Anhang

Das Rechnen mit komplexen Zahlen

1. Es sei R die Menge der reellen, € die Menge der komplexen Zahlen. Die
Elemente aus € haben die Gestalt a + bt (@, b € R), und es wird wie folgt mit
ihnen gerechnet:

(1) a+b =c+di < a=¢b=d;
2 (@ + b))+ (c+di) = (@a+¢) + (b + d)i;
3) (@ + bi) - (¢ + di) = (ac — bd) + (ad + be)i.

Statt @ + 0¢ schreiben wir a, statt 0 + bi schreiben wir bi. Ist @ + bs &= 0,
so ist auch @ — b7 &= 0, und durch formales Erweitern mit @ — b¢ findet man

1 a—bi _a—b _ a b
atbi (@t bi)@—b) a2+ @2L8 a2 8"

dieses Resultat wird durch die Probe bestatigt.

Wir rechnen also mit komplexen Zahlen in gewohnter Weise und beachten nur
42 = —1. Dafl es einen derart hingeschriecbenen Korper € wirklich gibt, be-
darf einer Begriindung. Hierzu vergleiche man etwa § 23.

2. Es ist von groem Nutzen, sich die komplexen Zahlen in folgender Weise zu
veranschaulichen. Man wiahle in der Ebene ein rechtwinkliges Koordinaten-
system, bestehend aus einer x-Achse und einer y-Achse, und ordne der kom-
plexen Zahl z = x + yi (z, y € R) den Punkt (z, ) mit den Koordinaten z, y zu.
Durch diese Vorschrift wird € eineindeutig auf die sogenannte GaufBsche Zahlen-
ebene abgebildet. Den Punkten der z-Achse sind dabei genau die reellen Zahlen
zugeordnet, und wir bezeichnen deshalb die z-Achse als die reelle Achse; die
y-Achse heilit die imagindre Achse. Wir sagen, die komplexe Zahl z = x + y2
{(z, y € R) habe den Realteil * und den Imaginirteil y, und wir schreiben
z=1Rez y=1Imz.

Der Spiegelpunkt von z = = + i (x, y € R) an der reellen Achse ist der Punkt

-& — yti; wir bezeichnen ihn mit z und nennen z =z — yi diezu z =2 + yi
konjugiert-komplexe Zahl. Die Zahl z € € ist genau dann reell, wenn z = 7 ist.
Es ist z = 2. Die Zahl —2 findet man, indem man den Punkt z am Ursprung
spiegelt. Man bestétigt leicht die Regeln

+ 2

- 22

21 + 22 =
21y =

AR

(21, 22 € @)

4)
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Der Punkt z = z + yi (2, yeR) hat vom Ursprung die Entfernung }/2% + 42 =>0;
diese nichtnegative reelle Zahl bezeichnet man mit jz|. Es folgen die Regeln
2| = |—2| = 7z, —lz2| S Rez < |z|, —|2] = Im=z = |2|.

Der Abstand der Punkte 21, z3 € € ist |21 — 23|. Er ist ja genauso groB wie
der Abstand des Punktes 23 — 23 vom Ursprung.

Es gelten die beiden Regeln

(5) 22 = =2z,

(6) l1zel = |e1] -+ |22l

Die erste folgt unmittelbar aus den Definitionen fiir Z und |z|. Die zweite be-
sagt dasselbe wie |z122]2 = |z1[2 - 22[%, und das folgt durch Ausrechnen der
linken Seite mittels (5) und (4): |2122]2 = 2122 - 2128 = 21227122 = 2121 * 2322
= |12« |z2]2.

Sind 23, 23, 23 drei Punkte der GauBschen Zahlenebene, so gilt

|1 — 22| < |;1 — 23] + |23 — 22l

weil der Umweg von z; iiber z3 nach 23 mindestens ebenso groB ist wie die direkte
Entfernung |21 — 2|. Setzt man speziell z3 = 0 und schreibt —=z; fiir 22, so
bekommt man die Dreiecksungleichung

@) 1+ 22| = || + 22l
die man auch ohne Riickgriff auf die Anschauung bestétigen kann.

3. Wir fithren nun in der GauBlschen Zahlenebene Polarkoordinaten ein. Die
Entfernung r des Punktes z =z + yi (x, y €R) vom Ursprung haben wir
schon betrachtet: Es ist r = |z|. Fiir jeden Punkt z & 0 ist ferner bis auf
additive ganzzahlige Vielfache von 2z eindeutig ein Winkel ¢ dadurch erklért,
daB die positive reelle Achse im mathematisch positiven Sinn so lange gedreht
wird, bis sie die Verbindungsstrecke von 0 und z enthalt: Dieser Winkel sei ¢.
Wir schreiben ¢ = arg z und nennen ¢ das Argument von z; wir verabreden,
daB mit ¢ auch die reellen Zahlen ¢ + 2kz (k ganz) Argumente von z sind.
Wegen z = r cos ¢ und y = r sin ¢ bekommt z die Gestalt z =r(cosp + 2sing).
Genau dann liegt z auf dem Einheitskreis, wenn hierbei r = 1 ist.

Es seien nun zwei komplexe Zahlen

21 = ri(cosgy + isingy),
23 = ry(cosgz + ¢ 8ingy)
gegeben. Fiir ihr Produkt bekommt man

2123 = rirg[(cosg) cospe — singysings) - #(singicosps | cospisings)]

= rirz(cos(p1 + @2) + t8in (g1 + @2)).

Daraus kann man zwei Regeln ablesen. Einmal wird |z123] = rire = |21] « |22].
Das steht bereits in (6). Ferner liefert ein Vergleich der Argumente auf beiden
Seiten

(8) arg z12g = argz) + argzp (2122 = 0).
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Aus (8) folgt beispielsweise, daB cos(—e) + ¢sin(—ep) = cosp — i sing das
Inverse von cosp + ¢sing oder

1_ 1(cos i sing)
PR ¥

das Inverse von z = r(cosp + ising) & 0 ist, was man auch unmittelbar

direkt nachrechnet.

Fiir reelles ¢ definiert man

9) et = cosp + ¢sing.

Wir konnen dabei die linke Seite als eine bequeme Abkiirzung der rechten
ansehen; wegen (8) gilt auch hier das bereits aus dem Reellen vertraute

Additionstheorem
el - gfy — ellp+y),

Mehrfache Anwendung von (8) liefert auch die sogenannte MorveEsche Formel

(10) (cosp + ising)* = cos nep -+ ¢sin ne;

sie gilt fiir alle natiirlichen, ja sogar fiir alle ganzen Zahlen n. Sie gestattet
verschiedene praktische Anwendungen. Will man beispielsweise cos ng durch
cos ¢ und sin ¢ ausdriicken, so braucht man links nur den binomischen Lehr-
satz anzuwenden und anschlieBend die Realteile auf beiden Seiten zu ver-
gleichen. So bekommt man etwa cos3p = cos3p — 3cosgsin2p = 4cos3p — 3cose.
Weiter ist jede der » Zahlen

2 25
cosvz—n—i—isinv—n = é’n v»=01...,n—1)

n n

eine n-te Wurzel aus 1, wie die Probe mittels (10) zeigt. Diese n Punkte liegen
auf dem Einheitskreis und teilen ihn in n gleiche Teile. Man nennt sie n-te
Einheitswurzeln. Andere n-te Wurzeln aus 1 gibt es nicht. Wegen

2 (4
cosy =~ + isinvz—n = (cos 2z + tsmz—n)
n n n n

bilden die »n-ten Einheitswurzeln eine von cos 27” + isin%‘ erzeugte zyklische

Gruppe der Ordnung » beziiglich der Multiplikation.
Die dritten Einheitswurzeln beispielsweise sind demnach

cosO-23—n+isin0~23—n= 1,

2 _

27 .. 1 1
cosl-§+tsml 3 —§+§V§,
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2% .. 2x 1 .
cos2-§+zsm2 3 = —5——2-1/3,

man kann sie auch durch Aufsuchen der Nullstellen von

B—1l=@—1)@+z+1)
ermitteln.
Die vierten Wurzeln aus —1 = cos 7 + ¢ sin 7 sind

27

1 27 .. (m
cos(z+wz-)+zsm(z +VZ) »=0123);

wieder macht man am einfachsten die Probe nach (10). Schreibt man die
Winkelfunktionen aus, so erhilt man die simtlichen vier Werte von y—1 zu

1 .
Vﬁ(:}: 14 9).



