
Anhang 

Das Rechnen mit komplexen Zahlen 

1. Es sei SR die Menge der reellen, G> die Menge der komplexen Zahlen. Die 
Elemente aus <5 haben die Gestalt a + bi (a, b eSR), und es wird wie folgt mit 
ihnen gerechnet: 

(1) a + bi = c + di o a = c, b = d; 

(2) (a + bi) + (c + di) = (a + c) + {b + d)i; 

(3) (a + bi) • (c + di) = (ac — bd) + (ad + bc)i. 

Statt a + Ot schreiben wir a, statt 0 + bi schreiben wir bi. Ist a + bi =j= 0, 
so ist auch a — bi =)= 0, und durch formales Erweitern mit a — bi findet man 

dieses Resultat wird durch die Probe bestätigt. 
Wir rechnen also mit komplexen Zahlen in gewohnter Weise und beachten nur 
i2 = —1. Daß es einen derart hingeschriebenen Körper 6 wirklich gibt, be-
darf einer Begründung. Hierzu vergleiche man etwa § 23. 

2. Es ist von großem Nutzen, sich die komplexen Zahlen in folgender Weise zu 
veranschaulichen. Man wähle in der Ebene ein rechtwinkliges Koordinaten-
system, bestehend aus einer »-Achse und einer y-Achse, und ordne der kom-
plexen Zahl z = x + yi (x, y e SR) den Punkt (x, y) mit den Koordinaten x, y zu. 
Durch diese Vorschrift wird <5 eineindeutig auf die sogenannte Gaußsche Zahlen-
ebene abgebildet. Den Punkten der «-Achse sind dabei genau die reellen Zahlen 
zugeordnet, und wir bezeichnen deshalb die «-Achse als die reelle Achse; die 
«/-Achse heißt die imaginäre Achse. Wir sagen, die komplexe Zahl z = x + yi 
(x, y e SR) habe den Realteil x und den Imaginärteil y, und wir schreiben 
x = Re z, y = Im z. 

Der Spiegelpunkt von z = x + yi (x, y e SR) an der reellen Achse ist der Punkt 
•x — yi; wir bezeichnen ihn mit z und nennen z = x — yi die zu z = x + yi 
konjugiert-lcom'plexe Zahl. Die Zahl z 6 € ist genau dann reell, wenn z = z ist. 
Es ist z = z. Die Zahl —z findet man, indem man den Punkt z am Ursprung 
spiegelt. Man bestätigt leicht die Regeln 

1 a — bi a — bi a b 
a + bi (a + bi) (a — bi) a2 + b2 a2 + b2 a2 + b2 

(4) «1 + Z2 = Zl +_Z2 

Z1Z2 = Z1 ' z2 (Zl, Z2 6 6). 
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Der Punkt z = x + yi (x, y e3t) hat vom Ursprung die Entfernung ]/x2 + y2 ^ 0 ; 
diese nichtnegative reelle Zahl bezeichnet man mit |z|. Es folgen die ßegeln 
|z| = |—z\ = \z\, —\z\ ^-Rez < |2|, — \z\ ^ Im z ^ |z|. 
Der Abstand der Punkte zi, Z2 6 <5 ist |zi — Er ist ja genauso groß wie 
der Abstand des Punktes z\ — Zz vom Ursprung. 
Es gelten die beiden Regeln 

(5) |z|2 = zz, 

(6) |ziz2| = |zi| • |zg|. 
Die erste folgt unmittelbar aus den Definitionen für z und \z\. Die zweite be-
sagt dasselbe wie IZ1Z2I2 = |zi|2 • |Z2|2, und das folgt durch Ausrechnen der 
linken Seite mittels (5) und (4): IZ1Z2I2 = Z1Z2 • Z1Z2 = Z1Z2Z1Z2 = zizl • z<i z~2 
= |2l!2-|22|2-

Sind zi, 22, Z3 drei Punkte der Gaußschen Zahlenebene, so gilt 

\Zl — z2| ^ |zi Z31 + |Z3 Zz\, 
weil der Umweg von z\ über zs nach Z2 mindestens ebenso groß ist wie die direkte 
Entfernung |zi — Z2I. Setzt man speziell Z3 = 0 und schreibt —Z2 für Z2, so 
bekommt man die Dreiecksungleichung 

(7) |zi + z2| ^ I21I + M , 
die man auch ohne Rückgriff auf die Anschauung bestätigen kann. 

3. Wir führen nun in der Gaußschen Zahlenebene Polarkoordinaten ein. Die 
Entfernung r des Punktes z = x + yi (x, y 6 3t) vom Ursprung haben wir 
schon betrachtet: Es ist r = |z|. Für jeden Punkt z 4= 0 ist ferner bis auf 
additive ganzzahlige Vielfache von In eindeutig ein Winkel tp dadurch erklärt, 
daß die positive reelle Achse im mathematisch positiven Sinn so lange gedreht 
wird, bis sie die Verbindungsstrecke von 0 und z enthält: Dieser Winkel sei tp. 
Wir schreiben <p = arg z und nennen <p das Argument von z; wir verabreden, 
daß mit <p auch die reellen Zahlen <p + 2kn (k ganz) Argumente von z sind. 
Wegen x = r cos <p und y = r sin <p bekommt z die Gestalt z - r(cos<p + i sin 99). 
Genau dann liegt z auf dem Einheitskreis, wenn hierbei r = 1 ist. 
Es seien nun zwei komplexe Zahlen 

zi = ri(cos9?i + i sin vi), 
Z2 = r2(cos9>2 + i sin 992) 

gegeben. Für ihr Produkt bekommt man 

Z]Z2 = riT2[(co8<pi cos<p2 — sin^isin^) + ¿(sin^icos^ + cosyisin^)] 
= rir2(cos(9Ji + 952) + i sin (<pi + <p2)). 

Daraus kann man zwei Regeln ablesen. Einmal wird \ziz¡\ = r\r-¿ — |zi| • ¡Z2I. 
Das steht bereits in (6). Ferner liefert ein Vergleich der Argumente auf beiden 
Seiten 

(8) arg ziz2 = arg zx + arg z2 (Z1Z2 4= 0). 
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Aus (8) folgt beispielsweise, daß cos(—<p) + t sin(—95) = cos<p — i sin<p das 
Inverse von cosy + i siiKp oder 

— = —(cosy — i sin<p) 
z r 

das Inverse von z = r(coa<p + i sing?) 4= 0 ist, was man auch unmittelbar 
direkt nachrechnet. 
Für reelles <p definiert man 

(9) e'" = cosy + i sin^). 

Wir können dabei die linke Seite als eine bequeme Abkürzung der rechten 
ansehen; wegen (8) gilt auch hier das bereits aus dem Reellen vertraute 
Additionstheorem 

eUp . gfv = e((p+y)_ 

Mehrfache Anwendung von (8) liefert auch die sogenannte MoivRESche Formel 

(10) (cosy + i siny)* = cos ncp + i sin rup; 

sie gilt für alle natürlichen, ja sogar für alle ganzen Zahlen n. Sie gestattet 
verschiedene praktische Anwendungen. Will man beispielsweise cos n<p durch 
cos <p und sin <p ausdrücken, so braucht man links nur den binomischen Lehr-
satz anzuwenden und anschließend die Realteile auf beiden Seiten zu ver-
gleichen. So bekommt man etwa cos 395 = cos3^— 3cos<psin29? = 4cos3<p — 3cos^. 
Weiter ist jede der n Zahlen 

2n , . . 2ji ( 2? 
cosv |-tsmv— = c » (y = 0, 1, . . . , n — 1) 

n n 

eine ra-te Wurzel aus 1, wie die Probe mittels (10) zeigt. Diese n Punkte liegen 
auf dem Einheitskreis und teilen ihn in n gleiche Teile. Man nennt sie w-te 
Einheitswurzeln. Andere n-te Wurzeln aus 1 gibt es nicht. Wegen 

2n . . 2n ( 2n . . 2nV 
cos v |- 1 sinv— = cos 1- tsm — 

n n \ n n) 

2n 2 jt 
bilden die ra-ten Einheitswurzeln eine von cos [- i s in— erzeugte zyklische 

n n 
Gruppe der Ordnung n bezüglich der Multiplikation. 
Die dritten Einheitswurzeln beispielsweise sind demnach 

n 2n . . n 2n 
cos 0 • — + »sin 0 • — — 1, 

u O 

2n . 2n 1 t 
cos 1 • — + tsm 1 • — = — - + g P -
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Ä 2n . . „ 2n 1 cos2- — + i s i n 2 - y = - - - - j / 3 ; 

man kann sie auch durch Aufsuchen der Nullstellen von 

a? — 1 = (x — 1) (x2 + x -h 1) 
ermitteln. 
Die vierten Wurzeln aus —1 = cos n + % sin n sind 

In 2n\ . . In 2n\ , „ , „ „v C 0 B ^ - + » — j + .BBi^- +v— J ( r = 0 , 1 , 2 , 3 ) ; 

wieder macht man am einfachsten die Probe nach (10). Schreibt man die 
Winkelfunktionen aus, so erhält man die sämtlichen vier Werte von \—1 zu 

p ( ± 1 ± 0 . 


