
3 Ringe 

Wir wenden uns nun algebraischen Strukturen mit zwei Verknüpfungen zu. 
Als Modelle stehen uns dabei etwa die Strukturen 3 und Q mit den Verknüp-
fungen Addition und Multiplikation vor Augen. Es handelt sich bei beiden um 
Ringe mit zusätzlichen speziellen Eigenschaften. Aus der umfangreichen 
Theorie der Ringe greifen wir nur einige Ergebnisse heraus, die ständig ge-
braucht werden. Wir beginnen mit einer allgemeinen Vorbetrachtung. 

§ 19 Algebraische Strukturen 

Bevor wir uns speziellen Strukturen mit zwei Verknüpfungen zuwenden, 
stellen wir einige allgemeine Definitionen und Sätze auf, die nach den ent-
sprechenden Erörterungen in Kapitel 2 hinreichend plausibel geworden sind. 

Definition: Es seien S\ und Sz algebraische Strukturen mit jeweils n Ver-
knüpfungen; wir bezeichnen mit 

oi, 02, . . . , o„ die Verknüpfungssymbole von 8i 

und mit 

®i, ®2, ..., die Verknüpfungssymbole von Sz. 

Eine Abbildung f: Si-^-Sz heißt relationstreu oder Homomorphismus von Si in 
S2, wenn (eventuell nach einer Umnumerierung) für jedes i, 1 5S i ^ n, und 
alle x,y e 81 gilt : 

f ( x o t y ) = f(x) f ( y ) ; 

sie heißt Homomorphismus von Si auf 82, wenn sie zusätzlich surjelctiv ist, und 
in diesem Fall nennen wir 8z ein homomorphes Bild von S± und schreiben 

Ein Isomorphismus von Si in Sz ist eine injektive relationstreue Abbildung 
f : 81 8z; sie heißt Isomorphismus von 81 auf Sz, wenn sie sogar bijektiv und 
relationstreu ist; in diesem Fall heißen Si und Sz isomorph, und wir schreiben 
Si ~ Sz. 
Ein Automorphismus von 81 ist ein Isomorphismus f : 81 -> Si von 81 auf sich. 
Unter einem Endomorphismus von 81 schließlich versteht man einen Homomor-
phismus von Si in sich. 

Isomorphe Strukturen definieren wieder eine Äquivalenzklasse und werden 
nicht als wesentlich voneinander verschieden angesehen. Aus 81 ^ Sz und 
82 ^ 83 folgt S i ^ S3. 
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Definition: Es sei S eine algebraische. Struktur mit den Verknüpfungen 
oi, 02, . . . , on und , , 3 " eine Äquivalenzrelation auf 8. Diese Äquivalenzrelation 
heißt Kongruenzrelation, wenn für jedes i, 1 ^ i ij n, gilt: 

a = a',b = b' => a o< b = a' o< b'. 

Das kann man auch so interpretieren: In einer Kongruenzbeziehung aus 8 
dürfen die in ihr auftretenden Elemente von S durch kongruente ersetzt 
werden (vgl. etwa die spätere Aufgabe 20.2). 
Wie Satz 15.1 beweist man den 

Satz 1: Die Menge A aller Automorphismen einer algebraischen Struktur S 
mit n Verknüpfungen ist eine Gruppe, die sogenannte Automorphismengruppe 
von S. 

Es sei nun weiterhin Si eine algebraische Struktur mit den Elementen 
a, a', b, b', s, ... und den n Verknüpfungen 01, 02, . . . , on ; gesucht seien alle 
homomorphen Bilder von S±. Angenommen, auf <Si ist eine Kongruenzrelation 
„ = " erklärt. Dann zerfallt S± in Kongruenzklassen. Die Menge dieser Klassen 
sei $2 = {K(a), K(b), . . . } . Wir erklären auf S2 die Verknüpfungen 
®i, ®2, . . . , ®» durch K(a) ®j K(b) = K(a o< 6); das sind wirklich Verknüp-
fungen auf $2, weil sich nach der Definition der-Kongruenzrelation die rechten 
Seiten nicht ändern, wenn die Repräsentanten a, b von K(a), K(b) durch 
andere Repräsentanten a', b' ersetzt werden. Für s e Si setzen wir nun 
f(s) = K(s) € S2 und definieren dadurch eine surjektive Abbildung /: S± -> 
Diese Abbildung ist relationstreu: 

f(a oi b) = K(a o< b) = K(a) ®, K(b) = f{a) ®t f(b). 

Also gilt Si ^ S2. 

Umgekehrt sei jetzt ein homomorphes Bild S3 von Si vorgelegt, $1 ^ S3; der 
vermittelnde Homomorphismus sei f . Dann ist durch a ~ a' o f(a) = f(a') 
eine Äquivalenzrelation auf Si erklärt; Si zerfällt in Äquivalenzklassen derart, 
daß genau die Elemente einer Klasse dasselbe Bild besitzen. Diese Äquivalenz-
relation ist sogar eine Kongruenzrelation: Aus a ~ a' und b ~ b' folgt 

f(a Oi 6) = f(a) ®< f(b) = f(a') f(b') = f[a'otb'), 

also a Oi b ~ a' o< b'. Wir betrachten die Menge S% = {K(a), K(b), . . . } aller 
dieser Kongruenzklassen und behaupten S2 — S3; dabei seien die Verknüp-
fungen auf $2 wie oben eingeführt. Zunächst definiert <p(K(a)) = f(a) eine 
Abbildung q>: S2 Sa, weil f(a) von der Wahl des Repräsentanten von K(a) 
nicht abhängt, und diese Abbildung ist ersichtlich bijektiv. Sie ist auch rela-
tionstreu, und das bedeutet insgesamt S2 — S3. Abgesehen von Isomorphien 
ist also das homomorphe Bild S3 von Si eines der bereits oben gefundenen 
homomorphen Bilder S2. 
Wir fassen zusammen. 

Satz 2: Es sei Si eine algebraische Struktur mit Elementen a,b, . . . und 
den n Verknüpfungen o<, 1 ^ i ^ n. Ferner sei auf S\ eine Kongruenzrelation 
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erklärt. Dann werden auf der Menge Sz = {K(a), K(b), ...} der Kongruenz-
Massen von Si durch K(a) K(b) — K(a 0{ b) ebenfalls n Verknüpfungen 
®i» 1 ^ i ^ w, definiert, und es gilt S\ ^ 82- Jedes homomorphe Bild von Si 
ist einer derart gewonnenen Struktur S2 isomorph. 

Das Aufsuchen aller homomorphen Bilder einer algebraischen Struktur S mit 
n Verknüpfungen ist also gleichbedeutend mit der Aufgabe, alle Kongruenz-
relationen von S ausfindig zu machen. 
Wie Satz 12.3 ergibt sich schließlich noch der 

Satz 3: Es sei S eine algebraische Struktur mit Elementen a,b, ... und 
den n Verknüpfungen oj, 1 ^ i ^ n. Ferner sei S = K(a) u K(b) u . . . eine 
Zerlegung von S in paarweise verschiedene Äquivalenzklassen. Genau dann de-
finiert K(a) K(b) = K(a o t b) für jedes i, 1 i ^ n, eine Verknüpfung auf 
der Menge {K(a), K(b), ...} der Äquivalenzklassen, wenn die durch die Partition 
von S erklärte Äquivalenzrelation eine Kongruenzrelation ist. 

§ 20 Das Rechnen in Ringen 

20.1 Wir beginnen mit der folgenden 

Definition: Eine algebraische Struktur R mit einer additiv und einer multi-
plikativ geschriebenen Verknüpfung heißt ein Ring, wenn folgendes gilt: 
(1) R ist bezüglich der Addition eine abelsche Gruppe. 
(2) R ist bezüglich der Multiplikation eine Halbgruppe. 
(3) Für alle Elemente a, b, ce R gelten die Distributivgesetze 

a(b + c) = (ab) + (ac) =/>/ ab + ac, 
(b + c)a = (ba) + (ca) =0/ ba + ca. 

(Das Zeichen für die Multiplikation soll also wie üblich stärker binden als das für 
die Addition.) 
Ein Ring R heißt kommutativ, wenn für alle a,beR gilt: ab = ba. 

Die Forderung (1) bestimmt die Eigenschaften der Addition, die Forderung (2) 
beschreibt die Multiplikation; in (3) schließlich wird ein Zusammenhang 
zwischen den Verknüpfungen hergestellt. 
Jeder Ring R besitzt als additiv geschriebene abelsche Gruppe genau ein Null-
element 0, das für jedes ae R die Beziehung a + 0 = 0 + a = a erfüllt. 
Enthält ein Ring R 4= {0} ein Element 1 e ü mit l a = a l = a für jedes ae R, 
so nennen wir dieses Element Einselement von R. Es gibt Ringe ohne Eins-
element (vgl. Beispiel 2). Zwei Einselemente 1,1' kann ein Ring R wegen 
1 = 1 - 1 ' = 1' nicht besitzen. 
Wie bei Gruppen erklärt man die Begriffe Unterring und echter Unterring. 

B e i s p i e l 1. Die Strukturen Q, 5t, 2 sind kommutative Ringe mit Eins-
element. 
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Be i sp i e l 2. Die Menge = { . . . , — 2 n,—n, 0, n, 2n, . . . } aller durch ein 
festes « =|= 1, teilbaren ganzen Zahlen ist ein kommutativer echter 
Unterring von 3 ohne Einselement. 
Be i sp i e l 3. Die Menge aller reellen zweireihigen quadratischen Matrizen ist 
ein nichtkommutativer Ring mit Einselement bezüglich der Matrizenaddition 
und -multiplikation. 
B e i s p i e l 4. Die Menge R = {x: x = a + öj/2, a, b e 3} c SÄ ist ein kommu-
tativer Unterring von 3t mit Einselement. Aus x,yeR, etwa x = a + Í>V2 
und y = c + <2|/2, folgt ja sowohl x + y = (a + c) + (b + d)]/2 § R als auch 
xy — (ac + 2bd) + (ad + 6c)|/2 e iJ; außerdem gilt 0 6 ¿Í und —a; 6 ¿2. Alle 
weiteren Forderungen sind schon in 31 und damit erst recht in R c SR erfüllt. 
Sind a, b Elemente eines Ringes R, so schreiben wir statt —(ab) wieder nur —ab. 
Wir beweisen nun die bekannten Vorzeichenregeln. 

Satz ls In Ringen gelten die Rechenregeln a • 0 = 0 • a = 0, o(—b) = (—a)b 
= —ab, (—a)(—b) = ab, a(b — c) — - ab — ac und (b — c)a = ba — ca. 

Bewei s : Nach (3) ist o2 = a(a + 0) = o2 + a • 0, also a • 0 = 0, weil 
die Gleichung a2 + x = a2 nach Aussage c) von Satz 6.1 genau eine Lösung x 
hat ; aus o2 = (a + 0)a folgt entsprechend 0 • a = 0. Ferner gilt sowohl 
ab + (—ab) = 0, als auch ab + a(—b) = a(b + (—b)) = a • 0 = 0, und wie 
eben folgt a(—b) = —ab; aus ab (—a)b = 0 bekommt man nach dem-
selben Muster (—a)b = —ab. Damit wird (—a)(—b) — a(—(—b)) — ab. 
Schließlich ist a(b — c) = a(b + (—c)) = ab + a(—c) = ab — ac, und analog 
ergibt sich die letzte Behauptung. 

F o l g e r u n g : Besitzt ein Ring R ein Einselement 1, so ist 1 4= 0. 
Man kann leicht endliche Ringe konstruieren. Die wichtigsten sind die im 
folgenden betrachteten Restklassenringe modulo n. 
Bei sp i e l 5. Es sei n eine feste natürliche Zahl, 3 der Ring der ganzen Zahlen 
und 

= { t f ( 0 ) , m . . . , JT(n—1)} 

die Menge der Restklassen modulo n. Wir zeigen, daß die zugrundeliegende 
Äquivalenzrelation 

a = a' o n\(a — a') 

eine Kongruenzrelation auf dem Ririg 3 ist: Es gelte a = a', b = b'. Diese 
Äquivalenzrelationen bedeuten die Existenz ganzer Zahlen A, ¡x mit a' = a + Am, 
V = b + fin; für gewisse ganze Zahlen Q = A + /i, a = fia + Ab + wird 
also a' + b' = a + b + gn sowie a'b' = ab + an, und das heißt a + b = + b' 
sowie ab = a'b'. Nach Satz 19.3 werden also durch 

K(a) + K(b) = K(a + b), K(a)K(b) = K(ab) 

eine Addition und eine Multiplikation auf der Menge der Kongruenzklassen 
erklärt. In Erinnerung an § 9.1 können wir sagen, daß der additiven Rest-
klassengruppe modulo n in natürlicher Weise noch eine Multiplikation auf-
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geprägt wurde. Wir zeigen jetzt, daß damit = {K(0), i i(l) , . . . , K(n— 1)} 
ein kommutativer Ring wird. Die Forderung (1) ist nach § 9.1 erfüllt. Das 
Assoziativgesetz der Multiplikation 

(.K(a)K(b))K(c) = K(ab)K(c) = K((ab)c) 
= K(a(bc)) = K(a)K(bc) = K(a)(K(b)K(c)) 

folgt aus dem entsprechenden Assoziativgesetz von 3". also gilt (2). Eine 
analoge Rechnung liefert die Kommutativität der Multiplikation von pn, so 
daß wir für (3) nur noch eines der beiden Distributivgesetze nachzuprüfen 
brauchen: 

K{a)(K(b) + K(c)) = K(a)K(b + c) = K(a(b + c)) = K(ab + ac) 
= K(ab) + K(ac) = K(a)K(b) + K(a)K(c). 

Damit wissen wir: 3» ist für n> 1 ein kommutativer Ring mit dem Einselement 
ÜT(1). Er heißt der Restklassenring modulo n. Solange keine Verwechslungen mit 
der zyklischen Gruppe der Ordnung n zu befürchten sind, behalten wir für ihn die 
Bezeichnung 3« bei- Man addiert und multipliziert in 3» wie in 3. setzt aber 
Vielfache von n gleich Null. Für n = 1 besteht 3» aus der Null K(0) allein 
(Nullring). 
Für die Kongruenzrelation a = a' o n \ (a — a') pflegt man eine der beiden 
Schreibweisen 

a = a' mod n oder a = a' (n) 

zu wählen. 

A n w e n d u n g : Wir zeigen auf zwei nur durch die Schreibweise unterschie-
dene Arten, daß 232 + 1 durch 641 teilbar ist. Beide Male gehen wir von der 
Identität 24 + 54 = 5 • 27 + 1 = 641 aus. 
a) Es ist 5 • 27 = —1 (641). Denkt man sich diese Kongruenz viermal hin-
geschrieben und die linken und rechten Seiten multipliziert, so bekommt man 
(5 • 27)4 = (_ i )4 m o ( i 641 oder 5« • 228 = 1 (641). Hierin darf man wegen 
54 = _ 2 4 (641) den Faktor 54 durch— 2* ersetzen. Das liefert —232 = 1 (641) 
oder 641 | + 1). 
b) Im Restklassenring $64i gilt K(5 • 27) = K(—1). Potenziert man beide Seiten 
mit 4, so bekommt man K(54 • 228) = K( 1). Für die linke Seite kann man auch 
Z(54) • K(228) 0der K(—24) • K{22») = K(—2™) schreiben. Das ergibt K(—2™) 
= K( 1) oder 641 | (232 + 1). 

Oft wird man den Restklassenring einfach in der Gestalt {0, 1 n — 1} 
schreiben und dabei beachten, daß die hingeschriebenen Elemente keine ganzen 
Zahlen sind. 

A u f g a b e 1: Man gebe die Verknüpfungstafeln des Restklassenringes 
an. 

A u f g a b e 2: Man löse die Kongruenz 5x = 7 (13). 

A u f g a b e 3. Durch Rechnen im Restklassenring 3s zeige man: Keine 
natürliche Zahl n der Form 8k + 7 ist Summe von drei Quadratzahlen. 
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20.2 Im Restklassenring — {0, 1, 2, 3, 4, 5} gilt 2 • 3 = 0, in 3ie etwa 
2 • 8 = 0; ist n keine Primzahl, so gibt es in $n Elemente a =|= 0, b =j= 0, deren 
Produkt ab Null ist. 

Definition: Ein Element a + 0 eines Ringes R heißt linker Nullteiler, wenn 
ein b =(= 0 in R existiert, so daß ab = 0 ist. Ein Element b =|= 0, b e R, heißt 
rechter Nullteüer, wenn ein a =|= 0, a e R, existiert, so daß ab = 0 ist. Ein Ring R 
heißt nullteilerfrei, wenn er keine Nullteiler enthält. 

Ein Bing R ist also genau dann nullteilerfrei, wenn für alle a, be R aus ab = 0 
folgt: a= 0 oder 6=0. Nullteilerfreie Ringe sind zum Beispiel 3, G> 3t. Das-
selbe gilt für die Restklassenringe 3j> = {^(0), ÜT(1) K(p — 1)} mit Prim-
zahlindex p. Aus K(a)K(b) = K(ab) — K(0) folgt ja p\ab in also etwa p\a 
oder K(a) = K( 0). 

Gilt in einem Ring ab = ac, so folgt auch für a 4= 0 nicht notwendig b = c; 
in 3x2 gilt etwa 2 • 3 = 2 • 9, aber es ist 3 4= 9- Ist aber R nullteilerfrei, a e R und 
a =f= 0, so folgt aus ab = ac zunächst a(b — c) = 0, also tatsächlich b — c = 0 
oder 6 = c; entsprechend wird ba = ca => b = c. Wir formulieren dieses 
Ergebnis. 

Satz 2: Ist R ein nuUteilerfreier Ring mit Elementen a,b,c, ..., so gelten 
für a =j= 0 die Kürzungsregeln 

ab = ac => b = c, ba = ca => b = c. 

Wir betrachten nun einen nidlteilerfreien Ring R =j= {0} mit Einselement und 
sehen uns die Elemente 1, 1 + 1, 1 + 1 + 1, . . . an. Es können zwei Fälle 
eintreten. Entweder keines von ihnen ist Null, und das ist gleichbedeutend da-
mit, daß sie paarweise voneinander verschieden ausfallen; wir sagen dann, 
R habe die Charakteristik Null und schreiben ^(Ä) = 0. Oder es gibt ein n 6 91 
mit 1 + 1 + . . . + 1 = 0 (w Summanden 1); dann gibt es auch ein kleinstes n 
dieser Art. Dieses minimale n ist zunächst ungleich Eins und muß außerdem eine 
Primzahl p sein, weil aus n = kl mit natürlichen Zahlen k <n, l < n und 
n k l k 
2 1 = = 0 wegen der Nullteilerfreiheit von R folgt: 2 1 = 0 oder 
1 1 1 I 
i 

2 1 = 0. Wir sagen in diesem Fall, R habe die Charakteristik p und schreiben 

X(R) = P-
Ist R ein Ring mit ^(i?) = p, ist also 1 e R und R nullteilerfrei, so verschwindet 
eine Summe r + r + . . . + r von m Summanden r e R, falls p in m aufgeht. 
Um das einzusehen, schreibe man r + r + . . . + r = 1 • r + 1 • r + . . . + 1 • r = (1 + 1 + . . . + 1) • r. 

Es ist x(3) = = = %(<£) = 0; für Primzahlen p gilt X(BP) = V-

Definition: Ein vom Nullring verschiedener kommutativer nuUteilerfreier 
Ring heißt Integritätsbereich. 
Beispiele für Integritätsbereiche waren etwa Q. % 3P (P Primzahl). Auch 
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die Ringe in den obigen Beispielen 2 und 4 sind als Unterringe von $ und 91 
Integritätsbereiche. 
Wir betrachten nun einen beliebigen Ring R mit Einselement. In ihm wird die 
Frage nach multiplikativen Inversen von Ringelementen sinnvoll. Wir treffen 
die folgenden Verabredungen. 

Definition: Es sei R ein Ring mit Einselement. Dann heißt b e R Rechts-
inverses von aeR, wenn ab — 1 gilt. Das Element-b e R heißt Linksinverses 
von aeR, wenn ba = 1 ist. Das Element b e R heißt Inverses von aeR, wenn 
ab = ba = 1 ist. Ein aeR heißt Einheit, wenn a in R ein Inverses besitzt. 
Ist schließlich R ein beliebiger Ring und m e s o sind noch die nach-
stehenden Vereinbarungen praktisch: Es sei für aeR 

{ a + a + ... + a (m Summanden) für m > 0 
0 für m = 0 

—a — a — ... — a ((—m) Summanden) für m < 0. 
Das ist eine äußere Komposition von R mit 3 ; Verwechslungen mit der 
Ringmultiplikation sind nicht zu befürchten. Es gelten Rechenregeln wie 
(mi + m%)a = m\a m&i, mi(m^a) = {mim^a und m(ab) = (ma)b = a(mb) 
(ra<, m 6 3, a, b e R). Besitzt R ein Einselement, so kann man ma auch als ein 
Produkt des Ringelementes 

{1 + 1 + ... + 1 (m Summanden) für m > 0 
0 für m — 0 

—1 — 1 — . . . — 1 ((—m) Summanden) für m < 0 
mit aeR ansehen; m kann dann auch Nullteiler sein, wie etwa die Gleichung 
3 + 3 = (1 + 1)3 = 2 • 3 = 0 in 3e zeigt. 

Aufgabe 4: Der Ring R enthalte wenigstens einen von Null verschiedenen 
Nichtnullteiler. Dann ist das Ringaxiom a + b = b + a eine Folge der übrigen. 
Beweis ? 

Aufgabe 5: Man beweise die folgenden Aussagen. 
a) In Ringen gilt a(b\ + 62 + • • • + bn) = ab\ + abz + ... + abn und 
(61 + 62 + ••• + b„)a = bia + bza + ... + bna. 
b) In einem nullteilerfreien Ring ist ein Produkt a\az ... an nur Null, wenn 
einer der Faktoren Null ist. 
c) In einem Ring R mit Einselement besitzt ein linker (rechter) Nullteiler kein 
Links-(Rechts-)Inverses. 
d) Ist 1 e R und besitzt aeR ein Linksinverses b und ein Rechtsinverses c, so 
ist b = c, und a besitzt kein von b verschiedenes Rechts- oder Linksinverses. 
e) Ist 1 e R und besitzt aeR ein Inverses, so ist es eindeutig bestimmt (Be-
zeichnung: a - 1 ) . 
f) Ist 1 e R und besitzt jedes a e R, a =)= 0, ein Inverses o - 1 e R, so ist R null-
teilerfrei. 
g) Es seiR ein Ring mit Einselement und E cR die Menge aller Einheiten von 
R. Dann ist E eine Gruppe bezüglich der Multiplikation. 
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A u f g a b e 6: Es sei B ein Ring mit Einselement und ae R. Zeige: 
a) Ist b ein Rechtsinverses von a, so ist es auch jedes der Elemente b + (ba—l)a* 

b) Besitzt a genau ein Rechtsinverses b, so ist b das Inverse von a. 
c) Das Element a besitzt entweder kein Rechtsinverses, genau ein Rechts-
inverses oder unendlich viele Rechtsinverse (vgl. auch Aufgabe 25.1). 

A u f g a b e 7: Es sei R ein kommutativer Ring. Man beweise den binomi-
schen Lehrsatz 

A u f g a b e 8: Es sei I ein Integritätsbereich mit Einselement und Prim-
zahlcharakteristik p. Dann gelten die folgenden Rechenregeln: 
a) (a + b)P = aP + bP, (a — b)P — av — bv (a, b e I). 
b) (a + b)v = aP' + bP\ [a — b)V = aPk — bPk (a,b e I; k = 0, 1, 2, . . . ) . 
c) («i + a2 + ... + an)P = a\ + a\ + ... + av

n (a„ 61). 
Beweis ? 

20.3 Wir treffen nun eine vielfaoh nützliche 
V e r a b r e d u n g : Ist R ein Ring, so bezeichne RQ die Menge der von Null 

verschiedenen Ringelemente. 
Im folgenden beschäftigen wir uns mit gewissen Ringen, die besonders oft 
auftreten. 

Definition: Ein Ring R heißt Schiefkörper, wenn RQ eine Gruppe bezüglich 
der Multiplikation ist. Ein kommutativer Schiefkörper heißt Körper. RQ heißt 
dann die multiplikative Gruppe des Schiefkörpers (Körpers). 
Vielfach werden Schiefkörper auch einfach Körper genannt; ist die Multiplika-
tion kommutativ, spricht man dann von einem kommutativen Körper. 
In den uns bekannten Beispielen £}, SR, S liegen immer schon Körper vor. Es 
sind ja £2, SR, 5 kommutative Ringe, und nach § 6.2 sind Qo, SRo, So Gruppen 
bezüglich der Multiplikation. 
Es sei S ein Schiefkörper. Dann enthält die multiplikative Gruppe So ein Eins-
element 1 + 0 , und diese Eins ist Einselement von S. Außerdem besitzt jedes 
a e S, a 4= 0, ein Inverses a'1 e S. Deswegen sind Gleichungen der Art ax = b 
oder ya = b (a, b e S, a 4= 0) in S eindeutig lösbar. Ein Schiefkörper kann 
auch keine Nullteiler enthalten; denn aus ab = 0 und a =)= 0 folgt a~1(ab) 

Der Nachweis dafür, daß ein Ring schon ein Schiefkörper ist, wird in den 
meisten Fällen nicht über die obige Definition sondern mit Hilfe des folgenden 
Satzes geführt. 

Satz 3: Ein Ring R 4= {0} ist genau dann ein Schief körper, wenn er ein 
Einselement und zu jedem a e R, a 4= 0, ein Inverses a_ 1 enthält. 

Beweis : Nach dem bereits Erörterten bleibt zu zeigen, daß ein Ring 
R 4= {0} ein Schiefkörper ist, wenn er ein Einselement und zu jedem a e fi, 

(4 = 0 ,1 ,2 , . . . ) 

= 6 = 0. 

6 Hornfeck, Algebra 
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a =(= 0, ein Inverses enthält. In diesem Fall gilt aber 1 eRo; aus aeRo folgt 
a _ 1 e RO; die Multiplikation in RQ ist assoziativ; schließlich liegt auch das 
Produkt ab von Elementen a,b e Ro wieder in Ro, weil ab = 0 den Wider-
spruch o-1(o6) = 6 = 0 zur Folge hätte. Es ist also Ro eine Gruppe bezüglich 
der Multiplikation, was zu zeigen war. 
Auch der folgende Satz ist sehr einfach. 

Satz 4: Jeder endliche nuUteilerfreie Ring R 4= {0} ist ein Schief kör per. 
Speziell ist jeder endliche Integritätsbereich ein Körper. 

Beweis: Nach Satz 2 ist Ro bezüglich der Ringmultiplikation eine 
reguläre Halbgruppe. Sie ist ferner endlich, nach Aufgabe 13.1 also eine 
Gruppe. 
Die Restklassenringe <ip (p Primzahl) sind demnach endliche Körper. Die 
übrigen Restklassenringe >3» enthalten Nullteiler, sind also keine Körper. 
Später (§ 60) wird sich noch zeigen, daß jeder endliche Schiefkörper bereits 
ein Körper ist. Die endlichen Körper wiederum werden wir alle angeben 
können (§ 59). 
Sind a und 6 =f= 0 Körperelemente, so gilt ab-1 = b^a. An Stelle von ab'1 

a 
schreibt man dann auch vielfach — oder a:b. Wir zeigen nun, daß in Körpern 

die bekannten Bruchrechenregeln gelten. 
a ac Satz 5: In Körpern gelten die Bruchrechenregeln — = — (£> =)= 0, c 4= 0), b bc 

a c ac „ „ , a c ad „ , , a c ad 4-bc „ 

d + 0 ) . 

Beweis: Die erste Regel besagt dasselbe wie ab'1 = oc(i»c)_1; für a = 0 
ist das sicher richtig; für a =)= 0 ist es eine richtige Beziehung in der multipli-
kativen Gruppe des Körpers. Die zweite Regel besagt ab^cd-1 = ac(bd); 
wegen der Kommutativität der Multiplikation ist das ebenfalls richtig. Ebenso 
gilt richtig oft-Hcd"1)-1 = ad(6c)-i. Die letzte Regel oft-1 ± cd-1 = (ad±bc)(bd)~l 

schließlich bestätigt man, indem man rechter Hand nach dem Distributivgesetz 
ausmultipliziert. 
In einem Körper addiert, subtrahiert, multipliziert und dividiert man also 
wie gewohnt. Diese vier Rechenoperationen bezeichnet man auch als die 
rationalen Operationen. 
Sind K und L Körper mit K cL und sind die Verknüpfungen von K und L 
in K dieselben, so heißt K ein Unterkörper von L und L ein Oberkörper 
von K. 
Viele mathematische Theorien lassen sich in Körpern entwickeln. Dies gilt 
beispielsweise für die Auflösung linearer Gleichungssysteme. Ebenso sind die 
Determinantensätze in Körpern gültig; als Beispiel sei die CBAMEBsche 
Regel erwähnt. Da Körper nuUteilerfreie Ringe mit Einselement sind, be-
sitzen sie eine Charakteristik. Speziell gelten für Körper auch die Rechen-
regeln der Aufgaben 7 und 8. 
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Wir sehen uns noch einen Körper an, der an das obige Beispiel 4 erinnert. 
B e i s p i e l 6. Wie in Beispiel 4 sieht man, daß 

K = {x: x = a + a, b eÜ} cSR 

ein kommutativer Unterring von SR ist. Wir zeigen nach Satz 3, daß K ein 
Körper ist. Zunächst gilt 1 e K. Ein Element a + aus K schließlich, für 
das a und b nicht beide Null sind, besitzt das In verse 

(a + ^ = {a + m T - m = « ^ p - e 

es ist ja der Nenner a 2 — 2ö2 =(= 0. Analog kann man weitere Zwischenkörper 
K mit Q,cK c SR angeben. 

20.4 Für das Rechnen in Körpern geben wir noch eine einfache zahlentheore-
tische Anwendung. 

Satz 6: Die natürliche Zahl p ist dann und nur dann Primzahl, wenn 

(p—1)! s —1 mod p 

ist (sogenannte Wi l son«;^ Kongruenz). 

B e w e i s : Ist p nicht Primzahl, also p = kl mit natürlichen Zahlen k < p 
und l < p, so teilt k =(= 1 den Ausdruck (p— 1)!, also nicht (p— 1)! + 1; 
erst recht kann p dann kein Teiler von (p — 1)! + 1 sein. Es bleibt also das 
Bestehen der Kongruenz für Primzahlen p zu zeigen. Für p = 2 ist sie erfüllt; 
es sei also p S: 3. 
Es sei zunächst L ein beliebiger Körper. Wir bestimmen alle £ £ L mit f 2 = 1. 
Wir haben nach allen £ mit { 2 — 1 = (£ — l)(f + 1) = 0 zu suchen. Da L 
nullteilerfrei ist, folgt f = 1 oder f = —1. Für den Fall L = p ^ 3, be-
deutet das: Genau die beiden voneinander verschiedenen Elemente K( 1) und 
K(p— 1) aus % = {K(Q),K(l),K(2), ...,K(p—\)} sind ihre eigenen 
Inversen; jedes andere von K(0) verschiedene Element aus fällt nicht mit 
seinem Inversen zusammen. 
Nun bilden wir in das Produkt 

s = K( 1) K{ 2) K{ 3) ... K(p— 1) 

und fassen rechter Hand jeden Faktor mit seinem Inversen zusammen; das 
Ergebnis ist s = K(l)K(p—l). Das heißt aber K({p— 1)!) = K(p— 1) 
= K(—1) oder ( p — 1 ) ! = —1 mod p. 

A u f g a b e 9: Man zeige das Folgende. 
a) Ki = {x:x = a + &V5, a,beQ.} und = {x\x = a-\- b]/5, a, b e Q} 
sind nichtisomorphe Unterkörper von SR. 
b) M = {a::x = a a, b eQ} cSR ist kein Unterkörper von SR. 

A u f g a b e 10: Man beweise die folgenden Aussagen, 
a) Jeder Schiefkörper der Charakteristik Null enthält einen Unterkörper iso-

8 * 
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morph £}, und Q enthält keinen echten Unterkörper. (Deshalb heißt Q. auch 
der kleinste oder der Primkörper der Charakteristik Null.) 
b) Jeder Schiefkörper der Primzahlcharakteristik p enthält einen Unterkörper 
isomorph und enthält keinen echten Unterkörper. (Deshalb heißt 
auch der kleinste oder der Primkörper der Charakteristik p.) 

Aufgabe 11: Es gibt genau einen Körper K mit \K\ = 4. In ihm sind 
die Gleichungen x2 = x ± 1 lösbar. Beweis ? 

Aufgabe 12: Der Unterkörper K = {x\ x = a + a,b eQ.} von 91 
besitzt seinerseits nur die Unterkörper und K. Beweis ? 

Aufgabe 13: Man löse das Kongruenzsystem 

x + y + z = 2 (7) 
2a; — 3 y + z = —1 (7) 

—x + 2y + 3z = 2 (7). 

Man löse dasselbe System modulo 8. Ist es auch modulo 17 lösbar ? 

Aufgabe 14: Es sei S ein Schiefkörper und Z cS die Menge aller der-
jenigen Elemente z e S, die mit jedem s e S vertauschbar sind: sz = zs für 
jedes s e S. Dieses sogenannte Zentrum Z des Schiefkörpers S ist ein Körper. 
Beweis ? 

§ 21 Homomorphe Bilder von Ringen 

21.1 Es sei Ri ein Ring mit Elementen a,b,c, . . . und R<i eine algebraische 
Struktur mit zwei Verknüpfungen, die ebenfalls additiv bzw. multiplikativ 
geschrieben seien. In § 19 ist nun definiert, wann i?2 ein homomorphes Bild 
von i?i genannt wird. Wir formulieren es noch einmal: Die algebraische 
Struktur heißt homomorphes Bild des Ringes i2i, wenn eine surjektive 
relationstreue Abbildung /: i?i i?2 existiert. Die Relationstreue von / be-
steht dabei aus den beiden Forderungen 

f(a + b) = f(a) + f(b), 
t{ab) = f(a)f(b). 

Wir schreiben in diesem Fall Ri ^ Rz und nennen / einen Ringhomomorphis-
mus von i?i auf i?2-
In Analogie zu Satz 12.1 bekommen wir zunächst den 

Satz 1: Das homomorphe Bild R% = f(Ri) eines Ringes Ri ist ein Ring. 
Dabei geht das Nullelement von Ri in das Nullelement von R% über. Besitzt Ri 
ein Einselement 1 und ist f(Ri) nicht der Nullring, so ist /(1) Einselement von 
i?2- Ist Ri kommutativ, so ist es auch Rz. 

Beweis : Bezüglich der Addition ist nach Satz 12.1 eine abelsche 
Gruppe, und /(0) ist das Nullelement von i?2- Für die ersten beiden Behaup-
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tungen bleibt also zu zeigen, daß sich das Assoziativgesetz der Multiplikation 
und die Distributivgesetze von auf i?2 übertragen. Das sieht man, da sich 
jedes Element von Rz in der Gestalt f(r) mit einem r e R i schreiben läßt, wie 
im Beispiel 5 von § 20; hier schreibt man nur / statt K. Aus 1 e Ri folgt 
/(l)/(r) = /(.lr) = f(r) und f(r)f( 1) = f(rl) = /(r), und das ist die dritte Be-
hauptung. Aus der Kommutativität von Ri folgt schließlich noch 
f(a)f(b) = f(ab) = f(ba) = f(b)f(a), also die Kommutativität von R2. 
Als Beispiel betrachte man die Ringe £ und % (§ 20, Beispiel 5). Die durch 
f(m) = K(m) erklärte Abbildung /: 3 -*• 3n definiert einen Ringhomomorphis-
mus. Dieses Beispiel zeigt auch, daß das homomorphe Bild eines nullteiler-
freien Ringes Nullteiler besitzen kann; man wähle etwa n — 6. 

21.2 Nützlich ist für das Folgende die 
Definition: Ist R ein Ring, r e R und T cR, so sei 

r + T = {x: x = r + t, t e T}, 
rT = {x: x = rt, t e T}; 

entsprechend seien T + r und Tr erklärt. 

Der nun eingeführte Begriff des Ideals ist in der Algebra von außerordent-
licher Bedeutung. 

Definition: Eine Teilmenge a des Ringes R heißt ein Ideal, wenn gilt: 
(1) Es ist a eine Gruppe bezüglich der Addition. 
(2) Für jedes r eR ist ra c a und ar c a. 

Da in der Forderung (2) speziell r e « gewählt werden kann, ist ein Ideal ü 
gewiß ein Unterring von R; darüber hinaus liegen die Produkte ar und ra 
sogar schon dann immer in a, wenn nur einer der Faktoren a aus a stammt. 
Wir bezeichnen Ideale meist mit kleinen deutschen Buchstaben. 

Beispiel 1. Jeder Ring R besitzt die Ideale {0} und R. 

Beispiel 2. Die sämtlichen Ideale des Ringes ^ sind unter den sämtlichen 
additiven Untergruppen {0} und (n = 1, 2, 3, . . . ) von £ zu finden (vgl. 
§ 12.2). Alle diese Untergruppen sind aber, wie unmittelbar zu sehen ist, 
bereits Ideale von 3- Alle Ideale von j! sind also {0} und n$ (n = 1, 2, 3, . . . ) . 

Beispiel 3. Ein Schiefkörper S besitzt nur die Ideale {0} und S. Ist nämlich 
a c S ein von {0} verschiedenes Ideal, so gibt es ein a e a, a 4= 0, und in S 
existiert das Inverse a~l von a. Nach (2) wird also a~la — 1 e 0 und nun auch 
s = sl e a für jedes seS. 

Unser Ziel ist die Bestimmung aller homomorphen Bilder eines vorgelegten 
Ringes R. Der folgende Satz schafft die Möglichkeit einer Anwendung von 
Satz 19.2 (vgl. auch Satz 12.4). 

Satz 2: Es sei R ein Ring und ,, = " eine Äquivalenzrelation auf R. Diese 
Äquivalenzrelation ist genau dann eine Kongruenzrelation, wenn die Äquiva-
lenzklassen die Nebenklassen r + 0 eines Ideals a c R sind. Dabei ist a die Menge 
aller a e R mit a = 0. 
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Beweis: 
a) Ist ,, = " eine Kongruenzrelation auf R, so wird durch sie nach Satz 12.4 
eine Partition auf R definiert, die aus den Nebenklassen r + a eines Normal-
teilers, also einer Untergruppe a der additiven Gruppe von R besteht. Dabei 
besteht a aus allen a e R mit a = 0. Wir haben zu zeigen: Aus ae a und r e R 
folgt rae a und ar e a. Dazu multipliziere man die Kongruenzen a = 0 und 
r = r. Es wird dann ra = 0 und ar = 0, also rae a und ar e a. 
b) Die Nebenklassen r + a einer additiven Untergruppe a von R definieren 
eine Partition, also eine Äquivalenzrelation „ = " auf R; erst recht gilt dies, 
falls o sogar ein Ideal ist. Nach Satz 8.2 lautet die Äquivalenzrelation: 

a = a' o a! — ae a. 
Es sei nun a = a' und b — b'. Zu zeigen ist o + b = a' + b' und ab = a'b'. 
Mit Elementen a{ e a lauten die Voraussetzungen a' = a + ai und 
b' — b + o£2- Addition liefert a' + b' = a + b -f- aa, also a + 6 = a' + b'. 
Multiplikation ergibt a'b' = ab + ««2 + <*i b + xixz — ab + x 4, also 
ab = a'b' ; dabei wurden (2) und (1) benutzt. 
Eine Kongruenzrelation ,, = " auf einem Ring R ist also durch die Angabe des 
Ideals a cR aller Ringelemente r mit r = 0 eindeutig bestimmt. Man schreibt 
deshalb a = a' mod a, und das bedeutet a' — ae a. Nur im Falle R — % 
haben sich an Stelle von a = a' mod n<$ die bereits in § 20.1 eingeführten 
kürzeren Schreibweisen eingebürgert. 
Es sei R ein Ring und ö ein Ideal aus R. Wir denken an die additive Struktur 
von R und bezeichnen die Menge {a, r + ö, 3 + a, . . . } der voneinander ver-
schiedenen unter den Nebenklassen von a wie in § 12 mit Rja. Nach Satz 2 
entspricht Rja einer Aufteilung von R in Kongruenzklassen, und nach Satz 
19.2 werden durch 

(r + 0) + (« + «) = (r + s) + a, 
(r + a) • (« + a) = ra + a 

eine Addition und eine Multiplikation auf Rja erklärt; die Addition ist be-
reits aus § 12 bekannt. Da Rja aus den verschiedenen Kongruenzklassen modu-
lo a besteht, ist die algebraische Struktur Rja auf Grund von Satz 19.2 sogar 
ein homomorphes Bild des Ringes ¿2; der Zugehörige Homomorphismus ist 
definiert durch /(r) = r + a. Nach Satz 1 ist also Rja ein Ring. Dies recht-
fertigt die 

Definition: Ist a ein Ideal des Ringes R, so heißt Rja der Restklassenring 
von R nach 0. 
Man rechnet in Rja wie in R und behandelt dabei Elemente aus a wie Null. 
Auch bei der folgenden Definition denken wir in erster Linie an die additive 
Struktur von R. 

Definition: Unter dem Kern f eines Ringhomomorphismus f von R auf R* 
versteht man die Menge aller reR mit f(r) = 0. 
In Analogie zu Satz 12.2 steht nun der folgende Homomorphiesatz für Ringe; 
er besagt in der Hauptsache, daß mit den Restklassenringen Rja alle homomor-
phen Bilder von R gefunden sind. 
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Satz 3s Es sei R ein Ring. Dann gelten die folgenden Aussagen. 
a) Ist Ö ein Ideal von R, so ist der Restklassenring R/a ein homomorphes Bild 
von R. Der vermittelnde Homomorphismus f lautet f(r) = r + a. 
b) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern f, so ist f ein 
Ideal von R . 
c) Ist f ein Ringhomomorphismus von R auf R* mit dem Kern !, so gilt 
R* ~ Rfl. Der Isomorphismus <p: R/t -> R* lautet <p(r + f ) = f(r). 
d) Ein Ringhomomorphismus f von R auf R* ist genau dann ein Isomorphismus, 
wenn der Kern von f nur aus der Null allein besteht. 

Beweis : 
a) Das wurde bereits gezeigt. 
b) Nach Satz 12.2 ist f eine additive Untergruppe von R. Aus k et und r e R 
folgt ferner f(rk) = f(r)f{k) = 0, also rk e f, und f(kr) = f(k)f(r) = 0, also 
kr s t 
c) Nach Satz2 und Satz 19.2 ist R* einem Restklassenring von Risomorph. Wir 
bezeichnen ihn mit R/a. Der vermittelnde Isomorphismus <p: R/a ->• R* war 
<p(r + a) = f(r). Dabei besteht a aus allen denjenigen Elementen keR, für 
die f(k) = /(0) die Null von R* ist: a = t. 
d) Die Abbildung / ist genau dann bijektiv, wenn ihr Kern {0} ist. 

B e i s p i e l 1. Ein beliebiger Ring R hat Rj{0} als isomorphes und den Nullring 
R/R als homomorphes Bild. 

B e i s p i e l 2. Der Ring $ hat 3/(0} als isomorphes Bild. Die sämtlichen weiteren 
homomorphen Bilder sind die Restklassenringe >3n-

B e i s p i e l 3. Die einzigen homomorphen Bilder eines Schiefkörpers 8 sind 
S/{0}, also S selbst, und der Nullring S/S. 

21.3 Wir beschließen unsere Überlegungen mit dem Analogon zu Satz 14.2 
für Ringhomomorphismen; an Stelle der Normalteiler stehen jetzt die Ideale. 

Satz 4s Es sei f:R-> R* ein Ringhomomorphismus von R auf R* mit dem 
Kern B, ferner M die Menge aller Ideale ö von R mit l c a c R und weiterhin M* 
die Menge aller Ideale a* von R*. Dann definiert rp{a) = /(a) eine bijektive Ab-
bildung <p: M M*, und es ist = /-1(a*). 

Beweis : Betrachtet man zunächst / als einen Homomorphismus der 
additiven Gruppen von R und R*, so bleibt über Satz 14.1 hinaus nur zu 
zeigen, daß mit a c R auch /(a) und mit a* c R* auch /-1(a*) ein Ideal ist. Es 
sei also zunächst Ö ein Ideal von R. Da sich jedes r* e R* in der Gestalt /(r) 
mit einem r e R schreiben läßt, wird r*f(a) = f(r)f(a) — f(ra) c f(a) und 
f(a)r* — /(a)/(r) = f(ar) c /(«); also ist die additive Untergruppe /(a) von 
R* sogar ein Ideal. Ist umgekehrt a* ein Ideal von R* und r e R, so werden 
r/_1(a*) und f~\&*)r durch / in a* abgebildet; also gilt rf~1(a*) c / -1(ö*) und 
/_1(a*)r c / -1(a*), und auch die additive Untergruppe / -1(a*) von R ist sogar ein 
Ideal. 
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A u f g a b e 1: Man bestimme alle homomorphen Bilder des Restklassen-
ringes 3„. 

A u f g a b e 2: Es seien H und a Ideale des Ringes R mit i c a c R. Dann 
gilt 

R/a ~ (i?/f)/(ü/i). 
Beweis ? 

§ 22 Einbettung von Integritätsbereichen in Körper 

22.1 Die folgenden Überlegungen stehen in deutlicher Analogie zu denen in 
§ 13. Es sei ein Ring R gegeben. Wir fragen: Wann gibt es einen Schiefkörper 
S d -R ? Damit das möglich ist, muß sicher R nullteilerfrei sein, weil S keine 
Nullteiler enthält. Wieder kennt man Beispiele nichtkommutativer nullteiler-
freier Ringe, die eine Einbettung in Schiefkörper nicht gestatten; aber es gilt 
der wichtige 

Satz 1: Jeder Integritätsbereich I läßt sich in einen eindeutig bestimmten 
kleinsten Oberkörper Q, den Quotientenkörper von I, einbetten. Das heißt: Zu 
einem vorgegebenen Integritätsbereich I gibt es einen Körper Q mit folgenden 
Eigenschaften. 
(1) Q^l-
(2) Ist K ein Körper, der I umfaßt, K 3 1 , so gilt K d Q Z> I. 
(3) Ist Q' ein Körper, der an Stelle von Q die Bedingungen (1) und (2) erfüllt, 
so gilt Q' = Q. 

Beweis: Angenommen, die Existenz eines Körpers Q mit den Eigen-
schaften (1) und (2) sei bereits bewiesen. Dann gilt gewiß die Eindeutigkeits-
aussage (3). Denn für K = Q' bekommt man Q' d Q, und analog wird umge-
kehrt Q 3 Q', insgesamt also Q' = Q. Zu zeigen bleibt also die Existenz eines 
Körpers Q mit den Eigenschaften (1) und (2). 
Wieder nehmen wir für den Augenblick an, es gäbe einen Körper K d / ; dann 
enthält er speziell die Teilmenge 

UK = {y:y = j,a,bel,b+0}3l. 

Mit den Bruchrechenregeln von Satz 20.5 prüft man nach, daß UR ein Unter-
körper von K ist. Ist ferner U ein Unterkörper von K, der I umfaßt, so hegen 
in U auch die Lösungen der Gleichungen yb = a, a, b e I, b =(= 0, und das 
heißt U D Un-InKist also TJK der kleinste Unterkörper, der I umfaßt. Wären 
wir von einem anderen Körper K* d I ausgegangen und hätten entsprechend 
UK* gebildet, so brauchten wir wegen UK — UK* diese beiden Körper nicht 
als verschieden anzusehen. Also ist UK der zu konstruierende Körper Q. 
Unsere Konstruktion muß sich an den in UK gültigen Rechenregeln 

(4) -- = — o ad = 6c, o d 
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(5) 
a c ad 4- bc 

(6) 
a c ac 
b ' d bd 

orientieren (bd =|= 0). 
Nun bilden wir das cartesische Produkt M = I x I0 4= £ aller Paare (a, b) 

Das ist eine Äquivalenzrelation auf M; der Nachweis erfolgt wie in Aufgabe 
5.2 und benutzt die Kommutativität und in Gestalt von Satz 20.2 die Null-
teilerfreiheit von I. Die Addition und die Multiplikation auf M werden durch 

erklärt; wegen 6 =(= 0, eZ =(= 0 und der Nullteilerfreiheit von / ist, wie es sein 
muß, bd 4= 0. Die Äquivalenzrelation auf M wird nun eine Kongruenzrelation: 
Aus (a,b) ~(a',b') und (c,d) ~(c',d'), also ab' = ba' und cd' = de', folgt, wie 
man leicht bestätigt, (ad + bc)b'd' = bd(a'd' + b'c') und acb'd' = bda'c', 
also (a, b) + (c, d) ~ (a', b') + (c', d') und (a, b) • (c, d) ~ (a', b') • (c', d'). 
Es sei A die Menge der Kongruenzklassen von M und [a, 6] die Klasse von 
(a, b). Nach Satz 19.3 werden durch [a, 6] + [c, d] = [ad + bc, bd] und 
[a, 6] • [c, d] — [ac, bd\ eine Addition und eine Multiplikation auf A erklärt. 
Wir wollen zeigen, daß A ein Körper ist. Zur Vereinfachung der dazu nötigen 
Rechnungen bemerken wir, daß für c =(= 0 gilt: [a, 6] = [ac,bc]; es ist ja 
(a, b) ~ (ac, bc). Man darf also in den Klassensymbolen erweitern oder 
kürzen. Ferner gibt es wenigstens ein he I, h =t= 0; dieses Element h sei im 
folgenden fest gewählt. Bei der Addition dreier Klassen kann man wegen der 
Möglichkeit des Erweiterns annehmen, die zweiten Komponenten seien alle 
dieselben, und bekommt so das Assoziativgesetz 

([«, d] + [b, d]) + [c, d] = [a + b, d] + [c, d] = [(a + b) + c, d] 

= [« + (& + c), d] = [a, d] + [b + c, d] = [a, d] + ([6, d] + [c, d]). 

Die Addition ist auch kommutativ, [0, h\ ist Nullelement und [—a, 6] additives 
Inverses von [a, i>]. Die Multiplikation ist ersichtlich assoziativ und kommutativ. 
Es gilt das Distributivgesetz 

mit a, b e I, b 4= 0, stellen uns unter (a, b) den Bruch — vor und definieren 
6 

(4') (o, b) ~ (c,d) o ad = bc. 

a 

(4') 

(5') 

(6') 

(a, 6) + (c, d) = (ad + bc, bd), 

(a, b) • (c, d) = (ac, bd) 

[o, d]([b, d] + [c, d]) == [a, d] • [6 + c, d] = [ab 4- ac, ¿2] 
= [ab, d2] 4- [ac, d2] = [o, d] • [b, d] 4- [a, d] • [c, dj. 

Einselement ist [h,K\eA. Es gilt [a, 6] = [0, A] genau dann, wenn a = 0 ist; 
eine von Null verschiedene Klasse [a, 6] wird also durch a 4= 0 gekennzeichnet, 
und sie besitzt dann das Inverse [ö, a] e A. 
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In dem Körper A betrachten wir die Teilmenge T aller Klassen der Gestalt 
[ah, h],ael. Die Summe [ah, K] + [bh, A] = [(a + b)h, A] und das Produkt 
[ah, A] • [bh, A] = [abh, A] zweier Klassen aus T liegen wieder in T. Die durch 
<p(a) = [ah, A] definierte Abbildung <p: I -> T erweist sich als bijektiv, und 
die Gleichungen <p(a + b) = [(a + b)h, A] = [ah, A] + [bh, A] = <p(a) + <p(b) 
und <p{ab) = [abh, A] = [ah, A] • [6A, A] = <p(a)<p(b) zeigen ihre Relations-
treue. Also gilt T ~ I. 
Wir ersetzen die Teilstruktur T von A durch I und bekommen auf diese Weise 
einen zu A isomorphen Körper Q d I. Der Körper A besteht aus allen Klassen 
[a, £>] = [ah, A] • [A, bh] = [ah, A] • [bh, A]-1, also Q aus allen Elementen y 

a 
der Form ab~l = —-b 4= 0. Es ist also Q der zu konstruierende Körper, und 

o 
Satz 1 ist bewiesen. 

22.2 In § 13 wurde aus der additiven Struktur 9t die additive Gruppe von 3 
konstruiert. Auf der Teilmenge 9t c 3 ist nun nach Satz 2.1 auch eine Multi-
plikation erklärt. Nach den Regeln von Satz 20.1 besteht höchstens eine Mög-
lichkeit, diese Multiplikation derart auf ganz 3 auszudehnen, daß 3 ein Ring 
wird. Umgekehrt: Definiert man die Multiplikation gemäß Satz 20.1 auf ganz 
3, so kann man das Erfülltsein des Assoziativ-, Kommutativ- und Distributiv-
gesetzes dieser zweiten Verknüpfung von 3 mit Hilfe von Satz 2.1 durch wenige 
Fallunterscheidungen nachprüfen. Damit ist der kommutative Ring 3 aus 9t 
konstruiert. Er enthält keine Nullteiler; denn gäbe es von Null verschiedene 
a, b mit ab = 0 in 3, so auch in 9t, was nicht der Fall ist. Nach Satz 1 besitzt 
3 also einen Quotientenkörper; wir nennen ihn £ und haben damit auch den 
Körper £} der rationalen Zahlen aus 9t gewonnen. 

A u f g a b e 1: Es sei R ein kommutativer Ring und S cR die Menge der 
von Null verschiedenen Nichtnullteiler von R. Ist 8 =(= so läßt sich R in 

r 
den Quotientenring Rs aller —, r e R, s e S, einbetten; es gilt 1 e Rs. Beweis ? 

s 
A u f g a b e 2: Es seien I i und 12 isomorphe Integritätsbereiche mit den 

Quotientenkörpern Qi o I i und Qz d H- Man zeige, daß sich der Isomorphismus 
/ : Ii -> I2 von Ii auf I2 zu einem Isomorphismus <p: Qi~> Q2 von Qi auf (¿2 
fortsetzen läßt. (Das heißt: Es gibt einen Isomorphismus <p von Qi auf Qz 
mit <p(a) = f(a) für jedes a e Ii.) 

§ 23 Der komplexe Zahlkörper 6 

23.1 In 9t ist nach § 2 eine Addition erklärt; aber die Gleichung a + x = b 
mit o, 6 e 9t braucht keine Lösung x e 9t zu haben. In § 13 haben wir die 
fehlenden Lösungen hinzukonstruiert und dadurch die additive Gruppe von 
3 gewonnen. Die ebenfalls nach § 2 auf 9t c 3 zusätzlich erklärte Multipli-
kation ließ sich, wie wir gerade sahen, auf ganz 3 fortsetzen derart, daß 3 ein 
Ring wird. Aber die Gleichung ax = b, a =|= 0. mit a,be 3 war im allgemeinen 
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in ^ nicht lösbar. In § 22 haben wir wiederum diese Lösungen hinzukonstruiert 
und Ü erhalten. 
Ist nun ein Körper K vorgelegt, so kann man fragen, ob in ihm die Gleichung 
x2 + 1 = 0 lösbar ist, ob es also ein Element i e K mit i2 + 1 = 0 gibt. Ist 
es vorhanden, so erfüllen wegen der Nullteilerfreiheit von K genau die Elemente 

die Gleichung x2 -f 1 = x2 — i2 — (x + i)(x — i) = 0. Ist es nicht vor-
handen, so konstruieren wir wiederum einen eindeutig bestimmten minimalen 
Oberkörper E o K, in dem die Gleichung x2 + 1 = 0 lösbar wird. 

Satz 1: Jeder Körper K läßt sich in einen eindeutig bestimmten kleinsten 
Oberkörper E d K einbetten, in dem die Gleichung x2 + 1 =0 lösbar ist. Das 
heißt: Zu einem vorgegebenen Körper K gibt es einen Körper E mit folgenden 
Eigenschaften: 
(1) EdK. 
(2) Die Gleichung + 1 = 0 besitzt in E eine Lösung. 
(3) Ist LoK ein Körper, in dem die Gleichung x2 + 1 = 0 lösbar ist, so gilt 
LoEoK. 
(4) Ist E' ein Körper, der an Stelle von E die Bedingungen (1), (2), (3) erfüllt, 
so gilt E' = E. 

B e w e i s : Die Eindeutigkeitsaussage (4) ergibt sich wie in den Beweisen 
der Sätze 13.1 und 22.1. Zu zeigen bleibt also die Existenz eines Körpers E mit 
den Eigenschaften (1), (2), (3). Ist die Gleichung x2 + 1 = 0 schon in K lös-
bar, so ist E = K; wir nehmen daher an, daß —1 in K kein Quadrat ist. 
Angenommen, es gibt einen Körper Lz>K mit einer Lösung i e L der Gleichung 
x2 + 1 = 0; dann enthält L die Teilmenge 

Ul = {«: z = a + bi, a,b e K} D K, 

und man prüft leicht nach, daß Ul ein Unterkörper von L ist. Speziell liegen 
wegen 
(5) (o + bi) + (c + di) = (a + c) + (6 + d)i, 
(6) (a + bi) • (c + di) = (ac — bd) + (ad + bc)i 
Summe und Produkt zweier Elemente aus Ul wieder in Ul, und das Inverse 
von a + bi 4= 0 wird, wie die Probe bestätigt, das Element 

a b . 
o2 + b2 a2 + 62* 

dabei ist der Nenner a2 + b2 nicht Null, weil andernfalls o2 = —b2 und b =f= 0, 

also doch —1 -= e K in K Quadrat wäre im Widerspruch zur Annahme. 

Ferner gilt 

(7) a + bi = c + di o a = c und b = d; 
Q^ Q 

wäre nämlich a + bi — c + di und b =(= d, so würde i = e K folgen, was 
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gerade nicht der Fall war. Ist U ein Unterkörper von L, der K und i umfaßt, 
so gilt gewiß U o Ul. In L ist also UL der kleinste Körper mit UL 3 K, in dem 
die Gleichung a;2 + 1 = 0 lösbar ist. 
Hätten wir einen anderen Körper L* d K mit einer Lösung i* e L* der Glei-
chung a;2 + 1 = 0 zugrundegelegt, so würde 

UL ~ UL* = {z*: z* = a + bi*, a,beK} 

gelten vermöge f(a + bi) = a + bi*. Also ist UL der zu konstruierende Körper 
E. Wieder ist auf Grand der Beziehungen (5), (6), (7) klar, wie wir in unserer 
folgenden Konstruktion vorzugehen haben. 
Wir bilden das cartesische Produkt M = K x K aller (a, b) mit a,be K \ 
intuitiv bedeute (a, b) die Zahl a + bi. Unsere Vorüberlegung (7) hinsichtlich 
der Gleichheit zweier solcher Zahlen zeigt, daß wir eine Äquivalenzrelation auf 
M nicht einzuführen haben. Wir definieren 

(5') (o, b) + (c, d) = (a + c,b + d), 

(6') (a, b) • (c, d) = (ac — bd, ad + 6c) 

und bestätigen in kurzen Rechnungen die Ringaxiome. Die Multiplikation ist 
kommutativ, (1,0) ist Einselement, und jedes (a, b) 4= (0, 0) hat in M ein 
Inverses. Also ist M ein Körper. Jedes (a, b) e M läßt sich in der Gestalt 
(a, b) = (a, 0) + (0, b) oder 

(8) (a, b) = (a, 0) + (b, 0) • (0,1) 

schreiben; dabei ist (0, l)2 = (—1, 0). 
Nun kommen die Änderungen der Schreibweise. Die Teilstruktur 

T = {(a, 0): aeK}cM 

ist isomorph K; man bilde dazu einfach (a, 0) auf a ab. In M ersetzen wir T 
durch K und schreiben i für (0, 1); dann entsteht ein Erweiterungskörper 
E d K, dessen Elemente nach (8) die Gestalt a bi mit a,be K und i2 = —1 
haben. Damit ist der gesuchte Körper E konstruiert und Satz 1 bewiesen. 

23.2 Aus K = SR entsteht auf diese Weise der komplexe Zahlkörper E = G E . 
Damit haben wir, von der Struktur 9t ausgehend, abgesehen von SR alle Rechen-
bereiche Q, SR, @ konstruiert und ihre Widerspruchsfreiheit auf die von 91 
zurückgeführt. Die Konstruktion von SR holen wir in § 32 nach. 

23.3 Ist K ein Körper, in dem ein i e K existiert, das die Gleichung x2 + 1 = 0 
löst, so sind, wie wir bereits wissen, i und — i die beiden einzigen Lösungen von 
«2 + 1 = 0 . Sie fallen genau dann zusammen, i — — i , wenn (1 + 1)» = 0, 
also %{K) = 2 ist, und in diesem Fall ist einfach i — 1. 
Von zahlentheoretischem Interesse ist die Frage, in welchen Primkörpern »3j> 
die Gleichung x2 + 1 = 0 lösbar ist. Durch Probieren stellt man beispielsweise 
fest, daß x% + 1 = 0 in lösbar, in dagegen unlösbar ist. Die Antwort 
gibt der 
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Satz 2: Es sei p eine Primzahl. Genau dann ist die Gleichung x2 + 1 = 0 
in lösbar, wenn p = 2 oder p = 1 (4) ist. Oder: Genau dann ist die Kongruenz 
x2 = —l(p) in ganzen Zahlen x lösbar, wenn p = 2 oder p eine Primzahl der 
Gestalt 4n + 1 ist. 

Beweis: Der Fall p = 2 ist bereits erledigt. Wir haben weiter zu zeigen, 
daß die Gleichung x2 + 1 = 0 für eine Primzahl p der Form 4» + 1 in 
lösbar, für eine Primzahl p der Form 4ra + 3 dagegen in unlösbar ist. 
a) Es sei p = 4n + 1. Wir sind fertig, wenn wir eine natürliche Zahl m mit 
ni2 = —1(£>) angeben können. Nach Satz 20.6 gilt nun (p — 1)! = —1 mod p. 
Hierin wird modulo p 

(p — l)! = 1 • 2 • • • (2n)(2n + l)(2w + 2) • • • (4») 
= 1 • 2 • • • (2n)(2n + 1 — p)(2n + 2 — p) • • • (4» — p) 
= 1 • 2 • • • (2n)(—2n)(—(2n — 1)) • • • (—1) 
= (2n)!(2»)!. 

Wir können also m = (2n)\ wählen. 
b) Es sei p = 4w + 3. Wir nehmen an, es gäbe ein a e mit a2 = —1, und 

p— 1 potenzieren mit der ungeraden Zahl —-—. Das liefert ai>_1 = —1. Sicher ist a ¿t 
nicht Null, liegt demnach in der multiplikativen Gruppe von 3p» die aus 
p — 1 Elementen besteht. Anwendung von Satz 9.4 ergibt also aP'1 = 1. Aus 
beidem zusammen folgt 1 = —1, was wegen x(3p) ^ 3 nicht möglich ist. 

Aufgabe 1: Es sei M die Menge aller Matrizen der Gestalt 

(J!) <a>6e3i>; 
auf M seien die Matrizenaddition und die Matrizenmultiplikation eingeführt. 
Man zeige M ~ (L 

Aufgabe 2: Es sei K ein Körper, in dem kein Element a mit a2 = 2 
existiert. Man konstruiere einen minimalen Oberkörper E o K, der ein solches 
Element enthält. 

§ 24 Endomorphismenringe abelscher Gruppen 

Es sei G — {a, b, c, . . . } eine additiv geschriebene abelsche Gruppe und 
R — {<x, ß, y, ...} die Menge aller Endomorphismen von G, also die Menge 
aller relationstreuen Abbildungen von G in sich (vgl. § 19). Da die identische 
Abbildung e in B liegt, ist R nicht leer. Mit oc, ß e R ist wegen <xß(a + b) 
= rx(ß(a) + ß(b)) = xß(a) + aß(b) auch aßeR, und diese Multiplikation ist 
assoziativ nach Satz 3.1; sie besitzt das Einselement e. 
Wir führen nun auf R noch eine Addition ein. Dies geschieht, wie es für Funktio-
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nen üblich ist, durch die Festsetzung (a + ß)(a) = x(a) + ß(a). Wir müssen 
nur nachprüfen, daß mit x, ßeR auch x + ß ein Endomorphismus ist: 

(a + ß)(a + b) = a(a + b) + ß(a + b) = a(a) + a (b) + ß(a) + ß(b) 
= a(a) + ß(a) + a(6) + /?(&) = (a + /9)(o) + (« + ß)(b). 

Hierbei haben wir die Kommutativität von G benutzt. Aus der Assoziativität 
und der Kommutativität der Addition in 0 folgen dieselben Eigenschaften für 
die Addition in R. Nullelement in R ist der Endomorphismus o, der jedes g e G 
auf die Null abbildet: Die für jedes « e i und jedes aeG gültige Beziehung 
(a + o)(a) = a(a) + 0 = a(a) bedeutet ja a + o = a für jedes x e R . Ist 
schließlich a £ R, so definieren wir —x e R durch (—a)(a) = —a(o); dabei ist 
—x wegen (—x)(a + b) = —(x(a) + x(b)) = —x(b) — x(a) = —x(a) — oc(b) 
= (—x)(a) + (—oc)(6) wieder ein Endomorphismus und a + (—«) = o. 
Um zu zeigen, daß R ein Ring ist, weisen wir noch die Distributivgesetze nach. 
Es ist x(ß + y)(a) = x(ß(ä) -)- y(a)) = aß(a) + ay(a) = (xß + xy)(a) für jedes 
aeG, also x(ß + y) = aß + xy, und entsprechend erhält man (ß + y)a 
= ßx + yx. Damit haben wir den 

Satz l s Die Menge R aller Endomorphismen einer (additiv geschriebenen) 
abdachen Gruppe G ist (bezüglich der oben eingeführten Verknüpfungen) ein Ring, 
der sogenannte Endomorphismenring von G. 

Allgemeiner nennt man jeden Ring von Endomorphismen einen Endomorphis-
menring. Die Endomorphismenringe haben für die Theorie der Ringe eine 
ähnliche Bedeutung wie die Transformationsgruppen für die Gruppentheorie. 
Es ist nicht schwer, in Analogie zu Satz 7.2 zu zeigen, daß jeder Ring einem 
Endomorphismenring isomorph ist. Man benutzt dabei das Ergebnis der 

Aufgabe 1: Jeder Ring R läßt sich in einen Ring E mit Einselement ein-
betten. Beweis ? 

§ 25 Polynomringe 

25.1 Unter einem Polynom versteht man in der Algebra formal zwar dasselbe, 
inhaltlich aber etwas anderes als in der Analysis. Das ändert indes nichts daran, 
daß die später von uns gewonnenen Sätze doch wieder eine bekannte Gestalt 
annehmen. Wir beginnen mit der 

Definition: Es seien R und R* oR kommutative Ringe mit demselben Eins-
element 1 e R. Es sei x 6 R*. Dann heißt ein Ausdruck der Gestalt 

n 

/(<*) = 2 W = an«-n + «n-l«"-1 + • • • + Oo 6 R* («» e R, X° =Df 1) 
r = 0 

ein Polynom in x mit Koeffizienten aus R. Die Menge aller Polynome in x mit 
Koeffizienten aus R wird mit i?[a] bezeichnet. 
Hierzu machen wir zwei Bemerkungen. Erstens ist es in Anlehnung an die 
Gepflogenheiten in der Analysis auch in der Algebra üblich, etwa /(a) für ein 
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Polynom in a zu schreiben, ohne daß man damit / als ein Symbol für eine Ab-
bildung ansieht. Zweitens ist die zu Beginn der Definition ausgesprochene 
Voraussetzung, etwas umständlicher formuliert, die folgende: Es seien R und 
R* D R kommutative Ringe mit Einselementen e e R* und le . f i , und es gelte 
e = 1. Diese letzte Forderung ist, wie man durch Beispiele zeigen kann, nicht 
von selbst erfüllt (vgl. hierzu die Lösung von Aufgabe 24.1). Sollten aber R* 
und R sogar Integritätsbereiche sein, so ist e — 1 beweisbar: Es ist ja l(e — 1) 
= l e — 1 - 1 = 1 — 1 = 0 , wegen der Nullteilerfreiheit von R* also e = 1. 
Speziell bedeutet das: Ist L ein Oberkörper von K, so ist das Einselement von K 
auch die Eins von L. Da nun 1 e R auch Eins von R* sein soll, kann man, und 
das ist der Sinn dieser Forderung, in einem Polynom /(a) Koeffizienten 1 wie 
gewohnt weglassen. 
Es ist klar, daß unter den genannten Voraussetzungen i?[a] ein kommutativer 
Untening von R* mit dem Einselement 1 ist. Es gilt ja 

n m M 
(1) 2°**'' + 2 V — rnit sk = ai + bx und M = Max(w, m), 

o o o 
n m n+m 

(2) Java? • 2bvaß = 2px<xx mit px = + axbx-i + ... + axb0; 
o o o 

dabei haben wir av = bß = 0 gesetzt für v > n und ¡i > m. Das additive Inverse 
—f(x) eines Polynoms /(a)e Ä[a] bekommt man, indem man alle Koeffizienten 
von /(a) mit einem Minuszeichen versieht, und auch die Null ist ein Polynom. 

Beispiel 1. Man wähle R = % R* = 3t und a = J/2. Der Ring 3[]/2] ist dann, 
da die geraden Potenzen von |/2 Elemente aus 3 und die ungeraden Potenzen 
Elemente der Gestalt mj/2, m e j , liefern, der Ring aus § 20.1, Beispiel 4. Zwei 
Polynome in a = ]/2 mit Koeffizienten aus 3 können also dieselben sein, auch 
wenn sie nicht koeffizientenweise übereinstimmen. 

Beispiel 2. Wählen wir R = Q, R* = SR und a = |/2, so bekommen wir den 
Ring Q[]/2], der, wie wir in § 20.3, Beispiel 6, sahen, sogar ein Körper ist. 

Beispiel 3. Es ist 3t[i] = £. 

Beispiel 4. Der Ring besteht genau aus allen reellen Zahlen der 
Gestalt a + b f i + c(|/2)2 mit a, b, c e ß . 

25.2 Wir gehen wieder von einem kommutativen Ring R mit 1 6 R aus und 
stellen die Frage: Gibt es einen kommutativen Oberring R* mit demselben 
Einselement, der ein Element x e R * enthält, das die Bedingung 
(3) f(x) = anx» + an-!X»-i + . . . + a o = 0 o a, = 0 

(areR; v = 0,1,2 n) 
erfüllt ? Das Rechnen in dem Polynomring ü[a;] wäre dann durch das Rechnen 
in R und die Forderungen (3), (4), (5) vollständig beschrieben. 

Definition: Es sei R ein kommutativer Ring, 1 e R, und R* ein Oberring von 
R. Ein Element x e R* heißt Unbestimmte Über R, wenn es die drei Bedingungen 
(3), (4), (5) erfüllt-. 
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(4) 1 • x = x • 1 = x, 
(5) rx = xr für jedes r e R. 
Wir zeigen nun, daß es zu jedem R eine solche Unbestimmte x über R, also 
auch den Polynomring gibt. 

Satz 1: Es sei R ein kommutativer Ring und 1 6 R. Dann existiert ein 
kommutativer Oberring R[x\ d R aller Polynome /(x) in einer Unbestimmten x 
über R mit Koeffizienten aus R. Er besitzt ebenfalls das Einselement 1. 

Beweis : Die letzte Behauptung ist, falls die übrigen bewiesen sind, 
trivial. Wir führen nun wieder eines unserer Konstruktionsverfahren durch. 
Mengentheoretisch gesichert ist die Existenz der Menge R00 aller unendlichen 
Folgen (ro, n, . . . ) von Elementen n aus R (§ 1.3). Wir könnten uns unter 
der Folge (r0, r\, r2, ..., rn, r„+1, . . . ) das Polynom rnxn + rn-xxn~l + . . . + r0 
vorstellen, wenn alle rv mit v > n Null wären. Also betrachten wir die Teil-
menge M cR°° aller derjenigen Folgen (oo, a\,a%, . . . ) , in denen nur endlich 
viele ar ungleich Null sind. Aus dieser Menge M konstruieren wir 
Wir führen auf M nach dem Vorbild von (1) und (2) eine Addition und eine 
Multiplikation durch 

(1') (oo, «1. «2, • • •) + (&o> h,h, •••) = (oo + b0, + «2 + &2, •• •), 

,„,. (oo. <*i, «2, • • •) • (&o> h , • • •) = (Po, Pl,P2,-- •) 
[ ' mit f x = aobx + axbx-i + . . . + « A 
ein; dabei hat man nachzuprüfen, daß die Ausdrücke rechter Hand wieder 
Elemente von M sind. Wir überlegen uns jetzt, daß wir eine Äquivalenzrelation 
auf M nicht einzuführen brauchen: Zwei Polynome f(x) und g(x) sind genau 
dann gleich, wenn ihr Differenzpolynom f(x) — g(x) Null ist; nach (3) bedeutet 
das, daß f(x) und g(x) koeffizientenweise übereinstimmen müssen. Also müßte M 
bis auf die Schreibweise schon unser Ring sein. 
Ersichtlich ist M bezüglich der Addition eine abelsche Gruppe, weil R es ist. 
Ferner ist die Multiplikation kommutativ mit dem Einselement (1 ,0 ,0 , . . . ) eM. 
Rechnet man in 

((Oo, «1, «2, • • •) ' (&0> bi, ¿>2, •••))• (Co, Cl, C2, . . . ) = (r<>> n, Tz, . . . ) 
die Komponente r* aus, so bekommt man 

rx = Z(aib})ck (» + / + * = 
für den Fall, daß der zweite und der dritte Faktor linker Hand durch Klammern 
zusammengefaßt waren, bekommt man 

r'x = 1fli(b)Ck) (i + j + k = A) 
für die entsprechende Komponente des Ergebnisses. Es ist aber rx = r\ wegen 
der Assoziativität der Multiplikation in R, die sich damit auf M überträgt. 
Eine letzte leichte Rechnung bestätigt noch das Distributivgesetz. Also ist M 
ein kommutativer Ring mit Einselement. 
Nun kommen wieder die Änderungen der Schreibweise. Zunächst liefert die 
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Multiplikation eines Elements aus M mit (0, 1, 0, 0, ...) e M ein einfaches 
Resultat: 

(ao, oi, o2, . . . ) • (0, 1, 0, 0, . . . ) = (0, o0, «i, o2, • • • )• 

Außerdem stellt man sofort fest, daß die Teilstruktur T = {(r, 0, 0, ...): r e R} 
von M isomorph R ist. Schreibt man nun für ein Element (ao, oi, a2, ...) e M 
mit av = 0 für v > n die Summe 

(00,01,08, . . . ) = («o,0,0, . . . ) + (0,ai,0, . . . ) + . . . + (0,0, . . . ,0 , a„, 0, . . . ) 
und setzt (0, 1, 0, 0, ...) = x, so wird 
(ao, oi, o2, . . . ) = (oo, 0, 0, . . . ) + (oi, 0, 0, . . . ) • a; + • • • + (on, 0, 0, . . . ) • x». 
Nach der Ersetzung von T durch R bekommen also die Elemente (oo, «i, 02, . . . ) 
von M die Gestalt anxn + an-\xn~x + . . . -f ao- Die Forderungen (3), (4), (5) 
sind offensichtlich erfüllt. Damit ist i?[a;] konstruiert und Satz 1 bewiesen. 
Ziemlich selbstverständlich ist nun der 

Satz 2: Es seien R und R* D R kommutative Ringe mit demselben Eins-
element 1 6 R\ ferner sei x eine Unbestimmte über R und x ein Element von R*. 
Dann wird durch <p{f(x)) — f(oc) ein Homomorphismus <p von iü[a:] auf _ß[oc] 
definiert; dieser Homomorphismus ist ein Isomorphismus genau dann, wenn auch 
x eine Unbestimmte über R ist. 

Bewei s : Die Abbildung <p ist surjektiv und sicher relationstreu, da man 
in (1) und (2) statt a auch x schreiben kann. Sie vermittelt einen Isomorphismus 
genau dann, wenn ihr Kern nur aus der Null allein besteht; das bedeutet aber: 
es gilt (3) mit <x an Stelle von x, oder a ist Unbestimmte über R. 
Die am häufigsten benutzte Konsequenz von Satz 2 ist der 

Satz 3 (Ersetzungssatz): Es seien R und R* D R kommutative Ringe mit dem-
selben Einselement 1 e R; ferner sei x eine Unbestimmte über R und x ein Element 
von R*. Dann geht eine auf den Verknüpfungen von i?[x] beruhende Identität 
in R[x] in eine Identität in R* über, wenn in ihr x durch x ersetzt wird. 

Bewei s : Man wende den Homomorphismus <p von Satz 2 auf die be-
trachtete Identität aus i?[x] an. 
Dieser Satz, der von vornherein klar ist, ist von großer Bedeutung; wir werden 
ihn oft benutzen. 

25.3 Wir unterbrechen unsere Ausführungen durch einige Verabredungen und 
unmittelbar einsichtige Aussagen. 
Sind R und R* D R kommutative Ringe mit demselben Einselement 1 e R 
und ist x ein Element aus R*, so ist ü[a] der kleinste Ring, der R und x umfaßt; 
das gilt natürlich auch für den Spezialfall, daß x eine Unbestimmte über R ist. 
Man sagt auch, R\x\ entsteht aus R durch Ringadjunktion von a. Sind x und y 
Unbestimmte über R, so gilt ~ R[y] nach Satz 2. Ist x eine Unbestimmte 
über R*, so ist ein Unterring von Ji*[a;]. 
Hat f(x) e R[x\ die Gestalt f(x) = anxn + on_\xn~x + . . . + 00 mit an 4= 0, 
so heißt an der höchste Koeffizient und 00 das absolute Glied von f(x). Ein 

7 Hornfeck, Algebra 
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Polynom f(x) heißt normiert, wenn sein höchster Koeffizient Eins ist. Buch-
staben wie x,y, . . . werden vorwiegend für Ringerweiterungen durch Un-
bestimmte verwandt. Statt/(x), g(x) e -Kfz] schreibt man oft auch nur f,geR[x], 
Spricht man von Polynomen über R, so meint man Polynome aus Ä[a:]. 
Für das Rechnen im Polynomring J?[a;] weisen wir noch einmal auf die Unter-
schiede zur Analysis hin. Polynome sind keine Funktionen. Ein Polynom 
f(x) e R[x\ in einer Unbestimmten x ist nach (3) nur Null, wenn es das Nullpoly-
nom 0 e R ist. Zwei Polynome f(x), g(x) e R\x\ stimmen ebenfalls nach (3) 
genau dann überein, wenn sie koeffizientenweise übereinstimmen. Hierauf 
beruht die Methode des Koeffizienten Vergleichs. 
Schließlich gibt es auch Polynomringe ohne Einselement. Man betrachte etwa 
in 3[2] den Unterring 2$[x] aller Polynome mit geraden ganzen Zahlen als 
Koeffizienten (vgl. auch in diesem Zusammenhang die Aufgabe 24.1). 

25.4 Wir kommen zu einer weiteren 

Definition: Es sei R[x] der Polynomring einer Unbestimmten x über R. Das 
Polynom f(x) e ii[a;] habe die Gestalt f(x) = anxn + an-ix"'1 + • • • + «o mit 
an 4= 0. Dann heißt n der Qrad von f(x). 

Die von Null verschiedenen Elemente aus R sind also Polynome vom Grad Null; 
für das Nullpolynom ist kein Grad definiert. Polynome vom Grad Eins be-
zeichnet man auch als lineare Polynome. 

Sind f(x), g(x) und f(x) + g(x) von Null verschiedene Polynome aus R\x~\, so gilt 

(6) Grad (f{x) + g(x)) ^ Max(Grad f(x), Grad g(x)). 

Ist f(x)g(x) nicht Null, so bekommt man 

(7) Grad (f(x)g{x)) < Grad f(x) + Grad g(x), 
und in dieser letzten Beziehung steht jedenfalls dann das Gleichheitszeichen, 
wenn R sogar ein Integritätsbereich ist. 
Im Anschluß hieran stellen wir noch fest: Ist I ein Integritätsbereich mit 
Einselement, so ist auch /[a;] ein Integritätsbereich mit Einselement. 

25.5 Wieder gehen wir von einem kommutativen Ring R mit Einselement aus; 
x sei eine Unbestimmte über R. Dann ist auch ii[a;] ein kommutativer Ring mit 
Einselement; y sei eine Unbestimmte über R\pc\. Man sieht, daß y erst recht 
Unbestimmte über R ist. Aber auch x bleibt Unbestimmte über R[y], wie eine 
indirekte Überlegung sogleich zeigt. Sowohl R\pc\{y\ als auch R[y\\x] bestehen 
aus denselben Elementen, nämlich Summen von Ausdrücken der Gestalt rxmyn 

(r e R,m ^ 0, w ̂  0). Also gilt /J[z][2/] = ii[«/][a;], und man schreibt kurz 
R[x, y]. 
Sind a, ß beliebige Elemente eines kommutativen Oberringes R* d R mit dem-
selben Einselement 1 e R, so gilt entsprechend R[ai\\ß] = i?[/?][a], und man 
schreibt wieder einfach ii[a, ß]. Entsprechend bekommt man durch Adjunktion 
der Elemente ai, a2, ..ctne R* die Ringerweiterung Ä[ai, a2, . . . , a«] von R. 
Sollten die <xi sämtlich Unbestimmte über R[a.\, a.% a<-i] sein, so spricht 
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man von unabhängigen Unbestimmten und schreibt etwas suggestiver etwa xi 
statt aj. Die Elemente von -R[ai, a2, ...,<*«] sind Summen von Elementen der 
Gestalt ra? '4 ' . . . a ( r e R, et > 0). 
Natürlich gelten die Verallgemeinerungen der Sätze 2 und 3; wir formulieren 
nur die letztere. 

Satz 4s Es seien R und R* d R kommutative Ringe mit demselben Eins-
element 1 e R; ferner seien x\, ..., xn unabhängige Unbestimmte über R und 
«i, <X2, ..., a» Elemente von R*. Dann geht eine auf den Verknüpfungen von 
R\xi, xz, ..., xn] beruhende Identität in R[xi, x%, ..., xn] in eine Identität in R* 
über, wenn in ihr die Xi durch die on ersetzt werden. 

Da man in den Multiplikationsformeln (2) und (5) Elemente aus R kommutativ 
mit x multipliziert, wird der Ersetzungssatz natürlich falsch, wenn man auf 
die Kommutativität von R* verzichtet. 
Schließlich greifen wir noch einmal unsere letzte Feststellung im obigen Ab-
schnitt 4 auf. Ihre wiederholte Anwendung führt zu dem 

Satz 5: Sind x\, xz, ...,«„ unabhängige Unbestimmte über dem Integritäts-
bereich I mit Einselement, so ist auch I[xi, x%, ..., xn] ein Integritätsbereich mit 
Einselement. 

25.6 Ein wichtiges Hilfsmittel in der Theorie der Polynomringe ist der be-
reits aus der Schule bekannte Divisionsalgorithmus. Dabei gehen wir von einem 
Polynomring K[x\ über einem Körper K aus, wählen f(x), g(x) e K[x\, g(x) =}= 0, 
und behaupten: Es gibt ein q(x) e K[x\ und ein r(x) e K\x\, so daß 

f{x) = q(x)g(x) + r(x) 

wird, wobei entweder r(x) = 0 oder Grad r(x) < Grad g(x) ist. 
Der Beweis wird durch das übliche Verfahren geliefert, das Polynom f(x) mit 
Rest durch das Polynom g(x) =)= 0 zu dividieren; es ist unverändert durchführ-
bar, weil die Quotienten der Koeffizienten beliebiger Polynome aus K[x] mit 
dem höchsten Koeffizienten von g(x) wieder in K liegen. Das kann man auch 
in einen Induktionsbeweis nach dem Grad von f(x) umschreiben: Für f(x) = 0 
ist die Behauptung mit q(x) = r(x) = 0 richtig. Für Grad f(x) = 0 wähle man 
q(x) = 0 und r(x) — f(x), falls Grad g(x) > 0 ist; bei Grad g(x) = 0 leisten 

ftx\ 
l(x) ^ e & u n ( i r(x) = 0 das Verlangte. Sowohl für f(x) — 0 als auch für 

9(%) 
Grad f(x) = 0 ist die Behauptung also richtig. Sie sei ferner für beliebige 
Polynome f(x) von einem Grad kleiner als n und alle g(x) — bmxm + bm~ixm 

+ . . . + 6o, bm =f= 0, bereits bewiesen. Ist dann f(x) = a»rn + a„_ix™'1 + ... 
+ «o> an =1= 0, so können zwei Fälle eintreten. Bei n < m wähle man einfach 
q(x) = 0 und r{x) = f(x). Ist n^tm, so wird f(x) = ^xn~mg{x) + h(x) mit 

bm 
einem h{x) e K[x], das entweder Null ist (und in diesem Fall ist man fertig) 
oder einen Grad ^ n — 1 hat, also nach Voraussetzung in der Gestalt h(x) 
= q*(x)g(x) + r(x) mit r(x) = 0 oder Grad r(x) < Grad g(x) geschrieben 

T 
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werden kann; das liefert dann aber f{x) = q(x)g(x) + r(x) mit q(x) = ~xn~m 

"m 
+ q*(x) e K[x\, womit der Induktionsbeweis abgeschlossen ist. Es gilt also 
der 

Satz 6: Es sei K ein Körper, f(x), g(x) e K[x\ und g(x) =(= 0. Dann existieren 
q(x), r(x) e K[x\ mit f(x) — q{x)g(x) + r(x), wobei entweder r(x) = 0 oder 
Grad r(x) < Grad g(x) ist. 

Z u s a t z : Ist g(x) normiert, der höchste Koeffizient also Eins, so kann in der 
Voraussetzung von Satz 6 der Körper K durch einen kommutativen Bing R 

mit Einselement ersetzt werden, weil in diesem Fall von selbst = ane R ist. 
om 

A u f g a b e 1: Am Beispiel des Endomorphismenringes R der additiven 
Gruppe von zeige man: Es gibt Binge R mit Elementen r e R, die unend-
lich viele Bechtsinverse, aber kein Linksinverses besitzen. (Vgl. Aufgabe 20.6, 
Aussage c).) 

A u f g a b e 2: Es sei R ein kommutativer Bing mit Einselement. Man 
00 

konstruiere den Bing R(x) aller formalen Potenzreihen 2 avXv, av e R. 
v=0 

§ 26 Nullstellen von Polynomen 

26.1 Wir betrachten wieder den Polynomring ü[a;] über einem kommutativen 
Bing R mit 1 e R und einen kommutativen Oberring R* o R mit demselben 
Einselement; a sei ein Element aus R* und f(x) e Dann heißt a Nullstelle 
von f(x) in R*, wenn dort /(a) = 0 gilt. 

B e i s p i e l 1. Das Polynom x2 — 4 e £[x] ha t die Nullstellen ± 2 e 3 ; das 
Polynom x2 — 2e$[x] ha t die Nullstellen e2fi d 3 und a:2 + 1 e 
die Nullstellen ± i e S d 

B e i s p i e l 2. Nach Satz 23.2 hat das Polynom x2 + 1 e keine Nullstelle 
im Koeffizientenkörper Aber nach Satz 23.1 existiert ein kleinster Ober-
körper E D $3, in dem x2 + 1 eine Nullstelle besitzt. Die Konstruktion im 
Beweis von Satz 23.1 zeigt noch, daß \E\ — 9 ist. 

Über die Nullstellen von Polynomen gelten einige ebenso einfache wie wichtige 
Sätze. Eine Konsequenz des Zusatzes zu Satz 25.6 ist zunächst der 

Satz 1: Es sei R ein kommutativer Ring mit Einselement, f(x) eiJ[a;] und 
xeR eine Nullstelle von f(x). Dann gilt f(x) = q(x) • (x—a) mit einem q(x) e R\x\. 

B e w e i s : Es ist jedenfalls f(x) = q(x)(x — a) + r(x) mit einem r(x) e R[x\, 
das entweder verschwindet oder den Grad Null hat. Das heißt f(x)=q(x)(x—a)+r 
mit einem festen r e R. Ersetzen wir x durch a, so folgt r = 0. 
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Hieraus wiederum ergibt sich der 

Satz 2: Es sei I ein Integritätsbereich mit Einselement und f(x) e I[x] ein 
Polynom vom Grad n. Dann hat f(x) in I höchstens n Nullstetten. 
B e m e r k u f i g : Das Polynom f(x) hat also in keinem Integritätsbereich I* d I 
mit dem gemeinsamen Einselement 1 e I mehr als n Nullstellen, da ja auch 
f(x)e I*[x] gilt. 

B e w e i s von Satz 2: H a t f(x) die Nullstelle ai e I, so gilt nach Satz 1 
zunächst f(x) = (x — <x\)qi{x) mit einem qi(x) e I[x\. Ha t qi(x) die Nullstelle 
«2 e I, wobei die Möglichkeit <xz = ai nicht ausgeschlossen ist, so wird weiter 
f(x) = (x — xi)(x — a.i)q2{x) mit einem q%(x) e I[x\. Dieses Zerlegungsverfah-
ren werde fortgesetzt; es bricht etwa nach m Schritten ab: 

f(x) = (x — ai)(x — «2) ... (x — am)qm(x). 

Dabei sind die on nicht notwendig verschiedene Nullstellen von f(x) in 7, und 
qm(x) hat keine Nullstelle in I . Mehr als diese m Nullstellen xi hat f{x) in I 
nicht; denn setzt man eine beliebige Nullstelle txel von f(x) in die hingeschrie-
bene Zerlegung ein, so muß wegen der Nullteilerfreiheit von I wenigstens 
einer der Faktoren a — a« verschwinden. Aus m sS ra folgt also die Behauptung. 

Satz 2 bleibt demnach richtig, wenn mehrfach auftretende Nullstellen ihrer 
Vielfachheit entsprechend gezählt werden. Wir sagen in Zukunft, f(x) e I\x\ 
habe die (genau) k-fache Nullstelle a e I, wenn f(x) = (x — a)kq(x) mit einem 
q(x) 61[x\, q(a) =|= 0, gilt. Die Zahl k ^ 0 ist definiert, weil I\x\ ein Integritäts-
bereich ist. Für das Nullpolynom wird der Begriff der Vielfachheit einer Null-
stelle nicht erklärt. Satz 2 wird falsch, wenn die Nullteilerfreiheit des Koeffi-
zientenringes nicht vorausgesetzt wird. Hierzu sehe man das 

B e i s p i e l 3. Das Polynom f(x) =3? — x e ¿ ^ M hat alle sechs Elemente 
von 3« als Nullstellen. 

Von vielfältigem praktischen Nutzen ist schließlich der 

Satz 3: Eine Nullstelle a e Q des normierten Polynoms 

f(x) = x* + a»-!*»-1 + . . . + a 0 e 

ist eine ganze Zahl und Teiler von OQ. 

B e w e i s : Ohne Beschränkung der Allgemeinheit sei n 1, «o =)= 0 und 

a = —, s e 5t, r 6 (r, s) — 1. Multiplikation von j = 0 mit sn liefert r11 

+ an-\rn~1s + . . . + aosn = 0 oder rn = ks mit einem k e Die natür-
liche Zahl s teilt rn, hat aber keinen Primteiler mit r gemeinsam, muß also 
Eins sein. Daher ist « die ganze Zahl r, und aus r ( r" - 1 + an-irn~2 + ... + «i) 
= —ao ist zu sehen, daß OQ durch r teilbar ist. 

Als rationalzahlige Nullstellen des ganzzahligen normierten Polynoms 
x5 + x + 2 kommen also nur ¿ 1 und ± 2 in Frage; demnach ist —1 die ein-
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zige Nullstelle von x5 + x + 2 in Q. Das Polynom x3 — x -f- 2 hat überhaupt 
keine Nullstelle in Q. 
Man sieht leicht, daß man Satz 3 auch zur Bestimmung der rationalzahligen 
Nullstellen nicht normierter ganzzahliger Polynome verwenden kann (Auf-
gabe 1). Daraus ergibt sich schließlich auch seine Anwendbarkeit bei der 
Suche nach allen rationalzahligen Nullstellen eines Polynoms f(x) e Q[a:], das 
man ja nach Multiplikation mit dem Hauptnenner der Koeffizienten durch ein 
ganzzahliges Polynom ersetzen kann. 

26.2 Im folgenden erklären wir in kommutativen Ringen mit Einselement 
eine formale Differentialrechnung. 

Definition: Es sei R ein kommutativer Ring mit Elementen a,b, ... und 
1 e R. Eine Abbildung D: R R heißt eine Derivation oder Ableitung von R, 
wenn sie die beiden folgenden Bedingungen erfüllt-. 
(.1) D{a + b) = D(a) + D(b), 
(2) D(ab) = aD(b) + bD(a). 

Satz 4 s Es sei R ein kommutativer Ring mit Einselement und D eine Deri-
vation von R. Dann ist D(0) = Z>(1) = 0, D(—a) = —D(a), und für jedes 
ae R und jedes n e 91 gilt D(an) = nan~1D(a). 

Beweis : Aus D(0) = D(0 + 0) = D(0) + I>(0) folgt Z)(0) = 0. Ferner 
wird D( 1) = D(1 • 1) = 1 • D(l) + 1 • Z>(1) = £>(1) + Z)(l), also D(l) = 0. Es 
ist 0 = Z>(0) = D(a + (—a)) = D(a) + D(—a) und damit D{—a) = —D(a). 
Die letzte Behauptung ergibt sich durch vollständige Induktion nach n. 
Für Polynomringe betrachten wir nun eine spezielle, bereits aus der Analysis 
bekannte Ableitung. 

Satz 5: Es sei R ein kommutativer Ring mit Einselement und R[x~\ der Poly-
nomring in einer Unbestimmten x über R. Dann wird durch 

D(f(x)) = D( 2 a^x") = £ va^v-i =Df f'(x) 
r=0 »=1 

eine Ableitung D: i?[a;] -> R[x\ definiert. 

Beweis : Sofort zu sehen ist D(f + g) = £>(/) + D(g). Ferner gilt 

D(akx>- • - D(aÄbfX^") = (A + v)axb^+"-1 = a^D^rX") +bvx'D(axxx). 

Zusammen mit (1) folgt hieraus noch m n 
D(fg) = DiZaix* • 2M') = D(Zaxx* • M") = ZD(aAx>- • b^c") 

0 0 A,v 

= laAxW(brX") + ZbrX'Dfax*) = 2axx>-D(2bvX>) + ?bje'D(Zaix*) 
X,v X,v X v v X 

oder D(fg) = fD(g) + gD(f), also (2). 
Der folgende Satz wird oft gebraucht. 

Satz 6: Es sei I ein Integritätsbereich mit Einselement und n eine natür-
liche Zahl. Dann gelten die folgenden Aussagen. 



§ 26 Nullstellen von Polynomen 103 

a) Hat f(x) e I[x\ die genau n-fache Nullstelle « e i , so hat entweder f'(x) die 
mindestens (n — 1 )-fache Nullstelle x e I, oder f'(x) ist das Nullpolynom. Ist zu-
sätzlich die Charakteristik -/(I) = 0, so hat f'(x) die genau (n — 1 )-fache Null-
stelle a. 
b) Ist f(x) 6 I[x\, f(x) #= 0, a e I und /(a) = /'(a) = 0, so ist a mindestens zwei-
fache Nullstelle von f(x). 

Beweis: 
a) Unsere Voraussetzung ist f(x) = (x — x)nq(x), q(x) e I[x], q(a) 4= 0. Für 
eine beliebige Derivation D: I[x\ I\x\ liefern (2) und die letzte Aussage von 
Satz 4 

D(f(x)) = (x — a)nD(q(x)) + q(x)D((x — a)») 
= (x — X )nD(q(x)) + n(x — a)n~1q(x)D(x — a); 

nach Satz 5 wird also speziell 

f'(x) = (x — x)»~i[(x — x)q'(x) + nq(x)]. 

Hieraus folgen die aufgestellten Behauptungen. Für %(I) = 0 ist ja nq(x) =j= 0, 
und die eckige Klammer kann dann an der Stelle « nicht verschwinden. 
b) Aus f(x) = (x — x)q(x), q(x) e I[x], folgt f'(x) = (x — x)q'(x) + q(x). Das 
liefert mit f(x) = 0 auch q(x) = 0 und somit q(x) = (x — <x)g(x), g(x) e /[x]. 
Also wird f(x) = (x — x)2g(x). 

F o l g e r u n g : Die Nullstelle a e I von f(x) e I\oo\ ist genau dann einfach, 
wenn /'(a) 4= 0 ist. 

A u f g a b e 1: Man bestimme alle rationalzahligen Nullstellen von 
a) x5 — 2x* + 3z3 — 6a;2 + 2x — 4, 
b) 3a;3 — 2a;2 4- 6a; — 4, 

1 ß 
c) —a;5 — a^ + x2 + 2a; — 7. o 

A u f g a b e 2: Es sei p eine Primzahl. Zeige: In ~lp[x] gilt 

xP — x = XI (x — ®)* 
06 3» 

Wie folgt daraus die WiLSONsche Kongruenz (Satz 20.6) ? 

A u f g a b e 3: Auf dem Integritätsbereich I sei eine Ableitung D definiert. 
Man zeige, daß sich D auf genau eine Weise auf den Quotientenkörper Q von I 
fortsetzen läßt: Es gibt genau eine Ableitung D* von Q mit D*(a) = D(a) 
für jedes a e l . 

A u f g a b e 4: Es sei p eine Primzahl. Man zeige: Die Kongruenz 
a»«" + Ob-i»"-1 + • • • + an = 0 mod p (at e pian) 

hat höchstens n modulo p inkongruente Lösungen xe$. 

A u f g a b e 5: Ist a = a + bi e S (o, b e3t) Nullstelle des Polynoms 
f(x) e 9t[a;] mit reellen Koeffizienten, so auch die konjugiert-komplexe Zahl 
x = a — bi. Beweis ? 
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§ 27 Körpererweiterungen 

27.1 Wir beginnen mit der 
Definit ion: Es sei K ein Körper. Eine Körpererweiterung oder ein Erweite-

rungskörper E von K ist ein Oberkörper E D K von K. 

Es sei nun E eine Körpererweiterung von K. Dann gibt es in E und in K je 
ein Einselement, und diese Einselemente sind identisch, weil E ein Integritäts-
bereich ist (§ 25.1). Also ist auch K[x] ein Unterring von E[x] (§ 25.3). 

Definit ion: Es sei E eine Körpererweiterung von K und, x ein Element von 
E. Wenn es ein vom Nullpolynom verschiedenes f(x) e K[x\ mit f(x) = 0 gibt, 
so heißt x algebraisch über K, andernfalls transzendent über K. 
Hiernach ist also eine Größe a genau dann algebraisch über dem Körper K, 
wenn zweierlei gilt: Es gibt einen Erweiterungskörper E von K, der a enthält, 
und es existiert ein f(x) e K[x], f(x) =j= 0, mit x als Nullstelle. Speziell ist jedes 
a 6 K algebraisch über K. Die Zahlen ]/2 und i sind algebraisch über Q. 
Nach § 25.2 können wir ferner sagen: Ist x transzendent (Transzendente) über 
K, so ist x eine Unbestimmte über K. Hiervon gilt auch die Umkehrung, weil 
eine Unbestimmte x über K Element des Quotientenkörpers E von K\x\ und 
E eine Körpererweiterung von K ist. Eine Transzendente über einem Körper 
K ist also dasselbe wie eine Unbestimmte über K. 

27.2 Wir verabreden nun eine ständig auftretende Schreibweise. 

Definit ion: Es seien I und I* D I Integritätsbereiche mit demselben Eins-
element und ai, a2, ..., a» Elemente aus I*. Dann bezeichnen wir den Quotienten-
körper von I[ai, ot2, ..., Xn] mit /(ai, X2, . . ., a„). 

Wir bemerken dazu, daß I[a.\, txz, ..., an] c I* ein Integritätsbereich ist; der 

Körper 7(ai, oc2> . . . , an) existiert also. Er besteht aus allen Brüchen — mit 
9 

f, g e 7[ai, a2, . . « « ] , g 4= 0. Speziell können die a 1 unabhängige Unbe-
stimmte über I sein. 
Den Übergang von I zu /[ai, a.2, . . . , an] bezeichnet man als Ringadjunktion, 
den von I zu I(xi, X2, •.., <xn) als Körperadjunktion von «1, a2, . . . , <xn. Er-
sichtlich ist /(«1, X2, . . . , 0Ln) der kleinste Körper, der I und die Elemente 
ai, a.2, • • • > <*n enthält; deshalb sagt man auch, er werde über I von den Ele-
menten «1, <X2, ..., xn erzeugt. Aus den folgenden Beispielen sieht man unter 
anderem, daß Ringadjunktion und Körperadjunktion zu demselben Ergebnis 
führen können. 

Beispiel 1. Es sei x eine Unbestimmte über dem Körper K. Dann gilt 
K[x~\ c K(x), aber K\x] 4= K(x); denn x e K[x\ besitzt in K[x\ kein Inverses. 
Beispiel 2. Es ist &[|/2] = £(|/2) (vgl. § 25.1 und § 20.3, Beispiel 6). Analog 
gilt £[1/3] = £L(]/3), Ö [ i ] = &(i), gt [ i ] = SR(t) = 6 . 

Beispiel 3. Wir zeigen 0.(1/2,1/3) =J}(|/2 + j/S). Zunächst ist Ü(|/2 + j/3) 
der kleinste Körper, der Q und ]/2 + |/3 enthält; da auch der Körper ¿(1/2, |/3) 
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das Element ]/2+ J/3 und ganz £1 enthält, folgt Ü(|/2, |/3) 3 £(1/2 +J/3)^Um-
gekehrt ist Q(]/2, y3) der kleinste Körper, der £2 und die Elemente |/2, ]/3 ent-
hält. Wenn wir nachweisen können, daß y2 und j/3 Elemente von £l(]/2 + y5) 
sind, so folgt entsprechend £}(y2, y3) c Q(y2 + ]/3) und damit insgesamt die 
behauptete Gleichheit. Es gilt aber (]/2 + j/3]2 = 5 + 2]/6_eQ(y2 + yS), 
also auch ygeQ(y2+y3 ) und folglich ]/6(]/2+y3) = 3y2+2y3_e£l(y2+y3); 
Subtraktion von 2(y2 + |/3) eQ(j/2 + j/3) zeigt y2 e_£}(y2 + y3), und damit 
wird zuletzt auch (y2 + y3) — y2 = y3 e£(y2 + 1/3). 

Später wird sich zeigen: Ist a algebraisch über K, so gilt K\tx\ = K(y.) (§ 53). 
In Beispiel 2 sind einige einfache Spezialfälle dieser Aussage notiert. In Bei-
spiel 3 hat sich gezeigt, daß eine von zwei Elementen erzeugte Erweiterung 
auch von einem einzigen Element erzeugt werden konnte. Auch hierauf 
kommen wir noch zurück (§ 61). 
Im Anschluß an die oben gegebene Definition machen wir schließlich noch eine 
Bemerkung: Ist Q der Quotientenkörper von I, so gilt I(xi, <X2, . ..., an) 
= Q(ai, 012, • • •, ««)• Die Elemente rechter Hand sind ja Quotienten von 
Polynomen in den aci mit Koeffizienten aus Q; erweitert man mit dem Haupt-
nenner aller dieser Koeffizienten, so ergeben sich Elemente aus /(ai, <X2, • • •, <*«)• 
Also ist Q(ai, 1x2, ..., <xn) c /(ai, 012, . . . , an), und die umgekehrte Enthalten-
seinsbeziehung folgt aus Q d I. 

27.3 Im folgenden betrachten wir ein Element a, das algebraisch über einem 
Körper K ist. 

Satz 1: Es sei a algebraisch über K. Dann existiert ein Polynom f(x) e K\x\ 
mit folgenden Eigenschaften. 
(1) f(x) ist normiert. 
(2) Es ist /(a) = 0. 
(3) Ist g(x) e K[x\ und Grad g(x) < Grad f(x), so gilt g(a) 4= 0. 
(4) Hat f*(x) e K[x] die Eigenschaften (1), (2), (3), so gilt f*(x) = f(x). 

Beweis : Die Menge der vom Nullpolynom verschiedenen Polynome aus 
K[x] mit a als Nullstelle ist nach Definition von a nicht leer. Unter ihnen gibt 
es ein Polynom h(x) = anxn + an-\xn~^ + ... + ao, an 4= 0, kleinsten Grades 
n > 0, so daß für jedes g(x) e K[x] mit Grad g(x) < Grad h(x) gilt: g(tx) 4= 0. 

Das Polynom f(x) = —h(x) e K\x\ hat dann, weil A(a) = 0 war, die Eigen-
an 

Schäften (1), (2), (3). Schließlich hat das Polynom d{x) = f(x)—f*(x) auch 
die Nullstelle a; einen kleineren Grad als f(x) kann es nach (3) nicht haben; 
andrerseits hat d(x) keinen Grad größer oder gleich n, weil f(x) und f*(x) nor-
mierte Polynome vom Grad n sind; also ist d(x) das Nullpolynom (das nach 
unserer Definition aus § 25.4 keinen Grad hat), und es folgt f*(x) = f(x). 
Die Eindeutigkeitsaussage (4) berechtigt zu der folgenden 

Definition: Es sei x algebraisch über dem Körper K. Dann heißt das Poly-
nom f(x) aus Satz 1 das Minimalpolynom oder das definierende Polynom von a 
über K. 
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Weiter setzen wir das Folgende fest. 
Definition: Es sei I ein Integritätsbereich mit Einselement, f(x) e I[x\ und 

Grad f(x) 1. Dann heißt f(x) irreduzibel über I oder irreduzibel in I[x], wenn 
aus f(x) = g(x)h(x) mit g(x), h(x) e I[x~\ folgt: Entweder g(x) oder h(x) ist ein 
Element von I. 
Ein über I irreduzibles f(x) e I[x] läßt sich also höchstens durch Ausklammern 
eines Elementes aus I in Faktoren aus I[x~\ zerlegen; andernfalls nennen wir 
f(x) in I\x~\ oder über I reduzibel. Von besonderem praktischen Interessò ist nun der 

Satz 2: Es sei tx algebraisch über K. Dann gelten die folgenden Aussagen. 
a) Das Minimalpolynom f(x) von x über K ist irreduzibel in K\x\. 
b) Hat das Polynom P(x) e K[x\ die Eigenschaften (1), (2) und ist es in K[x] 
irreduzibel, so ist es das Minimalpolynom f(x) von a über K. 

Beweis : 
a) Das Element x liegt in einem Erweiterungskörper E von K. Angenommen, 
es gäbe Polynome g{x), h(x) e K[x] mindestens vom Grad Eins mit 
f(x) = g(x)h(x). Dann wird Satz 25.3 anwendbar; er liefert g(<x)h(a) = /(a) = 0. 
Das Produkt g(oc.)h(a.) ist in E nur Null, wenn einer der Faktoren verschwindet ; 
da die Grade von g(x) und h(x) kleiner sind als Grad/(a;), liefert das einen 
Widerspruch zu (3). 
b) Wir dividieren P(x) mit Rest durch f(x). Nach Satz 25.6 gibt es Polynome 
q(x), r(x) e K\x\ mit 

P(x) = q(x)f(x) + r(x), 

wobei entweder Grad r(x) < Grad f(x) oder r(x) = 0 ist. Ersetzt man x durch 
a, so bekommt man r(a) = 0 ; nach (3) muß also r(x) das Nullpolynom sein. Da 
f(x) mindestens den Grad Eins hat und P(x) über K irreduzibel ist, muß weiter 
q(x) ein Element von K sein. Schließlich sind P(x) und f(x) normiert; also ist 
sogar q(x) - = 1 und damit P(x) = f(x). 
Dieser Satz gibt Veranlassimg zu der 

Definition: Es sei a algebraisch über dem Körper K. Dann bezeichnen wir 
das Minimalpolynom f(x) g K[x] von a. über K mit f(x) = Irr (a, K). Wir sagen, 
a sei algebraisch vom Grad n über K, wenn Grad Irr (a, K) — n ist. 

Ist beispielsweise « e i , so wird Irr (a, K) = x — a; dann ist also a algebra-
isch vom Grad Eins über K. Zur Bestimmung von Minimalpolynomen stützt 
man sich in der Regel auf Satz 2. Wir betrachten einige einfache Beispiele. 

Be i sp ie l 4. Es sei a = j/2 und K = 3t. Dann gilt Irr (y2,3t) = x—e 3t[a;]. 

Be i sp ie l 5. Es sei x = j/2 und K = £J. Das Polynom P(x) = ufi — 2 eÜ[x] 
hat dann die Eigenschaften (1), (2). Es ist ferner in irreduzibel. Um das 
zu zeigen, nehmen wir für den Augenblick das Gegenteil an. Dann gäbe es 
Polynome g(x), h(x) e£l[a:] mit P(x) = g(x)h(x) und Gradua;) = 1, und wir 
dürfen ohne Beschränkung der Allgemeinheit zusätzlich annehmen, g(x) sei 
bereits normiert: g(x) = x — a, a eQ.. Das ganzzahlige normierte Polynom 
P(x) = xz — 2 hätte demnach die Nullstelle a e Q . Aus Satz 26.3 folgt sogar 



§27 Körpererweiterungen 107 

a e ̂  und a|2; aber die Zahlen ± 1 und ± 2 sind keine Nullstellen von x2 — 2. 
Die Annahme, P(x) sei in Ü[x] reduzibel, war also falsch, und Satz 2 liefert nun 
Irr(y2 ,Q) = x2 — 2 . 
Be isp ie l 6. Nach dem Muster von Beispiel 5 sieht man ohne Rechnung 
Irr (1/3, Ü) = x2 — 3 und Irr (y/5,Q) - x̂  — 2. Analog wird Irr(», Q) 
== Irr (t, SR) = x2 + 1, weil x2 + 1 keine reelle Nullstelle hat. 

Be ispie l 7. Es sei a = -^(1 + i) und K = Q. Wegen a4 = —1 hat das 
V2 

Polynom P(x) = ¡c4 + 1 eQ[a;] die Eigenschaften (1), (2); wir behaupten 
Irr (a, Q.) = x4 + 1 und müssen dazu noch zeigen, daß x4 + 1 irreduzibel 
über Q ist. Wie in Beispiel 5 sieht man, daß x4 + 1 keinen Faktor g(x) e 
vom Grad Eins haben kann. Wir müssen also noch nachweisen, daß auch eine 
Zerlegung 

x4 + 1 = (x2 + ax + b)(x2 + cx + d) (a, b, c, deQ) 
in quadratische Faktoren aus £[x] unmöglich ist. Ausmultiplikation der 
Klammern rechter Hand und Koeffizientenvergleich ergibt zunächst c = —a 

1 1 a 
und, da b =|= 0 ist, d = —. Das führt weiter auf a2 — b + ~r und — — ab = 0 

o o o 
oder die möglichen Zerlegungen 

xi + 1 = {x2 + i) (X2 — i) 
= (x2 + 1fax + l)(x2 — |/2x + 1) 
= (x2 + i]/%x — l)(x2 — — 1); 

doch die Faktoren liegen nicht in Q[x], Also ist xi + 1 irreduzibel über Q und 
Irr (a, Q) = x* + 1. Aber beispielsweise wird x4 + 1 reduzibel über Q(]/2) 
oder SR und Irr (a, Ü(|/2)) = Irr (a, SR) = x2 — J/2x + 1; die Zahl a ist also 
algebraisch vom Grad 4 über £} und algebraisch vom Grad 2 über Q,(]/2) 
oder SR. 

27.4 Es fallt nicht leicht, ein r e SR anzugeben, das transzendent über Q ist. 
Gibt es derartige reelle Zahlen überhaupt ? Diese Frage kann im Anschluß an 
den folgenden Satz beantwortet werden. 

Satz 3 : Es sei R ein kommutativer Ring mit Einsdement, Ist R abzählbar, 
so ist es auch der Polynomring R[x\. 

Beweis : Es sei R abzählbar und M^ die Menge aller Polynome /(x) e Ä[x] 
00 

vom Grad k (k ^ 0). Wir zeigen die Abzählbarkeit von M = U M*-, das ist 
*=o 

R\X\ ohne das Nullpolynom. Nach Satz 4.2 genügt es zu zeigen, daß jedes M* 
abzählbar ist. Bezeichnen wir wieder mit RO die Menge R ohne die Null, so 
läßt sich aber M* eineindeutig auf RQ x R x R x . . . x Ä (Jfe + 1 Faktoren) 
abbilden, und dieses cartesische Produkt ist nach Satz 4.1 abzahlbar, weil 
jeder der Faktoren es ist. 
Als Beispiel betrachte man etwa den Fall R = Q: Die Menge aller Polynome 
mit rationalen Koeffizienten ist abzählbar. 
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Wir kommen nun auf die oben gestellte Frage zurück. Spricht man von trans-
zendenten Zahlen schlechthin, so meint man in der Regel die reellen Zahlen r, 
die transzendent über £i sind. Die Menge aller dieser Zahlen sei B, und es sei 
A die Menge aller über Q algebraischen r e Sft. Dann ist A n B = 2 und 
A u B = SR. Nun ist die Menge Q[ar] aller rationalzahligen Polynome abzähl-
bar; jedes einzelne von ihnen hat nach der Bemerkung zu Satz 26.2 höchstens 
endlich viele, eventuell gar keine Nullstellen in SR; die Menge A aller dieser 
Nullstellen ist demnach ebenfalls abzählbar. Da Sft = A u B nicht abzählbar 
ist (§ 4), kann also B weder endlich noch abzählbar sein. Damit ist die Existenz 
überabzählbar vieler transzendenter Zahlen r nachgewiesen, ohne daß wir in 
der Lage sind, eine einzige von ihnen explizit anzugeben. Die Transzendenz 
etwa von e und n wird in der Zahlentheorie gezeigt. 
Zuletzt notieren wir noch eine Konsequenz von Satz 3. 

Satz 4: Der Körper K sei höchstens abzählbar. Dann ist auch jede endlich 
erzeugte Erweiterung i, £2, ..., f») höchstens abzählbar. 

B e w e i s : Es genügt, K(£1, £2, ••• ,£») abzuzählen unter der Annahme, 
K sei abzählbar und die Erzeugenden I2, • ••>£« seien unabhängige Unbe-
stimmte über K. Mehrfache Anwendung von Satz 3 zeigt zunächst die Ab-
zählbarkeit von K[£ 1, £2, • • •, £»]• Dann lassen sich aber nach dem Vorbild 
des Abzählbarkeitsbeweises für Q auch die Elemente des Quotientenkörpers 

£2, • • f«) nach dem Paarschema abzählen (§ 4). 

A u f g a b e 1: Es sei K ein Körper. Man zeige: Mit a ist auch a2 algebraisch 
über K und umgekehrt. 

A u f g a b e 2: Zeige, daß j/2 + |/3 + ]/5 algebraisch über £} ist. 

A u f g a b e 3: Es sei d eine ganze Zahl. Man zeige: 
a) Es ist_Q[|/S] = QQ/d). 
b) Ist yd $ £2, so wird durch <p(a + b]/d) — a — b]/d ein Automorphismus tp 
von definiert (a, b eQ.). 

A u f g a b e 4: Es sei d eine ganze Zahl. Man zeige: Die Menge G aller von 
Null verschiedenen Zahlen der Gestalt x2 + dy2 (x, t / e Q ) ist eine multiplika-
tive Untergruppe von Qo. 

A u f g a b e 5: Man zeige: 
a) Es ist 0(1/2, ]/3) = Ö[y2, ]/3]. 

b) Der Körper y3) besteht aus allen reellen Zahlen der Gestalt 

a + 6y3 + cy3 + d]/B (a, b,c,de Q). 

A u f g a b e 6: Man gebe fünf Zwischenkörper K mit & c K c£} (y2 + y3) an. 
A u f g a b e 7: Man bestimme 

a) Irr (3 + 
b) Irr (3 — 13,Q), 
c) I r r ( y 2 + y 5 , £ l ) , 
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d) I r r ( i / 2 + 1,Q), 
e) I r r ( j / 2 + l,Q(]/2)). 

A u f g a b e 8: Man löse noch einmal den Teil b) von Aufgabe 20.9. 
A u f g a b e 9: Für welche a e £ ist x* + a x 2 + 1 reduzibel über £> ? 

§ 28* Halbgruppenringe 

28.1 Für das Folgende erinnern wir uns wieder an die Einführung des Ringes 
R[x\ aller Polynome in einer Unbestimmten x über dem kommutativen Ring 
R mit dem Einselement 1. In anderer Formulierung lautet Satz 25.1: Es seien 
ein kommutativer Ring R mit dem Einselement 1 und eine multiplikativ ge-
schriebene Halbgruppe der Gestalt H — {e, x, xz, x3, ... } mit dem Eins-
element e vorgelegt. Dann gibt es einen eindeutig bestimmten kleinsten Ober-
ring R\H] von R, der auch H als Teilstruktur und wiederum 1 als Einselement 
enthält und in dem die Rechenregeln 

(1) r\hi + r2h2 + ... + rmhm = 0 o n = r2 = . . . = rm = 0 
(rr e R, hre H, ht =j= hj für i =)= j), 

(2) rh = hr für alle r e R, he H 
erfüllt sind. 
Es ist nämlich /?[//] = R[x\. Das Element e von H findet sich in Ä[x] in der 
Gestalt 1, und die Bedingungen (1), (2) stehen an Stelle der Bedingungen (3), 
(5) aus § 25. Die Bedingung (4) aus § 25 steckt bereits in der Forderung, daß 
R und i?[ZT] dasselbe Einselement haben sollen. Die Bezeichnung R[H] soll 
andeuten: Man hat ganz H zu R adjungiert. 
Es seien nun wieder R ein kommutativer Ring mit dem Einselement 1 und 
diesmal H eine beliebige multiplikativ geschriebene Halbgruppe mit dem Eins-
element e. Unsere Frage lautet: Gibt es auch unter diesen schwächeren Vor-
aussetzungen über H einen kleinsten Oberring von R, der H als Teilstruktur 
und 1 als Einselement enthält und in dem gemäß (1) und (2) gerechnet wird ? 
Wenn wir sie mit ja beantworten und zeigen können, daß dieser Oberring ein-
deutig bestimmt ist, so dürfen wir ihn etwa mit R\H~\ bezeichnen; er heißt der 
von R und H erzeugte Halbgruppenring. 
Wie früher bei ähnlichen Fragestellungen (vgl. etwa § 13) wollen wir zunächst 
annehmen, daß es wenigstens einen Oberring S von R mit dem Einselement 1 
gibt, der H als Teilstruktur enthält und in dem die Bedingungen (1), (2) er-
füllt sind. Wir betrachten dann die Teilmenge T c S aller endlichen Summen 
der Gestalt r\h\ + rrfi2 + • • • + rmhm {Tv £ R, hve H, A< 4= hj für i =)= j) und 
zeigen, daß T ein Unterring von 8 ist. Wählen wir zwei Elemente aus T, so 
können wir annehmen, daß sie aus denselben h( zusammengesetzt sind; durch 
Hinzufügen endlich vieler Summanden der Gestalt 0A* läßt sich das immer 
erreichen. Aus 
(3\ (»"lAi + r2h2 + ... + rmhm) + (rJAi + + ... + r'mhm) 
K ' = (n + r[)h1 + (j-2 + r'2)h2 + ... + (rm + r'm)hm 
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ist nun zu sehen, daß T bezüglich der Addition eine abelsche Gruppe ist; sie 
hat das Nullelement Oe, und das additive Inverse von . . . -{-rmhmeT 
ist (—ri)hi + (—r2)h2 + ... + (—rm)hm. Auch das Produkt zweier Elemente 
von T wird auf Grund von (2) wieder ein Element von T. Wir bekommen 

(4a) (nAi + r2h2 + ... + rmAm)(r^i + r2h2 + • • • + r'mhm) = £ r(h)h '• 
heM 

hierin ist M die Menge aller Produkte hihj und 

(4b) r(h) = Inr}, 
wobei über alle Indexpaare (i, j) summiert wird, für die hihj = h ist. Das Asso-
ziativgesetz der Multiplikation und die Distributivgesetze gelten in S, also 
erst recht in T. 
Der Bing T besteht aus allen endlichen Summen der Gestalt 
(5) nh + r2h2 + . . . + rmhm (r„ eR,hve H, ht =(= h} für i =f= j). 
Wählt man m = 1 und r\ = 1, so sieht man T D H. Für m = 1 und h\ = e 
bekommt man eine Teilmenge R* von T, von der man sofort sieht, daß sie ein 
isomorphes Bild des Ringes R ist; wir dürfen deshalb nach einer Ersetzung 
von R* durch R auch sagen: T d R. Ist andrerseits U c 8 ein Unterring von 
S, der H und R umfaßt, so muß er alle Elemente der Gestalt rh (r e R, h e H) 
und damit auch alle Summen (5) enthalten: T c U. In S ist also T der kleinste 
Unterring, der R und H enthält; die Eins aus R ist Einselement auch von T. 
Wären wir statt von S von einem anderen Oberring S* von R ausgegangen, 
in dem die Bedingungen (1), (2) erfüllt sind und der 1 als Einselement und H 
als Teilstruktur enthält, so würde für den analog T erklärten Unterring T* 
von 8 gelten: T* = T. Dabei benutzt man (1) in der Form 

(6) riÄi+r2Ä2+... +rmhm = ^ 1 + ^ 2 + . . . +r'mhm o rr=r'p (v=l,2 m). 

Wüßten wir also die Existenz von T (oder auch nur die von S), so wäre alles 
bewiesen, und wir könnten sagen: Dies ist der eindeutig bestimmte kleinste 
Oberring R[H] von R mit 1 als Einselement und H als Teilstruktur, in dem die 
Rechenregeln (1) und (2) gelten. Wegen der Gestalt (5) der Elemente von 
ü[i i] nennt man R[H] auch den Haibgruppenring über H mit Koeffizienten aus 
R. 

Satz 1: Es sei R ein kommutativer Ring mit dem Einselement 1 und H eine 
multiplikativ geschriebene Halbgruppe mit dem Einselement e. Dann existiert der 
Haibgruppenring R[H], Er umfaßt R und H, enthält 1 als Einselement und 
besteht aus allen Elementen der Gestalt (5). Man rechnet in ihm nach den Regeln 
(6), (3), (4). 
Spezia l fa l l : Ist H kommutativ, so ist iü[/7] ein kommutativer Ring. Ist x 
eine Unbestimmte über R und H = {e, x, x2, x3, }, so gilt ii[H] = R\x\. 

Beweis von Satz 1: Wir konstruieren R[H] = T. Wir bemerken, daß 
sich das Konstruktionsverfahren aus dem Beweis von Satz 25.1 nicht über-
tragen läßt, da H nicht notwendig abzählbar zu sein braucht. Statt dessen 
gehen wir von einer gewissen Menge von Abbildungen f : H ^ - R aus und 
haben dabei die Vorstellung, daß etwa dem Element riAi + r2h2 + r$hz aus T 
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die Abbildung f: H -> R mit f(hi) = n, /(A2) = r2, f(h3) = r3 und f(h) = 0 für 
alle anderen he H entsprechen möge. Es sei also A die Menge aller derjenigen 
Abbildungen f:H^-R, für die nur an endlich vielen Stellen he H das Bild 
f(h) 4= 0 ist. Auf A erklären wir eine Addition und eine Multiplikation nach 
den Vorbildern (3) und (4). Es sei für f,geA 

auf diese Weise ist die Summe / + g e A erklärt, und A wird eine abelsche 
Gruppe bezüglich dieser Addition. Das Produkt von f,g e A im Sinn von § 3 
ist gar nicht definiert; wir bezeichnen unser Produkt deshalb mit / o g und 
erklären es durch 

wobei über alle diejenigen Indexpaare (i, j) summiert wird, für die hihj = h 
ist. Da /(Ä<) und gQij) nur jeweils endlich oft ungleich Null sind, steht rechter 
Hand in (4') eine endliche Summe, also ein Element aus R; aus dem gleichen 
Grunde fällt außerdem diese Summe nur für endlich viele h von Null verschie-
den aus. Das Produkt / o g der Elemente /, g von A liegt also wieder in A. Die 
so erklärte Multiplikation ist assoziativ, weil die Multiplikation in R es ist. 
Analog prüft man die Distributivgesetze nach. Also ist A ein Ring. Er enthält 
ein Einselement, nämlich die durch 

e(e) = 1, e(h) = 0 für alle heH,h^e 
definierte Abbildung ee A. 
Setzt man die Existenz des oben betrachteten Ringes T für den Augenblick 
voraus, so gilt gewiß A ~ T. So haben wir die Konstruktion von A ja einge-
richtet. Das bedeutet, daß wir nur noch die Schreibweise der Elemente von A 
ändern müssen, um T = zu erhalten. Unser Beweis ist abgeschlossen. 

28.2 Es sei wieder R ein kommutativer Ring mit Einselement. Beispiele für 
Halbgruppenringe sind dann etwa die Polynomringe R[x\, R\x, y] \ zu R\x, y] 
gehört die Halbgruppe H aller xmyn, m 0, n S: 0. Ein Halbgruppenring ist 
auch der Ring i2[a;i, «3, . . . ] in abzählbar vielen unabhängigen Unbestimm-
ten X( über R. 

§ 29* Der Quaternionenschiefkörper 

29.1 Es sei G die Quaternionengruppe (vgl. § 18). Den in § 23 konstruierten 
komplexen Zahlkörper € = könnte man auch wie folgt beschreiben: Er 
ist der eindeutig bestimmte kleinste Oberkörper von SR, der auch das Element 
i e G enthält; dabei tritt als Verknüpfungsergebnis von i2 die reelle Zahl —1 
an die Stelle des Elementes —1 e G. 
Geht man von dieser etwas willkürlichen Deutung des Körpers CE aus, so kann 
man auch die Frage auf werfen, ob man nicht in ähnlicher Weise die Elemente 
i, j, k aus ö zu 9t adjungieren kann. Zwar würde wegen ij 4= ji die Multipli-

(3') (/ + 0)(A) = f(h) + g(h) für alle heH; 

(4') (/ o g)(h) = 2f(ht)g(hj) für aUe heH, 
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kation in der betreffenden Oberstruktur von SR nicht mehr kommutativ aus-
fallen ; aber vielleicht ließe sich auf diese Weise der Körper SR der reellen Zahlen 
in einen Schiefkörper einbetten. Es ist etwas überraschend, daß dies in der 
Tat möglich ist. Die früher getroffene Wahl für die Bezeichnungen der Ele-
mente von G erweist sich im folgenden noch einmal als besonders suggestiv. 
Wir nehmen zunächst wieder an, es gäbe einen Schiefkörper S, der SR als Teil-
struktur und außerdem die Elemente i , j , k e G enthält. Etwa die Multiplika-
tionsvorschriften i2 = —1 und ik = — j bedeuten ih S: Es ist i2 das additive 
Inverse von 1 e 8 und ik das additive Inverse von j e S. Die Einselemente von 
S und SR stimmen nach § 25.1 von selbst überein. In Analogie zu §28, (2), möge 
für die Multiplikation in S außerdem noch 

(1) rs = sr für alle r e SR, s e S 

gelten. In S betrachten wir nun die Teilmenge T aller Elemente der Gestalt 

( 2 ) a + bi + c j + die (a, b , c , d e ^ - , i , j , k B G). 

Die Formel 

i 3 \ (»1 + a2i + a z j + a4k) + (bx + b2i + b3j + b t k ) 
V ' = («i + öi) + («2 + b2)i + («3 + h ) j + («4 + bA)k 

für die Summe zweier Elemente aus T zeigt, daß T eine abelsche Gruppe be-
züglich der Addition ist. Die Multiplikation zweier Elemente von T führt 
wegen (1) auf 

(4) (a + bi + c j + dk)(s + ti + u j + vk) = (as — bt — cu — dv) 

+ (at + bs + cv — du)i 

+ (au + es + dt — bv)j 

+ (av + ds + bu — ct)k. 

Also ist T ein Unterring von S mit dem Einselement 1. Das Assoziativgesetz 
der Multiplikation und die Distributivgesetze gelten in 8 und damit erst recht 
in T; sie lassen sich aber auch leicht direkt nachprüfen. Tut man das, so be-
nutzt man beim assoziativen Gesetz die Assoziativität der Multiplikation in 
der Quaternionengruppe G. 
Der durch die Gestalt (2) seiner Elemente eindeutig bestimmte Ring T umfaßt 
SR und die Elemente i, j, k aus G, und er ist der kleinste Ring dieser Art, in dem 
die Multiplikationsvorschrift (1) gilt. Wir zeigen, daß T sogar ein Schiefkörper 
ist. Dazu sei a = a + bi + cj + dk ein Element aus T, dessen Koeffizienten 
a, b, c, d nicht sämtlich verschwinden, und cc = a — bi — cj — dk. Mit 
(4) folgt 

«ä = xa. = a2 + ¿>2 + c2 + d2 4= 0; 
also ist 

a - 1 = 1 a 6 T 
a 2 + ¿2 + C2 + d2 K 

das Inverse des von Null verschiedenen Elements a von T. Der Nachweis, 
daß T ein Schiefkörper ist, ist erbracht. Außerdem folgt, daß a nur Null sein 
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kann, wenn alle Koeffizienten verschwinden; gleichwertig damit ist 

(5) ai + azi + «3j + = h + &2i + bzj + b/Jc o av — bv 
(v = 1, 2, 3, 4; av, 6„e3t). 

Wieder bleibt die Frage nach der Existenz der Struktur T, und wieder können 
wir auf eine uns inzwischen geläufige Weise eine bejahende Antwort geben. 
Wir bilden die Menge M = SR4 aller Quadrupel (a, b, c, d) mit Komponenten 
aus SR, stellen uns unter ihnen die Elemente (2) vor und definieren eine Addition 
und eine Multiplikation auf M nach den Vorbildern (3) und (4). Eine Äquivalenz -
relation brauchen wir wegen (5) auf M nicht einzuführen. Es folgt der Nach-
weis, daß M ein Schiefkörper ist; abgesehen von der Bezeichnung der Ele-
mente handelt es sich um den zu konstruierenden Schiefkörper T. Wir führen 
die einzelnen Schritte, die nach dem in § 23 gegebenen Muster ablaufen, nicht 
mehr durch. 

29.2 Diesen Schiefkörper, der aus allen Elementen der Gestalt (2) besteht und 
in dem nach den Regeln (3), (4) und (5) gerechnet wird, bezeichnen wir in 
Zukunft mit Jj; seine Elemente nennt man Quaikrnionen. Der Name Quater-
nionen stammt von dem englischen Mathematiker W. R . HAMILTON (1805 — 
1865); er hat sich ausführlich mit ihnen beschäftigt, nachdem schon EULER 
(1707—1783) mit ihnen gerechnet hatte. Der Quaternionenschiefkörper hat 
in verschiedenen Disziplinen der Mathematik eine gewisse Bedeutung erlangt; 
Anwendungen des Rechnens mit Quaternionen finden sich auch in der Mecha-
nik (vgl. BLASCHKE [4]). Wir kommen im Rahmen der Algebra in § 55 noch 
einmal auf den Schiefkörper Jj zurück, der dann eine interessante axiomatische 
Beschreibung erfährt. 
Ist a. — a + bi + cj + dk ein Element von Jp, so nennt man 

ä = a — bi — cj — dke S? 

die zu a konjugierte Quaternion und die reelle Zahl 

N(a) = aä = «2 + &2 + c2 + ¿2 

die Norm von a. Für sie gilt 

(6) N(a)N(ß) = N(txß) (*, ß e 

Zum Beweis rechnen wir die linke Seite von (6) aus. Zunächst wird 
N(oc)N(ß) = (ax)(ßß) = x(ßß)x = (<xß)(ßä); dabei wurde neben der Asso-
ziativität der Multiplikation die Vertauschbarkeit der reellen Zahl ßß mit 
« e Sp benutzt. Nun gilt weiter 

(7) ^ = (a ,ßeS>), 

wie man nach (4) feststellt. Also bekommen wir N(a)N(ß) = xß(ßä) = otßtxß 
= N(xß), wie es in (6) behauptet war. 
Der Schiefkörper Jp kann auch durch Adjunktion von j eG zu 6 gewonnen 
werden. Dies sieht man, wenn man die Quaternion « = o + W + cj + dk.ia 

8 Hornfeck, Algebra 
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der Gestalt a = a + bi + (c + di)j = ai + «2/ schreibt (a< e CE, / $ <§). Es 
gilt SR c & c Jp. 

29.3 Ist K ein Körper, so gibt es nach Satz 26.2 höchstens zwei Elemente f 
in K mit der Eigenschaft g2 + 1 = 0 . Aber schon für den Quaternionenschief-
körper Sp, in dem ±k für f gewählt werden können, ist das nicht 
mehr richtig. Eben auf Grund von Satz 26.2 (vgl. auch § 23) ist es von vorn-
herein unmöglich, ein j $ <1 mit der Eigenschaft j2 = —1 zu € zu adjungieren 
mit dem Ziel, einen Oberkörper von CE zu erhalten. Man kann zwar J j als die 
Menge aller ai + 1x2) («1,X2 £ £) auffassen, hat aber auf die Kommutativität 
der Multiplikation in Jj> verzichtet. 
Als Beispiel für das Rechnen in jj> zeigen wir noch die Existenz sogar unend-
lich vieler tx.eS} mit a2 + 1 = 0 . Wird nämlich die Gleichung a£2-f£>f+c = 0 
(a, b, c eSR) durch a e ^ gelöst: aa2 + bat. + c = 0, so auch durch jede Qua-
ternion ßaß-1 (ß e J j , ß =|= 0); denn es gilt 

ß(aa?+boi+c)ß-i = aßx^+bßxß^+c = atftxß-^+btftxß-^+c = 0. 

Demnach ist etwa 

(r + j)~H(r + j) = - j)i(r + j) = + - ^ k 

für jedes r e SR eine Lösung der Gleichung f 2 + 1 = 0. 

29.4 Wir betrachten für den. Augenblick den Ring £?[]/—d], wobei d eine ganze 
Zahl und ]/—d $ 3 sein soll. Ist x = a + &]/—d (a, b e £) ein Element von 
3 t V — s o setzen wir a = a — &]/—d und bezeichnen die reelle Zahl 
N(tx) = «« = a2 + db2 als die Norm von tx. Auch für diese Norm gilt 

(6') N(x)N(ß) = N(ocß) (x, ß e 

Um das nachzurechnen, beachten wir die Gültigkeit von 

(7') rf = xß {x,ße%[ V=3])-

Diese Beziehung rechnet man leicht direkt nach; sie gilt deswegen, weil wie 
in Aufgabe 27.3 durch qp(<x) = x ein Automorphismus von —d ] definiert 
wird. Mit Hilfe von (7') wird dann N(x)N(ß) = tzccßß = xßxß = aßxß = N(xß), 
wie es in (6') behauptet war. 
Schreibt man die Gleichung (6') mit a = a + &]/—d und ß = 3 + 'V—d 
aus (a, b,s,te 3), so lautet sie 

(8) (a2 + db2)(s2 + dt2) = (aa — btdf + d{at + 6s)2. 

Das ist eine Identität, deren Gültigkeit man nachträglich für jeden kommu-
tativen Ring bestätigt. Sie wird in der Zahlentheorie gebraucht (vgl. auch 
Aufgabe 27.4). Speziell beruht der Fall d = 1 auf dem Rechnen in -S[i] oder <5. 
Das Produkt von Zahlen der Form x2 + dy2 hat also wieder diese Gestalt. Eine 
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ähnliche Aussage liefert (6), Ausgeschrieben bekommt man nach (4) die Vier-
quadrateformel 

(«2 + &2 + C2 + D2)(.S2 + <2 M2 + „2) = FA _ B T _ C M _ 
+ (at + 6s + cv — du)2 

+ (au + es + dt — bv)2 

+ (av + ds + bu — et)2, 

die sich wieder in jedem kommutativen Ring als richtig erweist. Wenn man 
zeigen kann, und dies geschieht in der Zahlentheorie, daß sich jede Primzahl als 
Summe von vier Quadraten aus 3 schreiben läßt, so liefert die aufgeschriebene 
Formel den berühmten Satz von LAGBANGE ( 1 7 3 6 — 1 8 1 3 ) , daß sich jedes 
Produkt von Primzahlen, also jede natürliche Zahl, als Summe von vier 
Quadraten aus 3 darstellen läßt. 

§ 30* Duale Zahlen 

Eine sogenannte duale Zahl hat die Gestalt a + be; dabei sind a, b reelle 
Zahlen, und es gilt e2 = 0: 
(1) «i + o2s = bi + b2e O av = bv (v = 1, 2; ar, brefR), 
(2) («i + a2e) + (&i + b2e) = (oi + h) + (a2 + b2)e, 
(3) (ai + a2e) • (h + b2e) = afa + (ai&2 + a2bi)e. 
Diese Forderungen definieren den kommutativen Ring D der dualen Zahlen. 
Wir verzichten auf seine Konstruktion aus der Menge M = SR2- nach dem 
Vorbild von § 23. 
Man sieht: Genau die Elemente der Gestalt re (r e 3t, r =(= 0) sind Nullteiler in 
D. Das Rechnen mit dualen Zahlen gestattet hübsche Anwendungen in der 
Geometrie, die auf den deutschen Mathematiker E. S T U D Y (1862—1930) zu-
rückgehen (vgl. B L A S C H K E [ 4 ] ) . 

§ 31 Angeordnete Ringe 

31.1 In den Ringen Q, 3t kann man sagen, ein gewisses Element sei positiv 
oder größer als ein anderes. Dieser Sachverhalt dient als Vorbild für die 
folgende 

Definition: Ein Bing R 4= {0} mit Elementen a,b, ... heißt angeordnet, 
wenn in R eine Relation a > 0 (lies: a größer Null, oder: a positiv) mit folgenden 
Eigenschaften erklärt ist: 
(1) Für jedes ae R gilt genau eine der Relationen a > 0, a = 0, — a > 0. 
(2) Für a > 0, b > 0 gilt a + b > 0 und ab > 0. 
Die Menge P aller positiven Elemente aus R heißt der Positivber€ich von R. 
Eine Anordnung von R definiert also eine Partition R = P u{0}u N von R \ 
dabei ist N die Menge aller r e R mit —r > 0. Ist ein Ring R auf zwei Arten 

8 
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angeordnet, so stimmen diese Anordnungen genau dann überein, wenn die zu-
gehörigen Positivbereiche dieselben sind. Gleichheiten von Anordnungen 
werden so gezeigt. 
Im Anschluß an die gegebene Definition treffen wir noch die folgenden weiteren 
Verabredungen. Es soll a > b (a größer b) dasselbe heißen wie a — b > 0, 
und a <b (a kleiner b) bedeute dasselbe wie b > a. An Stelle von —r > 0 
können wir also auch r < 0 schreiben. Schließlich soll a 6 bedeuten: Es ist 
entweder a > b oder a = b. Entsprechend wird a ^b erklärt. Für jedes 
Element r eines angeordneten Ringes R gilt also beispielsweise r r. 
Sind a, b Elemente eines angeordneten Ringes R, so gilt nach (1) mindestens 
eine der Relationen a f^b oder b a, und das gleichzeitige Bestehen von 
a fS b und b ^ o ist gleichwertig mit a=b\ aus a f^b und b c, also b — a 0 
und c — b 0, schließlich folgt vermöge (2) (b — a) + (c — b) = c — a ^ O 
oder a c. Ein angeordneter Ring R ist also bezüglich der Relation fS eine 
geordnete Menge (vgl. § 1.2). 
Beispiele für angeordnete Ringe wurden schon genannt. Jeder Unterring eines 
angeordneten Ringes, etwa Ü[y2] c SR, ist angeordnet. Im allgemeinen sind für 
ein und denselben Ring R Anordnungen, wenn überhaupt, auf verschiedene 
Arten möglich. Man betrachte etwa R = £l[a;]. Eine Anordnung von 
erhält man beispielsweise, wenn man jedes von Null verschiedene f{x) e Q[a;] 
genau dann als positiv bezeichnet, wenn sein höchster Koeffizient ein positives 
Element von £1 ist. Eine ganz andere Anordnung von Q[a;] ergibt sich, wenn 
man ein f(x) 4= 0 genau dann positiv nennt, wenn f(n) in SR positiv ist; beim 
Nachprüfen der Forderung (1) benutzt man, daß mit f(x) 4= 0 auch f(ji) =(= 0 
gilt, also die Transzendenz von n über £}. 
Man kann aber auch leicht Ringe angeben, die sich nicht anordnen lassen. 
Man betrachte zunächst einen angeordneten Ring R und ein r e R, r 4= 0; 
nach (1) gilt dann entweder r > 0 oder —r > 0, und beide Male liefert (2) 
r2 > 0. Von Null verschiedene Quadrate sind also in angeordneten Ringen 
positiv.Ist speziellii ein angeordneter Ring mit Einselement, so folgt 1 = l 2 > 0 
und —1 < 0. Eine Folge davon ist, daß beispielsweise 6 nicht angeordnet wer-
den kann; denn dazu müßte einerseits 1 > 0 und andrerseits auch —1 = »2 > 0 
sein im Widerspruch zu (1). 
Wir wenden uns nun dem Rechnen in angeordneten Ringen zu. 

Satz ls Es sei R ein angeordneter Ring mit Elementen a, b,c,d, ... Dann 
gelten die folgenden Regeln. 
a) Aus a>b und c > d folgt a + c > b + d. 
b) Aus a> b und c > 0 folgt ac > bc und ca > cb. 
c) Ist R sogar ein Körper und a > b > 0, so folgt b'1 > a~l > 0. 

B e w e i s : 
a) Es ist o — b > 0, c — d > 0, nach (2) also (a — b) + (c — d) = {a + c) 
— (6 + d) > 0 oder a + c > b + d. 
b) Es ist a — b > 0, c > 0, nach (2) also (a — b)c — ac — bc > 0 oder ac > bc-, 
analog wird ca > cb. 
c) Man beachte, daß aus c > 0 auch (c_1)2c = c"1 > 0 folgt, und multipliziere 
a > b > 0 gemäß b) mit a^b'1 > 0. 
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Ist R ein angeordneter Ring, so definieren wir noch wie üblich den Betrag |a| 
von ae R; wir setzen |a| = a für a 2g 0 und |a| = —a für a < 0. Es gelten 
dann die Betragsrechenregeln (Aufgabe 2) 
(3) \ab\ = \a\ • \b\, 
(4) ja + &| g \a\ + |6| (Dreiecksungleichung), 
(5) | | a | — ± 6 | ^ | a | +|6|. 
Ziemlich evident ist ferner die Gültigkeit von 

Satz 2: Eine Anordnung eines Integritätsbereiches I läßt sich auf genau eine 
Weise zu einer Anordnung seines Quotientenhörpers Q fortsetzen. 

Beweis: Würde Q eine Anordnung gestatten, die auf der Teilstruktur 
I c Q mit einer vorgegebenen Anordnung übereinstimmt, so müßte genau dann 

— > 0 sein (a, b e I, b + 0)> wenn b2 • ^ = ab > 0 in I ist; wenn es also eine 
b b 
Fortsetzung der Anordnung von I auf Q gibt, so nur diese. Ist aber 

Y > 0 o ab > 0 
b 

a c 
überhaupt eine Definition ? J a ; denn aus — = — oder ad = bc folgt abc2 = a2cd; 

b d 
ist also ab positiv, so auch cd. Die gegebene Vorschrift definiert auch wirklich 

a b 
eine Anordnung auf Q: Die Forderung (1) ist erfüllt; aus — > 0 und — > 0 

. ». 7. C C 
o + o a b 

folgt ac + bc = (a + b)c> 0, also = —|— >0 , und analog zeigt man 
, c c c 

a b 
> 0, insgesamt also (2). Und schließlich liegt eine Fortsetzung der An-

c c 
Ordnung von I vor; ist nämlich a e I und a in I positiv, so ist es wegen 

a2 
a = — positiv auch in Q. 

a 

Will man den Bing 3 anordnen, so muß 1 > 0 und nach (2) auch 1 + 1 = 2> 0, 
1 + 1 + 1 = 3>0 usw. gelten; 3 und wegen Satz 2 dann auchQ gestatten also 
nur die eine bereits bekannte Anordnung. Ist R ein angeordneter Ring, so ent-
hält er ein Element o > 0, und nach (2) ist niemals na = 0 (n eWl); die Ring-
elemente a, a + a, a + a + a, ... sind daher paarweise voneinander ver-
schieden. Ein angeordneter Ring R ist also unendlich. Ist speziell 1 e R, so ist 
1 > 0, und R enthält, wie man in Analogie zu Aufgabe 20.10 a) zeigt, einen zu 3 
isomorphen Unterring T aller ml, m e Es hat also einen Sinn zu sagen, 
sei der kleinste angeordnete Ring mit einem Einselement. Jeder angeordnete 
Körper umfaßt also 3 und damit auch £}, und £1 läßt sich axiomatisch bis auf 
Isomorphien eindeutig beschreiben als der kleinste angeordnete Körper. 

31.2 Sind 0 < a < b Elemente eines angeordneten Ringes, so ist es nicht ge-
sagt, daß ein n e 91 derart existiert, daß na > b wird. Ein einfaches Beispiel 
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dieser Art ist etwa Q[a;] mit der bereits erwähnten Anordnung, daß ein f(x) 4= 0 
genau dann positiv sein soll, wenn der höchste Koeffizient es ist; es gilt dann 
0 < 1 < x und n • 1 < x für jedes n e 91. Solche Möglichkeiten werden in der 
folgenden Definition ausgeschlossen. 

Definition: Ein angeordneter Ring R mit Elementen a,b, ... heißt archi-
medisch angeordnet, wenn aus 0 < a < b folgt: Es gibt ein n e 91 mit na > b. 
Archimedisch angeordnete Ringe sind etwa 3> G, £ü[j/2], 3t. 
Es gibt viele angeordnete Körper. Beispielsweise läßt sich der Polynomring 
SR[z] wie eben beschrieben anordnen, und diese Anordnung kann nach Satz 2 zu 
einer Anordnung des Oberkörpers 9t(x) von SR fortgesetzt werden. Aber für 
archimedisch angeordnete Körper gilt bereits der Satz: Ein archimedisch an-
geordneter Körper K ist einem Unterkörper von SR isomorph. Wir wollen den 
Beweis, obwohl er nicht schwierig ist, hier nicht ausführen. 

Aufgabe 1: Läßt sich &{x) anordnen? 

Aufgabe 2 : Man beweise die Betragsrechenregeln (3), (4), (5). 

Aufgabe 3 : Der Körper SR läßt sich nur auf eine Weise anordnen. 
Beweis ? 

Aufgabe 4 : Man bestimme alle Automorphismen von £} und SR. 

Aufgabe 5 : Ein angeordneter Ring R ist nullteilerfrei. Beweis ? 

Aufgabe 6 : Ein archimedisch angeordneter Ring R ist ein Integritäts-
bereich. Beweis ? 

§ 32* Der Körper 3t der reellen Zahlen 

32.1 Im Rahmen unserer bisher durchgeführten Überlegungen haben wir zwar 
das Rechnen in den Strukturen Q, SR, 6 als bekannt vorausgesetzt; aber unter 
der Annahme der Gültigkeit lediglich von Satz 2.1 ergaben sieh als Folge all-
gemeiner Sätze auch Existenznachweise für die Strukturen «3 und £1 (§ 13, 
§ 22), und in § 23 wurde der Körper € aus SR gewonnen. Als Lücke blieb noch 
der Nachweis der Existenz des Körpers SR der reellen Zahlen. Die Schließung 
dieser Lücke erfordert einen gewissen Aufwand und unterscheidet sich wesent-
lich von den früher geübten Konstruktionsverfahren. 
Schon anschaulich vollzieht sich der Übergang von Q zu SR anders als etwa 
der von 3 zu Q. Damals wurden die Lösungen der Gleichungen ax — b (a,b e 3 ; 
a 4= 0) zu 3 adjungiert. Diesmal kann man sich die Elemente von Q auf der 
Zahlengeraden markiert denken und will erreichen, daß umgekehrt auch 
jedem Punkt dieser Geraden ein Element r des Erweiterungskörpers SR 3 Q 
entspricht. Es gibt mehrere Möglichkeiten, diese Vorstellung mathematisch zu 
realisieren. Methodisch am ergiebigsten ist ein Verfahren, das durch den 
Konvergenzbegriff aus der Analysis nahegelegt wird und über die bloße Kon-
struktion des reellen Zahlkörpers SR hinaus eine allgemeine Bedeutung besitzt. 
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Es geht unter anderem auf G . C a n t o b ( 1 8 4 6 — 1 9 1 8 ) zurück und besteht, kurz 
gesagt, in folgendem. Eine Folge rationaler Zahlen <n, für die das Cauchysche 
Konvergenzkriterium erfüllt ist, hat immer einen Lomes a e 9t; aber a braucht 
nicht in Q zu liegen. Umgekehrt gibt es zu jedem a e 9t eine (Cauchy-)Folge 
rationaler a< mit a als Limes. Wir konstruieren nun 9t als die Menge aller 
solcher Cauchy-Folgen aus rationalen a<; zwei derartige Folgen werden äqui-
valent sein, wenn sie denselben Limes a e 9t haben. Dem wenden wir uns jetzt 
im einzelnen zu. Eine andere, für Beweiszwecke mitunter nützliche Konstruk-
tion des Körpers 9t durch sogenannte ÜEDEKiNDsche Schnitte findet man etwa 
be i G r a t j e b t - L i e b [5] . 

32.2 Wir beginnen mit der 

Definition: Eine Folge («i, «2» «8, • • •) aus heißt Cauchy-Folge, wenn zu 
jedem positiven e e Q ein N(e) e 9t derart existiert, daß \am — an\ < e wird für 
m,n> N(e). Eine Folge («i, «2. ®3> • • •) eG°° heißt Nullfolge, wenn zu jedem 
positiven eeQ. ein No(e) e9t derart existiert, daß \an\ < e wird für n > Nq(e). 

Eine Nullfolge (01, 02, «3, . . . ) ist also eine spezielle Cauchy-Folge; denn zu 
vorgegebenem e > 0 aus Q gelten für hinreichend große Indizes m, n die Un-

e b gleichungen \am\ < — und \an\ < —, und aus ihnen folgt 
¿1 2t 

\am — an\ ^ Knl + W < e. 
Eine Cauchy-Folge (a\, a2, 03, . . . ) ist beschränkt; das heißt, es gibt ein q eQ 
derart, daß \an\ q gilt für jeden Index n. Fürm, n > N(l) gilt ja \am—an\<1, 
also für m>N = iV(l) die Abschätzung \am\ = \(om — ajv+i) + «at+iI 
^ 1 + |aiv+i|; man kann also q = Max(|ai|, • • •, 1 + |«am-iI) setzen. 

Es sei nun M die Menge aller Cauchy-Folgen aus ; aus M konstruieren wir 
9t. Elemente («i, «3, . . . ) und (61, t% &3, • • •) aus M seien äquivalent, wenn 
(ai — 61, a% — 62. «3 — 63, . . . ) eine Nullfolge ist. Man überzeugt sich, daß auf 
diese Weise wirklich eine Äquivalenzrelation auf M definiert wird. Ferner seien 
eine Addition und eine Multiplikation auf M durch 

(ai, a2, «3, • • •) + (61, b2,h, •••) = («i + 61, <H + h, a3 + b3, ...) 
und 

(ai, a2, a3, . . . ) • (&i, b2, h, • • •) = (a-ih, «262, «363, • • •) 

eingeführt; die rechten Seiten liegen wieder in M, was für die Summe aus 

I(«I» + bm) — (o„ + bn)\ = \(am — an) + (bm — b„)[ ^ \am — an| + \bm — b„| 

und für das Produkt aus 

I ambm anf>n \ — I am.bm — anbm anf>m — anbn I 
= Ibm(om—an) + a„(bm—ft„)| iS |6m|- \am—an\ + \an\• \bm—bn\ 

und der Beschränktheit der \bm\ und \an\ folgt. 
Ist unsere Äquivalenzrelation eine Kongruenzrelation ? Da wir mit den Klassen 
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rechnen wollen, müssen wir das nachprüfen. Für die Addition sieht man es 
sofort mit Hilfe der Dreiecksungleichung. Und sind 

(«l, «2, «3, • • •) ~ («i, «2. °3> • • •) und (bi, b2, 63, . . . ) ~ (6J, ¿>2» &3> • • • )> 
so wird auch (a\bi, 0262, «363, . . . ) ~ {a[b[, a'Jb'2, «363, . . . ) wegen 
\arfin—a'nKil = IanK — a'J>n + — a'nb'nI ^ |6„| • |o» — <1 + Kl • \bn—b'nI, 
was für hinreichend großes n kleiner als ein vorgegebenes e > 0 aus Q. ausfällt. 
Es liegt also tatsächlich eine Kongruenzrelation vor. 
Man sieht sofort, daß M ein kommutativer Ring ist. Das Nullelement in M 
ist (0, 0, 0, . . . ) ; die dazu gehörende Klasse ist die Menge n c M aller Null-
folgen, und nach Satz 21.2 ist rt ein Ideal von M. Die Menge A der Kongruenz-
klassen von M, von der wir ja erwarten, daß sie bis auf Isomorphien der Körper 
SR wird, ist nach § 21 dasselbe wie M/n; als homomorphes Bild des kommutativen 
Ringes M ist also auch A ein kommutativer Ring. 
Wir wollen zeigen, daß A sogar ein Körper ist. Die Null in A ist die Klasse n; 
als Repräsentant kann (0 ,0 ,0 , . . . ) gewählt werden. Entsprechend ist 
(1 ,1 ,1 , . . . ) + n das Einselement. Ein von n verschiedenes Element aus A 
enthält nur solche Folgen (oi, a'2> a'3, . . .), für die ein q e £2, 1 > q > 0, existiert 
mit > q für alle n > N*(q) e 91; dabei hängen q und N*(q) von der vorge-
legten Folge ab. Nur endlich viele a{ einer solchen willkürlich dieser Klasse 
entnommenen Folge (a{, a'2, «3, . . . ) sind also ihrem Betrage nach kleiner oder 
gleich q ; ersetzen wir diese durch Einsen, so erhalten wir den Repräsentanten 
(«i, <Z2, 03, . . . ) derselben Klasse, und für ihn gilt an 4= 0 und \an\ > q für 
alle n. Der Nachweis, daß A ein Körper ist, ist erbracht, wenn wir gezeigt 
haben, daß («i, 02,03, . . . ) + n mit dem eben fixierten Repräsentanten 

(«i, az, «3, ) ein Inverses besitzt. Wir geben es an: . . . ) + tt; 
\oi «2 ®3 / 

noch nachweisen, daß (—, —, —, . . . ) eine Cauchy-Folge ist. 
\oi 02 03 / 

Das folgt aber daraus, daß (ai, o2, ®3» • • •) eine Cauchy-Folge ist und die 
Ungleichung 

I 1 1 ! \am an | 1 
I = —j 1— < l«m — anl 1 dm an\ \<hnfln\ T 

besteht. 

32.3 Ist der so konstruierte Körper A nun auch das geworden, was wir haben 
wollten ? Um das nachzuprüfen, orientieren wir uns an der Vorstellung, der 
Körper SR d Q sei die Menge aller Dezimalbrüche. Zunächst ist sicher die Teil-
struktur T = {x: x e A, x = (a, a, a, ...) + n> aller durch konstante Folgen 
repräsentierbaren Klassen aus A isomorph Q. Von Isomorphien abgesehen ist 
also A ein Oberkörper von £}. Ferner definiert jeder Dezimalbruch, zum Beispiel 
der für n, eine Cauchy-Folge, hier 

(3, 3,1, 3,14, 3,141, 3,1415, . . . ) , 

und wird so Repräsentant einer Klasse aus A. Schließlich sieht man auch um-
gekehrt, daß man für jede Klasse aus A genau einen Repräsentanten dieser Art 
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wählen kann. Wir dürfen A als die Menge aller Dezimalbrüche ansehen. 
Im folgenden stellen wir nun einige einfache Eigenschaften des in Abschnitt 
32.2 konstruierten Körpers A fest, die, wie sich zum Schluß herausstellen 
wird, ihn axiomatisch eindeutig beschreiben. 

32.4 Wir wollen A anordnen und wählen ein Element (oi, «2, «3, . . . ) + n 
von A, das nicht Null ist. Wir wissen bereits, daß dann ein qeQ, q > 0, 
existiert, so daß |a„| > 2 wird für alle n > N*(q). Da nun (ai, 02,03, . . . ) eine 
Cauchy-Folge ist, gilt ferner \om — an\ < 2q für alle m,n> N(2q). Aus beidem 
zusammen folgt: Für n > N = Max(N*(q), N(2q)) haben alle a„ das gleiche 
Vorzeichen. Genau dann, wenn alle diese an positiv sind, sei («i, «2, «3, • • •) 
+ n 6 A positiv. Diese Vorschrift ist eine Definition, da ein anderer Repräsen-
tant derselben Klasse sich lediglich um eine Nullfolge von (oi, 02,03, ) 
unterscheidet. Die Anordnungsaxiome aus § 31 sind ersichtlich erfüllt. Und 
schließlich wird die Anordnung von G fortgesetzt; denn (a,a,a, . . . ) + n eTcA 
wird genau dann positiv, wenn a e G in £ positiv ist. 

32.5 Ist A archimedisch angeordnet ? Es seien (ai, «2,03, . . . ) + n und 
(bi, 62, 63, . . . ) + n positive Elemente aus A. Dann gibt es positive rationale 
Zahlen qi, r\, derart, daß für alle hinreichend großen ».gilt: 

2i < an < qz, n<bn< r2. 
Die Abschätzungen nach oben folgen daraus, daß (oi, 02,03, . . . ) und 
(61, 62, 63, . . . ) Cauchy-Folgen sind. Da £ archimedisch angeordnet ist, gibt es 
ein k e 51 mit kq\ > r2. Dann ist aber erst recht (ko\, ka2, kas, . . . ) + n größer 
als (bi, bz, bs, . . . ) + "• Es ist also A ein archimedisch angeordneter Körper. 

32.6 Wir wenden uns noch einmal der Definition zu Beginn von Abschnitt 32.2 
zu und verallgemeinern sie, indem wir Q durch einen angeordneten Körper K 
ersetzen. 

Definition: Es sei K ein angeordneter Körper. Eine Folge (ai, 02,03, ...) 
aus K°° heißt Cauchy-Folge, wenn zu jedem positiven e e K ein N(e) e derart 
existiert, daß |Om— an\ < e wird für m,n> N(e). Eine Folge («1,02,03,... )eK°° 
heißt Nullfolge, wenn zu jedem positiven e e K ein Nq(b) e derart existiert, daß 
\an\ < e wird für n > N0(e). Allgemeiner heißt die Folge (oi, 02, 03, . . . ) e K°° 
in K konvergent mit dem Limes a, wenn es ein a e K gibt derart, daß zu jedem 
positiven e e K ein 8(e) e 9t existiert mit \an — o| < e für n > S(e); man schreibt 
dann lim av = o. Ein angeordneter Körper K heißt vollständig, wenn jede Cauchy-

v-t-oo 
Folge (oi, 02,03, ...) e K°° in K konvergent ist. 

Nullfolgen sind also konvergent mit dem Limes Null. 
Wir wissen, daß Q, nicht vollständig ist. Die in Abschnitt 32.3 aufgeschriebene 
Cauchy-Folge aus beispielsweise ist nicht konvergent in Q, da sie keine 
rationale Zahl als Limes hat. Andererseits ist die betrachtete Cauchy-Folge 
nach dem Cauchyschen Konvergenzkriterium aus der Analysis jedenfalls in SR 
konvergent wie jede Cauchy-Folge aus SR00. Dort wird also behauptet: Sit ist 
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ein vollständiger archimedisch angeordneter Körper. Unter dieser ständig 
benutzten Voraussetzung betreibt man dann reelle Analysis. 
Wir wollen nun zeigen, daß der archimedisch angeordnete Körper A voll-
ständig ist. Das ist nicht schwer, aber etwas umständlich aufzuschreiben. 

Es sei eine Cauchy-Folge (fi n, /2 n, /s n, . . . ) 6 ^4°° von Elementen 

h + n = (an, «12, «13, • • • ) .+ n 
(1) h + n = («21,022, a23, . . . ) + " 

/3 + n = (031,032, «33> . . . ) + n 

aus A vorgelegt. Auf Grund unserer Definition und der in Abschnitt 32.4 vor-
genommenen Anordnung von A hat das die folgende Bedeutung. Zu vor-
gegebenem e > 0 aus Q gibt es ein N(e) e 91 mit nachstehender Eigenschaft. 
Sind r, s natürliche Zahlen größer als N(e), so existiert ein A = A(r, s) e 51 
derart, daß für alle X > A gilt: 

(2) |an — an| < e (r, s > N(e); X > A(r, «)). 
Wir denken uns ferner die Repräsentanten in (1) noch in bestimmter Weise aus-
gesucht; wir wollen, daß die Komponenten der fx mit wachsendem A immer 
weniger streuen: Lassen wir von einer Cauchy-Folge (oj, 02, 03, . . . ) die ersten 
k Komponenten weg, so wird auch (a*+i, 2, ajt+3, . . . ) eine Cauchy-Folge, 
die dieselbe Klasse repräsentiert. Auf diese Weise können wir erreichen, daß in 
(1) für alle r, s gilt: 

(3) \ar, — arr| < - (r,ae 91). r 
Eine beliebige Komponente der r-ten Folge fr unterscheidet sich von der r-ten 

Komponente arr dieser Folge um weniger als —. r 
Unter diesen Voraussetzungen wollen wir zeigen: Die Folge 

(/1 + n,/a + n , / 3 + n, . . . ) e 4 « 
ist in A konvergent mit dem Limes / + neA, wobei / die Diagonalfolge 
(au, 022, 033, . . . ) des Schemas 

au ai2 013 «14 . . . 
°21 a22 023 «24 . . . 
«31 a32 a33 034 . . . 
041 «42 043 <Jt44 . . . 

bedeutet. Der Nachweis dafür ist gewiß dann erbracht, wenn wir das Folgende 
zeigen können. Zu vorgegebenem e > 0 aus £} existiert ein S(e) e 9t derart, daß 
für alle r,s> S(e) gilt: 

(4) |ars — ass| < e (r,a > %)). 
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Das heißt speziell: Wird die Folge (ari, ar2, ar3, . . . ) in dem angeschriebenen 
Schema nur hinreichend weit unten gewählt, so unterscheidet sich ars für s ^ r 
von der entsprechenden Komponente ass der Folge (an, <122, «33, . . . ) dem 
Betrage nach um weniger als e. Aus den Beziehungen (3) und (4) und der 
Ungleichung 

|«rr— a»«l iä IOrr — ars\ + |«rs — «ssl 

ergibt sich schließlich von selbst noch, daß / eine Cauchy-Folge, also / + n e A 
ist. 

Der ausstehende Nachweis von (4) stützt sich auf (2) und (3). Für r, 

und hinreichend große X > A (r, s) gilt zunächst einmal 

(5) \<hi — asX\ < ~ 

auf Grund von (2). Die arx aus der r-ten Folge fr unterscheiden sich aber nach 
1 2 

(3) von arr um höchstens —, somit untereinander um höchstens —, und ent-

2 
sprechend unterscheiden sich die asx der s-ten Folge um höchstens —. An Stelle 

s 
von (5) bekommen wir deswegen auch 

(6) \arx — asX\ + ^ + ^ (r,i>iv(i)), 

diesmal für alle A e 9t. Hieraus ergibt sich (4) mit A = s und einem beliebigen 

S(e) ^ Mm(ä(|) ,|) . 

32.7 Es ist also A ein vollständiger archimedisch angeordneter Körper. Axio-
matisch ist nun noch ein Punkt interessant: Zwei archimedisch angeordnete 
vollständige Körper K und L sind isomorph. Wenn wir das noch beweisen, so 
haben wir durch diese Angaben den Körper A sogar eindeutig beschrieben. 
Wir zeigen statt dessen: Ist K ein archimedisch angeordneter vollständiger 
Körper, so gilt K ~ A. 
Zunächst ist K angeordnet; nach § 31.1 dürfen wir also Q. c K voraussetzen. 
Weil K sogar archimedisch angeordnet ist, gibt es überdies zu jedem a e K 
ein n e 51 mit n • 1 = n> a, und es folgt die Existenz ganzer Zahlen m, n 
mit m < a < n. Nun kann man eine Cauchy-Folge («i, «2» 03» • • •) e kon-
struieren, die a als Limes hat; man wählt etwa a\ — m und halbiert das Inter-

TU | fi ffy I ^ 
vall \m, n] durch — - — ; gilt dann noch m sS a — - — , so wählt man auch 

¿t Z 

«2 = m, andernfalls «2 = —5—, und setzt das Verfahren der Intervallhal-¿i 
bierung fort. 
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Durch f(a) — (01,02,03, ...) + n e A wird nun eine Abbildung f:K-+A 
definiert. Denn erstens ist («1,02.03, . . . ) offenbar eine Cauchy-Folge, und 
zweitens bildet eine andere gegen o konvergierende Folge (o{, 02, 03, . . . ) 
auf Grund der Abschätzung 

|o„ — «; | ^ |o„ — a\ + \a — a'n\ 

nur einen anderen Repräsentanten derselben Klasse (01,02,03, . . . ) + n. 
Diese Abbildung /: K A ist surjektiv, weil K vollständig ist. Sie ist auch 
injektiv; hätten nämlich die voneinander verschiedenen Elemente o, b e K 
dasselbe Bild (01,02,03, . . . ) + n e A, so hät te die Folge (01,02,03, . . . ) die bei-
den verschiedenen Limites a und b, was wegen 

|o —o„| + |o„ — b\ ^ |o — b\ 
nicht möglich ist. 
Die Abbildung f: K A ist also bijektiv. Sie ist auch relationstreu. Hierfür 
seien (oi, 02, 03, ) und (61, 62, ¿>3, . . . ) Repräsentanten von Klassen aus A; 
nach Voraussetzung existieren in K -die Limites lim an = a und lim bn — b. 

»->•00 n-*-oo 

Zu zeigen sind dann die Regeln 

(7) lim (o„ + ¿>B) = lim o„ + lim bn 
n-*oo n->co n > oo 

und 

(8) lim anbn = lim an • lim 6„. 
n—*oo n—*oo n-+oo 

Ihr Nachweis verläuft nach dem aus der Analysis bekannten Muster und 
stützt sich auf die Ungleichungen 

(7') |(o„ + bn) — (o + 6)| ^ |o„ — o| + |6„ — 6| 

und 

(8') |anbn — ab\ ^ |6n| • |on — o| + |o| • |6» — 6|. 

Insgesamt gilt also K ~ A. 

32.8 Zuletzt ersetzen wir die in Abschnitt 32.3 betrachtete Teilstruktur 
T = {x: x e A, x = (o, o, o, . . . ) + rt> ~ Q von A durch Q; den dadurch 
aus A entstandenen Körper nennen wir den Körper SR DQ der reellen Zahlen. 
Wir fassen unsere Ergebnisse zusammen. 

Satz 1: Es gibt, von Isomorphien abgesehen, genau einen archimedisch an-
geordneten vollständigen Körper, den Körper SR der redien Zahlen. 

Ergänzend wiederholen wir: Der Ring 3 der ganzen Zahlen ist eindeutig be-
stimmt als der kleinste angeordnete Ring mit Einselement; der Körper ist 
eindeutig bestimmt als der kleinste angeordnete Körper (§31). Andere axioma-
tische Beschreibungen von 3 und Ü hatten wir in § 13.2 und § 22.2 kennen-
gelernt. 
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§ 33* Bewertete Körper 

33.1 In einem angeordneten Körper K mit Elementen a,b, . . . gelten nach 
§ 31.1 die Betragsrechenregeln \ab\ = |a| • |6| und |o + ò| SS \a\ -f- |6|. Ihre 
Bedeutung für die Analysis kann gar nicht hoch genug eingeschätzt werden. 
Wir haben sie zum Beispiel bereits bei der Konstruktion des Körpers 91 in 
typischer Weise gebraucht. Am Anfang der Analysis, etwa in SR, steht der 
Limesbegriff, und die Theorie besteht aus den Sätzen, die. sich über ihn er-
geben. Es seien beispielsweise a„, bn reelle Zahlen mit lim an = a und 

lim bn = b; dann gilt Um anbn = ab. Der Beweis beruht auf der Abschätzung 
oo n-+ oo 

(8') aus § 32, 

Ianbn — ab\ = \bn(an — a) + a(b„ — 6)| ^ |6„| • |an — a\ + |a| • |6„ — 6|, 

die sich ihrerseits auf die beiden Betragsrechenregeln stützt. Will man zeigen, 
daß das Produkt stetiger Funktionen wieder stetig, das Produkt differenzier-
barer Funktionen wieder differenzierbar ist, so benutzt man das gleiche Be-
weisschema. 
Nun wissen wir aus § 31.1, daß der Körper @ sich nicht anordnen läßt. Trotz-
dem kann man in ihm mit großem Erfolg Analysis betreiben, und die zitierten 
Limes-Sätze gelten auch hier. Dazu definiert man den Betrag |z| einer kom-
plexen Zahl z 6 <5 als die nichtnegative reelle Wurzel aus zz 0 und hat damit 
einen reellen „Wert" von z ; für komplexe Zahlen zi, Z2, . . . soll dann lim z„ = z 

n-*oo 
bedeuten, daß der „Wert" von z„ — z mit wachsendem n immer kleiner wird: 
Zu vorgegebenem reellen e > 0 existiert ein S(e) e 91 derart, daß \zn — z\ < e 
ist für n > S(e). Entscheidend ist nun, daß auf diese Weise die Betragsrechen-
regeln |oò| = \a\ • |6| und \a + 6| iS |a| + [¿>[ auch für komplexe Zahlen 
a, b ihre Gültigkeit behalten (vgl. Anhang). Als Folge davon kann man die 
erwähnten Sätze auch für komplexe Folgen oder Funktionen aussprechen und 
die alten Beweise, die auf diesen Regeln beruhen, übernehmen. 
Dieses Beispiel zeigt, daß es sich lohnt, den Begriff der Anordnung eines 
Körpers K in folgender Weise zu verallgemeinern. 

Definition: Ein Körper K mit Elementen a,b, ... heißt bewertet, wenn eine 
Abbildung <p: K -+W von K in einen angeordneten Körper W (meist W = SR) 
mit folgenden Eigenschaften vorhanden ist: 

(1) ^,(0) = 0; <p(a) > 0 für alle a e K, a + 0. 
(2) <p{ab) = <p(a) • tp(b) für alle a,beK. 
(3) <p(a + b) g <p(a) + <p(b) für alle a,be K. 

Es ist klar: Jeder angeordnete Körper K besitzt die durch W = K und 
<p(a) — |a| definierte Betragsbewertung. Der Körper <5 läßt sich durch 
<p(z) = + yzz e SR bewerten. Eine triviale Bewertung schließlich hat jeder 
Körper K: Man setze <?s(0) = 0 und <p(a) = 1 für jédes a e K, a 4= 0. Zwei Be-
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Wertungen <pi~. K -> W und <p2- K W wird man genau dann als äquivalent 
ansehen, wenn für alle a,b e K gilt: 

<pi(a) < 9?i(ö) o <p2(a) < 952(6). 
Folgerungen aus (1) und (2) sind 95(1) = 1, <p{—1) = 1 und <p(—a) — <p(a). 
Damit läßt sich wie in § 31, (5), die Dreiecksungleichung (3) in der Gestalt 

— <p(b)\ ^ <P(" ±b) < <p{a) + cp(b) 

verallgemeinern. Schließlich bekommt man aus (3) auch noch 

<p(a 1 + «2 + • • • + o») ^ <p(a 1) + 95(02) + ... + <p(a„). 

33.2 Eine Folge («i, «3, . . . ) von Elementen ar eines durch <p bewerteten 
Körpers K heißt Cauchy-Folge oder Fundamentalfolge, wenn zu jedem positi-
ven e e W ein N(e) e 9t derart existiert, daß <p(om — an) < e wird für 
m,n> N(e). Entsprechend überträgt man den Konvergenzbegriff. Ein Rück-
blick auf die Konstruktion, die in § 32 von Q zu SR geführt hat, zeigt, daß auch 
sie sich ohne wesentlichen zusätzlichen Aufwand verallgemeinern läßt. Am 
Ende steht das Ergebnis: Jeder bewertete Körper K besitzt einen minimalen 
bewerteten Oberkörper E derart, daß die Bewertung von E eine Fortsetzung 
der Bewertung von K und jede Cauchy-Folge aus E00 in E konvergent ist; 
der Körper E ist bis auf Isomorphien eindeutig bestimmt und heißt die voll-
ständige Hülle von K bezüglich der Bewertung q>. In § 32 handelte es sich um 
den Spezialfall K = Q., E = 3t, <p(a) = |o|. 
Wir wollen auf Einzelheiten nicht weiter eingehen, weisen aber noch auf fol-
gendes hin. Sind a, b Elemente eines bewerteten Körpers K, so darf man sich 
unter <p(a — b) ihre „Entfernung" d(a, b) vorstellen. Wir präzisieren das. 

Definition: Eine Menge M von Elementen a,b,c, ... heißt ein metrischer 
Raum, wenn eine Abbildung d: M x M A des cartesischen Produktes M x M 
in einen angeordneten Körper A (meist A = SR) mit folgenden Eigenschaften 
erklärt ist: 
(1) d(a, b) = 0 für a = b\ d(a, b) > 0 für a 4= b. 
(2) d(a, b) = d(b, a). 
(3) d(a, c) ^ d(a, b) + d(b, c). 
Diese Forderungen an die Entfernung oder Metrik d(x, y) haben plausible an-
schauliche Bedeutungen; insbesondere bezieht die Dreiecksungleichung (3) 
ihren Namen hierher. Ist nun K durch <p bewertet, so definiert ersichtlich 
d(a, b) = <p(a — b) eine Metrik auf K. 

33.3 Welche Bewertungen gestattet beispielsweise Q ? Wir kennen bislang die 
triviale und die Betragsbewertung. Weitere Bewertungen von Q erhält man 
wie folgt. 

Es sei p e Ut eine feste Primzahl und das positive q e Ö in der Gestalt —pk mit 
n 

zu p und untereinander teilerfremden natürlichen Zahlen m, n geschrieben; 
wir setzen dann 953,(0) = 0 und 
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<pp(q) = <pp(—q) = pk-

Dies definiert eine Bewertung <pP:£l^-Q. von Q. Die Forderungen (1), (2) aus 
33.1 sind trivialerweise erfüllt, und sind m, n, r, s ganz und teilerfremd zu p, so 
folgt für k l und von Null verschiedener Summe in der folgenden Klammer 

Im . r (ms + nrpl'K .\ ^ , 
<PP\ „ P + 7 P = M P = P~*> x ^ k> \n s I \ Tis ! 

oder <pp(a + 6) ^ Max (<pp(a), <pP(b)) iS <pp(a) + <pp(b), also (3). 
Dies nennt man eine p-adische Bewertung von £}. Etwas nachlässig gesagt, ist 
ein qeQ. klein, wenn es durch eine hohe Potenz von p teilbar ist. Jede Wahl 
von p liefert eine andere derartige Bewertung, und entgegen dem ersten 
Augenschein spielen diese Bewertungen eine große Rolle (vgl. etwa HASSE 
[6]). Weitere Bewertungen von £l gibt es, wie man zeigen kann, nicht. 

§ 34 Symmetrische Polynome 

34.1 Wir wenden uns noch einmal Polynomringen R\xi, x%, ..., xn] in n Un-
bestimmten über einem kommutativen Ring R mit Einselement zu. Ein 
Polynom f(xi, X2, ..., xn) e R\xi, xn] heißt symmetrisch, wenn es bei 
jeder Permutation der X{ unverändert bleibt, wenn also für jedes n e gilt: 

/(«;rtl), X„(2), .. . ., XMn)) = f(x i , X2, ..., Xn). 

Beispiele solcher Polynome sind etwa x\-\-x%-\-... -j-xn, «1+^2+ • • • ~\~xn oder 
Ringelemente r e R. 
Weitere symmetrische Polynome, die besonders häufig auftreten, erhält man 
wie folgt. Man wähle eine weitere Unbestimmte x über R[x\, x%, . . . , « „ ] und 
betrachte das Po lynom g(x) = (x—x\)(x—£2) • • •(x—xn) e R\x\,x2,...,x„][x]. 
Wir multiplizieren aus und setzen 

g(x) = x» — ctix""1 + a2xn~2 b • • • + (— l ) " f f » . 

Jede Permutation der xj läßt g(x) und damit auch die ffj e R[x1,2:2, •. .,xn] fest; 
sie heißen die elementarsymmetrischen Polynome der xi, »2, .. .,xn und haben 
die Gestalt 

= = 1xtxh • • on = XiXZ ... xn. 
i i<j 

Gegenstand unserer Erörterungen ist der folgende Hauptsatz über symmetrische 
Polynome. 

Satz l s Jedes symmetrische Polynom f(x 1, xn) e -ß[a;i, x%, ..., xn] 
läßt sich als Polynom in den elementarsymmetrischen Polynomen Cj schreiben: 

f(x 1, Xi, ..., Xn) £ Ä[oi, 02, ..., ff»]. 

Beweis: Das Polynom f(x1, ..., xn) ist eine Summe von Ausdrücken 
der Gestalt rx\' • • • x^, reR,r=|= 0, Aj 0; wir schreiben diese Summe 
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so auf, daß a x . . . vor b x i 1 X o ' . . . x^" steht, wenn die erste nicht 
verschwindende unter den Differenzen ai — ßi, a2 — /?2, . . . , ocn — ßn positiv 
ist. Wir nehmen an, f(x1, . . . , xn) habe den Grad m; das soll heißen, daß 
für wenigstens einen der Summanden Ai + + . . . + An = m wird und die 
Exponentensumme sonst immer sS m ausfällt. Der triviale Fall f(x1,2:2, • • • ,#«) 
= 0 ist dabei ausgeschlossen. 
Der erste Summand von f ( x i , x 2 , . . . , x n ) heiße, a x * 1 x"2' . . . x „ " . Weil nun 
f(x1, X2, . . . , x„) symmetrisch ist, gilt ai a2 sl • • • ^ <x„. Denselben ersten 
Summanden hat das Polynom 

a a l l ~ " ' . . . e . r 2 , . . . , x n ] 

vom Grad 
(ai—a2)+2(ot2—a3)+ • • • +(n—l)(a„-i—a„)+wa„ = a i + a 2 + . . . + a „ m. 
Wir subtrahieren es von f(x1, X2, . . . , xn) und betrachten die Differenz 

d ( x 1 , X 2 , . . . , x n ) = f ( x i , x 2 , . . . , x n ) — a a l l ~ " ' • • • 

Es ist entweder d(x\, X2, . . . , xn) = 0, und in diesem Fall sind wir fertig, 
oder das symmetrische Polynom d(x1, X2, . • x n ) hat einen Grad iS m und 
einen ersten Summanden bxj1 . . . der bei der verabredeten Reihen-
folge nur einer der möglichen Nachfolger von ax* 1 xQ . . . x^" sein kann. 
Solche Nachfolger gibt es unter Polynomen vom Grad iS m nur endlich viele. 
Setzt man daher das Subtraktionsverfahren fort, so bricht es nach endlich 
vielen Schritten mit einer Differenz Null ab, und Satz 1 ist bewiesen. 
Dieser Beweis ist konstruktiv; er ermöglicht es, zu vorgelegtem symmetrischen 
f(x1, Xz Xn) die gewünschte Darstellung als Polynom in den elementar-
symmetrischen Polynomen o t ( x i , X 2 , • . . , x n ) auch wirklich aufzufinden, selbst 
wenn die Rechnung im einzelnen mühsam sein mag. 

34.2 Eine der häufigsten Anwendungen von Satz 1 beruht darauf, daß auch 
das Polynom 

D ( x 1, X 2 , . . . , x n ) = n(s< —  x k ) 2 e R [ X ! , X 2 , . . . , X n ] 
i < k 

symmetrisch ist, also eine Polynomdarstellung durch die cr<(xi, x% x n ) ge-
stattet. 
Es sei K ein Körper und f ( x ) = x n + a \ x n ~ x + a2xn~2 + . . . + a n e K [ x ~ ] ; 

es gebe einen Erweiterungskörper E von K , in dem f(x) die n nicht notwendig 
paarweise voneinander verschiedenen Nullstellen fi, £2, • • •, f» besitzt. Später 
wird sich zeigen, daß ein derartiger Körper E immer existiert (§ 58). Nach 
dem Beweis von Satz 26.2 gilt dann in E[x] 

f ( x ) = ( x — h ) ( x — h ) . . . ( x — £ „ ) . 

Unter der D i s k r i m i n a n t e D ( f ) von f ( x ) versteht man die Zahl 

m = ro - f*)2-
i < k 
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Man betrachte nun die Polynomdarstellung von D(xi, xz, ..., xn) durch die 
oi(xi, X2, ..., xn) und ersetze in ihr die x\ durch die Wegen 

f») = (— l ) }aj 

folgt, daß D(f) ein Polynom in den aj, also D(f) e K ist. Wir beachten dabei, 
daß wir die Koeffizienten von f{x) so bezeichnet haben, daß sie bis aufs Vor-
zeichen dem Polynom g(x) aus dem vorigen Abschnitt entsprechen. 
Die Darstellung der Diskriminante D(f) durch die Koeffizienten aj von f(x) 
erfordert einige Rechnung, die unter anderem nach dem Muster des Beweises 
von Satz 1 durchgeführt werden kann. Wir geben zwei Resultate an: 

(1) D(x2 + px + q) = p2 — 4q; 

(2) D( xz + a\x2 + a%x + as) = ofo | — 4 — 4a®a3 — 21 a\ + 18aia2a3. 

34.3 Die Bedeutung der Diskriminante D(f) e K des Polynoms f(x) e K[x\ be-
ruht auf den Informationen, die sie über die Nullstellen Ute E von f(x) ver-
mittelt. Sie ist genau dann Null, wenn f(x) in E wenigstens eine mehrfache 
Nullstelle hat. Wir sehen uns noch zwei Beispiele an. 
Das quadratische Polynom x2 + px + q e 9t[a;] hat entweder zwei konjugiert-
komplexe oder nur reelle Nullstellen h , h'> der letzte Fall t r i t t genau dann 
ein, wenn (fi — = D(x2 + px + q) = p2 — 4q i ; 0 ist, was auch die 
übliche Auflösung der quadratischen Gleichung ergibt. 
Das kubische Polynom f(x) = x3 + ®i£2 + a^x + 03 e 9t[a;] besitzt entweder 
eine reelle und zwei konjugiert-komplexe oder drei reelle Nullstellen, ihrer 
Vielfachheit entsprechend gezählt; ein Polynom ungeraden Grades mit reellen 
Koeffizienten hat ja, wie wir aus der Analysis wissen, mindestens eine reelle 
Nullstelle. Sind alle drei Nullstellen reell, so ist sicher D(f) 2g 0. Umgekehrt: 
Sind die Nullstellen £1, h nicht reell und £3 e SR, so sind (fi — kz)2 und (£2 —13)2 

von Null verschiedene konjugiert-komplexe Zahlen, also (fi — £3)2(?2 — fs) 2 >0, 
und mit (h — h)2 < 0 folgt D(f) = (h—h)2(h—h)2(h—&)2 < 0. So ergibt 
sich der mitunter gebrauchte 

Satz 2: Das kubische Polynom x3 + aix2 + a^x + 03 e 9t[a:] hat genau dann 
drei reelle Nullstellen, wenn die Diskriminante 

a\a\ — 4a | — 4afa3 — 21 a\ + 18^10203 0 

ist. 

A u f g a b e 1: Es sei K ein Körper und 

f(x) = xn + aix"-1 + d2Xn~2 + ... + an e K\x\ 

In dem Erweiterungskörper E von K habe f(x) die Nullstellen f i , Man beweise die Formel 

(3) D(f) = ( - 1 ) ~ ^ m ) f ' ( h ) • • • /'(£»)• 

Literatur: v. D. W a e r d e n [16]. 

9 Hornfeck, Algebra 


