2) ^fcii x2. • • • > xn] ist ein Noetherscher Ring. 
Über Satz 2 hinaus gilt sogar der 

Satz 3: Es seien R und R* 3 R kommutative Ringe mit demselben Eins-
element 1 e R und Ii, ¿2, Elemente aus R*. Ferner sei R ein Noetherscher 
Ring. Dann ist auch £2, • • •, fn] Noetherscher Ring. 

Bewei s : Es ist Ü[x1,x2,.. -,xn] ein Noetherscher Ring und R[h,h, • • - ,£n] 
ein homomorphes Bild von R[x\, x<i, ..., xn] (vgl. § 25.5). Die Behauptung folgt 
also aus Satz 46.2. 

Also ist beispielsweise 3[j/—5] ein Noetherscher Ring. Aber —5] ist sicher 
kein Hauptidealring; denn nach § 37.1 war es nicht einmal ein Gaußscher Ring. 
Umgekehrt ist nach § 42.5 der Polynomring $[xi,x2,x3, . . . ] in abzählbar 
vielen unabhängigen Unbestimmten wohl ein Gaußscher Ring. Aber er ist 
kein Noetherscher Ring; denn die Teilerkette («i) c (x\, X2) c (xi, X2, xs) c 
. . . wird nicht konstant. Ebenfalls kein Noetherscher Ring ist der Ring 2%\x\ 
aller Polynome mit geraden ganzen Zahlen als Koeffizienten; denn die Teiler-
kette 

(2) c (2, 2x) c (2, 2x, 2x2) c . . . 

wird nicht konstant. Wegen 23[z] c 3 M zeigt dieses Beispiel, daß ein Unter-
ring eines Noetherschen Ringes kein Noetherscher Ring zu sein braucht. Das 
Beispiel zeigt weiter (vgl. Aufgabe 46.1), daß in Satz 1 auf die Bedingung 1 e R, 
die im Beweisteil 1) beim Nachweis von an c an+1 benutzt wurde, nicht ver-
zichtet werden kann. 

Literatur: KOCHENDÖRFFER [12] , v. D. W A E R D E N [16 ] . 
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Allenthalben in der Mathematik treten Vektorräume auf. Man begegnet ihnen 
vielleicht das erste Mal, wenn man in naiver Weise räumliche Geometrie be-
treibt. Vektoren sind in diesem Fall gerichtete Strecken, die genau dann als 
einander gleich angesehen werden, wenn sie sich durch eine Parallelverschiebung 
ineinander überführen lassen, und man definiert in bekannter Weise eine 
Addition von Vektoren. So wird die Menge V aller Vektoren des dreidimensio-
nalen Raumes eine abelsche Gruppe. Zusätzlich führt man noch eine äußere 
Komposition von V mit SR ein: Für a e SR und x e V erklärt man ein Produkt 
ax e V. 

Diese Festlegungen erweisen sich als sehr praktisch. Sie lassen sich außerdem 
leicht von ihrem anschaulichen Hintergrund lösen. V wird das cartesische 
Produkt SR3 mit der Addition («i, «2, «3) + (61, i>2, ¿>3) = («i + £>1, «2 + ¿>2,03+^3), 
und für a e SR und x = («x, 02, «3) e V gilt ax = (aai, aa<i, aa3) e F. Erneut 
stellt man fest, daß V eine abelsche Gruppe bezüglich der Addition ist, und für 
die äußere Komposition bestätigt man sofort die Regeln (ab)x = a(bx), 
(a + £>)a = oa + bx, a(x + ß) = ax + aß und la = a (a, b e SR; x, ß e V). 
Diese Eigenschaften von V benutzt man zur Definition neuer algebraischer 
Strukturen und nennt sie Vektorräume. 

Es stellt sich bald heraus, daß viele ursprünglich rein geometrische Über-
legungen in der Theorie der Vektorräume eine Form annehmen, die An-
wendungen in den verschiedensten Zweigen der Mathematik gestattet. Wäh-
rend der geometrische Hintergrund als Hilfsmittel zur Veranschaulichung er-
halten bleibt, ist auf diese Weise eine besonders wichtige Teildisziplin der 
Algebra, die sogenannte lineare Algebra, entstanden, die sich ausschließlich 
mit Vektorräumen befaßt. Auf Grund ihrer wachsenden Bedeutung erfolgt die 
Beschäftigung mit ihr bereits am Beginn des Mathematikstudiums. Wir stellen 
die Grundbegriffe der linearen Algebra nur in dem für unsere Zwecke er-
forderlichen Umfang noch einmal zusammen. 

§ 48 Das Rechnen in Vektorräumen 

Definition: Es sei S ein Schiefkörper mit Elementen 1 ,a,b, ... und V eine 
additiv geschriebene abelsche Gruppe mit Elementen x, ß, ... Dann heißt V ein 
Vektorraum über S, genauer: linker S-Vektorraum, wenn eine Komposition von V 
mit 8 (also für a e S und x e V ein Produkt ax e V) erklärt ist, die folgende 
Eigenschaften hat: 

(1) (ab)x = a(bx) (Assoziativität). 
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(2) (a + b)x = ax + bx, , _ . .... 
(3) a(x + ß) = aa + aß. {DistnbMat) 
(4) la = a. 
In (2) und (3) soll wie üblich wieder das Zeichen für die Multiplikation stärker 
binden als das für die Addition. Die Elemente von V nennen wir Vektoren, die 
Elemente aus 8 Skalare. Man hat den Skalar 0 e S vom Nullvektor o e V zu 
unterscheiden. 
Rechte S- Vektorräume werden entsprechend definiert, 
Beispie l 1. Ein Schiefkörper S ist ein linker S-Vektorraum. Hier ist V = 8. 
Beispie l 2. Es sei S ein Schiefkörper, n e 9t und V = 8n. Wir setzen 

(ai, «2, • • •, an) + (bi, i>2 bn) = («i + h, a2 + b2 a„ + bn) 
und a(ai, 02, . . . , an) = (aaj, aai, ..., aan). Dann ist V ein linker <S-Vektor-
räum. Man nennt ihn den Raum der n-tupel über S. Spezialfall: S = 3t und 
n = 3. 
Be isp ie l 3. Es sei K ein Körper. Dann ist K[x] ein linker K-Vektorraum. 
Beisp ie l 4. Es sei K ein Körper, E d K ein Erweiterungskörper und £ e E 
algebraisch über K. Dann ist Ül[£] ein Vektorraum über K. Dies wird für uns 
einer der wichtigsten Fälle. 
Für das Rechnen in Vektorräumen gelten zunächst die Sätze über abelsche 
Gruppen. Zusätzlich brauchen wir noch den 

Satz 1: Es sei 8 ein Schiefkörper mit Elementen 0, 1, a, ... und V ein 
S-Vektorraum mit Elementen o, a, ... Dann gelten folgende Rechenregeln: 
a) ao = 0a = o. 
b) (—l)a = —a, (—a)a = —aa. 
c) Aus ax = o folgt a = 0 oder a = o. 

Beweis : 
a) Es ist a(o + 0) = ao + ao und a(o + o) = ao, also ao + ao = 00; in der 
Gruppe V folgt ao — o. Analog zeigt man 0x — o. 
b) In V gilt also a + (—l)a - l« + (—l)a = ( l+ (—l) )a = 0« = o sowie 
<x + (—a) = o; in der Gruppe V folgt (—l)a = —a. Ferner wird 

(—a)x = ((—l)a)a = (—l)(aa) = —aa. 

c) Ist ax = o und a 0, so folgt a -1(aa) = (a_1a)a = la = a = o. 

§ 49 Teilräume 

Eine Teilmenge U des S- Vektorraumes V nennen wir einen Teilraum von V, 
wenn U Vektorraum bezüglich der Kompositionen von V ist. Es ist also 
U = {0} ein Teilraum jedes Vektorraumes V; dagegen ist die leere Menge £ 
keine Gruppe, also nie Teilraum. Nützlich ist das folgende Analogon zu Satz 8.1. 

Satz ls Eine nicht leere Teilmenge U des linken 8-Vektorraumes V ist Teil-
raum von V genau dann, wenn die beiden Bedingungen 
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(1) x, ß 6 U => a + ß e U , 

(2) a e S , x e U => axeU 

erfüllt sind. 

Beweis : Ist U ein Teilraum von F, so sind (1) und (2) gewiß erfüllt. Ist 
umgekehrt U =)= £ eine Teilmenge von F, in der (1) und (2) gelten, so liegt 
nach (2) mit x auch (—l)oc = —x in U; ein a e U gibt es sicher, und mit (1) 
folgt a + (—<*) = o e U. Alle anderen Forderungen an U sind erfüllt, weil U 
eine Teilmenge von F ist. 
Man betrachte den Durchschnitt Ui n U2 zweier Teilräume U\, Uz des Vektor-
raumes F. Wir zeigen mit Satz 1, daß er wieder ein Teilraum von F ist: Aus 
a, ß e Ui n U2 folgt a, ß e Uit also a + ß e Ut (i = 1, 2) oder a + ß e Ui n E72. 
Analog bekommt man ax e Ui n U2 für a e S, x e Ui n Wegen o 6 U\ n U2 
ist schließlich U\ n U2 nicht leer. Der Durchschnitt U\ n U2 ist also ein Teil-
raum von V. Bei dieser Argumentation hätte man auch von mehr als zwei 
Teilräumen Ui c V ausgehen können. Wir formulieren unser Ergebnis. 

Satz 2: Sind die Ut Teilräume des Vektorraumes V, so ist auch fl f7< ein 

Teilraum von V. 

Eine Anwendung von Satz 2 ist die folgende. Es seien ai, X2r . • •, xr feste Vek-
toren aus V und M die Menge aller Teilräume Ui von V mit { x i , x z , . . .,x T} cUi\ 

dabei entstammen die i einer Indexmenge I. Wegen F e M ist M nicht leer. 
Der Durchschnitt U aller dieser Ui e M ist ein Teilraum von F, und er ist der 
kleinste,Teilraum von F, der alle xj enthält: Es gilt U c Ui für jedes Ut e M. 
Deshalb ist die folgende Definition, die zusätzlich noch den Fall r = 0 mit 
einbezieht, sinnvoll. 

Definition: Es seien Xr Elemente des Vektorraumes V. Ist r 1, 
s o bezeichne [ « 1 , x2, • • •. « r ] den kleinsten Teilraum von V, der { a i , X2, . . . , a r } 
als Teilmenge enthält. Ist r = 0 , also { a i , X2 a r } = so sei entsprechend 

[ a i , X2, . . . , a r ] = { 0 } der Nullraum. 

Es sei r ¡g 1. Aus welchen Elementen besteht U = [ai, X2, . . . , a r] ? Wir schlie-
ßen wie in §35.3: Der Raum [x\,x2, . . . ,Xr ] enthält alle also 
auch die Menge L aller Linearkombinationen sixi + s2x2 + . . . + srxr (sx e S); 

das heißt LcU. Aber nach Satz 1 ist £ selbst schon ein Teilraum von F, und L 
enthält alle oy; das bedeutet L 3 U. Zusammengenommen ist also U = L und 
damit [ai, X2, . . . , «r] die Menge aller Linearkombinationen der Vektoren xj. 
Wir sagen: Der Vektorraum U — [«1, X2, •.., xr] wird von der Menge 
{ai, a2, . . . , Xr} der Vektoren X] bzw. von den Vektoren xj aufgespannt oder er-
zeugt. Die leere Menge erzeugt den Nullraum. Ein Vektorraum F heißt endlich 

erzeugt, wenn es ein r 2s 0 und Vektoren ai, ocr aus F mit 

F = [«1, xr] 
gibt. 

Aufgabe 1: Es sei K ein Körper und F = Kn der n-tupel-Raum über K. 
n 

Gegeben seien die m linearen homogenen Gleichungen 2  au£j = 0 , 1 ^ i ^ m, 
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mit Koeffizienten e K für die n Unbekannten e K. Wir nennen 

(n. ..., r„) e V 

eine Lösung des Gleichungssystems, wenn es durch tj = Tj (1 Si j ^ n) be-
friedigt wird. Die Menge aller dieser Lösungen sei U c V. Man zeige: U ist ein 
Teilraum von V. 

§ 50 Der Basissatz 

Wir führen den Begriff der linearen Unabhängigkeit ein. 

Definition: Es sei 8 ein Schiefkörper mit Elementen s^ und V ein linker 
S-Vektorraum. Die r S: 1 Vektoren xi, xr aus V heißen linear unabhängig 

r 
(über S), wenn aus ~2,sxxx = o folgt: s% = s<i = ... = sr = 0. Eine Menge M c V 

1 
bzw. die Vektoren von M heißen linear unabhängig (andernfalls: linear abhängig), 
wenn je endlich vide Vektoren «1, ..., <xr(r ^ 1) aus M linear unabhängig 
sind. 
Die leere Menge bzw. die Vektoren der leeren Menge sind hiernach linear un-
abhängig. Ein einzelner Vektor a e V ist genau dann linear unabhängig, wenn 
x 4= o ist. 

Wir formulieren nun ein einfaches 
L e m m a : Es sei V ein Vektorraum, und es seien die r > 1 Vektoren 

«Ii 

aus V in dieser Reihenfolge vorgelegt. Dann gelten die folgenden Aussagen. 
a) Die Vektoren xe sind genau dann linear abhängig, wenn ein a j eine Linear-
kombination der übrigen txj (j 4= i) ist. 
b) Sind alle Vektoren cce ungleich Null, so sind sie genau dann linear abhängig, 
wenn ein oc< eine Linearkombination der vorangehenden xj (j < i) ist. 

B e w e i s : 
a) Is t xt = 2 SjXj, so folgt (—l)aj + 2 3lal = °> wobei wenigstens der 

j+t 
Koeffizient —1 nicht Null ist; die Vektoren a g sind dann also linear abhängig. 

r r 
Gilt umgekehrt 2 slaLi = 0 und etwa «( 4= 0> so wird s,7-1 2 slxl = 0 oder 

i-l 7=1 
xi = 2 (—si 1sJ)<*I-

b) Ist ein a< eine Linearkombination der oy mit j < i, so erst recht eine Linear-
kombination der X] mit 7 4= t ; die Vektoren xg sind dann also linear abhängig 

r 
auf Grund von a). Is t schließlich 2 sici} = 0, und sind nicht alle Sj Null, so 

i=1 
existiert ein maximaler Index i mit 4= 0, und da diesmal alle xQ ungleich 

i—1 
Null sind, gilt i > 1. Es folgt aj = 2 (—s^sfix). 

)=i 
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Dieses Lemma liefert den 

Satz ls Der Vektorraum V = [ai, 1x2, • • •, «r] sei endlich erzeugt, und die 
Vektoren ß\, . . ß m aus V seien linear unabhängig. Dann ist r 2g m. 

Bewei s : Der Fall r = 0 ist trivial. Bs sei also r S: 1. Wir zeigen, daß 
schon die Anzahl der von Null verschiedenen oce mindestens gleich m ist. Der 
Einfachheit halber seien also von vornherein alle <xe ungleich Null; die ßß 
sind es wegen ihrer Unabhängigkeit sowieso. Nach Teil a) des Lemmas sind die 
Vektoren ßm, txi, 1x2, ..., a r linear abhängig; es ist ja ßm e [ai, . . . , ar]. 
Nach Teil b) des Lemmas kann man eines der aß weglassen, und die ver-
bleibenden ßm, a[, a.2, . . . , oCf—i erzeugen immer noch F. Also gilt auch 
ßm-1 e [ßm, «i, <4> . . . , a£_i], und die Vektoren ßm-i, ßm, ai, a^, . . .,af-i sind 
linear abhängig nach Teil a) des Lemmas. Wieder nach Teil b) des Lemmas kann 
man einen dieser Vektoren als Linearkombination der vorangehenden streichen; 
da die ß ß linear unabhängig sind, muß es wieder eines der a'e sein, und wir be-
kommen etwa V = [ßm-1, ßm, <*"> «2') • • •> «r-2]- Dieses Austausch verfahren 
kann wiederholt werden, solange Vektoren ßß zur Verfügung stehen. Das be-
deutet r ^ m. 

Definition: Die Teilmenge B = {ai, a.%, ..., ar}, r 2i 0, von V heißt eine 
Basis des Vektorraumes V, wenn die <xe e B linear unabhängig sind und V er-
zeugen: V = [«1, 0C2, ..., ar]. 
Hiernach ist 2 Basis des Nullraums. 

Jeder endlich erzeugte Vektorraum V = [ai, a2, . . . , ar], r 0, besitzt 
wenigstens eine Basis. Für r — 0 ist es £. Für r 22 1 bekommt man sie mit 
Hilfe des Lemmas, indem man die von Null verschiedenen der Vektoren 
«1, ocz, . . . , Or aufschreibt und unter ihnen dann sukzessive alle diejenigen oj 
streicht, die Linearkombinationen der vorangehenden xj sind. 

Satz 2: Es sei V = [«1, a2, . . . , a r] und r 2g 1. Genau dann läßt sich jedes 
a e V eindeutig als Linearkombination der a e darstellen, wenn {«1, a2, ..., a r ) 
eine Basis von V ist. 

B e w e i s : Ist {ai, a2, . . . , ar} eine Basis von V und a = = so 
folgt — = o oder Sx = für alle A. Ist {ai, a2, . . . , ar} keine Basis 
von F, so gibt es Skalare t\, die nicht alle Null sind, mit = Ist also in 
diesem Fall etwa a = ^ßx&x, so wird auch a = + und nicht für 
alle X gilt sa = sx + tx-

Satz 3 (Basissatz): Der Vektorraum V sei endlich erzeugt. Dann besitzt V 
mindestens eine Basis, und je zwei Basen von V haben gleich viel Elemente. 

B e w e i s : Daß F wenigstens eine Basis besitzt, wurde schon gezeigt. Es 
seien {ai, a2, . . . , a«} und {ßi, ßi ßm} zwei Basen von F. Der Vektorraum V 
wird von den a r erzeugt, und die ßß sind linear unabhängig; Satz 1 liefert w ¡ä m. 
Ferner wird F auch von den ßß erzeugt, und die <xv sind linear unabhängig; das 
liefert m~^n. Insgesamt folgt m — n. 
Nun wird die folgende Definition sinnvoll. 
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Definition: Es sei V ein Vektorraum. Ist V endlich erzeugt und n = |£( die 
Elementeanzahl einer Basis B von V, so heißt n die Dimension von V, und wir 
schreiben dim V = n. Ist V nicht endlich erzeugt, so sei dim V = oo. 
Die folgenden Sätze werden oft gebraucht. 

Satz 4s Es sei dim V = n < oo. Dann sind je n + 1 Vektoren aus V 
linear abhängig, und je n linear unabhängige Vektoren bilden eine Basis von V. 
Genau dann gilt dim V = oo, wenn es beliebig viele linear unabhängige Vektoren 
in V gibt. 

B e w e i s : Die erste Behauptung folgt aus Satz 1. Die zweite Behauptung 
ist eine Folge der ersten: Sind die Vektoren xi, X2, . • •, <x.n aus V linear unab-
hängig und ist ae V, so gibt es Skalare s, si, S2, • • •, sn, die nicht alle ver-
schwinden, mit sa + «iai + + snan = o; nach Voraussetzung kann s nicht 
Null sein, und es wird x = 2 ( — o d e r a e [ai, a2, • • •, xn]. Für die letzte 
Behauptung bleibt zu zeigen: Ist dim V = oo, so gibt es beliebig viele linear 
unabhängige Vektoren in F. Dazu wähle man ein ai e V, ai =f= o; es wird 
[ai] c V und [ai] 4= V wegen dim V = oo. Also existiert ein ctz e V, a.% $ [aj], 
und wieder wird [ai, 0C2] c V, [aj, 1x2] =f= V. Wegen dim V = 00 läßt sich dieses 
Verfahren beliebig oft wiederholen, und die Vektoren ocr sind linear unab-
hängig nach Teil b) des Lemmas. 

Satz 5: Es sei V = [cci, 0.2, ..., ar] endlich erzeugt, und die Vektoren 
ßi> ßz, • • -, ßm aus V seien linear unabhängig. Dann gibt es eine Basis B von V 
mit{ßußz, ...,ßm}cB. 

B e w e i s : Es gilt [ßi, ß^, , ßm] c V. Steht hierin sogar das Gleichheits-
zeichen, so wird B = {ßi, ß2, ..., ßm), und man ist fertig. Andernfalls existiert 
ein y\ e V, yi $ [ßi, ß2, .. •, ßm]nach Teil b) des Lemmas sind ßi, ß2, ..., ßm, yi 
dann linear unabhängig, und außerdem gilt [ßi, ..., ßm, yi] c V. Steht hierin 
das Gleichheitszeichen, so ist B = {ßi, ..., ßm, y\} eine Basis der verlangten 
Beschaffenheit, und man ist wieder fertig. Andernfalls kann man die Auf-
füllung von {ßi, ß2, ..., ßm} fortsetzen. Dieses Verfahren bricht wegen Satz 1 
nach endlich vielen Schritten ab. 

Satz 6: Es sei V ein Vektorraum und U ein Teilraum von V. Dann gelten die 
beiden folgenden Aussagen. 
a) dim U ^ dim V. 
b) Aus dim U = dim V < 00 folgt U = V. 

B e w e i s : 
a) Wir dürfen dim V — n < 00 annehmen. Dann sind nach Satz 4 je n + 1 
Vektoren aus U c V linear abhängig. Nach der Definition kann also nicht 
dim U > n sein. 
b) Es sei dim U = dim V = n < 00 und B = {ai, »2, • • •, a»} eine Basis von U. 
Dann sind die av linear unabhängig in V, bilden also nach Satz 4 auch eine 
Basis von V. Es folgt U — V — [«1, X2, .. •, a»]. 

A u f g a b e 1: Man betrachte den Vektorraum V — £ über SR und bestimme 
dim V. 
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A u f g a b e 2: Man betrachte den Quaternionenschiefkörper j j als Vektor-
raum V über SR und bestimme dim V. 

A u f g a b e 3: Man betrachte SR als Vektorraum V über Q und bestimme 
dim V. 

A u f g a b e 4: Es sei £ = |/2. Man betrachte Q[f] als Vektorraum V über Q 
und bestimme dim V. 

§ 51 Homomorphismen von Vektorräumen 

Es sei V ein 8-Vektorraum mit Elementen o,<x,ß, . . . Was wollen wir unter 
einem homomorphen Bild W = / ( V ) verstehen ? Erstens wird man verlangen, 
daß / : V -*• W ein Homomorphismus der abelschen Gruppe V auf W ist. Nach 
Satz 12.1 muß dann auch W eine etwa additiv geschriebene Gruppe sein. 
Zweitens wird man fordern, daß auch W eine Komposition mit 8 besitzt und 
daß für a e 8, x e V gilt: f(ax) = af(x). In Analogie zu unseren früheren Über-
legungen für Gruppen oder Ringe wird dann von selbst W ein S- Vektorraum. 
Dazu prüfe man die Axiome (1) bis (4) aus § 48 nach: Es wird (ab)f(a) = f((ab)x) 
= f(a(bx)) = af(bx) = a(bf(x)), ferner (a + b)f(x) = /((« + b)a) = f(ax + boc) 
= f(ax) + f(bx) = a/(a) + bf(oc) und a(/(a) + /(/?)) = af(x + ß) = f(a(x + ß)) 
= f(ax + aß) = f(ax) + f(aß) = a/(a) + af(ß) sowie l/(a) = /(la) = /(a). An-
stat t das wieder als Satz zu formulieren, richten wir diesmal unsere Definition 
gleich entsprechend ein. 

Definition: Der S-Vektorraum W heißt homomorphes Bild f(V) des S-
Vektorraumes V, und wir schreiben V ^ W, wenn eine surjektive Abbildung 
f :V-+W mit den Eigenschaften /(x + ß) = /(a) + f(ß) und f(ax) = af(x) existiert 
(a e S; «, ß e V). Ist die Abbildung f zusätzlich eineindeutig, so heißt W ein 
isomorphes Bild von V, und wir schreiben V ~ W. 

Früheren Vorbildern entsprechend unterscheidet man wieder zwischen Homo-
morphismen oder Isomorphismen von V auf W oder von V in W. Durch 
V ~ W ist auf jeder nicht leeren Menge von Vektorräumen eine Äquivalenz-
relation erklärt. Nach Satz 12.2 ist ein Homomorphismus / : V -> W genau 
dann ein Isomorphismus, wenn der Kern U von / aus der Null allein besteht. 
Homomorphe Bilder von V kann man leicht konstruieren. Es sei dazu U ein 
Teilraum von V. Dann ist U ein Normalteiler der abelschen Gruppe V. Wir 
bilden die abelsche Faktorgruppe V/U und definieren für sie eine äußere 
Komposition mit S: Für ae S und x + U e V/U gelte a(x + U) = ax + U. 
Das ist eine Definition; ist nämlich ß + U = x + U oder x — ß e U, so auch 
o(x — ß) e U, weil U ein Teilraum von V war, und das liefert a(x + U) 
— a(ß + U). Diese Komposition der abelschen Gruppe VjU erfüllt die Forde-
rungen (1) bis (4) aus § 48. Damit ist V/U ein linker ¿S-Vektorraum geworden. 
Er heißt Faktorraum von V nach U. Man sieht ohne Rechnung, daß durch 
/(a) = x + U ein Homomorphismus / : V -> V/U von V auf V/U definiert 
wird. 
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Nun sei umgekehrt ein Homomorphismus /: V -»• W von V auf W gegeben. Das 
ist speziell auch ein Gruppenhomomorphismus. Läßt man also die Komposition 
mit S zunächst außer acht, so folgt aus Satz 12.2: Ist die Untergruppe U c V 
der Kern von /, so definiert (p(a. + U) — f(a) einen Isomorphismus <p der 
Gruppe V/U auf die Gruppe W. Nach Satz 49.1 ist aber U sogar ein Teilraum 
von V, weil mit x auch jedes ax durch / auf die Null in W abgebildet wird. Also 
kann V/U als linker Vektorraum aufgefaßt werden. Vermittelt <p sogar einen 
Isomorphismus der Vektorräume F/ U und W ? In der Tat wird auch <p(a{<x -(- U)) 
= (p(aa. + U) = f(aa.) = a/(a) = a<p(x + U). Es ist also W = <p(VIU) ein 
isomorphes Bild des Faktorraumes V/U. Damit haben wir insgesamt den im 
folgenden formulierten Homomorphiesatz für Vektorräume gewonnen. 

Satz 1: Es sei V ein Vektorraum. Für jeden Teilraum U c V gilt dann 
V ^ VjU. Ist umgekehrt f ein Homomorphismus von V auf W mit dem Kern U, 
so ist U ein Teilraum von V, und es gilt W ~ V/U. 
Leicht einzusehen ist der 

Satz 2: Isomorphe Vektorräume haben gleiche Dimension. 
Beweis: Es sei V ~ W. Nach Satz 50.4 genügt es zu zeigen: Sind die 

Vektoren ai, <X2, . . . , ar aus V linear unabhängig, so sind es auch ihre Bilder 
a*, x* > • • •, a* in W, und umgekehrt. Dies folgt aber daraus, daß auf Grund 
der Relationstreue die Beziehung 2seae = o in F mit der Beziehung 2«eaj? = o* 
in W gleichwertig ist. 
Weiter gilt der 

Satz 3: Ein S- Vektorraum V der Dimension 1 ^ n < oo ist dem n-tupel-
Raum Sn isomorph. 

Beweis : Man wähle in V eine Basis {ai, X2> •••,«»}• Nach Satz 50.2 
läßt sich dann jedes x e V auf genau eine Weise in der Gestalt x = 2,SyXr 
schreiben. Durch /(a) = («i, «2, • • •, sn) wird deshalb eine Abbildung /: V -> Sn 

definiert; sie ist injektiv und surjektiv, und es gilt offensichtlich f{x + ß) 
= f(x) + f(ß)xmdf(acc) = af(x). 

Dieser Satz führt uns zum Ausgangspunkt unserer geometrischen Vorüberle-
gungen zurück. Er besagt, daß man für das Rechnen in einem n-dimensionalen 
Vektorraum V über S den w-tupel-Raum Sn und die damit verbundene geo-
metrische Vorstellung als Modell benutzen kann. 
Zuletzt notieren wir noch den 

Satz 4: Sind V und W Vektorräume der gleichen Dimension w < oo über S, 
so gilt V ~ W. 

Beweis : Der Fall n — 0 ist trivial. Für 1 ^ n < oo sind V und W nach 
Satz 3 beide isomorph 8n. 

In Satz 4 ist die Beschränkung auf endlichdimensionale Vektorräume V und W 
über S wesentlich. Man kann leicht Beispiele unendlichdimensionaler Vektor-
räume V, W über dem gleichen Schiefkörper 8 angeben, die nicht isomorph 
sind. 
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§ 52 Die Gradformel 

Es seien 8 und E D S Schiefkörper. Dann können wir E als linken S-Vektor-
raum auffassen; die Dimension von E über S nennen wir den linken Grad von E 

über S und schreiben dafür [E: 
Entsprechend kann man E als rechten Vektorraum ansehen und einen 
rechten Grad [E: <S]r definieren. Es ist nicht gesagt, daß linker und rechter 
Grad von E über S einander gleich sind. Sind aber die Elemente von E mit 
denen aus 8 vertauschbar, ist also beispielsweise E sogar ein Körper, so gilt 
natürlich [E: = [E : <S]r, und wir schreiben bloß [E : £]. Derartige Dimen-
sionen sind nie Null. 
Beispiele sind etwa die Aufgaben 50.1, 50.2 und 50.3; ihre Ergebnisse lauten 
jetzt [S: SR] = 2, [j?: SR] = 4, [SR: Q] = oo. Für jeden Körper K güt [K(x): K] 

= oo; denn . . . sind linear unabhängig über K. 
Wir verabreden für das Folgende n • oo = oo (n e 91) und oo • oo = oo. Der 
nachstehende Satz wird für uns eine zentrale Bedeutung bekommen. 

Satz 1: Es seien F o E d S Schiefkörper. Dann gilt die Gradformel 

[ F : S ] t = [ F : S ] r [ E : S \ i . 

Bewe is : Wir unterscheiden drei Fälle. 
1) Es sei [E: = oo. Zu zeigen ist [F: S]i = oo. Das folgt aber aus Satz 50.6, 
da E ein Teilraum von F über 8 ist. 
2) Es sei f i*: E]i = oo. Dann gibt es beliebig viele Vektoren aus F, die über E 
und damit erst recht über S c E linear unabhängig sind. Aus Satz 50.4 folgt 
also auch hier [-F: /S]j = oo. 
3) Es sei [E: S]i = m < oo und [ F : E ] t = n < oo. Zu zeigen ist [F: S]i = mn. 

Es sei {ai, a.2, . . . , a„} c F eine Basis von F über E; jedes a e F ist also dar-
n 

stellbar als a = 2 m i t gewissen er e E. Ferner sei {ßi, ßm} c E 
»=i 

eine Basis von E über 8. Es folgt, daß sich jedes er seinerseits in der Gestalt 
m 

ev = 2 srßßß (spß e S) schreiben läßt. Zusammengenommen wird also a 

= 2 svßßß*r- Die m n Elemente ßßxv e F erzeugen demnach F über S, und 

wir erhalten [ J : S]z sS mn. Hierin steht das Gleichheitszeichen, weil die Ele-
mente ßß0iv sogar linear unabhängig über S sind: Es gelte etwa 2}ßvßß<"-v = 0 
mit gewissen tßv e 8. Das bedeutet = 0, und da die ¡xv eine Basis 

» ß 
voir F über E bilden, verschwindet e ® für jedes v. Dies wiederum 

ß 
liefert, weil die ßß eine Basis von E über S bilden, tßv = 0 für jedes v und 
jedes ¡X. 
Genauso beweist man eine entsprechende rechte Gradformel. 
Der folgende einfache Sachverhalt wird oft benutzt. 

Satz 2: Es seien E DS Schief körper. Genau dann gilt [E: = 1, wenn 

E = S ist. 

12 Hornfeck, Algebra 
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B e w e i s : Ist E = 8, so wird E 4= {0} von 1 e S erzeugt; also gilt [E: <S]j 
= 1. Ist umgekehrt [E: = 1, so besitzt E eine einelementige Basis; dieses 
Basiselement ist ein beliebiges von Null verschiedenes Element aus E (Satz 
50.4), etwa 1 e E. Jedes Element aus E hat also die Gestalt s • 1 mit einem 
8 e 8. Es folgt E c S und daraus E = S. 
Eine Folgerung aus Satz 1 und Satz 2 ist zum Beispiel der 

Satz3: Es seien FDEDS Schiefkörper und [F:S]i<CO. Ist dann 
[E: S]t = [F: 8]i, so gilt E — F. 

B e w e i s : Das ist ein Spezialfall von Satz 50.6, Aussage b). Oder: Die 
Gradformel besagt [F: = [F: E]j • [E: S]t. Wegen [ J : S]t = [E:S]t< 00 
darf man kürzen und bekommt [F: E]i — 1. 

Literatur: K OWALSKY [13]. 



6 Körpertheorie 

Wir haben uns von Kapitel 3 an verschiedentlich mit Körpern beschäftigt. 
Dabei handelte es sich fast immer entweder um das Rechnen in ihnen oder um 
gewisse Existenznachweise, wie zum Beispiel die für die Körper Q, 31, (L Auch 
an anderen Stellen traten Körper K auf; wir haben beispielsweise gezeigt, daß 
der Polynomring K\x\ euklidisch ist. Aber derartige Aussagen betreffen nicht in 
erster Linie die Struktur von Körpern, obwohl sie in den Voraussetzungen er-
scheinen. Das möchte man zunächst auch von der Theorie der Vektorräume 
annehmen. Aber die Möglichkeit, einen Erweiterungskörper E von K als 
Vektorraum über K aufzufassen, liefert nun doch außerordentlich wichtige 
Ergebnisse über Körpererweiterungen, denen wir uns jetzt zuwenden. Ihr 
Nutzen wird sich rasch zeigen. Wir können dann etwa alle endlichen Körper 
angeben oder auf die klassische Frage antworten, ob die Dreiteilung des 
Winkels mit Zirkel und Lineal möglich ist. 

§ 53 Einfache Körpererweiterungen 

53.1 Wir knüpfen an die Betrachtungen von § 27 an. 

Definition: Eine Körpererweiterung E des Körpers K heißt einjach, wenn ein 
| 6 E mit E = K(S) existiert. 

Dabei ist dann also £ entweder algebraisch oder transzendent über K, und wir 
unterscheiden dementsprechend zwischen einfachen algebraischen und ein-
fachen transzendenten Erweiterungen von K. 
Beispiele einfacher Körpererweiterungen sind K(x) D K, £ = 9t(i) D SR, 
Q(y2) d Q. Die Erweiterung 9t von Q. dagegen ist sicher nicht einfach, weil 
sonst SR abzählbar würde nach Satz 27.4. 
Eine einfache transzendente Erweiterung von K ist isomorph K(x) (§ 27). 
Ist E = K(a) eine einfache algebraische Erweiterung des Körpers K, so wird 
durch a genau ein Polynom p(x) — Irr(a, K) e K[x\ mit den in Satz 27.1 und 
Satz 27.2 beschriebenen Eigenschaften definiert; dieses Polynom ist ein Prim-
element in K[x]. Wie schon in § 27.2 erwähnt, soll nun zunächst (Satz 2) ge-
zeigt werden, daß bereits K[a] = K(a) ist. 

Satz 1: Es sei K ein Körper, a algebraisch über K und Irr(a, K) = p(x). Das 
Polynom, f(x) e K[x] besitze a als Nullstelle. Dann gilt p(x)\f(x) in K\x\. 

Beweis : Die Behauptung folgt sofort aus Satz 44.2 (Anwendung). Oder 
direkt: Man schreibe f(x) = q(x)p(x) + r(x) in K\x\ mit r(x) — 0 oder Grad 
r(x) < Grad p(x). Ersetzt man x durch a, so sieht man, daß r(x) die Null-

12» 
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stelle a hat. Nach Satz 27.1 ist also Grad r(x) < Grad p(x) nicht möglich. Es 
folgt r(x) = 0 und damit die Behauptung des Satzes. 

F o l g e r u n g : Ist <p: K[x] h- K[a] der durch <p(g(x)) = g(x) definierte 
Homomorphismus von K\x] auf K[x], so besteht der Kern f von <p aus allen 
Vielfachen von p(x); das heißt f = (p(x)). 
Für den nächsten Satz geben wir zwei verschiedene Beweise. 

Satz 2: Es sei K ein Körper und x algebraisch über K. Dann gilt K{x) = K[x~\. 

1. B e w e i s : Es sei <p der durch <p(f{x)) = /(a) definierte Homomorphismus 
von K[x] auf K[a] und Irr(a, K) = p(x). Dann hat <p den Kern ? = (p(x)). 
Dieses Ideal ist ein maximales Ideal in K[x\ nach Satz 41.3. Also ist K[x~]f(p(x)) 
ein Körper. Wegen K[x]l(p(x)) ~ A*[a] ist also auch K[tx\ ein Körper, und das 
bedeutet K[oc] = K(<x). 

2. B e w e i s : Es ist Ii[x] ein kommutativer Ring mit Einselement. Wir 
zeigen, daß jedes f e K[OL}, | =j= 0, in A'[a] ein Inverses besitzt. Es ist f 4= 0, 
also £ = /(«) mit einem f(x) e K[x], das zu p(x) = Irr(a, K) teilerfremd ist. Im 
Hauptidealring K[x] gibt es also Polynome X(x), fi(x) mit l(x)f(x) + fi(x)p(x) 
= 1. Hierin ersetze man x durch a. Das Element f = f(x) hat also das Inverse 
/(A) E K[A]. 

Die Elemente des Körpers K(a) sind also Polynome in a. 
Der zweite hierfür gegebene Beweis ist weniger methodisch, dafür aber kon-
struktiv. Er gestattet die explizite Berechnung des Inversen von f e K{et), 
£ =|= 0, über den Euklidischen Algorithmus (§ 37.4). 

53.2 Es sei weiterhin a algebraisch über dem Körper K und Irr(«, K) = p(x); 
wir setzen Grad p(x) = n Sg 1. Jedes f e K(ct) hat nach Satz 2 die Grestalt 
f = /(a) mit einem gewissen f(x) e K[x], Schreibt man f(x) = q{x)p{x) + r(x) 
in K[x\ mit r(x) = 0 oder Grad r(x) < Grad p(x) und ersetzt x durch <x, so 
sieht man: Entweder es ist f = 0, oder f läßt sich sogar als Polynom £ = r{a) 
höchstens vom Grad n — 1 in a schreiben. 
Faßt man also K(x) = K[x\ als Vektorraum über K auf, so kann man sagen: 
Die Elemente 1, a, a2 a™"1 erzeugen K(x) über K. Ja, sie bilden sogar eine 
Basis, da aus 

«„-!<*»-1 + an-2a«-2 + . . . + o0 = 0 

das Verschwinden aller areK folgt; andernfalls gäbe es doch ein Polynom aus 
K[x] mit einem Grad kleiner als n, das die Nullstelle x hätte, im Widerspruch 
zu Satz 27.1. 
Es folgt [K(a) :K] = n. Jedes £ e K(x), £ 4= 0, läßt sich auf genau eine Weise 
(Satz 50.2) als ein Polynom höchstens vom Grad n — 1 in x schreiben; es gilt 
(a„ br e K) 

"Z a,ac' = bvxv o av = br; v = 0,1, 2, . . . , n — 1. 
v — 0 »=o 

Speziell ist ein $ e K(x), f #= 0, genau dann schon ein Element von K, wenn es 
ein Polynom vom Grad Null in a ist. 
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Wir fassen zusammen. 

Definition: Ist a. algebraisch vom Grad n über dem Körper K, so schreiben 
wir n = [a: K]. 

Satz 3s Es sei x algebraisch über dem Körper K. Dann gilt [K(a): K~\ 
= [ « : £ ] . 

A u f g a b e 1: Man berechne das Inverse von f = (f/?)2 + 3 + 1 ££(^7). 

§ 54 Endliche Körpererweiterungen 

Wir verwenden im folgenden die Theorie der Vektorräume und verschiedentlich 
speziell die Gradformel aus § 52, um detailliertere Aussagen über Körper-
erweiterungen zu gewinnen. Wir beginnen mit einer grundlegenden Definition. 

54.1 Definition: Die Körpererweiterung E des Körpers K heißt endlich über K, 
wenn [E: K] = n < oo ist. 
Beispiele endlicher Körpererweiterungen E von K sind nach § 53 alle ein-
fachen algebraischen Erweiterungen E = K(x). Sie sind auch weiterhin eines 
unserer häufigsten Untersuchungsobjekte. Später (Satz 5) werden wir eine all-
gemeine Charakterisierung endlicher Körpererweiterungen angeben. Zunächst 
verabreden wir noch eine weitere 

Definition: Die Körpererweiterung E des Körpers K heißt algebraisch über 
K, wenn jedes tx.eE algebraisch über K ist. 
Beispiele algebraischer Erweiterungen E von K werden durch den folgenden 
Satz angegeben. 

Satz 1: Eine endliche Körpererweiterung E von K ist algebraisch über K. 

B e w e i s : Es sei [E: K] — n < oo und txeE. Dann sind nach Satz 50.4 
die n + 1 Elemente 1, a, a2, . . . , are aus E linear abhängig über K; es gibt also 
Skalare av e K, die nicht sämtlich verschwinden, mit anoin + «n-ia"-1 + • • • 
+ «o = 0. Das heißt: Es gibt ein vom Nullpolynom verschiedenes 

f(x) = anxn + an-ixn~l + ... + a0 e K[x] 
mit f(tx) = 0. 
Eine einfache algebraische Erweiterung K(a) von K ist also algebraisch über K, 
so daß die von uns für Körpererweiterungen benutzten Begriffe „einfach 
algebraisch" und „algebraisch" nicht zu Verwechslungen Anlaß geben. Da-
gegen muß umgekehrt eine algebraische Erweiterung E von K nicht notwendig 
endlich, also erst recht nicht einfach algebraisch über K sein. Dies zeigt etwa 
das folgende 

B e i s p i e l : Es sei K = Q. Wir konstruieren durch unendlich viele alge-
braische Adjunktionen eine Erweiterung E von £} mit [E: £J] = oo und zeigen 

2 " 

anschließend, daß E algebraisch über Q ist. Wir setzen a n = ]/2 e SR für n = 1, 
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2, 3, . . . ; nach dem Eisenstein-Kriterium für p = 2 ist Irr(an, Q,) = x2" — 2, 
also [Q(«n): Ü] = 2". Es soll E aus £l durch Adjunktion aller a„ entstehen. 
Dazu beachten wir, daß wegen xn = a | + 1 sicher Q.(an) cÖ(«B+i) gilt; hierin 
steht nicht das Gleichheitszeichen, da eine kleinere Dimension über Q 
hat als Ö(a»+i). Wir bilden die Körperkette £J cQ(ai) c£i(a2) c . . . und ihre 
Vereinigung E = i1 u G(ai) u Q(a2) u . . . Es ist £ ein Körper; denn Elemente a, 
b, c aus E liegen in gewissen Gliedern der Kette, und es existiert ein m mit 
a, b,ce Q(am) c E; die Körperaxiome für a,b,ceE sind aber im Körper £}(o%i) 
erfüllt. Es ist [E: = oo nach Satz 50.6, weil E Teilräume £2(a„) beliebig 
hoher Dimension 2" über Q, besitzt. Aber E ist algebraisch über £}; denn zu 
jedem ixe E gibt es ein m mit x e Q.{a.m), und x ist algebraisch über £} nach 
Satz 1. 

Satz 2: Es sei E eine endliche Körpererweilerung von K und [E: K~\ = n. Es 
sei cteE und [a: K] = d. Dann ist d ein Teiler von n, und es gilt E = K{a) 
genau dann, wenn d — n ist. 

B e w e i s : Nach Satz 1 ist <x e E algebraisch von einem Grad d über K. Es 
ist K c K(a) c E, und die Gradformel von Satz 52.1 liefert 

n = [E:K] = [E: K(a)] • [K(tx.):K]. 

Hierin ist (Satz 53.3) [K(a): K] = d. Es folgt d\n. Genau dann güt K(x) = E, 
wenn (Satz 52.3) d — n ist. 
B e i s p i e l : Es sei [E: K] = 3 und a ein Element von E. Hier können nur 
zwei Fälle eintreten; es ist entweder [a: K] = 3 oder [a: X] = 1. Dem ent-
spricht die Disjunktion a $ K oder a e K. Das Element « erzeugt genau dann E 
über K, wenn a $ K ist. 
Ein Spezialfall von Satz 2 ist der 

Satz 3: Es sei K(a) eine einfache algebraische Erweiterung des Körpers K 
und ß ein Element aus K(a). Dann ist ß algebraisch über K, es ist [ß: K} ein 
Teiler von [a: K], und genau dann gilt K(<x) = K(ß), wenn [a: K\ — [ß: K\ ist. 

B e w e i s : Man ersetze in Satz 2 den Erweiterungskörper E durch K(a) und 
das Element xe E durch ß. 
Über definierende Polynome besteht noch der 

Satz 4: Es seien K, L und E Körper mit E d LD K ; das Element et e E sei 
algebraisch über K. Dann ist x auch algebraisch über L, es ist [a: L] ^ [a: K], 
und in L[x] gilt Irr(a, L) | Irr(a, K). 

B e w e i s : Es ist Irr(a, K) e L[x\, also x algebraisch über L. Das Polynom 
Irr(a, K) e L[x] hat die Nullstelle a; nach Satz 53.1 gilt also Irr(a, L) \ Irr(a, K) 
in L[x\. Dies hat speziell [a: L\ ^ [a: K\ zur Folge. 

54.2 Wir wollen ein notwendiges und hinreichendes Kriterium dafür angeben, 
daß die Körpererweiterung E von K endlich über K ist, und beginnen mit einer 
Vorbemerkung. Ist E = K(xi, xz, ..., a„) und dabei xi algebraisch über K, a2 
algebraisch über K(x\), xz algebraisch über K{x\, x2) usw., so wird bei mehr-
facher Anwendung der Gradformel in 
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[E: K ] = [ÜT(ai, <x2 <xn): K(ai, oc2, . . . , at„-i)] • [K{ai, «2) . . . , <*n-1) . 

: K(ai, «»-2)] • • • [£(«i): K ] 

jeder Faktor rechter Hand endlich, also E endlich über K. Das benutzen wir 
bei dem folgenden Beweis. 

Satz 5: Genau dann ist die Körpererweiterung E von K endlich über K , wenn 

endlich viele über K algebraische oneE derart existieren, daß E = K(ai, a2, . . . , a„) 

ist. 

B e w e i s : Angenommen, die Elemente ai, a2, . . . , a „ aus E sind alge-
braisch über K, und es gilt E — K(x\, ol-¡, ..., a»). Dann ist nach Satz 4 erst 
recht «z algebraisch über K(ai), 1x3 algebraisch über K(«1, a.2) usw., und auf 
Grund unserer Vorbemerkung wird [E: K] < 00. Es bleibt noch das Um-
gekehrte zu zeigen. Ist aber [E: K] = n < 00 und etwa {ai, a2 a„} eine 
Basis von E über K, so sind diese a< nach Satz 1 algebraisch über K; schon alle 
Linearkombinationen der on mit Koeffizienten aus K liefern E, und erst recht 
ist E = K(«1, a2, . . . , a»). 
Mit Hilfe von Satz 5 kommen wir zu einem letzten Resultat. 

Satz 6s Es seien E D L o K Körper, L algebraisch über K und x e E alge-

braisch über L . Dann ist a auch algebraisch über K . 

B e w e i s : Es sei 

und K* = K(ao, ai a„). Die ave L sind algebraisch über K\ nach Satz 5 
ist also K* endlich über K. Wegen Irr (a, L) e K*[x\ ist « algebraisch über 
K* und damit auch K*(a) endlich über K*. Es folgt [K*(<x): K ] = [#*(a) : 
X * ] • [ X * : X ] < 00. Also ist K*(<x) endlich über K und damit a e K*(oc) alge-
braisch über K nach Satz 1. 

F o l g e r u n g : Ist L algebraisch über K und E algebraisch über L, so ist E 
auch algebraisch über K. 

A u f g a b e 1: Es sei a eine behebige Nullstelle von iE3 — 2x + 2eQ[a;] 
und ß = a2 — a. Man zeige Q(a) = Q.(ß) und bestimme Irr (ß, £}). 

A u f g a b e 2: Bestimme [E: Ü] für E = Ö(y2, y—2), E = £J(yS, yS + ^3), 

A u f g a b e 3: Es sei a eine beliebige Nullstelle von x3 — 5 e Q [ x ] . Man 
zeige Q(a, i) = £}(a + i) und bestimme Irr (a + h G)-

§ 55" Der Satz von FROBENIUS 

Welche endlichen Körpererweiterungen E gestattet der Körper SR der reellen 
Zahlen ? Diese Frage ist leicht zu beantworten. Ist E =j= SR, so gibt es ein c t s E , 

I r r ( a , L) = anxn + an^xn~l + . . . + OQ 
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das nicht in SR liegt; da a nach Satz Ö4.1 algebraisch über 3t ist, heißt das: Grad 
Irr (a, SR) Si 2. Andererseits haben die über 3t irreduziblen Polynome entweder 
den Grad Eins oder den Grad Zwei (vgl. § 39, Beispiel 2). Also hat Irr (a, SR) 
die Gestalt f{x) = x2 + px + 1 mit p2 — Aq < 0, und es wird a = a + bi mit 
reellen Zahlen a und b =)= 0. Da E ein Körper ist, liegen mit a, b und « auch 

« — a und i = ^(a — a) in E. Ist also E eine endliche Körpererweiterung von 

SR, so gilt E = SR oder E o <L Im zweiten Fall ist nach der Gradformel E auch 
endlich über € ; jedes ß e E ist dann also algebraisch über Q>, und es muß 
[ß: 6] = 1 oder ß e 6 gelten, weil alle in G[a;] irreduziblen Polynome den Grad 
Eins haben (vgl. § 39, Beispiel 1). Das bedeutet E = Q>. Wir formulieren dieses 
Ergebnis. 

Satz 1: Die beiden einzigen endlichen Körpererweiterungen E von SR sind 
E = SR und E = <i. 
Welche Möglichkeiten bestehen, wenn man auch nichtkommutative Erweite-
rungen von SR in Betracht zieht ? Beispielsweise enthält der Schiefkörper Sp der 
Quaternionen den reellen Zahlkörper SR, und wir wissen [Jj>: SR] = 4. Für diese 
Erweiterung j? 3 SR gilt noch, daß jedes h e S) mit jedem r e SR vertauschbar 
ist: rh = hr. Der folgende Satz des deutschen Mathematikers G. FROBENIUS 
(1849—1917) besagt, daß § die einzige nichtkommutative endliche Erweiterung 
von SR mit dieser Eigenschaft ist. 

Satz 2: Es sei S o SR ein Schiefkörper über dem Körper SR der redien Zahlen, 
jedes s e 8 sei mit jedem r e SR vertauschbar-, rs = sr, und der Grad von S über SR 
sei endlich: [S: SR] < oo. Dann ist entweder S = SR oder S = oder S ist der 
Quaternionenschiefkörper jj. 

B e w e i s : Wir führen den Beweis in sechs Schritten und beginnen mit 
einer Vorüberlegung. 
1) Ist etwa [<S: SR] = n, so sind wie beim Beweis von Satz 54.1 für jedes s e S 
die Elemente 1, s, s2, ...,sn linear abhängig über SR. Obwohl seS einer 
eventuell nichtkommutativen Erweiterung 8 von 3t entstammt, wollen wir 
wieder sagen: Es ist Nullstelle eines nicht verschwindenden Polynoms 
f(x) e SR[a;]; wir schreiben f(s) = 0. Man denke sich f(x) in SR[x] in irreduzible 
Faktoren zerlegt: f{x) = pi(x)pz{x) . .. Pk(x). Wegen der Vertauschbarkeit von 
s e S mit allen r e SR gilt dann auch pi(s)p2(s) . . . Pk(s) = f(s) = 0, und aus der 
Nullteilerfreiheit von 8 folgt pm(s) = 0 für einen gewissen Index m. Wir haben 
also: Ein s e S ist entweder schon Element von SR oder Nullstelle eines über SR 
irreduziblen quadratischen Polynoms; jedes s e 8 ist Nullstelle eines quadrati-
schen Polynoms aus SR[ar]. 
2) Es sei s e 8, s $ SR. Dann gibt es nach 1) ein normiertes Polynom 

«2 + px + q e SRM, p2 — 4q<0, 
mit der Nullstelle s; dieses Polynom ist sogar eindeutig bestimmt. Da s mit 
allen Elementen aus SR vertauschbar ist, folgt auch 
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mit einem gewissen r e SR, r > 0. Wir ordnen nun dem Element s das Element 

aus S zu. Für dieses s* gilt s* $ SR wie für e; aber außerdem s*2 = —1. 
3) Wir betrachten die Fälle [8: SR] = 1 und [Ä: SR] = 2. Ist [S: SR] = 1, so 
gilt S = SR. Ist [<S: SR] = 2, so gibt es ein s e 8, s $ SR; es liefert das unter 2) 
definierte Element s* mit s*2 = —1. Die Menge K c S aller a + bs* mit 
reellen a, b ist ersichtlich isomorph (L Identifizieren wir s* mit i, so folgt 
8 D € d SR. Da ferner [S: SR] = [6: SR] = 2 war, ergibt sich hier S = (i (Satz52.3). 
4) Nun sei [£ : SR] > 2. Wie in 3) wird S d 6 dSR, aber jetzt >S =# Q. Es gibt 
also ein t e 8, t $ <5; dieses t definiert nach 2) ein t* e S, das ebenfalls nicht in (E 
liegen kann, mit t*2 = —1. 
Wir zeigen zunächst, daß it* + t*i reell ist. Nach 1) sind i + t* und i — t* 
Nullstellen reeller quadratischer Polynome; also gibt es reelle Zahlen pi, p2, 
qi, qz mit 

((i + i*)2 = _ 2 + it* t*i — — px(i + i*) — qlt 

(i — t*)2 = —2 — it* — t*i = — p2(i — t*) — q2. 

Addition beider Gleichungen liefert —4 = — (p i+pzj i — (pi—J>z)t* — (ii+?2)-
Aus t* i d folgt zunächst p\ — pz = 0; aus i f SR ergibt sich weiter p\ + — 0. 
Also ist pi = p2 — 0 und etwa it* + t*i = 2 — qi, mithin it* + t*i e SR. 
Mit dieser reellen Zahl X = it* + t*i bilden wir das Element u — Xi + 2t* e S, 
das wegen i* $ GE nicht in 6 liegt. Berechnet man die Produkte iu = —X + 2it* 
= it* — t*i und ui — —it* + t*i, so sieht man die Gültigkeit von 

(1) iu = —ui. 

Quadriert man u, so bekommt man 

«2 = —A2 — 4 + 2X(it* + t*i) = —X2 — 4 + 2X2 = X2 — 4 eSR; 

aber es kann nicht u2 ^ 0 sein, denn dann gäbe es ein a e SR mit u2 = a2, und 
aus der Vertauschbarkeit von a mit u würde u2 — a2 — (u + «)(« — a) = 0 
und damit t i = f » folgen im Widerspruch zu u $ SR. Also ist u2 negativ reell. 
Das heißt: Es gibt ein r e SR, r > 0, mit 

(2) u2 = —r2 (r > 0). 

Wir setzen nun j = — u und kommen auf Grund von (1) und (2) zu dem folgen-
den Resultat: Ist : SR] > 2, also S D S d SR und 8 4= s o gibt es neben i e S 
noch ein j e S, j ^ S, mit den Rechenregeln j2 = i2 = —1 und ij = —ji. Die 
Elemente 1, i, j sind linear unabhängig über SR. 
5) Es sei weiterhin [$: SR] > 2. Wir knüpfen an das Ergebnis von 4) an. In S 
liegen also die Arier Elemente 1, i,j und h = ij. Wir zeigen, daß sie über SR 
linear unabhängig sind. Es gelte ri + r2i + r$j + r^k = 0 mit reellen Zahlen rv. 
Aus f*4 = 0 folgt das Verschwinden aller rv. Der Fall r\ =j= 0 kann aber nicht 
eintreten; denn er würde die Existenz reeller Zahlen av mit k = a\ + + «3j 
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bedeuten, und Linksmultiplikation mit i ergäbe —j = a\i—«2+03(01+021+«3?) 
oder 0103 — «2 + («l + 0203)1 +(1 + «3)j = 0, also speziell 1 + o | = 0, was 
für ein 03 e SR nicht möglich ist. 
Nun folgt aus i2 = j2 = —1 und ij = —ji = k, daß die Elemente 1, i, j, k in 
S multipliziert werden wie dieselben Elemente in Jp. Zusammen mit ihrer 
linearen Unabhängigkeit über SR folgt weiter: Die Menge H cS aller a + bi 
+ cj + dk mit reellen a, b, c, d ist isomorph jp. Insgesamt ergibt das: Ist 
[S: SR] > 2, so folgt 8 d J? d SR. Wegen [ J?: SR] = 4 ist also [S: SR] = 3 nicht 
möglich. Der Fall [$: SR] = 4 kann eintreten; es ist dann 8 — S} (Satz 52.3). 
6) Zuletzt bleibt zu zeigen, daß [S: SR] > 4 unmöglich ist. Wäre [<S: SR] > 4, 
so hieße das S d $ D SR und <S + jj. Wie zu Beginn von 4) könnte man dann 
ein l e S, l $ S), mit l2 = —1 finden und zeigen, daß il + Ii = Ai, jl + Ij = A2 

und kl + Ik = A3 reelle Zahlen sind. Es würde 

h + fai — hj = A3 + Xzi — jk 1 
= ijl + lij + jli + Iji — jil — jli 
— ijl — jil = 2 kl 

und nach Linksmultiplikation mit k daraus l e S} folgen, was gerade nicht der 
Fall war. Also ist [S: SR] > 4 nicht möglich. 
Damit ist Satz 2 bewiesen. 

Aufgabe 1: Man gebe eine Körpererweiterung E von SR mit [£:SR] 
= 00 an. 

§ 56 Konstruktionen mit Zirkel und Lineal 

In der klassischen Elementargeometrie spielten Konstruktionsaufgaben unter 
Verwendung von Zirkel und Lineal eine große Rolle. Man beschäftigte sich bei-
spielsweise damit, einen Kreis zu finden, der drei gegebene Kreise berührt, 
oder man versuchte die Konstruktion eines Dreiecks aus seinen drei Höhen 
oder seinen drei Winkelhalbierenden. Es zeigt sich in den genannten Fällen, 
daß (wenn überhaupt Lösungen vorhanden sind) die ersten beiden Konstruk-
tionsaufgaben mit Zirkel und Lineal lösbar sind, die letzte dagegen nicht. Die 
Möglichkeit der Unlösbarkeit einer derartigen Aufgabe mit Zirkel und Lineal 
wird von Laien oft nicht verstanden, obwohl damit nur behauptet wird, daß in 
gewissen konkreten Fällen die zur Verfügung gestellten Hilfsmittel Zirkel und 
Lineal zur Lösung des Problems nicht ausreichen. Wir sind jetzt in der Lage, 
die Tragweite solcher Konstruktionen mit Zirkel und Lineal zu untersuchen. 
Wir tun das und sprechen auch kurz von Zirkelkonstruktionen. 
Allgemein sind gewisse endlich viele Punkte, Geraden und Kreise in der 
Zeichenebene gegeben und gewisse endlich viele Punkte, Geraden und Kreise 
gesucht. Man denke sich ein rechtwinkliges Koordinatensystem hinzugezeich-
net. Dann sind die gegebenen Stücke durch gewisse bekannte Koordinaten 
Ii. I2, . . . , im (nämlich: ein Punkt durch zwei Koordinaten, eine Gerade durch 
zwei ihrer Punkte, ein Kreis durch seinen Mittelpunkt und einen Punkt seiner 
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Peripherie), also Strecken, fixiert, und an die Stelle der gesuchten Stücke 
treten zu konstruierende Koordinaten oder Strecken x\, xz, ..., xn. Die 
Strecke der Länge 1 sei bekannt. 
Nun kann man Strecken bekannter Längen a, b mit Zirkel und Lineal addieren 
und voneinander subtrahieren; ihr Produkt p — ab gewinnt man mit Hilfe des 
Strahlensatzes aus 1 :a = b: p, und man kann a durch 6 =j= 0 dividieren durch 

Konstruktion von q —T~ aus b: a = 1: q. Da eine negative Koordinate a als 
o 

bekannt angesehen werden darf, wenn ihr Vorzeichen und |a| bekannt sind, 
können wir aus dem Bekanntsein der Strecke mit der Länge 1 folgern: Jede 
Strecke einer Länge r e Ö läßt sich in endlich vielen Schritten mit Zirkel und 
Lineal konstruieren. Sind außerdem noch fi , £2, • • •, im gegeben, so gilt das-
selbe für eine Strecke beliebiger Länge f e Q(fi, £2, • • •, im)- Die Voraus-
setzung für unsere Zirkelkonstruktion lautet also: Die Elemente des Körpers 
K = |2, • • •, im) c SR sind bekannt. 
Konstruktionen mit Zirkel und Lineal beruhen nun darauf, daß man, von den 
gegebenen Stücken ausgehend, Geraden mit Geraden, Geraden mit Kreisen 
oder Kreise mit Kreisen schneidet und so fortlaufend endlich viele neue Hilfs-
punkte gewinnt. Sie werden wieder durch ihre Koordinaten beschrieben, die 
sich rechnerisch im ersten Fall als Lösungen linearer, im zweiten und dritten 
Fall als Lösungen quadratischer Gleichungen ergeben. Durch die Lösung einer 
linearen Gleichung mit Koeffizienten aus K konstruiert man ein Element aus K. 
Dasselbe ist der Fall, wenn man eine Nullstelle eines über K reduziblen quadra-
tischen Polynoms aufsucht. Ist dagegen eine Koordinate t] eines derart ge-
wonnenen Hilfspunktes Nullstelle eines über K irreduziblen quadratischen 
Polynoms, so gilt [K(r7): K] = 2, und man kann anschließend sogar die 
Elemente von K(rj) als bekannt ansehen. Eine Zirkelkonstruktion läuft also 
auf folgendes hinaus: Es werden gewisse Stücke rji, rj2, . . .,rjs(s 7z 0) mit 

[K(m):K] = [K(rn,V2):K(m)] = . . . = [Zfo.i»,... ,Vs): K(m,m,. . . , ^ 1 ) ] = 2 

konstruiert derart, daß die gesuchten Stücke x±, X2, . . . , xn in K(rji, rj2, . . . , i]s) 
liegen. Auch die übrigen Elemente des Körpers 

E = K(x 1 , x2, . . . , x„) c K(rj 1 , r)z T]S) 

sind dann bekannt. Bezeichnen wir noch kurz K(rji, r]2, •. •, rja) mit K„, so 
dürfen wir in einer nun verständlichen Terminologie sagen: Ist der Körper 
E d K mit Zirkel und Lineal konstruierbar, so gibt es eine endliche Kette 
K c Ki c Kz c ... c Ks von Körpern Ka mit [Kx: K] = [K2: K{\ = ... 
= [ K s : Ks-ii = 2 u n d Ks d E. 
Gilt hiervon auch die Umkehrung ? Wieder sei K = h, • • •, im) bekannt 
und diesmal K\ D K ein Körper mit [K\. K] = 2. Folgendermaßen erweist sich, 
daß Ki mit Zirkel und Lineal konstruierbar ist. Es gibt ein a e K\, tx $ K; nach 
Satz 54.2 ist also [ot: K] = 2 und damit Ki = K(a). Der Körper Ki ist bekannt, 
sobald « konstruiert ist. Es sei Irr (a, K) = x2 + px + q. Hierbei sind zunächst 
p,qeK noch reelle Zahlen; aber a muß nicht reell sein. Wieder können wir 
sagen: Eine komplexe Zahl a = a + bi darf als bekannt angesehen werden, 
wenn a,b e 3t bekannt sind; Die Konstruktion der Nullstellen von x% + px + q 
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läuft dann in jedem Fall auf die Ausführung rationaler Operationen und das 
Ziehen einer Quadratwurzel ]/r, r e 3t, r > 0, hinaus. Quadratwurzeln kann 
man aber bekanntlich mit Zirkel und Lineal konstruieren: Man lege etwa eine 
Strecke AB der Länge 1 + r hin, wähle einen Zwischenpunkt D so, daß AD 
bzw. DB die Längen 1 bzw. r erhalten, schlage über AB als Durchmesser einen 
Halbkreis und errichte in D das Lot auf AB, das den Halbkreis im Punkte C 
treffen möge. Dann hat die Höhe CD des rechtwinkligen Dreiecks ABC die 
Länge £ — ]/r. Das folgt, wenn man etwa die Längen der Katheten AC, BC 
mit b, a bezeichnet, aus dem Satz des Pythagoras: Es ist £2 = b2 — l 2 und 
£2 = a2 _ r2) also 2£2 = a2 _)- 62 _ 1 _ r2 - (i r)2 _ i _ r2 = 2 r oder 
f 2 = r. 
Der Körper K± 3 K mit [ if i : K\ = 2 ist also mit Zirkel und Lineal konstruier-
bar. Man betrachte einen Körper d K\ mit [Ktf. K{\ — 2. Dann liegt die-
selbe Situation vor, nur können diesmal die Koeffizienten p, q des entsprechen-
den quadratischen Polynoms auch komplex sein, und es bleibt die Frage, ob 
auch die Wurzeln aus a + bi konstruiert werden können, wenn a, b e SR be-
kannt sind. Schreibt man b = (sgn b) • |6|, bezeichnet also das Vorzeichen von b 
mit sgn b, so gilt aber 

y ^ r u = ± + + ( s g n 6 ) i j / ^ + F T ? ) , 

und damit ist auch diese Frage positiv beantwortet. Damit haben wir: Sind K\, 
K2, ..., Ks Körper mit [Ky. K] = [K2: K{\= ... = [Ks: Ks-{\ = 2, und um-
faßt Kg den Erweiterungskörper E von K, so ist E mit Zirkel und Lineal kon-
struierbar. Dies ist die Umkehrung der oben gewonnenen Aussage. Wir fassen 
sie beide zusammen. 

Satz 1: Für eine Zirkelkcmstruktion seien die Stücke des Körpers K 
= £2, • • •, im) bekannt. Genau dann ist jedes Stück des Erweiterungskörpers 
E d K mit Zirkel und Lineal konstruierbar, wenn eine endliche Körperkette 
KcKicKzc ... cKs mit K] = [Kz: K{\ = ... - [Ks: Ks-1] = 2 
und Ks 3 E existiert. Oder: Genau dann ist ein a e ß mit Zirkel und Lineal kon-
struierbar, wenn eine endliche Körperkette K c Ki c K2 c ... c Ks mit [Äi: K] 
= [Kz: K{\ = ...== [Ks: üTg-i] = 2 und Ks o K(a) existiert. 

F o l g e r u n g : Nach der Gradformel gilt [ K K ] = 2'. Ist also E c Ks mit 
Zirkel und Lineal konstruierbar, so ist jedes a e E c Ks algebraisch über K, 
und nach Satz 54.2 ist [a: K] selbst eine Potenz von 2. Ein über K transzenden-
tes a e ß kann also mit Zirkel und Lineal nicht konstruiert werden, und das-
selbe gilt für ein über K algebraisches a e S, wenn [a: K] durch eine Prim-
zahl p =|= 2 teilbar ist. 
B e i s p i e l 1. Ein Würfel der Kantenlänge Eins ist gegeben. Es soll die Kante a 
des Würfels vom doppelten Volumen mit Zirkel und Lineal konstruiert werden 
(sogenanntes Delisches Problem). Wir haben K = Q, und Irr (a, Q.) = x3 — 2, 
also [a: Q] = 3. Die eben notierte Folgerung zeigt, daß diese Konstruktion 
unmöglich ist. 
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B e i s p i e l 2. Ein Kreis mit dem Radius Eins ist gegeben; ein flächengleiches 
Quadrat mit der Seitenlänge a soll mit Zirkel und Lineal konstruiert werden 
(sogenannte Quadratur des Kreises). Es ist a = y n . Könnte man « mit Zirkel 
und Lineal konstruieren, so auch a2 = n. Aber n ist nicht algebraisch über 
K = Q. Die verlangte Konstruktion ist also nicht möglich. 

ip 
B e i s p i e l 3. Ein Winkel 0 ip i j n ist gegeben; der Winkel <p = — soll mit 

O 
Zirkel und Lineal konstruiert werden (sogenannte Dreiteilung des Winkels). Mit 
ip ist auch cos ip bekannt und umgekehrt (Konstruktion am Einheitskreis). Wir 
setzen cos ip = c. Für die verlangte Zirkelkonstruktion ist also K = Q(c) 

ip bekannt. Gesucht wird <p = ~ oder, wieder gleichwertig, f = cos <p. Nun 
o 

gilt (vgl. Anhang) c = cos 39p = 4 cos3<p — 3cos <p = 4f 3 — 3|; als Nullstelle von 

f(x) = 4x3 — 3 x — ceK[x\ 

ist £ also algebraisch über K, und wir müssen Irr (£, K) bzw. [ f : K\ bestimmen. 
Ob f(x) über K irreduzibel ist, wird von der Wahl von c abhängen. Es sei etwa 
die reelle Zahl c transzendent über (vgl. § 27.4). Dann ist im Polynomring 
£l[a;][c] einer Unbestimmten c mit Koeffizienten aus Q.[a;] das lineare Polynom 
—c + 4z3 — 3x irreduzibel; also ist f(x) = 4z3 — 3x — c irreduzibel in Q[c][x\ 
und nach Satz 42.3 auch in Ö(c)[a;] = K\x\. In diesem Fall ist also [ f : K] = 3 
und die geforderte Zirkelkonstruktion undurchführbar. Ein allgemeines Ver-
fahren der Dreiteilung eines Winkels mit Zirkel und Lineal gibt es also nicht. 
Trotzdem kann natürlich für spezielle Winkel ip die Konstruktion möglich sein. 

7t 
Im Falle yj = —- oder c = 0 beispielsweise wird f(x) = x(4x2 — 3) reduzibel 

3 7t 1 71 
über K = Q und Irr (£, K) ~ x2 — — oder f = cos — = der Winkel — 

kann daher mit Zirkel und Lineal gedrittelt werden, was dem bekannten Sach-
7t 

verhalt entspricht, daß der Winkel — mit Zirkel und Lineal konstruiert wer-
6 n 1 

den kann. Was bekommt man für tp = — ? Man hat c = —; das Polynom g{x) 
u ^ 

= 2f(x) = — 6a; — 1 hat aber, wie die Substitution Ix — y und Satz 26.3 
zeigen, keine Nullstelle in K = Q, ist also irreduzibel über K. Es gilt also 

7t 
wieder [ f : K~\ — 3 ; auch die Dreiteilung von y> = — oder die Konstruktion 

n 3 

von <p — — ist nicht möglich. 
\J 

Die zu Beginn dieses Beispiels durchgeführten Überlegungen lassen sich leicht 
verallgemeinern. Es seien ein Winkel 0 ^ ip ^ n und damit c = cos ip ge-
geben; er soll mit Zirkel und Lineal in n gleiche Teile geteilt werden. Wieder 

yj 

sei c transzendent über Q, q> = — und f = cos <p. Die entsprechende Formel für 

cos n<p gewinnt man aus dem Vergleich der Realteile in (cos <p + i sin <p)n 
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= cos rup i sin wp; diese Darstellung von cos nrp durch ein Polynom in cos <p 
beginnt mit cosn<p, versehen mit einem positiven Koeffizienten. Mit K = Q(c) 
folgt wie oben [f : K] = n. Höchstens dann, wenn n eine Zweierpotenz ist, ist 
die Konstruktion also allgemein möglich. Ist aber n = 2", so führt v-malige 
Halbierung von xp auch wirklich zum Ziel. Damit ist der folgende Satz be-
wiesen. 

Satz 2: Ein allgemeines Verfahren zur n-Teilung eines Winkels y> mit Zirkel 
und Lineal existiert dann und nur dann, wenn n eine Potenz von 2 ist. 

B e i s p i e l 4. Es sei p Si 3 eine Primzahl. Für welche Werte von p läßt sich 
das reguläre p-Eck mit Zirkel und Lineal konstruieren, also der spezielle 
Winkel 2iz in p gleiche Teile teilen ? Wir wissen, daß das für p = 3 möglich 
ist ; auch für p = 5 ist die Konstruktion sicher durchführbar (vgl. das Resultat 

2n 
von Aufgabe 45.1). Allgemein ist sie genau dann möglich, wenn der Winkel 

2ji 2 n V 
oder die primitive p-te Einheitswurzel a> = cos 1- i sin mit Zirkel und p p 
Lineal konstruierbar ist. Nach Satz 45.3 ist I r r (CD, Q.) = <Pp(x), also [co: /£] 
= [cu : = q>(p) — p — 1 ; in dem vorliegenden Fall ist ja K = Q. Die Kon-
struktion ist also höchstens dann möglich, wenn p — 1 eine Zweierpotenz 
oder p eine Primzahl der Gestalt 2A + 1 ist. Eine natürliche Zahl der Gestalt 
2 A + 1 (A = 1 ,2 ,3 , . . . ) wiederum ist höchstens dann eine Primzahl, wenn A 
selbst eine Zweierpotenz 2" (v — 0, 1, 2, . . . ) ist; andernfalls kann ja A = ab mit 
natürlichen Zahlen a, b geschrieben werden, wobei noch a ungerade und von 
Eins verschieden ist, und 2A + 1 = (26)° + 1 hat dann den nichttrivialen 
echten Teiler 2b + 1. Die verlangte Konstruktion ist also höchstens dann 
durchführbar, wenn p eine Primzahl der Gestalt 22'" + 1 (v = 0, 1, 2, . . . ) ist. 
Die Werte v = 0, 1, 2, 3, 4 liefern sämtlich Primzahlen, nämlich 3, 5, 17, 257, 
65537. Aber der Fall v = 5 zeigt bereits, daß 22" + 1 nicht immer eine Prim-
zahl ergeben muß; aus § 20.1 ist uns bekannt, daß 22' + 1 den Teiler 641 hat. 
Ob es außer den fünf genannten Primzahlen der Gestalt 22" + 1 überhaupt 
noch weitere gibt, ist ein altes und immer noch ungelöstes Problem der Zahlen-
theorie. 

B e i s p i e l 5. Wieder sei p eine Primzahl. Welche regelmäßigen p2-Ecke sind 
mit Zirkel und Lineal konstruierbar ? Sicher ist das regelmäßige Viereck kon-
struierbar. Es sei daher wie eben p 2z 3. Dann steht die Konstruierbarkeit von 

2jt 2n 
o) = cos —z- + i sin—r- zur Diskussion. Nach Satz 45.3 ist I r r (w, Q) = <£„2(2) pi p2 v 
und demnach [co : Q] = <p(pz). Die Zahl <p(p2) zählt die zu p2 teilerfremden 
unter den Zahlen 1 ,2 p2 und hat daher den Wert <p(p2) = p2 — p. Also 
ist [co : Q] = p(p — 1) durch die Primzahl p =j= 2 teilbar. Somit ist das reguläre 
p2-Eck für p 3 nicht mit Zirkel und Lineal konstruierbar. 

Nun fragen wir überhaupt nach denjenigen regelmäßigen n-Ecken, die mögli-
cherweise mit Zirkel und Lineal konstruierbar sind. Da aus der Konstruierbar-



§ 56 Konstruktionen mit Zirkel und Lineal 191 

keit des H-Ecks auch die des ¿-Ecks folgt, dürfen (Beispiel 4) in der Prim-
faktorzerlegung von n außer der 2 höchstens noch Primzahlen der Gestalt 
p = 2zV + 1 (v — 0,1, 2, . . . ) vorkommen, wenn das n-Eck nicht von vorn-
herein unkonstruierbar sein soll; darüber hinaus zeigt Beispiel 5, daß keines 
dieser p in höherer als erster Potenz in n aufgehen darf. Wir formulieren dieses 
Ergebnis. 

Definition: Die Primzahl p heißt eine FEBMATSCÄC oder GAtrssscÄe Primzahl, 
wenn sie die Gestalt 22" + 1 (v = 0, 1, 2, . . . ) hat. 

Satz 3: Wenn ein regelmäßiges n-Eck mit Zirkel und Lineal konstruierbar 
ist, so ist entweder n eine Potenz von 2, oder die Primfaktorzerlegung von n hat 
die Gestalt n = 2rp2fz ... ps, wobei r Si 0 ist und die pa paarweise voneinander 
verschiedene Fermatsche Primzahlen sind. 

Bemerkung 1: Wenn das regelmäßige fc-Eck und das regelmäßige Z-Eck, also 
2 J J 2 

die Winkel —j— und ——, könstruierbar und k und l teilerfremd sind, so ist auch k l 
2ji 

das regelmäßige Ä;Z-Eck, also der Winkel -=—, konstruierbar. Es gilt dann ja /ei 
1 = xk + XI mit gewissen durch den Euklidischen Algorithmus bekannten 

2 7t 2 7t ganzen Zahlen x, A; durch Multiplikation mit — bekommt man = x—— 
Kv fCl L 

2n 4- k—=—, und die Winkel rechter Hand sind bekannt. k 

Bemerkung 2: Wir wissen noch nicht, ob die in Satz 3 aufgeführten w-Ecke 
auch wirklich konstruierbar sind. Allerdings ist das regelmäßige n-Eck sicher 
mit Zirkel und Lineal konstruierbar, wenn n eine Potenz von 2 ist. Wenn 
außerdem noch gezeigt werden kann, und das wird in § 69 geschehen, daß für 
jede Fermatsche Primzahl p auch das reguläre p-Eck konstruierbar ist, so folgt 
aus der eben notierten Bemerkung 1, daß sämtliche in Satz 3 genannten regel-
mäßigen «-Ecke mit Zirkel und Lineal konstruiert werden können. Die an-
geschnittene Frage ist dann also, abgesehen von dem zahlentheoretischen 
Problem der Bestimmung aller Fermatschen Primzahlen, abschließend be-
antwortet. 

71 
Aufgabe 1: Kann man den Winkel — mit Zirkel und Lineal in fünf 

gleiche Teile teilen ? 3 

Aufgabe 2: Man bezeichne die Seiten AB, BC, CA eines Dreiecks ABC 
mit c,a,b; die Innenwinkel bei A, B, C seien a, ß, y, und die Winkelhalbierende 
des Winkels y sei wv. Ist das Dreieck ABC mit Zirkel und Lineal konstruierbar, 
wenn die Stücke 
a) a, b, wv 
b) c, b, wv 
gegeben sind ? 
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§ 57 Nullstellen von Idealen 

57.1 Es sei K ein Körper. Bislang wurde weder benutzt noch bewiesen, daß zu 
jedem f(x) e K[x] mit Grad f(x) 4= 0 ein Oberkörper E z> K existiert, so daß f(x) 
eine Nullstelle in E hat. Diese Aussage ist aber richtig, und sie soll jetzt be-
wiesen werden. Zunächst besitzt f(x) einen in K[x\ irreduziblen normierten 
Teiler p(x) mit Grad p(x) ^ 1, und es genügt, eine Körpererweiterung E 3 K 
zu konstruieren, in der p(x) eine Nullstelle a hat ; dann gilt auch /(a) = 0. 
Wüßte man bereits die Existenz eines solchen a mit p(a) = 0, so könnte 
E = K[oc] gewählt werden (Satz 53.2). Es wäre dann K[ct\ ~ K[x]l(p(x)) 
(1. Beweis zu Satz 53.2). Da aber der Restklassenring K[x]l(p(x)) in jedem Fall 
existiert, werden wir ihn in der folgenden Konstruktion von E als Grundlage 
benutzen. 
Wir sehen uns den durch <p(g(x)) = g(x) + (p(x)) definierten Homomorphismus 
<p von K\x\ auf K[x]l(p(x)) an. Das Ideal (p(x)) ist im Hauptidealring K[x] 
maximal (Satz 41.3); der Restklassenring K[x]l(p(x)) ist also ein Körper. 
Durch <p wird auch ein Homomorphismus von K auf <p(K) c K[x]l(p(x)) defi-
niert; das Bild von a e K ist a + (p(x)), und wegen Grad p(x) ^ 1 besteht <p(K) 
nicht aus der Null (p(x)) allein. Nach § 21.2, Beispiel 3, ist deshalb <p{K) sogar 
ein isomorphes Bild von K, und wir können die Elemente a + (p(x)) aus <p(K) 
mit den Elementen o aus K identifizieren. Der so aus K\pc]j{p{x)) durch Aus-
tausch von <p(K) gegen K entstandene Oberkörper von K heiße E\ das Bild von 
g(x) e K[x\ in E sei auch mit g*(x) bezeichnet. Schreibt man g(x) = anxn 

+ aB_la;"-1 + . . . + OQ und beachtet a* = ar, so wird 
g*(x) = (anx*)*+{an-ixn-1)*+ • • • +<4 = anx*«+an-...+«o = g(x*). 
Nun wird einerseits p(x) auf die Null abgebildet, p*(x) = 0, andrerseits ist 
p*(x) — p(x*). Beides zusammen liefert p(x*) = 0. Das Element x* des Körpers 
E D K ist also Nullstelle von p(x) e K[x] und damit auch von f(x). Unsere 
Konstruktion liefert also die Existenz von K(oc) oder etwas allgemeiner den 

Satz 1: Es sei K ein Körper, f(x) e K[x~\ und Grad f(x) =|= 0. Dann gibt es 
einen Oberkörper E von K, in dem f(x) eine Nullstelle hat. 

57.2 Diese Überlegungen lassen sich verallgemeinern. Es sei weiterhin K ein 
Körper und nun K[x\, xz, ... ] = dj K[je] ein Polynomring in beliebig vielen 
Unbestimmten X{ über K. Ist f(x) ein Polynom aus K[f\ und werden in ihm 
xi, x<i, . . . durch ai, <xz, .. • ersetzt, so bezeichnen wir das Resultat mit /(a). Es 
sei M eine Menge von Polynomen f(f) aus iT[jc]. Wann gibt es einen Oberkörper 
E D K mit Elementen ai, ctz die eine gemeinsame Nullstelle aller Polynome 
aus M bilden: f{tx) = 0 für alle /(jr) e M ? 
Im vorigen Abschnitt lag der Spezialfall einer einzigen Unbestimmten x vor, 
und auch M bestand nur aus einem Polynom f(x). Die notwendige und hin-
reichende Bedingung für die Existenz von E war: Grad f(x) =f= 0 oder f(x) — 0. 
Als Idealbeziehung geschrieben, heißt das (f(x)) 4= K[x]. 
Wir zeigen zunächst, daß im allgemeinen Fall die entsprechende Bedingung 
(M) =)= ¿ [ j ] für das von M erzeugte Ideal ebenfalls notwendig ist für die 
Existenz von E. Dazu schieben wir eine einfache Zwischenbetrachtung ein. 
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Jedes Polynom m(?)e(M) hat die Gestalt ^i(i)/i(l)+A2(x)/2(x)+ • • • +ArM/r(i) 
mit Polynomen Ae(p) e ifff] und fe(x) e M. Also ist a genau dann eine ge-
meinsame Nullstelle aller /(je) s M, wenn m(a.) = 0 gilt für jedes m{)r) e (M). 
Wir sagen in diesem Fall: Es ist a eine Nullstelle des Ideals (M). 
Ist nun (M) = K[?~], so folgt 1 e (M), und dieses Element hat keine Nullstelle. 
Wir setzen nun (M) =)= voraus und zeigen, daß diese Bedingung auch hin-
reichend für die Existenz einer Nullstelle a von (M) ist. Nach Satz 41.5 existiert 
in K[f\ ein maximales Ideal m 3 (M). Im vorigen Abschnitt war m = (p{x)). 
Wieder ist K[x]/m ein Körper (Satz 41.1), und aus ihm konstruieren wir E. 
Man betrachte den durch <p(g()t)) = g(f) + m definierten Homomorphismus <p 
von auf K[f]lm. Der durch ihn induzierte Homomorphismus von K auf 
cp(K) ist wieder ein Isomorphismus, weil wegen m 4= K[j\ kein von Null ver-
schiedenes ae K in m liegen kann. Wir können daher die Elemente von 
<p(K) c K[x]/m mit denen aus K identifizieren und erhalten so aus K[f\jm den 
lediglich anders bezeichneten Oberkörper E von K. Nennen wir das Bild von 
g(x) e K\f\ in E wieder g*(f), so gilt für ein beliebiges m(?) e tri sowohl m*(jc) = 0 
als auch m*(jt) = m(y*), wobei y* eine Abkürzung für x f , x * , . . . bedeutet. Es 
folgt ra(jr*) = 0, und das heißt: xf, x*, . . . ist eine Nullstelle von m in E. 
Wir formulieren unser Ergebnis unter Verwendung der hier benutzten Be-
zeichnungen. 

Satz 2: Es sei K ein Körper, üT[jr] ein Polynomring in beliebig vielen Un-
bestimmten über K und M eine Menge von Polynomen aus if [y]. Genau dann gibt 
es einen Oberkörper E von K, der eine Nullstelle des Ideals (M) enthält, wenn 
(M) =N ist. 

§ 58 Zerfällungskörper 

58.1 Es sei K ein Körper und f(x) = anxn + an~ix"-1 + . . . + «o e K[x], 
Grad f(x) = n 1. Es liegt nahe, Satz 57.1 mehrfach anzuwenden: Es gibt 
einen Körper K\ o K, der eine Nullstelle ai von f(x) enthält; in K\[x] d K[x\ 
gilt also f(x) = (x — ai)g(x). Weiter gibt es einen Körper K^O K\, der eine 
Nullstelle von g(x) e KI_\pc\ enthält; in K2[x] d K\[x\ gilt also 

f(x) = (x — ai)(a; — a2)A(x). 

Fortsetzung des Verfahrens liefert einen Oberkörper E von K derart, daß f(x) 
in E[x] in Linearfaktoren zerfällt: f(x) = an(x — ai) (x — 0:2) . . . (x — xn). Die 

e E sind dabei nicht notwendig paarweise voneinander verschieden. Andere 
Nullstellen hat f(x) in E nicht. Dies gestattet, den kleinsten Teilkörper L von E 
mit E o L d K anzugeben, so daß f(x) in L[x] zerfällt: Da die ocv alle in L 
liegen müssen, gilt L d K(<x1, a„), und weil f(x) in K(A 1, a2, . . . , An)[x] 
schon zerfällt, folgt L = K(A.1, a2, ..., a„). 
Ist f(x) = oo schon ein Element von K, so wollen wir entsprechend sagen, daß 
f(x) in L = K in Linearfaktoren zerfällt. 

13 Hornfeck, Algebra 
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Definition: Es sei K ein Körper, f(x) e K[x\ und L ein Oberkörper von K 
derart, daß f(x) in L[x] in Linearfaktoren zerfallt. Genau dann heißt L ein Zer-
fallungskörper von f(x) e K\x\, wenn es keinen eckten Unterkörper F von L 
zwischen K und L gibt, so daß f(x) in F\x\ zerfällt. 
Ein Zerfallungskörper L ist also erst durch die Angabe des Polynoms f(x) und 
des Polynomrings K\x\ erklärt. Beispielsweise ist Q(i) ein Zerfallungskörper 
von x2 + 1 6 Q.[cc], aber nicht von x2 + 1 e SR[x]; ein Zerfallungskörper von 
xz + 1 e 3t[a;] ist £R(i) = €; aber <5 ist nicht Zerfallungskörper von xz + 1 eQ[x], 
da x2 + 1 schon über dem echten Zwischenkörper Q(t) zwischen Q und 6 
zerfallt. 
Unsere eingangs durchgeführten Überlegungen fassen wir in einem Hilfssatz 
zusammen. 

H i l f s s a t z : Es sei K ein Körper und E o K ein Oberkörper von K. 
a) Dann besitzt jedes f(x) e K\x] wenigstens einen Zerfallungskörper L. 
b) Wenn f(x) e K[x] in E[x] in Linearfaktoren zerfallt, 

f(x) = a„(x — oti) (x — oc 2) ...(x — ocn), 

so ist K(a.\, «.%, ..., a«) ein Zerfallungskörper von f(x) 6 K\x\. 
58.2 Da man sich Körpererweiterungen E von K derart, daß f(x) e K\x\ in E[x\ 
in Linearfaktoren zerfällt, womöglich auf die verschiedensten Arten beschaffen 
kann, muß man damit rechnen, daß es mehrere Zerfällungskörper von f(x)eK[x] 
gibt; aber es erscheint sehr plausibel, daß sie alle isomorph sind, und es ist 
unser Ziel, das zu beweisen. Anschließend ist es dann erlaubt, einfach von dem 
Zerfallungskörper von f(x) e K[x] zu sprechen, und der Hilfssatz besagt, daß 
man ihn durch Adjunktion der Nullstellen von fix) zu K erhält. 

Satz 1: Es seien K und L isomorphe Körper und q>: K -> L der vermittelnde 
n n 

Isomorphismus. Dann läßt sich <p vermöge aC^a^x') — ~2<p{af)xv zu einem Iso-
morphismus a von K[x] auf L[x] fortsetzen. 0 0 

Beweis: Man betrachte den identischen Isomorphismus von K\x\ auf 
K\x\ und identifiziere im Bild K\x\ den Körper K mit L. 

Satz 2: Es sei <p: K -> L ein Körperisomorphismus von K auf L und 
a: K[x] L[x] die in Satz 1 definierte Fortsetzung von <p. Das Polynom f(x)eK[x] 
sei irreduzibel in K\x\ und habe das a-Bild g(x) e L\x\. 
a) Dann ist auch g(x) irreduzibel in L\pc\. 
b) Ist OL eine Nvllstelle von f(x) und ß eine Nulistelle von g(x), so läßt sich <p 

n n 
vermöge x(2®»«'') = ^.<P(ar)ßr zu einem Isomorphismus r von K(a) auf L(ß) mit 

o o 
der Eigenschaft r(a) = ß fortsetzen. 

Beweis: 
a) Auf eine nichttriviale Zerlegung g(x) = gi(x]gz(x) in L[x] könnte man den 
Isomorphismus <r-1 anwenden und bekäme eine nichttriviale Zerlegung 
f(x) = fi{x)h{x) in K[*]. 
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n n 
b) Es gilt K(a) ~ K[x]l(j(x)) vermöge ri(Jiavxv) = + (/(«)); nur eine 

o o n 
Umbezeichnung bedeutet K[x]l(f(x)) ~ L[x]l(g(x)) vermöge r + (J(x))) 

n o 
= "2/p{ap)xv + {g(x)); und schließlich gilt wieder L[x]j(g(x)) ~ L(ß) vermöge 

o 
n n 

TzC%p{av)xr + (g(x))) = "2fp{av)ßv. Bei ri bzw. T3 wurde die Irreduzibilität von 
0 0 

f(x) bzw. g(x) benutzt (vgl. den 1. Beweis von Satz 53.2). Also ist r = T3T2T1 
n n 

ein Isomorphismus von K(x) auf L(ß) mit T(^avaT) = ^<p(ar)ß', und speziell 
gilt r(a) = ß. 0 0 

Spezialfa 11: Es sei K = L und <p der identische Automorphismus von K; 
das Polynom p(x) e K\x\ seiirreduzibel in K\x\, und a und ß seien Nullstellen von 

» n 
p(x). Dann definiert T{'^arav) = einen Isomorphismus von K(x) auf 

0 0 
K(ß), der K elementweise festläßt. Der durch eine Nullstelle eines über K 
irreduziblen Polynoms erzeugte Erweiterungskörper K(oc) hängt also strukturell 
nicht von der speziellen Wahl dieser Nullstelle ab. 

Beispiel 1. Es gilt 3t(») ~ SR(—¿) und sogar 3t(») = SFt(—¿). Analog ist Ü(P) ~ 
Q(—V2) und sogar 0(1/2) = £}(—J/2). 

Beispiel 2. Das Polynom p(x) = x? — 7 ist irreduzibel über Q. und hat die 
_ _ _ I i 

Nullstellen ai = a2 - m|/7, a3 = co2 f/7, wobei « = — - + - J/5 ist. Wie-J Zi 
der gilt G(ai) ~ Q.(«z) — Q(as); aber diesmal sind keine zwei dieser Körper ein-
ander gleich: Weil die komplexen Zahlen a.2, as nicht in Q(ai) liegen, kann p(x) 
in ö(ai)[a;] und nach Satz 1 dann auch in Ü(ot2)[a;] und Q(a3)[a;] nicht in Linear-
faktoren zerfallen, und es folgt «1, as £ 0.(0:2) und ai, 0.2 $ Q(a3). 

Um den nächsten Satz formulieren zu können, ist eine Vorbetrachtung nötig. 
Es sei E ein Zerfiällungskörper von f(x) e K[x], in dem f(x) lauter einfache 
Nullstellen hat. Könnte es sein, daß f(x) in einem anderen Zerfallungskörper 
F eine mehrfache Nullstelle besitzt ? Zur Beantwortung dieser Frage wählen 
wir einen Oberkörper E* von E derart, daß f(x) und f'(x) in E*[x] in Linear-
faktoren zerfallen, etwa einen Zerfällungskörper E* von f'(x) e E[x\. Aus der 
Voraussetzung und Satz 26.6, Aussage b), folgt: Die Polynome f(x) und f'(x) 
haben in E*[x} und damit erst recht in K[x\ den g.g.T. Eins. Nach Satz 44.1 
bleibt dieser g.g.T. Eins auch in F[x]. Dann kann aber f(x) nach Aussage a) 
von Satz 26.6 keine mehrfache Nullstelle in F haben. Die Frage war also mit 
nein zu beantworten, und die Redewendung, f(x) habe keine mehrfachen Null-
steilen, hat einen Sinn. 

Satz 3: Es seien K und L isomorphe Körper und <p: K -> L der vermittelnde 
Isomorphismus -, a sei die Fortsetzung dieses Isomorphismus von K[x\ auf L[x] 
gemäß Satz 1. Das Polynom, f(x) e K\x\ habe das a-Bild g(x) e L[x\, es sei E ein 

13» 
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Zerfällungskörper von f(x) e K\x\ und F ein Zerfällungskörper von g(x) e L[x\. 
a) Dann kann der Isomorphismus <p von K auf L zu einem Isomorphismus x von 
E auf F fortgesetzt werden. 
b) Hat überdies f(x) und damit auch g(x) keine mehrfachen Nullstellen, so gibt es 
genau [E: K~\ derartige Fortsetzungen x von <p. 

Bevor wir Satz 3 beweisen, ziehen wir gleich aus seiner Aussage a) die für 
uns im Augenblick wichtigste Folgerung. Sie betrifft den Fall, daß K = L 
und q> der identische Automorphismus ist; E und F sind dann zwei Zerfällungs-
körper von f(x) e K[x\, und die Existenz von r bedeutet ihre Isomorphie. Zu-
sammen mit Teil a) des obigen Hilfssatzes ergibt sich also der gewünschte 

Satz 4: Es sei K ein Körper. Dann besitzt jedes f(x) e K[x] abgesehen von 
Isomorphien genau einen Zerfällungskörper. 

Beweis von Satz 3: 
a) Der Nachweis der Existenz von r wird durch einen Induktionsbeweis er-
bracht. Die Behauptung ist sicher richtig im Falle [E: K] = 1; denn wenn f(x) 
in K\pc] zerfallt, so zerfällt g(x) in L[x], und es gilt E = K, F = L und x — <f. 
Wir setzen nun [E: K] = m. Die Induktionsvoraussetzung lautet: Die Be-
hauptung a) sei bereits bewiesen für beliebige Zerfällungskörper E von be-
liebigen Polynomen f{x) e K\x\, sofern nur [E: K] < m ist. Im Falle m > 1 
liegen nicht alle Nullstellen von f(x) in K, und es existiert ein in K[x\ irreduzib-
ler Teiler p(x) von f(x) mit Grad p(x) = d > 1. Es gilt d\m\ denn für eine 
Nullstelle ae E von p(x) ist [a: K\ = d, und [a: K\ teilt m nach Satz 54.2. 
Wir bezeichnen a(p(x)) mit q(x); dann ist das Polynom q(x) ein Teiler von g(x) 
in L[x], es ist irreduzibel in L[x\ und besitzt in F eine Nullstelle ß. Nach 
Satz 2 gilt K(oc) ~ L(ß). Nun ist erst recht E Zerfällungskörper von f(x)eK(oc)[x] 
und F Zerfällungskörper von g(x) e L(ß)[x], Wir haben [E: K(oc)] • [X(a): K] 

Wfh 
= m, also [E: K(oc)] = — < m. Auf Grund der Induktionsvoraussetzung läßt 

d 
sich also der Isomorphismus von K(a) auiL(ß), der eine Fortsetzung von <p war, 
weiter fortsetzen zu einem Isomorphismus x von E auf F. 

b) Hat f(x) nur einfache Nullstellen, so gilt nach Satz 1 für g(x) dasselbe. In 
dem unter a) geführten Induktionsbeweis gab es demnach unter dieser zu-
sätzlichen Voraussetzung bei festem a genau d Möglichkeiten für die Wahl 
von ß; denn einerseits hat q(x) dann genau d verschiedene Nullstellen ß e F; 
andrerseits gilt für eine Fortsetzung r von <p die Beziehung r(p(a)) = q(r(a)) = 0, 
weswegen als Bild r(a) von a nur eine Nullstelle ß von q(x) in Frage kommt. 
Damit kann man die Aussage b) durch die gleiche vollständige Induktion 
nach m bestätigen: Ihre Gültigkeit für m = 1 ist klar; sie sei ferner für 
[E: K] < m bereits bewiesen. Ist nun [E: K] = m > 1, so bestehen bei 
festem a zunächst genau d Möglichkeiten, den Isomorphismus cp von K auf L 
zu einem Isomorphismus von K(a) in F fortzusetzen; jede dieser Fortsetzungen 

171 
der Gestalt K(x) ~ L(ß) liefert nach Induktionsvoraussetzung genau — mögliche 
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m 
weitere Fortsetzungen r : E ~ F. Insgesamt ergibt das genau d • — = m Fort-
setzungen r von <p. 
Beisp ie l 3. Es sei E der Zerfällungskörper von p(x) = re3 — 7 e Mit 
den Bezeichnungen von Beispiel 2 gilt E = Q(<xi, ocz, 1x3). Die Adjunktion von 
zwei Nullstellen oder von |/7 und 01 genügt: E = Q(xi, 012) = Q(}/7, «) . Die 
Gradformel zeigt [E: Q] = 6. 
Be i sp ie l 4. Es sei E der Zerfällungskörper von p(x) = a.4 + 1 eQ[a;]. Jede 
rlfir vi«r MnllstfillAn (4- 1 4- i\ vnn 4_ 1 ist, ftinp. Pnt.Any. ipdfir a.ndfirftn Man 

58.3 Wir greifen noch einmal einen Gedanken auf, der beim Beweis des Teils b) 
von Satz 3 eine Rolle spielte. 

Definition: Es sei E eine Körpererweiterung von K. Zwei über K algebraische 
Elemente x, ß e E heißen konjugiert über K, wenn Irr (a, K) — Irr (ß, K) ist. 

Es ist klar, daß auf diese Weise eine Äquivalenzrelation unter den über K 
algebraischen Elementen aus E erklärt ist. 

B e i s p i e l 5. Es sei K = Q und E = Dann sind die vier Zahlen 

aus € konjugiert über £} (vgl. Beispiel 4). Über K = Q(|/2) dagegen sind nur 
noch ai, <*2 bzw. 1*3,«4 als Nullstellen von x2 — j/2a; + 1 bzw. x2 + |/2a; + 1 
untereinander konjugiert, aber nicht mehr etwa x± und 0C3. 

Satz 5 : Es seien E eine endliche Körpererweiterung von K, x ein Element 
aus E und a ein Auiomorphismus von E, der K elementweise festläßt. Dann sind 
x und sein Bild o(x) konjugiert über K. 

Beweis : Nach Satz 54.1 ist a algebraisch über K; es sei Irr (a, K) = p(x) 
n n 

= ~2avxv. Man wende a an auf p(x) = "2avxv = 0; da die a, festbleiben, folgt 
0 0 

n n 
a(^ava.v) = ~Zar(o(a.))v = 0. Auch a(x) ist also Nullstelle von p{x). 

0 0 
58.4 Wir schließen mit einer Bemerkung. Wie wir wissen, hat jedes nicht kon-
stante f(x) e £[a;] eine Nullstelle in zerfällt also nach Satz 26.1 in £[«]. 
Der Körper € ist demnach algebraisch abgeschlossen im Sinne der folgenden 

Definition: Ein Körper K heißt algebraisch abgeschlossen, wenn jedes 
Polynom f(x) e K\x] in K\pc\ in Linearfaktoren zerfällt. 

Mit Hilfe des Zornschen Lemmas läßt sich der folgende Satz von E. S T E I N I T Z 
(1871—1928) beweisen: Jeder Körper K besitzt abgesehen von Isomorphien genau 
einen über K algebraischen Erweiterungskörper E, der algebraisch abgeschlossen ist. 

«1,2 = t/s (1 ± i) und a3,4 = W — 1 ± i) 
1 

P 
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Wir gehen darauf nicht weiter ein. 

A u f g a b e 1: Es sei E der Zerfällungskörper von f(x) e K[x\ und Grad 
f(x) = n. Dann ist [E: K\ ein Teiler von n\. Beweis ? 

A u f g a b e 2: Es sei E der Zerfällungskörper von f(x) e K\x\, und aci,X2eE 
seien konjugiert über K. Dann gibt es einen Automorphismus r von E, der K 
elementweise festläßt, mit r(ai) = ot2. Beweis ? 

A u f g a b e 3: Es sei E der Zerfällungskörper von f(x) = x* — 4t3 -f 2a;2 

+ 4x + 2 e£l[a;] und « e 6 eine Nullstelle von f(x). 
a) Das Polynom f(x) ist irreduzibel über £}. Beweis ? 
b) Auch 2 — a ist eine Nullstelle von f(x). Beweis ? 
c) Es gibt genau eine Fortsetzung <p: Q(a) ~ £}(a) des identischen Auto-
morphismus e: Q. ~ G von Q auf Q(a) mit <p(a) = 2 — a. Beweis ? 
d) Es sei L die Menge aller Elemente l e Q(a) mit <p(l) = l. Dann ist L ein 
Zwischenkörper von Q und Ü(a). Beweis ? 
e) Man ze ige : ' / /= Q(i). 
f) Man bestimme die Nullstellen von f(x). 
g) Man bestimme [E: Q], 

§ 59 Endliche Körper 

Wir können uns nun einen Überblick über die wichtigsten Eigenschaften 
endlicher Körper verschaffen. Dazu brauchen wir noch den folgenden 

H i l f s s a t z : Es sei 0 eine multiplikativ geschriebene endliche abelsche 
Gruppe. Dann gibt es ein g eO, für dessen Ordnung m gilt: am = e für 
jedes a e G . 

B e w e i s : Die Ordnung n von G habe die Primfaktorzerlegung 
a. s, o, 

n = PI1 P2 • • • P7; 

die Gruppe G sei nach Satz 11.1 (Spezialfall) als direktes Produkt 
G — (Gn x $12 x . . . x Glti) x (C?21 X (?22 X ... x G^) 

X . . . X {Gr 1 X C ? r 2 X . . . X G r s ) 

zyklischer Untergruppen Gy von Primzahlpotenzordnungen p™" geschrieben. 
Dabei seien die öy so numeriert, daß my mi j+i ist. Es sei gt ein erzeugendes 
Element von Gn (1 ^ » ^ r). Weil g\l ... gx

r' = e nur für g\l = = ... 
= gx

T' = e möglich ist, hat das Element g = g^g2 ... greG die Ordnung 
m = p™" p™" • • • p?'1- Dieses g e G erfüllt die Aussage des Hilfssatzes; denn 
jedes aeG läßt sich in der Gestalt a = JJOy mit Faktoren Oy 6 Gy schreiben, 
und dabei ist a™ = e nach Satz 9.2, also auch am — Y[aij = e-
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Wir erinnern noch an eine in § 20 verabredete Bezeichnungsweise: Ist K ein 
Körper, so bedeute Ko die Menge aller von Null verschiedenen Elemente aus K. 
Oft gebraucht wird der 

Satz ls Die muMiplikative Gruppe Ko eines endlichen Körpers K ist zyklisch. 
Das ist ein Spezialfall von 

Satz 2: Es sei K ein Körper und G eine endliche Untergruppe der multiplika-
tiven Gruppe KQ. Dann ist G zyklisch. 

Beweis von Satz 2: Wir wenden auf G den Hilfssatz an. Es sei g 6 G das 
Element aus dem Hilfssatz und m seine Ordnung. Jedes a e G ist dann Null-
stelle von xm — IGK \ X \ ; da es höchstens m solche Nullstellen gibt, folgt 
|G| ^ m. Also sind 1 ,g,g2, . . . , gm~1 alle Elemente von G, und G wird von g 
erzeugt. 

Satz 3: Es seien E o 8 Schief körper mit | = q < oo und [E: S]i — n <. oo. 
Dann gilt \E\ = qn. 

Beweis: Man wähle eine Basis {ai, at2, .. . , an} von E über 8 und zähle 
die Elemente «iai + 820.2 + • • • + «n«» (sr e S) von E mit Hilfe von Satz 50.2 
ab. 

Ein endlicher Körper K kann nicht die Charakteristik Null haben; also gilt 
%(K) = p für eine gewisse Primzahl p und damit K o Hierbei muß [ K : 
= n endlich sein. Aus Satz 3 folgt also der 

Satz 4: Es sei K ein endlicher Körper und x(K) = p. Dann ist [ jfiC [ = pn 

(n e 91). 

Endliche Körper wurden erstmals von GALOIS untersucht; sie werden deshalb 
auch Galois-Felder genannt und mit GF(pn) bezeichnet, wobei in den Klam-
mern die Elementezahl steht. In diesem Zusammenhang ist die nachstehende 
Existenz- und Eindeutigkeitsaussage wichtig. 

Satz 5: Zu jeder Primzahl p und jeder natürlichen Zahl n gibt es genau 
einen Körper GF(pn) mit pn Elementen. Der Körper GF(pn) ist der Zerfällungs-
körper von xf" — x e 

Beweis: 
a) Es sei zunächst pn — q und K ein Körper mit q Elementen. Wir zeigen, 
daß K bis auf Isomorphien eindeutig bestimmt ist. Zunächst gilt K D Nach 
Satz 9.4 ist ai-1 — 1 für jedes a e Ko- Es folgt: Jedes der q Elemente a e K 
ist Nullstelle von x" — x e $p[x], und nach Aussage b) des Hilfssatzes aus § 58 
wird damit K ein Zerfallungskörper von xi — x e $p[x]. Nach Satz 58.4 ist 
also K bis auf Isomorphien eindeutig bestimmt. 
b) Bei vorgegebenen p und n ist noch die Existenz eines Körpers K mit pn 

Elementen zu zeigen. Wieder sei pn = q. Wir betrachten das Polynom 
f(x) =xQ — x e 3p[x]- Wegen f'(x) = —1 und Satz 26.6 hat es nur einfache 
Nullstellen. Es gibt einen Körper E o 3j>> 80 daß f(x) in E[x\ in Linearfaktoren 
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zerfällt; die Menge LcE der Nullstellen von f(x) besteht also aus genau 
q Elementen. Wir sind fertig, wenn wir zeigen: L ist ein Körper. Dazu prüfen 
wir die in Frage stehenden Körperaxiome nach. Sind x, ß Elemente aus L, 
gilt also ofl = x und ßi — ß, so wird auch (a + ß)Q = afi + = a + ß (vgl. 
Aufgabe 20.8 b)), also x + ß e L. Es ist 0 e L. Mit x e L gilt auch —x e L; 
bei p = 2 liegt das an a = —a. Aus et, ß s L folgt weiter aß e L. Es ist 1 e L. 
Schließlich hat xeL, x =(= 0, also a® = x, noch = (a«)_1 = (a-1)9, also 
a - 1 e L, zur Folge. 

Aufgabe 1: Jedes quadratische Polynom aus 33M zerfällt über QF(32). 
Beweis ? 

A u f g a b e 2: Man bestimme alle Unterkörper von GF(pn). 

§ 60* Endliche Schiefkörper 

Der folgende Satz stammt von M. Wedderbubn (1882—1948); später fand 
W i t t den hier wiedergegebenen einfachen Beweis. 

Satz 1: Jeder endliche Schiefkörper ist ein Körper. 

Beweis : Es sei S ein endlicher Schiefkörper und Z c 8 die Menge aller 
derjenigen Elemente ze S, die mit jedem s e S vertauschbar sind: sz = zs für 
jedes s e 8. Wir müssen zeigen: Z = S. Wir wissen, daß Z ein Körper ist 
(Aufgabe 20.14). Setzen wir : Z] = n, so lautet unsere Behauptung: n = 1. 
Es sei \Z\ = q ^ 2; nach Satz 59.3 ist dann [<S| = qn. Für ein festes s e S 
betrachte man nun die Menge N(s) aller derjenigen Elemente xs S, die mit s 
vertauschbar sind: sx = xs. Man prüft leicht nach, daß N(s) D Z ein Schief-
körper ist. Nach Satz 59.3 ist also \N(s)\ = qd eine Potenz von \Z\ = q; da 
ferner S D N(s), also auch [$[ = qn eine Potenz von ¡iV(s)| == qd ist, folgt zu-
sätzlich d\n. Dies nutzen wir in der folgenden gruppentheoretischen Über-
legung aus. Wir zerlegen die multiplikative Gruppe So von S in Klassen kon-
jugierter Gruppenelemente (§ 14.2) und zählen die Elemente der einzelnen 
Klassen ab. Insgesamt hat So die Ordnung |$o| = qn — 1. Nach Satz 14.4 ist 
die Anzahl der Konjugierten eines s e So gleich dem Index des Normalisators 

qn — 1 
No(s) = {x e N(.s) :x =f= 0}; das ist also eine Zahl der Gestalt mit d\n. 

q0, — 1 
Wir wollen zeigen, daß die multiplikativen Gruppen von S und Z überein-
stimmen: SO = ZQ. Angenommen, das ist nicht der Fall. Dann wäre [Ä: Z] 
= n > 1; außerdem gäbe es ein s e SO, dessen Normalisator No(s) von So 
verschieden wäre; jedes s e So, das nicht in Zo liegt, leistet das. Die Klasse 

qn — 1 Konjugierter, zu der dieses Element s gehört, hat ^ Elemente, wobei d 
q° — 1 

ein echter Teiler von n ist. Es könnte sein, daß es mehrere solche Klassen gibt; 
jedes der q — 1 Elemente des Zentrums Zo von So aber bildet eine Klasse für 
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sich. Zählt man also die qn — 1 Elemente von So in dieser Weise ab, so ergibt 
sich eine Gleichung 

an -—-1 
(i) = i - i + 2 ^ — i , 

in der n und q von Eins verschiedene natürliche Zahlen sind und rechter Hand 
über gewisse echte Teiler d von n summiert wird. Unser Satz wird bewiesen 
sein, wenn wir zeigen können, daß eine Identität (1) unter diesen Bedingungen 
nicht möglich ist. 
Aus § 45 wissen wir, daß zn — 1 = XT ̂ m(x) eine Zerlegung von xn — 1 in 

m\n 
3[x] ist. Für einen echten Teiler d von n folgt entsprechend sfi — 1 = IT 

und damit auch — = <i>n(x)g(x) in Ersetzt man x durch q, so sieht 

man, daß in (1) sowohl qn — 1 als auch die Summe rechter Hand durch &n(q) 
teilbar sind; also müßte auch q — 1 den Teiler 0n(q) haben. Wir sind fertig, 
wenn wir im Widerspruch dazu zeigen: Für n > 1 ist \$n(q)\ > q— 1. Dazu 
erinnern wir uns an die Zerlegung &n(x) = — M i"1 worin die Cr ge-
rade die <p(n) primitiven w-ten Einheitswurzeln durchlaufen: Für n > 1 ist 
keine von ihnen gleich Eins, folglich | q — £ » ! > < ? — 1 ^ 1 und | &n( q) \ 
= I I I ? — tv! > q — 1. Damit ist Satz 1 bewiesen. 

§ 61 Die Sätze vom primitiven Element 

Wir stellen die Frage, wann ein Oberkörper E von K einfach algebraisch 
über K ist. 

61.1 Eine erste Antwort gibt der 

Satz 1: Genau dann ist der Oberkörper E von K einfach algebraisch über K, 
icenn es nur endlich viele Zwischenkörper E o Lo K gibt. 

B e w e i s : 
a) Es gebe nur endlich viele Zwischenkörper E d LO K. Dann ist zunächst E 
algebraisch über K: Andernfalls gäbe es eine Unbestimmte x e E über K \ auch 
x2, xl, . . . wären dann Unbestimmte über K; es gilt x £ K(x2), da xf(x2) — g(xz) 
für Polynome f(x) und g(x) =)= 0 aus K\pc\ unmöglich ist; also hätte man die un-
endlich vielen Zwischenkörper E z> K{x) ^ K(x2) ^ K(xi) ^ ... o K. Es ist 
sogar E über K endlich erzeugt. Ist nämlich xi e E, ai $ K, so bilde man 
E D K(Ai) K ; ist weiter «2 eE,a2$ K(ai), so bilden wir E O K{ai, acz) K(ai) 

K und fahren so fort. Auf Grund der Voraussetzung bricht dieser Prozeß 

nach endlich vielen Schritten mit dem Ergebnis E = K(xi, ar) ab. Wir 
müssen zeigen: Bei geeignetem ai kann r = 1 gewählt werden. Nach Satz 54.5 
ist E endlich über K. Ist K ein endlicher Körper, so ist es auch E; die multipli-
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kative Gruppe Eq von E wird dann nach Satz 59.1 von einem Element a e E 
erzeugt, und es gilt erst recht E = K(a). Also sei weiterhin der Körper K un-
endlich und r die Minimalanzahl möglicher Erzeugender «e in E = K(a.\, 
0C2, . . •, a r). Wir haben r — 1 zu zeigen. Angenommen, es sei r > 1. Für jedes 
a e K definieren wir dann &a = ai + aa.% und betrachten einen festen Körper 
K{9„). Es gilt E d K(&a) 3 K. Da es nur endlich viele Zwischenkörper gibt, 
K aber unendlich viele Elemente hat, existiert ein b e K, b =(= a, mit K(&b) 
= K(&a)- Es folgt der Reihe nach e K{&a), — = (b — a)a2 6 K(&a), 
a.% e K(&a), «l e K{&a)also gilt neben K(<xi, 1x2) 3 K(&a) auch 0.2) c K(&a) 
und damit K{<*i, 012) = K(&a). Das hat aber E = K{&a, «3. «4» • • •» ar) mit nur 
r — 1 Erzeugenden zur Folge im Widerspruch zur Wahl von r. Die Annahme 
r > 1 war also falsch; E ist einfach algebraisch über K. 
b) Es sei a algebraisch über K und E = K(«). Wir haben zu zeigen, daß es nur 
endlich viele Zwischenkörper E D Ld K gibt. Wir definieren eine Abbildung er 
durch a(L) - Irr (a, L). Wir zeigen zuerst, daß 0 eineindeutig ist, und dann, 
daß es nur endlich viele Möglichkeiten für definierende Polynome Irr(a, L) mit 
E d L d K gibt. Daraus folgt, daß es nur endlich viele Zwischenkörper L gibt. 
Wir betrachten ein L und sein Bild Irr (a, L). Man adjungiere die Koeffizienten 
von Irr (a, L)zuK; es entsteht ein Körper L o L* 3 K. Das Polynom Irr (a, L) 
ist erst recht irreduzibel in L*\x\; es gilt also Irr (a, L) = Irr (a, L*) und 
speziell [E:L] = [E: L*] < 00. Mit E o L d L* und der Gradformel folgt 
[L: L*~\ = 1 oder L — L*. Das besagt: Zu einem Bild Irr (a, L) bekommt man 
das einzig mögliche Original L dadurch, daß man die Koeffizienten von Irr (a, L) 
zu K adjungiert; a ist eineindeutig. Es bleibt zu zeigen, daß es nur endlich viele 
Polynome Irr (a, L) gibt. Nun gilt nach Satz 54.4 in L[x] und erst recht in E\x\ 
die Teilbarkeitsbeziehung Irr (a, L) \ Irr (a, K). Das Polynom Irr (a, K) be-
sitzt aber im Gaußschen Bing E\x\ eine eindeutige Primfaktorzerlegung und 
demnach nur endlich viele normierte Teiler Irr (a, L). Damit ist Satz 1 be-
wiesen. 

61.2 In der Praxis wichtiger ist der folgende Satz 2; er stammt von ABEL. 
Definition: Ist der Oberkörper E = K(a) von K einfach algebraisch über K, 

so heißt et ein primitives Element von E über K. 
Definition: Es sei K ein Körper und a algebraisch über K. Das Element « 

heißt separabel über K, wenn Irr (a, K) nur einfache Nullstetten hat. 
B e m e r k u n g : Ist a algebraisch über K und x(-K) = 0, so ist a schon separabel 
über K (Satz 44.3). Das Beispiel im Anschluß an Satz 44.3 zeigt, daß hierbei 
auf die Voraussetzimg %{K) = 0 nicht verzichtet werden kann. 

Satz 2: Sind yi, • • - ,yr separabel über dem Körper K, so gibt es minde-
stens ein primitives Element & mit der Eigenschaft K(y\, ..., yT) = K{&). 

B e w e i s : Wir zeigen etwas mehr, nämlich das Folgende: Ist a algebraisch 
und ß separabel über K, so gibt es ein & mit K(a, ß) = K{&). Daraus folgt der 
Satz zunächst für r = 2 und dann durch Iteration allgemein. Wir können uns 
ferner wie beim Beweis von Satz 1 auf den Fall beschränken, daß K unendlich 
ist, weil andernfalls mit K auch K(yi, y2 yr) = E endlich wäre und für & 
ein erzeugendes Element der zyklischen Gruppe Eq gewählt werden könnte. 
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Es sei nun Irr (a, K) = p(x), Irr (ß, K) = q(x) und F d K eine Körpererweite-
rung von K derart, daß p(x) und q(x) in F\x\ in Linearfaktoren zerfallen: 

P(x) = (x — ai) (x — a2) . . . (x — <xk), 
q(x) = ( x - ß j (x — ß2) . . . (z — fit); 

dabei sei a = ai und ß = ßi. Voraussetzungsgemäß sind die xx nicht notwendig 
paarweise voneinander verschieden, wohl aber die ßx- Wir betrachten nun für 
s ^ 1 und t 2g 2 die höchstens k(l — 1) Gleichungen a + xß =; a , + xßt. Da 
ßt =|= ß ist, besteht die Gesamtheit aller Lösungen x e K aus höchstens k(l — 1) 
Elementen. Nun war K unendlich; also gibt es ein f e K (f =p0) mit 

(1) « + + (s ^ 1, t ^ 2). 
Wir zeigen nun, daß = a + iß ein primitives Element von K(oc, ß) über K 
ist. Da K(&) c K(tx, ß) ist, bleibt K(a., ß) c K(&) zu zeigen, und dafür genügt der 
Nachweis von ß e K{&). Dieser Nachweis wird im folgenden erbracht. 
In K(&)[x] liegen die Polynome q(x) und f(x) — — ix); sie zerfallen beide 
in F[x\ in Linearfaktoren und haben ß e F als Nullstelle. Weitere gemeinsame 
Nullstellen könnten sich nur unter den ßt, t ^ 2, befinden; aber nach (1) 
kommen sie nicht in Frage. Also haben q(x) und f(x) in f [x ] den g.g.T. x — ß. 
Denkt man sich einen g.g.T. von q(x) und f(x) dvu:ch den Euklidischen Algorith-
mus ermittelt, so bekommt man ein Assoziiertes tj(x — ß), rj e F, rj #= 0, von 
x — ß. Dieser Euklidische Algorithmus findet aber wegen q(x), f(x) e 
bereits in K(&)[x'] statt, und das liefert rj(x — ß) e K(&)\x], also rj e K(&), 
rjß e K(&) und wegen rj =)= 0 auch ß e K{&), was noch zu zeigen war. 
Damit ist Satz 2 bewiesen. 
Notwendig dafür, daß E einfach algebraisch über K ist, ist sicher [E: K] < oo 
(Satz 53.3). Darüber hinaus ergibt sich jetzt der 

Satz 3: Es sei E eine endliche Körpererweiterung von K und %{K) — 0. 
a) Dann ist E einfach algebraisch über K. 
b) Ferner gibt es nur endlich viele Zwischenkörper E D LD K. 

B e w e i s : 
a) Nach Satz 54.5 ist E eine endlich erzeugte algebraische Erweiterung 
K(oci, «2, . . . , <xr) von K. Der obigen Bemerkung zufolge sind die a e wegen 
X(K) = 0 separabel über K. Man kann also Satz 2 anwenden. 
b) Das folgt aus a) und Satz 1. 
B e m e r k u n g : Der Beweis von Satz 2 war konstruktiv; er gestattet die expli-
zite Bestimmung primitiver Elemente. In den meisten Fällen (vgl. etwa § 27, 
Beispiel 3, und Aufgabe 54.3) wird man dabei f = 1, also & = a + ß als er-
zeugendes Element für K(oc, ß), wählen können. 

A u f g a b e 1: Man bestimme ein primitives Element & und sein definieren-
des Polynom Irr {&, Q) für Q(i, |/3) über Q. 

A u f g a b e 2: Es sei E der Zerfällungskörper von z3 — 7 eQ[a;]. Man be-
stimme ein primitives Element & von E über Q und sein definierendes Polynom 
Irr {&, Q). 
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§ 62 Inseparable Polynome 

Definition: Es sei K ein Körper. Ein in K[x] irreduzibles Polynom p(x)eK[x\ 
heißt separabel über K, wenn es in seinem ZerfäUungskörper nur einfache Null-
stellen hat. Ein beliebiges Polynom f(x) e K[x], Grad f(x) S: 1, heißt separabel 
über K, wenn jeder Primteiler p(x) von f(x) in K[x\ separabel über K ist. Ein 
Polynom f(x) e K[x\, Grad f(x) ^ 1, das nicht separabel über K ist, heißt in-
separabel über K. 

Daß es sowohl separable wie inseparable Polynome gibt, wissen wir aus § 44. 
Zu der gegebenen Definition ist ferner folgendes zu bemerken. Ist f(x) e K\x~\ 
separabel über K und E ein Oberkörper von K, so bleibt f(x) auch separabel 
über E. Ist dagegen L ein Teilkörper von K und schon f(x) e L[x], so kann f(x) 
separabel über K und gleichzeitig inseparabel über L sein, wie das Beispiel 
aus § 44 zeigt. 
In § 61 haben wir bereits gesagt, wann ein Element a separabel über K heißt. 
Ergänzend hierzu gelte noch die 

Definition: Die Körpererweiterung E von K heißt separabel über K, wenn 
jedes et e E separabel über K ist. 

Die beiden folgenden Sätze ergeben sich unmittelbar aus Satz 44.3. 

Satz 1: Es sei K ein Körper der Charakteristik Null und f(x) e K[x\, Grad 
f(x) ^ 1. Dann ist f(x) separabel über K. 

Satz 2: Jede algebraische Körpererweiterung E eines Körpers K der Charak-
teristik Null ist separabel über K. 

Schließlich notieren wir Satz 44.3 selbst noch einmal in einer etwas schärferen 
Fassung. 

Satz 3: Ein über dem Körper K irreduzibles Polynom p(x) e K\x\ ist genau 
dann separabel über K, wenn p'(x) =(= 0 ist. 

Beweis : 
a) Es sei p'(x) =(= 0. Hierzu vergleiche man die Bemerkung im Anschluß an.den 
Beweis von Satz 44.3. 
b) Es sei p(x) separabel über K. Wegen Grad p(x) Sg 1 besitzt p(x) e K\x\ in 
seinem Zerfallungskörper E wenigstens eine Nullstelle. Es kann also nicht 
p'(x) = 0 sein, weil in diesem Fall nach Satz 26.6 jede Nullstelle von p(x) eine 
mehrfache Nullstelle wäre. 
Zuletzt beweisen wir noch den 

Satz 4: Es sei K ein Körper mit Primzahlcharakteristik %(K) = p. 
a) Ist f(x) e K[x~\ irreduzibel über K, so gibt es ein m 0 derart, daß jede Null-
steile von f(x) die gleiche Vielfachheit pm hat. Das Polynom f(x) hat dann die 
Gestalt f(x) = g(xv) mit einem g(x) e K\x\. 
b) Ist a algebraisch über K, so gibt es ein m ^ 0 derart, daß aPm separabel über K 
ist. 
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B e w e i s : 
a) Is t f(x) separabel über K, so werde m = 0 gewählt. Es sei daher weiter f(x) 
inseparabel über K, nach Satz 3 also f'(x) = 0. In einem solchen f(x) müssen 
alle diejenigen Potenzen xv den Koeffizienten Null haben, für die pfv gilt. Es 
gibt also ein gi(x) e K[x\ mit f(x) = gi(xv), und gi(x) ist mit f(x) irreduzibel 
über K. Das Polynom gi{x) seinerseits ist genau dann inseparabel über K, 
wenn ein von selbst über K irreduzibles Polynom g%(x) 6 K[x\ mit gi{x) = g2(%p), 
also f(x) = gz(%p'), existiert. Man denke sich dieses Verfahren fortgesetzt, bis es 
abbricht: Es existiert eine Zahl m und ein über K irreduzibles separables 
Polynom gm(x) = g(x) e K[x\ derart, daß f(x) = g(xP") gilt. 
Ist jetzt E ein Oberkörper von K, der alle Nullstellen acß von f(x) und ßv von 
g(x) enthält, so besteht in E\x\ eine Zerlegung g(x) = c(x—ß\) (x—ßi) ••• (x—ßk) 
mit ßi =)= ßj für i =)= j und einem c e K, c 4= 0. Für j(x) bedeutet das 

f(x) = c(xv—ßi)(xP"~ß2) ... (xP~— ßk). 

Ersetzt man hierin x etwa durch die Nullstelle ai von f(x), so wird genau eine 

der Klammern rechter Hand Null, etwa die erste: ßi = a?". Entsprechend 

bekommt man bei geeigneter Wahl der Numerierung ß% = a | " und insgesamt 

i(x) = c(xP-— « D « D • • • 4") («i =t= 0C} f ü r i + j). 

Nun ist x(E[x]) = P- Jede der rechts stehenden Klammern kann also nach 
Aufgabe 20.8 b) umgeschrieben werden, und man bekommt das behauptete 
Resultat 

f(x) — c(x — oci)P"(x — x2)P" . . . (x — 0£fc)Pm (<X{ 4= X] f ü r i 4= j). 

b) Man verfolge den ersten Abschnitt des in a) geführten Beweises für das 
Polynom f{x) = I r r («, K). 

A u f g a b e 1: Es sei y eine Unbestimmte über und K — %{y). Man 
zeige die Irreduzibilität und Inseparabilität von f(x) — 2ye K[x] über K. 

Li tera tur : ABTIN [3] , HASSE [7] , HASSE-RLOBE [8] . 
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Wir haben uns im letzten Kapitel eine gewisse Übersicht über Körpererweite-
rungen E eines Körpers K verschafft. Sind nun K und E gegeben, so kann man 
die Frage nach allen Zwischenkörpern K CL CE von K und E stellen und ihre 
explizite Bestimmung verlangen. Die Beantwortung dieser Frage ist aus vielen 
Gründen von Interesse. Wir beschäftigen uns mit der genannten Problem-
stellung nur für gewisse besonders wichtige endliche Erweiterungen E von K; 
die Anzahl der Zwischenkörper L ist in diesen Fällen immer endlich. Die ersten 
hierher gehörenden grundlegenden Untersuchungen stammen von dem 
französischen Mathematiker E. Galois ; nach ihm ist die inzwischen sehr um-
fangreich gewordene Theorie benannt. Ihr besonderes Kennzeichen ist eine 
sinnreiche Verbindung von Körper- und Gruppentheorie. Die im folgenden 
durchgeführte Darstellung geht auf E. Artin (1898—1962) zurück. 

§ 63 Isomorphismen von Körpern 

Wir beginnen mit einer 
Definition: ES sei 0 eine mvMiplikativ geschriebene Gruppe und E ein 

Körper mit der m/ultiplikativen Gruppe EQ. Gegeben seien Homomorphismen 
CTi, <72, • •ON von $ in EO; man nennt sie auch Charaktere von G in Eq. Sie 
heißen linear unabhängig in E, wenn aus 

(1) aiffi(x) + a2a2(x) + ... + anan{x) = 0 

für gewisse feste are E und alle x e G folgt: 

(2) ai = a2 = . . . = o„ = 0. 

Von grundlegender Bedeutung ist nun der folgende 
H i l f s s a t z 1: Sind die Charaktere <ji, ff» von G in EQ paarweise 

voneinander verschieden, so sind sie bereits linear unabhängig in E. 
Beweis : Vollständige Induktion nach n. Zunächst sei n = 1. Dann ist 

oi(x) 4= 0; aus ai<ri(z) = 0 folgt also oi = 0. Wir nehmen nun an, die Behaup-
timg sei für je n Charaktere richtig; ihre Gültigkeit muß für n + 1 paarweise 
voneinander verschiedene Charaktere OI, • • •, o»+i von G in EQ nach-
gewiesen werden. Für gewisse feste av e E und alle x e G gelte 

(1') aiffi(x) + 02a2{x) + . . . + a„+i<r„+i(a;) = 0. 

Wir zeigen 01 = 0 2 = • • • = «n = 0; daraus folgt wie eben noch oB+i = 0 
und damit 
(2') «i = 02 = . . . = o„+i = 0. 
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Es sei i ^ n ein beliebiger fester Index; wir zeigen a< = 0. Zunächst gibt es 
wegen cr< =)= <rB+i ein a e Cr mit Oi{a) 4= on+i(a). Ersetzt man in (1') das x durch 
(xx, so bekommt man 

(3) a,ioi{a)0i(x) + ai,ai{(x)a2{x) + . . . + o„+iffn+i(a)<rB+i(x) = 0. 

Multiplikation von (1') mit cr„+i(a) liefert 

(4) ai<r»+i(a)<Ti(a;) + ^On+lfcWz) + • • • + an+l<r»+l(aW+l(z) = 0. 

Subtrahiert man (4) von (3), so ergibt sich 

n 
2 OiM«) — = 0, 
7-1 

auf Grund der Induktionsvoraussetzung also a,)(oj(a.) — ffn+i(a)) = 0 für alle 
j ig n, und da für j = » die Klammer ungleich Null ist, folgt a< = 0. Damit 
ist Hilfssatz 1 bewiesen. 

Definition: Es seien K und E Körper und o\, Isomorphismen 
von K in E. Sie heißen linear unabhängig in E, wenn die zugehörigen Charaktere 
von Ko in EQ es sind. 

Aus dem Hilfssatz folgt also der 

Satz 1: Es seien K und E Körper und a\,a% an paarweise voneinander 
verschiedene Isomorphismen von K in E. Dann sind a\, a^, . . a n linear un-
abhängig in E. 

Die nachstehende Verabredung ist sehr praktisch. 

Definition: Es seien K und E Körper und a\, 02, •. ., an Isomorphismen 
von K in E. Dann heißt ae K ein Fixelement oder Fixpunkt bezüglich 01, 
0*2, • • •» an< wenn oi(a) = 02,(0) = ... = an{a) gilt. 

Da 0 und 1 und mit a und b auch a ± b, ab und (falls 6 4= 0) 6_1 Fixelemente 
sind, erhält man sofort den 

Satz 2: Es seien K und E Körper, <ri, On Isomorphismen von K in E 
und F cK die Menge aller Fixelemente bezüglich 01, an. Dann ist F ein 
Körper. 

Man nennt F den Fixpunktkörper von K bezüglich 01, 02, . . . , an. Werden zu 
diesen Isomorphismen weitere hinzugenommen, so wird der neue Fixpunkt-
körper ein Teilkörper von F ; läßt man einige der a , weg, so wird der Fixpunkt-
körper der restlichen oy ein Oberkörper von F. Über die Größe von F gibt der 
grundlegende Satz 3 Auskunft, dem wir einen elementaren Hilfssatz voran-
stellen. 
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Hilfssatz 2: Es seien die mn Elemente ay des Körpers K und das lineare 
homogene Gleichungssystem 

«11^1 + «12^2 + • • • + ®lnxn = 0 
«21^1 + «22^2 + . . . + a2nXn = 0 

OmlXl + Om2%2 + . . . + 0-mnXn ----- 0 
mit m < n gegeben. Dann gibt es eine Lösung (xi, x2, ..., xn) e Kn dieses 
Systems, in der nicht alle Xi Null sind. 

Beweis: Man betrachte die n Vektoren ctv = (a\v, 
des m-tupel-Raumes V = Km (vgl. § 48). Der Baum V hat die m-elementige 
Basis 

{(1,0,0 0), (0,1,0, . . . , 0 ) , . . . , ( 0 , 0 , 0 , . . . , 1 ) } , 

also die Dimension m. Es ist n > m. Die n Vektoren «i, ac2, . . . , <xn aus V sind 
also nach Satz 50.4 über K linear abhängig: Es gibt nicht sämtlich verschwin-
dende x\, x2, ... ,xn aus K mit x\a.\ + £2^2 + ... + xnocn = o e V; dieser 
Nullvektor ist (0, 0, 0, . . . , 0). Schreibt man die Beziehung für die lineare 
Abhängigkeit der av aus, so erhält man gerade das obige durch die speziellen Xi 
nichttrivial gelöste Gleichungssystem. 

Satz 3: Es seien <ri, 0%, ...,an paarweise voneinander verschiedene Iso-
morphismen des Körpers K in den Körper E und F c K ihr Fixpunktkörper. 
Dann gilt \K: i7] 2: n. 

Beweis : Wir führen die Annahme [K\ F] = m < n auf einen Wider-
spruch. Es sei {ai, a2, . . . , am) eine Basis von K über F und m <n. Das 
System 

) + x2o2(xi)+...+ XnOn((Xl ) = 0 
xiai(<x2 ) + X2tr2(a2 ) + . . . + xnan{az ) = 0 

(am) + x2a2(am) + ... + xnon(txm) = 0 

ist dann nach Hilfssatz 2 durch nicht sämtlich verschwindende xi e E lösbar. 
Im Widerspruch zu Satz 1 zeigen wir nun, daß mit diesen e E für jedes a e K 
güt: 
(5) x-\p\(a) + x2a2(a) + .. . + x„a„(x) = 0. 

m 
Zunächst schreibe man a = 2 a i a i m i t Koeffizienten aj e F. Diese aj sind Fix-

l 
punkte. Multipliziert man die j-te Gleichung des obigen Systems mit cri(aj) 
- a2(aj) = ... = an(aj), so bekommt man 

xiai(ai a i ) + x2a2(ai a i ) -f ... + x„an(ai a i ) = 0 
xiai(a2 a2 ) + x2a2(a2 <*.2) ... + xnon(a2 0C2 ) = 0 

xi0l(0m<xm) + X2O2 (am«m) + • • • + = 0, 
und Addition dieser Gleichungen liefert in der Tat die Beziehung (5). Die An-
nahme m < n war also falsch, und Satz 3 ist bewiesen. 
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§ 64 Automorphismen von Körpern 

Wir spezialisieren nun die Betrachtungen von § 63. Es sei E = K, und die 
paarweise voneinander verschiedenen Isomorphismen ai, cr2, . . . , on seien Auto-
morphismen des Körpers E. Damit der Fixpunktkörper F genau aus allen den-
jenigen Elementen ae E besteht, die unter allen <tj festbleiben, ai(a) = a, 
nehmen wir weiter an, einer der Automorphismen crj sei die Identität. Nach 
Satz 63.3 gilt wieder [E: F] n. Aber im allgemeinen wird sich diese Ab-
schätzung verbessern lassen. Wenn nämlich durch eine Verknüpfung der tr< 
oder of1 ein neuer Automorphismus an+i =4= 1 ^ » ^ n, gewonnen werden 
kann, so läßt auch on+i den Körper F elementweise fest, und Satz 63.3 liefert 
sogar [E: .F] 22 n + 1, da F dann auch Fixpunktkörper der tri, 02, . . . , an+1 ist. 
Das Verfahren kann nur dann nicht fortgesetzt werden, wenn die vorhandenen 
ai bereits eine Gruppe bilden. Diese Betrachtungen legen die Voraussetzungen 
des folgenden Satzes nahe. 

Satz l s Es sei G eine Gruppe von n Automorphismen des Körpers E und F 
der zu G gehörende elementweise festbleibende Fixpunktkörper. Dann gilt 
[.E:F] = n. 

Beweis : Es sei G — {a\, (X2, ff„}. Wir beginnen mit einer Vorbetrach-
tung. Für jedes ae E definieren wir die Spur S( a) = oi{x) + 02(01) + ... 
+ <r»(«) und zeigen für sie zwei Eigenschaften. Erstens gilt für jedes <r< e G die 
Gleichung a(S(x)) = <Ticri(a) + fftffz(x) + • • • + OiCni^) = S(x), da auch 
cfiff1, an <r<crn die Gruppe G ausschöpfen; für jedes x e E ist also S(x) e F. 
Zweitens verschwindet S(a) sicher nicht für alle xeE; andernfalls wäre ja 
loi(a) + lff2(a) + . . . + l<r»(a) = 0 für alle xeE im Widerspruch zu Satz 63.1. 
Aus Satz 63.3 folgt [E: F] ¡ä n. Satz 1 ist also bewiesen, sobald [E: F] ^.n 
gezeigt ist. Dazu wählen wir ai, 0C2, ...,<*„, mit m> n aus E und zeigen die 
lineare Abhängigkeit der an eE über F; nach Satz 50.4 kann dann nur [E: F] 
^ n sein. Zunächst gibt es nach Hilfssatz 2 aus § 63 nicht sämtlich verschwin-
dende Elemente x\, X2, ..., xm aus E derart, daß 

ZlO-fHai) + ®2ffr1(«2) + • • • + XmaT^Xm) = 0 
(1) xi02l(xi) + a;2CT21(a2) + . . . + «m^O*») = 0 

«lffnMai) + Xza^ixz) + ... + xmOn 1(«m) = 0 
gilt, und da es auf die Numerierung der oj nicht ankommt, kann man xi 4= 0 an-
nehmen. Wir wissen nun: Es gibt ein x e E mit 8(x) =)= 0; dabei ist x =j= 0. Multi-
pliziert man jede der n Gleichungen (1) mit acxi1 =)= 0, so sieht man, daß auch 
die m nicht sämtlich verschwindenden Elemente a, xx^x^, 0x^x3, . . . , axi lxm 
aus E an Stelle von x\, X2, ..., xm in (1) eingetragen werden können. Bezeichnet 
man sie wieder mit x\, x%, ..., xm, so gilt also (1) mit einem x\ 4= 0, für das zu-
sätzhch S(x1) =j= 0 ist. Nun wende man auf die i-te Gleichung in (1) den Auto-
morphismus ai an (1 ^ i n) und addiere die so entstandenen neuen n Glei-
chungen. Man bekommt <S(zi)oci + ¿>(22)32 + . . . + 8(xm)xm = 0, und hierin 
stammen die S(xj) aus F, und S(xi) ist ungleichNull. Die Elemente ai, . . . , Xm 
aus E sind also linear abhängig über F, und Satz 1 ist bewiesen. 

14 Hornfeck, Algebra 
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§ 65 Normale Körpererweiterungen 

65.1 Es sei E ein Körper und G eine endliche Gruppe von Automorphismen 
von E. Den zu G gehörenden Fixpunktkörper F bezeichnen wir mit x(G). Nach 
Satz 64.1 gilt [E: F] = |G|. Das liefert die folgende Beschreibung der Ab-
bildung x: Jeder endlichen Gruppe 0 von Automorphismen von E wird als 
Bild x(G) ein gewisser Teilkörper F cE mit der Eigenschaft [E: F ] < oo zu-
geordnet. Es ist nicht gesagt und im allgemeinen auch nicht richtig, daß jeder 
Teilkörper L c E mit [E: L] < oo dabei als Bild auftritt. Es gilt die Regel: 
Gi c G2 => x{Gy) D x(G2). 
Ist umgekehrt F ein Teilkörper von E mit [E: F] < oo, so bilden die Auto-
morphismen von E, die F elementweise festlassen, eine Gruppe; wir bezeichnen 
sie mit y(F) und nennen sie die Automorphismengruppe von E über F. Es gilt 
|y(F) | < oo; ist nämlich F' d F der Fixpunktkörper der Automorphismen aus 
y(F), so wird |y(f)| < [E: F'] < [E: F] < oo nach Satz 63.3. Das liefert die 
folgende Beschreibung der Abbildung y: Jedem Teilkörper F cE mit der 
Eigenschaft [E: .F] < oo wird als Bild eine gewisse endliche Gruppe G = y(F) 
von Automorphismen von E zugeordnet. Es ist zunächst nicht gesagt, daß 
jede endliche Gruppe von Automorphismen von E dabei als Bild auftritt; doch 
wird sich das in der Aussage (2) des folgenden Satzes 1 als richtig herausstellen. 
Es gilt die Regel: -F\ c i<2 => y(F{) o y(F2). 

Satz ls Mit den vereinbarten Bezeichnungen gilt 
(1) x(y(F))D F, 
(2) y(x(G)) = G. 

Beweis : Die Beziehungen x(y(F)) d F und y(x(G)) 3 G folgen aus den 
Definitionen von x und y. Zu zeigen bleibt also noch y(x(G)) c G oder auch nur 
|y(x(6?))| g |G|. Dazu setzen wir x(G) = F und bezeichnen den Fixpunktkörper 
von y(F) mit F' d F. Satz 64.1 liefert dann |y(f)| = [E: i1 ' ] ^ [E: F] = \G\, 
also |y(x(ö))| ̂  |G|. 

Daß in der Aussage (1) von Satz 1 das Gleichheitszeichen stehen kann, aber 
nicht muß, zeigen wir durch zwei Beispiele. 

Be isp ie l 1. Es sei E = G(y2) und F = 0.. Ein Automorphismus a von E, der 
Q elementweise festläßt, ist bekannt, sobald cr(]/3) bekannt ist; auf diese Weise 
bestimmen wir y(F). Nach Satz 58.5 kommen für cr(]/2) nur Konjugierte von J/2 
über Ü, also ]/2 selbst und —]/2, in Frage. Der Fall <r(]/2) = |/2 kann wirklich 
eintreten; es ist dann a der identische Automorphismus e. Daß auch der Fall 
<r(y2) = —y2 möglich ist, hat die folgenden Gründe: Erstens ist —y2 ein 
Element von G(y2); zweitens gilt Q.( j/2) ~ —y2) vermöge a nach Satz 58.2 
(Spezialfall); drittens ist es eine Abbildung von E auf E. Diesen zweiten Auto-
morphismus von E, der F elementweise festläßt, nennen wir jetzt r ; weitere 
gibt es nicht. Also wird y(F) = {e, r}. Nun bestimmen wir x(y(F)). Welche 
Elemente aus E bleiben unter e und r fest ? Jedes a + b]/2 e E (a,b eQ.) mit 
b =4= 0 wird durch t bewegt. Also kommen nur Elemente aus F = £ als Fix-
elemente in Frage, und es wird x(y(F)) = F. 
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Bei sp i e l 2. Es sei E = £}(|/7) und F = Q,. Ein Automorphismus a von E, der 
Q elementweise festläßt, ist bekannt, sobald <r(f/7) bekannt ist; auf diese Weise 
bestimmen wir y(F). Nach Satz 58.5 kommen für cr(|/7) nur Konjugierte von |/7 

_ - 1 i — 
über Q., also f/7 selbst sowie und ofi |/7 (co = — - + —y3), in Frage. Von 

¿i JJ 
diesen drei*Konjugierten liegt nur j/7 in E. Der einzige Automorphismus von E, 
der F elementweise festläßt, ist also die Identität e, und es wird y(F) = fe}. 
Aber hier ist ersichtlich x(y(F)) = E ^ F. 
Die Aussage (2) von Satz 1 zeigt, daß x die Gesamtheit aller endlichen Grup-
pen G von Automorphismen von E eineindeutig auf eine Menge gewisser 
Unterkörper F cE mit [E: F] < oo abbildet; Anwendung von y liefert ja: 
x(GI) = X(G2) =>Gi = G2. 
Bei dieser Abbildung tritt ein F c E mit [E: F] < oo dann und nur dann als 
Bild auf, wenn in (1) das Gleichheitszeichen steht: x(y(F)) = F. Ist nämlich 
x(y(F)) = F, so ist F das Bild von y(F), und aus F = x(G) folgt y(F) = G 
nach (2), also x(y(F)) = F. 
Unterkörper F c E mit x(y(F)) 4= F werden in der folgenden grundlegenden 
Definition ausgeschlossen. 

Definition: Es sei E eine endliche Körpererweiterung des Körpers F, ferner 
y(F) die Gruppe aller derjenigen Automorphismen von E, die F elementweise fest-
lassen, und x(y(F)) der Fixpunktkörper von y(F). Genau dann heißt E normal 
über F, wenn x(y(F)) = F ist, und in diesem Fall heißt y(F) = D/G(E\F) die 
Galoisgruppe von E über F. 

Es ist also Q(]/2) normal über Q (Beispiel 1), aber £}(|/7) nicht normal über Q 
(Beispiel 2). Die Galoisgruppe {e, t} von £l(|/2) über Q ist zyklisch von der 
Ordnung 2. 
Wir notieren zunächst den 

Satz 2: Es seien E und K Körper und E normal über K. Dann gilt [E: K\ 
= \0(E\K)\. 

Bewei s : Die Gruppe G(E\K) = y(K) ist endlich, und sie hat x(y(K)) = K 
als Fixpunktkörper. Die Behauptung folgt also aus Satz 64.1. 

65.2 Bislang ist noch nicht zu sehen, welche besondere Bedeutung diesen 
Körpererweiterungen E von K zukommen sollte, die wir noch dazu als normal 
über K bezeichnet haben. Auch erscheint es wünschenswert, an Stelle der 
Definition eine handlichere Beschreibung für normale Erweiterungen kennen-
zulernen. Beiden Bedürfnissen dienen die folgenden Sätze. 

Satz 3: Die Körpererweiterung E von K sei normal über K mit der Galois-
gruppe G(E\K). Es sei xeE und B(a) = {a{ a): a e G(E\K)} = {ai = a, a„} 
die Menge aller Bilder a(x) von a durch Automorphismen o aus G(E\K). Dann gilt 
Irr (a, K) = (x — ai) (x — a2) . . . (x — an). 

B e w e i s : Wir setzen (x — ai) (x — • • • (x — a„) = p(x) e E\x\. Dieses 
Polynom ist normiert und hat a als Nullstelle. Wir haben zu zeigen, daß 

1 4 * 



212 Galoistheorie 

p(x) e K[x] und Grad p(x) = Grad Irr (a, K) ist. Ein oeG(E\K) bildet 
{ai, a2, . . . , an} auf sich ab, permutiert also die a„ nur und läßt daher die 
Koeffizienten von p(x) fest; es ist, als wenn man die Faktoren des Produkts für 
p(x) permutiert hätte. Die Koeffizienten von p(x) gehören also zum Fixpunkt-
körper FcE von G(E\K), und da E normal über K ist, gilt F — K\ es folgt 
p(x) e K[x]. Deswegen und weil p(rx) = 0 ist, gilt weiter Grad p(x) ^ Grad 
Irr (a, K), und es bleibt zu zeigen: Grad p(x) ^ Grad Irr (a, K). Dies wiederum 

m 
folgt, sobald gezeigt ist, daß das Polynom Irr (a, K) = 2 aßxß alle n Elemente 

M = 0 m 
ccp als Nullstellen hat. Dazu wende man a e G(E\K) auf 2 = 0 an und 

m fi = 0 

beachte, daß <x(a) in 2 aß(a(a))li = 0 mit a e G(E\K) alle Elemente a, e B(a) 
durchläuft. 
Bemerkung: In Satz 3 ist n ^ \G(E\K)\. Das Gleichheitszeichen steht dann 
und nur dann, wenn a ein primitives Element von E über K ist. 

Satz 4: Eine normale Erweiterung E des Körpers K ist separabd über K. 
Beweis : Da E endlich über K ist, ist jedes ix.eE algebraisch über K, und 

nach Satz 3 hat das Polynom Irr (a, K) nur einfache Nullstellen. 
Ferner gilt der 

Satz 5s Die Körpererweiterung E von K sei normal über K und p(x) e K[x\ 
irreduzibel über K. Liegt dann eine Nullstelle von p(x) in E, so auch alle anderen. 
Oder: Mit a e E liegen alle Konjugierten von a über K in E. 

Beweis : Es sei p(a) = 0 für a e E. Da das Polynom p(x) in K[x] irreduzibel 
ist, ist es bis auf einen Faktor aus K gleich Irr (a, K), und dieses Polynom zer-
fällt in E[x] in Linearfaktoren nach Satz 3. 
Dieser Satz zeigt sofort, daß der reelle Körper £}( j/7) aus Beispiel 2 nicht 
normal über Q. ist; denn zwei der Konjugierten von ]/7 über G sind nicht reell 
und demnach nicht Elemente von £i(^7). 
Der folgende Satz gibt nun die gewünschte Beschreibung normaler Körper-
erweiterungen; auf ihm beruht ihre Bedeutung. 

Satz 6s Es seien E und K Körper. Die folgenden drei Aussagen sind dann 
gleichwertig. 
(1) E ist eine normale Erweiterung von K. 
(2) E ist Zerfällungskörper eines über K separablen Polynoms g(x) e K\x\. 
(,3) E ist Zerfällungskörper eines Polynoms f(x) e K\x\ mit lauter einfachen Null-
stellen. 

Beweis : 
(1) => (2): Da E speziell endlich über K ist, gibt es nach Satz 54.5 über K 
algebraische ai, a2, . . . , a» aus E mit E = K(ai, a»). Nach Satz 4 sind 
diese otr, also auch die Polynome pr(x) = Irr {ct.,, K) separabel über K. Also 
ist g(x) = pi(x)p%(x)... pn{x) e K[x] separabel über K. Da E normal über K 
ist, zerfallt g(x) in E[x\ in Linearfaktoren (Satz 5). Der Oberkörper E von K 
entsteht aus K bereits durch Adjunktion eines Teils der Nullstellen von g(x), 
ist also Zerfällungskörper von g(x) e K[x~\. 
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(2) => (3): Haben fi(x) und Pj(x) in g(x) = pi(x)p^(x) . . . pn(x) eine Nullstelle 
ß e E gemeinsam und sind die pv{x) e K\x\ irreduzibel über K, so sind abge-
sehen von Faktoren aus K beide Polynome pi(x) und pj(x) gleich Irr (ß, K). 
Streicht man also in g(x) solche mehrfach aufgeführten Primfaktoren bis auf 
jeweils einen, so entsteht ein Polynom f(x) e K[x] mit einfachen Nullstellen, da 
die pv(x) nach Voraussetzung nur einfache Nullstellen haben. Man bekommt E 
aus K durch Adjunktion aller Nullstellen von g(x), also auch von f(x); also ist E 
auch Zerfällungskörper von j(x) e K[x]. 

(3) => (1): Nach Satz 54.5 ist E endlich über K. Man betrachte die Gruppe y{K). 
Sie hat so viele Elemente, wie es Fortsetzungen des identischen Automorphis-
mus e: K -> K auf E gibt. Aussage b) von Satz 58.3 liefert also |y(/i)| = [E: K\. 
Es sei ferner X(y(K)) = F 3 K der Fixpunktkörper von y(K). Zu zeigen ist 
F = K. Nach Satz 64.1 gilt \y(K) \ = [E: F], Aus EdFdK und [E:F] = [E: K] 
< oo folgt aber mit der Gradformel [F: K] = 1 oder F — K. 
Der wichtigste Spezialfall von Satz 6 ist der 

Satz 7 s Es sei K ein Körper der Charakteristik Null und E eine Kör per-
erweiterung von K. Genau dann ist E normal über K, wenn E Zerfällungskörper 
eines g(x) e K[x\ ist. 

Beweis : Ist E normal über K, so ist E Zerfällungskörper eines g(x) e K[x\ 
nach Aussage (2) von Satz 6. Ist umgekehrte Zerfällungskörper eines g(x)eK[x\, 
so ist wegen x(K) = 0 von selbst g(x) separabel über K (Satz 62.1). Es gelten 
also die Aussagen (2) und (1) von Satz 6. 
Dieser letzte Satz zeigt am deutlichsten, mit welcher Berechtigung wir von 
normalen Körpererweiterungen sprechen. 
Be i sp ie l 2. Der Körper Q(|/7) war nicht normal über £1. Es gibt also kein 
g(x) e Q[ar] mit £l( j/7) als Zerfällungskörper. 

§ 66 Der Hauptsatz der Galoistheorie 

Wir geben uns nun eine normale Erweiterung E des Körpers K mit der Galois-
gruppe G(E\K) = G vor, betrachten Zwischenkörper E D Ld K und Unter-
gruppen U cG und halten an den Bezeichnungen von § 65 fest: Es bedeute x(U) 
den Fixpunktkörper von U, also einen gewissen Zwischenkörper von E und K, 
und es sei y(L) c G die Gruppe der Automorphismen von E, die L elementweise 
festlassen. Wir wollen alle Zwischenkörper L zwischen E und K bestimmen und 
Aussagen über sie machen. Etwas vereinfacht wird sich folgendes heraus-
stellen: Es gibt genausoviele Zwischenkörper L, wie es Untergruppen U 
von G gibt; E ist normal über jedem L, und L ist genau dann normal über K, 
wenn die Gruppe y{L) c G Normalteiler in G ist. 

Satz 1: Es sei E eine normale Erweiterung des Körpers K und L ein Zwischen-
körper. Dann ist E auch normal über L. 
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Beweis : Nach Satz 65.6 ist E Zerfällungskörper eines Polynoms f(x)eK[x] 
mit einfachen Nullstellen, also auch Zerfällungskörper des Polynoms f(x)eL[x] 
mit einfachen Nullstellen. Wiederum nach Satz 65.6 bedeutet das: E ist normal 
über L. 
Aber L muß nicht normal über K sein. Es sei etwa E der Zerfällungskörper 
von s? — 7 e &[«]; er ist normal über K = Q nach Satz 65.7. Der Zwischen-
körper L = £}(|/7) ist dann, wie wir wissen, nicht normal über K. Genauere 
Auskunft gibt der 

Satz 2: Es sei E eine normale Erweiterung des Körpers K und L ein Zwischen-
körper. Genau dann ist L normal über K, wenn für jeden Automorphismus 
o 6 G(E\K) gilt: a(L) = L. 

Beweis : Es sei G(E\K) = G; nach Satz 65.2 gilt [ E : K ] = |ö|; wir setzen 
|G = n. Weiter sei L ein Zwischenkörper zwischen E und K und y{L) = U; 
nach Satz 1 ist E normal über L, also G(E\L) = U und wieder [E: L] = \U\; 
wir setzen |E7| = m. Wegen U cG gilt m\n, und mit der Gradformel wird 

[L: K] = —. Nach Satz 63.3 gibt es also höchstens —Isomorphismen von Lin E, 
m m 

die K elementweise festlassen. Wir schieben nun zur Fortsetzung des Beweises 
eine Zwischenbetrachtung ein. 
Man wähle zwei Automorphismen o, r e G und beobachte ihre Wirkung auf L; 
wir bezeichnen die durch sie induzierten Isomorphismen von L in E mit 
o* \ L-+E und r*: L E. Wann ist o* = r* ? Es müßte a(a) = r(a) oder 
r_1<r(a) = a für alle a e L, also r_1<r e U oder aerU sein. Genau dann also gilt 

er* = T*, wenn a und r in derselben Linksnebenklasse von U liegen. Es gibt W 

m 
solche Nebenklassen von U in G; die Automorphismen a e G liefern also ge-

il 
nau — paarweise voneinander verschiedene Isomorphismen a* von L in E, 

m 
die K elementweise festlassen, und damit sind alle derartigen Isomorphismen 
von L in E gefunden, da es, wie bereits festgestellt, mehr nicht geben kann. 
Die Menge aller dieser a* sei G*; es war [G*| = —. 

m 
Es sei nun A die Gruppe der Automorphismen von L, die K elementweise fest-
lassen ; nach dem eben Erörterten gilt A c G*. Ferner sei F c L der Fixpunkt-
körper von A in L. Es gilt K c F c L. Genau dann ist L normal über K, wenn 
F = K oder [L: F] = [L: K] ist. Es war [L: K] = n = \G*\, und nach 

m 
Satz 64.1 ist [L: F] = \A\. Genau dann ist also L normal über K, wenn \A\ 
= |ß*| oder A = (?*, also jedes o* bereits ein Automorphismus von L ist: 
o(L) = L. Damit ist Satz 2 bewiesen. 

Das Resultat von Satz 2 ist recht instruktiv: Genau diejenigen Zwischen-
körper L sind normal über K, die durch die Automorphismen a e G(E\K) 
elementweise vielleicht verändert, im ganzen aber nicht bewegt werden. 
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Ist <p: A ->• B eine Abbildung von A in B und T eine Teilmenge von A, so 
wollen wir auch weiterhin die Restriktion von <p auf T mit <p*: T -> B be-
zeichnen. Wir notieren eine Variante von Satz 2, die mitbewiesen wurde. 

Satz 3: Es sei E eine normale Erweiterung des Körpers K und L ein Zwischen-
körper. Genau dann ist L normal über K, wenn die Menge G* aller Restriktionen 
a* der a e G(E\K) auf L die Gruppe der Avlomorphismen von L mit dem Fixpunkt-
körper K ist: G* = G(L\K). 
Der folgende Satz 4 wird gewöhnlich als der Hauptsatz der Galoistheorie be-
zeichnet; oft rechnet man auch den Inhalt der ergänzenden Sätze 5 und 6 mit 
dazu. 

Satz 4 s Es sei E eine normale Erweiterung des Körpers K mit der Galois-
gruppe G(E\K) = G. Mit M\ sei die Menge aller Untergruppen U cG, mit Mi 
die Menge aller Zwischenkörper E OLD K bezeichnet. Der Fixpunktkörper von 
U e Mi sei x(U) e Mz\ die Automorphismengruppe von E mit dem Fixpunkt-
körper L e Mi sei y{L) e M\. Dann gelten die folgenden Aussagen. 
(1) [E: K] = \G\. 
(2) Die Abbildung x: M\ h>- MI ist bijektiv; die Umkehrabbildung ist x~x = y. 
(3) Für Ui, U2 e Mx gilt: U± c Uz => x(Ui) d X(U2). 

Für Li, L2 e M% giU: LicL%=> y(Li) D y(L%). 
(4) E ist normal über jedem Zwischenkörper L e M%\ es gilt G(E\L) = y(L). Es 
ist [E: L] = \y{L)\, und [L: X] ist gleich dem Index von y(L) in G. 

Beweis : 
(1): Satz 65.2. 
(2): Es ist E endlich über K, die Abbildung x: Mi Mi also eine Injektion 
(§ 65.1). Da E sogar normal über K ist, ist E auch normal über jedem L e M% 
(Satz 1), und das heißt x(y(L)) = L; jedes L e hat also ein Original y(L) e M\, 
und die Abbildung x ist insgesamt bijektiv. Nach Satz 65.1 gilt y(x(U)) = U 
für-jedes U e M\ \ die Umkehrabbildung von x ist also y. 
(3): Diese Regeln wurden schon in § 65.1 ausgesprochen. 
(4): Die ersten beiden Behauptungen stehen in Satz 1 und der Definition der 
Galoisgruppe. Es folgt [E: L] = \y(L)\ nach Satz 65.2. Die Gradformel liefert 

a l s o [ i : X ] = J ^ = indy(L). 

Die wichtigste Aussage von Satz 4 ist (2). Die Bestimmung aller Zwischen-
körper E d 2/ d K wird damit auf die Bestimmung aller Untergruppen U einer 
endlichen Gruppe G zurückgeführt. Wir besprechen in § 67 ein Beispiel. 

Satz 5s Es sei E normal über K mit der Galoisgruppe G(E\K) = G und L ein 
Zwischenkörper mit der Gruppe y(L) = U c G. Genau dann ist L normal über K, 
wenn U Normalteiler von G ist. Ist L normal über K, so gilt G(L\K) ~ G/U. 

Beweis : Wir führen den Beweis in drei Schritten. 
1) Es sei a eG. Wir behaupten: Wenn U die Gruppe von L ist, so ist aUa-1 die 
Gruppe von a{L). Zunächst ist a(L) ein Zwischenkörper von E und K. Zu 
bestimmen ist die Menge aller r e G mit r<x(a) = <r(a) oder <r-1r<r(«) = a für 
jedes a 6 L. Also gilt a~xxa e U oder x 6 aUa~l. 
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2) Nach Satz 2 ist L genau dann normal über K, wenn für alle a e G gilt: 
a(L) = L. Nach 1) und Aussage (2) von Satz 4 ist das gleichwertig mit aUa-1 

= U für alle o eG. Also ist L genau dann normal über K, wenn U Normal-
teiler in G ist. 
3) Es sei nun L normal über K, also U Normalteiler von G. Die Galoisgruppe 
G(L\K) ist dann die Gruppe G* aus Satz 3. Für die Restriktion (ot)* eines 
Produkts OT von Automorphismen a, r e G auf L gilt natürlich (ot)* = O*T*. 
Das bedeutet G ^ G*; Kern dieser Abbildung ist U. Der Homomorphiesatz 
für Gruppen liefert also G(L\K) = G* ~ G/U. 

Der Formulierung von Satz 6 stellen wir eine kurze Betrachtung voran. Sind 
Ui und Ui Untergruppen der Gruppe G, so gibt es wenigstens eine Unter-
gruppe H von G, die U\ und Ui umfaßt, nämlich G selbst. Der Durchschnitt D 
aller dieser H ist wieder eine Untergruppe von G, die XJ\ und Ui umfaßt, und 
wegen D c H für alle H hat es einen Sinn zu sagen, D sei die kleinste Unter-
gruppe von G, die Ui und Ui enthält; sie existiert stets. Sind analog L\ und Li 
Zwischenkörper der Körper E und K, so hat es einen Sinn, von dem kleinsten 
Unterkörper L von E zu sprechen, der L\ und Li umfaßt; L ist der Durch-
schnitt aller gemeinsamen Oberkörper F cE von Li und Li. 

Satz 6 s Es sei E normal über K und L der kleinste Unterkörper von E, der 
die Zwischenkörper Li und Li von K und E enthält. Die Gruppen von Li, Li seien 
y(Li) = Ui und y(Li) = Ui. Die kleinste Untergruppe von G(E\K), die U\ 
und Ui umfaßt, sei U. Dann gilt für die Fixpunktkörper 
(1) x(U) = Li n Li, 
(2) x(Ui n Ui) = L. 

Beweis: 
(1): U wird von den Elementen aus Ui und Ui erzeugt. Automorphismen aus U 
lassen also jedenfalls LinLi elementweise fest: x(U) d Li nLi. Aus U 3 Ui 
folgt x(U) c Li\ aus U DUI folgt x(U) c Li. Also gilt auch x(U) c Li n Li und 
damit x( U) = Li n Li. 
(2): Behauptet wird y(L) = Uin Ui. Der Körper L wird von den Elementen 
aus Li und Li erzeugt. Automorphismen aus Ui n Ui lassen also sicher L 
elementweise fest: y(L) ^UinUi. Aus LD LI folgt y(L) c Ui; aus L d LI 
folgt y(L) c Ui. Also gilt auch y(L) c P j n Ui und damit y(L) = Ui n Ui. 

§ 67 Ein Beispiel 

Gegeben sei der Körper K —Q. Wir betrachten den Zerfällungskörper E o K 
von f(x) = x4 — 2eQ[x]. Nach Satz 65.7 ist E normal über £}. Die Null-
stellen von f(x) sind j/2, und — i \ß \ es wird also E = £}(|/2, i). Das 
Polynom x4 — 2 ist irreduzibel über £ (Eisenstein-Kriterium, p = 2); es 
folgt [E: K] = [£}(j/5, i): Ü()/2)] • : £ ] = 2 • 4 = 8. Nach Aussage (1) 
von Satz 66.4 besteht also G(E\K) aus acht Elementen. Diese Galoisgruppe be-
stimmen wir zunächst. 
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Ein Automorphismus <p der Gruppe G(E\K) = G wirkt auf die Elemente von 
E = £2(^2, i), läßt aber dabei die Elemente aus £2 fest. Ein <p e G ist daher 
bekannt, wenn <p(|/2) und <p(i) bekannt sind. Nach Satz 58.5 gibt es für <p(J/2) 
die Möglichkeiten |/2, ¿^2, — — i j / 2 , für <p(i) nur i und — i . Kombiniert man 
alle Möglichkeiten miteinander, so ergeben sich acht Fälle, die nun sämtlich 
Automorphismen von £1(^2, i) liefern müssen, da andernfalls |G| < 8 ausfiele. 
Nun können wir G aufschreiben. Wir definieren a e G durch tf(|/2) = ij/2 und 
o(i) = i, ferner r e G durch r(j/2) = ^2 und r(i) = — i . Dann wird r2 der 
identische Automorphismus e von i). Für die Potenzen von a bekommt 
man (T2(f/2) = o{%Sß) = ff(i)ff(V2) = —j/2, a\%) = i und cr3(y'2) = —ifä, 
o3(i) = i und schheßlich o4 = s. Die Gruppe G besitzt also die Untergruppe 
{e, ff, <r2, ff3}, die ihrerseits r e G nicht enthält, also noch die Nebenklasse 
{T, ffT, ff2r, <73T} liefert. Damit wird G = {e, a, ff2, ff3, r, crr, ff2r, o^r}. 
Wir untersuchen nun die Gruppe G; speziell müssen wir, um alle Zwischen-
körper von i) und Q ausfindig zu machen, alle Untergruppen von G 
bestimmen. Das Rechnen in G ist leicht zu übersehen. Man prüfe nach: r 
= T ( « | / 2 ) = T ( I ) T ( | / 2 ) = —iSß = O-3R(|/2) und Tff(I) = — i = <R3R(I). Also gilt 
ff4 = t 2 = e und Tff = ff3r — ff^r; nach Satz 18.1 ist G also isomorph zur 
Diedergruppe S4. Untergruppen von G können nur die Ordnungen 1, 2 ,4 und 8 
haben. Die Untergruppen der Ordnung 2 sind {e, er2}, {e, r}, {e, crr}, {e, <r2r} und 
{e, cr3r}; man findet sie durch Aufsuchen der Elemente er2, T, ffr, ff2r, a3r der 
Ordnung 2 in Cr. Nur {e, ff2} ist Normalteiler von G, die anderen Untergruppen 
der Ordnung 2 sind es nicht. Durch Probieren findet man die sämtlichen 
Untergruppen {e, ff, ff2, ff3}, {e, <r2, r, <r2r} und {e, er2, ar, cfir} der Ordnung 4; als 
Untergruppen vom Index 2 sind sie alle Normalteiler. Es ergibt sich das 
folgende Gruppendiagramm; "in ihm berücksichtigen wir die mengentheore-
tische Inklusion und kennzeichnen die Nichtnormalteiler durch einen Stern: 

Auf Grund der Aussagen (2) und (3) von Satz 66.4 muß es nun ein entsprechen-
des Diagramm der sämtlichen zehn Zwischenkörper L von E = £2(j/2, i) und £2 
geben, und L ist genau dann normal über £2, wenn (Satz 66.5) die Gruppe y(L) 
Normalteiler von G ist. Einige Zwischenkörper L kann man sofort hinschreiben: 
Ü(V2, i), £}, Ü(i"i/2), i), £(i), Ü(]/2), Man sieht leicht, und 
es wird sich gleich noch einmal herausstellen, daß sie paarweise voneinander 
verschieden sind. Damit hat man acht Zwischenkörper ohne Mühe notiert. Es 
fehlen nur noch zwei, die man aber nicht so leicht erraten wird. Nun entspricht 
jeder Untergruppe U c G ein Zwischenkörper x(U). Trivial sind *({e}) = Ü(j/2,i) 
und x(G) = Q. Wir bestimmen x({e, r}) = L. Da £2( j/2) von jedem Automor-
phismus aus {e, r} elementweise festgelassen wird, gilt E D Lo Q(J/S). Nun ist 

{e, lc «3r\* rr2\ U -r\* ip /t2T}* 
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[ E : Ü(|/2)] = 2 und nach Aussage (4) von Satz 66.4 auch [E: L] = |{e, T}| = 2. 
Die Gradformel liefert also L = x({e, r}) = 0(^2). Ganz analog überlegt 
man sich x({e, <r2}) = 0(1/2,i), *({«> o2t}) = 0(^2), x({e, a, a2, <j3}) = Q.(i), 
x({s, er2, r, <t2t}) = Ü(|/2) und x({e, ff2, ar, <r3r}) = Ü(i|/2). Die den Gruppen 
{e, <rt} und {e, c^r} entsprechenden Zwischenkörper kennen wir noch nicht, 
und wir brauchen eine Methode, sie auszurechnen. 
Das kann auf mehrere Arten geschehen. Nicht das nächstliegende, aber ein 
recht praktisches Verfahren ist das im folgenden besprochene. Es sei wieder E 
normal über K mit der Galoisgruppe G(E\K) = 0; es sei |G| = [E: K] = n 
und {ai, <X2, . . . , <*„} eine Basis von E über K. Vorgelegt sei eine Untergruppe 
U = {gi, qz, . . . , Qm} von 0, und L = x(U) soll ermittelt werden. Man be-
trachte ein Element f e E und (vgl. § 64) seine Spur 

m 
s m = I etä f=1 

bezüglich U. Das ist ein Element aus E, das unter allen Automorphismen aus U 
festbleibt; es liegt also in L. Umgekehrt läßt sich jedes l e L in der Gestalt 
1 = 8 u{£) mit einem geeigneten f e E schreiben, wie wir jetzt zeigen wollen. Im 
Falle x(K) = 0 ist TO als Element von K nicht Null, und man kann einfach 

f = -Z wählen. Für behebiges y(K) wähle man ein a.eE mit S u{a) 4= 0 ; m 
nach § 64 gibt es ein solches a, und es ist Su{<x) e x(U); für das Element 

1 = ä ^ ö a 

von E gilt dann S(£) = l. Damit wissen wir: Es ist L = x(U) = {Su{£)- £ e E). 
Schreibt man f in der Form aiai + 021x2 + . . . + a» e K, so wird S u(S) 
= «1 Su(»i) + diS u(&2) + • • • + anSu(<xn)- Es ist also L der von den S (/(a,) 
aufgespannte Teilraum von E oder auch 

L = x(U) = K(Sv(ai), Sufah • ..,Su(*n)). 
Wir kehren nun zu unserem numerischen Beispiel zurück und brauchen jetzt 
eine Basis von Q(}/2, i) über Q. Um sie zu finden, genügt eine Erinnerung an 
den Beweis der Gradformel. Danach können wir etwa 

{1, j/2, (]/2)2, (t/2)3, i, ¿t/2, i(t/2)2, ¿(t/2)3} 
als Basis von Q(]/2, i) über Q wählen. 
Die Berechnungen der Zwischenkörper verlaufen jetzt ganz schematisch; wir 
führen sie in drei Fällen durch. 
1) Es sei U = {e, a, <r2, a3}. Man bekommt 8V( 1) = 4, Su(V2) = £u((t/2)2) 
= Äü((f2)3) = 0, Su(i) = 4i, Sv(ifä) = <Sc(t-(t/2)2) = Sc/(i(V2)3) = 0, also 
x(U) = 0(4, 0, 4») = Q(i). 
2) Es sei U = {e, <nr}. Man bekommt St/(1) = 2, £ ^ 2 ) = (1 + *')V2> sü((fä)z) 
= 0, Sv(( 1/2)3) = (i_i)(t/2)3, Sv(i) = 0, S = (1 + i)V2, S u « ^ ) 2 ) 
= 2i(V2)2, St/Wt/2)3) = (» — l)(t/2)3, also x(U) = Ü((l + (1 — t)(V2)3, 
2i(f2)2) = &((1 + i)t/2). (Die Zahl a = (1 + ist eine vierte Wurzel 
aus —8.) 



§ 68 Automorphismen von OF(p'1) 219 

3) Es sei U = {e, (t3*}. Man bekommt Sf/(1) = 2, Sc/(V2) = (1 — Sp((V2)2) 
= 0, -Sc;((i/2)3) = (1 + i)(i/2)3, Sv(i) = 0, - S ^ ) = (i — 1)V2, S p ( » W ) 
= 2t(V2)2, Äj/(t(|/2)3) = (1 + t)(V2)8> also x(U) = Q((l — i)|/2). (Auch (1 — 
ist eine vierte Wurzel aus —8.) 
Nun können wir das Diagramm aller Zwischenkörper angeben; Zwischen-
körper, die nicht normal sind über kennzeichnen wir durch einen Stern: 

+ i ) m Ü(V2, i) 

Damit ist unsere Diskussion beendet. Da jeder Automorphismus von E 
= £i( j/2, i) von selbst den Primkörper Q elementweise festläßt, war G schon 
die Gruppe aller Automorphismen von E, und das abschließende Körper -
diagramm erfaßt bereits alle Unterkörper von E. 

Aufgabe 1: Man bestimme das Körperdiagramm von Ü(y2, y3) über Q. 

Aufgabe 2: Man bestimme alle Zwischenkörper von Q und Ü(y2, y5, yö). 

Aufgabe 3: Es sei E der Zerfällungskörper von x3 — 7 eQ[i]. Man be-
stimme das Körperdiagramm von E über Q. 

§ 68 Automorphismen von GF{pn) 

Ergänzend zu § 59 betrachten wir noch einmal den endlichen Körper E 
= GF(pn). Wir wollen die Gruppe G aller Automorphismen <p von E be-
stimmen. Zunächst läßt jeder Automorphismus <p den Primkörper K = 
von E elementweise fest, da jedes ke K eine Summe von Einsen ist. Nach 
Satz 59.3 gilt ferner [E: K] = n <L oo. Gesucht ist also die Gruppe G — y(K) 
aller Automorphismen von E über K = 3p-
In Satz 59.5 haben wir außerdem festgestellt, daß E der Zerfallungskörper von 

f(x) = xP" — x e K[x\ 

ist. Wegen f'(x) = —1 hat f(x) nur einfache Nullstellen. Nach Satz 65.6 ist 
also E sogar normal über K. Die gesuchte Gruppe ist demnach die Galoisgruppe 
G = G(E\K), und wir wissen |ß| = [E: K] = n. 

Satz 1: Der Körper E — GF(pn) ist normal über seinem, Primkörper K = ; 
die Galoisgruppe G(E\K) ist zyklisch von der Ordnung n. 
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Beweis : Wir haben noch zu zeigen, daß G = G(E\K) zyklisch ist. Man 
betrachte die durch a(x) = aP definierte Abbildung a: E E. Aus <r(a) = a(ß) 
folgt aP— ßJ> = (a — ß)P = 0, also a = ß\ die Abbildung ist also injektiv 
und wegen \E\ < oo sogar bijektiv. Ferner gilt <r(a + ß) — (a + ß)v — aP + ßv 
= <r(a) + a(ß) und <r(aß) = a(a)a(ß). Insgesamt ist demnach a ein Auto-
morphismus von E. 
Wir bestimmen die Ordnung m von a e G und zeigen m = n. Da |ß| = n ist, 
folgt dann: G = {e, a,az <rB_1} ist zyklisch. Wegen |(?j = n ist sicher 
m ^Ln. Zu zeigen bleibt m ^ n. Zunächst gilt crr(a) = otP' für jedes a e E. 
Ist also am — e der identische Automorphismus, so bedeutet das aZ>" = a 
für jedes cceE. Dann hätte aber g(x) = xP"—xeE[x] genau \E\ = pn 

Nullstellen in E, und dazu muß pm Sg pn oder m ^ n sein. 
Damit ist Satz 1 bewiesen. 

Da man aus Satz 9.6 alle Untergruppen von G kennt, kann man wie in § 67 
das Gruppendiagramm aufstellen und daraus das Diagramm der Zwischen-
körper von GF(pn) und ableiten. Das Ergebnis ist leicht zu übersehen und 
bereits in der Lösung von Aufgabe 59.2 festgehalten. 

§ 69 Kreisteilungskörper 

69.1 Es sei K ein Körper und E der Zerfällungskörper von f(x) = xn — 1 <=K[x~\. 
Die Nullstellen von f(x) in E heißen n-te Einheitswurzeln. Sie bilden eine 
Gruppe I von höchstens n Elementen bezüglich der Multiplikation. Für diese 
Gruppe I gilt der 

Satz ls Es sei E der Zerfällungskörper von f(x) = xn — 1 e K[x\, n ^ 1, 
und I cE die muüiplikative Gruppe der n-ten Einheitswurzeln. Dann ist I 
zyklisch, und es gilt |J| = n genau dann, wenn die Charakteristik %(K) nicht in n 
aufgeht. 

Beweis : Die Gruppe / ist zyklisch nach Satz 59.2. Sie hat n Elemente 
genau dann, wenn jede Nullstelle a von f(x) einfach ist. Letzteres ist genau 
dann der Fall, wenn f'(x) = nx11-1 an der Stelle a nicht verschwindet. Da a 
nicht Null ist, ist das gleichbedeutend mit x(K)in. 

Ein erzeugendes Element von I nennen wir eine primitive n-te Einheitswurzel. 
Wir wählen nun speziell K = Q; dann ist E der Zerfällungskörper von 
xn— 1 e £}[#]. Wir wissen: Genau dann, wenn E mit Zirkel und Lineal kon-
struierbar ist, kann man das regelmäßige w-Eck mit Zirkel und Lineal kon-
struieren. Das ist der Hintergrund für die 

Definition: Der Zerfällungskörper Sin von xn— 1 eQ[a;], n 2; 1, heißt der 
n-te Kreisteilungskörper. 
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69.2 Unter Verwendung der Bezeichnungen von § 12.4 beschäftigen wir uns 
noch einmal kurz mit der primen Restklassengruppe Es sei n eine natür-
liche Zahl und f(n) = r. Die Zahlen 1 = ni < < . . . < nr ^ n seien die 
sämtlichen zu n teilerfremden ne s 9t zwischen 1 und n. Dann ist die Rest-
klassengruppe *pn = {Ül(wi), K(nz) K(nr)} eine multiplikative Unter-
gruppe des Restklassenringes 3» = K(2), . . . , K(n)}, und es gilt der 

Satz 2: Die prime Restklassengruppe *))„ ist abelsch; sie hat <p(n) Elemente. 
Ist n = p eine Primzahl, so ist sogar zyklisch. 

Beweis : Die ersten beiden Behauptungen wurden in §12.4 bestätigt. 
Darüber hinaus ist als multiplikative Gruppe des endlichen Körpers 
zyklisch nach Satz 59.1. 

Daß die prime Restklassengruppe modulo <p zyklisch ist, ist ein wichtiger und 
oft benutzter Sachverhalt. Es gibt also ein a derart, daß 

% = { 1 , a, a a , . . . , a i > - 2 } 

gilt. Deutet man a als eine natürliche Zahl, so besagt das, daß für vorgegebenesp 
bei fest gewähltem geeigneten a jede prime Restklasse modulo p einen Reprä-
sentanten der Gestalt aA besitzt. Man nennt ein solches a e9l eine primitive 
Kongruenzwurzel modulo p. Beispiele: 2 ist primitive Wurzel modulo 5; 3 ist 
primitive Wurzel modulo 17. 

69.3 Wir kommen nun zu unserem Hauptresultat. 

Satz 3: Der Kreisteilungskörper Mn ist normal über Q. Es gilt [,$£«: £}] 
= <p(n), und die Galoisgruppe ö(Än|Q) ist isomorph *P„. 

Beweis : Nach Definition ist Mn der Zerfällungskörper von xn — 1 6 Q[a;]; 
277 2 71 

er ist also normal über Q nach Satz 65.7. Setzen wir f = cos 1-i sin —, so 
7i n 

wird Sin = und aus Grad Irr (f, Q) = Grad <t>n(x) = <p(n) folgt [$„: £}] 
= <p(n). Zu zeigen bleibt ~ 
Wir bestimmen zunächst die Galoisgruppe ö(Ä»|Ü) = G. Ein Automorphismus 
a e G ist bekannt, sobald o(£) bekannt ist. Nach Satz 58.5 kommen für o(£) nur 
die Nullstellen £* von 0„(x) in Frage. Umgekehrt gilt Ä„ = Ü(C) ~ Q(C*) = £» 
für jedes solche f* (Satz 58.2, Spezialfall); M„ wird ja über Q, von jeder primi-
tiven w-ten Einheitswurzel f * erzeugt. Also definiert <x(f) = £* für jede der 
<p{n) Nullstellen £* von &n(x) einen Automorphismus von Ä« über Q., und G 

2n 

besteht aus diesen <p(n) Automorphismen. Die sind die Zahlen f* = cos k— 

2 n 
+ i sin k— mit zu n teilerfremdem 1 ^ k ^ n. Die Elemente der Galois-

n 
gruppe G sind also die durch ffjt(t) = Ck für zu n teilerfremdes 1 ^ k ^ n 
definierten Automorphismen er*. Zu zeigen ist G ~ Wir denken uns die 
Gruppe in Gestalt ihrer zu n teilerfremden Repräsentanten k mit 1 ^ k 5S n 
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gegeben. Dann ist die durch y(ff*) = k definierte Abbildung y>: G bi-
jektiv. Außerdem wird fffcffi(C) = <?*(£') = Ckl — C = M O oder otoi = oy mit 
dem durch 1 ^ r n und r = kl(n) eindeutig bestimmten r e 9t, und in *))„ 
gilt entsprechend kl = r; das ist aber gerade die Relationstreue der Abbil-
dung y>. Also ist y>: G ein Isomorphismus, und Satz 3 ist bewiesen. 

Be i sp i e l 1. Die Galoisgruppe von $12 über £} ist (vgl. § 12.4) die Vierer-
gruppe ^12 = {1, 5, 7, 11}; den drei Untergruppen der Ordnung 2 entsprechen 
die Zwischenkörper £}(|/3), Ü(i'), 
Be i sp i e l 2. Es sei j> eine Primzahl. Wir betrachten den Kreisteilungskörper 
Mp. Nach Satz 3 ist normal über £} vom Grad <p(p) = p— 1. Die Galois-

2n 

gruppe ö(Äp|£i) ~ typ ist zyklisch nach Satz 2. Es gilt = Q(f) mit £ = cos — 

2 n 
+ i sin —, und wegen [£: Q] = p — 1 ist {1, £2, . . . , £z>~2} eine Basis von 

P 
&P über Q. Mit {1, t2, . . . , ff"2} ist auch {£, £2, £3, . . . , C*-1} linear unab-
hängig und damit nach Satz 50.4 ebenfalls eine Basis von $iP über £}. Diese 
Basis {£, f 2 , . . . , hat eine interessante Gestalt; sie besteht aus den sämt-
lichen Bildern <x(£) eines gewissen Elementes unter den Automorphismen 
er e Basen der Gestalt {cr(C): a e G(E\K)} einer normalen Erweiterung E 
von K nennt man Normalbasen. Sie sind vielfach von Nutzen. Mit einigem 
Aufwand läßt sich zeigen, daß jede normale Erweiterung E eines Körpers K 
eine Normalbasis besitzt. 
69.4 Mit Hilfe von Satz 3 sind wir nun in der Lage, die Frage, welche regel-
mäßigen m-Ecke mit Zirkel und Lineal konstruierbar sind, über Satz 56.3 
hinaus wie folgt zu beantworten. 

Satz 4 (GAUSS 1796): Das regelmäßige n-Eclc ist genau dann mit Zirkel und 
Lineal konstruierbar, wenn n eine Potenz von 2 oder n — 2rpzpz •••?>«, r 0, 
s 2, mit paarweise voneinander verschiedenen Fermatschen Primzahlen p„ ist. 

B e w e i s : Nach der Bemerkung2 zu Satz 56.3 bleibt zu zeigen: Wenn 
p = 22 ' + 1 eine Primzahl ist, so ist das regelmäßige p-Eck mit Zirkel und 
Lineal konstruierbar. Das ist der eigentlich schwierige Teil beim Beweis von 
Satz 4. In diesem Fall ist nun auf Grund der Sätze 3 und 2 die Galoisgruppe 
G(MP\Q.) zyklisch von der Ordnung 22". Satz 9.6 liefert das vollständige Grup-
pendiagramm 

{e} = Ui c U2 c Ui c Us c . . . c U^, = G 

von G; die Vx sind dabei Untergruppen der Ordnung X. Dieser Kette von 2V+ 1 
Untergruppen Ux entspricht nach Satz 66.4 eine Körperkette 

•Rj, = Lz>+i 3 L^pd LZ'-I o ... oLi = Q,, 
und in ihr gilt 

[Stp: L]\ = 2 2 "+W. 
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Mit der Gradformel folgt [Lj+1: Lj] = 2. Jetzt wird Satz 56.1 anwendbar. Er 
zeigt die Konstruierbarkeit von Äp und damit des regelmäßigen p-Ecks für 
Fermatsche Primzahlen p. Damit ist Satz 4 bewiesen. 

Dieser Satz steht am Ende längerer gruppen- und körpertheoretischer Unter-
suchungen, deren Grundlagen erst im 19. Jahrhundert allmählich gelegt 
wurden. GAUSS fand seinen Beweis lange Zeit zuvor im Alter von achtzehn 
Jahren. 
In § 70 wenden wir uns wieder einem Beispiel zu und konstruieren das regel-
mäßige Siebzehneck. 

§ 70* Die Konstruktion des regelmäßigen Siebzehnecks 

Für den Kreisteilungskörper Ä17 gilt Ä17 = £l(t) mit f = cos ^ + i sin ^ . Das 

regelmäßige Siebzehneck ist konstruierbar, sobald f oder auch + f - 1 ) 
2ti 2 

= cos -— mit Zirkel und Lineal gefunden sind. Wir müssen von Q. über die 

Zwischenkörper zu &17 aufsteigen. Um die Zwischenkörper kennenzulernen, 
brauchen wir nach dem Vorbild von § 67 zunächst die Galoisgruppe G(JCi7|Q) 
= G und das zugehörige Gruppendiagramm. 
Es ist C17 = 1. 
Ein <p e G ist bekannt, sobald <p(C) bekannt ist. Die möglichen Bilder <p(£) 
von C sind die Nullstellen f, C2, . . . , C16 von Irr (£,Q.) = x16 + a;15 + . . . + 1 , 
und wegen |C?| = 16 tritt auch jede Potenz f» für ein geeignetes <p e G als Bild 
<p(C) auf. Wir definieren nun ein spezielles CT e G durch CT(£) = £3 (im Exponenten 
steht eine primitive Kongruenzwurzel modulo 17). Für die Potenzen von a 
gilt dann CT2(£) = t~8, o»(C) = <r4(C) = C"4, <r5(C) = C5, o«(C) = <r7(t) 
= C"6, <x8(t) = t-1, 0»(f) = C"3, = t8, <7U(C) = t7, = t4, ff18(C) = 
<x14(f) = £2; = CT16(£) = Also hat a die Ordnung 16, und es wird 
G = {e, er, ct2, . . . , ct15}. Die Untergruppen von G sind U\ = {e}, t/2 = {e, er8}, 
Vi = {e, CT4, CT8, CT12}, U& = {e, CT2, CT4, CT6, CT8, CT10, CT12, ct14}, Uu = G, und wir 
bekommen das Gruppendiagramm 

VicUzcUiCÜiC C/16. 

Diesem Gruppendiagramm entspricht das Körperdiagramm 

$17 = L50 L4 z> L3D L2o Li — Q. 

Um diese Lj zu berechnen, brauchen wir wie in § 67 eine Basis von &17 über £}. 
Wir wählen die aus § 69, Beispiel 2, bekannte Basis {£, £2, . . . , £16}. Die nun 
folgenden Berechnungen verlaufen nach dem Vorbild von § 67. Dabei be-
zeichnen wir die Spur der Gruppe U x mit 

Spa(f) = (feÄi7). 
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Der Körper Lz gehört zu Ug und wird demnach über Q. von Ss{£), S%(C2), 
Ss(P), ..., Ss(£le) erzeugt. Diese Erzeugenden können auch in der Gestalt 

Sh(gu(£)), S8(a(C)), • •., Sg(a8(0) notiert werden; denkt man sie aus-
geschrieben, so sieht man, daß sie nur aus den beiden voneinander verschie-
denen Elementen Ss(Q = n/Ci und Ss(a(C)) — ct(Ci) bestehen. Es ist 

Ci = C + t-* + C-4 + C-2 + C-1 + C8 + C4 + c2, 
<T(Ci) = t 3 + c - 7 + c 5 + c - 6 + c - 3 + £ 7 + c - 5 + c 6 . 

Das Element Ci e $ 17 hat unter den Automorphismen von 0 nur die Bilder £1 
und <r(Ci). Nach Satz65.3 gilt daher Irr (Ci,Q) = Irr (cr(£i),£) = (x—Ci)(x—CT(£i)); 
das Element £i, das ja schon in ¿2 liegt, hat also ebenso wie L% über Q den 
Grad 2. Damit wissen wir = Q(fi)- Zur Konstruktion von brauchen 
wir Irr (£1, G) als Polynom aus Q[a;]. Eine Rechnung unter Benutzung von 
£ + £2 + . • • + C16 = —1 zeigt CMCi) = - 4 und t i + ff(fi) = —1. Diese 
beiden Ergebnisse bestimmen Irr (£1, £1) = x2 + ® — 4. Nun waren 

Ci = (C •+ C-1) + (C2 + C-2) + (£4 + £-4) + (£8 + C-8), 
a(Ci) = (£3 + f-») + (£5 + £"5) + (£6 + f"6) + (C7 + C"7) 

beide reell, und ein Blick auf die geometrische Darstellung in der Gaußschen 
Zahlenebene lehrt £1 > 0 und <r(£i) < 0. Also ist £1 die positive Nullstelle 

|<yi7 — 1) von x2 x — 4. Damit steht £1 als Ergebnis einer Zirkelkonstruk-¿t 
tion zur Verfügung, und L2 = Q(£i) ist bekannt. 

Nim betrachten wir den Körper L3. Er wird über £1 erzeugt von &}(£), 
Ä4(£2), . . S n ( £ i 6 ) , und die paarweise voneinander verschiedenen dieser Er-
zeugenden sind $4(0, &i(<r(t)), S^a3^)). Ausgeschrieben haben sie 
die Gestalt 

&.(£) = C + C"4 + C'1 + P = ort2 
«<&) = C3 + P + c-3 + £-5 

a2(£2) = £"8 + £"2 + £8 + £2 = w « 
«•(Ca) = C-7 + C-6 + C7 + f6-

Unter den Automorphismen von 0 hat £2 nur diese Bilder. Sie haben also 
wieder nach Satz 65.3 alle vier dasselbe definierende Polynom 

Irr (£2, Q) = (x — Z2)(x — a(^))(x — a2(^2))(x — ff3(£2)) 

vom Grad 4 über £}.. Damit ist [£2: Q] = [L3: Q] = 4, und £2 e Z3 allein er-
zeugt ¿3 über Q und erst recht über Das heißt La = Nun suchen wir 
das definierende Polynom Irr (£2, ¿2); wegen [L3: ¿2] = 2 hat es den Grad 2. 
Die Galoisgruppe von Ä17 über ¿2 ist Us- Die möglichen Bilder von £2 unter 
Automorphismen aus U% sind nur £2 und <r2(£2) = Erneute Anwendung von 
Satz 65.3 liefert 

Irr (C2, £2) = (3—? 2) (¡c —<*). 

Nun berechnet man £2« = —1; außerdem gilt £2 + « = Ci- Damit bekommt 
man Irr (£2, ¿2) = — £1» — 1. Wieder sind die Nullstellen £2 und a reell, 
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und es ist £2 > 0, a < 0. Also ist £2 die positive Nullstelle des Polynoms 
x2 — £1« — 1. Mit Ci steht demnach auch £2 als Ergebnis einer Zirkelkonstruk-
tion zur Verfügung; die Körper Li, L2, La sind nun bekannt. 

Wir drücken noch <r(£2) = d/ ß e La durch £1 und £2 aus. Man prüfe dazu 

£2 = £1 — £2 + 2ß + 4 nach. Es folgt ß = -^(d — £1 + £2 — 4). Auch ß ist 

damit als Resultat einer Zirkelkonstruktion bekannt. 
Der nächste Körper ist ¿4. Die paarweise voneinander verschiedenen unter 
seinen Erzeugenden S2(F), 1 ^ v ^ 16, über Ü sind S2(C), $äMf))> • • •. £2(<t7(C)). 
Wir können uns nun kürzer fassen: Alle diese Elemente haben den Grad 8 
über Q und den Grad 2 über La- Wir setzen 8^(0 = £ + £ - 1 = d/ £3 und 
b e k o m m e n Li = La(Ca) u n d I r r (£3, ¿ 3 ) = (x — £3) (x — ff4^)) = x2 — £2« + ß. 
Dabei ist 0*^3) = f - 4 + £4 die kleinere der beiden positiven Nullstellen £3, 
o 4 ^ ) dieses Polynoms. Jetzt ist auch £3 mit Zirkel und Lineal konstruierbar; 
denn £2 und ß waren inzwischen bekannt. 

Nun kann das regelmäßige Siebzehneck schon konstruiert werden; es ist ja 

£3 = £ + f" 1 = 2 cos 

Der Körper L5 wird über ¿4 von £ erzeugt, und es ist Irr (£, L4) = x2 — C3X + 1. 

Z u s a m m e n f a s s u n g : Man konstruiere die positive Nullstelle £1 von x2-\-x 
—4, anschließend die positive Nullstelle £2 von x2 — Cix — 1. Aus £1 und £2 kon-

1 2tz 
struiere man ß = —(£f — £1 + £2 — 4). Dann ist £3 — 2 cos - - die größere der 

2 7 27t 
beiden positiven Nullstellen von x2 — £2« + ß; damit sind der Winkel — und 

das regelmäßige Siebzehneck bekannt. 

Li te ra tu r : ABTIN [3], HASSE [7], HASSE-KLOBE [8]. 

15 Hornfeck, Algebra 



8 Auflösbare Polynome 

Schon im Mittelalter war man in der Lage, die Nullstellen von Polynomen 
höchstens vierten Grades explizit durch Formeln anzugeben, in denen neben 
rationalen Operationen nur Wurzelzeichen verwandt werden. Obwohl diesen 
Formeln kaum praktische oder theoretische Bedeutung zukommt, versuchte 
man immer wieder erfolglos, auch die Nullstellen von Polynomen höheren 
Grades in gleicher Weise zu bestimmen. Der zweiundzwanzig jährige A B E L 
hatte zunächst geglaubt, die gesuchte Auflösung für Polynome fünften Grades 
gefunden zu haben. Aber er erkannte bald seinen Irrtum und konnte nun im 
Gegenteil beweisen, daß Polynome fünften oder höheren Grades derartige Auf-
lösungen allgemein nicht mehr gestatten. Diese Entdeckung begründete A B E L S 
ersten Ruhm, und der Beweis seines Satzes ist unser letztes Ziel. Dazu brauchen 
wir noch einmal zusätzliche Überlegungen aus der Gruppentheorie, die an 
entscheidender Stelle durch unsere Kenntnisse aus der Galoistheorie ergänzt 
werden. 

§ 71 Polynome ersten bis vierten Grades 

Es sei K ein Körper. 
n 

Die Nullstellen von xn — a e K[x\ bezeichnen wir mit dem Symbol j/a und 
nennen es ein Radikal. 

Definition: Das Polynom f(x) e K[x\ habe in seinem ZerfäUungskörper E 
die nicht notwendig voneinander verschiedenen Nullstellen £2, ..., £„. Es 
heißt über K auflösbar, wenn jedes f , Element eines Körpers der Gestalt 

/ «i f»t nr » 
L = K\ Vax, yaa Vor) 

»« 
ist, der durch sukzessive Adjunktion gewisser Radikale |/ae wie folgt aus K 
entsteht: 
«i e K, az e , 03 e J f ( ^«i, j ^ ) a r e K{ \ai, ]/a..., . 

E r g ä n z u n g : Hierbei kann, wie wir es im folgenden tun wollen, ohne Be-
schränkung der Allgemeinheit angenommen werden, daß die Primzahlen 
sind. 

In dieser neuen Bezeichnungsweise ist also etwa ein Körper, der aus Q 
durch Adjunktion irgendeiner (also nicht notwendig der reellen) Nullstelle 
von x3 — 2 e entsteht. 
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Ein lineares Polynom f(x) = ax + b e K[x\, « 4 = 0 , ist auflösbar; denn es 

hat nur die Nullstelle = e K. a 
Satz ls Es sei K ein Körper und %(K) 4= 2. Dann ist ein quadratisches 

Polynom ax2 + bx + c 6 K[x], a 4= 0, über K auflösbar. 
b c 

Beweis : Es sei £ eine Nullstelle des Polynoms und — = p, — = q. In K 
a a 

p ®2 

ist 2 =)= 0; deswegen sind in K auch die Elemente ^ und - definiert, und die 

Beziehungen af2 + + c = 0, £2 + p( + q = 0 und ( i + | J = 9 

sind gleichwertig. In einem Körper bedeutet a2 = ß2 dasselbe wie a = ± ß. 
Also wird 

und beide möglichen Werte von £ haben die in der Definition verlangte Gestalt. 

Die in diesem Beweis hergeleitete Auflösungsformel für quadratische Poly-
nome wird als einzige häufig gebraucht. Sie versagt allerdings im Falle %(K) = 2. 

Satz 2: Bs sei K ein Körper und x(K) 4= 2, x(K) 4= 3. Dann ist ein kubisches 
Polynom an? bx2 + cx + de K\x\, a 4= 0, über K auflösbar. 

Beweis : Es sei £ eine Nullstelle des Polynoms und rj = f 4- • Es ge-
3a 

nügt nachzuweisen, daß rj in einer Radikalerweiterung von K liegt; rj ist defi-

niert, weil x{K) 4= 3 ist. Einsetzen von $ = rj — ~ in of3 + ¿>£2 + cf + d = 0 
öd 

zeigt, daß rj eine Gleichung der Gestalt if + prj + q = 0 mit p,qeK erfüllt. 
Den trivialen Fall p = 0 dürfen wir ausschließen. Man betrachte eine Null-

P P stelle £ von x2 — rjx — —. Sie ist nicht Null; für sie gilt also rj = f — . Ein-o 6Q 
setzen in rj3 -f prj 4- q = 0 liefert für f 3 die quadratische Gleichung 

und wegen x{K) 4= 2 ist Satz 1 anwendbar: Es liegt £3, also auch £ und da-
mit rj in einer Radikalerweiterung von K. 
Führt man die Berechnung von C und damit die aller möglichen Werte von rj 
durch, so bekommt man die sogenannten Cardanischen Formeln für die Null-
stellen kubischer Polynome. 

Satz 3: Es sei K ein Körper und %(K) 4= 2, x(K) + 3. Dann ist ein bi-
quadratisches Polynom ax* + bx? + cx2 dx ee K[x~\, a 4= 0, über K 
auflösbar. 

15» 
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Beweis : Es sei £ eine Nullstelle des Polynoms und « = f + —. Es ge-
4 a 

nügt nachzuweisen, daß rj in einer Radikalerweiterung von K liegt; t] ist 
definiert, weil x(K) =f= 2 ist. Für rj bekommt man eine Gleichung der Gestalt 
r/4 + prf + qt] + r = 0 mit p, q, r e K. Wir bestimmen nun f wie folgt. Es 
soll in £2 £2 

rj* + pr)2 + qrj + r = rji + rj2£ + - - — rjK — ^ + PV2, + 9V + r 

„ Í1 2 
— (C — p)r¡2 — qr) + ^ — rj 

die letzte eckige Klammer ein Quadrat [xrj + ß]2 werden. Das ist gesichert, 
wenn nur f gemäß 

r>2 = MC-p) 

gewählt wird. Ein solches £ existiert und liegt nach Satz 2 in einer Radikal-
erweiterung von K. Damit sind dann a und ß Quadratwurzeln aus f — p 

c2 

und r, also ebenfalls Radikale. Nun folgt 

r]i + pr¡z + qr¡ + r = V2 + - M + ß f 

rf + «n + ( | + ß) r •<XT] + (i-'i = 0. 

Eine der beiden letzten Klammern muß Null sein; nach Satz 1 liegt also rj in 
einer Erweiterung von K durch Radikale. 
Bei Ausführung der Rechnungen liefert auch dieser Beweis höchst umständ-
liche explizite Formeln für die Nullstellen von Polynomen vierten Grades. 

§ 72 Auflösbare Gruppen 

In diesem Paragraphen betrachten wir eine spezielle Sorte von Gruppen. 

Definition: Eine Gruppe G = d/ Nq heißt auflösbar, wenn Normalteiler N\ 
von Ni-i (i = 1 , 2 , . . . , k) derart existieren, daß 

G = N0 3 N! o N2 d . . . d Nk = {e} 

mit abelschen Faktorgruppen Nt-i/Nf gilt. 

Es ist trivial, daß abelsche Gruppen auflösbar sind; dazu schreibe man nur 
G d {e}. Wir brauchen über auflösbare bzw. nicht auflösbare Gruppen die 
folgenden Sätze 2 und 3. Die allgemeine Theorie ist ziemlich umfangreich. Es 
ist nicht schwer zu zeigen, daß p-Gruppen auflösbar sind; dieses Beispiel 
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notieren wir als Satz 1. Sehr tief dagegen scheint eine alte Vermutung zu 
liegen, deren Richtigkeit vor wenigen Jahren mit großem Aufwand bewiesen 
wurde: Jede Gruppe von ungerader Ordnung ist auflösbar. 

Satz ls Jede p-Gruppe G ist auflösbar. 

Beweis: Man betrachte das Zentrum Z\ von G. Nach Aufgabe 14.3 steht 
dann in {e} c Z\ nicht das Gleichheitszeichen; natürlich ist {e} Normalteiler 
von Z\, und die Faktorgruppe von Z\ nach {e} ist abelsch. Außerdem ist Z\ 
Normalteiler von G; die Faktorgruppe G* = G/Zi ist wieder eine p-Gruppe 
und besitzt also wieder nach Aufgabe 14.3 ein von der Eins verschiedenes 
Zentrum, das wir nach Satz 14.1 gleich in der Gestalt Z2IZ1 schreiben können. 
Dabei ist Z\ erst recht Normalteiler der Untergruppe Z2 von G, und in 
{e} cZicZ2 steht an keiner Stelle das Gleichheitszeichen; die Faktorgruppe 
ZzjZi war das Zentrum von G*. Da Z2/Z1 erst recht Normalteiler in G* ist, 
ist nach Satz 14.2 auch Z2 Normalteiler in G. Wir können also erneut die 
Faktorgruppe GjZ% bilden; sie ist wieder eine p-Gruppe und gestattet es, das 
Verfahren fortzusetzen. Man bekommt eine Kette {e} c Z\ c Z% c Z$ c . . . mit 
abelschen Faktorgruppen ZJ+I/ZJ, die nach endlich vielen Schritten mit G 
abbrechen muß, weil in ihr nirgendwo das Gleichheitszeichen steht. 
Wir wenden uns nun den beiden Sätzen zu, auf die sich unsere Diskussion der 
Polynome fünften und höheren Grades stützen wird. 

Satz 2: Das homomorphe Bild einer auflösbaren Gruppe ist auflösbar. 

Beweis: Es sei G eine auflösbare Gruppe, also 

G = N0 o Ni 3 N2 3 ... 3 Nk = {e} 

mit Normalteilern Nt von Ni-i (1 ig i sS k) und abelschen Faktorgruppen 
Ni-i/Ni. Ein Homomorphismus liefere die Bilder G* von G und N* von Nt. 
Die N* sind wieder Gruppen und bilden die Kette 

G* = 3 Ni D d ... D N$ = {e*}. 

Unser Satz ist bewiesen, wenn wir zeigen können, daß erstens die N* Normal-
teiler der Nf-i und zweitens die Faktorgruppen Nf-i/N* abelsch sind. Das 
erste steht im Beweis von Satz 14.2: Weil N{ Normalteiler von N{-1 ist, ist 
auch Nf Normalteiler von N*-i. Das zweite ist sicher richtig, wenn wir nach-
weisen, daß N*-ilN* ein homomorphes Bild der nach Voraussetzung abelschen 
Gruppe Ni-i/Ni ist. 
Dazu bezeichnen wir mit x, y Elemente aus N{~ 1 und nennen ihre Bilder in 
N*_! entsprechend x*, y*. Als erstes behaupten wir, daß durch f(xNt) = x*Nf 
eine Abbildung /: N{-i/Ni -> N^jN* definiert wird. Angenommen, es ist xN( 
= yN(. Es folgt y~lx e N(, also {y~lx)* = y*~lx* e Nf oder x*N* = y*N*. Es 
war also f(xNi) = x*N* eine Definition. Die Abbildung / ist sogar surjektiv. Sie 
ist auch relationstreu: f(xNtyNi) — f(xyNt) = (xy)*Nf = x*y*N* = x*Nfy*Nf 
= f(xNt)f(yNi). Damit ist gezeigt, daß N^/Nf ein homomorphes Bild von 
Ni-i jNi ist, und Satz 2 ist bewiesen. 
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Satz 3: Für n ig 5 ist die symmetrische Gruppe ©n nicht auflösbar. 
Be we i s : Es sei M eine Menge mit mindestens fünf Elementen. Sind a, b, c 

drei verschiedene Elemente aus M, so bezeichne wie in § 7 das Symbol (abc) 
diejenige Transformation von M, die a in b, b in c, c in a überführt und alle 
weiteren Elemente aus M festläßt. Wir nennen (abc) einen Dreierzyklus und 
betrachten eine Gruppe G von Transformationen von M, die alle Dreierzyklen 
enthält. Wir werden folgendes zeigen: Ist N ein Normalteiler von G und G/N 
abelsch, so enthält auch N alle Dreierzyklen. Für n 5 erfüllt @„ alle Voraus-
setzungen von G. Eine Kette ©„ = TVo 3 -Ni d 2V2 d . • . , in der immer N{ ein 
Normalteiler von Ni-i und Nt-i/Nt abelsch ist, kann dann nicht mit {e} enden, 
weil jedes N{ alle Dreierzyklen enthalten muß. Unser Satz wird also mit der 
ausgesprochenen Behauptung bewiesen sein. 
Wir betrachten einen Dreierzyklus (abc); nach Voraussetzung liegt er in G; 
zu zeigen ist, daß er auch in N liegt. Man wähle zwei weitere, von a, b, c 
verschiedene Elemente d, e aus M; wegen \M\ 2; 5 ist das möglich. Wir setzen 
(abd) = x e G und (ace) — y eG. Die Bilder von x und y bezüglich des Homo-
morphismus von G auf G/N mit dem Kern N seien x*,y* e G/N. Nun sollte G/N 
abelsch sein. Es gilt also x*y*x*~1y*~1 = (xyx^y1)* = e* in G/N, folglich 
xyx~xy~x e N. Es ist aber, wenn man, wie in § 7 verabredet, die Multiplikation 
von rechts nach links ausführt, xyx^y1 — (abd) (ace) (dba) (eca) = (abc), also 
(abc) G N, was zu zeigen war. 
B e m e r k u n g : Es ist nicht schwer zu sehen, daß <S„ für n < 5 auflösbar ist. 

§ 73 Der Satz von ABEL 

73.1 Wir beginnen mit der folgenden 

Definition: Es sei 21 c € die Menge aller derjenigen komplexen Zahlen, die 
algebraisch über Q. sind. 
Auf Grund des nachstehenden Satzes nennt man 21 den Körper der algebrai-
schen Zahlen. 

Satz 1: 21 ist ein Körper. 
B e w e i s : Es ist 0 E 21, 1 e 2i und 21 eine Teilmenge des Körpers <L Das 

et 
Folgende bleibt zu zeigen: Mit a, ß e 21 gilt a ± ß e 2i, aß e 21, -¿e 21, letzteres 

P 
für ß =f= 0.. Nun liegen alle diese Elemente in Q(a, ß). Dieser Körper aber ist 
nach Satz 54.5 endlich über £}, nach Satz 54.1 also algebraisch über Q. Das 
bedeutet Q(a, ß) c 2t, und Satz 1 ist bewiesen. 
Ebenso leicht ergibt sich der 

Satz 2: 21 ist abzählbar. 
B e w e i s : Ein /(x)6Ü[aj] hat höchstens endlich viele Nullstellen in 

Satz 2 ist also bewiesen, wenn gezeigt wird, daß abzählbar ist. Die Abzähl-
barkeit von £}[x] folgt aber aus der Abzählbarkeit von £} und Satz 27.3. 
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H i l f s s a t z 1: Es gibt reelle Zahlen xi, xz, X4, x$ derart, daß x± transzen-
dent über 21, transzendent über 2f(xi), . . . , X5 transzendent über 2l(xi, x<i, 
xa, Xu) ist. 

B e w e i s : Da 21 abzahlbar ist, ist es nach dem Muster des Beweises von 
Satz 2 auch die Menge 21* aller über 21 algebraischen komplexen Zahlen. (Wir 
müssen nicht wissen, daß sogar 21* = 2i gilt.) Da 9t nicht abzahlbar ist, ist SR 
nicht Teilmenge von 2i*, so daß es ein x\ e SR der verlangten Beschaffenheit 
gibt. Nach Satz 27.3 ist 2J[xi] und nach dem Paarschema aus § 4 dann auch 
2l(xi) abzählbar. Wieder bleibt die Menge 2i(xi)* aller über 2I(xi) algebraischen 
komplexen Zahlen abzählbar und kann SR nicht als Teilmenge enthalten. Es 
folgt die Existenz eines über 2l(xi) transzendenten X2 e SR. Auch 2i(xi)[a;2] 
und 2I(xi, X2) bleiben abzählbar, und die Fortsetzung des Verfahrens liefert 
die Behauptung. 
Algebraisch bedeutet Hilfssatz 1: Wir haben fünf voneinander unabhängige 
Unbestimmte xi, xs, X4, X5 über 2t, und es war sogar möglich, sie als reelle 
Zahlen zu wählen. 
Wir treffen nun für den Rest dieses Paragraphen die folgenden 
V e r a b r e d u n g e n : Die reellen Zahlen xi, £2, X3, X4, seien gemäß Hilfssatz 1 
fest gewählt. Die reellen Zahlen tri, 02, <73, <74, 05 seien die elementarsymmetri-
schen Polynome cri = x\ X2 + . . . + »5, »2 = xix2 + X1X3 + . . . + X4X5, . . . , 

0*5 = X1X2X3X4X5 in diesen Xi (vgl. § 34). Es sei F der Körper F — 2i(<ri, 02, 03, 

04, (Ts) und A(x) das Polynom h(x) = (x — xi) (x — X2) . . . (x — X5) = x 5 — 
(TiX4 + O2X3 — O3X2 + OiX — 05. 

Man betrachte nun den Körper 2l(xi, X2, X3, X4, X5). Da die x. Unbestimmte über 
21 sind, wird beispielsweise durch <p(f(x\, X2, X3, X4, X5)) = /(x2, X3, X4, X5, xi) ein 
Automorphismus <p: 2l(xi, X2, X3, X4, x$) 2l(xi, X2, X3, X4, X5) definiert. Dieser 
Automorphismus 95 läßt sogar den Teilkörper F = 2t(<ri, <72, 03, 04, <75) von 
2I(xx, X2, X3, X4, X5) elementweise fest, und insgesamt kann man 5! derartige 
Automorphismen aufschreiben. Sie bilden eine Gruppe 0 , die isomorph ©5 ist. 
Für das Folgende praktisch ist die nach Satz 65.6 mögliche 

Definition: Es sei K ein Körper, f(x) e K\x] ein über K aeparables Polynom 

und E der ZerfäUungskörper von f(x) e K[x\. Dann verstehen wir unter der 

Oaloisgruppe von f(x) e K\x] die Oaloisgruppe G(E\K) von E über K. 

Damit gilt nun (vgl. die obigen Verabredungen) der 

H i l f s s a t z 2: Die Galoisgruppe von h(x) e F\x\ ist isomorph ©5. 
B e w e i s : Es ist h(x) ein Polynom aus i*[x]; es hat nur einfache Null-

stellen, ist also separabel über F. Daher ist es erlaubt, von der Galoisgruppe 
von h(x) e F[x\ zu sprechen. Der ZerfäUungskörper E von h(x) e F[x] ist 
F(xi, X2, X3, X4, x5) = 2l(xi, X2, X3, X4, X5). Ein Automorphismus <p e 0(E\F) ist 
bekannt, sobald die <p(xt) bekannt sind. Für die <p(xi) kommen höchstens die 
Nullstellen Xj von h(x) in Frage, da Irr (x<, F) ein Teiler von h(x) in F[x] ist. 
Das bedeutet 0(E\F) c 0, wobei 0 die oben betrachtete Gruppe von Auto-
morphismen von E = 2l(xi, X2, X3, X4, X5) ist. Nun läßt aber jedes <peG den 
Körper F elementweise fest und liegt damit bereits in G(E\F). Also gilt G(E\F) 

= G ~ ®5. 
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73.2 Für sich selbst von Interesse ist der 

Satz 3: Es sei K ein Körper der Charakteristik Null, p eine Primzahl und 
xP — a e K[x\. Dann ist xJ> — a entweder irreduzibel über K oder hat in K eine 
NuUstelle. 

B e w e i s : Es ist &c K. Wir wählen eine primitive p-te Einheitswurzel £e<£ 
und eine Nullstelle a von f(x) = x? — a aus einer geeigneten Körpererweite-

p—i 
rung von K. In K(cc, £) wird dann j(x) = J J (x — a f ) . Wir nehmen an, f(x) 

>=o 
habe einen normierten Teiler g(x) e K[x\ in K\x\, für den 1 sS Grad g(x) 
= m < p gilt. Zu zeigen ist: Dann existiert eine Nullstelle von f(x), die schon 
in K liegt. Es wäre g(x) ein Produkt gewisser (x — ct£i) und die Konstante 
¡7(0) = b e K abgesehen vom Vorzeichen ein Ausdruck der Gestalt f k a m £ K. 
Wir setzen £ktxm = ce K. Es gilt c? = am. Wegen (m, p) = 1 existieren 
X, fi £ 3 mit km + fip = 1. Wir behaupten: Die Zahl cxa" e K ist Nullstelle 
von f(x). Das folgt durch Ausrechnen von (cxaß)P = (cf)Aa"2> = (am)xa"P — 
aXm+ßp = 

Es ist leicht zu sehen, daß dieser Satz 3 auch für Körper K mit x(K) 4= 0 
gilt. Dazu wählt man in dem angegebenen Beweis an Stelle von f e S all-
gemein eine primitive p-te Einheitswurzel, deren Existenz Satz 69.1 in jedem 
Fall sichert (sie wird 1 für %(K) — p). 

Wir kommen nun zu den beiden entscheidenden Hilfssätzen. 

H i l f s s a t z 3: Es sei F der oben eingeführte Körper und 
/«I »1 nr \ 

E = F{yai, ]/a2, ..., ]lar) 
eine normale Körpererweiterung von F, die aus F durch sukzessive Adjunktion n, 
von Radikalen j/aj wie folgt entsteht: 

/»i \ /ni «• \ /»i «i «»—i \ 
ai £ F, 02 £ F IJ/ai;, a3 e f^oi, y^j, ...,are F{yai, j/a2, ..., ]jar-r). 

Dann ist die Galoisgruppe G(E\F) von E über F auflösbar. 

B e w e i s : Wir werden ausnutzen, daß F alle Einheitswurzeln enthält ; eine 
Einheitswurzel ist ja algebraisch über Q und liegt daher in 2t und erst recht 
in F. Durch Anwendung der Sätze 66.4 und 66.5 wird dann unsere Behauptung 
eine Folge von Satz 3. Wir führen den Beweis in zwei Schritten. 
1) Es sei L c GE ein Körper, der alle Einheitswurzeln enthält, p eine Primzahl, 

a ein Element aus L und L* — L{]/a) eine Körpererweiterung von L durch 

ein Radikal \a. Wir behaupten: L* ist normal über L, und die Galoisgruppe 
G(L*\L) ist zyklisch. Das ist leicht zu sehen. Da nämlich L alle Einheitswurzeln 
enthält, liegen entweder alle Nullstellen von xv — a e L\x\ in L oder keine. 
I m ersten Fall ist L* = L und die Behauptung trivial. Im zweiten Fall ist 
nach Satz 3 das Polynom x? — a irreduzibel über L, also [L*\ L] = p. Ferner 
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wird L* der Zerfällungskörper von xP — a e L\x~\, ist also nach Satz 65.7 
normal über L \ nach Satz 65.2 hat also G ( L * \ L ) genau p Elemente und ist da-
mit zyklisch nach Satz 9.5. 
2) Wir erinnern uns an § 71: Wie dort dürfen wir ohne Beschränkung der All-
gemeinheit annehmen, daß die ni Primzahlen pi sind, ni = pi- Wir betrachten 
die Körperkette 

und schreiben für sie kurz F = F i c F i c F3 c . . . c F r + 1 = E . Nach Vor-
aussetzung ist E normal über F . Nach Satz 66.4 entspricht der Körperkette 
eine Kette G(E\F) = Gi D G2 D G3 D . . . D Gr+1 = {e} von Gruppen Gt = y(Fi), 
und unser Hilfssatz ist bewieseri, sobald gezeigt ist: Gi+i ist Normalteiler von Gt, 
und Gi/Gi+i ist abelsch (1 i iS r ) . Wir wählen ein festes i und sehen uns die 
Teilkette F{ c F i + i c E an. Nach Satz 66.4 ist E normal über Fi mit der 
Galoisgruppe G(E\F{) = G{\ zu Fi+i gehört die Gruppe Gi+1. Aus 1) wissen 
wir, daß F{+i normal über Fi ist. Nach Satz 66.5 bedeutet das: G{+1 ist Normal-
teiler von Gi. Es bleibt noch zu zeigen: GijG{+1 ist abelsch. Nun ist aber wieder 
nach Satz 66.5 die Faktorgruppe GtjGi+i isomorph G(Ft+i\Fi), und diese letzte 
Gruppe ist nach 1) sogar zyklisch, also erst recht abelsch. 
Damit ist Hilfssatz 3 bewiesen. 

Der oben eingeführte Körper F hat die Charakteristik Null; jedes f ( x ) e F \ x \ , 
Grad f ( x ) 1, ist daher separabel über F (Satz 62.1), und es hat somit im 
folgenden letzten Hilfssatz einen Sinn, entsprechend obiger Definition von der 
Galoisgruppe von f ( x ) e -F[z] zu sprechen. 

H i l f s s a t z 4: Es sei F der oben eingeführte Körper und f ( x ) e i^fx] über F 
auflösbar, Grad f ( x ) 2: 1. Dann ist auch die Galoisgruppe von f ( x ) e F \ x \ 
auflösbar. 

Bewe i s : Es sei E der Zerfällungskörper von f ( x ) e F [ x \ . Wir haben zu 
zeigen: Die Galoisgruppe G(E\F) ist auflösbar. Nach Voraussetzung liegen alle 
Nullstellen von f ( x ) in einer gewissen Radikalerweiterung L von F . Das be-
deutet L d E D F . Aber dabei braucht L nicht normal über F zu sein. Es 
kommt uns deshalb zunächst darauf an, eine Radikalerweiterung M von L zu 
finden, die normal über F ist. Danach wird sich Hilfssatz 4 leicht beweisen 
lassen. Wir definieren zunächst eine Radikalerweiterung M von L und zeigen 
anschließend, daß sie normal über F ist. 
Angenommen, es ist 

Pi 
Zuerst wird also ein gewisses Radikal j/ai zu F adjungiert. Da F alle Ein-
heitswurzeln enthält, hegt damit sogar jede Nullstelle von x^i — e F [ x ] in 

ß\ \ /Vi Pt \ /Vi _ Vi Vt _ \ 
F c F \ ] / a i ) c F{y<n, yo 2 ) c . . . c F { y a i , l/a2, • • y « r ) = E 

mit 
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F (j/ai). Das heißt: Die Adjunktion des einen Radikals fal zu F bewirkt 
j>i Pi_ 

schon, daß jedes Radikal der Gestalt |/ai, also ]ja\ in allen seinen möglichen 

Interpretationen, in F $ a i ) liegt. Beim nächsten Schritt wird ein 

a2E-F(yäi), 
beispielsweise vielleicht 

i + Pp~i 

1— Voi 

Pt /Pi \ 
gewählt und ein gewisses Radikal y«2 zu -F^aiJ adjungiert; das in dem Aus-

Pi 
druck für a% auftretende Radikal y«i hat dabei seine ursprüngliche Bedeutung. 

/P\ Pt V 
Es entsteht der Körper Fz = F\]/ai, ^az). Er enthält von selbst wieder alle 

Interpretationen von y<i2- Denkt man sich aber in dem Ausdruck für 02 das 
Pi Pi 

Radikal y«i durch ein anderes Radikal y«i ersetzt, so entsteht ein Element 

af e F § a x ) , und es ist nicht gesagt, daß auch in Fz liegt. Wir adjungieren 

deshalb nicht nur y<i2 zu F ( yaj), sondern zusätzlich auch noch alle Radikale Pt 
der Gestalt für jedes mögliche a*. Es entsteht ein Oberkörper von 

Pt 
Nun folgt die für L vorgesehene Adjunktion von |/a3, und wieder adjungieren 

p» 
wir anschließend auch alle Radikale y«3, wobei o* aus 03 durch eine andere 
Interpretation der in 03 auftretenden Wurzelzeichen entsteht. So fahren wir 
fort und gelangen zum Schluß zu einer endlichen Radikalerweiterung M von L, 
die so beschaffen ist, daß mit jedem Radikalausdruck a e M auch jeder an-
dere Radikalausdruck a* in. M liegt, der sich aus a durch eine andere Interpre-
tation der Wurzelzeichen ergibt. 
Wir können nun unter Verwendung neuer Bezeichnungen 

m = f( fe y C 2 l . . . , Pfc~) 
mit 

cieF, c2ef(yci) c,e F{\ ci, y'c2 y ^ i ) 

schreiben. Wir setzen Irr fj/cl, f ) = Px(x) und g(x) = Pi(x)P2{x)... Ps{x)eF[x]. 
Es sei M' der Zerfällungskörper von g(x) e F[x]; er ist normal über F nach 
Satz 65.7. Wenn wir M' -- M zeigen können, so wissen wir also: M ist eine 
Radikalerweiterung von F, die L und damit auch E umfaßt und normal ist 
über F. Es ist klar, daß M' d M gilt. Zu zeigen wäre also M' c M. Dafür genügt 
es zu zeigen: Jede Nullstelle £ e M' von g(x) liegt bereits in M. Man betrachte 
ein solches f e M'. Eines der Pt(x) ist das definierende Polynom von f über F, 
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etwa Irr (f, F) = Px(x) = I r r ( ]/ca, f) . Nach Satz 65.3 gibt es also einen Auto-

morphismus aeO(M'\F) mit S = a(^]/cx}. Nun setze man vorübergehend 
Px 
|lex = a, also Cx = und wende a an; man bekommt für <r(a) einen Aus-

PX /PX X px 

druck der Gestalt o(oc) = ]la(cj). Das heißt: In f = a \^cx) = yo{cx) kann 
man das a unter die Wurzel ziehen; über die Interpretation der Wurzelzeichen 
wird dabei nichts ausgesagt. Dieses Verfahren kann wegen 

/Pi Pt Pa-I \ 
Cx 6 -PaVci, Vcg, . . . , 1/cx-l) 

eventuell wiederholt werden. Da a die Elemente aus F festläßt, bricht es 
schließlich dadurch ab, daß zuletzt der Automorphismus er nicht mehr auftr i t t . 

Px 
Von dem Radikalausdruck ycx unterscheidet sich also £ lediglich durch eine 
eventuell andere Interpretation der in ihm auftretenden Wurzelzeichen und 
liegt daher nach der Konstruktion von M gemeinsam mit ihm in M. Das heißt 
£ e M, also M' c M und damit M' = M. 
Je tz t wissen wir: Aus der Voraussetzung des Hilfssatzes folgt die Existenz 
einer Radikalerweiterung M von F, die normal ist über F und den Zerfällungs-
körper E von f(x) e F[x] umfaßt : M d E d F. Auch E ist normal über F, und 
wir haben zu zeigen, daß die Galoisgruppe G(E\F) auflösbar ist. Aus Hilfssatz 3 
wissen wir, daß G(M\F) auflösbar ist. Nach Satz 66.5 ist 0(E\F) isomorph zur 
Faktorgruppe G(M\F)jG(M\E). Diese wiederum ist ein homomorphes Bild der 
auflösbaren Gruppe G{M\F) und damit nach Satz 72.2 auch auflösbar. 
Damit ist Hilfssatz 4 bewiesen. 

73.3 Ist K ein Körper der Charakteristik Null, also K o Q, und 

f(x) = anxn + an-ix»"1 + ... + ao e K[x], 

so wollen wir Q(an, an-1, . . . , ao) den Koeffizientenkörper von f(x) nennen. Er 
ist der kleinste Teilkörper L von K mit /(x) e L[x\. 
Nun ergibt sich der angekündigte 

Satz 4 ( A B E L 1 8 2 4 ) : Es gibt Polynome fünften und höheren Grades mit reellen 
Koeffizienten, die über ihrem Koeffizientenkörper nicht auflösbar sind. 

B e w e i s : Man betrachte das in Abschnitt 73.1 eingeführte Polynom 

h(x) — X5 — ffi«4 + O2X3
 — 03X2

 + Gix
 —

 a5 

aus Fix]; wir zeigen, daß es über F nicht auflösbar ist; dann ist es erst recht 
nicht auflösbar über seinem Koeffizientenkörper Q(<ri, 02, <73, 04, 05). Wäre h(x) 
über F auflösbar, so müßte die Galoisgruppe von h(x) e F[x\ auflösbar sein 
(Hilfssatz 4). Die Galoisgruppe von h(x) e F[x\ ist aber isomorph ©5 (Hilfs-
satz 2), und die Gruppe ©5 ist nicht auflösbar (Satz 72.3). Also ist h(x) über 
seinem Koeffizientenkörper nicht auflösbar, und dasselbe gilt für die Polynome 
höheren Grades xkh{x), k ^ 1. 
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Die Hauptlast des Beweises von Satz 4 trägt der Hilfssatz 4, der sich vor 
allem auf die Galoistheorie und an entscheidender Stelle auf Satz 72.2 stützt . 
Der Hilfssatz 2 diente dann in Verbindung mit Satz 72.3 nur dazu, ein Polynom 
mit nicht auflösbarer Galoisgruppe anzugeben. In diesem Zusammenhang sei 
noch bemerkt, daß man ohne große Mühe sogar ganzzahlige Polynome mit der 
Galoisgruppe @5 finden kann, zum Beispiel x5 — x — 1 (vgl. V .D. W A E B D E N [16]). 
Also kann Satz 4 sogar so abgeändert werden, daß man in ihm das Wort 
„reellen" durch „ganzzahligen" ersetzt. Der Koeffizientenkörper ist dann £} 
selbst. 

A u f g a b e 1: Der Körper 21 ist algebraisch abgeschlossen (vgl. §58.4). 
Beweis 1 

L i t e r a t u r : ABTIN [3 ] , HASSE [7 ] , HASSE-KLOBE [8] , v . D. WAEBDEN [ 1 6 ] . 



Anhang 

Das Rechnen mit komplexen Zahlen 

1. Es sei SR die Menge der reellen, G> die Menge der komplexen Zahlen. Die 
Elemente aus <5 haben die Gestalt a + bi (a, b eSR), und es wird wie folgt mit 
ihnen gerechnet: 

(1) a + bi = c + di o a = c, b = d; 

(2) (a + bi) + (c + di) = (a + c) + {b + d)i; 

(3) (a + bi) • (c + di) = (ac — bd) + (ad + bc)i. 

Statt a + Ot schreiben wir a, statt 0 + bi schreiben wir bi. Ist a + bi =j= 0, 
so ist auch a — bi =)= 0, und durch formales Erweitern mit a — bi findet man 

dieses Resultat wird durch die Probe bestätigt. 
Wir rechnen also mit komplexen Zahlen in gewohnter Weise und beachten nur 
i2 = —1. Daß es einen derart hingeschriebenen Körper 6 wirklich gibt, be-
darf einer Begründung. Hierzu vergleiche man etwa § 23. 

2. Es ist von großem Nutzen, sich die komplexen Zahlen in folgender Weise zu 
veranschaulichen. Man wähle in der Ebene ein rechtwinkliges Koordinaten-
system, bestehend aus einer »-Achse und einer y-Achse, und ordne der kom-
plexen Zahl z = x + yi (x, y e SR) den Punkt (x, y) mit den Koordinaten x, y zu. 
Durch diese Vorschrift wird <5 eineindeutig auf die sogenannte Gaußsche Zahlen-
ebene abgebildet. Den Punkten der «-Achse sind dabei genau die reellen Zahlen 
zugeordnet, und wir bezeichnen deshalb die «-Achse als die reelle Achse; die 
«/-Achse heißt die imaginäre Achse. Wir sagen, die komplexe Zahl z = x + yi 
(x, y e SR) habe den Realteil x und den Imaginärteil y, und wir schreiben 
x = Re z, y = Im z. 

Der Spiegelpunkt von z = x + yi (x, y e SR) an der reellen Achse ist der Punkt 
•x — yi; wir bezeichnen ihn mit z und nennen z = x — yi die zu z = x + yi 
konjugiert-lcom'plexe Zahl. Die Zahl z 6 € ist genau dann reell, wenn z = z ist. 
Es ist z = z. Die Zahl —z findet man, indem man den Punkt z am Ursprung 
spiegelt. Man bestätigt leicht die Regeln 

1 a — bi a — bi a b 
a + bi (a + bi) (a — bi) a2 + b2 a2 + b2 a2 + b2 

(4) «1 + Z2 = Zl +_Z2 

Z1Z2 = Z1 ' z2 (Zl, Z2 6 6). 
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Der Punkt z = x + yi (x, y e3t) hat vom Ursprung die Entfernung ]/x2 + y2 ^ 0 ; 
diese nichtnegative reelle Zahl bezeichnet man mit |z|. Es folgen die ßegeln 
|z| = |—z\ = \z\, —\z\ ^-Rez < |2|, — \z\ ^ Im z ^ |z|. 
Der Abstand der Punkte zi, Z2 6 <5 ist |zi — Er ist ja genauso groß wie 
der Abstand des Punktes z\ — Zz vom Ursprung. 
Es gelten die beiden Regeln 

(5) |z|2 = zz, 

(6) |ziz2| = |zi| • |zg|. 
Die erste folgt unmittelbar aus den Definitionen für z und \z\. Die zweite be-
sagt dasselbe wie IZ1Z2I2 = |zi|2 • |Z2|2, und das folgt durch Ausrechnen der 
linken Seite mittels (5) und (4): IZ1Z2I2 = Z1Z2 • Z1Z2 = Z1Z2Z1Z2 = zizl • z<i z~2 
= |2l!2-|22|2-

Sind zi, 22, Z3 drei Punkte der Gaußschen Zahlenebene, so gilt 

\Zl — z2| ^ |zi Z31 + |Z3 Zz\, 
weil der Umweg von z\ über zs nach Z2 mindestens ebenso groß ist wie die direkte 
Entfernung |zi — Z2I. Setzt man speziell Z3 = 0 und schreibt —Z2 für Z2, so 
bekommt man die Dreiecksungleichung 

(7) |zi + z2| ^ I21I + M , 
die man auch ohne Rückgriff auf die Anschauung bestätigen kann. 

3. Wir führen nun in der Gaußschen Zahlenebene Polarkoordinaten ein. Die 
Entfernung r des Punktes z = x + yi (x, y 6 3t) vom Ursprung haben wir 
schon betrachtet: Es ist r = |z|. Für jeden Punkt z 4= 0 ist ferner bis auf 
additive ganzzahlige Vielfache von In eindeutig ein Winkel tp dadurch erklärt, 
daß die positive reelle Achse im mathematisch positiven Sinn so lange gedreht 
wird, bis sie die Verbindungsstrecke von 0 und z enthält: Dieser Winkel sei tp. 
Wir schreiben <p = arg z und nennen <p das Argument von z; wir verabreden, 
daß mit <p auch die reellen Zahlen <p + 2kn (k ganz) Argumente von z sind. 
Wegen x = r cos <p und y = r sin <p bekommt z die Gestalt z - r(cos<p + i sin 99). 
Genau dann liegt z auf dem Einheitskreis, wenn hierbei r = 1 ist. 
Es seien nun zwei komplexe Zahlen 

zi = ri(cos9?i + i sin vi), 
Z2 = r2(cos9>2 + i sin 992) 

gegeben. Für ihr Produkt bekommt man 

Z]Z2 = riT2[(co8<pi cos<p2 — sin^isin^) + ¿(sin^icos^ + cosyisin^)] 
= rir2(cos(9Ji + 952) + i sin (<pi + <p2)). 

Daraus kann man zwei Regeln ablesen. Einmal wird \ziz¡\ = r\r-¿ — |zi| • ¡Z2I. 
Das steht bereits in (6). Ferner liefert ein Vergleich der Argumente auf beiden 
Seiten 

(8) arg ziz2 = arg zx + arg z2 (Z1Z2 4= 0). 
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Aus (8) folgt beispielsweise, daß cos(—<p) + t sin(—95) = cos<p — i sin<p das 
Inverse von cosy + i siiKp oder 

— = —(cosy — i sin<p) 
z r 

das Inverse von z = r(coa<p + i sing?) 4= 0 ist, was man auch unmittelbar 
direkt nachrechnet. 
Für reelles <p definiert man 

(9) e'" = cosy + i sin^). 

Wir können dabei die linke Seite als eine bequeme Abkürzung der rechten 
ansehen; wegen (8) gilt auch hier das bereits aus dem Reellen vertraute 
Additionstheorem 

eUp . gfv = e((p+y)_ 

Mehrfache Anwendung von (8) liefert auch die sogenannte MoivRESche Formel 

(10) (cosy + i siny)* = cos ncp + i sin rup; 

sie gilt für alle natürlichen, ja sogar für alle ganzen Zahlen n. Sie gestattet 
verschiedene praktische Anwendungen. Will man beispielsweise cos n<p durch 
cos <p und sin <p ausdrücken, so braucht man links nur den binomischen Lehr-
satz anzuwenden und anschließend die Realteile auf beiden Seiten zu ver-
gleichen. So bekommt man etwa cos 395 = cos3^— 3cos<psin29? = 4cos3<p — 3cos^. 
Weiter ist jede der n Zahlen 

2n , . . 2ji ( 2? 
cosv |-tsmv— = c » (y = 0, 1, . . . , n — 1) 

n n 

eine ra-te Wurzel aus 1, wie die Probe mittels (10) zeigt. Diese n Punkte liegen 
auf dem Einheitskreis und teilen ihn in n gleiche Teile. Man nennt sie w-te 
Einheitswurzeln. Andere n-te Wurzeln aus 1 gibt es nicht. Wegen 

2n . . 2n ( 2n . . 2nV 
cos v |- 1 sinv— = cos 1- tsm — 

n n \ n n) 

2n 2 jt 
bilden die ra-ten Einheitswurzeln eine von cos [- i s in— erzeugte zyklische 

n n 
Gruppe der Ordnung n bezüglich der Multiplikation. 
Die dritten Einheitswurzeln beispielsweise sind demnach 

n 2n . . n 2n 
cos 0 • — + »sin 0 • — — 1, 

u O 

2n . 2n 1 t 
cos 1 • — + tsm 1 • — = — - + g P -
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Ä 2n . . „ 2n 1 cos2- — + i s i n 2 - y = - - - - j / 3 ; 

man kann sie auch durch Aufsuchen der Nullstellen von 

a? — 1 = (x — 1) (x2 + x -h 1) 
ermitteln. 
Die vierten Wurzeln aus —1 = cos n + % sin n sind 

In 2n\ . . In 2n\ , „ , „ „v C 0 B ^ - + » — j + .BBi^- +v— J ( r = 0 , 1 , 2 , 3 ) ; 

wieder macht man am einfachsten die Probe nach (10). Schreibt man die 
Winkelfunktionen aus, so erhält man die sämtlichen vier Werte von \—1 zu 

p ( ± 1 ± 0 . 



Lösungen der Aufgaben 

1.1 Es sei x e A n (B u C). Dann ist jedenfalls x e A, und außerdem gilt x e B 
oder x 6 C; es folgt: x e A n B oder x e A n C. Das bedeutet 

A n ( ß u C ) c ( 4 n B ) u ( 4 n C). 

I s t x e (A <1 B) u {A n C), so gilt x e A und x e B u C, und das bedeutet 

Ac\(BvC) o ( i n B ) u ( i n G). 

Beides zusammen liefert die erste der Behauptungen (2). Die zweite beweist man 
analog. 

3.1 Die Behauptungen folgen sofort aus der Definition des Urbildes: 
a) / -1(/(T)) = {x-.xeA und f(x) e f(T)} o T. Is t e twa A = 9t, B = {0} und f(n) = 0 
für alle n e 9t, so führ t die Wahl von T = {1} zu /^( / (T)) = 9t =|= T. 
b) f(f~\T)) = {f(x): x e A und f(x) eT}cT. Is t etwa A = {0}, B = 9t und /(0) = 1, 
so führ t die Wahl von T = 91 zu f(t~\T)) = {1} * T. 

3.2 Is t y e f(M u N), so gibt es ein l e l i u i i mit y = f{x); da x in M oder N 
liegt, liegt f(x) in f(M) oder f{N), und y = f(x) e f(M) u f(N) bedeutet 

f(M u N) c f(M) u f(N). 

I s t y e f(M) u f(N), so gibt es ein x e M u N mit y = f(x); es ist also y e f(M u N) 
oder 

f(M u N) D f(M) u f(N). 

Beides zusammen liefert die Behauptung a). — Ist y e f(M n N), so gilt y = f(x) 
mit einem x 6 M n N, also y = j(x) e f(M) n f(N), und es folgt die Behauptung b). — 
Wähl t m a n M = {x: x e SR, — 2n g i t g 0},N = {xtxeSR.O ^ x g 2 n},A = B = «R 
und f(x) = sin x, so ist f(M n N) = {0} und f(M) n f(N) = {z: x e 3t, — I ^ x ^ I}. 

5.1 Es ist (o, b) ~ (a, b) wegen a + 6 = 6 + o. Aus (o, b) ~ (c, d) folgt o + d = 
= 6 + c, also c + b = d + a oder (c, d) ~ (o, b). Schließlich gelte (o, 6) ~ (c, d) 
und (c, d) ~ (e, /), also a + d = 6 + c und c + f = d + e; man addiere diese Glei-
chungen und wende das assoziative und das kommutat ive Gesetz an : a + / + c + d 
= 6 + e + c + d ; Kürzen mi t c + d ergibt a + / = b + e, also (a, b) ~ (e, /). 
Damit sind (I), (2), (3) nachgewiesen. 

5.2 Es ist (a, 6) ~ (o, 6) wegen ab = ba. Aus (a, 6) ~ (c, d) folgt ad = bc, also 
cb = da oder (c, d) ~ (a, b). Schließlich gelte (a, 6) ~ (c, d) und (c, d) ~ (e, /), 
also ad = bc und cf = de-, zu zeigen ist (a, 6) ~ (e, /). Sollte c = 0 sein, so folgt 
a — 0, weil nach Voraussetzung d nicht verschwindet; entsprechend wird e = 0; 
dann gilt aber sicher (a, b) ~ (e, /). Es sei daher zusätzlich c 4= 0. Dann wird 
adcf = bcde oder afcd = becd, und Division durch cd 4= 0 liefert af = be oder 
(a, b) ~ (e, /). 

5.3 F ü r jedes ae A gilt a ~ a, und aus- a1 ~ o2 folgt at ~ al. Aus ox ~ at und 
a a ~ a „ also f(ay) = /(a2) und /(oa) = /(a,), folgt /(ax) = /(a„) oder ox ~ o,. 

16 Honifeck, Algebra 
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6.1 Er seien a, b Elemente aus O; zu zeigen ist ab — ba. Nach Voraussetzung 
ist (ab)(ab) = e. So folgt für das Produkt aabdbb einerseits das Ergebnis a(ab)(ab)b 
= aeb = ab und andrerseits (aa)ba(bb) = ba. Also gilt ab — ba. •— Oder: Für jedes 
g eG gilt g = g~l. Aus a, b e G folgt also ab = (ab)-1 = 6 - 1o_ 1 — ba. 
6.2 Alle Ui enthalten das Element e. Es folgt e e D und damit Z) =)= 2. Sind a, b 
Elemente aus D, so auch aus £/j für jedes i e I; da die Ut Untergruppen von G 
sind, folgt also ab e Ui für jedes i e I und damit ab e D. Elemente a, b, c e D wer-
den in G assoziativ multipliziert, also auch in D. Wie bereits festgestellt, liegt e 
in D. Ist schließlich aeD, so auch a e Ut für jedes i e I; es folgt a _ 1 e Ut für 
jedes i e I , weil die Ui Gruppen waren, und das liefert a - 1 e D. 
6.3 Wegen e e Z ist Z nicht leer. Sind o, 6 Elemente aus Z, so gilt abg = agb = gab 
für jedes g e Q, und es folgt ab e Z. Die Multiplikation in Z ist assoziativ, weil 
sie es in G ist; sie ist kommutativ nach Definition von Z. Ist a e Z, so gilt ag = ga, 
also a~1aga~1 — o-1graa_1 oder a~lg — ga-1 für jedes g eG und damit a*1 e Z. 
6.4 Daß Q eine Gruppe ist, ist klar. Ist x e 0, so definiere man einen Isomorphis-
mus / von O auf H durch f(x) — log x. Die Abbildung ist injektiv, weil log xx 
= log nur für xx = x2 gilt; sie ist surjektiv, weil jedes y e SR Logarithmus einer 
reellen Zahl x > 0 ist; sie ist relationstreu wegen f(xy) = f(x) + f(y). 
6.5 In 9t0 gilt aa = (—o)(—a), obwohl a 4= —a ist; in 9t folgt aus a + a — b + b 
immer a = b. Das wird ausgenutzt: Angenommen, /: 9t0 ->• SR sei ein Isomorphismus 
von 5R0 auf SR und r das Bild von t 6 SR0. Das Bild t ' von —t müßte dann wegen 
der Eineindeutigkeit von / und t =# —t von r verschieden sein: r ' 4= r . Im Wider-
spruch hierzu wäre aber wegen der Relationstreue von / das Bild von t2 = (—i)2 

sowohl r + t = 2t als auch r' + z' = 2t ' mit der Folge t = r'. 
8.1 U ist eine Halbgruppe in O. Es seien a, b Elemente aus U = {ult ut ut}-
Alle Produkte aui fallen paarweise voneinander verschieden aus, liefern also wieder 
ganz U. Daher ist die Gleichung ax = b mit einem gewissen ux e U lösbar, und 
das Entsprechende gilt für die Gleichung ya = b. Die Behauptung folgt nun aus 
Satz 6.2. 
8.2 Die eine Richtung der Behauptung steht in Satz 2: Wenn M eine Unter-
gruppe von O ist, so wird durch a ~ b o a~xb e M eine Äquivalenzrelation auf G 
erklärt. Zu zeigen bleibt: Wenn durch o ~ b o o - 16 e M eine Äquivalenzrelation 
auf O definiert wird, so ist M c Q eine Untergruppe von O. Wegen a ~ a hat man 
zunächst o - 1 o = e e M , also M 4= Sind weiter a, b Elemente von M, so auch 
e - 1a und e_16; es folgt also e ~ a, e ~ b und daraus a ~ b oder o - 16 6 M. Nach 
Satz 1 ist also M eine Untergruppe von O. 
8.3 Im Falle a) wähle man etwa O unendlich und U - {e} oder, weniger trivial, 
für G die multiplikative Gruppe SR0 und U = {I, —1} als Untergruppe. Im Falle 
b) sei G die additive Gruppe von SR und U die additive Gruppe von Q; dann kann 
ind U nicht endlich sein, weil sonst (vgl. § 4) SR abzahlbar wäre wie £J. 
8.4 Wir haben noch zu zeigen: Wenn die Linkszerlegung und die Rechtszerlegung 
von G nach U übereinstimmen, so ist U ein Normalteiler von G. Es sei dazu a 
ein beliebiges Element aus G; wir zeigen aU = Ua. Zunächst muß es ein b e G 
mit aU = Ub geben. Es folgt a e Ub, also auch Ua = Ub und damit aU = Ua. 
8.5 Nach Aufgabe 6.2 ist D eine Untergruppe von G. Nach Satz 4 haben wir zu 
zeigen: Für jedes ae G gilt aDo - 1 c D. Zunächst ist D c N{ für jedes i e I. Es 
folgt oDo - 1 c aNia*1 = 2Vj. Da das für jedes ie I gilt, ist aDa~l auch im Durch-
schnitt D der N{ enthalten: aDa-1 c D. 
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9.1 2l4 enthält die identische Permutation der Ordnung 1, die Elemente (34)(12), 
(24)(13) und (23)(14) der Ordnung 2 und die Elemente (123), (132), (124), (142), 
(134), (143), (234) und (243) der Ordnung 3. Beispielsweise ist (123) = (13)(12) 
als Produkt zweier Transpositionen ein Element von 2l4, und (123)(123)(123) wird 
die Identität. 

_» ^ 
9.2 Hat k mit n den gemeinsamen Teiler d > 1, so ist bereits (gk)d = (gn)d = e, 
so daß gk nicht die Ordnung n haben kann. Sind k und n teilerfremd, so sind 
gk, g2k gnk paarweise verschieden, liefern also ganz 6: Wäre gxk = g"k, 
1 g j» ^ A ̂  n, so würde g(*~i')k = e folgen; nach Satz 2 hieße das: n teilt (A — ß)k; 
weil nzuk teilerfremd ist, bekäme man weiter: n teilt A — fi. Da aber 0 ^ A — fi < n 
gilt, muß schon A = pt sein. 

10.1 Nein. Es müßte @ s = U x V mit |E7| = 2 und |F| = 3 sein. Dann wären 
aber U und V und damit auch ©3 = U x V abelsch im Widerspruch zu Satz 7.4. 

10.2 o 1 = 3» x 3,, G»2 = j , x j 4 x 3,, ö 3 = 3a x 3a x 32 x 3, , = ^g x 3 , x 3S, 
H2 = 3a x 3* x 3s x 3s» H3 = 32 X 3ü X 32 x 3a X 3,. Die Ot sind von den H} ver-
schieden, weil jedes Gt ein Element der Ordnung 9 enthält, ein Hj dagegen nicht. 
Die Gruppe 03 enthält kein Element der Ordnungen 4 oder 8; die Gruppe 02 ent-
hält zwar ein Element der Ordnung 4, aber keines der Ordnung 8; die Gruppe G1 

enthält ein Element der Ordnung 8. Die Gi sind also verschiedene Gruppen. Genauso 
folgt es für die Hj. 

11.1 Es ist 800 = 2* • 52 ; es gibt also p(5) • p(2) = 14 abelsche Gruppen der 
Ordnung 800; ihre Typen sind (2,2,2,2,2,25), (2,2,2,4,25), (2,4,4,25), (2,2,8,25), 
(2,16,25), (4,8,25), (32,25), (2,2,2,2,2,5,5), (2,2,2,4,5,5), (2,4,4,5,5), (2,2,8,5,5), 
(2,16,5,5), (4,8,5,5), (32,5,5). Die acht abelschen Gruppen der Ordnimg 900 haben 
die Typen (2,2,9,25), (4,9,25), (2,2,3,3,25), (4,3,3,25), (2,2,9,5,5), (4,9,5,5), 
(2,2,3,3,5,5), (4,3,3,5,5). Die neun abelschen Gruppen der Ordnung rQOO haben die 
Typen (2,2,2,125), (2,4,125), (8,125), (2,2,2,5,25), (2,4,5,25), (8,5,25), (2,2,2,5,5,5), 
(2,4,5,5,5), (8,5,5,5). 

12.1 Bezeichnen g, h Elemente aus G, H, so besteht die Faktorgruppe von G x H 
nach dem Normalteiler H (Satz 10.2) aus allen Nebenklassen der Gestalt ghH = gH. 
Aus gxH = gjft folgt gilg2 e H, also g±lg2 eG r\H — {e} oder g1 = g2. Die durch 
Kg) = gH vermittelte Abbildung /: G -> (G x H)/H ist daher bijektiv. Sie ist 
ferner relationstreu. 

12.2 Das folgt aus ß ~ SR ® SR (§ 10, Beispiel 4) und Aufgabe 1 oder durch die 
bijektive relationstreue Abbildung f: S/SR SR, die vermöge f(ir + SR) = r definiert 
wird. Es ist ja ¡((ir^ + SR) + (ir2 + SR)) = /(¿K + r2) + SR) = rx + r2 = f(iry + SR) 
+ f(ir2 + SR). 

12.3 Die Gruppe G = 3a x 3j x abelsch von der Ordnung 24 und wird von 
den Elementen a, b, c der Ordnungen 2, 3, 4 erzeugt. Als homomorphe Bilder 
kommen nur abelsche Gruppen in Frage, deren Ordnungen Teiler von 24 sind 
(Sätze 1 und 2). Davon scheidet 3g aus, weil kein Element aus G ein Vielfaches von 8 
als Ordnung hat, und man überlegt sich noch, daß auch 3a x ?2 

x 3a nicht in Frage 
kommt. Nach § 11 bleiben als mögliche Bilder {e}, 3a> 3»» 3z x 3t> 3i> 3i x 3» = 3«. 
3i x 3«» 3a x 32 x 3a> 3s x = 3i2 und G selbst übrig. Sie können alle auch 
wirklich als homomorphe Bilder von G auftreten. Beispielsweise bekommt man 
3a x 3a x 3» durch den Normalteiler {e, c2} und 3a x 3a durch den von b und c2 

erzeugten Normalteiler. 

1 8 * 
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12.4 Es gibt nach Satz 11.3 nur eine abelsche Gruppe der Ordnung 6, die zy-
klische. Es seideshalb O eine nichtkommutative Gruppe der Ordnung 6; kein g e G 
hat dann die Ordnung 6. Nach Aufgabe 6.1 können ferner die von e verschiedenen 
Elemente aus O nicht sämtlich die Ordnung 2 haben. Also existiert nach Satz 9.3 
ein a e G der Ordnung 3. Die von a erzeugte Untergruppe U c O vom Index 2 
ist dann ein Normalteiler (§ 8.4), und es gilt etwa O/U = {U, bU} mit einem b e G. 
Wir zeigen, daß b die Ordnung 2 hat. Die Ordnungen 1 und 6 kommen jedenfalls 
nicht in Frage, und wir müssen ausschließen, daß b die Ordnung 3 hat. Nun gilt 
in G/U zunächst (6t/)2 = U. Hätte b die Ordnung 3, so müßte auch (bU)* = U, 
also bU — U sein, was nicht der Fall ist. 
Wegen O = U U Ub hat G die Gestalt {e, a, o2, b, ab, o26}. Wir kennen die Rechen -
regeln a3 = b* = e. Die Verknüpfungstafel für O ist festgelegt, sobald der Wert 
von ba bekannt ist. Nun ist ba = ak wegen b $ U unmöglich, und ba = b hätte 
a = e zur Folge; wäre schließlich ba = ab, so würde O kommutativ. Wenn es 
also überhaupt eine nichtkommutative Gruppe G der Ordnung 6 gibt, so nur die 
eine, in der für die speziellen Elemente o, 6 die Regel ba = a26 gilt. Andrerseits 
wissen wir: Es gibt eine nichtkommutative Gruppe <3a der Ordnung 6. 
Daraus folgt: Die beiden einzigen Gruppen der Ordnung 6 sind und <2>a. 

12.5 Ist H die Untergruppe aller Elemente 5*7' aus G, so gilt G/N ~ H. (Vgl. 
Aufgabe 12.1.) 

12.6 Man betrachte die Teilmenge H = U uN von G. Wir zeigen zunächst, daß H 
ueU 

eine Untergruppe von G ist: Wegen e e H ist H nicht leer; sind hl = u^ und 
h2 = u2n2 Elemente aus H (ut e U, n< e N), so wird hlh2 = m1to1m2»i2 = w1M2n3n2 

= (w1M2)(n3n2) € H, da es auf Grund der Normalteilereigenschaft von N ein n3e N 
mit /ijttj = u2ns gibt; die Multiplikation in H ist assoziativ wie die in G; mit 
h = un e H (u e U, n e N) liegt auch h~l = n _ 1t i _ 1 = u~hi4 in H, da es wieder 
wegen der Normalteilereigenschaft von N ein nte N mit n - 1 u _ 1 = u~1ni gibt. Diese 
Untergruppe H c G enthält U und N, ist also nach Voraussetzung G selbst. Die 
Faktorgruppe G/N besteht also aus den paarweise verschiedenen unter den Neben-
klassen uN, u e U. Nun ist UJ^N = u2N nur für u2hu1 e N, also U2HIx € N n U = {e} 
oder ul = m2 möglich (ut e U). Die durch f(u) = uN definierte Abbildung f: U -> G/N 
ist daher bijektiv. Wegen /(Wi«2) = U j U ^ = ^Nu^N = /(tt1)/(it2) ist sie auch 
relationstreu, und daa bedeutet U ~ G/N. 

12.7 a) Wir zeigen zunächst, daß G eine Gruppe ist. Da die identische Abbildung 
die beschriebene Gestalt hat, liegt sie in G, und G ist nicht leer. Sind /, g Elemente 
aus G und f(x) = ax + b, g(x) = cx + d, so wird gf(x) = c(ax + 6) + d = acx 
+ bc + d, also auch gf e G, da ac + 0 ist. Die Multiplikation in G ist assoziativ 
nach Satz 3.1. Schließlich ist jedes / e ß eine Transformation von SR, und die 
Umkehrabbildung / - 1 : SR ->SR ist definiert. Wenn f(x) = ax + b ist, wird f~l(x) 

= — x also auch f~1 e G. Also ist G eine Untergruppe der Gruppe aller Trans-
a a 

formationen von SR. Daß U1 und U2 Untergruppen von G sind, sieht man sofort. 
Es sei nun f eU1 definiert durch f(x) — x + b und g e G durch g(x) = cx + d, 
also g-1 d u r c h — x — D a n n folgt gjg~l(x) = x + bc, also gfg-1 e Uv Da f e Ul und c c 
g e G beliebig waren, besagt Satz 8.4: TJX ist Normalteiler von G. Ist dagegen 
f e U2 und nicht die Identität, also f(x) = ax mit a #= 1, so wird gfg~x(x) = ax 
+ d( 1 — a) und, falls d nicht Null war, gfg-1 $ Ut. Somit ist U2 kein Normalteiler 
von G. 
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b) Man wähle a 6 SR0 als Bild für die durch j(x) = ax erklärte Abbildung / e U2. 
c) Man wende Aufgabe 12.6 an. 

13.1 Die charakteristische Schlußweise tauchte bereits in Aufgabe 8.1 und in 
§ 12.4 auf: Is t H = {hl, h2, .. ., hn} und a e H, so fallen die Produkte aht paarweise 
voneinander verschieden aus, liefern also ganz H. Für a, b e H wird demnach 
ax — b und ganz entsprechend auch ya = b in H lösbar, und Satz 6.2 liefert die 
Behauptung. Daß eine unendliche reguläre Halbgruppe nicht notwendig eine 
Gruppe ist, zeigt das Beispiel 9t bezüglich der Addition oder auch der Multiplikation. 

14.1 In § 12.1 war gezeigt worden: Sind / : A -> B bzw. g: B --> C Homomorphismen 
von A auf B bzw. B auf C, so ist gf: A -> C ein Homomorphismus von A auf C. Das 
benutzen wir. Es sei zunächst / : (?-»• G/K der Homomorphismus von G auf G/K 
mit dem Kern K. Aus Satz 2 wissen wir, daß mit N auch f(N) ~ N/K Normalteiler 
von G/K is t ; dabei ist f(N) — N/K, weil K Normalteiler von G, also erst recht 
von N ist. Nun sei weiter g: G/K (G/K)/(N/K) der Homomorphismus von G/K 
auf ( G / K ) / ( N / K ) mit dem Kern N/K. Der Homomorphismus gf: G (G/K)/(N/K) 
von G a.uf (G/K)/(N/K) ha t also den Kern N, und der Homomorphiesatz für Gruppen 
liefert die Behauptung ( G / K ) / ( N / K ) ~ G/N. Es ist, als ob man K herauskürzen 
könnte. 

14.2 Nach Aufgabe 6.2 ist D eine Untergruppe von G. Nach Definition von D gilt 
D c (h~1g)U(h-1y)~1 für alle g, h e G, also hDhc gUg~l für alle g, h e G. Häl t man 
hierin h e G fest und bildet rechter Hand den Durchschnitt über alle j e G, so er-
gibt sich hDhc D für jedes h e G. Nach Satz 8.4 ist also D ein Normalteiler 
von G. 

14.3 Wir teilen G = Kt u Kt u . . . u Kr auf in Klassen konjugierter Elemente. 
Aus der Definition des Zentrums folgt: Genau dann bildet ein a e G eine Klasse 
für sich, wenn aeZ ist. Es gelte etwa e e AT,, also lKt\ — 1. Wäre Z = {e}, so 
hät te jede der Klassen K2, K3, .. ., Kr mehr als ein Element. Die Zahlen \K2\, 
|isT3|, ..., \Kr\ wären nicht Eins und nach Satz 4 Teiler von \G\, nach Voraussetzung 
also Vielfache von p. Dann müßte auch IKJ = \G\ — \K2\ — \K3\ — ... — \Kr\ 
durch p > 1 teilbar sein, was nicht der Fall ist. 

14.4 Wir beginnen mit einer Vorbemerkung: Zwei voneinander verschiedene 
echte Untergruppen U, V von G haben {e} als Durchschnitt. Gäbe es nämlich ein 
a e U n V, a 4= e> so wären nach Satz 8.3 sowohl U als auch V Gruppen von Prim-
zahlordnung, und die von a erzeugte Gruppe wäre wieder nach Satz 8.3 sowohl 
gleich U als auch gleich V. Das hieße U == F, was gerade nicht der Fall war. 
Enthäl t nun G ein Element g der Ordnung pq, so ist G zyklisch, also abelsch, 
und gQ erzeugt eine Untergruppe U der Ordnung p, die dann von selbst Normal-
teiler ist. Deshalb sei weiterhin G nicht zyklisch. 
Ein beliebig gewähltes g e G, g 4= e, ha t also eine Ordnung ungleich pq, etwa p. 
Es erzeugt dann eine Untergruppe U der Ordnung p, und wir nehmen an, U 
sei nicht schon Normalteiler. Für den Normalisator M von U bedeutet das 
U C M cG mit M 4= ö ; da nach Satz 8.3 jedenfalls \M\ ein Teiler von |G| und ein 
Vielfaches von \U\ ist, folgt M — U, und U ha t nach Satz 5 genau q Konjugierte. 
Wir nennen sie L\ = U, U2, U3 Uq; auf Grund der Vorbemerkung wissen 
wir UiCiU) = {e} für i # j. Es bleiben demnach pq — q(p — 1 ) — 1 = q — 1 
Elemente von G, die nicht in den U( liegen. Wir wählen ein beliebiges von ihnen 
und nennen es h. Dann können zwei Fälle eintreten. 
H a t h die Ordnung q, so erzeugt es eine Untergruppe V, die auf Grund der Vor-
bemerkung gerade aus diesen restlichen q — 1 Elementen und der Eins besteht 
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und keine von V verschiedenen Konjugierten haben kann, weil ein derartiges 
Konjugiertes dann mit einem der Ui zusammenfallen müßte, was zur Folge hätte, 
daß auch V und U konjugiert wären. In diesem Fall ist also V ein Normalteiler 
der Ordnung q. 
Hätte schließlich h die Ordnung p, so könnte die von h erzeugte Untergruppe V wegen 
q(p — 1) > q — 1 nicht wieder q Konjugierte haben, wäre also auch diesmal ein 
Normalteiler ungleich {e} und ungleich O. 

14.5 Es sei O* = O/K und /: O - + ö * der Homomorphismus von O auf O* mit dem 
Kern K. Das Bild von H ist die Untergruppe H/K von O*; da O* abelsch ist, ist 
H/K sogar Normalteiler von O*; nach Satz 2 ist also auch das Original H von H/K 
Normalteiler von Q. Sind aH, bH Elemente aus O/H, so gilt c = 6_1o_16a e K cH, 
also H — cH und demnach aH • bH = abH = abcH = baH = bH • aH. Die Faktor-
gruppe O/H ist also abelsch. 

15.1 a) Es sei f e A und <pasB; nach Satz 8.4 ist die Untergruppe B von A so-
gar Normalteiler von A, wenn /y0/_1 e B gezeigt wird. Nun gilt aber f<paf~\x) 
= f(af~1(x)a~1) = j(a)xf(a)~1 = <p/(a){x) für alle x e O, also /y«/-1 = <Pf(a) e B. 
Also ist B Normalteiler von A. 
b) Wir behaupten zunächst, daß durch f(aZ) = <pa eine Abbildung /: O/Z -* B 
definiert wird; dazu muß gezeigt werden, daß das Bild <pa von aZ von der Wahl des 
Repräsentanten a von aZ nicht abhängt. Es sei etwa aZ = bZ, also b = az mit 
einem ze Z; dann wird <pb{%) = azxz~xa~x = axzz^a'1 = axa~x = <pa(x) für alle 
xeO, also <p& = <pa. Es ist demnach /: O/Z -> B eine Abbildung; sie ist surjektiv, 
weil gZ ein Original von <pg ist. Sie ist auch injektiv; denn aus f(aZ) = f(bZ) oder 
<Pa = fb folgt axa= bxb~l oder b~xax = xb_1a für alle x e G, also 6_ 1a e Z oder 
aZ = bZ. Die Abbildung /: O/Z B ist also bijektiv. Sie ist auch relationstreu: 
f(aZ • bZ) = f(abZ) = <pa>> = <pa<pt, = f(aZ)f(bZ). 

17.1 Wir betrachten die beiden Fälle p = q und p < q. Ist im ersten Fall O 
kommutativ, so folgt die Behauptung aus Satz 11.1 und Satz 9.6. Eine nicht-
kommutative Gruppe G der Ordnung p ! würde nach Aufgabe 14.3 als Normalteiler 
ein Zentrum der Ordnung p besitzen. Ist p < q, so besitzt G nach Satz 1 Unter-
gruppen der Ordnung q; ihre Anzahl ist nach Satz 3 eine Zahl k der Gestalt xq -(- 1, 
» 6 3. die außerdem noch p teilt. Es folgt fc = 1. Die eindeutig bestimmte Unter-
gruppe U von O der Ordnung q fällt also mit allen ihren Konjugierten zusammen 
und ist deshalb Normalteiler. 

18.1 Die n Elemente a, ab, ab2, ..., abn~1 sind paarweise verschieden und haben 
die Ordnung 2. 

18.2 Das folgt aus den Aufgaben 9.1 und 18.1. 

18.3 Daß 3». 3t x 3« und 3« * 3a x die sämtlichen abelschen Gruppen der 
Ordnung 8 sind, ist uns aus § 11 bekannt. Wir haben also zu zeigen: Eine nicht-
kommutative Gruppe G der Ordnung 8 ist entweder die Dieder- oder die Quater-
nionengruppe. Nach Aufgabe 6.1 kann nicht jedes g e O die Ordnung 2 haben. Da O 
kein Element der Ordnung 8 enthält, gibt es nach Satz 9.3 ein b e O der Ordnung 4, 
und als Untergruppe vom Index 2 ist U = {e, b, b2, 68} c O ein Normalteiler von O. 
Wir schreiben O/U = {U, aU} und wissen a2U = U, also o2 e U. Es kann nicht 
a2 — b sein, denn dann hätte a die Ordnung 8, und aus demselben Grund ist a2 =t= 6®. 
Also ist entweder a2 = e oder o2 = 6a. 
Ferner kann man das Resultat von aba'1 angeben. Da U Normalteiler von O ist, 
gilt zunächst aba-1 e U; darüber hinaus wird U = aUa~l sogar von o6o_1 erzeugt, 
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und da nur 6 und 6* die Gruppe U erzeugen, ist aba-1 entweder gleich b oder gleich 
b3. Im ersten Fall wäre aber 0 kommutativ. Also gilt aba-1 = b~K Bildet man 
beiderseits die Inversen, so folgt ab~1a~1 = 6 oder ba = oft-1 4= ab. 
Eine nichtkommutative Gruppe Q der Ordnung 8 hat also die Gestalt O = U u aU 
= {e, b, b2, 6S, a, ab, ab2, ab?}, und in O gelten die Bechenregeln b* = e und ba = ab'1. 
Außerdem ist entweder a2 = e oder a2 = b2. Beide Male ist da« Rechnen in O 
festgelegt; es gibt also höchstens zwei nichtkommutative Gruppen O der Ordnung 8. 
Da wir andrerseits zwei nichtkommutative Gruppen der Ordnung 8 kennen, 
nämlich die Diedergruppe und die Quaternionengruppe, ist damit alles ge-
zeigt. Die Diedergruppe ®4 ist durch die Rechenregeln a2 =- 6* = e und ba = ab-1 

bestimmt. Gelten in O die Regeln 6* = e, ba = ab-1 und a2 = b2, so liegt die Quater-
nionengruppe vor; man setze etwa a = i und b = j. 

+ 0 1 2 3 4 5 0 1 2 3 4 5 
0 0 1 2 3 4 5 0 0 0 0 0 0 0 
1 1 2 3 4 5 0 1 0 1 2 3 4 5 
2 2 3 4 5 0 1 2 0 2 4 0 2 4 
3 3 4 5 0 1 2 3 0 3 0 3 0 3 
4 4 5 0 1 2 3 4 0 4 2 0 4 2 
5 5 0 1 2 3 4 5 0 5 4 3 2 1 

20.2 Aus 5x = 7(13) und 8 = 8(13) folgt 40a; = 56(13) oder x = 56(13) oder 
x = 4(13) ; aus x = 4(13) folgt umgekehrt 5x = 20 = 7 (13). Gienau die ganzen 
Zahlen der Gestalt 13fc + 4 lösen also die Kongruenz. 
20.3 Angenommen, es gäbe ganze Zahlen x, y, z mit x2 + y* + z% = 8Jfc —f— 7. 
In 3, würde K(x2 + y* + z2) = K(Hk + 7) oder K(x)2 + K(y)2 -f K(z)2 = K(7) 
folgen. Nun gibt es in & die Quadrate K{0)2 = X(0), K(l)2 = Ä(l) , K(2)2 = K(4), 
K(3)2 = K{ 1), K(4)* = K(0), K(5)a = X( l ) , X(6)* = K(4), K(7)2 = X( l ) , also K(0), 
iC(l) und K(4). Die möglichen Summen mit drei Summanden K(0), K( 1), K(4) 
haben aber nie den Wert K(7). 
20.4 Es sei etwa ce B kein linker Nullteiler und c =# 0. Sind a, b beliebige Ringele-
mente, so wird zunächst (—c)(—b — o) = cb + ca — c(b + a); dabei wurden die Vor-
zeichenregeln aus Satz 1 benutzt, bei deren Beweis die Kommutativität der Addi-
tion nicht gebraucht wurde. Aus dem gleichen Grunde gilt auch (—c)(—b — o) 
= (—c)(—(a + b)) = c(o + b). Es folgt c((a + 6) — (6 + a)) = 0 oder a + b 
= b + a. 
20.5 Die Behauptungen a) und b) ergeben sich durch vollständige Induktion 
nach n. 
c) Es sei a e R ein linker Nullteiler; es existiert also ein 6 e B, b 4= 0, mit ab = 0. 
Hätte a ein Linksinverses c, so würde c{ab) = 0 gelten im Widerspruch zu (ca)b 
= 6 + 0. Analog ergibt sich die zweite Behauptung von c). 
d) Man beklammere bac auf beide Arten; daraus folgt b = c. Aus ax = 1 folgt 
bax = x = b; analog führt ya = 1 auf yab = y = b. 
e) Das folgt aus d). 
f) Das folgt aus c). 
g) Wegen 1 e E ist E nicht leer. Aus a e E folgt die Existenz eines a - 1 6 R mit 
a _ 1 a = aa~x = 1, und das bedeutet auch o - 1 e E . Aus a,beE folgt (6-1o~1)a6 
= a6(6 - 1o - 1) = 1, also ab e E. Die Multiplikation in £ ist assoziativ wie die in B. 
20.6 a) Es ist a(b + ( 6 a — l)a*) = ab + (aba — a)a* = ab + (a — a)a* = ab = 1. 
b) Es ist zu zeigen, daß b auch Linksinverses ist: 6a = 1. Wäre aber ba — 1 * 0 , 
so wäre nach a) auch 6 + (6a — 1) * 6 ein Rechtsinverses von a entgegen der 
Voraussetzung. 
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c) Wir haben zu zeigen: Besitzt a außer b wenigstens ein weiteres Rechtsinverses, so 
bereits unendlich viele. In diesem Fall muß zunächst ba — 1 4= 0 sein, weil sonst 
nach Aufgabe 5d) das Element b das einzige Links- und Rechtsinverse von a wäre. 
Nach a) ha t a die Rechtsinversen b + (ba — 1 )ak (k = 0, 1, 2, . . . ) . Wir zeigen, daß 
sie paarweise voneinander verschieden sind. Wäre b + (ba — l) an— b -f (ba— \)am 

oder (ba— 1 )am — (ba— l)a" für n — m = 2 > 0, so würde durch Rechtsmulti-
plikation mit 6™ folgen: ba-— 1 = (ba— 1)6' = bl — bl — 0, was gerade nicht 
der Fall war. 

20.7 Multipliziert man unter Berücksichtigung der Kommutat iv i tä t von R die n 
Klammern (o + b) nach dem Distributivgesetz aus, so t r i t t das Produkt an~vbf 

gerade mal als Summand auf. 

20.8 a) Der Binomialkoefiizient 

ist eine natürliche Zahl; der Nenner kann also weggekürzt werden; dabei bleibt p 

Null. Aufgabe 7 liefert also (o + 6)p = o» + bP. Es folgt (a — b)P = av — b* 
für p ^ 3. Für p = 2 wird (o — b)2 = a2 + b2 = a2 — b2, weil aus *(/) = 2 folgt: 
b2 = — 62. 
b) Das folgt aus a) durch Induktion nach k. 
c) Das folgt aus a) durch Induktion nach n. 

20.9 a) Daß Kl und K2 Körper sind, sieht man wie im Falle 

K = {x: x = a + 6)/2, a, b eÜ}. 

Wir nehmen an, / : Kl K2 sei ein Isomorphismus von K1 in K2, und führen diese 
Annahme auf einen Widerspruch. Es sei /(^S) = r + «V5 (r, s e Q ) . Es würde 
einerseits /(3) = /(VS)/(V3) = r2 + 5ss + 2r«y5 folgen; andrerseits ist /(3) 

+ 1 + 1) = /(1) + /(1) + /(l) = 3. Das liefert r2 + 5s2 + 2r«y§ = 3. Da 
y5 irrational ist, muß rs = 0 sein. Da y3 irrational ist, kann nicht a = 0 sein; 

3 
also folgt r = 0. Das aber liefert s2 = —, was ebenfalls unmöglich ist. 5 
b) Wir zeigen: Das Quadrat von u — fä e M liegt nicht in M. Andernfalls gäbe es 
Elemente a, 6 e Ö mit (-)f) u2 + au -f b = 0. Multiplikation von (-X-) mi t u liefert 
wegen u3 = 2 die Gleichung au2 + bu + 2 = 0; Multiplikation von (-)f) mit a er-
gibt au2 + a2u + ab = 0. Durch Subtraktion beider Gleichungen folgt (a2 — b)u 
— 2 — ab, also, da u $ Q ist, a2 = b und ab = 2; hieraus folgt aber a3 = 2, was 
für a e Q nicht möglich ist. 

20.10 a) Es sei S ein Schiefkörper und %(S) = 0; wir betrachten die Teilmenge 
M — {x: x = ml, m e 3} aller Summen von Summanden + 1 oder —1 und sehen 
sofort, daß M ein kommutativer Unterring von S ist. Durch /(ml) = m wird dann 
ein Isomorphismus / : M -» 3 v o n M auf 3 definiert: Da ¿1 = 21 wegen j;(<S) = 0 
nur für k — l möglich ist, ist / definiert und dann von selbst bijektiv, und die Rela-
tionstreue kommt von f(k\ + 21) = f((k + 2)1) = k + l = f(kl) + f(ll) und 

im Zähler stehen. Für 1 ^ v ^ p — 1 ist also p ein Teiler von und in einem 

Integritätsbereich I der Charakteristik p ist I^J als Summe von ^ ] Einsen gleich 
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f(kl • 11) = f((kl)l) = kl = f(kl)f(ll). In S gilt nun 1« = «1 und (—1)» = «(—1) für 
jedes s e S; es folgt xa = ax für alle x e M, a e S, speziell xy~l = y~*x für alle 

kl x,ye M, y 4= 0. Das erlaubt die Schreibweise K = x = jj- , k, l e 3, l 4= 0} c 8 
für die Menge K aller Quotienten von Elementen aus M. Wieder gelten die Bruch-
rechenregeln, und man sieht, daß K ein Körper ist. Jetzt erklären wir durch 

k fcl rl 
j einen Isomorphismus g von K auf Q: Es gilt — = — genau dann, wenn 

k r 
ka = Ir oder -=- = — ist; demnach ist die Abbildung g definiert und wieder bi-l s 

¡kl r l \ ((ka + ir)l\ ka + Ir 
jektiv. Ihre Relationstreue folgt aus fifT+ — I = g l—^y^—I = ——— 

k r Jkl\ Jrl\ Jkl r l \ J(kr)l\ kr k r Jkl\Jrl\ 
= 7 + 7 = « i n j + V i V ' i i j = " l m i ) = ü = T" 7 = " I n M i i j -
Damit ist der Unterkörper K von S mit K ~ SX gefunden. Ein Unterkörper U 
von Q ist ü selbst; denn aus 1 e U folgt zunächst 3 C U und dann Q C U. 
b) Ist x{S) = p, so wird M = {x: x — ml; m — 0, 1, 2 p — 1}CS isomorph 
20.11 Angenommen, es gibt einen Körper K mit \K\ — 4. Nach Satz 9.4 gilt 
dann in K zunächst 1 + 1 + 1 + 1 = 0; es folgt (1 + 1)(1 + 1) = 0 oder %(K) = 2 
und damit x + x = 0 für jedes xeK. Additiv ist also K die Vierergruppe. Mit 
einem von 0 und 1 verschiedenen a schreiben wir K = {0, 1, a, a + 1}; es ist ja 
a + 1 von 1 und a und wegen a 4= 1 auch von Null verschieden. Für die multiplika-
tive Gruppe K„ kommt nur die zyklische Gruppe der Ordnung 3 in Frage; speziell 
gilt also a 2 = a + I = a •— 1. Wenn also ein Körper K mit \K\ = 4 existiert, so 
nur dieser. Indem man die wenigen nichttrivialen Fälle des Distributivgesetzes 
direkt nachprüft, sieht man, daß K ein Körper ist. 

20.12 Ist L ein Unterkörper von K, so gilt nach Aufgabe 10a) jedenfalls QcLcK. 
Existiert in L ein o + öy2 mit 6 4= 0, so ist auch o + 6y2 — a = 6y2 und dann 
auch b~*b\2 = y2 ein Element von L und damit L = K. Andernfalls ist L = Q. 

20.13 Subtraktion der zweiten Kongruenz von der ersten liefert (1) —x + 4y = 3 
mod 7; multipliziert man die erste Kongruenz mit 3 und subtrahiert die dritte, 
so wird (2) 4x + y = 4 mod 7; aus (1) und (2) folgt (3) 17y = 16 mod 7. Aus (3) 
bekommt man (vgl. Aufgabe 20.2) y = 3 mod 7 und dann weiter x = 2 mod 7 
und z = 4 mod 7. Dieselben Kongruenzen (1), (2), (3) bekommt man auch modulo 8 
und modulo 17. Modulo 8 wird x = 6, y = 0, z = 5. Die Proben bestätigen die 
Resultate mod 7 und mod 8. Modulo 17 ist (3), also das Ausgangssystem, nicht 
lösbar. Rechnet man analog in 3g» 3n> 8 0 gehen die Kongruenzen in Gleichungen 
über. Da ein Körper ist, kann man hier sogar versuchen, die Cramersche Regel 
anzuwenden, was zu dem angegebenen Resultat führt. In wird die System-
determinante Null. 

20.14 Es gilt 0, 1 6 Z. Aus z e Z folgt (—z)s .= s(—z) für jedes s e S, also —z e Z, 
und x,yeZ liefert (x + y)a = xa ys = sx sy = a(x + y) für jedes a e S, also 
x + y 6 Z\ somit ist Z eine abelsche Gruppe bezüglich der Addition. Aus x,yeZ 
folgt nach bekanntem Muster xy e Z und, falls x 4= 0 ist, x~1 e Z. Da die Multi-
plikation in Z kommutativ ist und das Assoziativ- und das Distributivgesetz von 
selbst erfüllt sind, ist Z ein Körper (Satz 3). 

21.1 Aus Satz 9.6 sind die additiven Untergruppen des Restklassenringes 3n be-
kannt; sie sind Ideale, da jedes r e Summe von Einsen, also (2) auf Grund 
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von (1) erfüllt ist. Die gesuchten homomorphen Bilder sind also die Restklasaen-
ringe 3n/3m mit m\n. Schreibt man n = dm, so wird 3»/3m — Die sämtlichen 
homomorphen Bilder des Ringes 3« sind also die Ringe Jd mit d\n. 

21.2 Man geht vor wie bei Aufgabe 14.1. Sind zunächst / : Rt -*• i?2 bzw. g: i?2 ->• R3 
Ringhomomorphismen von Rt auf Ä2 bzw. R2 auf ü s , so ist gf: R1 -»• Rs ein Ring-
homomorphismus von Rx auf Ra. Der Homomorphismus / : R -> R/t sei definiert 
durch /(r) = r + f. Nach Satz 4 ist f(a) = a/l ein Ideal von R/t. Weiter sei der 
Homomorphismus g: R/t -*• ( R / t ) / ( a / t ) definiert durch seinen Kern a/t. Dann ha t 
der Homomorphismus gf: R -> (R/t)/(a/t) den Kern a, und Aussage c) von Satz 3 
liefert die Behauptung. 

22.1 Man überträgt den Beweis von Satz 1; an Stelle von I x I0 s teht R x S. 
h . 

Wegen S =t= £ gibt es ein h e S, und — wird Einselement von Rs- I m allgemeinen 
A 

ist Rs kein Körper ; aber Rs enthäl t R und damit S und zu jedem 8 e S das In-
fi verse 
8 

22.2 Die Elemente von seien alt bv clt . . . , die Elemente von J 2 entsprechend 
a 2 = / ( a j , 6a = /(6X), c2 = / ( c j , . . . ; der Quotientenkörper Q1 bekommt die Ge-

Of-i (71 
stalt {y: y = o l f b1 e 71S 6, 4= 0}, und analog sieht Qt aus. Durch V ^ j = 

wird dann eine Abbildung <p: Q1 -> Q2 definiert: Wenn -r- = -j- ist, so folgt a1d1 

c, a.t = b1c1 oder f(a1d1) = / ( f t ^ ) oder o2d2 = 62c2 und damit 3 - = 7-, wie es sein m u ß ; 
a 2 o, 

dabei sind mi t 6X und dx auch &2 und dt ungleich Null. Ähnlich sieht man, daß <p 
sogar bijektiv ist. Schließlich ist g> auch relationstreu: 

(<H _ M = <*A = /aj\ JbA 
^Cj. c j c2c2 ^ c j * \ C J ' 

a 
Ein Element ox e Ix, ax 4= 0, t r i t t in Ql in der Gestalt — auf und h a t in Q2 das 

o | 0 1 

Bild —, also o2 e I z . Der Isomorphismus <p ist daher eine Fortsetzung des Iso-
o 2 

morphismus /. 

23.1 Die Behauptung deckt sich im wesentlichen mit dem Inhal t der Beispiele 2 
und 3 a m Ende von § 6. 

23.2 Die Konstruktion verläuft wie die im Beweis von Satz 1. Man setzt (a, 6) 
+ (c, d) = (a + c, b + d) und (o, b) • (c, d) — (ac + 2bd, ad + 6c) und zuletzt 
(0, 1) = a. 

24.1 Man geht von der Vorstellung aus, die Menge aller r + k, r e R, k e 3> 
zu konstruieren; in ihr wäre R enthalten und 0 + 1 Einselement (0 6 R, 1 6 3)-
Es sei also M = R x 3 das cartesische Produkt von R und 3 und (r, ife) -f- (s, l) 
= (r + 8, k + l) die Addition, (r, k) • (s, l) = (rs + ks + Ir, kl) die Multiplikation 
auf M; dabei sind ks und Ir die in § 20.2 erklärten Elemente aus R. Man bestätigt 
ohne Mühe, daß M ein Ring mit dem Einselement (0, 1) ist. Die Teilmenge T aller 
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(r, 0) kann dann mit der isomorphen Struktur R identifiziert werden. Diese Kon-
struktion ist sogar dann möglich, wenn R schon ein Einselement h a t ; das (einzige) 
Einselement im derart konstruierten Erweiterungsring E bleibt (0, 1). 

25.1 Man betrachte die durch y>(f(x)) = xf(x) definierte Abbildung y>: Q[x] -> Ö[x]. 
Wegen y>(/ + g) = rp{j) + rp(g) gehört y> zum Endomorphismenring R von G[a;]. 
Man definiere ferner <p: Q[a;] Q[a;] durch <p(q) = 0 für q eQ und 

<p(a0 + a^ + . . . + a„xn) = ax + a^x + aäx2 + . . . + o»®»-1 

fü r n ^ 1. Dann ist auch <p e R. I n R gilt offenbar <py> = e, aber beispielsweise 
y><p( 1) = 0, also y><p 4= e. Es ist also y> ein Rechtsinverses, aber kein Linksinverses 
von <p 8 R. Nach Aufgabe 20.6 besitzt also <p e R unendlich viele Rechtsinverse 
und nach Aufgabe 20.5, Aussage d), kein Linksinverses. 

25.2 Man geht von M = R°° aus und kopiert das Konstruktionsverfahren aus 
dem Beweis von Satz 25.1. 

26.1 Wir wenden Satz 3 an. Durchprobieren der sechs möglichen Fälle in a) 
liefert 2 e Q als einzige rationalzahlige Nullstelle. Das Polynom in b) ist zwar 
nicht normiert, aber Multiplikation mit 9 und anschließende Untersuchung von 
(3®)» — 2(3x)2 + 18(3x) — 36 = y" — 2yi+ 18y — 36 auf rationalzahlige Null-

2 
stellen ergibt fü r y nur 2, fü r x also —. Das Polynom in c) ha t keine Nullstelle a eÜ . u 

26.2 Anwendung von Satz 9.4 auf die multiplikative Gruppe von 3p zeigt, daß 
jedes a e 3p> « + 0, Nullstelle von XP— x e 3 p M ist. Es folgt: Jedes a e 3p ist 
Nullstelle des Polynoms. Wir schreiben 3p i*1 der Gestalt {0 ,1 ,2 , . . . , p — 1 } 
und zerlegen XP — x — x(xP~'1— 1) = x(x — 1 )g{x). Einsetzen von 2 liefert ¡7(2) 
= 0; dabei wird die Nullteilerfreiheit von 3p benutzt . Man bekommt also weiter 
XP — x = x(x — 1)(® — 2)h(x). Fortsetzung des Verfahrens und Vergleich der 
höchsten Koeffizienten liefert zuletzt die behauptete Zerlegung. Die Wilsonsche 
Kongruenz ergibt sich durch Vergleich der Koeffizienten von x als Ident i tä t 
in 3 P . 

26.3 Es soll gezeigt werden: Es gibt genau eine Derivation D*: Q -> Q mit D*(a) 
a 

= D(a) fü r a e I. Man wähle e Q, ae I , bei, b 4= 0. Is t D* eine Fortsetzung 

von D, so muß D*(a) = • = bD*{^j + ^ £>*(&)> also 
/o\ bD(a) — 
\b) = W 

gelten. Wenn man also eine Fortsetzung D* von D definieren kann, dann nur so. 
Wir zeigen zunächst, daß durch (-)f) überhaupt eine Abbildung D*: Q Q defi-

o c / a \ I c \ 
niert ist. Es sei also — = oder ad = bc; dann muß .D*l—I = Z)*l — I oder 

bD(a) — aD(b) _ dD(c) — cD(d) 
62 = d* 

nachgewiesen werden; wegen bd2D(a) + cb2D(d) = bd(dD(a) + aD(d)) = bdD(ad) 
= bdD(bc) = bd(bD(c) + cD(b)) = db2D(c) + ad2D(b) ist das auch richtig. Weiter 
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zeigen wir, daß die Abbildung D*: Q -> Q auch wirklich eine Fortsetzung von 
D: I - » / ist: 

¡ab\ bD(ab)—abD(b) abD(b) + b2D(a) — abD(b) 
D\T) = V = P = D{A)• 

Schließlich weisen wir nach, daß D* eine Ableitung von Q ist: F ü r c =t= 0 gelten 
die beiden Beziehungen 

+ = D * ^ - 6 ) = o g ( a + j ) _ - ( a + b)D(c) = ^ + ^ 

c2D(ab) — abD(c2) (ac2D(b) — abcD(c)) + (bc2D(a) — abcD(c)) 
-

c \c c 
26.4 Behauptet wird: Das Polynom anx" + o„_ia;n_1 + . . . + a0 e 3pM> a» + 0, 
ha t in höchstens n Nullstellen. Das folgt aber aus Satz 2. 

26.5 Es seien a, b reelle Zahlen. Durch <p(a + bi) — a — bi wird, wie zwei kurze 
Rechnungen bestätigen, ein Automorphismus des Körpers @ definiert. Auf diesem 

n 
Sachverhalt beruht die Behauptung: Es sei /(a) = E a,x* = 0, a r e 9 t ; durch 

r=0 
n n n 

Anwendung von <p auf beiden Seiten folgt E <p(avoc") = E <p(ar)(f(c')Y = E av(<p{<x)y 
»=o p=0 »=o 

= 0 oder f(<p(<x)) = 0, und das sollte gezeigt werden. 
27.1 Daß mit <x2 auch a algebraisch über K ist, folgt unmittelbar aus der Definition. 
I s t a algebraisch über K, 

a„an + Ofl.!«»-1 + . . . + o0 = 0, a{ e K, a„ 4= 0, 
so bringe man die Terme mit geradem Exponenten bei a auf die rechte Seite und 
quadriere. Man bekommt eine Polynomgleichung für a2 oder ein g(x) e K\x\, 
g(x) * 0, mi t g(a2) = 0. 
27.2 Man setze y2 + y3 + yB = a. Quadrieren von oc — ]/5 = y2 + y5 liefert 
a2 — 2ySa = 2y® und erneutes Quadrieren a*— 4y5a3 + 20a2 = 24. Zuletzt 
quadriert man a* + 20a2 — 24 = 4y5a» und bekommt ot8 — 40a« + 352«« — 960a2 

+ 576 = 0. 

27.3 a) Der Fall y d e Q ist tr ivial; es sei also y d $ Q . Die St ruktur Q[J/d] be-
steht aus allen a b^d mit a, 6 e Ü und ist ein kommutat iver Bing mi t Eins-
element. I s t a + 4= 0, so ist wegen yd $ Q auch o2 — db2 nicht Null, und 
man ha t noch 

Nach Satz 20.3 ist also G[yd] sogar ein Körper, und das bedeutet Ü[yd] = &<yd). 
b) Zunächst ist ß(yd) = Q[yd]; da ferner ^d $ G gilt, ist jedes Element von Q(]/d) 
eindeutig in der Gestalt a + b^d mi t a,beQ darstellbar. Durch <p(a + 6yd) 
= a — byd wird also eine Abbildung <p: Q(yd) -»-Q(yd) definiert. Man sieht so-
fort , daß sie bijektiv ist. Die Relationstreue fü r die Addition und die Multiplikation 
rechnet man leicht nach. (In der Lösung von Aufgabe 26.5 wurde ein ähnlicher 
Sachverhalt benutzt . Dort s tand SR s ta t t G und —1 an Stelle von d.) 
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27.4 Sind a2 + db2 und u2 + dv2 Elemente aus O, so ist es auch ihr Produkt 
(a2+ db2) (u2+ dv2) = ((a + b]/^d) (u + v]]^d))-({a—b (u—v]/^d)) 

= ((au—bvd) + (av + 6ii)|/—d)-((au—bvd)—(av + 6w)J/—d) 
= (au—bvd)2+ d(av + 6M)2, 

wie sich durch Rechnen in Q(y—d) zeigt. Die Multiplikation in G ist assoziativ 
wie die in Q0 ; es ist l e ö . Schließlich wird noch 

<°2 + = (ärh*i + 

27.5 a) Ist K ein Körper, so wird -K[y3] = K(]/3); der Beweis verläuft wie in 
Aufgabe 27.3, a). Daraus folgt Ü[J/2, y3] = Q[y2] [y3] = Ö(V2) [y5] = Ü(y2) (y3) 
= o<ys, KS). 
b) Nach a) besteht Ü(y2, y3) aus allen reellen Zahlen der Gestalt (a + &y2) 
+ (c + dy2)y3 = a + &y2 + cys + dys mit a, b,c,de Q. 
27.6 Nach § 27, Beispiel 3, ist Q(y2 + y3) = G(y2, y3). Für K können also ge-
wiß die fünf verschiedenen Körper Q, y2), Q(y3), Ö(yS), Ü(y2, y3) gewählt 
werden. Weitere Zwischenkörper gibt es, wie man zeigen kann, nicht (Aufgabe 67.1). 

27.7 a), b) Es ist Irr (3 + y3, Ü) = Irr (3 — y3, Ü) = x2 — 6x + 6. Das Poly-
nom ist irreduzibel über Q, weil es in Q keine Nullstelle hat (vgl. § 27, Beispiel 5). 
c) Wir setzen yZ + y5 = a und bekommen a2 = 5 + 2 yS oder (oc2 — 5)2 = a 4 — 10a2 

+ 25 = 24. Das Polynom P(x) — od1 — l(te2 + 1 e Q[x] ist alBo normiert und hat a 
als Nullstelle. Wir behaupten Irr (a, Q) = P(x) und haben dazu noch zu zeigen, 
daß P(x) irreduzibel über Q ist. Einen Faktor g(x) e G[x] vom Grad Eins kann 
P(x) nicht haben; dies zeigt man wie in § 27, Beispiel 5. Der Ansatz 

x4 — 10a;2 + 1 = (x2 + ax + 6) (x2 + ex + d) 

schließlich führt (vgl. § 27, Beispiel 7) auf die möglichen Zerlegungen 

x4 — 10z2 + 1 = (x2 — 6 + y24) (x2 — 5 — y24) 
= (x2 + 2ySx + l ) (x2 — 2y5x + l) 
= (x2 + 2y2x — 1) (x2 — 2j/2x — 1) 

mit Faktoren, die nicht in Q[x] liegen. 
d) Mit ^ 2 + 1 = a wird ( a — l ) 4 = 2. Man bekommt Irr (a, Ö) = x* — 4x3 

+ 6x2 — 4x— 1. 
e) Mit \2 + 1 = a wird (« — l)2 = y2. Man bekommt Irr (<x, G(V2)) = x2 — 2x 

+ (i - yz). 

27.8 Es sei {/2 = u. Wir haben damals gezeigt: Es gibt kein 

g(x) = x2 + ax + b e Ü[x] mit g(u) = 0. 
Das folgt aber aus Irr (u, £ ) = x3 — 2 (§ 27, Beispiel 6), weil ein g(x) e Q[x] kleineren 
Grades nicht u als Nullstelle haben kann. 

27.9 Wir unterscheiden zwei Fälle: Entweder f(x) = x4 + ax2 + 1 hat einen 
Faktor g(x) = x — 6 6 Q[x] vom Grad Eins, oder /(x) gestattet eine Zerlegung in 
zwei quadratische Faktoren aus Q[x], die wir dann wieder als normierte Polynome 
ansetzen dürfen. Im ersten Fall wäre f(b) — 0, also (Satz 26.3) 6 s und 6|1 ; 
nur 6 = 1 und 6 = —1 kommen dann also in Frage. Aus 6 = 1 , also /(l) = 0, 
folgt a = —2, und es wird x4 — 2x2 + 1 = (x2 — l)2 = ( x — 1) (x3 + x2 — x — 1); 
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aus 6 = —1, also /(—1) = 0, folgt ebenfalls a = —2. Das Polynom f(x) hat somit 
einen Linearfaktor g(x) e nur für a = —2. Im zweiten Fall können wir gleich 
von dem Ansatz 

x* + ax2 + 1 = (x2 + bx + c)^a;2 — bx + (6, c e Q, c 4= 0) 

ausgehen; durch Koeffizientenvergleich folgt a = c -1 b2 und U c ) = 0. 
1 c \ c 7 

Für 6 = 0 müßte c H die ganze Zahl a sein; man überlegt sich, daß das nur für 
c 1 

e = ± 1 möglich ist ; die Werte von a sind dann + 2. Ist schließlich c = 0, 
c 

so wird entweder c = 1 und a = 2 — b2 (b = 0, 1, 2, . . . )> oder es ist c = —1 und 
a = — 2 — b2(b = 0, 1, 2, . . . ) . 
Zusammengefaßt: Das Polynom x1 + ax2 + 1 (a e 3) ist genau dann reduzibel 
über G, wenn a die Gestalt ± 2 — b2 (6 — 0, 1, 2, . . . ) hat. Die zugehörigen Zer-
legungen sind dann 

x1 + (2 — b2)x2 +1 = (x2 + bx + 1) (x2 — bx+ 1), 
x* — (2 + b2)x2 +1 = (x2 + bx— 1) (x2 — bx — 1); 

genau dann, wenn in der letzten Zerlegung 6 = 0, also a — —2 ist, lassen sich 
die quadratischen Faktoren rechter Hand noch in Linearfaktoren aufspalten. 

31.1 Nein. In einem angeordneten Ring ist wegen 1 > 0 eine Summe von Einsen 
nie Null, wohl aber in %(x). 

31.2 In (3) und (4) kann man o 4= 0, 6 4= 0 annehmen und vier leichte Fallunter-
scheidungen + o > 0 , ± 6 > 0 machen. Die Ungleichung (5) ist eine Folge von (4): 
Ersetzt man in (4) 6 durch —6, so bekommt man insgesamt |o ± 6| ^ |o| + |6|. 
Ersetzt man in (4) a durch a — 6, so ergibt sich |o| sS |a — 6| + |6| oder \a\ — |ö| 
Si \a — 6|; Vertauschung von o und 6 führt zu |6| •— |o| ^ |6 — o| = |o — 6|, 
und zusammengefaßt wird ||a| — |6|| ^ | a — 6|. Hierin kann man noch 6 durch 
—6 ersetzen und erhält dann die linke Seite von (5). 

31.3 Bei der üblichen Anordnung von SR besteht der Positivbereich P aus genau 
den Elementen rsSf l , r # 0, die sich in SR als Quadrat schreiben lassen: r = s2, 
8 e SR. Die dadurch definierte Partition von SR lautet SR = P u {0} u N, wobei N 
aus den additiven Inversen der Elemente von P besteht. Die Elemente von P 
müssen, da sie Quadrate sind, bei jeder Anordnung von SR positiv sein; weitere 
positive Elemente von SR kann es aber nach (1) nicht geben. 

31.4 Ein Automorphismus / : 3 -> 3 überführt 1 in 1, 2 = l + l i n l + l = 2, 
—1 in —1 usw., läßt also 3 elementweise fest. Daher gestatten 3 und folglich auch Q 
nur den identischen Automorphismus: 

/m\ Hm) m 
\n) = / W = n < « . » 6 3 . » + 0). 

Wir zeigen, daß auch SR nur den identischen Automorphismus besitzt. Dazu führen 
wir die Annahme, es gebe einen Automorphismus / : SR ->SR und ein reSR mit 
f(r) = r' 4= t, auf einen Widerspruch. E s sei etwa r' > r. Dann gibt es ein 
q e Q mit r < q < r' und ein s e SR, s 4= 0, mit q — r — s2. D a / auch einen 
Automorphismus von Q liefert, gilt f(g) — q. Unsere Annahme bedeutet also 
f(ß) — t(r) < 0. Andrerseits müßte f(e) — f(r) = f(g — r) = f(s2) = f(e)2 > 0 sein. 
Die Annahme war also falsch. Den Fall r' < r behandelt man analog. 
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31.5 Sind a, b Elemente aus R mit ab = 0 und etwa a + 0, so kann b nicht auch 
noch von Null verschieden sein, weil dann nach (1) und (2) das Produkt ab oder 
das Produkt —ab positiv, also ab von Null verschieden ausfiele. 

31.6 Nach Aufgabe 6 ist R nullteilerfrei. Wegen der Vorzeichenregeln aus Satz 20.1 
braucht ab = ba nur für Elemente a, b e R mit 0 < a ^ b bewiesen zu werden. 
Es sei n irgendeine natürliche Zahl. Dann existiert ein m etil mit (m — 1)6 ^na 
< mb; nach Voraussetzung gibt es nämlich' Vielfache kb > na, ke^ft, und unter 
ihnen ein kleinstes mb. Für das beliebig gewählte n e 51 folgt nun 

n(ab — ba) < mb11 — (m — 1)62 = b2. 

Da R archimedisch angeordnet ist, kann also ab — ba nicht positiv sein, und es 
folgt ab — ba 0. Analog zeigt man ba — ab ^ 0 und damit insgesamt ab = ba. 

34.1 Aus f(x) = (x — S,) (x — £i)...(x — £„) folgt /'(£,) = II — !*) , und 

bis auf ^ j Vorzeichenwechsel ist H /'(!<) gerade D(f). 

35.1 Auf Grund der Sätze 2 und 3 bestehen die linke und die rechte Seite in a) 
genau aus allen endlichen Summen der Gestalt Safit, a< e t , bt e b<; sie stimmen 
also überein. In b) ist b 3 6c zu zeigen, und das folgt aus Satz 3 und der Ideal-
definition. 

35.2 Zunächst vereinfachen wir a = (3 + y5, 3 — f2, 6, (3 + J/2) (3 — V2)) 
= (3 + V2, 3 — V2, 6, 7, 1) = (1) und b = (2 + ]ß, 2 — ]ß, (2 + ]ß) (2— y2)) 
= (2 + 1/2, 2 — 1/2, 2, V2) = (1/2); dann wird a + 6 = (1) und ab = (V2). 

35.3 Sind a, b Elemente aus rad a und am e a, bn e a, so folgt 

/ Im + n\ , lm + n\ \ 
(a + b)m+n = Ia m+ n + I Jo" , + B - 16 + . . . +1 |om6BJ 

+ + ™jam"16n+1 + . . . + &m+nj-

Die Summanden der ersten Klammer rechter Hand sind Vielfache von am e a, die 
der zweiten Klammer Vielfache von b" e a; sie liegen aJso alle in a. Es folgt 
(a + b)m+n e a, also o + 6 e rad a. Mit a e rad a gilt auch —o 6 rad a; es ist 
0 6 rad o. Ist schließlich a e rad a, also etwa am e a, und reR, so gilt auch rmam 

= (ra)m e a, also ra e rad a. 

35.4 Man betrachte das Ideal (5, x) c 3M- Es besteht aus allen Polynomen f(x) 
der Gestalt f(x) — a + xg(x) mit ae% 5|a und g(x) e 3M- Schöpft man 
durch die Nebenklassen von (5, x) aus, so bekommt man 

3[x]/(5, x) = {0 + (5, x), 1 + (5, x), 2 + (5, x), 3 + (5, x), 4 + (5, *)} ~ 
Es ist, als ob 5 und x gleich Null gesetzt würden. 

36.1 Es ist ^ = Öo die multiplikative Gruppe von Q. Nach dem Vorbild von 
Beispiel 3 wird E2 — {1, —1}. 

36.2 Durch Raten findet man: In^ x liegen die Elemente ±(2 ± y3)»(n = 0 , l ,2 , . . . ) ; 
E2 enthält die Elemente + (yS ± 2)" (n = 0,1,2,...). Man kann zeigen, daß dies 
sämtliche Elemente von El bzw. Et sind. 
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36.3 a) Vgl. § 29.4. 
b) Vgl. Beispiel 4. 
c) Wenn N(r) in 3 unzerlegbar ist, so ist r nicht Null und nach b) auch keine 
Einheit. Es sei r = uv; nach Teil a) folgt N(r) = N(u)N(v) und auf Grund der 
Voraussetzung etwa N(u) = +1. Wieder nach b) ist demnach u eine Einheit. 
d) Wegen N(l — yS) * ± 1 und N(3 + y5) 4= ± 1 sind 1 — ]/5 und 3 + \5 keine 

3 + V5 
Einheiten. Aber der Quotient TJ= = -—2 — y5 liegt in 3[ ^5] und ist wegen 

1 — y 5 
N{—2 — ]/5) = —1 sogar Einheit. 
e) Keine zwei der Elemente 2, 3 + ys, 3 — haben einen Quotienten, der 
in y§] liegt; sie sind also weder Einheiten noch Assoziierte. Aus 

2 = (a + by5) (c + d\5) 

mit o, 6, c, d 6 3 folgt 4 = (a2 — 562) (c2 — 5d2); keine der Klammern kann ± 2 
sein, weil das bereits modulo 5 unmöglich ist; also ist entweder o + b]/5 oder 
c + dyZ Einheit. Genauso ergibt sich die Unzerlegbarkeit von 3 + y5 und 1 — y5. 

37.1 Es sei a + (0) ein Ideal aus 23 und a sein kleinstes positives Element, 
ferner b ein beliebiges Element aus a. In 3 gelte b = qa + r, 0 gi r < a. Als end-
liche Summe von Elementen o oder — a liegt qa in a, also auch r = b — qa. Es 
muß also r = 0 sein. Also ist 6 = qa e (a) oder a = (o). 

37.2 a) SR[x] ist ein Gaußscher Bing und f(x) weder Null noch Einheit. Es ist 
f(x) = 2(x2 + 1) ~ x2 + 1 Primelement; denn eine nichttriviale Zerlegung von 
x2 + 1 in SRO] ließe sich in der Gestalt x2 + 1 = (x + a) (x + 6) mit a, b e SR 
schreiben im Widerspruch dazu, daß f(x) keine reelle Nullstelle hat. 
b) €[x] ist ein Gaußscher Ring und g(x) weder Null noch Einheit. Es gilt x2 + 1 
= (x + i) (x — i), und keiner der Faktoren rechter Hand ist eine Einheit. 

37.3 Nach etwas Rechnung liefert der Euklidische Algorithmus d = 31. Es 
ist 31 = 3039-303 707 — 1142-808 201. Daa Aufsuchen der Primfaktorzerle-
gungen 303 707 = 31 • 97 • 101 und 808 201 = 292 • 312 ist ziemlich mühsam. 

37.4 Der Euklidische Algorithmus liefert d(x) = 2(x2 + x + l ) ~ x 2 + x + l 
und d(x) = (x + 1 )/(x) + (—x2 — x + l)?(x). 

38.1 Man überträgt den Beweis von Satz 1. Zunächst ist 3CV2] C SR ein Integri-
tätsbereich. Für a = a + &y2 (a,b e Q) setzen wir N(a) = a2 — 262. Es zeigt sich, 
daß w(a) = |jV(a)| (ae3[y2] , a 4= 0) als Wertfunktion für 3[y2] genommen wer-
den kann: Sind a und ß # 0 Elemente aus 3[V ]̂> so wird 

j = q* = u* + v*y2 (u*,v* 6Ü); 

1 1 
wir wählen q = u + v\2 («, v e 3) derart, daß \u* — u\ g —und |u*— v\ 

gelten, und setzen q* = q + g. Es folgt a = q*ß = qß + r (q, r e 3[ V ]̂) mit 

\N(r)\ = \N(eß)\ = \N(e)N(ß){ = \N(e)\ • \N(ß)\ g i- \N(ß)\ < \N(ß)\. 

Also erfüllt w{a) die Forderung (1) aus § 37.3 und wegen w(/x) e 91 auch (2). 

38.2 a) Daß 3t VS] euklidisch ist, zeigt man wie in Aufgabe 1. Für a = a + bys 
(a, beÜ) setzt man N(tx) = a2 — 362 und wählt w(a) = |2V(a)| (a 6 3[y5], et =t= 0). 
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Die entscheidende letzte Abschätzung lautet |JV(r)| ̂  — \N(ß)\ < \N(ß)\. 
b) Angenommen, 5 wäre nicht Primelement und in der Gestalt 5 = aß in 3[y5] 
nichttrivial zerlegbar. Wie in § 36, Beispiel 4, folgt, daß die Normen N(a) und 
N(ß) von ± 1 verschieden sind. Aus N(5) = 25 = N(<x)N(ß) ergibt sich also N(a) 
= ±5. Für a. = a + 6J/5 (o, 6 e 3) heißt das a2 — 362 = ± 5 ; das ist aber modulo 5 
nur für a = 6 = 0 möglich. Letzteres bedeutet 25|(o2 — 36') im Widerspruch zu 
a2 — 362 = ± 5. Also ist 5 Primelement in 3[V3]. 
c) Es ist 13 = (4 + V3) (4 — und dieselben Überlegungen wie in § 38.2, 1), 
2), zeigen, daß dies eine Primfaktorzerlegung von 13 in 3[V^] ist. 

38.3 Man bekommt (3, i) = (i) = (1); (4 + 4i, 8i) = (4 + (4 + (1 — i)i) 
= (4 + 4i); (2 + i, 2 — i) = (2 + i, 2 — i, ¿(2 — t) — (2 + i)) = (2 + i, 2 — i, 
1 — i) = (2 + i,2 — i, 1 — i, 1) = (1);(1 + t, 1 — ») = (1 + ¿,¿(1 + i)) = ( 1 + »)• 
Auf Grund der Sätze 37.4 und 36.3 kann man auch mit Hilfe von § 38.2 den g.g.T. 
bestimmen. 

38.4 Ohne algebraische Hilfsmittel ist diese Aufgabe nicht leicht. Hier wird 
die Behauptung fast trivial: Es ist 5 = (2 + i) (2 — i), und 2 + i und 2 — i sind 
nichtassoziierte Primelemente in 3W (§ 38.2). Würde (2 + i)n = (2 — i)n für 
ein gewisses n e 9 t gelten, so wäre die Eindeutigkeitsforderung (2) aus §37.1 in 
dem Gaußschen Bing 3W verletzt. 

41.1 Es ist x 2 = x-x, aber x$(a;2); es ist ¡b3—2z2—2x—3 = (x—3) {x2+x+ 1), 
aber weder x — 3 e (x3 — 2x2 — 2x — 3) noch x2 + x + 1 e (ar1 — 2a:2 — 2x — 3); 
es ist 6 = 2-3, aber weder 26(6,«) noch 3e(6,a;); die Ideale (z2), (x3—2a;2—2a;—3) 
und (6, x) sind also keine Primideale und erst recht nicht maximal. Da sich jedes 
f(x) e 3 M der Giestalt f(x) = q(x) • (x + 1) + r, q{x) e%[x], r e 3» schreiben 
läßt, ist $[x~i/(x + 1) ~ 3 : 6 8 ist also (x + 1) ein Primideal (Satz 40.1), aber nicht 
maximal (Satz 41.1). Wegen 3[x]/(2, x) ~ 32 und 3[a;]/(3, x) ~ 3 , (vgl. Aufgabe 35.4) 
sind (2, x) und (3, x) in 3[#] maximale Ideale und damit erst recht Primideale. 

41.2 Nach Satz 37.3 ist 9t[a;] euklidisch, also erst recht ein Hauptidealring. Das 
Element x2 + 1 aus 9t[a;] ist ein Primelement und erzeugt nach Satz 41.3 ein 
maximales Ideal (x2 + 1). Also ist 5R[x]/(x2 + 1) ein Körper. Da sich jedes /(x)e9t[x] 
in der Gestalt f(x) = q(x) • (x2 + 1) + r(x) mit q(x), r(x) 6 SR[x], r(x) = ax + 6, 
schreiben läßt, wird 9t[x]/(x2 + 1) die Menge aller Ellassen ax + b + (x2 + 1). 
Es gilt ax + 6 + (x2 + 1) = a'x + b' + (x2 + 1) genau für a = a' und b = b', 
weil das Ideal (xl + 1) außer der Null nur Polynome vom Grad Ja 2 enthält. 
Das Quadrat von x + (x2 -f 1) ist die Klasse —1 + (x2 + 1). Durch 

y(o + bx + (x2 + 1)) = a + bi 
wird ein Isomorphismus von SR[x]/(x2 + 1 ) auf ß definiert. In SR[x]/(x2 + 1 ) tut 
man so, als wäre x2 + 1 = 0 und schreibt im übrigen x statt i. 

41.3 Man geht vor wie in Aufgabe 41.2 und betrachtet K[x]/(x2 — 2). 
41.4 a) Es gilt (o3 — 1 = (o> — 1) (o>2 + a> + 1) = 0 und co # 1, also co2 + a> + 1 
= 0. Ein f(x) e 3[x] läßt sich in der Gestalt /(x) = q(x) -(x2 + x + l) + ox + 6 
schreiben; jedes Element aus 3[<*>] hat daher die Form am + b (a,b e 3). Es folgt 
3l>]/(2) = {(2), 1 + (2), co + (2), 1 + <o + (2)}. Das ist ein kommutativer Ring 
mit Einselement. Wegen (1 + (2)) (1 + (2)) = 1 + (2) und (o> + (2)) (1 + a> + (2)) 
= —1 + (2) = 1 + (2) hat jedes von Null verschiedene Element aus 3E£U]/(2) so-
gar ein Inverses, und 3M/(2) ist ein Körper. Nach Satz 41.1 ist also (2) in 3[(t>] 
ein maximales Ideal und damit erst recht ein Primideal. 

17 Hornfeck, Algebra 
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b) In 3M ist 2 = (1 + i) (1 — i) nichttrivial zerlegbar; es gilt 2 e (2), aber 1 + 2). 
Folglich ist (2) kein Primideal in 3M und erst recht nicht maximal. 

42.1 Das Polynom f(x) + g(x)y e Ä[x] [j/] ist linear in y und hat nach Voraus-
setzung in den Inhalt Eins. 

42.2 Wir brauchen nur, daß R nullteilerfrei ist. Angenommen, es sei 

f(xl» • • •» xn) ~ 1» x2> ' • • > xn) ' X2 ^n) 

und h nicht homogen. Dann kann man 

h{xlt x2 x„) = h1(x1, x2, . .., xn) + h2(xlt x2, . . ., xn) + h3(xlt x2 xn) 

schreiben, wobei 4= 0 homogen vom Grad r (das ist die maximale Exponenten-
summe der Summanden von h), h3 =)= 0 homogen vom Grad s < r (das ist die 
minimale Exponentensumme der Summanden von h) und jeder von Null ver-
schiedene Summand von h2 von einem Grad t mit s < t < r ist. Ist g homogen, so 
bekommt / die Summanden ghr =t= 0 und gh3 4= 0, die sich nicht wegheben, und 
kann daher nicht homogen sein. Ist g nicht homogen, so spaltet man entsprechend 
auch g in drei Summanden auf und kommt zu dem gleichen Widerspruch. 

2 + i . _ 2 — i 
42.3 Wir setzen . = a. Es ist a = . r—. und Irr (a, ü) = (x — a) Ix — a) = x2 

2 — % 2 + t 
6 6 — —x + 1; es sei x2 — —x + 1 = f(x). Ist F\x\ e Q[a;] ein Polynom mit der Null-5 5 

stelle a, so ist es in durch f(x) teilbar; dazu schreibe man F[x) = q{x)f(x) 
+ r(x) mit q(x), r(x) 6 r(x) — 0 oder Grad r(x) < Grad f(x), und ersetze x 
durch a. Wäre a n = 1 für ein n e 91, so wäre F(x) = xn — I deAinach in Ö[a:] 
durch f(x), also auch durch das primitive Polynom 5z2 — 6a; + 5 6 3 M teilbar. 
Nun wende man Satz 2 an: Wegen F(x) e %x\ müßte bereits 5x2 — 6x + 5\xn — 1 
in 3 M gelten; ein Vergleich der höchsten Koeffizienten zeigt aber, daß xn — 1 
= g(x) • (5x2 — 6x + 5) mit einem g(x) 6 nicht möglich ist. 

3 + i 8 
42.4 Wie Aufgabe 42.3. Mit a = . wird Irr (a, Ü) = x2 — -x + 1, und o — % 5 
5x2 — 8x + 5 tritt an die Stelle von 5x2 — 6x + 5. 

43.1 In allen vier Fällen genügt es, die Irreduzibilität über 3 nachzuweisen 
(Satz 42.3). Das Polynom f^x) ist schon über 3s irreduzibel, erst recht über 
Das Polynom ft(x) hat keine Nullstelle in 3 (Satz 26.3) und ist folglich irreduzibel 
über 3- Das Polynom f3{x) hat ebenfalls keine Nullstelle in 3 (Satz 26.3); man 
versucht noch die beiden Ansätze f3(x) = (x2 + ax—1) (x2 + bx—1) und 
f3(x) = (x2 + ax + 1) (x2 + bx + 1) mit a, b e 3; der erste führt auf a + 6 = 2 
und —a — 6 = 2, versagt also; beim zweiten müßte a + b = 2 und ab = —1 sein, 
was für o, 6 e 3 unmöglich ist. Bei ft{x) nehme man das Eisenstein-Kriterium 
und p = 3. 

43.2 Nach Satz 42.3 genügt der Nachweis der Irreduzibilität über 3- I™ ersten 
Fall nehme man das Eisenstein-Kriterium und p = 5. Im zweiten Fall würde eine 
Zerlegung in 3 M auch eine in liefern, und die ist nicht möglich. 

43.3 Wegen a0an 4= 0 hat auch g(x) den Grad n. Angenommen, es wäre g(x) 
= gl(x)gi(x) mit Polynomen g-^x), g2(x) e B[x] mindestens vom Grad Eins. Wegen 
a„ # 0 sind die konstanten Glieder von gx(x) und g2(x) ungleich Null. Im Quotienten-
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körper R(x) wäre j ^ - j = ~ j ) dann j = f(x) = f1(x)f2(x) 

eine Zerlegung von f(x) mit Grad f^x) = Grad g^x) und Grad f2(x) = Grad g2(x). 

43.4 Man betrachte f(x, y) als Polynom in y mit Koeffizienten aus R[x] und 
benutze das Eisenstein-Kriterium für p — x. 
44.1 a) Ist }{x) = g(x)P, so folgt /'(x) = pg{x)P~ lg'(x) = 0 (Sätze 26.5 und 26.4). 

n 
b) Ist f'(x) = 0, so hat f(x) die Gestalt f(x) = Ea,(xP)v. Nach Satz 12.6 ist das 

n n 0 
dasselbe wie f(x) = Z(ar)P(xP)' = E(ajicv)v. Nun wende man Aufgabe 20.8 c) an. 

» 0 0 n 
Es folgt f(x) = (ZayX')p, also f(x) = g(x)P mit g(x) = EajtS». 

o 0 
2 Ji %n 

45.1 Die primitive fünfte Einheitswurzel f = cos --- + % sin — ist Nullstelle 5 5 

von x , + x3 + x2 + x+l. Also gilt ^ £2 + + ( i + ^ + 1 = 0- Man setze 

f -f — = u. Es folgt u2 + u — 1 = 0, also, da u positiv reell ist, u = —(]/5 — 1). 
C * 

2ji 2n 1 _ 
Nim gilt u = 2cos — . Also wird cos -— = —(j/5 — 1). Daraus ergibt sich 

o o 4 
. 2ji 1 -i ¡¡T + 1/5 

m I = 2 h 2 — 
45.2 Der Fall £ = 1 ist klar. Für f 4= 1 hat die Summe 1 + f + f 2 + . . . + 

1 
den Wert —, und hierin ist der Zähler Null. 

45.3 In (2) ersetze man x durch 0 und beweise die Behauptung durch Induktion 
nach m. 

45.4 Wir führen den Beweis in drei Schritten. 
1) Es sei f eine primitive m-te Einheitswurzel. Wir behaupten: Dann ist —f eine 
primitive 2m-te Einheitswurzel. Zunächst gilt ja (—£)2m = 1. Es sei d die Ordnung 
von —f , also d\2m; behauptet wird d = 2m. Es ist d kein Teiler von m; denn 
dann müßte (—f)m = 1 sein im Gegensatz zu (—f)m = —£m = —1 (hier haben 
wir benutzt, daß m ungerade ist). Also ist d = 2(5 gerade. Es folgt (—£)d = = 1, 
und die Ordnung m von £ teilt d. Somit ist d ein Vielfaches von m und ein Teiler 
von 2m, aber wegen d-fm, von m verschieden. Das heißt d = 2m. 
2) Die Polynome 0m(—x) und &2m(x) aus £l[x] haben also in <S D £} die Nullstelle 
—C gemeinsam. Beide sind sie auf Grund von Satz 3 irreduzibel über Q. Die An-
wendimg von Satz 44.2 ergibt also sowohl 0m(—x)\&2m{x) als auch 02m{x)\0m{—x) 
in Q[a;]. 
3) Da <p2m(x) und 0m{x) normierte Polynome sind, folgt 02m (x) = ±0m(—x). 
Rechts muß das Pluszeichen stehen, wenn wir noch zeigen, daß für m Si 3 der 
Grad q>(m) von 0m(x) gerade ist. Dies wiederum ist auf Grund der Definition von 
<p(m) richtig, weil aus (d, m) = 1 auch (m — d, in) = 1 folgt und für m ¡g 3 und 
(d, m) = 1 gilt: m — d 4= d. 
45.5 Durch wiederholte Anwendung von (7) folgt (8) aus (4). Wir zeigen die 
Gültigkeit von (7) in zwei Schritten. 

i „ • I — 2m 2Jl( 
1) Es sei a = em und ß = emp . Wegen ßP = a ist ß Nullstelle von 0m{xP). 

17» 
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Außerdem ist auch &mP(ß) = 0 und Omp(x) nach Satz 3 irreduzibel über Ü. Die 
Anwendung von Satz 44.2 liefert 0mp(x)\0m(xP) in GM- Beide Polynome sind 
normiert. Wenn wir unter 2) zeigen, daß ihre Grade übereinstimmen, <p(mp) = ptp(m), 
so sind sie identisch. 
2) Es sei d eine natürliche Zahl. Wegen p\m bedeuten (d, m/p) — 1 und (d, m) = 1 
dasselbe. Es ist also <p(mp) die Anzahl aller d mit 1 ¡S d s j m/p und (d, m) = 1. 
In jedem der p Teilintervalle vm - f 1 i d + 1 )m (v = 0, 1, . . . , p— 1) 
hegen genau <p(m) Zahlen d mit (d, m) — 1 (vgl. hierzu Abschnitt 12.4); insgesamt 
wird also <p[mp) = pq>(m). 

45.6 Die &m(x) für die Primzahlen m = 2 ,3 ,5 ,7 ,11 ,13 folgen aus (4), für die Prim-
zahlpotenzen m = 4 ,8 ,9 aus (8): 0t(x) = x 2 + 1, 0t(x) = x4 + 1, = x6 

+ 3? + 1. Für m = 6,10,14 bekommt man sie nach (6): = x 2 — x + 1, 
<J>10(x) =- X* — x* + x2 — x + 1, &u(x) = X« — x» + X« — x s + X2 — x + 1 . Für 
m = 12 verwendet man (7) mit p = 2: 4>12(x) = ®,(x2) = x4 — x 2 + 1. Aus (2) 
berechnet man 0xs(x) = x 8 — x' + x5 — x4 + x s — x + 1 . Schließlich war 01(x) 
= x— 1. 

46.1 Vgl. Aufgabe 37.1. 

49.1 Wegen ( 0 , 0 , . . .,0)eU ist U nicht leer. Mit ( r 1 ; r 2 , . . , ,r„) und («! ,« 2 , . . .,«„) 
ist auch (rx + slt r2 + »2, . . . , rn + sn) ein Element von U; es ist j a £ay(rj + sj) 
= EaifT) -f- EaijSj = 0 + 0 = 0. Ist (rx, r2 r„) e Ef und c e K , so gilt auch 
c(ri> r2> • • • > rn) = (crj, cr2 er») 6 U wegen £oyor; = cZafjr] = c • 0 = 0. Die 
Behauptung folgt also aus Satz 1. 

50.1 Es ist B = {1, ¿} eine Basis von V, also dim V = 2. 

50.2 E s ist B = {1, i,j, fc} eine Basis von V, also dim V = 4. 

50.3 Wäre dim V = n < oo, so gäbe es eine Basis {«!, a2, . . . , <*n} von V, und 91 
wäre gleich der Menge M aller Linearkombinationen «fra, + q2 a, + ... + qn<Xn, 
q( e Q. Aber nach Satz 2 läßt sich M eineindeutig auf Q" abbilden und damit 
nach Satz 4.1 abzählen. Doch 9t ist nicht abzählbar. Also ist dim V — oo. 

50.4 Die Elemente aus £}[£] haben die Gestalt a = E q ^ * mit rationalen Koeffi-
o 

zienten qr. Wegen f 3 = 2 lassen sie sich sogar alle in der Gestalt a f 2 + + c 
mit a, b, c e Ü schreiben. Nach § 27, Beispiel 6, ist Irr (f, Ü) = x» — 2; Satz 27.1, 
Aussage (3), mit £ an Stelle von a und /(x) = x8 — 2 liefert: genau dann ist of 2 

+ b£ + c = 0, wenn o = b = c = 0 gilt. Also hat V die Basis {1, f , £2}, und es 
ist dim V = 3. 

53.1 Der Euklidische Algorithmus für die Polynome p(x) = x3 — 7 und /(x) = x2 

54.1 Das Eisenstein-Kriterium mit p = 2 zeigt die Irreduzibilität von x8 — 2x 
+ 2 über £}. Es folgt |>: Ü] = 3. Für ß e Q(a) gilt entweder [ß: £}] = 3 oder [ß: £}] 
= 1 (Satz ß). Wir zeigen, daß das letztere, also ß — a2 — « e Q , nicht zutrifft; 
das bedeutet dann [ß: Q] = 3 und folglich (Satz 3) Q(a) = Q(ß). Mit a2 — a = ß € Ö 

n 
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1 + -4; es ist ja Nullstelle von X1 + 1 e £ J [ 4 und \2, 

• x — ß e Ö[x] ein Polynom vom Grad 2 mit der Nullstelle a , was 
wegen [a: Q] > 2 nicht möglich ist. Das Polynom Irr ( ß , Q.) bekommt man aus 
ß = a2 — a durch leichte Rechnungen: Zunächst wird ß2 = a* — 2a8 + a2 

= a(2a — 2) — 2(2a — 2) + a2 = 3 a 2 — 6 a + 4 und analog ß3 = 16a2 — 2 8 a + 18; 
1 4 1 4 

aus ß und ß2 errechnet man a = — - ß 2 + ß + - und a2 = — - ß ? + 2 ß + und w O O O 
Einsetzen in ß3 führt zu Irr ( ß , ß ) = 3? — i x 2 — i x — 2. 

54.2 Da y = 2 nicht reell ist, gilt V—2 andrerseits ist Nullstelle 
von z2 + 2 e Ü(y2)M; es folgt [G(y2, ) j—2): Ü] = [Q(|/5, j / = 2 ) : Q( V 2)] • [Q(]/ 2) : Q] 
= 2 - 2 = 4. 
Für Ö(V3, V5 + j/3) können wir Q( j/3, }/3) schreiben. Es ist [Ü(V3, j/5): £}] 
= [Q(V5, ^3): £}( j/3)] • [Ü( J/3): Ü], und der zweite Faktor rechter Hand ist 2. 
Wir zeigen, daß der erste Faktor gleich 3, also [Ö(V5, y3 + ^5): Q] = 6 ist. Die 
Zahl ist Nullstelle von 3? — 3 e £}( |/3)[a;], und das Polynom kann in Ü( 1/3) [x] 
nicht zerfallen, weil es sonst eine Nullstelle f 6 ü( J/3) hätte; das letztere hieße aber 
(Satz 3) [S: Ö] S 2 im Widerspruch zu [£:£}] = 3. Also ist Irr (j/3, £}(V3)) = x3 — 3 
und damit [Q(V5, f3 ) : y3)] = 3. 

—1 + i / I + A 8 / l + i — 1 + A / 1 -h i\ 
Schließlich ist — = , also — j = ^ - y f - J 

( 1 + i — 1 + A 
\ n ' n r 

dieses Polynom ist lrreduzibel über Q. 

54.3 Wegen Q(a + i ) C Q(a, i ) ist für Q(a + i ) = Ü(a, i ) noch Ü(a, i ) c Q ( a + i ) 
zu zeigen. Dafür genügt es, i e Q ( a + i ) nachzuweisen, denn dann gilt auch 
a + i — i = o t e Ö(a + i ) . Wir setzen a + i — f und bekommen 5 = (? — i ) 3 = 
— 3if2 — 3S + i , also, da 3|2 — 1 * 0 ist, 

S3 — 3f — 5 
* = w h e Q { S ) = ö(« + *)-

Es gilt also G(a + i ) = Q(a, i ) . 
Hieraus ermitteln wir den Grad von a + i über Q. Das Element i vom Grad 2 
über Q liegt nicht in der Erweiterung Q(a) von Q vom Grad 3, da 2 kein Teiler 
von 3 ist (Satz 3); daher bleibt [t: Q(a)] = 2, und es folgt 

[Q(a + i ) :Ü] = [G(a, i ) : Ü(a)] • [Q(a): Q] = 2 - 3 = 6. 

Es sei weiterhin a + i = Da nun [ I : Ö] = 6 bekannt ist, genügt es zur Er-
mittlung von Irr (£, £1), ein normiertes f ( x ) e Ö[a;] vom Grad 6 anzugeben, das | 
als Nullstelle hat; dann ist von selbst f ( x ) = Irr (£, ( X ) . Dazu betrachte man noch 
einmal f 3 — 3if2 — 3f + i = 5 oder £3 — 3f — 5 = i(3£2 — 1) und quadriere; 
man bekommt + 9f2 + 25 — 6f« — 10|3 + 30f = — ( 9 ^ — 6 f 2 + 1) oder 
Irr ( a + i , G) = & + 3x« — Kte3 + 3a;2 + 30x + 26. Daß dieses Polynom über Q 
irreduzibel ist, ist auf direktem Wege nicht so leicht zu sehen. 

55.1 «R(x). 

56.1 J a ; denn das regelmäßige Dreieck und das regelmäßige Fünfeck (vgl. Auf-
gabe 45.1) sind konstruierbar; nach der Bemerkung 1 zu Satz 3 ist also auch der 

2 n n 
Winkel v_ konstruierbar, dessen Halbierung den gesuchten Winkel — ergibt. 15 lo 
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56.2 Ea bedeutet nur eine Umformulierung der Aufgabe, wenn wir sagen: In a) 
und b) soll die fehlende dritte Seite gefunden werden. Dazu verschaffen wir uns 
eine Formel, in der wv durch die drei Seiten ausgedrückt wird, und lösen sie an-
schließend nach c bzw. a auf. Für die Ermittlung dieser Formel (wegen der folgen-
den Rechnungen vergleiche man ein Lehrbuch der analytischen Geometrie) führen 

-» -> H>-
wir die Vektoren AB = c, BG = a, CA — & ein; die von C ausgehende Winkel-
halbierende Wy treffe die Seite AB im Punkte D, und es sei CD — rvv. Es ist nun 
c = —b — a; also existiert eine reelle Zahl ju mit 
(1) ÄD = 6 — a). 

1 

Der Vektor der Länge Eins in Richtung von C nach A i s t ^b ; der Vektor der Länge 

Eins in Richtung von C nach B ist a; da die Diagonalen eines Rhombus dessen 

Winkel halbieren, zeigt ^-b —• —o in die Richtung von C nach D, und es gibt eine 
reelle Zahl A mit n v = A| -¡-b a I oder 

(2) AD = — b + A(-^b—-a). o a 
ab Ein Vergleich der Koeffizienten von a und b in (1) und (2) liefert A = : und 

a -f- o 

t* = , -7. Also haben wir rov = A|-rb a | = —7—7 (ab — 6a). Wir suchen die 
a + b y \b a ) 0 + 6 ' 

Länge wy dieses Vektors und finden sie als Wurzel aus dem skalaren Produkt 
von Wy mit sich selbst. Wegen a2 = a2 und b2 = b2 gibt das zunächst 

1 
a + b V2a262 — ab • 2ab, 

und hierin darf wegen (a + b)2 = c2 noch 2ab durch c2 — o2 — b2 ersetzt werden. 
Das führt zu der gesuchten Formel 

(3) wv = — - 1fab(a + b + c) (o + b — c). a -p o 

Nun sieht man, daß die Konstruktionsaufgabe a) lösbar ist; denn (3) liefert eine 
quadratische Gleichung für c. 
Die Ausführung der Konstruktion b) dagegen ist im allgemeinen mit Zirkel und 
Lineal unmöglich. Sind beispielsweise b = wv = 1 und c = 2, so ist der Körper K 
= Ü(c, b,wy) = Q gegeben, und aus (3) folgt a3 + a 2 — 5 a — 1 = 0; es gibt 
genau ein a > 0, das diese Gleichung erfüllt (1 < a < 2), und dieses a ist zu 
konstruieren. Es ist Nullstelle von f(x) — x3 + x2 — 5x — 1, und dieses Polynom 
hat keine rationalzahlige Nullstelle (Satz 26.3), ist also irreduzibel über £}. Das 
bedeutet [a: K] = 3 und damit zugleich die Undurchführbarkeit der verlangten 
Konstruktion. 

58.1 Wir führen den Beweis durch vollständige Induktion nach n. Die Behauptung 
ist richtig für n — 1. Sie sei bereits bewiesen für alle Körper K und Zer-
fällungskörper E von Polynomen f(x) e K\x\ mit Grad f(x) < n. Für Grad f{x) 
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= n > 1 unterscheiden wir zwei Fälle: 1) f(x) ist in X[x] irreduzibel; 2) es gibt 
Polynome /j(x), ft(x) e K[x] mi t Graden k, l ^ 1 und f(x) = fi(x)f1(x). I m ersten 
Fall gibt es ein ae E mit /(«) = 0, und es wird [E-.K] = \Ex K(a.)~\ • [iT(a): K] 
- [E: K(x)1 • n. I n K(a)[x] kann man f(x) = (x — a)g(x) schreiben; dann wird E 

Zerfällungskörper von g(x) e K(a)[x] und nach Induktionsvoraussetzung [E: K(ac)] 
ein Teiler von (n — 1)!. Also geht auch [E: X ] = [E: K(«)] • n in n! auf. I m zweiten 
Fall seien a1( a2, . . . , a* £ E die nicht notwendig paarweise voneinander ver-
schiedenen Kulistellen von fi(x). Dann ist K(xlt a2, . . . , a*) der Zerfällungskörper 
von fi(x) e K[x] und E auch Zerfällungskörper von /¡.(x) e K(av a2 <**)[#]• 
Nach der Induktionsvoraussetzung ist also [ E : K(x l t a2, . . . , a*)] ein Teiler von Ii 
und [K(a.lt a s , . . a u ) : K] ein Teiler von kl, das Produkt [E: K~\ somit ein Teiler 

von l'.kl, und diese Zahl teilt (k + 1)1 = nl, weil der Binomialkoeffizient 

(k + l)! 
= — — eine ganze Zahl ist. tC! i 1 
58.2 Nach Satz 2 läßt sich der identische Automorphismus e: K ~ K zu einem 
Isomorphismus <p von K(tXj) auf K(txz) mi t f>(at) = a2 fortsetzen. Diesen Isomorphis-
mus betrachte man in Satz 3; es wird g(x) = f(x), und man darf F — E wählen, da 
E sowohl Zerfällungskörper von f(x) e K(aj)[x] als auch Zerfällungskörper von 
fix) e -K(aa)M ist. Jede Fortsetzung T: E ~ E von <p: K(at) ~ K(a2) leistet dann 
das Verlangte. 

58.3 a) Man nehme das Eisenstein-Kriterium und p = 2. 
b) Durch Ausrechnen der Klammern bekommt man /(2 — a) = /(a) = 0. 
c) Es sind a und 2 — a Nullstellen desselben über £} irreduziblen Polynoms f(x). 
Also wird durch <p(g(a)) = g(2 — a) ein Isomorphismus <p von Q(a) auf Q(2 — a) 
definiert (g(x) e G[x]), der Ü elementweise festläßt. Wegen a e £1(2 — a) und 
2 — a e Q(a) ist sogar Q(a) = Q(2 — a) imd <p damit ein Automorphismus von Q(a). 
Er h a t die Eigenschaft <p(<x) = 2 — a, und aus dieser Eigenschaft folgt fü r einen 
Automorphismus <p von Q(a) schon <p(g(a)) = g(<p(a)) — g(2 — a). Also gibt es 
genau eine Fortsetzung <p von e mit <p(a) = 2 — a. 
d} Wegen Q c L ist L n icht leer; speziell liegen 0 und 1 in L. Aus a, b e L folgt 
<p(a — b) — <p(a) — 93(6) = o — b, also a — b e L, und <p(ab) = <p(a)<p(b) — ab, 
also ab e L. I s t a e L, a # 0, so wird <p(o_1) = <p(a)-1 = also a - 1 e L. Damit 
sind die in Frage stehenden Körperaxiome für L nachgeprüft. 
e) Q(a) besteht aus allen Elementen y = aa? + 6a2 + ca + d mit o, b,c,de Q, 
und es gilt L = {y: <p(y) = y}. Man bekommt (p(y) = o(2 — a)s + 6(2 — a)2 

+ c(2 — a) + d; Ausrechnen der Klammern und Vergleich der Koeffizienten glei-
cher Potenzen von a (vgl. § 53.2) in <p(y) = y liefert a = 0 und 26 + c = 0, also 
L = {6a2 — 26a + d: b,de Q}. Das ist nicht ganz Q(a), aber mehr als Q; wegen 
[Q(a): Q] = 4 liefert die Gradformel also [L: Q] = 2. Jedes nicht schon in Q ge-
legene Element ß e L erzeugt daher L über fi. Wir wählen etwa 6 = 1 und d — 0, 
also ß = ofi — 2a, und bekommen L = H(ß). Man berechne ß1 = a* — 40c8 + 4a2 ; 
dann sieht man I r r (ß, Q) = x2 — 2x + 2 und erhält ß — 1 ± i. I n beiden Fällen 
wird L = Q(i). 
f) F ü r das erzeugende Element a von Q(a) = L(a) über L gilt a2 — 2a = ß = 1 ± i. 
Es folgt a = 1 ± \2 ± i. Jede dieser vier Zahlen ist Nullstelle von f(x), wie die 
Probe durch zweimaliges Quadrieren zeigt: (a — l)2 = 2 ± i und ((a — l)2 — 2)2 

= —1 ergibt /(a) = 0. 
g) Es ist E = Q(J/2 + i, \2 — i) und, wie wir schon wissen, [Ö( V2 + i): ö ] = 4. 
Wir zeigen noch [0(1/2 + i , y 2 — i ) : Ü( y2 + ¿)] = 2 und dami t auf Grund der 

r: 
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Gradformel = 8. Die Zahl \2—i ist Nullstelle von x2— (2— i)eQ.(]/2 + i)[x]; 
es folgt []/2— i: Q(V2 + ¿)] Zu zeigen bleibt V2—i <£ Q( ]/2 + . Wegen 
Ü(V2 + i) = Q(i) (V2 + i) h a t jedes Element vonQ( V2 + i) die Gestalt u + v]/2 + i 
mit u, v e Q(i). Die Annahme J/2— i — u + «|/2 -f i mit gewissen u, v e Q(i) ha t 
v 4= 0 (wegen \2—i $ Q.(i)) und u 4= 0 (wegen ^ Q(i)) zur Folge; aber dann 
ergibt sich durch Quadrieren J/2 + i e Q(t), was auch nicht der Fall ist. Also ist 
V2 — i Q( y'2 + i) und demnach [E-.Q.] = 8. 

59.1 Es sei a eine Nullstelle von x3 + ax + b e und demnach [3»(«): = 1 
oder [3,(a): 3,] = 2. I m ersten Fall zerfällt das Polynom bereits über 3 , c GF(32), 
im zweiten ist Ba(a) nach Satz 3 ein Körper mit 32 Elementen, also GF(32). 

59.2 Es sei L = GF(pn) und K ein Unterkörper von L. Dann gilt x(K) = x(L) = P-
Daher ist K — GF(pm) mit einem gewissen m e 91. Nach Satz 3 ist \L\ eine Potenz 
von \K\; also ist notwendig m sogar ein Teiler von n. I s t nun ein Teiler m von n 
vorgegeben, so zeigen wir: Es gibt genau einen Körper K cL m i t \K\ = pm. 
Nach dem Beweis zu Satz 5 besteht GF(pm) aus der Gesamtheit aller Nullstellen a 
von XP" — x e 3j>M und L = GF(pn) aus der Gesamtheit aller Nullstellen von 
xP" — x e 3p[x]- Es sei n — dm. Durch Potenzieren mi t pm folgt aus aPM — a 
zunächst OP'~ — a, und Wiederholung des Potenzierens mi t pm f üh r t schließlich 
zu OP" = aP" = a. Jedes a e GF{pm) liegt also in L. Zu jedem Teiler m von n 
gibt es also einen Körper K c L mit \K\ = pm. E r ist eindeutig best immt, weil 
xP~ — x 6 nur pm Nullstellen in L besitzt. 

61.1 & = i + 1/5, I r r (&, Ö) = x* — 4x2 + 16. 
1 i 

61.2 Es ist E = Q(f7, o>) mi t m = — - (vgl. § 58, Beispiel 3), und man 
z z 

kann = co + (/7 wählen; aber die Ermit t lung von I r r (# 1 ( Q) erfordert einige 
Rechnung. Es gilt auch E = £}({/?, y—3), und hier erweist sich sogar daa Produkt 
$2 = —3 als primitives Element von E über £}; denn es ist = 63^7, also 
j/7 und damit auch \ — 3 ein Element von Q(#2). Aus [ E : Q] == 6 folgt demnach 
[da: Ü] = 6 und schließlich I r r (02, Ü) = & + 1323 durch Potenzieren von 
mi t 6. 

62.1 Das Polynom f(x) ist irreduzibel über K auf Grund des Eisenstein-Kriteriums 
für p = y. Die Inseparabilität von f(x) über K folgt nun aus Satz 3. Das Polynom 
f(x) e K[x] ha t also in seinem Zerfällungskörper genau eine dreifach gezählte 
Nullstelle, da in Satz 4 nur m — 1 in Frage kommt. 

67.2 Es ist E = Q(V2, J/3, j/5) der Zerfällungskörper von 

(x2 — 2) (x2 — 3) (x2 — 5) e Ü[x]. 

Für jedes Element g der Galoisgruppe G von E über Ö gilt g2 = e. Also ist (Auf-
gabe 6.1) G abelsch, und zwar G = 3s x 3z x Schreibt man 

67.1 

G = {e, a, ß, y, aß, ocy, ßy, aßy} mit a2 = ß2 = y2 = e, 
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so findet man 16 Untergruppen von O. Die 16 Zwischenkörper von Q und £}( y2, yS, y5) 
kann man alle raten: Ü, Ü( y2), Ü( J/3), £}( ]/Z), Q( yS), Q( ylü), Q( yiö), 0 ( y3ö), £}( y2, y3), 
ö(l/2, y6) ,ö(ys, V5),G(y2, yi5) ,ü(y3, yTü),ö(ys, yg), atys, yiüj .otys, y5, ys>. 

1 i 
67.3 Wir setzen co = —— + - ^ y 3 und bekommen E = Q([/7, tu) und [E: Q] = 6. 

Die Galoisgruppe ist die nichtkommutative Gruppe O = {e, er, u2, r, err, <j2r} der 
Ordnung 6 (er3 = t 2 = e, ta = oH), wobei a und t durch cr( f'T) = <o\l, ct(cu) = to 
und T(yf) = J/7, r(<u) = a>2 definiert sind. Die echten Untergruppen von O sind 
{c} , {e, t } , {e, err}, {e, a2t} und {e, a, a 2 } . Man bekommt das Körperdiagramm 

-Q(f7, co). 

Ö(f 7o>) 

73.1 Es sei a e S algebraisch über 21. Behauptet wird a € 21. Nach Satz 54.6 ist 
aber a algebraisch über Q, und das bedeutet a 6 2i. 



Bezeichnungen 

\M\, 91, 3 , Ö, SR, e , =Df (5 1.1) 
A y. B , M \ (§ 1.3) 
~ (§ 6.3, § 19) 
e » (§7 .2 ) 
sgn , 9ln (§7 .3 ) 
ind (§ 8.3) 
3„ (§9 .2 , § 2 0 . 1 ) 
G x. H, Q @ H (§10 .1 ) 
(m, n) , a\b, afb (§ 10.3, § 36.2) 
p(cc) (§11.2) 
St (§12 .1 , § 1 9 ) 
G/N (§12 .1 ) 
<p{n), ^ n ( § 1 2 . 4 ) 
25» (§18 .1 ) 

X(R) (§20 .2) 
i?o (§20 .3) 
Irr (a, K) (§27 .3) 
£ (§29 .2 ) 
(M) , (mj, m 2 m, ) (§ 35.1) 

(§45) 
d i m 7 (§ 50) 
[ E : S ] i , [ E : S ] r , [ E : S] ( § 5 2 ) 
[«: X ] (§ 53.2) 
GF(j>») ( § 5 9 ) 

(§65 .1 ) 
(§69 .1 ) 

21 (§ 73.1) 
He z, I m z, z, arg z (Anbang) 
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