3 Ringe

Wir wenden uns nun algebraischen Strukturen mit zwei Verkniipfungen zu.
Als Modelle stehen uns dabei etwa die Strukturen 3 und £ mit den Verkniip-
fungen Addition und Multiplikation vor Augen. Es handelt sich bei beiden um
Ringe mit zusidtzlichen speziellen Eigenschaften. Aus der umfangreichen
Theorie der Ringe greifen wir nur einige Ergebnisse heraus, die standig ge-
braucht werden. Wir beginnen mit einer allgemeinen Vorbetrachtung.

§ 19 Algebraische Strukturen

Bevor wir uns speziellen Strukturen mit zwei Verkniipfungen zuwenden,
stellen wir einige allgemeine Definitionen und Sdtze auf, die nach den ent-
sprechenden Erérterungen in Kapitel 2 hinreichend plausibel geworden sind.

Definition: Es seien Sy und Sy algebraische Strukturen mit jeweils n Ver-
kniipfungen ; wir bezeichnen mit

01, 02, - . ., Oy die Verkniipfungssymbole von Sy
und mit

81, ®2, - . ., ®y die Verkniipfungssymbole von Sa.

Eine Abbildung f: S1 - Sz heifit relationstrew oder Homomorphismus von 8) in
Sa, wenn (eventuell nach einer Umnumerierung) fir jedes 1,1 <1 < n, und
alle z, y € 8y gilt:

fxory) = f(2) o f(y);

sie heifft Homomorphismus von S1 auf Sz, wenn ste zusdtzlich surjektiv ist, und
tn diesem Fall nennen wir Ss etn homomorphes Bild von 8; und schreiben
S; 3 8s.

Ein Isomorphismus von Sy tn S ist eine injektive relationstreue Abbildung
f: 81 > Sa; sie heifit Isomorphismus von Sy auf Sz, wenn sie sogar bijektiv und
relationstreu ist; in diesem Fall heifen 81 und Sg tsomorph, und wir schreiben
Sl o~ Sz.

Ein Automorphismus von 8y ist ein Isomorphismus f: Sy - S1 von Sy auf sich.
Unter einem Endomorphismus von 81 schlieflich versteht man einen Homomor-
phismus von 8y in sich.

Isomorphe Strukturen definieren wieder eine Aquivalenzklasse und werden
nicht als wesentlich voneinander verschieden angesehen. Aus 8; = S; und
8y 23 83 folgt S1 = Ss.
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Definition: Es set S eine algebraische Struktur mit den Verkniipfungen
01,02, - .., 0p und ,,= eine Aquivalenzrelation auf 8. Diese Aquivalenzrelation
heifit Kongruenzrelation, wenn fiir jedes 1,1 < 1 < n, gilt:

a=a,b=b = aoth=a opb.

Das kann man auch so interpretieren: In einer Kongruenzbeziehung aus S
diirfen die in ihr auftretenden Elemente von 8 durch kongruente ersetzt
werden (vgl. etwa die spédtere Aufgabe 20.2).

Wie Satz 15.1 beweist man den

Satz 1: Die Menge A aller Automorphismen einer algebraischen Struktur S
mit n Verkniipfungen ist eine Gruppe, die sogenannte Automorphismengruppe
von 8.

Es sei nun weiterhin 8; eine algebraische Struktur mit den Elementen
a,a,b,b,s, ... und den n Verkniipfungen oy, 0g, ..., 0s; gesucht seien alle
hemomorphen Bilder von 8;. Angenommen, auf 8 ist eine Kongruenzrelation
»="" erkldrt. Dann zerféllt S; in Kongruenzklassen. Die Menge dieser Klassen
sei Sp = {K(a), K(b), ...}. Wir erkliren auf S; die Verkniipfungen
®1, ®2, - .., ®83 durch K(a) ®; K(b) = K(a o;b); das sind wirklich Verkniip-
fungen auf 8;, weil sich nach der Definition der- Kongruenzrelation die rechten
Seiten nicht &ndern, wenn die Reprisentanten a,b von K(a), K(b) durch
andere Reprasentanten a’, b’ ersetzt werden. Fiir se S, setzen wir nun
f(s) = K(s) € Sz und definieren dadurch eine surjektive Abbildung f: S; - S..
Diese Abbildung ist relationstreun:

flaoid) = K(aoid) = K(a) e K(b) = f(a)®4 f(b).
Also gilt Sy = 8,.

Umgekehrt sei jetzt ein homomorphes Bild 83 von 8; vorgelegt, 8y ~ Ss; der
vermittelnde Homomorphismus sei f. Dann ist durch a ~ @’ < f(a) = f(a’)
eine Aquivalenzrelation auf ) erklirt; S) zerfallt in Aquivalenzklassen derart,
daB genau die Elemente einer Klasse dasselbe Bild besitzen. Diese Aquivalenz-
relation ist sogar eine Kongruenzrelation: Aus @ ~ a’ und b ~ b’ folgt

Haoid) = f(a) 8¢ f(b) = f(a') &4 f(}') = fla' o4 }'),

also 2 o0; b ~ a’ o4 b’. Wir betrachten die Menge S; = {K(a), K(b), ...} aller
dieser Kongruenzklassen und behaupten Sz ~ Ss; dabei seien die Verkniip-
fungen auf S; wie oben eingefithrt. Zunachst definiert ¢(K(a)) = f(a) eine
Abbildung ¢: Sz - S3, weil f(a) von der Wahl des Reprisentanten von K(a)
nicht abhingt, und diese Abbildung ist ersichtlich bijektiv. Sie ist auch rela-
tionstreu, und das bedeutet insgesamt Sz ~ S3. Abgesehen von Isomorphien
ist also das homomorphe Bild 83 von 8; eines der bereits oben gefundenen
homomorphen Bilder Ss.

Wir fassen zusammen.

Satz 2: Es ser Sy eine algebraische Struktur mit Elementen a,b, ... und
den n Verkniipfungen o5, 1 < 1 < n. Ferner sei auf S, eine Kongruenzrelation
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erklirt. Dann werden auf der Menge Sy = {K(a), K(), ...} der Kongruenz-
klassen von Sy durch K(a)®; K(b) = K(a o;b) ebenfalls n Verkniipfungen
®4, 1 1 < n, definiert, und es gilt Sy = Sa. Jedes homomorphe Bild von S
tst einer derart gewonnenen Struktur Sp tsomorph.

Das Aufsuchen aller homomorphen Bilder einer algebraischen Struktur 8 mit
n Verkniipfungen ist also gleichbedeutend mit der Aufgabe, alle Kongruenz-
relationen von § ausfindig zu machen.

Wie Satz 12.3 ergibt sich schlieBlich noch der

Satz 3: Es sei S eine algebraische Struktur mit Elementen a, b, ... und
den n Verkniipfungen 01,1 < ¢ < n. Ferner set 8§ = K(@)uKDd)u ... eine
Zerlegung von 8 tn paarweise verschiedene Aquivalenzklassen. Genau dann de-
finiert K(a) ® K(b) = K(a o4 b) fiir jedes i,1 < ¢ < n, eine Verkniipfung auf
der Menge {K(a), K(b), . ..} der Aquivalenzklassen, wenn die durch die Partition
von S erklirte Aquivalenzrelation eine Kongruenzrelation ist.

§ 20 Das Rechnen in Ringen
20.1 Wir beginnen mit der folgenden

Definition: Eine algebraische Struktur R mit einer additiv und einer multi-
plikativ geschriebenen Verkniipfung heifit ein Ring, wenn folgendes gilt:
(1) R ist beziiglich der Addition eine abelsche Gruppe.
(2) R ist beziiglich der Multiplikation eine Halbgruppe.
(3) Fiir alle Elemente a, b, c € R gelten die Distributivgesetze

a(b + ) = (ab) + (ac) =py ab + ac,
(b + c)a = (ba) + (ca) =ps ba + ca.

(Das Zeichen fir die Multiplikation soll also wie tiblich stirker binden als das fiir
die Addition.)
Ein Ring R heifit kommutativ, wenn fir alle a, b € R gilt: ab = ba.

Die Forderung (1) bestimmt die Eigenschaften der Addition, die Forderung (2)
beschreibt die Multiplikation; in (3) schlieflich wird ein Zusammenhang
zwischen den Verkniipfungen hergestellt.

Jeder Ring R besitzt als additiv geschriebene abelsche Gruppe genau ein Null-
element 0, das fir jedes a € R die Beziehung a + 0 = 0 + a = e erfiillt.
Enthilt ein Ring R = {0} ein Element 1 € R mit la = al = a fiir jedes a € R,
so nennen wir dieses Element Einselement von R. Es gibt Ringe ohne Eins-
element (vgl. Beispiel 2). Zwei Einselemente 1,1’ kann ein Ring R wegen
1 =1-1" = 1’ nicht besitzen.

Wie bei Gruppen erklirt man die Begriffe Unterring und echter Unterring.

Beispiel 1. Die Strukturen 3,2Q,R, € sind kommutative Ringe mit Eins-
element.
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Beispiel 2. Die Menge 23 = {...,—2n,—=,0,n,2n, ...} aller dureh ein
festes neM,n £ 1, teilbaren ganzen Zahlen ist ein kommutativer echter
Unterring von 3 ohne Einselement.

Beispiel 3. Die Menge aller reellen zweireihigen quadratischen Matrizen ist
ein nichtkommutativer Ring mit Einselement beziiglich der Matrizenaddition
und -multiplikation.

Beispiel 4. Die Menge R = {z: 2z = a + b}2,a,b €8} cR ist ein kommu-
tativer Unterring von R mit Einselement. Aus z,y € R, etwa 2 = a + b}2
und y = ¢ + d/2, folgt ja sowohl z + y = (a + ¢) + (b + d)]/2 € R als auch
zy = (ac + 2bd) + (ad + bc))2 € R; auBerdem gilt 0 € R und —z e R. Alle
weiteren Forderungen sind schon in it und damit erst recht in B c & erfillt.

Sind a, b Elemente eines Ringes R, so schreiben wir statt —(ab) wieder nur —ab.
Wir beweisen nun die bekannten Vorzeichenregeln.

Satz 1: In Ringen gelten die Rechenregeln a - 0 = 0+ @ = 0, a(—b) = (—a)b
= —ab, (—a)(—b) = ab, a(b —¢) = ab — ac und (b — c)a = ba — ca.

Beweis: Nach (3) ist a2 = a(a +0) = a2 +-a-0, also a -0 = 0, weil
die Gleichung a2 + x = a? nach Aussage c¢) von Satz 6.1 genau eine Losung =
hat; aus a2 = (e 4 0O)a folgt entsprechend 0-a = 0. Ferner gilt sowohl
ab + (—ab) = 0, als auch ab + a{(—>b) = a(d 4+ (—b)) = a-0 = 0, und wie
eben folgt a(—b) = —ab; aus ab 4 (—a)h = 0 bekommt man nach dem-
selben Muster (—a)b = —ab. Damit wird (—a)(—bd) = a(—(—b)) = ab.
SchlieBlich ist a(b — ¢) = a(b + (—=¢)) = ab + a(—¢c) = ab — ac, und analog
ergibt sich die letzte Behauptung.

Folgerung: Besitzt ein Ring R ein Einselement 1, so ist 1 4= 0.

Man kann leicht endliche Ringe konstruieren. Die wichtigsten sind die im
folgenden betrachteten Restklassenringe modulo .

Beispiel 5. Es sei n eine feste natiirliche Zahl, 3 der Ring der ganzen Zahlen
und
3, = {K(0), K(1), ..., K(n—1)}

die Menge der Restklassen modulo n. Wir zeigen, daBl die zugrundeliegende
Aquivalenzrelation

a =ad < nlle—a)
eine Kongruenzrelation auf dem Ring 3 ist: Es gelte a = a’, b = b’. Diese
Aquivalenzrelationen bedeuten die Existenz ganzer Zahlen 4, y mit a’ = a + An,
b" = b + un; fir gewisse ganze Zahlen o = 1 + u, ¢ = pa + b 4+ Aun wird
alsoa’ + b =a + b + onsowie a’d’ = ab + on,und das heiBta + b = a’ + b’
sowie ab = a’b’. Nach Satz 19.3 werden also durch

K(a) + K(b) = K(a + b), K(@)K(b) = K(ab)

eine Addition und eine Multiplikation auf der Menge 3, der Kongruenzklassen
erklart. In Erinnerung an §9.1 konnen wir sagen, daB der additiven Rest-
klassengruppe modulo #z in natiirlicher Weise noch eine Multiplikation auf-
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gepragt wurde. Wir zeigen jetzt, daB damit 3, = {K(0), K(1), ..., K(n — 1)}
ein kommutativer Ring wird. Die Forderung (1) ist nach § 9.1 erfiillt. Das
Assoziativgesetz der Multiplikation

(K(@)K(b))K(c) = K(ab)K(c) = K((ab)c)
K(a(be)) = K(a)K(be) = K(a)(K(b)K(c))

folgt aus dem entsprechenden Assoziativgesetz von 3; also gilt (2). Eine
analoge Rechnung liefert die Kommutativitdt der Multiplikation von 3,, so
daf wir fiir (3) nur noch eines der beiden Distributivgesetze nachzupriifen
brauchen:

E(@)K(®) + K(©) = K@K +c) = K(ab + ) = K(ab + ac)

K(ab) + Kac) = K(@)K(®) + K(@)K(c).

Damit wissen wir: 35 ist fiir n>>1 ein kommutativer Ring mit dem Einselement
K (1). Er heiBt der Restklassenring modulo n.Solange keine Verwechslungen mit
der zyklischen Gruppe der Ordnung # zu befiirchten sind, behalten wir firihn die
Bezeichnung 3, bei. Man addiert und multipliziert in 3, wie in 3, setzt aber
Vielfache von n gleich Null. Fiir » = 1 besteht 3, aus der Null K(0) allein
(Nullring).

Fiir die Kongruenzrelation a = @’ < n | (a — a’) pflegt man eine der beiden
Schreibweisen :

a=a"modn oder a=a'(n)

zu wahlen.

Anwendung: Wir zeigen auf zwei nur durch die Schreibweise unterschie-
dene Arten, daB 232 4 1 durch 641 teilbar ist. Beide Male gehen wir von der
Identitdit24 + 54 = 5-27 4+ 1 = 641 aus.

a) Es ist 527 = —1 (641). Denkt man sich diese Kongruenz viermal hin-
geschrieben und die linken und rechten Seiten multipliziert, so bekommt man
(5-27)4 = (—1)% mod 641 oder 54-228 =1 (641). Hierin darf man wegen
54 = —24 (641) den Faktor 5¢ durch —24 ersetzen. Das liefert —232 = 1 (641)
oder 641 | (232 + 1).

b) Im Restklassenring 3¢41 gilt K(5 - 27) = K(—1). Potenziert man beide Seiten
mit 4, so bekommt man K(54 - 2%8) = K(1). Fiir die linke Seite kann man auch
K(54) - K(2%8) oder K(—2%) - K(228) = K(—232) schreiben. Das ergibt K(—232)
= K(1) oder 641 | (232 + 1).

Oft wird man den Restklassenring 3, einfach in der Gestalt {0,1, ..., » — 1}
schreiben und dabei beachten, dal die hingeschriebenen Elemente keine ganzen
Zahlen sind.

Aufgabe 1: Man gebe die Verkniipfungstafeln des Restklassenringes 3¢
an.
Aufgabe 2: Man lose die Kongruenz 5x = 7 (13).

Aufgabe 3. Durch Rechnen im Restklassenring 3g zeige man: Keine
natiirliche Zahl » der Form 8% -+ 7 ist Summe von drei Quadratzahlen.
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20.2 Im Restklassenring 3¢ = {0,1,2,3,4,5} gilt 2-3 = 0, in 3¢ etwa
2 -8 = 0; ist » keine Primzahl, so gibt es in 3, Elemente a == 0, b == 0, deren
Produkt ab Null ist.

Definition: Ein Element a == O eines Ringes R heift linker Nullteiler, wenn
ein b0 in R existiert, so daff ab = 0 ist. Ein Element b & 0,b € R, heifit
rechter Nullteiler, wenn ein a = 0, a € R, existiert, so daff ab = 0 ist. Ein Ring R
heift nullteslerfres, wenn er keine Nullteiler enthdilt.

Ein Ring R ist also genau dann nullteilerfrei, wenn fiir alle o, be R aus ab=10
folgt: a=0 oder b=0. Nullteilerfreie Ringe sind zum Beispiel 3, Q, K, €. Das-
selbe gilt fiir die Restklassenringe 3, = {K(0), K(1), ..., K(p — 1)} mit Prim-
zahlindex p. Aus K(a)K(b) = K(ab) = K(0) folgt ja plab in 3, also etwa pla
oder K(a) = K(0).

Gilt in einem Ring ab = ac, so folgt auch fir @ 3= 0 nicht notwendig b = ¢;
in 3y giltetwa 2 - 3 =2 - 9, aber es ist 3 = 9. Ist aber R nullteilerfrei, a € R und
a = 0, so folgt aus ab = ac zuniichst a(b — ¢} = 0, also tatsachlichb —c =0
oder b = c; entsprechend wird ba = ca = b =c. Wir formulieren dieses
Ergebnis.

Satz 2: Ist R ein nullleilerfreier Ring mit Elementen a, b, c, ..., so gelten
fiir a &= O die Kiirzungsregeln

ab=ac = b=c¢, ba=ca = b=c.

Wir betrachten nun einen nullfeilerfreien Ring R 3 {0} mit Einselement und
sehen uns die Elemente 1,1 4+ 1,14+ 141, ... an. Es kénnen zwei Fille
eintreten. Entweder keines von ihnen ist Null, und das ist gleichbedeutend da-
mit, daB sie paarweise voneinander verschieden ausfallen; wir sagen dann,
R habe die Charakteristik Null und schreiben y(R) = 0. Oder es gibt ein n e N
mitl +14 ... + 1 = 0 (n Summanden 1); dann gibt es auch ein kleinstes n
dieser Art. Dieses minimale # ist zunichst ungleich Eins und muB} auflerdem eine
Primzahl p sein, weil aus #» = kl mit natiirlichen Zahlen k¥ < n, Il < n und

n i ! E
21 =31-3>1 = 0 wegen der Nullteilerfreiheit von R folgt: > 1 = 0 oder
1 1T 1 1

1
> 1 = 0. Wir sagen in diesem Fall, R habe die Charakteristik p und schreiben
1

x(R) = p.
Ist R ein Ring mit y(R) = p, ist also 1 € R und R nullteilerfrei, so verschwindet
eine Summe 7 4 7 + ... + r von m Summanden r € R, falls p in m aufgeht.

Um das einzusehen, schreibe man
r+r+...+r=1r4+1r4+...41r=Q10+4+1+4+ ... +1)r.
Es ist x(3) = 2(Q) = x®) = 2(€) = 0; fiir Primzahlen p gilt x(3,) = p.

Definition: Ein vom Nullring verschiedener kommutativer nullteilerfreier
Ring heifit Integrititsbereich.
Beispiele fiir Integritdtsbereiche waren etwa 3, Q, R, €, 3, (p Primzahl). Auch
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die Ringe in den obigen Beispielen 2 und 4 sind als Unterringe von 3 und %
Integritatsbereiche.

Wir betrachten nun einen beliebigen Ring R mit Einselement. In ihm wird die

Frage nach multiplikativen Inversen von Ringelementen sinnvoll. Wir treffen
die folgenden Verabredungen.

Definition: Es sei R etn Ring mit Einselement. Dann heifit b € R Rechts-
tnverses von a € R, wenn ab = 1 gilt. Das Element-b € R heipt Linkstnverses
von a € R, wenn ba = 1 ist. Das Element b € R heifit Inverses von a € R, wenn
ab = ba = 1 ist. Ein a € R heipt Einheit, wenn a in R ein Inverses besitzt.

Ist schlieBlich R ein beliebiger Ring und m € 3, so sind noch die nach-
stehenden Vereinbarungen praktisch: Es sei fira e R

0 firm =0
—a —a — ... — a ((—m) Summanden) fiir m < 0.

{ a + a -+ ... + a(m Summanden) firm >0
ma =

Das ist eine duflere Komposition von R mit 3; Verwechslungen mit der
Ringmultiplikation sind nicht zu befiirchten. Es gelten Rechenregeln wie
(my + ma)a = mia + mea, my(mea) = (mimg)a und m(ab) = (ma)b = a(mb)
(my, m € 3, a, b € R). Besitzt R ein Einselement, so kann man ma auch als ein
Produkt des Ringelementes

1+1+4 ...+ 1 (m Summanden) firm > 0
m={ 0 firm =0
—1—1—...—1 ((—m) Summanden) fiirm < 0

mit @ € R ansehen; m kann dann auch Nullteiler sein, wie etwa die Gleichung
34+3=(1+1)3 =2-3 = 0in 3 zeigt.

Aufgabe 4: Der Ring R enthalte wenigstens einen von Null verschiedenen
Nichtnullteiler. Dann ist das Ringaxiom a + b = b + a eine Folge der iibrigen.
Beweis ?

Aufgabe 5: Man beweise die folgenden Aussagen.
a) In Ringen gilt a(by + b2+ ... +by) = aby +aby 4 ... + ab, und
bh+b+ ... +bp)a = bha+bea+t ...+ bya.
b) In einem nullteilerfreien Ring ist ein Produkt ajaz ... @z nur Null, wenn
einer der Faktoren Null ist.
¢) In einem Ring R mit Einselement besitzt ein linker (rechter) Nullteiler kein
Links-(Rechts-)Inverses.
d) Ist 1 € R und besitzt @ € R ein Linksinverses b und ein Rechtsinverses ¢, so
ist b = ¢, und e besitzt kein von b verschiedenes Rechts- oder Linksinverses.
e) Ist 1 € R und besitzt a € R ein Inverses, so ist es eindeutig bestimmt (Be-
zeichnung: a-1).
f) Ist 1 € R und besitzt jedes a € R, a == 0, ein Inverses a1 € R, so ist R null-
teilerfrei.
g) Es sei R ein Ring mit Einselement und E c R die Menge aller Einheiten von
R. Dann ist E eine Gruppe beziiglich der Multiplikation.
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Aufgabe 6: Es sei R ein Ring mit Einselement und a € R. Zeige:
a) Ist b ein Rechtsinverses von a, so ist es auch jedes der Elemente b + (ba—1)a*
k=0,1,2,...).
b) Besitzt a genau ein Rechtsinverses b, so ist b das Inverse von a.
¢) Das Element a besitzt entweder kein Rechtsinverses, genau ein Rechts-
inverses oder unendlich viele Rechtsinverse (vgl. auch Aufgabe 25.1).

Aufgabe 7: Es sei R ein kommutativer Ring. Man beweise den binoms-
schen Lehrsatz

n
(@ +br = > (1:) al (a,b,e R,neM).
v=0

Aufgabe 8: Es sei I ein Integrititsbereich mit Einselement und Prim-
zahlcharakteristik p. Dann gelten die folgenden Rechenregeln:
a) (a+ b =aP +br,(a—b)P = a?—b? (a,bel).
b) (a + b)P* = a?* + bP* (@ —b)P* = a?* — bP* (a,bel;k =0,1,2,...).
) (mtart ... +a)» =a5+a8+ ... +4df (@l

Beweis?

20.3 Wir treffen nun eine vielfach niitzliche

Verabredung: Ist R ein Ring, so bezeichne Ry die Menge der von Null
verschiedenen Ringelemente.
Im folgenden beschiftigen wir uns mit gewissen Ringen, die besonders oft
auftreten.

Definition: Ein Ring R heifit Schiefkirper, wenn Rg eine Gruppe beziiglich
der Multiplikation tst. Ein kommutativer Schiefkérper heifit Korper. Ry heift
dann die multiplikative Gruppe des Schiefkirpers (Kdrpers).

Vielfach werden Schiefkorper auch einfach Korper genannt; ist die Multiplika-
tion kommutativ, spricht man dann von einem kommutativen Korper.

In den uns bekannten Beispielen Q, R, € liegen immer schon Koérper vor. Es
sind ja Q, R, € kommutative Ringe, und nach § 6.2 sind Qo, Re, €y Gruppen
beziiglich der Multiplikation.

Es sei § ein Schiefkérper. Dann enthélt die multiplikative Gruppe Sp ein Eins-
element 1 &= 0, und diese Eins ist Einselement von S. AuBerdem besitzt jedes
ac 8, a 30, ein Inverses a-1 € 8. Deswegen sind Gleichungen der Art ax = b
oder ya =b (a,be S8,a & 0) in § eindeutig 16sbar. Ein Schiefkérper kann
auch keine Nullteiler enthalten; denn aus ab =0 und a + 0 folgt a-1(ab)
=b=0.

Der Nachweis dafiir, daB ein Ring schon ein Schiefkérper ist, wird in den
meijsten Fillen nicht iiber die obige Definition sondern mit Hilfe des folgenden
Satzes gefiihrt.

Satz 3: Ein Ring R = {0} ist genau dann ein Schiefkorper, wenn er ein
Einselement und zu jedem a € R, a == 0, ein Inverses a-! enthdlt.

Beweis: Nach dem bereits Erorterten bleibt zu zeigen, da ein Ring
R = {0} ein Schiefkorper ist, wenn er ein Einselement und zu jedem a € R,

6 Hornfeck, Algebra
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a = 0, ein Inverses enthilt. In diesem Fall gilt aber 1 € Ry; aus a € Ry folgt
a-l € Ry; die Multiplikation in Ry ist assoziativ; schlieBlich Liegt auch das
Produkt ab von Elementen a, b € Ry wieder in Ry, weil ab = 0 den Wider-
spruch a~1(ab) = b = 0 zur Folge hitte. Es ist also Ry eine Gruppe beziiglich
der Multiplikation, was zu zeigen war.

Auch der folgende Satz ist sehr einfach.

Satz 4: Jeder endliche nullteilerfreie Ring R == {0} ist ein Schiefkérper.
Speziell 1st jeder endliche Integrititsbereich ein Korper.

Beweis: Nach Satz 2 ist Ry beziiglich der Ringmultiplikation eine
regulire Halbgruppe. Sie ist ferner endlich, nach Aufgabe 13.1 also eine

Gruppe.

Die Restklassenringe 3, (p Primzahl) sind demnach endliche Kérper. Die
iibrigen Restklassenringe 3, enthalten Nullteiler, sind also keine Kérper.
Spéter (§ 60) wird sich noch zeigen, daB jeder endliche Schiefkérper bereits
ein Korper ist. Die endlichen Koérper wiederum werden wir alle angeben
kénnen (§ 59).

Sind @ und b + 0 Korperelemente, so gilt ab-1 = b-la. An Stelle von ab-1
a

schreibt man dann auch vielfach — oder a:b. Wir zeigen nun, daB in Korpern

b
die bekannten Bruchrechenregeln gelten.
Satz 5: In Korpern gelten die Bruchrechenregeln —g = Z—z (b=+0, c=+0),
a ¢ _ac a ¢ _ad a ¢ _addbe
T T pg B FO A0, Tir =" (hed +0), o T="o" (b0,
d +0)

Beweis: Die erste Regel besagt dasselbe wie ab-1 = ac(be)-1; fiir a = 0
ist das sicher richtig; fiir @ 3= O ist es eine richtige Beziehung in der multipli-
kativen Gruppe des Korpers. Die zweite Regel besagt ab-lcd-! = ac(bd)-1;
wegen der Kommutativitdt der Multiplikation ist das ebenfalls richtig. Ebenso
gilt richtig ab-1(cd-1)-1 = ad(bc)-1. Dieletzte Regelab-1 + cd-1 = (ad+-bc)(bd)-1
schlieBlich bestétigt man, indem man rechter Hand nach dem Distributivgesetz
ausmultipliziert.

In einem Korper addiert, subtrahiert, multipliziert und dividiert man also
wie gewohnt. Diese vier Rechenoperationen bezeichnet man auch als die
rationalen Operationen.

Sind K und L Koérper mit K c L und sind die Verkniipfungen von K und L
in K dieselben, so heiBt K ein Unterkérper von L und L ein Oberkérper
von K.

Viele mathematische Theorien lassen sich in Korpern entwickeln. Dies gilt
beispielsweise fiir die Auflosung linearer Gleichungssysteme. Ebenso sind die
Determinantensitze in Korpern giiltig; als Beispiel sei die CraMERsche
Regel erwahnt. Da Korper nullteilerfreie Ringe mit Einselement sind, be-
sitzen sie eine Charakteristik. Speziell gelten fiir Korper auch die Rechen-
regeln der Aufgaben 7 und 8.
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Wir sehen uns noch einen Korper an, der an das obige Beispiel 4 erinnert.
Beispiel 6. Wie in Beispiel 4 sieht man, daf3
K={@az=a+0b)2,0,beQ}cR

ein kommutativer Unterring von R ist. Wir zeigen nach Satz 3, daB K ein
Kaorper ist. Zunichst gilt 1 € K. Ein Element a + b})/2 aus K schlieBlich, fiir
das a und b nicht beide Null sind, besitzt das Inverse

a—b)2 a b
T (@ +b2)a—0b)2) a —2B2 @ — ol 2 € K

es ist ja der Nenner a? — 2b% &= 0. Analog kann man weitere Zwischenkdorper
K mit Q c K c R angeben.

(@ + 52)

20.4 Fiir das Rechnen in Korpern geben wir noch eine einfache zahlentheore-
tische Anwendung.

Satz 6: Die natiirliche Zahl p == 1 ist dann und nur dann Primzahl, wenn
(p—1! = —1 mod p
st (sogenannie WiLsoNsche Kongruenz).

Beweis: Ist p nicht Primzahl, also p = kI mit natiirlichen Zahlen k < p
und I < p, 8o teilt k =1 den Ausdruck (p — 1)!, also nicht (p — 1)! 4 1;
erst recht kann p dann kein Teiler von (p — 1)! + 1 sein. Es bleibt also das
Bestehen der Kongruenz fiir Primzahlen p zu zeigen. Fiir p = 2 ist sie erfiillt;
es sei also p = 3.

Es sei zunéchst L ein beliebiger Korper. Wir bestimmen alle & € L mit §2 = 1.
Wir haben nach allen £ mit £2—1 = (§ —1)(§ + 1) = 0 zu suchen. Da L
nullteilerfrei ist, folgt £ = 1 oder &£ = —1. Fiir den Fall L = 3,, p = 3, be-
deutet das: Genau die beiden voneinander verschiedenen Elemente K(1) und
K(p—1) aus 38, = {K(0), K(1), K(2), ..., K(p—1)} sind ihre eigenen
Inversen; jedes andere von K(0) verschiedene Element aus 3, fallt nicht mit
seinem Inversen zusammen.

Nun bilden wir in 8, das Produkt

s = K1) K@) K@3) ... K(p—1)

und fassen rechter Hand jeden Faktor mit seinem Inversen zusammen; das
Ergebnis ist s = K(1) K(p —1). Das heifit aber K((p — 1)!) = K(p— 1)
= K(—1) oder (p — 1)! = —1 mod p.

Aufgabe 9: Man zeige das Folgende.
a) Ky = {z:z=a+b0)3,0,0eQ} und K, = {2:2 = a + b5, a,beQ)}
sind nichtisomorphe Unterkorper von R.
b) M = {#: 2 = a + b}2, a, b €Q} c R ist kein Unterkorper von R.

Aufgabe 10: Man beweise die folgenden Aussagen.
a) Jeder Schiefkorper der Charakteristik Null enthélt einen Unterkorper iso-



84 Ringe

morph Q, und Q enthilt keinen echten Unterkérper. (Deshalb heifit  auch
der kleinste oder der Primkorper der Charakteristik Null.)

b) Jeder Schiefkorper der Primzahlcharakteristik p enthilt einen Unterkérper
isomorph 3,, und 3, enthélt keinen echten Unterkorper. (Deshalb heifit 3,
auch der kleinste oder der Primkorper der Charakteristik p.)

Aufgabe 11: Es gibt genau einen Koérper K mit |[K| = 4. In ihm sind
die Gleichungen 22 = z + 1 losbar. Beweis ?

Aufgabe 12: Der Unterkorper K = {z:z = a + b2, a,beQ} von R
besitzt seinerseits nur die Unterkorper Q und K. Beweis ?

Aufgabe 13: Man lose das Kongruenzsystem

r+ y+ z= 2(7)
22 — 3y + 2= —1(7)
—x + 2y +32z2= 2.

Man 16se dasselbe System modulo 8. Ist es auch modulo 17 losbar ?

Aufgabe 14: Es sei S ein Schiefkérper und Z c 8 die Menge aller der-
jenigen Elemente z € S8, die mit jedem s €S vertauschbar sind: sz = zs fir
jedes s € 8. Dieses sogenannte Zentrum Z des Schiefkdrpers S ist ein Korper.
Beweis ?

§ 21 Homomorphe Bilder von Ringen

21.1 Es sei R; ein Ring mit Elementen a, b, ¢, ... und Ry eine algebraische
Struktur mit zwei Verkniipfungen, die ebenfalls additiv bzw. multiplikativ
geschrieben seien. In § 19 ist nun definiert, wann Rj ein homomorphes Bild
von R; genannt wird. Wir formulieren es noch einmal: Die algebraische
Struktur Ry heift homomorphes Bild des Ringes R;, wenn eine surjektive
relationstreue Abbildung f: Ry — Rz existiert. Die Relationstreue von f be-
steht dabei aus den beiden Forderungen

fla +b) = f(a) + f(),
f(ab) = f(a)f(b)-

Wir schreiben in diesem Fall R; 5 R; und nennen f einen Ringhomomorphis-
mus von R; auf Rs.
In Analogie zu Satz 12.1 bekommen wir zunéchst den

Satz 1: Das homomorphe Bild Ry = f(R1) eines Ringes R ist ein Ring.
Dabet geht das Nullelement von Ry in das Nullelement von Ry diber. Besitzt R
ein Einselement 1 und ist f(R1) nicht der Nullring, so ist f(1) Einselement von
Rs. Ist Ry kommutativ, so ist es auch Rg.

Beweis: Beziiglich der Addition ist Ry nach Satz 12.1 eine abelsche
Gruppe, und f(0) ist das Nullelement von Rz. Fiir die ersten beiden Behaup-
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tungen bleibt also zu zeigen, dafl sich das Assoziativgesetz der Multiplikation
und die Distributivgesetze von Ry auf Ry iibertragen. Das sieht man, da sich
jedes Element von Rj in der Gestalt f(r) mit einem r € Ry schreiben 148t, wie
im Beispiel 5 von § 20; hier schreibt man nur f statt K. Aus 1 Ry folgt
f(Df(r) = felr) = f(r) und [(r)f(1) = f(rl) = f(r), und das ist die dritte Be-
hauptung. Aus der Kommutativitit von R; folgt schlieBlich noch
@)y = f(ab) = f(ba) = f(b)f(a), also die Kommutativitit von Rs.

Als Beispiel betrachte man die Ringe 38 und 3, (§ 20, Beispiel 5). Die durch
fim) = K(m) erklarte Abbildung f: 3 > 3, definiert einen Ringhomomorphis-
mus. Dieses Beispiel zeigt auch, dafl das homomorphe Bild eines nullteiler-
freien Ringes Nullteiler besitzen kann; man wihle etwa n = 6.

21.2 Niitzlich ist fir das Folgende die
Definition: Ist R ein Ring, re Rund T c R, so sei

r+ T {ere=r+ttel}
T {:x=rt teT}

entsprechend seien T - r und T'r erkldrt.

Der nun eingefithrte Begriff des Ideals ist in der Algebra von auBerordent-
licher Bedeutung.

Definition: Eine Teilmenge o des Ringes R heift ein Ideal, wenn gilt:
(1) Es ist a eine Gruppe beziiglich der Addition.
(2) Fiir jedes r € R ist ra Cc a und ar C a.

Da in der Forderung (2) speziell r € a gewéahlt werden kann, ist ein Ideal a
gewiB ein Unterring von R; dariiber hinaus liegen die Produkte ar und ra
sogar schon dann immer in «, wenn nur einer der Faktoren a aus a stammt.
Wir bezeichnen Ideale meist mit kleinen deutschen Buchstaben.

Beispiel 1. Jeder Ring R besitzt die Ideale {0} und R.

Beispiel 2. Die simtlichen Ideale des Ringes 3 sind unter den sidmtlichen
additiven Untergruppen {0} und 23 (» = 1,2,3, ...) von 3 zu finden (vgl.
§ 12.2). Alle diese Untergruppen sind aber, wie unmittelbar zu sehen ist,
bereits Ideale von 3. Alle Ideale von 3 sind also {0} und 28 (» = 1,2,3, ...).

Beispiel 3. Ein Schiefkorper S besitzt nur die Ideale {0} und 8. Ist nimlich
a c 8 ein von {0} verschiedenes Ideal, so gibt es ein a€ a, @ 3= 0, und in S
existiert das Inverse a~! von a. Nach (2) wird also a-la = 1 € a und nun auch
s = sl € q fiir jedes s € S.

Unser Ziel ist die Bestimmung aller homomorphen Bilder eines vorgelegten
Ringes R. Der folgende Satz schafft die Moglichkeit einer Anwendung von
Satz 19.2 (vgl. auch Satz 12.4).

Satz 2: Es sei R ein Ring und ,,=* eine Aquivalenzrelation auf R. Diese
Agquivalenzrelation ist genau dann eine Kongruenzrelation, wenn die Aquiva-
lenzklassen die Nebenklassen r + a eines Ideals a ¢ R sind. Dabet ist a die Menge
aller ac R mita = 0.
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Beweis:

a) Ist ,,=‘ eine Kongruenzrelation auf R, so wird durch sie nach Satz 12.4
eine Partition auf R definiert, die aus den Nebenklassen r 4+ a eines Normal-
teilers, also einer Untergruppe a der additiven Gruppe von R besteht. Dabei
besteht a aus allen @ € R mit @ = 0. Wir haben zu zeigen: Ausac ¢ und r € R
folgt ra € a und ar € a. Dazu multipliziere man die Kongruenzen a = 0 und
r = r. E8 wird dann ra = 0 und ar = 0, also ra € a und ar € a.

b) Die Nebenklassen r + a einer additiven Untergruppe a von R definieren
eine Partition, also eine Aquivalenzrelation ,,=* auf R; erst recht gilt dies,
falls a sogar ein Ideal ist. Nach Satz 8.2 lautet die Aquivalenzrelation:

=a < a—acaq.

Esseinuna =a’'und b = b'. Zu zeigenist a + b = a’ 4 b’ und ab = a'd’.
Mit FElementen oyea lauten die Voraussetzungen ¢ = a 4+ «; und
b = b + ag. Addition liefert @' +b = @ + b + ag, alsoa +b = a’ 4 b'.
Multiplikation ergibt a’d’ = ab + aaxg + b + ajaz = ab + a4, also
ab = a'b’; dabei wurden (2) und (1) benutzt.

Eine Kongruenzrelation ,,=* auf einem Ring R ist also durch die Angabe des
Ideals a c R aller Ringelemente r mit = 0 eindeutig bestimmt. Man schreibt
deshalb @ = @’ mod a, und das bedeutet a’ —a € a. Nur im Falle R =3
haben sich an Stelle von ¢ = o’ mod »3 die bereits in § 20.1 eingefiihrten
kiirzeren Schreibweisen eingebiirgert.
Es sei R ein Ring und g ein Ideal aus R. Wir denken an die additive Struktur
von R und bezeichnen die Menge {a,r + 4,8 + @, ...} der voneinander ver-
schiedenen unter den Nebenklassen von a wie in § 12 mit R/a. Nach Satz 2
entspricht R/a einer Aufteilung von R in Kongruenzklassen, und nach Satz
19.2 werden durch
(r4+a) + (s+0a) = (r+9) + o
(rta) + (s+4a)=1rs+ a

eine Addition und eine Multiplikation auf R/a erklirt; die Addition ist be-
reits aus § 12 bekannt. Da R/a aus den verschiedenen Kongruenzklassen modu-
lo a besteht, ist die algebraische Struktur R/a auf Grund von Satz 19.2 sogar
ein homomorphes Bild des Ringes R; der zugehérige Homomorphismus ist
definiert durch f(r) = r 4+ a. Nach Satz 1 ist also R/a ein Ring. Dies recht-
fertigt die

Definition: st a ein Ideal des Ringes R, so heifit Rla der Restklassenring
von R nach a.

Man rechnet in R/a wie in R und behandelt dabei Elemente aus a wie Null.
Auch bei der folgenden Definition denken wir in erster Linie an die additive
Struktur von R.

Definition: Unter dem Kern ¥ eines Ringhomomorphismus f von R auf R*
versteht man die Menge aller r € R mit f(r) = 0.

In Analogie zu Satz 12.2 steht nun der folgende Homomorphiesalz fir Ringe;
er besagt in der Hauptsache, daB mit den Restklassenringen E/a alle homomor-
phen Bilder von R gefunden sind.
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Satz 3: Es sei R ein Ring. Dann gelten die folgenden Aussagen.
a) Ist a ein Ideal von R, so ist der Restklassenring Rfa ein homomorphes Bild
von R. Der vermittelnde Homomorphismus | lautet f(r) = r + a.
b) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern ¥, so ist £ ein
Ideal von R.
c) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern ¥, so gilt
R* ~ R/[?. Der Isomorphismus ¢: R[t — R* lautet p(r + ¥) = f(r).
d) Ein Ringhomomorphismus f von R auf R* ist genau dann ein Isomorphismus,
wenn der Kern von f nur aus der Null allein besteht.

Beweis:
a) Das wurde bereits gezeigt.
b) Nach Satz 12.2 ist ? eine additive Untergruppe von R. Aus ke fund re R
folgt ferner f(rk) = f(r)f(k) =0, also rke¥l, und f(kr) = f(k)f(r) = 0, also
kretf
¢) Nach Satz2 und Satz 19.2 ist R* einem Restklassenring von Risomorph. Wir
bezeichnen ihn mit Rja. Der vermittelnde Isomorphismus ¢: R/a — B* war
o(r + a) = f(r). Dabei besteht a aus allen denjenigen Elementen k€ R, fiir
die f(k) = f(0) die Null von R* ist: ¢ = L.
d) Die Abbildung f ist genau dann bijektiv, wenn ihr Kern {0} ist.

Beispiel 1. Ein beliobiger Ring R hat R/{0} als isomorphes und den Nullring
R/R als homomorphes Bild.

Beispiel 2. Der Ring 3 hat 8/{0} als isomorphes Bild. Die samtlichen weiteren
homomorphen Bilder 3/»3 sind die Restklassenringe 3y.

Beispiel 3. Die einzigen homomorphen Bilder eines Schiefkérpers 8 sind
8/{0}, also S selbst, und der Nullring 8/8.

21.3 Wir beschlieBen unsere Uberlegungen mit dem Analogon zu Satz 14.2
fir Ringhomomorphismen; an Stelle der Normalteiler stehen jetzt die Ideale.

Satz 4: Es set f: R — R* ein Ringhomomorphismus von R auf R* mit dem
Kern 8, ferner M die Menge aller Ideale a von R mit  c a c R und weiterhin M*
die Menge aller Ideale a* von R*. Dann definiert p(a) = f(a) eine bijektive Ab-
bildung ¢: M — M*, und es ist p~1(a*) = f-1(a*).

Beweis: Betrachtet man zundchst f als einen Homomorphismus der
additiven Gruppen von R und R*, so bleibt iiber Satz 14.1 hinaus nur zu
zeigen, daB mit a c R auch f(a) und mit a* c R* auch f-1(a*) ein Ideal ist. Es
sei also zundchst a ein Ideal von R. Da sich jedes r* € R* in der Gestalt f(r)
mit einem r e R schreiben 1a8t, wird »*f(a) = f(r){(a) = f(ra) c {{a) und
flayr* = f(a)f(r) = f(ar) c f(a); also ist die additive Untergruppe f(a) von
R* sogar ein Ideal. Ist umgekehrt a* ein Ideal von R* und r € R, so werden
rf~1(a*) und f-1(a*)r durch f in a* abgebildet; also gilt rf-1(a*) c f~1(a*) und
f1(a*)r c f~1(a*), und auch die additive Untergruppe f~1(a*) von R ist sogar ein
Ideal.
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Aufgabe 1: Man bestimme alle homomorphen Bilder des Restklassen-
ringes 3,.
Aufgabe 2: Es seien F und a Ideale des Ringes R mit f c a c R. Dann
gilt

Beweis ?

Rja =~ (B[B)/(a[f).

§ 22 Einbettung von Integritdtsbereichen in Kérper

22,1 Die folgenden Uberlegungen stehen in deutlicher Analogie zu denen in
§13. Es sei ein Ring R gegeben. Wir fragen: Wann gibt es einen Schiefkorper
8 > R? Damit das moglich ist, muB sicher R nullteilerfrei sein, weil S keine
Nullteiler enthélt. Wieder kennt man Beispiele nichtkommutativer nullteiler-
freier Ringe, die eine Einbettung in Schiefkérper nicht gestatten; aber es gilt
der wichtige

Satz 1: Jeder Integrititsbereich I lafit sich in einen eindeutig bestimmien
kleinsten Oberkdrper Q, den Quotientenkorper von I, einbetten. Das heift: Zu
etnem vorgegebenen Integrititsbereich I gibt es einen Korper @ mit folgenden
Eigenschaften.

(1) o1

(2) Ist K ein Korper, der I umfapt, K >1,s0gilt K >Q > 1.

(3) Ist @ eitn Korper, der an Stelle von Q die Bedingungen (1) und (2) erfiillt,
sogilt Q' = Q.

Beweis: Angenommen, die Existenz eines Korpers @ mit den Eigen-
schaften (1) und (2) sei bereits bewiesen. Dann gilt gewil die Eindeutigkeits-
aussage (3). Denn fiir K = @’ bekommt man Q' > @, und analog wird umge-
kehrt @ > @', insgesamt also @' = Q. Zu zeigen bleibt also die Existenz eines
Korpers @ mit den Eigenschaften (1) und (2).

Wieder nehmen wir fiir den Augenblick an, es gdbe einen Korper K 5 I; dann
enthilt er speziell die Teilmenge

a
b
Mit den Bruchrechenregeln von Satz 20.5 priift man nach, daBl Ug ein Unter-
korper von K ist. Ist ferner U ein Unterkérper von K, der I umfaBt, so liegen
in U auch die Losungen der Gleichungen yb = a,a,bel, b & 0, und das
heifit U o Ug. In K ist also Ug der kleinste Unterkorper, der I umfaBt. Wiren
wir von einem anderen Korper K* 5 I ausgegangen und héitten entsprechend
Ug» gebildet, so brauchten wir wegen Ug ~ Uk« diese beiden Korper nicht
als verschieden anzusehen. Also ist Ug der zu konstruierende Korper @.
Unsere Konstruktion muf sich an den in Uk giiltigen Rechenregeln

Uk = {yy=—,a,becl,bs+0}>1.

a c
(4) "5‘ = E < ad = bc,
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a ¢ _ad+bc

(8) 5T d T Ted
a [ ac
© bd T b

orientieren (bd = 0).
Nun bilden wir das cartesische Produkt M = I x Iy & £ aller Paare (a, b)

mit a, b € I, b == 0, stellen uns unter (a, b) den Bruch % vor und definieren
4’) (@,b) ~ (c,d) < ad = be.

Das ist eine Aquivalenzrelation auf M ; der Nachweis erfolgt wie in Aufgabe
5.2 und benutzt die Kommutativitit und in Gestalt von Satz 20.2 die Null-
teilerfreiheit von I. Die Addition und die Multiplikation auf M werden durch

(5") (@, b) + (¢, d) = (ad + be, bd),
(6') (@, b) - (¢, d) = (ac, bd)

erklart; wegen b &= 0, d 3 0 und der Nullteilerfreiheit von I ist, wie es sein
muB, bd =+ 0. Die Aquivalenzrelation auf M wird nun eine Kongruenzrelation:
Aus (a, b) ~ (a’, b’} und (¢, d) ~ (¢, d"), also ab’=ba’ und cd’ =dc’, folgt, wie
man leicht bestétigt, (ad + bc)b’'d’ = bd(a’'d’ + b'¢’) und ach’'d’ = bda'c’,
also (a,b) + (¢c,d) ~ (a',b) + (¢',d') und (a, b) - (c,d) ~ (a’, b") - (¢/, d').

Es sei A die Menge der Korigruenzklassen von M und [a, b} die Klasse von
(a, b). Nach Satz 19.3 werden durch [a,bd] + [¢,d] = [ad + bc, bd] und
[@, b] - [¢,d] = [ac, bd] eine Addition und eine Multiplikation auf 4 erklart.
Wir wollen zeigen, daB A ein Korper ist. Zur Vereinfachung der dazu notigen
Rechnungen bemerken wir, da fir ¢ 4 0 gilt: [a, b] = [ac, bc]; es ist ja
(a, b) ~ (ac,bc). Man darf also in den Klassensymbolen erweitern oder
kiirzen. Ferner gibt es wenigstens ein he I, b & 0; dieses Element A sei im
folgenden fest gewéhlt. Bei der Addition dreier Klassen kann man wegen der
Méoglichkeit des Erweiterns annehmen, die zweiten Komponenten seien alle
dieselben, und bekommt so das Assoziativgesetz

([a’d] + [bad]) + [C,d] = [a’_l'b’ d] + [c7d] = [(a+b) +ec, d]
=[a+(®+e¢),d] = [a,d]+ [b+c d] = [a,d] + ([b,d] + [c, d]).

Die Addition ist auch kommutativ, [0, /] ist Nullelement und [—a, b] additives
Inverses von [a, b]. Die Multiplikation ist ersichtlich assoziativ und kommutativ.
Es gilt das Distributivgesetz

[a,d)[b,d] + [¢,d]) = [a,d]-[b+ ¢, d] = [ab + ac, d?]
= [ab: d2] + [ac’ dZ] = [a7 d] * [b’ d] + [a, d] - [e, d]

Einselement ist [k,kled. Es gilt [a, b] = [0, k] genau dann, wenn a = 0 ist;
eine von Null verschiedene Klasse [a, b] wird also durch a = 0 gekennzeichnet,
und sie besitzt dann das Inverse [b, a] € 4.
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In dem Korper A betrachten wir die Teilmenge 7' aller Klassen der Gestalt
[ah, k), a € I. Die Summe [ah, k] + [bh, k] = [(@ + b)k, k] und das Produkt
[ah, k] - [bk, k] = [abh, k] zweier Klassen aus 7' liegen wieder in 7. Die durch
@(@) = [ah, k] definierte Abbildung ¢: I - T erweist sich als bijektiv, und
die Gleichungen g(a@ + b) = [(a + b)h, k] = [ah, k] + [bk, B] = ¢(a) + ¢(b)
und @(a@b) = [abh,h] = [ah, k] [bh, k] = @(a)p(db) zeigen ihre Relations-
trene. Also gilt 7' ~ 1.

Wir ersetzen die Teilstruktur 7’ von A durch 7 und bekommen auf diese Weise
einen zu A isomorphen Kérper @ o I. Der Korper A besteht aus allen Klassen
[a, b] = [ah, k] - [k, bh] = [ah, k] - [bk, k]-1, also Q aus allen Elementen y

der Form ab-1 = %, b 3= 0. Es ist also @ der zu konstruierende Kérper, und

Satz 1 ist bewiesen.

22.2 In § 13 wurde aus der additiven Struktur N die additive Gruppe von 3
konstruiert. Auf der Teilmenge R c 3 ist nun nach Satz 2.1 auch eine Multi-
plikation erklart. Nach den Regeln von Satz 20.1 besteht hochstens eine Mog-
lichkeit, diese Multiplikation derart auf ganz 3 auszudehnen, da 3 ein Ring
wird. Umgekehrt: Definiert man die Multiplikation gemaB Satz 20.1 auf ganz
3, 80 kann man das Erfiilltsein des Assoziativ-, Kommutativ- und Distributiv-
gesetzes dieser zweiten Verkniipfung von 3 mit Hilfe von Satz 2.1 durch wenige
Fallunterscheidungen nachpriiffen. Damit ist der kommutative Ring 3 aus 0
konstruiert. Er enthilt keine Nullteiler; denn gidbe es von Null verschiedene
a, b mit ab = 0 in 3, so auch in N, was nicht der Fall ist. Nach Satz 1 besitzt
3 also einen Quotientenkérper; wir nennen ihn  und haben damit auch den
Korper £ der rationalen Zahlen aus 9t gewonnen.

Aufgabe 1: Es sei R ein kommutativer Ring und 8 ¢ R die Menge der
von Null verschiedenen Nichtnullteiler von R. Ist § & &, so 1dBt sich R in

den Quotientenring Rg aller %, re R, s e 8, einbetten; es gilt 1 € Rs. Beweis ?

Aufgabe 2: Es seien I} und I5 isomorphe Integrititsbereiche mit den
Quotientenkérpern'@y > I; und Qg > Iz. Man zeige, daB sich der Isomorphismus
f: I1 > I3 von I auf Iz zu einem Isomorphismus ¢: @1 - @2 von ¢ auf Q.
fortsetzen 1aBt. (Das heiBt: Es gibt einen Isomorphismus ¢ von @ auf ¢
mit ¢(a) = f(a) fir jedes a € I.)

§ 23 Der komplexe Zahlkérper €

23.1 In %N ist nach § 2 eine Addition erkléirt; aber die Gleichung @ + z = b
mit a, beN braucht keine Losung z €N zu haben. In § 13 haben wir die
fehlenden Loésungen hinzukonstruiert und dadurch die additive Gruppe von
3 gewonnen. Die ebenfalls nach § 2 auf N ¢ 3 zusitzlich erklarte Multipli-
kation lieB sich, wie wir gerade sahen, auf ganz 3 fortsetzen derart, daf 3 ein
Ring wird. Aber die Gleichung ax = b, a & 0, mit a, b € 3 war im allgemeinen
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in 3 nicht lésbar. In § 22 haben wir wiederum diese Losungen hinzukonstruiert
und £ erhalten.

Ist nun ein Korper K vorgelegt, so kann man fragen, ob in ihm die Gleichung
2% 4+ 1 = O losbar ist, ob es also ein Element ¢ € K mit 2 + 1 = 0 gibt. Ist
es vorhanden, so erfiillen wegen der Nullteilerfreiheit von K genau die Elemente
-+t die Gleichung 22 + 1 = 22 — 32 = (x + ¢)(x — ¢} = 0. Ist es nicht vor-
handen, so konstruieren wir wiederum einen eindeutig bestimmten minimalen
Oberkérper E o K, in dem die Gleichung 22 + 1 = 0 losbar wird.

Satz 1: Jeder Korper K lipt sich in einen eindeutig bestimmien kleinsten
Oberkiorper B > K einbelten, in dem die Gleichung 22 - 1 = 0 lésbar ist. Das
heifit: Zu etnem vorgegebenen Korper K gibt es einen Kirper B mit folgenden
Eigenschaften:

(I) E> K.

(2) Die Gleichung 22 + 1 = 0 besitzt in E eine Lisung.

(3) Ist L 5> K ein Korper, in dem die Gleichung 22 + 1 = 0 lésbar ist, so gilt
L>E>K.

(4) Ist E' ein Korper, der an Stelle von E die Bedingungen (1), (2), (3) erfillt,
sogit B' = K.

Beweis: Die Eindeutigkeitsaussage (4) ergibt sich wie in den Beweisen
der Sétze 13.1 und 22.1. Zu zeigen bleibt also die Existenz eines Korpers £ mit
den Eigenschaften (1), (2), (3). Ist die Gleichung 22 4- 1 = 0 schon in K 16s-
bar, so ist £ = K ; wir nehmen daher an, dal —1 in K kein Quadrat ist.

Angenommen, es gibt einen Korper L 5 K mit einer Losung ¢ € L der Gleichung
22 + 1 = 0; dann enthilt L die Teilmenge

Up=f{z:iz=a 4+ bi,a,bec K} oK,
und man priift leicht nach, da Uy ein Unterkorper von L ist. Speziell liegen
wegen
(5) @+ &) + (¢ + di) = (@ +¢) + (b + d,
(6) (@ + i) - (¢ + di) = (ac —bd) + (ad + be)

Summe und Produkt zweier Elemente aus Uy, wieder in U, und das Inverse
von a + b 5 0 wird, wie die Probe bestitigt, das Element

a

__° ieUr;
a® £ b a? + b2 L

dabei ist der Nenner a2 + b2 nicht Null, weil andernfalls a® = —b2 und b & 0,

2
also doch —1 = (%) € K in K Quadrat wire im Widerspruch zur Annahme.

Ferner gilt

(7) at+b =c+di < a=cund b=d;
a—¢
d—b

wire nimlich @ 4 b¢ = ¢ + df und b =+ d, so wiirde 7 = € K folgen, was
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gerade nicht der Fall war. Ist U ein Unterkorper von L, der K und ¢ umfaBt,
so gilt gewiB U > Uy. In L ist also Uy, der kleinste Korper mit Uz > K, in dem
die Gleichung 22 + 1 = 0 16sbar ist.

Hatten wir einen anderen Korper L* 5 K mit einer Losung ¢* € L* der Glei-
chung 22 + 1 = 0 zugrundegelegt, so wiirde

Up~Uts = {2¥:2* = a + bi*,a,be K}

gelten vermoge f(a + bi) = a + bi*. Also ist U der zu konstruierende Korper
E. Wieder ist auf Grund der Beziehungen (5), (6), (7) klar, wie wir in unserer
folgenden Konstruktion vorzugehen haben.

Wir bilden das cartesische Produkt M = K x K aller (a,b) mit a,be K;
intuitiv bedeute (a, b) die Zahl @ + bi. Unsere Voriiberlegung (7) hinsichtlich
der Gleichheit zweier solcher Zahlen zeigt, daB wir eine Aquivalenzrelation auf
M nicht einzufiihren haben. Wir definieren

(5 (@,8) + (c,d) = (@ + ¢, b+ d),
(6" (@, b)* (c,d) = (ac — bd, ad + be)

und bestdtigen in kurzen Rechnungen die Ringaxiome. Die Multiplikation ist
kommutativ, (1, 0) ist Einselement, und jedes (a, b) == (0, 0) hat in M ein
Inverses. Also ist M ein Korper. Jedes (@, b) € M liBt sich in der Gestalt
(a, b) = (a, 0) + (0: b) oder

(8) (a’ b) = (a’ 0) + (b’ 0) ’ (Ov 1)

schreiben; dabei ist (0, 1)2 = (—1, 0).
Nun kommen die Anderungen der Schreibweise. Die Teilstruktur

T = {(a,0): ac K}cM

ist isomorph K; man bilde dazu einfach (a, 0) auf a ab. In M ersetzen wir T
durch K und schreiben ¢ fiir (0, 1); dann entsteht ein Erweiterungskérper
E > K, dessen Elemente nach (8) die Gestalt @ 4- bt mit @, b € K und 12 = —1
haben. Damit ist der gesuchte Korper E konstruiert und Satz 1 bewiesen.

23.2 Aus K = X entsteht auf diese Weise der komplexe Zahlkérper £ = €.
Damit haben wir, von der Struktur 9 ausgehend, abgesehen von R alle Rechen-
bereiche 3,R, R, € konstruiert und ihre Widerspruchsfreiheit auf die von
zuriickgefiihrt. Die Konstruktion von X holen wir in § 32 nach.

23.3 Ist K ein Korper, in dem ein ¢ € K existiert, das die Gleichung 22 + 1 = 0
lost, so sind, wie wir bereits wissen, ¢ und —¢ die beiden einzigen Losungen von
22 4- 1 = 0. Sie fallen genau dann zusammen, ¢ = —¢, wenn (1 + 1yi = 0,
also y(K) = 2 ist, und in diesem Fall ist einfach ¢ = 1.

Von zahlentheoretischem Interesse ist die Frage, in welchen Primkorpern 3,
die Gleichung 22 4+ 1 = 0 16sbar ist. Durch Probieren stellt man beispielsweise
fest, dafl 22 4 1 = 0 in 3, lésbar, in 33 dagegen unlésbar ist. Die Antwort
gibt der
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Satz 2: Es sei p eine Primzahl. Genau dann ist die Gleichung 22 -1 = 0
tn 3p losbar, wenn p = 2 oder p = 1 (4) ist. Oder: Genau dann ist die Kongruenz
22 = —1(p) tn ganzen Zahlen x losbar, wenn p = 2 oder p eine Primzahl der
Gestalt 4n - 1 ist.

Beweis: Der Fall p = 2 ist bereits erledigt. Wir haben weiter zu zeigen,
daB die Gleichung 22 4-1 = O fiir eine Primzahl p der Form 4n + 1 in 8,
losbar, fiir eine Primzahl p der Form 4n + 3 dagegen in 3, unlosbar ist.
a) Es sei p = 4n 4 1. Wir sind fertig, wenn wir eine natiirliche Zahl m mit
m2 = —I1(p) angeben konnen. Nach Satz 20.6 gilt nun (p — 1)! = —1I mod p.
Hierin wird modulo p

(p—1)! = 1-2-+(2n)2n + 1)(2n + 2) - - - (4n)
=1-2---2n)2n+1—p)2n +2—1p)---(4n— D)
=12 2n)(—2n)(—2n—1))---(—1)
= (2n)!(2n)!.

Wir kénnen also m = (2n)! wahlen.
b) Es sei p = 4n + 3. Wir nehmen an, es gibe ein a € 3, mit a2 = —1, und
potenzieren mit der ungeraden Zahl % Das liefert a?-1 = —1. Sicher ist a

nicht Null, liegt demnach in der multiplikativen Gruppe von 3,, die aus
p — 1 Elementen besteht. Anwendung von Satz 9.4 ergibt also a?-1 = 1. Aus
beidem zusammen folgt 1 = —1, was wegen x(3p) = 3 nicht moglich ist.

Aufgabe 1: Es sei M die Menge aller Matrizen der Gestalt

(5) wsem

auf M seien die Matrizenaddition und die Matrizenmultiplikation eingefiihrt.
Man zeige M ~ €.

Aufgabe 2: Es sei K ein Korper, in dem kein Element « mit a2 = 2
existiert. Man konstruiere einen minimalen Oberkérper E > K, der ein solches
Element enthilt.

§ 24 Endomorphismenringe abelscher Gruppen

Es sei G@ = {a,b,¢, ...} eine additiv geschriebene abelsche Gruppe und
R = {a,f,y, ...} die Menge aller Endomorphismen von @, also die Menge
aller relationstreuen Abbildungen von G in sich (vgl. § 19). Da die identische
Abbildung ¢ in R liegt, ist R nicht leer. Mit «, f € R ist wegen ofi(a + b)
= a(f(a) + B(d)) = af(a) + «B(b) auch afcR, und diese Multiplikation ist
assoziativ nach Satz 3.1; sie besitzt das Einselement &.

Wir fithren nun auf R noch eine Addition ein. Dies geschieht, wie es fiir Funktio-
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nen iblich ist, durch die Festsetzung (¢ + f)}a) = a«(a) + f(a). Wir miissen
nur nachpriifen, daB mit «, § € R auch « 4+ § ein Endomorphismus ist:

(x+ Bla + b) = «la + b) + fla 4 b) = «la) + «(b) + fla) + B(b)
= «(a) + f(a) + «(b) + B(b) = (x + B)(@) + (x + B)®).

Hierbei haben wir die Kommutativitit von G benutzt. Aus der Assoziativitit
und der Kommutativitdt der Addition in @ folgen dieselben Eigenschaften fiir
die Addition in R. Nullelement in R ist der Endomorphismus o, der jedes g € @
auf die Null abbildet: Die fiir jedes « € R und jedes a € G giiltige Bezichung
(x + o)(@) = a(a) + 0 = afa) bedeutet ja a« + 0 = o fiir jedes x € R. Ist
schlieBlich « € R, so definieren wir —« € R durch (—a)(@) = —a(a); dabei ist
—o wegen (—a)(a@ + b) = —(x(a) + a(b)) = —a(b) — (@) = —ofa) — «(b)
= (—a){@) + (—a)(b) wieder ein Endomorphismus und a + (—a«) = o.

Um zu zeigen, daB R ein Ring ist, weisen wir noch die Distributivgesetze nach.
Es ist «(8 + )(@) = «(B(a) + y(a)) = aB(a) + ay(a) = (=B + ay)(a) fir jedes
a€@, also «f +y) = «f + ay, und entsprechend erbdlt man (8 + y)a
= fa - ya. Damit haben wir den

Satz 1: Die Menge R aller Endomorphismen einer (additiv geschricbenen)
abelschen Gruppe G ist (beziiglich der oben eingefiihrten Verkniipfungen) ein Ring,
der sogenannte Endomorphismenring von G.

Allgemeiner nennt man jeden Ring von Endomorphismen einen Endomorphis-
menring. Die Endomorphismenringe haben fiir die Theorie der Ringe eine
dhnliche Bedeutung wie die Transformationsgruppen fiir die Gruppentheorie.
Es ist nicht schwer, in Analogie zu Satz 7.2 zu zeigen, dall jeder Ring einem
Endomorphismenring isomorph ist. Man benutzt dabei das Ergebnis der

Aufgabe 1: Jeder Ring R 1iBt sich in einen Ring E mit Einselement ein-
betten. Beweis ?

§ 25 Polynomringe

25.1 Unter einem Polynom versteht man in der Algebra formal zwar dasselbe,
inhaltlich aber etwas anderes als in der Analysis. Das dndert indes nichts daran,
daB die spiter von uns gewonnenen Satze doch wieder eine bekannte Gestalt
annehmen. Wir beginnen mit der

Definition: Es seien R und B* > R kommutative Ringe mit demselben Eins-
element 1 € R. Es sei oo € R*. Dann heifst ein Ausdruck der Gestall

fla) = % Gy’ = Qo + apga® 14 ... +apeR* (aye R, a® =pfl)
r=0

ein Polynom in « mit Koeffizienten aus R. Die Menge aller Polynome in o mit
Koeffizienten aus R wird mit R[o] bezeichnet.

Hierzu machen wir zwei Bemerkungen. Erstens ist es in Anlehnung an die
Gepflogenheiten in der Analysis auch in der Algebra iiblich, etwa f(«) fiir ein
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Polynom in « zu schreiben, ohne daBl man damit f als ein Symbol fiir eine Ab-
bildung ansieht. Zweitens ist die zu Beginn der Definition ausgesprochene
Voraussetzung, etwas umstandlicher formuliert, die folgende: Es seien R und
R* 5 R kommutative Ringe mit Einselementen ¢ € R* und 1 € R, und es gelte
¢ = 1. Diese letzte Forderung ist, wie man durch Beispiele zeigen kann, nicht
von selbst erfiillt (vgl. hierzu die Losung von Aufgabe 24.1). Sollten aber R*
und R sogar Integrititsbereiche sein, so ist e = 1 beweisbar: Es ist ja 1(¢ — 1)
= le—1-1=1—1 = 0, wegen der Nullteilerfreiheit von R* also ¢ = 1.
Speziell bedeutet das: Ist L ein Oberkorper von K, 8o ist das Einselement von K
auch die Eins von L. Da nun 1 € R auch Eins von R* sein soll, kann man, und
das ist der Sinn dieser Forderung, in einem Polynom f(«) Koeffizienten 1 wie
gewohnt weglassen.

Es ist klar, daB unter den genannten Voraussetzungen R[«] ein kommutativer
Unterring von R* mit dem Einselement 1 ist. Es gilt ja

n m M
(1)  Say® + Sbhyat = et mits; = ay -+ byund M = Max(n, m),
0 0 [}

n m ntm N
2 ga,a" . %:bu“" = gpza‘ mit p; = aeby + a1ba1 + ... + asbo;

dabei haben wir @y, = b, = 0 gesetzt fiir» > » und ¢ > m. Das additive Inverse
—f(e) eines Polynoms f(a)e R[«] bekommt man, indem man alle Koeffizienten
von f(«) mit einem Minuszeichen versieht, und auch die Null ist ein Polynom.

Beispiel 1. Man withle R = 3, R* = R und « = |/2. Der Ring 3[]/2] ist dann,
da die geraden Potenzen von /2 Elemente aus 3 und die ungeraden Potenzen
Elemente der Gestalt m}/2, m € 3, liefern, der Ring aus § 20.1, Beispiel 4. Zwei
Polynome in « = J/2 mit Koeffizienten aus 3 konnen also dieselben sein, auch
wenn sie nicht koeffizientenweise tibereinstimmen.

Beispiel 2. Wihlen wir R = Q, R* = R und « = }/2, so bekommen wir den
Ring Q[}/2], der, wie wir in § 20.3, Beispiel 6, sahen, sogar ein Korper ist.

Beispiel 3. Es ist R[¢] = €.

Beispiel 4. Der Ring Q[}2] besteht genau aus allen reellen Zahlen der
Gestalt @ + b}2 + ¢(}2)2 mit @, b, ceQ.

25.2 Wir gehen wieder von einem kommutativen Ring R mit 1 € R aus und
stellen die Frage: Gibt es einen kommutativen Oberring R* mit demselben
Einselement, der ein Element x € R* enthalt, das die Bedingung

3) fix) = apx® 4 agy2* 14 ... +ap =0 < a =0

(@apeR; v = 0,1,2,...,n)
erfiillt ? Das Rechnen in dem Polynomring R[x] wire dann durch das Rechnen
in R und die Forderungen (3), (4), (5) vollstandig beschrieben.

Definition: Es set R ein kommutativer Ring, 1 € R, und R* ein Oberring von
R. Ein Element x € R* heifft Unbestimmte iiber R, wenn es die drei Bedingungen
(3), (4), (B) erfiillt:
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4@1lxz=z1=a,
() rz = xr fir jedes r € R.

Wir zeigen nun, daBl es zu jedem R eine solche Unbestimmte z iiber R, also
auch den Polynomring E[x], gibt.

Satz 1: Es set R ein kommutativer Ring und 1€ R. Dann existiert ein
kommutativer Oberring R[x] > R aller Polynome f(x) tn einer Unbestimmien x
iiber R mit Koeffizienten aus R. Er besitzt ebenfalls das Einselement 1.

Beweis: Die letzte Behauptung ist, falls die iibrigen bewiesen sind,
trivial. Wir fiihren nun wieder eines unserer Konstruktionsverfahren durch.
Mengentheoretisch gesichert ist die Existenz der Menge B> aller unendlichen
Folgen (rq, 71, 72, . ..) von Elementen r; aus R (§ 1.3). Wir konnten uns unter
der Folge (ro, 71, 72, - - - Tn, Tn+1, - - . ) das Polynom rpa® + rpqan-1 4 ... + 19
vorstellen, wenn alle r, mit » > n Null waren. Also betrachten wir die Teil-
menge M c R aller derjenigen Folgen (ag, @1, @2, ...), in denen nur endlich
viele a, ungleich Null sind. Aus dieser Menge M konstruieren wir R[x].

Wir fiilhren auf M nach dem Vorbild von (1) und (2) eine Addition und eine
Multiplikation durch

(1’) (a01a’1)a2: '-') + (bO’ bl’bzy "-) = (a0+ bO’a1+b1:a’2+b2) -")’

(2:) (aO’ a1, ‘_12) . --) '(bo, b1, b2’ . ') = (po, ", P2, .--)
mit p, = aghy + abaa + ... 4 asbo

ein; dabei hat man nachzupriifen, da die Ausdriicke rechter Hand wieder
Elemente von M sind. Wir iiberlegen uns jetzt, daB wir eine Aquivalenzrelation
auf M nicht einzufiihren brauchen: Zwei Polynome f(x) und g(x) sind genau
dann gleich, wenn ihr Differenzpolynom f(x) — g(x) Null ist; nach (3) bedeutet
das, daB f(z) und g(x) koeffizientenweise iibereinstimmen miissen. Also miiite M
bis auf die Schreibweise schon unser Ring R[x] sein.

Ersichtlich ist M beziiglich der Addition eine abelsche Gruppe, weil R es ist.
Ferner ist die Multiplikation kommutativ mit dem Einselement (1,0,0, ...)e M.
Rechnet man in

((aOyaly az, -‘-) '(bOy bl, b2, ---)) .(60’ Ct, C2, . '-) = (7'0,7‘1, r2, "')

die Komponente r; aus, so bekommt man
ra = 2(abs)er GC+i+k=2;

fiir den Fall, daB der zweite und der dritte Faktor linker Hand durch Klammern
zusammengefalt waren, bekommt man

= Sauben) G+ E =1

fiir die entsprechende Komponente des Ergebnisses. Es ist aber r; = r} wegen
der Assoziativitit der Multiplikation in R, die sich damit auf M ibertragt.
Eine letzte leichte Rechnung bestitigt noch das Distributivgesetz. Also ist M

ein kommutativer Ring mit Einselement.
Nun kommen wieder die Anderungen der Schreibweise. Zunichst liefert die
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Multiplikation eines Elements aus M mit 0,1,0,0,...)e M ein einfaches
Resultat:
(ao, a, az, .. ) . (0, 1, 0, 0, . ) = (0, ap, a1, az, .. )

Auflerdem stellt man sofort fest, daBl die Teilstruktur 7' = {(r, 0,0, ...): re R}
von M isomorph R ist. Schreibt man nun fiir ein Element (ag, a1, a2, ...) e M
mit a, = 0 fiir » > n die Summe

(a0, 01,02, ...) =(30,0,0, ...) + (0,a1,0,...)+ ... 4+(0,0,...,0,a,,0,...)
und setzt (0, 1,0, 0, ...) = z, so wird

(ap, m, @3, ...) =(a0,0,0,...) 4+ (21,0,0,...) x4+ ... + (@, 0,0, ...) - 2"

Nach der Ersetzung von 7' durch R bekommen also die Elemente (ag, a1, ag, - . .)
von M die Gestalt a,z® + apy2%~1 + ... -+ ag. Die Forderungen (3), (4), (5)
sind offensichtlich erfillt. Damit ist R[x] konstruiert und Satz 1 bewiesen.
Ziemlich selbstverstindlich ist nun der

Satz 2: Es seten B und R* 5> R kommutative Ringe mit demselben Eins-
element 1 € R; ferner sei x eine Unbestimmte iiber R und o ein Element von R*.
Dann wird durch @(f(x)) = [(o) esn Homomorphismus ¢ von R[x] auf Rla]
definiert; dieser Homomorphismus ist ein Isomorphismus genau dann, wenn auch
o etne Unbestimmte diber R 1ist.

Beweis: Die Abbildung ¢ ist surjektiv und sicher relationstreu, da man
in (1) und (2) statt o auch x schreiben kann. Sie vermittelt einen Isomorphismus
genau dann, wenn ihr Kern nur aus der Null allein besteht ; das bedeutet aber:
es gilt (3) mit « an Stelle von «, oder « ist Unbestimmte iiber R.

Die am héufigsten benutzte Konsequenz von Satz 2 ist der

Satz 3 (Ersetzungssatz): Es seien R und R* > R kommutative Ringe mit dem-
selben Einselement 1 € R; ferner sei x eine Unbestimmie diber R und « ein Element
von R*. Dann geht eine auf den Verkniipfungen von R[x] beruhende Identitit
tn R[z] in eine Identitdt in R* diber, wenn in thr x durch « ersetzt wird.

Beweis: Man wende den Homomorphismus ¢ von Satz 2 auf die be-
trachtete Identitdt aus R[x] an.
Dieser Satz, der von vornherein klar ist, ist von groBer Bedeutung; wir werden
ihn oft benutzen.

25.3 Wir unterbrechen unsere Ausfiithrungen durch einige Verabredungen und
unmittelbar einsichtige Aussagen.

Sind R und R* 5> R kommutative Ringe mit demselben Einselement 1 e R
und ist « ein Element aus R*, so ist R[a] der kleinste Ring, der R und a umfaBt;
das gilt natiirlich auch fiir den Spezialfall, daB « eine Unbestimmte iiber R ist.
Man sagt auch, R[«] entsteht aus R durch Ringadjunktion von «. Sind x und y
Unbestimmte iiber R, so gilt R{x] ~ R[y] nach Satz 2. Ist x eine Unbestimmte
iiber R*, so ist R[x] ein Unterring von B*[z].

Hat f(x) € R[x] die Gestalt f(x) = apz® + ap12®1 4 ... + ap mit a, $ 0,
so heifit a, der hochste Koeffizient und ag das absolute Glied von f(x). Ein

7 Hornfeck, Algebra
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Polynom f(z) heilt normiert, wenn sein hochster Koeffizient Eins ist. Buch-
staben wie z,y, ... werden vorwiegend fiir Ringerweiterungen durch Un-
bestimmte verwandt. Statt f(z), g(x) € R[x] schreibt man oft auch nur f,ge R[z].
Spricht man von Polynomen iiber B, so meint man Polynome aus R[xz].

Fiir das Rechnen im Polynomring E[x] weisen wir noch einmal auf die Unter-
schiede zur Analysis hin. Polynome sind keine Funktionen. Ein Polynom
f(x) € B[x] in einer Unbestimmten z ist nach (3) nur Null, wenn es das Nullpoly-
nom 0 e R ist. Zwei Polynome f(x), g(x) € R{x] stimmen ebenfalls nach (3)
genau dann itberein, wenn sie koeffizientenweise iibereinstimmen. Hierauf
beruht die Methode des Koeffizientenvergleichs.

SchlieBlich gibt es auch Polynomringe ohne Einselement. Man betrachte etwa
in 3[x] den Unterring 23[x] aller Polynome mit geraden ganzen Zahlen als
Koeffizienten (vgl. auch in diesem Zusammenhang die Aufgabe 24.1).

25.4 Wir kommen zu einer weiteren

Definition: Es sei R[x] der Polynomring einer Unbestimmten x iiber R. Das
Polynom f(x) € R[zx] habe die Gestalt f(z) = apa®™ + apz®-1 + ... 4 ap mit
an & 0. Dann heift n der Grad von f(z).

Die von Null verschiedenen Elemente aus R sind also Polynome vom Grad Null;
fir das Nullpolynom ist kein Grad definiert. Polynome vom Grad Eins be-
zeichnet man auch als lineare Polynome.

Sind f(z), g(z) und f(z) + g(x) von Null verschiedene Polynome aus R[x], so gilt

(6) Grad (f(z) + g(z)) =< Max(Grad f(z), Grad g(z)).
Ist f(z)g(x) nicht Null, so bekommt man
(7 Grad (f(z)g(x)) < Grad f(z) + Grad g(z),

und in dieser letzten Beziehung steht jedenfalls dann das Gleichheitszeichen,
wenn R sogar ein Integritdatsbereich ist.

Im AnschluB hieran stellen wir noch fest: Ist I ein Integritatsbereich mit
Einselement, so ist auch I[z] ein Integritdtsbereich mit Einselement.

25.5 Wieder gehen wir von einem kommutativen Ring R mit Einselement aus;
z sei eine Unbestimmte iiber B. Dann ist auch R[x] ein kommutativer Ring mit
Einselenrent; y sei eine Unbestimmte iiber R[x]. Man sieht, daB3 y erst recht
Unbestimmte iiber R ist. Aber auch x bleibt Unbestimmte iiber R[y], wie eine
indirekte Uberlegung sogleich zeigt. Sowohl R{x][y] als auch R[y][x] bestehen
aus denselben Elementen, nimlich Summen von Ausdriicken der Gestalt rzmyn
(reR,m =20,n =0). Also gilt R[z][y] = R[y][x], und man schreibt kurz
Riz, yl.

Sind a, 8 beliebige Elemente eines kommutativen Oberringes R* 5 R mit dem-
selben Einselement 1 € R, so gilt entsprechend R[«][f] = R[f][«], und man
schreibt wieder einfach R[«, §]. Entsprechend bekommt man durch Adjunktion
der Elemente ay, a3, . . ., 2y € R* die Ringerweiterung R[oy, a2, .. ., #s] von R.
Sollten die a; simtlich Unbestimmte iiber R[«, as, ..., %-1] sein, so spricht
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man von unabhingigen Unbestimmten und schreibt etwas suggestiver etwa x;
statt 4. Die Elemente von R[a1, a2, . . ., ay] sind Summen von Elementen der
Gestalt raf'a?* ... o (re R, 0; = 0).

Natiirlich gelten die Verallgemeinerungen der Sitze 2 und 3; wir formulieren
nur die letztere.

Satz 4: Es seien B und R* > R kommutative Ringe mit demselben Eins-

element 1 € R; ferner seien x1, 2, . . ., x, unabhingige Unbestimmte iiber R und
o1, %2, . . ., Xy Blemente von R*. Dann geht eine auf den Verkniipfungen von
Rz, g, . .., x,] beruhende Identitit in Rlx1, xo, . . ., xn] tn eine Identitdt in R*

iiber, wenn in thr die x; durch die oy ersetzt werden.

Da man in den Multiplikationsformeln (2) und (5) Elemente aus R kommutativ
mit « multipliziert, wird der Ersetzungssatz natiirlich falsch, wenn man auf
die Kommutativitit von R* verzichtet.

SchlieBlich greifen wir noch einmal unsere letzte Feststellung im obigen Ab-
schnitt 4 auf. Thre wiederholte Anwendung fithrt zu dem

Satz 5: Sind 21, X3, . . ., x, unabhingige Unbestimmite iiber dem Inlegritits-
bereich I mit Einselement, so ist auch I[x1, 3, . .., 23] ein Integrititsbereich mait
Einselement.

25.6 Ein wichtiges Hilfsmittel in der Theorie der Polynomringe ist der be-
reits aus der Schule bekannte Divisionsalgorithmus. Dabei gehen wir von einem
Polynomring K[x] iiber einem Korper K aus, wihlen f(x), g(x) € K[z}, g(z) = 0,
und behaupten: Es gibt ein g(x) € K[x] und ein r(x) € K[x], so dag

f@) = qlz)g(x) + r(z)

wird, wobei entweder r(x) = 0 oder Grad r(x) < Grad g(x) ist.

Der Beweis wird durch das ibliche Verfahren geliefert, das Polynom f(x) mit
Rest durch das Polynom g(z) = 0 zu dividieren; es ist unverindert durchfiihr-
bar, weil die Quotienten der Koeffizienten beliebiger Polynome aus K[x] mit
dem hochsten Koeffizienten von g(z) wieder in K liegen. Das kann man auch
in einen Induktionsbeweis nach dem Grad von f(x)} umschreiben: Fiir f(z) = 0
ist die Behauptung mit ¢(x) = r(z) = O richtig. Fir Grad f(x) = 0 wahle man
g(z) = 0 und r(z) = f(z), falls Grad g(z) > 0 ist; bei Grad g(z) = 0 leisten

qx) = % € K und r(x) = 0 das Verlangte. Sowohl fiir f(x) = 0 als auch fir

Grad f(z) = 0 ist die Behauptung also richtig. Sie sei ferner fiir beliebige
Polynome f(x) von einem Grad kleiner als n und alle g(x) = bpa™ + by _jam-1
+ ... 4+ bg, by = 0, bereits bewiesen. Ist dann f(x) = apa® + ap—127-1 4 ...
-+ ag, an & 0, so konnen zwei Fille eintreten. Bei n << m wihle man einfach
g(x) = 0 und r(z) = f(x). Ist n = m, so wird flx) = gfx"-mg(z) + h(z) mit
m
einem k(x) € K[z}, das entweder Null ist (und in diesem Fall ist man fertig)
oder einen Grad =< » —1 hat, also nach Voraussetzung in der Gestalt h(x)
= g*(x)g9(x) + r(x) mit r{(x) =0 oder Grad r(z) < Grad g(x) geschrieben

7
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werden kann; das lefert dann aber f(x) = ¢(x)g(x) + r(x) mit g(z) = ——x”""

+ g*(z) € K[x], womit der Induktionsbeweis abgeschlossen ist. Es gllt also
der

Satz 6: Es sei K ein Korper, f(x), g(x) € K{x] und g(z) == 0. Dann existieren
q(x), r(z) € K[x] mit f(x) = q(x)g(x) + r(x), wobei entweder r(z) =0 oder
Grad r(x) < Grad g(z) ist.

Zusatz: Ist g(z) normiert, der hochste Koeffizient also Eins, so kann in der
Voraussetzung von Satz 6 der Korper K durch einen kommutativen Ring R

mit Einselement ersetzt werden, weil in diesem Fall von selbst & B~ = an € Rist.
m
Aufgabe 1: Am Beispiel des Endomorphismenringes R der additiven
Gruppe von Q[x] zeige man: Es gibt Ringe R mit Elementen » € R, die unend-
lich viele Rechtsinverse, aber kein Linksinverses besitzen. (Vgl. Aufgabe 20.6,
Aussage ¢).)

Aufgabe 2: Es sei R ein kommutativer Ring mit Einselement. Man

00
konstruiere den Ring R(z) aller formalen Potenzreihen 3 a,x?, ay€ R.
v=0

§ 26 Nulistelien von Polynomen

26.1 Wir betrachten wieder den Polynomring R[x] iiber einem kommutativen
Ring R mit 1 € R und einen kommutativen Oberring R* 5> R mit demselben
Einselement; « sei ein Element aus R* und f(x) € R[z]. Dann heiit « Nullstelle
von f(z) in R*, wenn dort f(a) = 0 gilt.

Beispiel 1. Das Polynom 22— 4 € 3[x] hat die Nullstellen 4+2€3; das
Polynom 22 — 2 € 3[x] hat die Nullstellen +}2eR >3 und 22 4 1€ 3([x]
die Nullstellen 1€ €>3.

Beispiel 2. Nach Satz 23.2 hat das Polynom xz2 + 1 € 33[x] keine Nullstelle
im Koeffizientenkérper 33. Aber nach Satz 23.1 existiert ein kleinster Ober-
korper E 0 33, in dem 22 4 1 eine Nullstelle besitzt. Die Konstruktion im
Beweis von Satz 23.1 zeigt noch, daB3 [E| = 9 ist.

Uber die Nullstellen von Polynomen gelten einige ebenso einfache wie wichtige
Sitze. Eine Konsequenz des Zusatzes zu Satz 25.6 ist zundchst der

Satz 1: Es sei R ein kommutativer Ring mit Einselement, f(x) € R{x] und
« € R eine Nullstelle von f(x). Dann gilt f(x) = q(z) * (x— a) mit einem q(x) € R[x].

Beweis: Esist jedenfalls f(z) = q(z)(x — «) + r(x) mit einem r(z) € R[x],
dasentweder verschwindet oderden Grad Null hat. Das hei8t f(x) = ¢(x)(x—a)+r
mit einem festen r € R. Ersetzen wir x durch «, so folgt r = 0.
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Hieraus wiederum ergibt sich der

Satz 2: Es sei I ein Inlegrititsbereich mit Einselement und f(x) € I[x] ein
Polynom vom Grad n. Dann hat f(x) in I héchstens n Nullstellen.
Bemerkung: Das Polynom f(z) hat also in keinem Integrititsbereich I* 51
mit dem gemeinsamen Einselement 1 € I mehr als » Nullstellen, da ja auch
f(z) € I*[x] gilt.

Beweis von Satz 2: Hat f(x) die Nullstelle «; € I, so gilt nach Satz 1
zundchst f(x) = (r — a1)qi(x) mit einem ¢i(x) € I[x]. Hat gi(z) die Nullstelle
o € I, wobei die Moglichkeit s = oy nicht ausgeschlossen ist, so wird weiter
f(®) = (x — a1)(x — a2)ge(x) mit einem go(x) € I[x]. Dieses Zerlegungsverfah-
ren werde fortgesetzt; es bricht etwa nach m Schritten ab:

fx) = (€ — )@ — ag) ... (x — am)gm(x).

Dabei sind die ; nicht notwendig verschiedene Nullstellen von f(x) in I, und
gm(z) hat keine Nullstelle in I. Mehr als diese m Nulistellen «; hat f(x) in I
nicht; denn setzt man eine beliebige Nullstelle x €l von f(x) in die hingeschrie-
bene Zerlegung ein, so mufl wegen der Nuliteilerfreiheit von I wenigstens
einer der Faktoren « — oy verschwinden. Aus m = = folgt also die Behauptung.

Satz 2 bleibt demnach richtig, wenn mehrfach auftretende Nullstellen ihrer
Vielfachheit entsprechend gezdhlt werden. Wir sagen in Zukunft, f(z) € I[x]
habe die (genau) k-fache Nullstelle o € I, wenn f(x) = (x — a)¥g(x) mit einem
q(x) € I[z], g(«) = 0, gilt. Die Zahl k£ = 0 ist definiert, weil I[x] ein Integritats-
bereich ist. Fiir das Nullpolynom wird der Begriff der Vielfachheit einer Null-
stelle nicht erklirt. Satz 2 wird falsch, wenn die Nullteilerfreiheit des Koeffi-
zientenringes nicht vorausgesetzt wird. Hierzu sehe man das

Beispiel 3. Das Polynom f(x) = 23 — x € 3¢[x] hat alle sechs Elemente
von 3¢ als Nullstellen.

Von vielfiltigem praktischen Nutzen ist schlieBlich der
Satz 3: Eine Nullstelle « € Q des normierten Polynoms
flx) = 2* 4 ag12" 1 4 ... 4 ag € 3[z]
18t eine ganze Zahl und Teiler von ag.
Beweis: Ohne Beschrinkung der Allgemeinheit sei n =1, ag &= 0 und
a = %, seM, re 3, (r,s) = 1. Multiplikation von /(%) = 0 mit s» liefert r»

+ apart-ls + ... + aps® = 0 oder r* = ks mit einem ke 3. Die natiir-
liche Zahl s teilt 77, hat aber keinen Primteiler mit r gemeinsam, muf} also
Eins sein. Daher ist « die ganze Zahl r, und aus 7(r*-1 4 ap_1r*-2 4 ... + a3)
= —ay ist zu sehen, daB ag durch r teilbar ist.

Als rationalzahlige Nullstellen des ganzzahligen normierten Polynoms
2% 4+ 2 4+ 2 kommen also nur 4-1 und 42 in Frage; demnach ist —1 die ein-
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zige Nullstelle von 25 4~ x + 2 in Q. Das Polynom #3 — « 4 2 hat iiberhaupt
keine Nullstelle in {.

Man sieht leicht, daB man Satz 3 auch zur Bestimmung der rationalzahligen
Nullstellen nicht normierter ganzzahliger Polynome verwenden kann (Auf-
gabe 1). Daraus ergibt sich schlieBlich auch seine Anwendbarkeit bei der
Suche nach allen rationalzahligen Nullstellen eines Polynoms f(x) € Q{z], das
man ja nach Multiplikation mit dem Hauptnenner der Koeffizienten durch ein
ganzzahliges Polynom ersetzen kann.

26.2 Im folgenden erkliren wir in kommutativen Ringen mit Einselement
eine formale Differentialrechnung.

Definition: Es sei R ein kommulativer Ring mit Elementen a,b, ... und
1 € R. Eine Abbildung D: R — R heifit eine Derivation oder Ableitung von R,
wenn ste die beiden folgenden Bedingungen erfiillt:
(2) D(a + b) = D{a) + D(b),
(2) D(ab) = aD(b) + bD(a).

Satz 4: Es sei R ein kommulativer Ring mit Einselement und D eine Dert-
vation von R. Dann ist D(0) = D(1) = 0, D{(—a) = —D(a), und fiir jedes
a € R und jedes n € N gilt D(a®) = na?-1D(a).

Beweis: Aus D(0) = D0 + 0) = D(0) + D(0) folgt D(0) = 0. Ferner
wird D(1) = D(1-1) =1-D(1) + 1 - D(1) = D(1) 4+ D(1), also D(1) = 0. Es
ist 0 = D(0) = D(a + (—a)) = D(a) 4+ D(—a) und damit D(—a) = —D(a).
Die letzte Behauptung ergibt sich durch vollstindige Induktion nach n.

Fir Polynomringe betrachten wir nun eine spezielle, bereits aus der Analysis
bekannte Ableitung.

Satz 5: Es sei R ein kommutativer Ring mit Einselement und R[x] der Poly-
nomring in etner Unbestimmten x iiber R. Dann wird durch

Dife)) = D( 3 an) =

eine Ablettung D: R[x] - R[x] definiert.
Beweis: Sofort zu sehen ist D(f + g) = D(f) + D(g). Ferner gilt
D(a;x* - byx?) = D(azbyx?*?) = (1 + v)arbri+r-1 = acrD(bya?)+byax?Diasz?).

n
vt =pr f(@)
1

y=

Zusammen mit (1) folgt hieraus noch
m n
D(fg) = D(Sazxt- Tha?) = D(AZa;,xl - bx?) = AZD(a;x" - byx?)
0 0 X7 %7
= Yax*D(byx?) + JhyarDiaxer) = SaxrD(3byx?) + SbyxrD(Sasxr?)
Ay Ay a v v A

oder D(fg) = fD(g) + gD(f), also (2).
Der folgende Satz wird oft gebraucht.

Satz 6: Es sei I ein Integrititsbereich mit Einselement und n eine natiir-
liche Zahl. Dann gelten die folgenden Aussagen.
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a) Hat f(x) € I[x] die genau n-fache Nullstelle x € I, so hat entweder f'(x) die
mindestens (n — 1)-fache Nullstelle « € I, oder f'(x) ist das Nullpolynom. Ist zu-
sdtzlich die Charakteristik y(I) = 0, so hat f'(x) die genau (n — 1)-fache Null-
stelle a.

b) Ist f(z) € I[z], f(x} =0, e € I und f(e) = f'(a) = 0, s0 ist « mindestens zwei-
fache Nullstelle von f(x).

Beweis:
a) Unsere Voraussetzung ist f(x) = (x — a)?q(x), g(x) € I[x], g(e) & 0. Fiir
eine beliebige Derivation D: I[x] — I{z] liefern (2) und die letzte Aussage von

Satz 4
D(f(x)) = (x — a)"D(g(x)) + q(x)D{(x — a)")
(@ — «)*D(q(x)) + n(z — «)*1q(z)D(x — «);
nach Satz 5 wird also speziell
f') = (& — a)*(x — a)g'(x) + ng(x)].

Hieraus folgen die aufgestellten Behauptungen. Fiir y(I) = 0 ist ja ng(x) &= 0,
und die eckige Klammer kann dann an der Stelle « nicht verschwinden.

b) Aus f(z) = (& — @)g(@), g(2) € I[], folgt f'(z) = (x— x)g'(@) + g(x). Das
liefert mit f'(a) = 0 auch ¢(x) =0 und somit ¢g(z) = (xr — a)g(x), g(x) € I[x}.
Also wird f(z) = (z — x)%g().

Folgerung: Die Nullstelle x € I von f(x) € I[x] ist genau dann einfach,
wenn f'(a) == 0 ist.

Aufgabe 1: Man bestimme alle rationalzahligen Nullstellen von
a) x5 — 221 4 323 — 622 + 22 — 4,
b) 323 — 222 4 6z — 4,

c) %ﬁ—x" + 22 4 2x — 1.
Aufgabe 2: Es sei p eine Primzahl. Zeige: In 3,[x] gilt

I

22—z = JJ (x—a)
ael;

Wie folgt daraus die WiLsonsche Kongruenz (Satz 20.6) ¢

Aufgabe 3: Auf dem Integritatsbereich I sei eine Ableitung D definiert.
Man zeige, daB sich D auf genau eine Weise auf den Quotientenkdrper @ von I
fortsetzen 1aBt: Es gibt genau eine Ableitung D* von @ mit D*(a) = D(a)
fiir jedes a € 1.

Aufgabe 4: Es sei p eine Primzahl. Man zeige: Die Kongruenz
™ + ap12" 14 ... +ap = Omod p (a4 € 3, pran)
hat hochstens » modulo p inkongruente Losungen « € 3.

Aufgabe 5: Ist « = a4 bic€(a,beR) Nullstelle des Polynoms
f(x) € R[x] mit reellen Koeffizienten, so auch die konjugiert-komplexe Zahl
a = a— bi. Beweis ?
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§ 27 Korpererweiterungen

27.1 Wir beginnen mit der

Definition: Es sei K ein Korper. Eine Korpererweiterung oder ein Erweite-
rungskorper E von K ist ein Oberkérper E > K von K.

Es sei nun E eine Korpererweiterung von K. Dann gibt es in E und in K je
ein Einselement, und diese Einselemente sind identisch, weil £ ein Integritéits-
bereich ist (§ 25.1). Also ist auch K[z] ein Unterring von E[x] (§ 25.3).

Definition: Es sei E eine Korpererweiterung von K und « ein Element von
E. Wenn es ein vom Nullpolynom verschiedenes f(x) € K[x] mit f(e) = O gibt,
80 heift « algebraisch iiber K, andernfalls transzendent iiber K.
Hiernach ist also eine Grofle « genau dann algebraisch iiber dem Koérper K,
wenn zweierlei gilt: Es gibt einen Erweiterungskérper E von K, der « enthalt,
und es existiert ein f(x) € K[x], f(x) == 0, mit « als Nullstelle. Speziell ist jedes
a € K algebraisch iiber K. Die Zahlen }/2 und ¢ sind algebraisch iiber Q.
Nach § 25.2 konnen wir ferner sagen: Ist o transzendent (Transzendente) iiber
K, so ist o eine Unbestimmte iiber K. Hiervon gilt auch die Umkehrung, weil
eine Unbestimmte x iiber K Element des Quotientenkorpers £ von K[x] und
E eine Korpererweiterung von K ist. Eine Transzendente iiber einem Korper
K ist also dasselbe wie eine Unbestimmte iiber K.

27.2 Wir verabreden nun eine stindig auftretende Schreibweise.

Definition: Es seien I und I* 51 Integrititsbereiche mit demselben Eins-
element und ay, ag, . .., ey Elemente aus I*. Dann bezeichnen wir den Quotienten-
korper von I[oa, op, .. ., ag] mit I{a, az, ..., o).

Wir bemerken dazu, daB I[ay, ag, ..., op] C I* ein Integritdtsbereich ist; der
f

Korper I(oq, ag, ..., o) existiert also. Er besteht aus allen Briichen 4 mit

frg9€I[o1, o2, ..., ), g &= 0. Speziell kénnen die «; unabhiéngige Unbe-
stimmte iiber I sein.

Den Ubergang von I zu I[oy, az, . . ., @] bezeichnet man als Ringadjunktion,
den von I zu I(ay, as, ..., o) als Kérperadjunktion von «y, as, ..., @p. Er-
sichtlich ist I{as, a2, ..., ay) der kleinste Korper, der I und die Elemente

a1, %z, . .., &y enthdlt; deshalb sagt man auch, er werde iiber I von den Ele-
menten ay, ag, ..., op erzeugt. Aus den folgenden Beispielen sieht man unter
anderem, daB Ringadjunktion und Kérperadjunktion zu demselben Ergebnis
fithren kénnen.

Beispiel 1. Es sei « eine Unbestimmte iliber dem Korper K. Dann gilt
K[x] c K(x), aber K[x] == K(x); denn x € K[x] besitzt in K[z] kein Inverses.
Beispiel 2. Es ist Q[}/2] = Q(}/2) (vgl. § 25.1 und § 20.3, Beispiel 6). Analog
gilt Q[V3] = Q(V3), Q] = QE), R[¢] = RE) = €.

Beispiel 3. Wir zeigen ()2, 3) = Q(}2 + V/3). Zunichst ist Q(}2 + }3)
der kleinste Korper, der  und }/2 + /3 enthélt; da auch der Korper 2(}/2, |/3)
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das Element }/2 + }/3 und ganz Q enthalt, folgt 22, }/3) >2(}2 + }/3). Um-
gekehrt ist Q(]/2, J/3) der kleinste Korper, der Q und die Elemente /2, |/3 ent-
halt. Wenn wir nachweisen konnen, da8 /2 und |/3 Elemente von ()2 + }/3)
sind, so folgt entsprechend 2(}/2, |/3) cQ(}2 + }/3) und damit insgesamt die
behauptete Gleichheit. Es gilt aber (2 4 |/3)2 = 5 + 2)6eQ()2 + |/3),
also auch J/8 e Q(J2+]3) und folglich }6(}2+13) = 3)2+2)3 eQ(J2+]3);
Subtraktion von 2(}2 + |/3) e Q(J2 + |/3) zeigt |2 €eQ(}2 + }/3), und damit
wird zuletzt auch (J2 + V3) — J2 = V3 ()2 + 3).

Spéter wird sich zeigen: Ist o algebraisch iiber K, so gilt K[«] = K(x) (§ 53).
In Beispiel 2 sind einige einfache Spezialfille dieser Aussage notiert. In Bei-
spiel 3 hat sich gezeigt, daB eine von zwei Elementen erzeugte Erweiterung
auch von einem einzigen Element erzeugt werden konnte. Auch hierauf
kommen wir noch zuriick (§ 61).

Im Anschlufl an die oben gegebene Definition machen wir schlieBlich noch eine
Bemerkung: Ist @ der Quotientenkorper von I, so gilt I(ou, ag, ..., an)
= o, a2, ..., xy). Die Elemente rechter Hand sind ja Quotienten von
Polynomen in den oy mit Koeffizienten aus @; erweitert man mit dem Haupt-
nenner aller dieser Koeffizienten, so ergeben sich Elemente aus I{oq, ag, . . ., az).
Also ist Q(oa, ag, - .., ap) C I(ag, &g, ..., &5), und die umgekehrte Enthalten-
seinsbeziehung folgt aus @ > 1.

27.3 Im folgenden betrachten wir ein Element «, das algebraisch iiber einem
Korper X ist.

Satz 1: Es sei « algebraisch iiber K. Dann existiert ein Polynom f(x) € K[x]
mit folgenden Eigenschaften.
(1) f(x) tst normiert.
(2) Es st f(a) = O.
(3) Ist g(x) € K[x] und Grad g(x) < Grad f(x), so gilt g(a) = 0.
(4) Hat f*(x) € K[z] die Eigenschafter (1), (2), (3), so gilt f*¥(x) = f(x).

Beweis: Die Menge der vom Nullpolynom verschiedenen Polynome aus
K[x] mit « als Nullstelle ist nach Definition von « nicht leer. Unter ihnen gibt
es ein Polynom h(z) = auz" + ap—12®-1 + ... 4+ ag, ap == 0, kleinsten Grades
n > 0, so daB fir jedes g(z) € K[x] mit Grad g(z) < Grad A(x) gilt: g(e) & 0.

Das Polynom f(z) = aih(x) € K[x] hat dann, weil h(ax) = 0 war, die Eigen-
n

schaften (1), (2), (3). SchlieSlich hat das Polynom d(x) = f(x) — f*(x) auch
die Nullstelle «; einen kleineren Grad als f(x) kann es nach (3) nicht haben;
andrerseits hat d(z) keinen Grad groBer oder gleich », weil f(x) und f*(x) nor-
mierte Polynome vom Grad » sind; also ist d(x) das Nullpolynom (das nach
unserer Definition aus § 25.4 keinen Grad hat), und es folgt f*(x) = f(x).

Die Eindeutigkeitsaussage (4) berechtigt zu der folgenden

Definition: Es sei o algebraisch iber dem Korper K. Dann heift das Poly-
nom f(x) aus Satz 1 das Minimalpolynom oder das definierende Polynom von «
tiber K,
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Weiter setzen wir das Folgende fest.

Definition: Es sei I ein Integrititsbereich mit Einselement, f(x) € I[x] und
Grad f(x) = 1. Dann heift f(x) irreduzibel dber I oder irreduzibel in I[x), wenn
aus f(x) = g(x)h(x) mit g(x), k(z) € I[x] folgt: Entweder g(x) oder h(z) ist ein
Element von I.

Ein iber I irreduzibles f(x) € I[x] 148t sich also héchstens durch Ausklammern
eines Elementes aus I in Faktoren aus I[x] zerlegen; andernfalls nennen wir
f(x)in I{z] oder iiber I reduzibel. Von besonderem praktischen Interesse ist nun der

Satz 2: Es sei o algebraisch iiber K. Dann gelten die folgenden Aussagen.
a) Das Minimalpolynom f(x) von o iber K ist irreduzibel in K[z).
b) Hat das Polynom P(x) € K[x] die Eigenschaften (1), (2) und ist es in K[x]
trreduzibel, so ist es das Minimalpolynom f(x) von « iiber K.

Beweis:

a) Das Element « liegt in einem Erweiterungskérper E von K. Angenommen,
es gibe Polynome g(x), k(z)c K[xr] mindestens vom Grad Eins mit
f(z) = g(x)h(z). Dann wird Satz 25.3 anwendbar; er liefert g(a)h{a) = f(a) = 0.
Das Produkt g(«)h(«) ist in E nur Null, wenn einer der Faktoren verschwindet;;
da die Grade von g(zx) und A(z) kleiner sind als Grad f(z), liefert das einen
Widerspruch zu (3).

b) Wir dividieren P(x) mit Rest durch f(z). Nach Satz 25.6 gibt es Polynome

¢(@), () € K[z] mit
P@) = ¢@)(=) + r(a),

wobei entweder Grad r(z) << Grad f(x) oder r(x) = 0 ist. Ersetzt man = durch
o, 80 bekommt man r{e) = 0; nach (3) muB also r(x) das Nullpolynom sein. Da
f(z) mindestens den Grad Eins hat und P(z) iiber K irreduzibel ist, muB weiter
¢(z) ein Element von K sein. SchlieBlich sind P(x) und f(z) normiert; also ist
sogar ¢(z) = 1 und damit P(x) = f(z).
Dieser Satz gibt Veranlassung zu der

Definition: Es sei o algebraisch iiber dem Korper K. Dann bezeichnen wir
das Minimalpolynom f(x) € K{x] von « iiber K mit f(x) = Irr (x, K). Wir sagen,
« set algebraisch vom Grad n iiber K, wenn Grad Irr (x, K) = = ist.

Ist beispielsweise « € K, so wird Irr (x, K) = 2 — a; dann ist also « algebra-
isch vom Grad Eins iiber K. Zur Bestimmung von Minimalpolynomen stiitzt
man sich in der Regel auf Satz 2. Wir betrachten einige einfache Beispiele.

Beispiel 4. Es sei « = }/2 und K = R. Dann gilt Irr (J2, R) = 2—)2 e R[=z].

Beispiel 5. Es sei « = |/2 und K = Q. Das Polynom P(z) = 22 — 2 e Q[z]
hat dann die Eigenschaften (1), (2). Es ist ferner in Q(z) irreduzibel. Um das
zu zeigen, nehmen wir fiir den Augenblick das Gegenteil an. Dann gibe es
Polynome g(x), h(z) e Q[z] mit P(z) = g(z)k(z) und Grad g(x) =1, und wir
diirfen ohne Beschriankung der Allgemeinheit zusitzlich annehmen, g(x) sei
bereits normiert: g(x) = x — a, a €Q. Das ganzzahlige normierte Polynom
P(z) = 22 — 2 hitte demnach die Nullstelle a € Q. Aus Satz 26.3 folgh sogar
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a € 3 und a|2; aber die Zahlen 41 und 42 sind keine Nullstellen von 22 — 2.
Die Annahme, P(z) sei in Q[z] reduzibel, war also falsch, und Satz 2 liefert nun
Irr (J2,9) = 22— 2.

Beispiel 6. Nach dem Muster von Beispiel 5 sieht man ohne Rechnung
Irr (J3,Q) = 22—3 und Irr(jy2,Q) = #3 —2. Analog wird Irr (i, Q)
= Irr (5, R) = 22 + 1, weil 22 4 1 keine reelle Nullstelle hat.

Beispiel 7. Es sei a = 1/%(1 +¢) und K =. Wegen af = —1 hat das

Polynom P(z) = z* + 1 eQ[x] die Eigenschaften (1), (2); wir behaupten
Irr («,Q) = 2% + 1 und miissen dazu noch zeigen, daB z% + 1 irreduzibel
iiber Q ist. Wie in Beispiel 5 sieht man, dafl 24 4 1 keinen Faktor g(z) € Q[z]
vom Grad Eins haben kann. Wir mtissen also noch nachweisen, daB auch eine
Zerlegung
zt + 1 = (22 + ax + b)(x2 + cx + d) (a,b,c,def)

in quadratische Faktoren aus [x] unmoéglich ist. Ausmultiplikation der
Klammern rechter Hand und Koeffizientenvergleich ergibt zunichst ¢ = —a
und, da b = 0 ist, d =%. Das fiilirt weiter auf a? = b + %und%—ab =0
oder die moglichen Zerlegungen

e | (22 + 7) (22 —19)

(22 4+ )22 + )22 — 2z + 1)

(2 + ¢)/2x — 1)(22 — i 2z — 1);

doch die Faktoren liegen nicht in Q[z]. Also ist 2% 4 1 irreduzibel iiber  und
Irr (¢, Q) = 2% + 1. Aber beispielsweise wird ¢ + 1 reduzibel iber Q(]/2)
oder R und Irr («, Q()/2)) = Irr(x,R) = 22— 2x + 1; die Zahl « ist also
algebraisch vom Grad 4 iiber Q und algebraisch vom Grad 2 iber Q(}2)
oder K.

27.4 Es fallt nicht leicht, ein r € R anzugeben, das transzendent iiber Q ist.
Gibt es derartige reelle Zahlen iiberhaupt ? Diese Frage kann im AnschluB} an
den folgenden Satz beantwortet werden.

Satz 3: Es sei R ein kommutativer Ring mit Einselement. Ist R abzihlbar,
80 ist es auch der Polynomring R[x].
Beweis: Es sei R abzdhlbar und M; die Menge aller Polynome f(z) € R[x]
oo

vom Grad k (k = 0). Wir zeigen die Abzahlbarkeit von M = U M}; das ist

k=0
R[z] ohne das Nullpolynom. Nach Satz 4.2 geniigt es zu zeigen, daBl jedes My
abzihlbar ist. Bezeichnen wir wieder mit Ry die Menge R ohne die Null, so
1iBt sich aber M; eineindeutig auf Ry x B x R x ... x R (k + 1 Faktoren)
abbilden, und dieses cartesische Produkt ist nach Satz 4.1 abzdhlbar, weil
jeder der Faktoren es ist.

Als Beispiel betrachte man etwa den Fall R = : Die Menge aller Polynome
mit rationalen Koeffizienten ist abzahlbar.
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Wir kommen nun auf die oben gestellte Frage zuriick. Spricht man von trans-
zendenten Zahlen schlechthin, so meint man in der Regel die reellen Zahlen r,
die transzendent iiber  sind. Die Menge aller dieser Zahlen sei B, und es sei
A die Menge aller iiber R algebraischen r€®. Dann ist An B = ¢ und
AuB = R. Nun ist die Menge Q[x] aller rationalzahligen Polynome abzihl-
bar; jedes einzelne von ihnen hat nach der Bemerkung zu Satz 26.2 héchstens
endlich viele, eventuell gar keine Nullstellen in R; die Menge A aller dieser
Nullstellen ist demnach ebenfalls abzéhlbar. Da ® = A u B nicht abzihlbar
ist (§ 4), kann also B weder endlich noch abzihlbar sein. Damit ist die Existenz
iiberabzihlbar vieler transzendenter Zahlen r nachgewiesen, ohne daBl wir in
der Lage sind, eine einzige von jhnen explizit anzugeben. Die Transzendenz
etwa von e und = wird in der Zahlentheorie gezeigt.

Zuletzt notieren wir noch eine Konsequenz von Satz 3.

Satz 4: Der Korper K sei hochstens abzihlbar. Dann ist auch jede endlich
erzeugte Erweiterung K(&1, &, . . ., &) hochstens abzdihlbar.

Beweis: Es geniigt, K(&1, &, ..., &) abzuzdhlen unter der Annahme,
K sei abzdhlbar und die Erzeugenden &, &3, .. ., &, seien unabhingige Unbe-
stimmte iber K. Mehrfache Anwendung von Satz 3 zeigt zunichst die Ab-
zahlbarkeit von K{&, &, ..., &) Dann lassen sich aber nach dem Vorbild
des Abzéhlbarkeitsbeweises fur  auch die Elemente des Quotientenkérpers
K(&, &, ..., &) nach dem Paarschema abzédhlen (§ 4).

Aufgabe 1: Essei K ein Korper. Man zeige: Mit « ist auch a2 algebraisch
iiber K und umgekehrt.

Aufgabe 2: Zeige, daB }/2 + }/3 + }/5 algebraisch iiber Q ist.

Aufgabe 3: Es sei d eine ganze Zahl. Man zeige:
a) Es ist Q[)d] = Q(J/d). 3 B
b) Ist |/d ¢Q, so wird durch ¢(a@ 4 b)/d) = a— b}/d ein Automorphismus ¢
von ()/d) definiert (a, b e Q).

Aufgabe 4: Es sei d eine ganze Zahl. Man zeige: Die Menge @ aller von
Null verschiedenen Zahlen der Gestalt 22 + dy? (z, y €) ist eine multiplika-
tive Untergruppe von .

Aufgabe 5: Man zeige:
a) Es ist Q()2, J3) = Q[}2, J3].
b) Der Korper Q(]/2, }/3) besteht aus allen reellen Zahlen der Gestalt

a+b)2+c)3+d)8  (abcdeR)

Aufgabe 6: Man gebe fiinf Zwischenkérper K mit  c K c ()2 + |/3)
an.
Aufgabe 7: Man bestimme
a) Irr (3 + }/3,9),
b) Irr (3 — /3, Q),
c) Irr (J2 + |3, 9),



§ 28 Halbgruppenringe 109

d) Irr (42 + 1,9),
e) Irr (72 + 1,2(J2).
Aufgabe 8: Man lose noch einmal den Teil b) von Aufgabe 20.9.
Aufgabe 9: Fiir welche a € 3 ist 4 + ax? + 1 reduzibel iiber  ?

§ 28* Halbgruppenringe

28.1 Fiir das Folgende erinnern wir uns wieder an die Einfiihrung des Ringes
R[x] aller Polynome in einer Unbestimmten z {iber dem kommutativen Ring
R mit dem Einselement 1. In anderer Formulierung lautet Satz 25.1: Es seien
ein kommutativer Ring R mit dem Einselement 1 und eine multiplikativ ge-
schriebene Halbgruppe der Gestalt H = {e, x, 22,23, ... } mit dem Eins-
element e vorgelegt. Dann gibt es einen eindeutig bestimmten kleinsten Ober-
ring R[H] von R, der auch H als Teilstruktur und wiederum 1 als Einselement
enthilt und in dem die Rechenregeln

) rihy+rehs+ ... b =0 o n=ro= ... =1 =0
(rv€ B, hye H, hy == by fiir ¢ &),
2) th = hrfirallerc R, he H

erfiillt sind.
Es ist nimlich R[H] = R[z). Das Element e von H findet sich in R[x] in der
Gestalt 1, und die Bedingungen (1), (2) stehen an Stelle der Bedingungen (3),
(5) aus § 25. Die Bedingung (4) aus § 25 steckt bereits in der Forderung, daB
R und R[H] dasselbe Einselement haben sollen. Die Bezelchnung R[H] soll
andeuten: Man hat ganz H zu R adjungiert.
Es seien nun wieder R ein kommutativer Ring mit dem Einselement 1 und
diesmal H eine beliebige multiplikativ geschriebene Halbgruppe mit dem Eins-
element e. Unsere Frage lautet: Gibt es auch unter diesen schwéicheren Vor-
aussetzungen iiber H einen kleinsten Oberring von R, der H als Teilstruktur
und 1 als Einselement enthilt und in dem gemé&8 (1) und (2) gerechnet wird ?
Wenn wir sie mit ja beantworten und zeigen konnen, dal dieser Oberring ein-
deutig bestimmt ist, so diirfen wir ihn etwa mit R[H] bezeichnen; er heiBt der
von R und H erzeugte Halbgruppenring.
Wie friiher bei dhnlichen Fragestellungen (vgl. etwa § 13) wollen wir zundchst
annehmen, daf} es wenigstens einen Oberring S von R mit dem Einselement 1
gibt, der H als Teilstruktur enthilt und in dem die Bedingungen (1), (2) er-
fillt sind. Wir betrachten dann die Teilmenge T c S aller endlichen Summen
der Gestalt r1hy + rohe + ... + rmbm (ry€ R, hy€ H, by == by fiir ¢ 5 ) und
zeigen, da 7' ein Unterring von 8 ist. Wahlen wir zwei Elemente aus T', so
konnen wir annehmen, daB sie aus denselben %; zusammengesetzt sind ; durch
Hinzufiigen endlich vieler Summanden der Gestalt Ok; 148t sich das immer
erreichen. Aus
(3) (rba + rehe + . ..+ rmhm) + (riky + r2h2 + ...+ 1hm)
=Mn+ma+(rz+rhe+ ... + 0w+ ro)m
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ist nun zu sehen, daB T' beziiglich der Addition eine abelsche Gruppe ist; sie
hat das Nullelement Oe, und das additive Inverse von rihy+rehe--. . . +rphimeT
ist (—r1)h + (—redhe + ... + (—7m)hm. Auch das Produkt zweier Elemente
von T wird auf Grund von {2) wieder ein Element von 7. Wir bekommen

(4a) (rh1 + roha + ... + rmhp)(ribs + rohe + ... F rRbg) = hz r(h)h:
eM

hierin ist M die Menge aller Produkte %:; und

(4b) r(h) = Zrir,

wobei iiber alle Indexpaare (¢, j) summiert wird, fiir die hsh; = h ist. Das Asso-
ziativgesetz der Multiplikation und die Distributivgesetze gelten in 8, also
erst recht in 7.

Der Ring T besteht aus allen endlichen Summen der Gestalt

(5) rk1 + rehe + ... + Tmbym (rve R, by H, by =+ by fiir ¢ 3 7).

Wihlt man m =1 und 1, = 1, so sicht man T > H. Fir m =1 und b = ¢
bekommt man eine Teilmenge R* von 7', von der man sofort sieht, da} sie ein
isomorphes Bild des Ringes R ist; wir diirfen deshalb nach einer Ersetzung
von R* durch R auch sagen: T 5 R. Ist andrerseits U c S ein Unterring von
S, der H und R umfaBt, so muf er alle Elemente der Gestalt 7k (r € R, b € H)
und damit auch alle Summen (5) enthalten: 7' c U. In 8 ist also T der kleinste
Unterring, der R und H enthélt; die Eins aus R ist Einselement auch von 7'.
Wiiren wir statt von 8 von einem anderen Oberring 8* von R ausgegangen,
in dem die Bedingungen (1), (2) erfiillt sind und der 1 als Einselement und H
als Teilstruktur enthélt, so wiirde fiir den analog 7' erklirten Unterring 7*
von S gelten: T* = T. Dabei benutzt man (1) in der Form

(6) rkitrobot ... +rmhm = ribatrihot. .. Frpkhn < rp=r, (v=12,...,m).

Wiillten wir also die Existenz von T (oder auch nur die von 8), so wire alles
bewiesen, und wir kénnten sagen: Dies ist der eindeutig bestimmte kleinste
Oberring R{H] von R mit 1 als Einselement und H als Teilstruktur, in dem die
Rechenregeln (1) und (2) gelten. Wegen der Gestalt (5) der Elemente von
R[H] nennt man R[H] auch den Halbgruppenring iber H mit Koeffizienten aus
R.

Satz 1: Es sei B ein kommulativer Ring mit dem Einselement 1 und H eine
multiplikativ geschriebene Halbgruppe mit dem Einselement e. Dann existiert der
Halbgruppenring R[H). Er umfaft R und H, enthdlt 1 als Einselement und
besteht aus allen Elementen der Gestalt (5). Man rechnet in thm nach den Regeln
(6), (3), (4).

Spezialfall: Ist H kommutativ, so ist R[H] ein kommutativer Ring. Ist
eine Unbestimmte iiber R und H = {e, z, 22, 23, ...}, so gilt R[H] = R[z].

Beweis von Satz 1: Wir konstruieren R[H] = T. Wir bemerken, daB
sich das Konstruktionsverfahren aus dem Beweis von Satz 25.1 nicht iiber-
tragen laft, da H nicht notwendig abzéhlbar zu sein braucht. Statt dessen
gehen wir von einer gewissen Menge von Abbildungen f: H - R aus und
haben dabei die Vorstellung, daf}l etwa dem Element r1k;y + rahs + r3hg aus T'
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die Abbildung f: H - R mit f(k) = r1, f(ks) =r2, f(ha) = rs und f(h) = 0 fiir
alle anderen & € H entsprechen mége. Es sei also A die Menge aller derjenigen
Abbildungen f: H - R, fir die nur an endlich vielen Stellen A € H das Bild
f(k) == 0 ist. Auf A erkliren wir eine Addition und eine Multiplikation nach
den Vorbildern (3) und (4). Es sei fiir f,ge 4

(39 (f + 9)h) = f(h) 4 g(h) fiir alle he H;

auf diese Weise ist die Summe f + g € 4 erklirt, und A wird eine abelsche
Gruppe beziiglich dieser Addition. Das Produkt von f,g € 4 im Sinn von § 3
ist gar nicht definiert; wir bezeichnen unser Produkt deshalb mit fog und
erklaren es durch

#) (fog)h) = 2f(hi)g(hy) fir alle h € H,

wobei iiber alle diejenigen Indexpaare (¢, §) summiert wird, fiir die kh; = A
ist. Da f(k;) und g(hs) nur jeweils endlich oft ungleich Null sind, steht rechter
Hand in (4’) eine endliche Summe, also ein Element aus R; aus dem gleichen
Grunde fillt auBerdem diese Summe nur fiir endlich viele 2 von Null verschie-
den aus. Das Produkt f o g der Elemente f, g von A4 liegt also wieder in 4. Die
so erklarte Multiplikation ist assoziativ, weil die Multiplikation in R es ist.
Analog priift man die Distributivgesetze nach. Also ist A ein Ring. Er enthalt
ein Einselement, nimlich die durch

ele) =1,e(h) =0fiirallehe H, h ¢

definierte Abbildung ¢ € 4.

Setzt man die Existenz des oben betrachteten Ringes T fiir den Augenblick
voraus, so gilt gewil 4 ~ T'. So haben wir die Konstruktion von 4 ja einge-
richtet. Das bedeutet, dall wir nur noch die Schreibweise der Elemente von A
éindern miissen, um 7' = R[H] zu erhalten. Unser Beweis ist abgeschlossen.

28.2 Es sei wieder R ein kommutativer Ring mit Einselement. Beispiele fiir
Halbgruppenringe sind dann etwa die Polynomringe R[x], R[x, y]; zu R[x, y]
gehort die Halbgruppe H aller Zmy™, m = 0, n = 0. Ein Halbgruppenring ist
auch der Ring R[x), %3, 3, ...] in abzéihlbar vielen unabhingigen Unbestimm-
ten z; iber R.

§ 29* Der Quaternionenschiefkérper

29.1 Es sei G die Quaternionengruppe (vgl. § 18). Den in § 23 konstruierten
komplexen Zahlkorper € = R[¢] konnte man auch wie folgt beschreiben: Er
ist der eindeutig bestimmte kleinste Oberkorper von R, der auch das Element
t € G enthélt; dabei tritt als Verkniipfungsergebnis von 32 die reelle Zahl —1
an die Stelle des Elementes —1 € G.

Geht man von dieser etwas willkiirlichen Deutung des Korpers € aus, so kann
man auch die Frage aufwerfen, ob man nicht in d4hnlicher Weise die Elemente
t, §, k aus G zu R adjungieren kann. Zwar wiirde wegen ¢j == ji die Multipli-



112 Ringe

kation in der betreffenden Oberstruktur von R nicht mehr kommutativ aus-
fallen; aber vielleicht liefe sich auf diese Weise der Korper R der reellen Zahlen
in einen Schiefkorper einbetten. Es ist etwas iiberraschend, da dies in der
Tat moglich ist. Die frither getroffene Wahl fiir die Bezeichnungen der Ele-
mente von G erweist sich im folgenden noch einmal als besonders suggestiv.
Wir nehmen zunéchst wieder an, es gibe einen Schiefkorper S, der &R als Teil-
struktur und auBerdem die Elemente ¢, §, k € G enthilt. Etwa die Multiplika-
tionsvorschriften 12 = —1 und ¢¢ = —j bedeuten in S: Es ist 2 das additive
Inverse von 1 € 8 und ¢k das additive Inverse von j € 8. Die Einselemente von
S und R stimmen nach § 25.1 von selbst iiberein. In Analogie zu §28, (2), moge
fiir die Multiplikation in § aulerdem noch

1) rs = ¢sr firallereR,se 8

gelten. In 8 betrachten wir nun die Teilmenge 7 aller Elemente der Gestalt

(2) a+bi+cj+ dk (@,b,c,deR; 1,4, ke ).
Die Formel
3) (a1 + azi 4 agj + aqk) 4 (br + bat 4 bgj - bak)

= (a1 + b1) + (a2 + bo)i + (a3 + b3)j + (aa + Do)k

fiir die Summe zweier Elemente aus 7' zeigt, dafl 7 eine abelsche Gruppe be-
ziiglich der Addition ist. Die Multiplikation zweier Elemente von T' fiihrt
wegen (1) auf

4) (@ +bi +cj + dk)s + 8t + uj + vk) = (as — bt — cu — dv)
+ (at + bs + cv — du)e
4+ (au + cs + dt — bv))
+ (av -+ ds + bu — ct)k.

Also ist T' ein Unterring von 8 mit dem Einselement 1. Das Assoziativgesetz
der Multiplikation und die Distributivgesetze gelten in S und damit erst recht
in T'; sie lassen sich aber auch leicht direkt nachpriifen. Tut man das, so be-
nutzt man beim assoziativen Gesetz die Assoziativitdt der Multiplikation in
der Quaternionengruppe G.

Der durch die Gestalt (2) seiner Elemente eindeutig bestimmte Ring 7' umfaBBt
R und die Elemente ¢, j, k£ aus G, und er ist der kleinste Ring dieser Art, in dem
die Multiplikationsvorschrift (1) gilt. Wir zeigen, daB 7' sogar ein Schiefkorper
ist. Dazu sei « = a + b1 4 ¢j + dk ein Element aus 7', dessen Koeffizienten

a, b, ¢, d nicht simtlich verschwinden, und @ = ¢ — bi — ¢j — dk. Mit
(4) folgt
ax = aa = a+ b2 + ¢ + d? = 0;
also ist
ol = 1 xeT

a® - b2 + ¢ | d2

das Inverse des von Null verschiedenen Elements « von 7'. Der Nachweis,
daB T ein Schiefkoérper ist, ist erbracht. AuBerdem folgt, daf « nur Null sein
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kann, wenn alle Koeffizienten verschwinden; gleichwertig damit ist

(5) ay + agt + agj + ask = by + bot + bgj 4 bak <= a, = b,
¢ =1,23,4;a, b,eR).

Wieder bleibt die Frage nach der Existenz der Struktur 7', und wieder kénnen
wir auf eine uns inzwischen geldufige Weise eine bejahende Antwort geben.
Wir bilden die Menge M = R4 aller Quadrupel (a, b, ¢, d) mit Komponenten
aus R, stellen uns unter ihnen die Elemente (2) vor und definieren eine Addition
und eine Multiplikation auf M nach den Vorbildern (3) und (4). Eine Aquivalenz-
relation brauchen wir wegen (5) auf M nicht einzufiibren. Es folgt der Nach-
weis, daB M ein Schiefkorper ist; abgesehen von der Bezeichnung der Ele-
mente handelt es sich um den zu konstruierenden Schiefkorper 7'. Wir fiithren
die einzelnen Schritte, die nach dem in § 23 gegebenen Muster ablaufen, nicht
mehr durch.

29.2 Diesen Schiefkorper, der aus allen Elementen der Gestalt (2) besteht und
in dem nach den Regeln (3), (4) und (5) gerechnet wird, bezeichnen wir in
Zukunft mit §; seine Elemente nennt man Quaternionen. Der Name Quater-
nionen stammt von dem englischen Mathematiker W. R. HamruroN (1805 —
1865); er hat sich ausfithrlich mit ihnen beschiftigt, nachdem schon Eurer
(1707—1783) mit ihnen gerechnet hatte. Der Quaternionenschiefkérper hat
in verschiedenen Disziplinen der Mathematik eine gewisse Bedeutung erlangt;
Anwendungen des Rechnens mit Quaternionen finden sich auch in der Mecha-
nik (vgl. BLascHKE [4]). Wir kommen im Rahmen der Algebra in § 55 noch
einmal auf den Schiefkorper ) zuriick, der dann eine interessante axiomatische
Beschreibung erfihrt.

Ist « = a + bt 4+ ¢j + dk ein Element von £, so nennt man

a =a—bl—cj—dke®
die zu a konjugierte Quaternion und die reelle Zahl
N(a) = ax = a® + B + ¢ 4 d?
die Norm von a. Fiir sie gilt
(6) N@N@B) = Nep) (. Be9).
Zum Beweis rechilen wir die linke Seite von (6) aus. Zunichst wird
N(@)N(B) = (aax)(8f) = «ff)x = (af)(fx); dabei wurde neben der Asso-

ziativitat der Multiplikation die Vertauschbarkeit der reellen Zahl 8 mit
a € ) benutzt. Nun gilt weiter

() of = Ba (@, Bef),

wie man nach (4) feststellt. Also bekommen wir N(«)N(f) = «f(fz) = afaf
= N(«ff), wie es in (6) behauptet war.

Der Schiefkorper § kann auch durch Adjunktion von j e G zu € gewonnen
werden. Dies siecht man, wenn man die Quaternion « = a + b + ¢j + dk.in

8 Hornfeck, Algebra
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der Gestalt « = a 4 bi + (¢ + di)j = a1 + agj schreibt (x; € €, j ¢ €). Es
gltRc€ch.

29.3 Ist K ein Korper, so gibt es nach Satz 26.2 hiochstens zwei Elemente &
in K mit der Eigenschaft &2 4 1 = 0. Aber schon fiir den Quaternionenschief-
korper §, in dem 43, +7, +k fiir £ gewdhlt werden konnen, ist das nicht
mehr richtig. Eben auf Grund von Satz 26.2 (vgl. auch § 23) ist es von vorn-
herein unmaoglich, ein j ¢ € mit der Eigenschaft j2 = —1 zu € zu adjungieren
mit dem Ziel, einen Oberkorper von € zu erhalten. Man kann zwar $ als die
Menge aller ) + agj (a1, 2 € €) auffassen, hat aber auf die Kommutativitat
der Multiplikation in § verzichtet.

Als Beispiel fiir das Rechnen in § zeigen wir noch die Existenz sogar unend-
lich vieler « € § mit a2 + 1 = 0. Wird ndmlich die Gleichung a&2-}-bé+4-¢c = 0
{a,b, c eR) durch x € H geldst: aa? + ba + ¢ = 0, so auch durch jede Qua-
ternion faf-1 (8 € H, == 0); denn es gilt

Blac?+batc)ft = afu?p-14-bfafl4c = alfuf)2-+b(fapl)+c = O.
Demnach ist etwa

NP N 21 2
(r + )k +9) = r—ilr +9) = 5 +rz4r—1

9'2—i—1z

r24+1

fiir jedes r € R eine Losung der Gleichung 2+ 1 = 0.

29.4 Wir betrachten fiir den Augenblick den Ring 3[}/—d], wobei d eine ganze
Zahl und }—d ¢ 3 sein soll. Ist « = a + b)/—d (a, b € 3) ein Element von
3[J—d], so setzen wir & = a —bJ/—d und bezeichnen die reelle Zahl
N(x) = ax = a? + db? als die Norm von «. Auch fiir diese Norm gilt

(6') N(@)N(B) = N(«p) (o, B € 3[Y—d).
Um das nachzurechnen, beachten wir die Giiltigkeit von
(7') af = af (o, B &€ 3[Y—4)).

Diese Beziehung rechnet man leicht direkt nach; sie gilt deswegen, weil wie
in Aufgabe 27.3 durch @(«) = @ ein Automorphismus von 3[}/—d] definiert
wird. Mit Hilfe von (7') wird dann N(«)N(8) = axpf = afaf = afaf = N(«f),
wie es in (6') behauptet war.

Schreibt man die Gleichung (6') mit « = a + b)—d und g = s + t|/—d
aus (a, b, 8, t € ), so lautet sie

(8) (@* + db?)(s® + dif) = (as — bid)? + d(at + bs)*.

Das ist eine Identitdt, deren Giiltigkeit man nachtriglich fiir jeden kommu-
tativen Ring bestitigt. Sie wird in der Zahlentheorie gebraucht (vgl. auch
Aufgabe 27.4). Speziell beruht der Fall ¢ = 1 auf dem Rechnen in 3[¢] oder €.

Das Produkt von Zahlen der Form 22 4 dy?2 hat-also wieder diese Gestalt. Eine
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ahnliche Aussage liefert (6). Ausgeschrieben bekommt man nach (4) die Vier-
quadrateformel

(@ + b2 4 ¢ 4 d?)(s® + 2 + u2 4 ¢?) = (as — bt — cu — dv)2
+ (at 4 bs + cv — du)?
+ (au + cs + dt — bv)?
+ (av + ds + bu — ct)?,

die sich wieder in jedem kommutativen Ring als richtig erweist. Wenn man
zeigen kann, und dies geschieht in der Zahlentheorie, daB sich jede Primzahl als
Summe von vier Quadraten aus 3 schreiben 1d8t, so liefert die aufgeschriebene
Formel den berilhmten Satz von LacrangEe (1736—1813), daB sich jedes
Produkt von Primzahlen, also jede natiirliche Zahl, als Summe von vier
Quadraten aus 3 darstellen 1a(t.

§ 30" Duale Zahlen

Eine sogenannte duale Zakl hat die Gestalt @ 4 be; dabei sind a, b reelle
Zahlen, und es gilt 2 = 0:

(1) a14ae="b+4be - a=2b (v = 1,2;ay,b,eR),
(2) (a1 + aze) + (b + boe) = (a1 + b1) + (a2 + be)e,
3) (@1 + age) * (by + bee) = aiby + (a1be + aohi)e.

Diese Forderungen definieren den kommutativen Ring D der dualen Zahlen.
Wir verzichten auf seine Konstruktion aus der Menge M = %2 nach dem
Vorbild von § 23.

Man sieht: Genau die Elemente der Gestalt re (r e R, r == 0) sind Nullteiler in
D. Das Rechnen mit dualen Zahlen gestattet hiibsche Anwendungen in der
Geometrie, die auf den deutschen Mathematiker E. Stupy (1862—1930) zu-
riickgehen (vgl. BLAsCHKE [4]).

§ 31 Angeordnete Ringe

31.1 In den Ringen 3,Q, R kann man sagen, ein gewisses Element sei positiv
oder groBer als ein anderes. Dieser Sachverhalt dient als Vorbild fir die
folgende

Definition: Ein Ring R == {0} mit Elementen a,b, ... heifit angeordnet,
wenn in R eine Relation a > 0 (lies: a grofer Null, oder: a positiv) mit folgenden
Eigenschaften erkldrt ist:

(1) Fiir jedes a € R gilt genau eine der Relationen a > 0, a = 0, —a > 0.

(2) Fira>0,b>0gqilta -+ b>0undab>0.

Die Menge P aller positiven Elemente aus R heiBt der Positivberé¢ich von R.
Eine Anordnung von R definiert also eine Partition R = Pu{0} u N von E;
dabei ist N die Menge aller r € R mit —r > 0. Ist ein Ring R auf zwei Arten

8e*
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angeordnet, so stimmen diese Anordnungen genau dann iiberein, wenn die zu-
gehorigen Positivbereiche dieselben sind. Gleichheiten von Anordnungen
werden so gezeigt.
Im AnschluB an die gegebene Definition treffen wir noch die folgenden weiteren
Verabredungen. Es soll @ > b (a groBer b) dasselbe heilen wie a — b > 0,
und @ < b (a kleiner b) bedeute dasselbe wie b > a. An Stelle von —r > 0
kénnen wir also auch r << 0 schreiben. SchlieBlich soll @ = b bedeuten: Es ist
entweder @ > b oder a = b. Entsprechend wird ¢ < b erklirt. Fiir jedes
Element r eines angeordneten Ringes R gilt also beispielsweise r = r.
Sind a, b Elemente eines angeordneten Ringes R, so gilt nach (1) mindestens
eine der Relationen a =< b oder b < a, und das gleichzeitige Bestehen von
a Zbund b < aist gleichwertig mita = b;ausa <bund b < ¢,alsob—a =0
und ¢ — b = 0, schlieBlich folgt vermoge (2) (b—a) + (c—b) = c—a =0
oder a =< c¢. Ein angeordneter Ring R ist also beziiglich der Relation < eine
geordnete Menge (vgl. § 1.2).
Beispiele fiir angeordnete Ringe wurden schon genannt. Jeder Unterring eines
angeordneten Ringes, etwa Q[]/2] c R, ist angeordnet. Im allgemeinen sind fiir
ein und denselben Ring R Anordnungen, wenn iiberhaupt, auf verschiedene
Arten moglich. Man betrachte etwa R = Q[z]. Eine Anordnung von fx]
erhdlt man beispielsweise, wenn man jedes von Null verschiedene f(z) € Q[«]
genau dann als positiv bezeichnet, wenn sein hochster Koeffizient ein positives
Element von £ ist. Eine ganz andere Anordnung von £[x] ergibt sich, wenn
man ein f(z) & 0 genau dann positiv nennt, wenn f(z) in R positiv ist; beim
Nachpriifen der Forderung (1) benutzt man, daB mit f(z) &= 0 auch f(z) & 0
gilt, also die Transzendenz von =z iiber .
Man kann aber auch leicht Ringe angeben, die sich nicht anordnen lassen.
Man betrachte zundchst einen angeordneten Ring R und ein re R, r 3= 0;
nach (1) gilt dann entweder r > 0 oder —r > 0, und beide Male liefert (2)
72 > 0. Von Null verschiedene Quadrate sind also in angeordneten Ringen
positiv. Ist speziell R ein angeordneter Ring mit Einselement, so folgt 1 = 12 > 0
und —1 < 0. Eine Folge davon ist, daBl beispielsweise € nicht angeordnet wer-
den kann; denn dazu miiBte einerseits 1 > 0 und andrerseits auch —1 = 2 > 0
sein im Widerspruch zu (1).
Wir wenden uns nun dem Rechnen in angeordneten Ringen zu.

Satz 1: Es sei R etn angeordneter Ring mit Elementen a,b,¢,d, ... Dann
gelten die folgenden Regeln.
a) Ausa >bundc>d folgta +c¢c> b+ d.
b) Aus a > b und ¢ > 0 folgt ac > bc und ca > cb.
¢) Ist R sogar ein Korper unda > b > 0, so folgt b-1 > a1 > 0.

Beweis:
a) Esista—b > 0,¢c—d > 0,nach (2) also (@—b) + (¢c—d) = (a + ¢)
—b+d)>0o0der a+c>b-14d.
b) Esist a — b > 0,¢ > 0, nach (2) also (¢ — b)e = ac — bc > 0 oder ac > bc;
analog wird ca > ¢b.
¢) Man beachte, dal aus ¢ > 0 auch (¢c~1)2c = ¢! > 0 folgt, und multipliziere
a > b > 0 gemil b) mit a-1b-1 > 0.
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Ist B ein angeordneter Ring, so definieren wir noch wie iiblich den Belrag |a)
von a € R; wir setzen |a] = a fir ¢ = 0 und |a] = —a fiir ¢ < 0. Es gelten
dann die Betragsrechenregeln (Aufgabe 2)

(3) ab] = ol - b, .

4) la + b| < |a] + |b| (Dreiecksungletchung),

(5) llal — || < l@ £ b| =< la| + bl

Ziemlich evident ist ferner die Giiltigkeit von

Satz 2: Eine Anordnung eines Integrititsbereiches I lifit sich auf genau eine
Weise zu einer Anordnung seines Quolientenkiorpers @ fortsetzen.

Beweis: Wiirde @ eine Anordnung gestatten, die auf der Teilstruktur
I ¢ @ mit einer vorgegebenen Anordnung iibereinstimmt, so miilte genau dann
a
b
Fortsetzung der Anordnung von I auf @ gibt, so nur diese. Ist aber

>Osein(a,beI,b=l=0),wennb2-%=ab>0inIist;wennesalsoeine

%>0 < ab>0

iiberhaupt eine Definition ? Ja; denn aus‘—; = —fioder ad = be folgt abe® = aZcd;
ist also ab positiv, so auch cd. Die gegebene Vorschrift definiert auch wirklich
eine Anordnung auf @: Die Forderung (1) ist erfiillt; aus ‘—: > 0 und Zb >0
folgt ac + bc = (a+b)c>0,alsoa j b=g
«b > 0, insgesamt also (2). Und schlieBlich liegt eine Fortsetzung der An-

c ¢
ordnung von I vor; ist namlich @ € I und @ in I positiv, so ist es wegen

—+ ;b > 0, und analog zeigt man

2
a@ spe .

a = — positiv auch in Q.
a

Will man den Ring 8 anordnen, so muf8 1 > 0 und nach (2) auch 1 +1 = 2>0,
14141 = 3> 0 usw. gelten; 3 und wegen Satz 2 dann auch £ gestatten also
nur die eine bereits bekannte Anordnung. Ist R ein angeordneter Ring, so ent-
halt er ein Element @ > 0, und nach (2) ist niemals na = 0 (n € N); die Ring-
elemente @, @ + @, @ + a + a, ... sind daher paarweise voneinander ver-
schieden. Ein angeordneter Ring R ist also unendlich. Ist speziell 1 € R, so ist
1 > 0, und R enthilt, wie man in Analogie zu Aufgabe 20.10a) zeigt, einen zu 3
isomorphen Unterring T' aller m1, m € 3. Es hat also einen Sinn zu sagen, 3
sei der kleinste angeordnete Ring mit einem Einselement. Jeder angeordnete
Korper umfaBt also 3 und damit auch , und Q 148t sich axiomatisch bis auf
Isomorphien eindeutig beschreiben als der kleinste angeordnete Korper.

31.2 Sind 0 < & < b Elemente eines angeordneten Ringes, so ist es nicht ge-
sagt, daB ein n € M derart existiert, daB na > b wird. Ein einfaches Beispiel
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dieser Art ist etwa Q[z] mit der bereits erwdhnten Anordnung, dafl ein f(x) 0
genau dann positiv sein soll, wenn der hochste Koeffizient es ist; es gilt dann
0<1l<zund n-1 < z fir jedes n € N. Solche Moglichkeiten werden in der
folgenden Definition ausgeschlossen.

Definition: Ein angeordneter Ring R mit Elementen a, b, ... heift archi-
medisch angeordnet, wenn aus 0 < a < b folgt: Es gibt ein n € Nt mit na > b.

Archimedisch angeordnete Ringe sind etwa 3, Q, Q[}/2], .

Es gibt viele angeordnete Korper. Beispielsweise 148t sich der Polynomring
R{x] wie eben beschrieben anordnen, und diese Anordnung kann nach Satz 2 zu
einer Anordnung des Oberkorpers R(z) von R fortgesetzt werden. Aber fir
archimedisch angeordnete Korper gilt bereits der Satz: Ein archimedisch an-
geordneter Korper K ist einem Unterkorper von ® isomorph. Wir wollen den
Beweis, obwohl er nicht schwierig ist, hier nicht ausfithren.

Aufgabe 1: LaBt sich 37(x) anordnen ?
Aufgabe 2: Man beweise die Betragsrechenregeln (3), (4), (5).

Aufgabe 3: Der Korper R 1iflt sich nur auf eine Weise anordnen.
Beweis ?
Aufgabe 4: Man bestimme alle Automorphismen von Q und R.

Aufgabe 5: Ein angeordneter Ring R ist nullteilerfrei. Beweis ¢

Aufgabe 6: Ein archimedisch angeordneter Ring R ist ein Integritits-
bereich. Beweis ?

§ 32* Der Kérper R der reellen Zahlen

32.1 Im Rahmen unserer bisher durchgefiihrten Uberlegungen haben wir zwar
das Rechnen in den Strukturen 3, Q, R, € als bekannt vorausgesetzt ; aber unter
der Annahme der Giiltigkeit lediglich von Satz 2.1 ergaben sich als Folge all-
gemeiner Sitze auch Existenznachweise fiir die Strukturen 3 und Q (§ 13,
§ 22), und in § 23 wurde der Korper € aus R gewonnen. Als Liicke blieb noch
der Nachweis der Existenz des Korpers R der reellen Zahlen. Die SchlieBung
dieser Liicke erfordert einen gewissen Aufwand und unterscheidet sich wesent-
lich von den friiher geiibten Konstruktionsverfahren.

Schon anschaulich vollzieht sich der Ubergang von Q zu R anders als etwa
der von 3 zu Q. Damals wurden die Losungen der Gleichungen ax = b (a, b € 3;
a =+ 0) zu 3 adjungiert. Diesmal kann man sich die Elemente von £ auf der
Zahlengeraden markiert denken und will erreichen, daf umgekehrt auch
jedem Punkt dieser Geraden ein Element r des Erweiterungskorpers & o
entspricht. Es gibt mehrere Moglichkeiten, diese Vorstellung mathematisch zu
realisieren. Methodisch am ergiebigsten ist ein Verfahren, das durch den
Konvergenzbegriff aus der Analysis nahegelegt wird und iiber die bloBe Kon-
struktion des reellen Zahlkérpers & hinaus eine allgemeine Bedeutung besitzt.
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Es geht unter anderem auf G. CanTor (1845—1918) zuriick und besteht, kurz
gesagt, in folgendem. Eine Folge rationaler Zahlen ay, fiir die das Cauchysche
Konvergenzkriterium erfiillt ist, hat immer einen Limes a € R; aber a braucht
nicht in § zu liegen. Umgekehrt gibt es zu jedem a € R eine (Cauchy-)Folge
rationaler a; mit a als Limes. Wir konstruieren nun R als die Menge aller
solcher Cauchy-Folgen aus rationalen a;; zwei derartige Folgen werden dqui-
valent sein, wenn sie denselben Limes a € ® haben. Dem wenden wir uns jetzt
im einzelnen zu. Eine andere, fiir Beweiszwecke mitunter niitzliche Konstruk-
tion des Korpers & durch sogenannte DEDERINDsche Schnitte findet man etwa
bei GraUERT-LIEB [5].

32.2 Wir beginnen mit der

Definition: Eine Folge (21, as, as, . . .) aus Q™ heift Cauchy-Folge, wenn zu
jedem positiven ¢ €Q ein N(e) € N derart existiert, daP |am — an| < & wird fiir
m, n > N(g). Eine Folge (ay, az, as, ...) eQ>® heifit Nullfolge, wenn zu jedem
positiven € € etn No(e) €N derart existiert, daf \ay| < e wird fiir n > No(e).

Eine Nullfolge (a1, @2, a3, ...) ist also eine spezielle Cauchy-Folge; denn zu
vorgegebenem & > 0 aus Q gelten fiir hinreichend groBe Indizes m, » die Un-
€

gleichungen |a,,| < 3

und la,| < %, und aus ihnen folgt

lam — @n| < |am| + laa| <e.
Eine Cauchy-Folge (a1, az, as, . ..) ist beschrinkt; das heifit, es gibt ein g eQ
derart, daB |a,| < ¢ gilt fiir jeden Index n. Fiir m, n > N(1) gilt ja |[ap—an| <1,
also fiir m > N = N(1) die Abschatzung |ans| = |(@m — an+) + an+l
=1 + |an+1|; man kann also ¢ = Max(|a1|, |a2], - .., lan|, 1 4+ lany41]) setzen.

Es sei nun M die Menge aller Cauchy-Folgen aus 2%; aus M konstruieren wir
R. Elemente (a1, ag, a3, ...) und (by, bs, bs, ...) aus M seien dquivalent, wenn
(a1 — b, @z — b2, az — b3, . ..) eine Nullfolge ist. Man iberzeugt sich, dal auf
diese Weise wirklich eine Aquivalenzrelation auf M definiert wird. Ferner seien
eine Addition und eine Multiplikation auf M durch

(ﬂ«l, az, ag, '--) + (blr b2’ b3’ -") = (al + bly az +b2; as +b31 °")

und
(@1, ag, as, ...) (b1, be, b3, ...) = (ajby, ashe, agbs, ...)

eingefiihrt; die rechten Seiten liegen wieder in M, was fiir die Summe aus
(@m + bm) — (an + ba)| = ((@m — an) + (b — ba)| = |@m — @n| + (b — bal
und fiir das Produkt aus
[@mbm — Gnby| = |@mbm — Anbm + Bpbm — apba)
= |bm(@m—an) + @a(br—b4)| < bl |@m—an| 4 lan| {bm—Dbnl

und der Beschrinktheit der |b,| und [a,] folgt.
Ist unsere Aquivalenzrelation eine Kongruenzrelation ? Da wir mit den Klassen
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rechnen wollen, miissen wir das nachpriifen. Fiir die Addition sieht man es
sofort mit Hilfe der Dreiecksungleichung. Und sind

(@1, ag, ag, ...) ~ (a1, a3, ag, ...)und (by, b, bg, ...) ~ (by, b3, b3, . ..),
so wird auch (a1by, ashs, agbs, . ..) ~ (a1by, asbs, aghs, . ..) wegen
lanbn— apbn| = lanbn — apbp + anby —azbp| < |bal - lan — an| + lay| - |bo—byl,
was fiir hinreichend groBes » kleiner als ein vorgegebenes ¢ > 0 aus Q ausfallt.
Es liegt also tatsichlich eine Kongruenzrelation vor.
Man sieht sofort, dal M ein kommutativer Ring ist. Das Nullelement in M
ist (0,0,0, ...); die dazu gehdrende Klasse ist die Menge n ¢ M aller Null-
folgen, und nach Satz 21.2 ist n ein Ideal von M. Die Menge A der Kongruenz-
klassen von M, von der wir ja erwarten, daB sie bis auf Isomorphien der Kérper
R wird, ist nach § 21 dasselbe wie M/n; als homomorphes Bild des kommutativen
Ringes M ist also auch 4 ein kommutativer Ring.
Wir wollen zeigen, da 4 sogar ein Korper ist. Die Null in 4 ist die Klasse n;
als Repridsentant kann (0,0,0,...) gewihlt werden. Entsprechend ist
(1,1,1,...) + n das Einselement. Ein von n verschiedenes Element aus 4
enthilt nur solche Folgen (aj, a5, a3, . . .), firdieeing €, 1 > ¢ > 0, existiert
mit |a,| > ¢ fir alle » > N*(g) € N; dabei hingen ¢ und N*(g) von der vorge-
legten Folge ab. Nur endlich viele a einer solchen willkiirlich dieser Klasse
entnommenen Folge (a1, a3, a4, . . .) sind also ihrem Betrage nach kleiner oder
gleich g; ersetzen wir diese a; durch Einsen, so erhalten wir den Repréisentanten
(@1, a2, ag, ...) derselben Klasse, und fir ihn gilt a, == 0 und |a,| > ¢ fir
alle ». Der Nachweis, da 4 ein Korper ist, ist erbracht, wenn wir gezeigt
haben, daBl (@, az,a3, ...) + n mit dem eben fixierten Reprisentanten

. . . 1 1
(@1, az, a3, ...) ein Inverses besitzt. Wir geben es an: (——, —y =y e ) “+ n;
a az as
. . 111 . .
wir missen nur noch nachweisen, daf o ayas eine Cauchy-Folge ist.
1 a2

Das folgt aber daraus, daB (a1, ag, as, ...) eine Cauchy-Folge ist und die
Ungleichung

! Iam_anl

|  |aman| q2

1 1
—— = [am — anl
am an |

besteht.

32.3 Ist der so konstruierte Kérper 4 nun auch das geworden, was wir haben
wollten ? Um das nachzupriifen, orientieren wir uns an der Vorstellung, der
Korper R o2 sei die Menge aller Dezimalbriiche. Zunichst ist sicher die Teil-
struktur 7' = {z: x€ 4, x = (@, a, a, ...) + n} aller durch konstante Folgen
repridsentierbaren Klassen aus A4 isomorph . Von Isomorphien abgesehen ist
also A4 ein Oberkérper von . Ferner definiert jeder Dezimalbruch, zum Beispiel
der fiir s, eine Cauchy-Folge, hier

3, 3,1, 3,14, 3,141, 3,1415, ...),

und wird so Reprisentant einer Klasse aus 4. SchlieBlich sieht man auch um-
gekehrt, daB man fiir jede Klasse aus 4 genau einen Représentanten dieser Art
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wihlen kann. Wir diirfen A als die Menge aller Dezimalbriiche ansehen.
Im folgenden stellen wir nun einige einfache Eigenschaften des in Abschnitt
32.2 konstruierten Korpers 4 fest, die, wie sich zum Schluf herausstellen
wird, ihn axiomatisch eindeutig beschreiben.

32.4 Wir wollen 4 anordnen und wéhlen ein Element (a;, az, a3, ...) + n
von 4, das nicht Null ist. Wir wissen bereits, daB dann ein g€, ¢ > 0,
existiert, so daB |a,| > g wird fiir alle n > N*(g). Da nun (a1, a2, as, . . .) eine
Cauchy-Folge ist, gilt ferner |an — a,| < 2¢ fiir alle m, n > N(2g). Aus beidem
zusammen folgt: Fir » > N = Max(N*(g), N(2¢)) haben alle a, das gleiche
Vorzeichen. Genau dann, wenn alle diese a, positiv sind, sei (a1, as, as, .. .)
+ n e A positiv. Diese Vorschrift ist eine Definition, da ein anderer Reprisen-
tant derselben Klasse sich lediglich um eine Nullfolge von (a1, @2, as, ...)
unterscheidet. Die Anordnungsaxiome aus § 31 sind ersichtlich erfillt. Und
schlieBlich wird die Anordnung von { fortgesetzt; denn (a, a, a, ...) + nel'cd
wird genau dann positiv, wenn a € in Q positiv ist.

32,5 Ist A archimedisch angeordnet? Es seien (a1,as,as, ...) + n und
(b1, b2, bs, ...) + n positive Elemente aus A. Dann gibt es positive rationale
Zahlen q1, gs, 71, r2 derart, daB fiir alle hinreichend groBen n gilt:

N << <bp<ra

Die Abschitzungen nach oben folgen daraus, daB (a1, as, a3, ...) und
(b1, ba, b3, . ..) Cauchy-Folgen sind. Da Q archimedisch angeordnet ist, gibt es
ein k € M mit kg1 > re. Dann ist aber erst recht (kay, kas, kas, . ..) + n groBer
als (b, be, bs, ...) + n. Es ist also A ein archimedisch angeordneter Korper.

32.6 Wir wenden uns noch einmal der Definition zu Beginn von Abschnitt 32.2
zu und verallgemeinern sie, indem wir  durch einen angeordneten Korper K
ersetzen.

Definition: Es sei K ein angeordneter Korper. Eine Folge (a1, as, as, - . .)
aus K heifit Cauchy-Folge, wenn zu jedem positiven € € K ein N(c) € N derart
existiert, daf \am— ay| < e wird fiir m, n > N(¢). Eine Folge (a1,as,a3, .. .) e K®
heift Nullfolge, wenn zu jedem positiven € € K ein No(c) € N derart existiert, daf
lan] < & wird fiir n > No(e). Allgemeiner heift die Folge (a1, as, a3, ...) € K*®
in K konvergent mit dem Limes a, wenn es ein a € K gibt derart, daf zu jedem
positiven e € K ein S(e) € M existiert mit |ap — a| < ¢ fiir n > S(g); man schreibt
dann lim a, = a. Ein angeordneter Kirper K heift vollstindig, wenn jede Cauchy-

r—>00

Folge (a3, as, as, ...) € K*® in K konvergent ist.

Nulifolgen sind also konvergent mit dem Limes Null.

Wir wissen, daB Q nicht vollsténdig ist. Die in Abschnitt 32.3 aufgeschriebene
Cauchy-Folge aus Q> beispielsweise ist nicht konvergent in R, da sie keine
rationale Zahl als Limes hat. Andererseits ist die betrachtete Cauchy-Folge
nach dem Cauchyschen Konvergenzkriterium aus der Analysis jedenfalls in R
konvergent wie jede Cauchy-Folge aus R*®. Dort wird also behauptet: R ist
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ein vollstindiger archimedisch angeordneter Korper. Unter dieser stindig
benutzten Voraussetzung betreibt man dann reelle Analysis.

Wir wollen nun zeigen, daf der archimedisch angeordnete Korper 4 voll-
stindig ist. Das ist nicht schwer, aber etwas umstindlich aufzuschreiben.

Es sei eine Cauchy-Folge (fi + n,fo + n,fa+ n, ...) € 4% von Elementen

A+n = (au, 012,013, ...) + n
1) fo+n = (an,as,a,...)+n
fa+n = (as1,asz, a3, ...} + 1

aus A vorgelegt. Auf Grund unserer Definition und der in Abschnitt 32.4 vor-
genommenen Anordnung von A4 hat das die folgende Bedeutung. Zu vor-
gegebenem £ > 0 aus £ gibt es ein N(¢) € M mit nachstehender Eigenschaft.
Sind 7, s natiirliche Zahlen groBer als N(e), so existiert ein A = A(r,s) e
derart, daB fir alle 1 > A gilt:

2 lara— a2 <€ (r,8 > N(g); A > A(r, 8)).

Wir denken uns ferner die Reprisentanten in (1) noch in bestimmter Weise aus-
gesucht; wir wollen, da8 die Komponenten der f; mit wachsendem A immer
weniger streuen: Lassen wir von einer Cauchy-Folge (a1, as, as, . . .) die ersten
k Komponenten weg, so wird auch (@x+1, @x+2, @x43, - . .) eine Cauchy-Folge,
die dieselbe Klasse reprasentiert. Auf diese Weise kénnen wir erreichen, da in
(1) fiir alle r, s gilt:

(3) lre — rel < ; (r, s€M).

Eine beliebige Komponente der r-ten Folge f, unterscheidet sich von der r-ten
Komponente a,, dieser Folge um weniger als pe

Unter diesen Voraussetzungen wollen wir zeigen: Die Folge

fh+nfot+nfa+n ... ed®

ist in A konvergent mit dem Limes f + ne A4, wobei f die Diagonalfolge
(a1, aze, ass, - ..) des Schemas

a; ajg a1z aia ...
a1 Qg2 A23 G24 ...
ag) agz ass as4 - - -
a4] @43 @43 Q44 . . .

................

bedeutet. Der Nachweis dafiir ist gewi dann erbracht, wenn wir das Folgende
zeigen kénnen. Zu vorgegebenem ¢ > 0 aus Q existiert ein S(e) € N derart, daB
fiir alle r, s > S(e) gilt:

(4) |@rs — ass| < & (r, s > S(e)).
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Das heiBt speziell: Wird die Folge (as1, ars, @3, .. .) in dem angeschriebenen
Schema nur hinreichend weit unten gewahlt, so unterscheidet sich a,; fir s = r
von der entsprechenden Komponente a;; der Folge (a1, azs, ass, ...) dem
Betrage nach um weniger als e. Aus den Beziehungen (3) und (4) und der
Ungleichung

[@rr — Qgs| = |arr — Ars| + |@rs — ass)

ergibt sich schlieflich von selbst noch, daB f eine Cauchy-Folge, also f - ne 4
ist.

Der ausstehende Nachweis von (4) stiitzt sich auf (2) und (3). Fiir r, s >N (%)

und hinreichend groBie 2 > A (r, s) gilt zunichst einmal
(5) ars—asal <

auf Grund von (2). Die a,; aus der r-ten Folge f, unterscheiden sich aber nach

1 . . 2
(3) von ar um hochstens pe somit untereinander um hdéchstens —, und ent-
r

sprechend unterscheiden sich die a,; der s-ten Folge um héchstens %. An Stelle

von (5) bekommen wir deswegen auch
e 2 2
Q fi—aal <5+o+2 (s> B2,

diesmal fiir alle 4 € . Hieraus ergibt sich (4) mit 2 = s und einem beliebigen

S(e) = Max (N(%), g).

32.7 Es ist also 4 ein vollstindiger archimedisch angeordneter Korper. Axio-
matisch ist nun noch ein Punkt interessant: Zwei archimedisch angeordnete
vollstindige Korper K und L sind isomorph. Wenn wir das noch beweisen, so
haben wir durch diese Angaben den Kérper 4 sogar eindeutig beschrieben.
Wir zeigen statt dessen: Ist K ein archimedisch angeordneter vollstindiger
Korper, so gilt K ~ 4.

Zunichst ist K angeordnet; nach § 31.1 diirfen wir also ¢ K voraussetzen.
Weil K sogar archimedisch angeordnet ist, gibt es iiberdies zu jedem a € K
ein neM mit n-1 = n > a, und es folgt die Existenz ganzer Zahlen m, n
mit m < @ < ». Nun kann man eine Cauchy-Folge (a1, a2, as, ...) e Q> kon-
struieren, die a als Limes hat; man wihlt etwa a; = m und halbiert das Inter-

m—}—n; gilt dann noch m < a gm

vall [m, n] durch n, so wihlt man auch

az = m, andernfalls as = n -2{—n’ und setzt das Verfahren der Intervallhal-

bierung fort.
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Durch f(a) = (a1,a2,as3, ...) + ne 4 wird nun eine Abbildung f: K - 4
definiert. Denn erstens ist (a1, @, as, ...) offenbar eine Cauchy-Folge, und
zweitens bildet eine andere gegen a konvergierende Folge (a1, @3, a3, ...)eQ™®
auf Grund der Abschitzung

lan—ail < lan—al + la—aj|

nur einen anderen Reprisentanten derselben Klasse (a;,az, a3, ...) + n.
Diese Abbildung f: K - A ist surjektiv, weil K vollstindig ist. Sie ist auch
injektiv; hitten ndmlich die voneinander verschiedenen Elemente a,b e K
dasselbe Bild (a1, as, a3, ...) + n € A, s0 hitte die Folge (a1, a2, as, - . .) die bei-
den verschiedenen Limites a und b, was wegen

la —an| + lan—2>d] 2 |a—b|
nicht méglich ist.
Die Abbildung f: K - 4 ist also bijektiv. Sie ist auch relationstren. Hierfiir

seien (a, ag, as, ...) und (by, by, b, . ..) Repriasentanten von Klassen aus A4;
nach Voraussetzung existieren in K -die Limites lim a, = @ und lim b, = b.
n=>00 n—>oo
Zu zeigen sind dann die Regeln
(7) lim (@p + b,) = lim a, 4+ lim b,
n->00 n—>00 n—>o0
und
(8) l'im anbn = lim ap * lim b”-
n—00 n—o0 n—00

Ihr Nachweis verliuft nach dem aus der Analysis bekannten Muster und
stiitzt sich auf die Ungleichungen

(7) (@n + bp) — (@ + B)| = lan—al + [by — b]
und
(8 lanbn — ab| < [ba| - lay — a| + [a] - [bp — b].

Insgesamt gilt also K ~ A.

32.8 Zuletzt ersetzen wir die in Abschnitt 32.3 betrachtete Teilstruktur
T = {@x:zed,z=(a,a,a,...) + 1} ~Q von A durch Q; den dadurch
aus A entstandenen Korper nennen wir den Korper R 52 der reellen Zahlen.
Wir fassen unsere Ergebnisse zusammen.

Satz 1: Es gibt, von Isomorphien abgesehen, genau einen archimedisch an-
geordneten vollstindigen Korper, den Korper R der reellen Zahlen.

Ergidnzend wiederholen wir: Der Ring 3 der ganzen Zahlen ist eindeutig be-
stimmt als der kleinste angeordnete Ring mit Einselement; der Korper  ist
eindeutig bestimmt als der kleinste angeordnete Korper (§ 31). Andere axioma-
tische Beschreibungen von 3 und £ hatten wir in § 13.2 und § 22.2 kennen-
gelernt.
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§ 33* Bewertete Korper

33.1 In einem angeordneten Korper K mit Elementen a, b, ... gelten nach
§ 31.1 die Betragsrechenregeln |ab] = |a| - |b] und |a@ 4 b| =< |e] 4 |b|. Thre
Bedeutung fiir die Analysis kann gar nicht hoch genug eingeschitzt werden.

Wir haben sie zum Beispiel bereits bei der Konstruktion des Korpers R in
typischer Weise gebraucht. Am Anfang der Analysis, etwa in R, stebt der
Limesbegriff, und die Theorie besteht aus den Sitzen, die, sich iiber ihn er-
geben. Es seien beispielsweise @y, b, reelle Zahlen mit lim a;, = a und

7>
lim b, = b; dann gilt lim ayb, = ab. Der Beweis beruht auf der Abschatzung
n->00 n->00

(8') aus § 32,

|@anbn —ab] = |bplap —a) 4+ alb, — b)) = |bul- lan —a| + lal - |bp — b,
die sich ihrerseits auf die beiden Betragsrechenregeln stiitzt. Will man zeigen,
daB das Produkt stetiger Funktionen wieder stetig, das Produkt differenzier-
barer Funktionen wieder differenzierbar ist, so benutzt man das gleiche Be-
weisschema.

Nun wissen wir aus § 31.1, dal der Korper € sich nicht anordnen 1a8t. Trotz-
dem kann man in ihm mit groBem Erfolg Analysis betreiben, und die zitierten
Limes-Satze gelten auch hier. Dazu definiert man den Betrag |2| einer kom-
plexen Zahl z € € als die nichtnegative reelle Wurzel aus 2z = 0 und hat damit

einen reellen ,,Wert von z; fiir komplexe Zahlen z), 23, ... soll dann lim 2z, = z
n->co

bedeuten, daB der ,,Wert*‘ von 2z, — 2 mit wachsendem % immer kleiner wird:
Zu vorgegebenem reellen & > 0 existiert ein S(¢) e M derart, daB |z, — 2| < ¢
ist fiir » > S(¢). Entscheidend ist nun, daB auf diese Weise die Betragsrechen-
regeln |ab] = |a|- |b] und |a + b| < |e| + [b| auch fiir komplexe Zahlen
a, b ihre Giiltigkeit behalten (vgl. Anhang). Als Folge davon kann man die
erwihnten Séitze auch fiir komplexe Folgen oder Funktionen aussprechen und
die alten Beweise, die auf diesen Regeln beruhen, iibernehmen.

Dieses Beispiel zeigt, dafl es sich lohnt, den Begriff der Anordnung eines
Korpers K in folgender Weise zu verallgemeinern.

Definition: Ein Kiorper K mit Elementen a, b, ... heifit bewertet, wenn eine
Abbildung ¢: K -+ W von K in einen angeordneten Korper W (meist W = R)
mit folgenden Eigenschaften vorhanden ist:

(1) ¢(0) =0; p(@) > 0 firalleaec K,a £+ 0.
(2) plab) = ¢(a) - @) fir alle a,b e K.
(3) ¢la + b) = gla) + ¢(b) fir alle a,b e K.

Es ist klar: Jeder angeordnete Korper K besitzt die durch W = K und
gla) = |a| definierte Betragsbewertung. Der Korper € 1aBt sich durch
¢(z) = + )2z € R bewerten. Eine triviale Bewertung schlieflich hat jeder
Korper K: Man setze ¢(0) = 0 und ¢(e) = 1 fiir-jédes a € K, a == 0. Zwei Be-
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wertungen ¢1: K - W und ¢y: K > W wird man genau dann als dquivalent
ansehen, wenn fiir alle a, b € K gilt:

pia) < gu(d) < g@ala) < pa(b).

Folgerungen aus (1) und (2) sind ¢(1) =1, ¢(—1) =1 und ¢(—a) = ¢(a).
Damit a8t sich wie in § 31, (5), die Dreiecksungleichung (3) in der Gestalt

lpla) — p(b)] = gla £ b) = ¢la) + ¢(b)

verallgemeinern. Schlieflich bekommt man aus (3) auch noch
a1+ aat ... +aa) £ 9l@) + 9laa) + - + glan).

33.2 Eine Folge (a1, az, a3, . ..) von Elementen a, eines durch ¢ bewerteten
Korpers K heilt Cauchy-Folge oder Fundamentalfolge, wenn zu jedem positi-
ven ec W ein N(e) €M derart existiert, daB ¢@(ay — an) < & wird fiir
m, n > N(¢). Entsprechend iibertragt man den Konvergenzbegriff. Ein Riick-
blick auf die Konstruktion, die in § 32 von £ zu R gefithrt hat, zeigt, daB auch
sie sich ohne wesentlichen zusiitzlichen Aufwand verallgemeinern liBt. Am
Ende steht das Ergebnis: Jeder bewertete Korper K besitzt einen minimalen
bewerteten Oberkorper E derart, da die Bewertung von E eine Fortsetzung
der Bewertung von K und jede Cauchy-Folge aus E* in E konvergent ist;
der Korper F ist bis auf Isomorphien eindeutig bestimmt und heiB3t die voll-
stindige Hiille von K beziiglich der Bewertung ¢. In § 32 handelte es sich um
den Spezialfall K = Q, £ =R, ¢(a) = |a|.

Wir wollen auf Einzelheiten nicht weiter eingehen, weisen aber noch auf fol-
gendes hin. Sind a, b Elemente eines bewerteten Korpers K, so darf man sich
unter g(a — b) ihre ,,Entfernung‘‘ d(a, b) vorstellen. Wir prézisieren das.

Definition: Eine Menge M von Elementen a, b, c, ... heifit ein metrischer
Raum, wenn etne Abbildung d: M x M — A des cartesischen Produktes M x M
in einen angeordneten Korper A (meist A = R) mit folgenden Eigenschaften
erkldrt ist:

(1) d(a,b) = O fiira ="b;d(a,b) > O fira =b.
(2) d(a, b) = d(b, a).
(3) dla,c) < da, b) + d(b, c).

Diese Forderungen an die Entfernung oder Metrik d(x, y) haben plausible an-
schauliche Bedeutungen; insbesondere bezieht die Dreiecksungleichung (3)
ihren Namen hierher. Ist nun K durch ¢ bewertet, so definiert ersichtlich
d(a, b) = @(a — b) eine Metrik auf K.

33.3 Welche Bewertungen gestattet beispielsweise ¢ Wir kennen bislang die
triviale und die Betragsbewertung. Weitere Bewertungen von Q erhialt man
wie folgt.

Es sei p € N eine feste Primzahl und das positive g e Q in der Gestalt %L Pk mit

zu p und untereinander teilerfremden natiirlichen Zahlen m, n geschrieben;
wir setzen dann ¢,(0) = 0 und
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oplg) = @p(—q) = p7*.

Dies definiert eine Bewertung ¢,:Q —Q von Q. Die Forderungen (1), (2) aus
33.1 sind trivialerweise erfiillt, und sind m, n, r, s ganz und teilerfremd zu p, so
folgt fiir ¥ <1 und von Null verschiedener Summe in der folgenden Klammer

m r ms + nrpl=¥
wp(h- P* + ;p‘) = %(—i P p") = p¥%, x 2k,

ns
oder gp(a + b) = Max (py(a), pp(d)) = @pla) + gp(b), also (3).
Dies nennt man eine p-adische Bewertung von Q. Etwas nachldssig gesagt, ist
ein g €  klein, wenn es durch eine hohe Potenz von p teilbar ist. Jede Wahl
von p liefert eine andere derartige Bewertung, und entgegen dem ersten
Augenschein spielen diese Bewertungen eine groBie Rolle (vgl. etwa Hasse
[6]). Weitere Bewertungen von { gibt es, wie man zeigen kann, nicht.

§ 34 Symmetrische Polynome

34.1 Wir wenden uns noch einmal Polynomringen Rz, 22, ..., 2p] in # Un-
bestimmten iiber einem kommutativen Ring R mit Einselement zu. Ein
Polynom f(x1, 2, . .., zn) € Rlx1, 2, . .., Zp] heilt symmetrisch, wenn es bei
jeder Permutation der z; unverindert bleibt, wenn also fiir jedes = € &, gilt:

[(@rq), Ta@)s o« o5 Tam) = fx1, T2, - . -, Tn).

Beispiele solcher Polynome sind etwa x1+z2+. .. 424, it +x,2, oder
Ringelemente r € R.

Weitere symmetrische Polynome, die besonders hiufig auftreten, erhdlt man
wie folgt. Man wihle eine weitere Unbestimmte z iiber R[zy, xg, . . ., 4] und
betrachte das Polynom g(x) = (z—a1)(x—=x3). . .(x—2y) € R[x1,%s,. . . ,2a][x].
Wir multiplizieren aus und setzen

g(x) = a® — ol + goa®2— 4 ... + (—1)%0p.

Jede Permutation der a; 1ld8t g(x) und damit auch die oy € R[z},%s,. . ., %] fest;
sie heiBen die elementarsymmetrischen Polynome der x1, g, . .., x, und haben
die Gestalt
o = in, gy = ‘z'zng, v, Op = X1XT3 ... Tp.
i i<j
Gegenstand unserer Erorterungen ist der folgende Hauptsatz iiber symmetrische
Polynome.

Satz 1: Jedes symmetrische Polynom f(xy, g, ..., xs) € B[, 72, . . ., )
lapt sich als Polynom in den elementarsymmeltrischen Polynomen o; schreiben:

f(xlr X2y oo uy xﬂ) € .R[O'l, 02, « .y U'n]-

Beweis: Das Polynom f(z1, 23, . . ., #p) ist eine Summe von Ausdriicken

der Gestalt rxi‘ xé‘ - xf;', reR, r &0, 44 = 0; wir schreiben diese Summe
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so auf, daB azl 3 ... 2% vor bab 2l ... 2P steht, wenn die erste nicht
verschwindende unter den Differenzen a; — 1, g — 82, . . ., xy — fn positiv
ist. Wir nehmen an, f(z1, g, . . ., 2;) habe den Grad m; das soll heiBen, da3
fiir wenigstens einen der Summanden 4; + 12 + ... 4+ 4, = m wird und die
Exponentensumme sonst immer < m ausfallt. Der triviale Fall f(2;,22,. . .,25)
= 0 ist dabei ausgeschlossen.

Der erste Summand von f(x1, 22, ..., 7s) heiBe aai' a5 ... x;*. Weil nun

f(z1, x2, . .., xp) symmetrisch ist, gilt oy = a2 = ... = ap. Denselben ersten
Summanden hat das Polynom

Xy X%y

aoy o ... 0 €R[x1, %, ..., 25)
vom Grad
(or—a2)+2(ag—ag)+ . . . +(n—1){an-1—otp)+n0tn = o1toet...+oax = m.

Wir subtrahieren es von f(z3, xa, .. ., £y) und betrachten die Differenz

d(x1, 2, ..., %) = f(@1, X2, ..., %p) —ac]” o Tt ...aon.
Es ist entweder d(x;, ®2, ..., 23) = 0, und in diesem Fall sind wir fertig,
oder das symmetrische Polynom d(z1, z2, ..., z,) hat einen Grad < m und

einen ersten Summanden ba:“lil xg' een xﬁ", der bei der verabredeten Reihen-

folge nur einer der méglichen Nachfolger von axi' z3' ... z5* sein kann.
Solche Nachfolger gibt es unter Polynomen vom Grad < m nur endlich viele.
Setzt man daher das Subtraktionsverfahren fort, so bricht es nach endlich
vielen Schritten mit einer Differenz Null ab, und Satz 1 ist bewiesen.

Dieser Beweis ist konstruktiv; er ermoglicht es, zu vorgelegtem symmetrischen
f(x1, z2, ..., xp) die gewiinschte Darstellung als Polynom in den elementar-
symmetrischen Polynomen oy(x1, 23, - . ., 2,) auch wirklich aufzufinden, selbst
wenn die Rechnung im einzelnen miithsam sein mag.

34.2 Eine der hiufigsten Anwendungen von Satz 1 beruht darauf, daB auch
das Polynom

D(xy, %2, ..., ) = [I(xs — xx)? € B[21, 22, ..., Ta]
i<k

symmetrisch ist, also eine Polynomdarstellung durch die oy(z1, 2, - . -, 25) ge-
stattet.

Es sei K ein Korper und f(z) = z% + ajz®-! 4 agx®-2 + ... + a, € K{z];
es gebe einen Erweiterungskorper £ von K, in dem f(z) die » nicht notwendig
paarweise voneinander verschiedenen Nullstellen &, &, ..., &, besitzt. Spater
wird sich zeigen, daB ein derartiger Korper £ immer existiert (§ 58). Nach
dem Beweis von Satz 26.2 gilt dann in E[x]

(&) = (x— &)z — &) ... (x — &).
Unter der Diskriminante D(f) von f(z) versteht man die Zahl
D(f) = TI(6s — &)

i<k
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Man betrachte nun die Polynomdarstellung von D(xi, xs, ..., y) durch die
oy(xy, %2, . .., xy) und ersetze in ihr die z; durch die &. Wegen

6](517 52, ey Eﬂ) = (—l)jaj

folgt, daB D(f) ein Polynom in den a4, also D(f) € K ist. Wir beachten dabei,
daB wir die Koeffizienten von f(x) so bezeichnet haben, dafl sie bis aufs Vor-
zeichen dem Polynom g(x) aus dem vorigen Abschnitt entsprechen.

Die Darstellung der Diskriminante D(f) durch die Koeffizienten a; von f(x)
erfordert einige Rechnung, die unter anderem nach dem Muster des Beweises
von Satz 1 durchgefiihrt werden kann. Wir geben zwei Resultate an:

(1) D(@? + px + q) = p2—4q;
@)  D(? + aa? + asw + as) = alal — 4ai — dalas — 27af + 18a10zas.

34.3 Die Bedeutung der Diskriminante D(f)} € K des Polynoms f(x) € K[x] be-
ruht auf den Informationen, die sie iiber die Nullstellen & € E von f(z) ver-
mittelt. Sie ist genau dann Null, wenn f(z) in F wenigstens eine mehrfache
Nullstelle hat. Wir sehen uns noch zwei Beispiele an.

Das quadratische Polynom 22 4 px -+ ¢ € R[z] hat entweder zwei konjugiert-
komplexe oder nur reelle Nullstellen &, é2; der letzte Fall tritt genau dann
ein, wenn (& — &)2 = D(22 + px + q) = p2— 49 = 0 ist, was auch die
iibliche Auflésung der quadratischen Gleichung ergibt.

Das kubische Polynom f(x) = 23 4 a12® 4+ asx + a3 € R[z] besitzt entweder
eine reelle und zwei konjugiert-komplexe oder drei reelle Nullstellen, ihrer
Vielfachheit entsprechend gezihlt; ein Polynom ungeraden Grades mit reellen
Koeffizienten hat ja, wie wir aus der Analysis wissen, mindestens eine reelle
Nullstelle. Sind alle drei Nullstellen reell, so ist sicher D(f) = 0. Umgekehrt:
Sind die Nullstellen &;, £z nicht reell und &3 € R, s0 sind (& — &3)2 und (&2 — &3)2
von Null verschiedene konjugiert-komplexe Zahlen, also (§1 — &£3)%(62 — £3)2>>0,
und mit (& — &)2 < 0 folgt D(f) = (sr—&)A(5r—£&3)2(52—&3)2 < 0. So ergibt
sich der mitunter gebrauchte

Satz 2: Das kubische Polynom 3 + a1x2 4 agsx + as € R(x) hat genau dann
dret reelle Nullstellen, wenn die Diskriminante

aja3 — 4a} — dalay — 274} + 18a10005 = 0
st.

Aufgabe 1: Es sei K ein Kérper und
fl®) = am 4+ axn-1 4 agxn-2 A ... + ay € K[z].

In dem Erweiterungskorper £ von K habe f(z) die Nullstellen &, &, ..., &a.

Man beweise die Formel
n(n—1)

@) Dif)y = (1) 2 [fEf(E) ... fé)

Literatur: v. . WAERDEN [16].

9 Hornfeck, Algebra



