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Meiner Mutter, meinem Vater f 
und allen Geschwistern mit ihren Angehörigen 





Vorwort 

Was gezeigt werden kann, 
kann nicht gesagt werden. 

L. Wittgenstein, Tractatus 4.1212 

Bei der Besprechung der Wahrheit bemerkt William James, eine 
neue Theorie werde zunächst als widersinnig bekämpft; in einem 
späteren Zeitpunkt gibt man ihre Wahrheit zu, bezeichnet sie aber 
als selbstverständlich und bedeutungslos. Wenn es schließlich so-
weit ist, daß ihre weitreichende Bedeutung anerkannt wird, dann 
behaupten die früheren Gegner, sie hätten sie selbst entdeckt. 

Im deutschen Sprachgebiet scheint die Logik unter den sogenann-
ten Geisteswissenschaftlern im zweiten Stadium angelangt zu sein. 
Ein Grund für den Rückstand gegenüber dem englischsprachigen 
Gebiet liegt zweifellos in der Darstellung der Einführungslitera-
tur. Der Zugang zur Logik ist vergleichbar mit dem Erlernen einer 
Fremdsprache. Methodisch hat man sich eingangs zu entscheiden 
zwischen der Bearbeitung kunstvoller Texte aus der Literatur, an 
denen die Hochleistung der Sprache abzulesen ist oder der Wie-
derholung einfacher Formen mit den geläufigen Ausdrücken der 
Umgangssprache. In der Logik stellt sich eine analoge Frage, ob es 
didaktisch vorteilhaft sei, sich zuerst die wesentlichen logischen 
Ideen in Reinheit anzueignen, um so zunächst die Anwendungs-
probleme mit den ihnen eigenen Schwierigkeiten zu umgehen. Da 
ich zum einen die Nähe zur Praxis für natürlicher und erst noch 
reizvoller und zum andern das künstliche Hinausschieben der An-
wendungsprobleme für eine Mißdeutung der genetischen Ent-
wicklung der Logik halte, habe ich mich auf die hier vorliegende 
Darstellungsart festgelegt. 

Seit der Zeit der alten Griechen gilt die Logik als brauchbares 
Hilfsinstrument. Sie soll den Gesprächsteilnehmer befähigen, den 
Ablauf einer komplexeren Argumentation zu überschauen, über-
zeugend zu begründen oder Fehlerhaftes ebenso sicher zu widerle-
gen. Für den Alltag ist das nützlich, für die wissenschaftliche Ar-
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beit unerläßlich. Darüber hinaus könnte die Logik in der allent-
halben beklagten Zersplitterung des heutigen Wissens die Füh-
rung zur Konzentration übernehmen, denn sie ebnet den Weg zum 
modernen Wissenschaftsverständnis und den Anspruchsvolleren 
zur Grundlagenforschung der Mathematik. Bereits geringe Kennt-
nisse in diese Richtung dürften dazu beitragen, die verbreitete 
Technikfeindlichkeit in ein kühleres Verhältnis zur Wirklichkeit 
zu bringen. So bleibt als Neben- oder Fernziel die Hoffnung, es 
könnte die künstliche, aber schädliche Trennung zwischen der 
vermeintlich geistlosen Natur- und naturlosen Geisteswissen-
schaften vielleicht etwas gemildert werden. 

Ein beruhigendes Wort soll noch vorausgeschickt werden zur ver-
rufenen Symbolik. Sie ist für die Logik genau so unentbehrlich wie 
für die Mathematik, sobald die Ebene überschaubarer Banalitäten 
überschritten wird. Jedermann setzt in der Arithmetik spätestens 
bei der Multiplikation von dreistelligen Zahlen die in der Volks-
schule erlernte Technik ein. Entsprechend habe ich versucht, für 
die Logik das unvermeidliche Minimum an Formalem pädago-
gisch erträglich aufzubauen. Es muß bei einem Versuch bleiben, 
was sich je nach Gesichtspunkt vor- oder nachteilig auf die ganze 
Darstellung niederschlägt, etwa wenn Beispiele oder Umschrei-
bungen zur Erklärung von Begriffen und ihren Anwendungen be-
vorzugt werden. In der gleichen Absicht werden kurze Lerneinhei-
ten mit Übungen abgeschlossen — meistens in aufsteigendem 
Schwierigkeitsgrad - , an denen der Leser jederzeit sein tatsächli-
ches Verständnis wirksam überprüfen kann. Die vielen Formeln, 
die beim flüchtigen Durchblättern dem Leser Schrecken einjagen, 
werden sich entgegen ihrem ersten Eindruck als weit harmloser 
erweisen, weil sie vertraute Strukturen der Umgangssprache wi-
derspiegeln. 

Ferner bleibt festzuhalten, daß die zitierten Originalbeispiele zu 
einem guten Teil aus der Gegenwart stammen. Sie sind mehrheit-
lich logisch bedenklich, jedoch absichtlich unter diesem Gesichts-
punkt ausgewählt worden; denn einerseits läßt sich anhand von 
Fehlern viel lernen, andererseits soll die Tatsache nicht weiterhin 
beschönigt werden, mit welch geringer Treffsicherheit selbst intel-
lektuell führende Zeitgenossen an logischen Klippen vorbeiru-
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dern, sobald das Resultat nicht trivialerweise feststeht. Die Eigen-
überschätzung hängt mit dem anscheinend unausrottbaren Irrtum 
zusammen, ein beliebiges Fachstudium würde die erforderliche 
logische Kompetenz mitliefern. Indessen ist die Auswahl aus der 
vorwiegend philosophischen, theologischen und juristischen Lite-
ratur lediglich das Spiegelbild meiner persönlichen Beschäftigung 
und insofern willkürlich. Es darf nicht voreilig geschlossen wer-
den, in den drei genannten Gebieten werde die Logik systemati-
scher verletzt als anderswo. 

Der vorliegende Stoff ist als zweisemestrige Anfängervorlesung 
bei sogenannten Geisteswissenschaftlern erprobt. Nichts ist so 
vollkommen, daß Verbesserungsvorschläge nicht dankbar entge-
gengenommen und eingehend geprüft würden. 

Zum Schluß bleibt mir noch die angenehme Aufgabe, die wichtig-
sten Mithelfer zu erwähnen. An erster Stelle möchte ich meinem 
Abt Leonhard Bosch zu Engelberg danken, der mich für den Philo-
sophieunterricht an der Theologischen Hochschule in Chur frei-
gestellt hat. Weiter danke ich einer halben Studentengeneration; 
ihre Einwände haben merklich zu einer durchsichtigeren Darstel-
lung beigetragen. Ferner habe ich seit Jahren in einem weit größe-
ren Rahmen der Forschung als nur für die Abfassung des vorlie-
genden Buches die Unterstützung zahlreicher Bibliotheken erfah-
ren. Bei dieser Gelegenheit möchte ich ihnen danken, allen voran 
der Bibliothèque Royale in Bruxelles sowie den Universitätsbi-
bliotheken von Leuven, Oxford und Cambridge. Und schließlich 
muß mit besonderer Dankbarkeit erwähnt werden, daß ohne die 
ermunternde Vermittlung von Herrn Prof. Wenzel beim Verlag de 
Gruyter mein Manuskript irgendwo in der Provinz vermodert 
wäre. 

Chur/Engelberg, am Tag des hl. Anselm 1987 
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0. Logik und Wahrheit 

Eine weit verbreitete Meinung sagt, die Logik sei die Lehre vom 
Denken oder genauer vom richtigen Denken. Mit dem Denken 
befaßt sich jedoch die ganze Philosophie, dazu noch viele andere 
Wissenschaften, von der Psychologie bis zur Neurophysiologie. 
Da die Logik nur einen kleinen Ausschnitt des Denkens behandelt, 
dürfen wir sie nicht als die Lehre vom Denken ansehen. Der 
Aspekt des Denkens, mit dem sich die Logik befaßt, kann deutli-
cher umschrieben werden als die Form des Schließens. 

0.1 Logik als Lehre der gültigen Formen 

Was eine Form genau ist, das kann nicht exakt beschrieben wer-
den. Doch für unsere Bedürfnisse läßt es sich mit genügender Klar-
heit andeuten. Wir können uns unter der Form so etwas vorstellen 
wie eine Schale, die mit Teig gefüllt wird, woraus im Ofen ein 
Kuchen entsteht. Es gibt außerhalb der Bäckerei weitere Formen, 
etwa zur Herstellung von Bierflaschen, Zementröhren oder Scho-
koladentafeln. Das Gemeinsame an solchen Formen ist: Jedes In-
dividuum, das aus ihnen hervorgeht, hat die gleichen Eigenschaf-
ten. Sie gleichen einander wie Zwillingspaare. 

So gibt es in der Sprache vergleichbare Formen von Sätzen, die 
miteinander verknüpft werden können. Daraus entstehen Zusam-
menhänge, die manchmal kaum oder überhaupt nicht beachtet 
werden. Eine solch einfache Form wird beispielsweise für den fol-
genden Schluß verwendet: 

(1) Alle Winterartikel sind ausverkauft 
Alle Schlittschuhe sind Winterartikel 
Also sind alle Schlittschuhe ausverkauft 

Aus zwei Sätzen wird hier gefolgert, die Schlittschuhe seien aus-
verkauft. Wir haben das Gefühl, etwas Wahres und Selbstver-
ständliches geschlossen zu haben. Das gilt auch für den folgenden 
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Schluß, bei dem wir mit der gleichen Spontaneität erkennen, daß 
etwas daran falsch ist: 
(2) Alle Pferde sind weiß 

Alle Schimmel sind Pferde 
Also sind alle Schimmel weiß Konklusion 

Die zwei Sätze oberhalb des Striches nennen wir Prämissen. 
Manchmal wird der Strich weggelassen. Was unterhalb des Stri-
ches liegt, ist die Folgerung, Konklusion oder Schluß. „Schluß" 
wird manchmal zweideutig verwendet, indem es zur Bezeichnung 
der Konklusion oder der ganzen Ableitung eingesetzt wird. 

Wir sehen sofort ein, daß beim Beispiel (2) die Konklusion wieder 
wahr ist, denn die Schimmel sind tatsächlich weiß. Vergleichen 
wir vorerst noch ein drittes Beispiel: 

(3) Alle Naturwissenschaftler sind teilnahmeberechtigt 
Alle Biologen sind teilnahmeberechtigt 
Also sind alle Biologen Naturwissenschaftler 

Schwierigkeiten scheint es auch hier keine zu geben, denn der 
gesunde Menschenverstand hält diesen Schluß für richtig. In 
Wirklichkeit ist er jedoch falsch. Wenn sich das nachweisen läßt, 
dann stimmen Gefühl und Logik nicht immer überein. Aber was 
soll denn hier falsch sein? Wir wollen das im Zeitlupentempo 
untersuchen. 

Der erste Satz muß als wahr angenommen werden, er wird ver-
mutlich auf der allgemeinen Kongreßeinladung stehen. Mögli-
cherweise ist der zweite Satz im Rundschreiben zu finden, das der 
Präsident der Biologen seinen Kollegen zukommen läßt. Schließ-
lich wissen wir schon längst, daß alle Biologen Naturwissen-
schaftler sind. Wo bleibt denn der Fehler? 

Der Logiker würde dies alles nicht bestreiten; er will mit seinem 
Einwand nur besagen, der dritte Satz folge nicht aus den beiden 
ersten. Ob er nämlich folgt oder nicht, darüber entscheidet nicht 
unsere Einsicht, sondern die Form. Die Form ist hier bestimmt 
durch die Verteilung der drei Begriffe: Naturwissenschaftler, teil-
nahmeberechtigt und Biologe. Wir können die Form auf folgende 
Weise andeuten: 

Prämissen 
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(3a) Alle A 
Alle • 
Also alle • 

sind O 
sind O 
sind A 

Von einer gültigen Form verlangen wir, daß sie gültig bleibt unter 
jeder Einsetzung der entsprechenden Kategorie. Versuchen wir die 
Formen von (3a) durch folgende Worte auszutauschen: 

Knaben, Mädchen, fröhlich 

Eingesetzt erhalten wir: 

(3 b) Alle Knaben sind fröhlich 
Alle Mädchen sind fröhlich 
Also sind alle Mädchen Knaben 

Niemand wird diesen Schluß als gültig anerkennen, weil auch in 
einer emanzipierten Welt ein Unterschied zwischen Mädchen und 
Knaben bestehen bleibt. 

Wenn wir uns die Form von (3b) genauer ansehen, dann stellen 
wir fest: sie ist identisch mit der Form (3a), aus deren Einsetzung 
sie entstanden ist, und überdies mit der Form des Beispieles (3). 
können wir (3) und (3b) einander gegenüberstellen und daraus 
ersehen, daß (3) ein raffiniert gewähltes Beispiel ist, aus dem sich 
rein zufällig nicht der gleiche Unsinn ergibt wie aus (3b). Die Lo-
gik möchte nur jene Formen anerkennen, die immer gültig sind. 
Das trifft zu für jene, die im Beispiel (1) verwendet wird. Nur 
müssen wir dann auch das Beispiel (2) anerkennen, weil dort die 
gleiche Form vorliegt. 

Es taucht eine neue Schwierigkeit auf. Wenn wir das gleiche For-
melspiel der geometrischen Figuren auf die Beispiele (1) und (2) 
übertragen, dann stellen wir fest, daß die beiden tatsächlich iden-
tisch sind. Nun haben wir aber (1) als richtig erkannt, während bei 
(2) etwas nicht stimmt. Wozu soll die Logik tauglich sein, wenn sie 
nicht einmal zwischen (1) und (2) zu unterscheiden vermag? 

A • o 

0.2 Wahrheit und Gültigkeit 
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Es wurde ein wesentlicher Bestandteil bisher nicht berücksichtigt, 
die Wahrheit. Unter Wahrheit verstehen wir, daß das, was z. B. in 
den Prämissen behauptet wird, auch tatsächlich zutrifft. Für das 
Auffinden oder Beurteilen dieser Wahrheit ist der Logiker nicht 
zuständig. Er holt sich die nötige Auskunft beim entsprechenden 
Fachmann oder aus dem Alltagswissen. Wird dem Logiker eine 
Einzelinformation vorgelegt aus einem Gebiet, in dem er über kein 
Zusatzwissen verfügt, dann ist er unfähig zu entscheiden, ob die 
Angabe wahr oder falsch ist. Der Logiker vermag also nicht eine 
Einzelaussage zu prüfen, sondern nur die Form bei der Verknüp-
fung mehrerer Aussagen. 

Aber ist denn überhaupt jemand an der Form interessiert? Haben 
wir es nicht auf die Wahrheit abgesehen? Gewiß ist die Wahrheit 
das einzige Ziel. Leider ist es häufig nicht auf direktem Weg er-
reichbar. Die Wahrheit kann nicht immer durch unmittelbare 
Wahrnehmung erfaßt werden, wie etwa bei der Tatsache, daß 
zwei Zeitungen auf meinem Pult liegen. Sehen wir uns einen Fall 
an, in dem die Wahrheit erschlossen werden muß. 

Mein Freund behauptet, am Montag sei der Nachbar zu spät zur 
Arbeit gekommen. Die beiden sind jedoch in verschiedenen Betrie-
ben tätig, also kann es sich nicht um unmittelbar geschaute Wahr-
heit handeln. Auf die Frage an meinen Freund, wie er zu seiner 
Vermutung komme, antwortet er: „Als ich am letzten Montag im 
hintersten Wagen des abgehenden Zuges saß, da kam der Nachbar 
im Eilschritt um die Häuserecke und fuchtelte ärgerlich mit den 
Händen in der Luft herum, als er nur noch die Schlußlichter unse-
res Zuges sah. Da der nächste Zug erst in einer halben Stunde 
fährt, ein Taxi im Stoßverkehr aber mehr als eine halbe Stunde 
braucht, läßt sich mit dem gesunden Menschenverstand entneh-
men: Also kam er mindestens eine halbe Stunde zu spät". 

Was mein Freund dem gesunden Menschenverstand zuschreibt, 
ist durchaus nicht sichtbar; er hat es erschlossen aus einigen Vor-
kommnissen, die er gesehen hatte, zusammen mit anderen Din-
gen, die er weiß. 

Im Alltag wie in der Wissenschaft wird sehr oft geschlossen. Dabei 
hängt die Wahrheit nicht nur von dem ab, was ich gesehen habe 
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und was ich weiß, sondern auch von der Schlußform. Wird die 
Form richtig eingehalten, so sagen wir, der Schluß sei gültig oder 
korrekt, im andern Fall ungültig oder unkorrekt. Wir sind jedoch 
primär nicht an gültigen, sondern an wahren Schlüssen interes-
siert. Wann ist ein Schluß wahr? Dazu muß er zwei Bedingungen 
erfüllen: Erstens, die Prämissen müssen wahr und zweitens die 
Schlußform muß gültig sein. Damit kennen wir den grundlegen-
den Unterschied zwischen Gültigkeit und Wahrheit: 

Gültigkeit: die Form ist korrekt 
Wahrheit: die Prämissen sind wahr und die Form ist kor-
rekt 

Mit dieser Erkenntnis können wir nochmals auf die Beispiele (1) 
und (2) zurückkommen. Beide haben dieselbe gültige Form. War-
um die Form gültig ist, das werden wir freilich erst im Lauf unserer 
Arbeit zeigen können. Was uns am Beispiel (2) stört, das hat nichts 
mit der Gültigkeit zu tun, sondern mit der Wahrheit der ersten 
Prämisse: „Alle Pferde sind weiß" ist eine unwahre Behauptung. 
Für die Beurteilung der Wahrheit in den Prämissen ist die Logik 
nicht zuständig. Sie vermag auch nicht im nachhinein erkenntnis-
theoretische Irrtümer oder Fehlbeobachtungen zu korrigieren. 
Nur indirekt kann sie darauf aufmerksam machen, indem sie etwa 
zeigt, daß einem Ding widersprüchliche Eigenschaften zugeschrie-
ben werden. 

Das soll uns jedoch wieder nicht dazu verleiten, die Nützlichkeit 
korrekter Schlüsse zu unterschätzen. Das Beispiel (3) zeigt uns, 
daß der Mensch leichthin vorgibt, von Natur aus über die logisch 
korrekten Schlüsse zu verfügen. In Wirklichkeit durchschaut er 
bestenfalls die Widerspruchsfreiheit der einzelnen Sätze. Wäre uns 
das unfehlbare Schließen angeboren, so könnten wir uns den müh-
samen Umweg einer Kontrolle über die Logik ersparen. Wie die 
Erfahrung lehrt, versagt jedoch das Naturtalent häufig schon in 
einfachsten Fällen, indem eine erwünschte Konklusion voreilig als 
Beweis für die Korrektheit des Schlusses angesehen wird. 

Zuerst werden einige Begriffe der Mengenlehre erklärt. Wer Ele-
mentarkenntnisse auf diesem Gebiet mitbringt, der mag gleich 
zum 2. Kapitel übergehen und sich der Aussagenlogik zuwenden. 



1. Einige Grundbegriffe der naiven 
Mengenlehre 

Mengenlehre ist uns vor allem als umstrittenes mathematisches 
Schulfach bekannt. In diesem Streit ist der kühle Verstand soweit 
erhitzt worden, daß der Gedanke kaum mehr erwogen wird, es 
könnte sich möglicherweise um ein allgemeines Gebiet handeln, 
das nur noch wenig mit dem traditionellen Verständnis der unbe-
liebten Mathematik zu tun hat. Auf jeden Fall befaßt sich die 
Mengenlehre mit Beziehungen. Außerhalb der Mathematik sind 
Beziehungen nicht weniger bedeutsam, seien es solche zwischen 
den Mitgliedern eines Schachklubs, zwischen mir und meinem 
Papagei oder zwischen Stimmbürger und Staat. Natürlich werden 
diese Beziehungen nicht ausgeschöpft durch mengentheoretische 
Angaben, sowenig wie mit „100 Dollar" ein bestimmter Geldbe-
trag erschöpfend beschrieben ist. 

Mengenlehre ist eine allgemeine Grunddisziplin, deren Erfor-
schung die Philosophen zu Unrecht fast gänzlich den Mathemati-
kern überlassen haben. Dadurch haben sie versäumt, Kenntnis 
davon zu nehmen, wie sich zahlreiche traditionelle Fragen unter 
veränderten Gesichtspunkten gewandelt haben. Wir möchten je-
doch nicht jenen zahlreichen philosophischen Problemen nachge-
hen, die durch die Entdeckung der Mengenlehre eine neue Frage-
stellung erfahren haben. Es sollen nur einige elementare Grundbe-
griffe dargestellt werden, soweit sie unmittelbar das Verständnis 
für die Logik fördern. Daß diese Kenntnisse nebenbei zu vertiefter 
Einsicht in Sprache und Mathematik führen kann, das ist ein er-
freulicher Nebeneffekt. 

Als Begründer der Mengenlehre ist Georg Cantor (1845—1918) 
anzusehen. 1874 erschien seine erste Abhandlung zur Mengenleh-
re. Im Verlauf von etwas mehr als 20 Jahren sind die grundlegen-
den Publikationen erschienen. Damit ist der Einfluß von Cantor 
auf die Mathematik vergleichbar mit der Entdeckung der Irratio-
nalzahlen in der Antike oder der Infinitesimalrechnung in der 
Neuzeit. Die von den Mathematikern anfänglich vorgebrachten 
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Einwände gegen die Mengenlehre waren wesentlich philosophi-
scher Natur. Der Hauptvorwurf lautete, Mengenlehre sei Mystik. 
Zu diesem unzutreffenden Bild kamen die Mathematiker, weil sie 
sich eine ziemlich abgeschlossene Meinung darüber gemacht hat-
ten, was Mathematik sein mußte. Doch die Darstellungen von 
Cantor haben die Fachleute in relativ kurzer Zeit überzeugt. 1887 
wurden die Begriffe auf dem internationalen Mathematikerkon-
greß anerkannt. 

Zuerst noch zwei terminologische Vorbemerkungen: Erstens wird 
im Zusammenhang mit der Mengenlehre „naiv" nicht abwertend 
verstanden; es ist ein Fachausdruck, der besagt, der Aufbau sei 
nicht streng, nicht axiomatisch durchgeführt, sondern mehr an-
schaulich. Zweitens wird anstelle von „Menge" unterschiedslos 
„Klasse" gebraucht. Da die beiden Wörter als Synonyme gelten 
sollen, kann jederzeit „Mengenlehre" gegen „Klassenlogik" aus-
getauscht werden. Und schließlich bleibt noch beizufügen, daß die 
benutzten Zeichnungen keine Beweise sind; sie sollen bloß durch 
ihre Anschaulichkeit das Verständnis erleichtern. 

1.0 Definition und Vergleich von Mengen 

In der Mengenlehre wird fortwährend von Mengen und Elemen-
ten gesprochen. Man könnte sich das Verhältnis dieser beiden 
Begriffe an einem vertrauteren Zusammenhang verdeutlichen, 
nämlich am Ganzen und an den Teilen. Menge und Element ver-
halten sich ungefähr wie das Ganze zu den Teilen. Wichtig ist 
dabei das ungefähr. Die Abweichung besteht darin, daß es uns 
gelingen wird, von Mengen und Elementen präziser zu reden als 
vom Ganzen und den Teilen. 

Zuerst erwarten wir eine Definition für Menge und Element. Im 
traditionellen Sinn können diese Begriffe jedoch nicht definiert 
werden; sie werden als Grundbegriffe eingeführt. Das ist nichts 
Ausgefallenes, denn in jedem Zweig der Wissenschaften gibt es 
einige Grundbegriffe, die so fundamental sind, daß sie nicht defi-
niert werden können. So hat auch die Geometrie „Punkt", „Gera-
de" usw. als Undefinierte Begriffe eingeführt. Euklid sagt zwar, 
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der Punkt sei „das, was keine Teile hat" . Aber das ist bloß eine 
Beschreibung, die an die Phantasie appelliert. In diesem Sinn legt 
auch Cantor eine Definition der Menge vor, wenn er sagt, sie sei 
„eine Zusammenfassung von bestimmten wohlunterschiedenen 
Objekten unserer Anschauung oder unseres Denkens zu einem 
Ganzen". Das ist bei weitem keine strenge Definition, eher eine 
Paraphrase, die inhaltliche Vorstellungen erzeugt und uns zu ver-
stehen geben möchte, daß eine ähnliche Situation vorliegt, wie 
etwa in der Aufzählung: Beine, Arme, Ohren, Nase sind Teile des 
Menschen. Freilich ist die cantorsche Übersicht insofern präziser, 
als sich aus den in ihr enthaltenen vier Punkten ein ausreichendes 
Verständnis für den Mengenbegriff gewinnen läßt. Es genügt, den 
vier Eigenschaften, die Cantor aufzählt, nachzugehen. 

1) Zusammenfassung zu einem Ganzen 
2) Objekte der Anschauung 
3) Objekte des Denkens 
4) bestimmte, wohlunterschiedene Objekte 

1) Zusammenfassung zu einem Ganzen: Eine Zusammenfas-
sung zu einem Ganzen liegt vor, wenn ich Eier in einen Korb lege. 
Was so gesammelt wird, das kann nachher weggetragen werden. 
Ich darf aber auch das Hausdach als das Ganze der Ziegel auffas-
sen. Doch bevor ich die Eier in den Korb gelegt oder die fehlenden 
Ziegel auf dem Dach ersetzt habe, ist in mir der Plan gereift, eine 
dieser Tätigkeiten auszuführen. So habe ich gedankenmäßig im 
voraus vorgestellte Eier in einen vorgestellten Korb gelegt. Darin 
liegt nichts Erstaunliches. Eine Handlung wird meistens zuerst 
überlegt. Überlegen bedeutet hier, sie vor dem geistigen Auge ab-
laufen zu lassen. Dabei lassen sich nicht nur materielle Dinge zu 
einem materiellen Haufen zusammenfassen, sondern auch geistige 
Dinge zu einem geistigen Ganzen. Das Ganze heißt die Menge und 
die Einzeldinge Elemente. 

2) Objekte der Anschauung: Die Elemente, die zu einem Gan-
zen, zu einer Menge zusammengefügt werden, das können Eier 
oder Ziegel sein, aber auch Menschen, Flugzeuge, Berge usw. 
Während Eier und Ziegel in einen Korb gelegt werden können, ist 
das selbstverständlich für Berge nicht mehr möglich. Doch kön-
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nen sie durch bloßes Aufzählen geistig zusammengefaßt werden: 
Eiger, Mönch und Jungfrau als bekannteste Berggruppe des Ber-
ner Oberlandes bilden in unserem Sinn eine Menge mit drei Ele-
menten. Es sind Objekte der Anschauung. 

3) Objekte des Denkens: Berge lassen sich nicht leicht verschie-
ben. Deshalb können sie nicht materiell, sondern nur in Gedanken 
zu Mengen zusammengefaßt werden. Gedanklich kann ich sehr 
schnell und phantasievoll Mengen bilden. So mag eine Menge aus 
den folgenden zwei Elementen bestehen: Aus einem Engel und 
dem Gedanken, den Churchill hatte, als er seine erste Zigarre 
anzündete. Ein Engel ist nicht sichtbar, auch die Gedanken von 
Churchill nicht. Beides sind Objekte des Denkens. 

4) Bestimmte, wohlunterschiedene Objekte: Für die Zusam-
menfassung zu einer Menge wird von den Elementen weder ver-
langt, daß sie materiell sind noch daß sie geistig sind; aber sie 
müssen bestimmt und wohlunterschieden sein. Das besagt, es muß 
genau abgrenzbar sein, was noch zum Element gehört. Ein Ei ist 
ziemlich klar abgegrenzt durch die Schale, und ich kann auch 
deutlich erkennen, ob es im Korb oder außerhalb liegt. Wenn ich 
aber als Element die Farbe Grün habe, dann können Zweifel ent-
stehen, ob ein bestimmtes Kleid noch darunter fällt oder ob es 
bereits blau sei. Die Forderung nach klarer Unterscheidbarkeit 
stellt sich beispielsweise auch für Wünsche. Ein Wunsch ist ein 
geistiges Gebilde, ein Objekt des Denkens und kann laut 3) eben-
falls als Element dienen. Doch muß auch hier wieder die Fähigkeit 
vorausgesetzt werden, daß man entscheiden kann, ob es sich noch 
um den gleichen Wunsch oder bereits um einen zweiten handelt. 

In der Definition enthalten, wenn auch nicht explizit ausgespro-
chen, ist die Erlaubnis, Elemente verschiedener Objektbereiche, 
nämlich aus 2) und 3) zu einer Menge zusammenzufassen. Eine 
Menge kann deshalb aus den beiden Elementen „Apfel" und „ 7 " 
bestehen. 

Der Mengenbegriff von Cantor deckt sich nicht vollständig mit 
dem alltäglichen Sprachgebrauch, wo von einer „Menge" Men-
schen auf der Straße die Rede ist oder von einer „Menge" Arbeit, 
die auf mich wartet. Hier steht „Menge" als Synonym zu „viel", 
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vielleicht auch zu „relativ viel". „Viel" ist jedoch keine Menge, 
weil nicht genau bekannt ist, wie viele Elemente darin enthalten 
sind. Ebensowenig bilden die „guten Politiker" eine Menge, so-
lange nicht präzisiert ist, was unter „gut" zu verstehen ist. 

1.0.1 Abkürzungen, Gleichheiten und Arten von Mengen 

Eine Menge bestehe aus den drei Elementen: Nelke, Ferienprojekt, 
Tonika. Zur Bezeichnung der Mengen wählen wir große Buchsta-
ben, für die Elemente kleine. Die Elemente werden in geschweifte 
Klammern gesetzt. 

M = {n, f, t} 

Sobald wir es mit Mengen zu tun haben, deren Elementenzahl 26 
überschreitet, gelangen wir mit der Benennung in Schwierigkei-
ten, weil der Vorrat des Alphabetes aufgebraucht ist. Wir wollen 
uns zwar nicht mit so großen Mengen herumschlagen, doch dür-
fen wir uns den Weg dazu nicht einschränken lassen, falls wir aus 
irgend einem Grund eben doch mal eine ganz große Menge etwas 
genauer untersuchen möchten. Deshalb wählen wir Zahlen an-
stelle der Buchstaben. Wir geben den Elementen Zahlennamen, 
am besten dem ersten Element den Namen „ 1 " , dem zweiten den 
Namen „ 2 " usw. Dann kann die Menge mit den Elementen Nelke, 
Ferienprojekt und Tonika so geschrieben werden: 

M = {1, 2, 3} 

Zu beachten ist, daß die Zahlennamen hier nur eine Ordnungs-
funktion haben. Es darf nicht gefolgert werden, das Ferienprojekt 
sei doppelt so angenehm wie eine Nelke. Es liegt dieselbe Ord-
nungsfunktion vor, wie bei der Numerierung von Theaterplätzen, 
wo Platz Nr. 24 nicht besagt, der Platz sei viermal besser als der 
Platz 6, ja nicht einmal, es seien 23 Plätze besetzt. 

Da die Elemente genau unterscheidbar sind, kann deutlich angege-
ben werden, ob ein bestimmtes Element a zur Menge M gehört, 
was so geschrieben wird: 

a e M 

oder ob es nicht dazu gehört: 
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Gegeben sei: M : Klasse der Menschen 
a: Alfred 
f: das Pferd Fortezza 

Dann bedeutet: a e M: „Alfred gehört zur Klasse der Menschen", 
oder vertrauter: „Alfred ist ein Mensch". Analog dazu besagt: 
f £ M : „Das Pferd Fortezza ist kein Element der Menge M " , oder: 
„Fortezza ist kein Mensch". 

Wenn zwei Klassen A und B dieselben Elemente enthalten, dann 
schreiben wir: A = B. Die beiden Mengen sind äquivalent. 

Beispiel: R : alle rechtwinkligen, gleichseitigen Rechtecke 
Q: alle Quadrate 
Es gilt: R = Q 

Wir sehen auch, daß 

{1, 2, 3} = {1, 2, 3} 

äquivalent ist, aber auch bei 

{1, 2, 3} = {1, 3, 2} 

soll die Äquivalenz gelten. Die Definition über die Gleichheit oder 
Äquivalenz von Mengen sagt nichts aus über die Reihenfolge der 
aufgezählten Elemente. Schließlich soll auch 

{1, 2, 3} = {1, 2, 2, 3, 3, 3, 3} 

äquivalent sein, denn jedes Element wird nur einmal gezählt. 

Nun gibt es verschiedene Arten von Mengen, von denen uns einige 
noch nicht bekannt sind. Dazu Beispiele: 

M j = {Alle Buchstaben des Lukasevangelium} 
M 2 = {Alle Schuhe, die ich durchlaufen habe} 
M 3 = {Die Namen der englischen Königinnen} 
M 4 = {Alle Primzahlen} 
M 5 = {Die Löwendenkmäler in Luzern} 
M 6 = {Die Schaltjahre zwischen 1985-1987} 

An die Art der ersten drei Mengen haben wir uns inzwischen ge-
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wöhnt. Natürlich muß vorausgesetzt werden, daß die Forderung 
4) überall erfüllt ist, daß ich also genau weiß, um welchen Text des 
Lukasevangeliums es sich handelt. M 2 erfüllt die Forderung 4) nur 
dann, wenn meine Mutter ein genaues Verzeichnis aller durchlau-
fenen Schuhe führt oder wenn auf einem andern Weg eindeutig 
entscheidbar ist, wie viele es sind. M 3 kann mit Hilfe eines Ge-
schichtsbuches ausfindig gemacht werden. 

Hingegen scheinen die Mengen M 4 , M 5 und M 6 etwas problema-
tisch zu sein. M 4 ist eine Menge mit einer unendlichen Anzahl von 
Elementen; da es in Luzern ein einziges Löwendenkmal gibt, hat 
M 5 genau ein Element und die M 6 hat überhaupt keines. M 6 ist 
leer. Solche Mengen sollen zugelassen werden, obwohl sie unse-
rem Empfinden ungewohnt erscheinen mögen. Sie kommen uns 
seltsam vor, weil die Alltagssprache unendliche Mengen nicht be-
rücksichtigt und Mengen mit einem einzigen Element nicht Men-
gen nennt. Die deutlichste Abweichung finden wir bei der Menge 
M 6 , bei der leeren Menge. Statt uns darüber zu wundern, führen 
wir für sie einen eigenen Namen ein und schreiben sie so: 0 oder 
auch { } 

Der Begriff der leeren Menge ist eine äußerst praktische Erfin-
dung. Denn damit kann man über Mengen korrekt sprechen, ohne 
daß zum vornherein entschieden sein muß, ob es solche Dinge gibt 
oder nicht. Die philosophischen Konsequenzen, die sich daraus 
ergeben, werden uns später noch beschäftigen. 

Die Mengen M 5 und M 6 lassen sich so schreiben: 

M 5 = {Löwendenkmal} oder M 5 = {1} 

M 6 = 0 oder M 6 = { } 

Übung 1.0.1 

1) Übersetzen Sie die folgenden Ausdrücke in die Schreibweise 
der Mengenlehre: 
1. Meine Onkeln und Tanten 
2. Die heute im Amt befindlichen Präsidenten von Amerika 
3. Die Könige der Schweiz 
4. Die ehrlichen Redner der UNO 
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2) Welche Mengen sind äquivalent? 

1. {1, 2} = {Anzahl natürlicher Erdmonde} 
2. {Cantor} = {Begründer der Mengenlehre} 
3. {47} = {größte Primzahl zwischen 1 - 5 0 } 
4. {126} = {Seiten des Neuen Brockhaus, B d . l } 

1.0.2 Teilmengen oder Potenzmengen 

Eine Menge A heißt Teilmenge oder Untermenge einer Menge B, 
wenn jedes Element von A auch Element von B ist. Das wird so 
geschrieben: A c B . Nach dieser Erklärung ist jede Menge Teil-
menge von sich selber. Damit weicht die mathematische Termino-
logie einmal mehr vom alltäglichen Sprachgebrauch ab. Diese Ab-
weichung hat unter anderem zur Folge, daß der Jahrhunderte alte 
Satz, der Teil sei stets kleiner als das Ganze, nicht mehr als absolut 
gültig angenommen werden muß. 

A heißt eine echte Teilmenge von B, wenn B wenigstens ein Ele-
ment mehr enthält als A. Die echte Teilmenge wird so geschrie-
ben: A c ß . Stimmt die Teilmenge mit der Grundmenge überein, 
so heißt sie unechte Teilmenge. Sie stimmt mit ihr dann überein, 
wenn sie die gleichen Elemente enthält wie die Teilmenge. 

Gegeben seien die Mengen 

A = {1, 2} 
B = {1, 2, 3} 
C = {1, 2} 

Dann ist A eine echte Teilmenge von B. Ebenfalls ist C eine echte 
Teilmenge von B. Hingegen ist A eine unechte Teilmenge von C. 

Nun stellen wir uns die Frage, wie die Teilmengen einer Menge 
aufzufinden sind. Gegeben sei eine Menge M mit drei Elementen 
a, b, c, also M = {a, b, c} . Wenn diese Menge M ebenfalls 3 
Teilmengen besäße, dann wären die Begriffe Teilmenge und Ele-
ment identisch. Die beiden gelten jedoch nicht als synonym. Wie 
läßt sich ihre gegenseitige Beziehung präzisieren? 

Während die Elemente in den geschweiften Klammern direkt ab-
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gezählt werden können, muß die Anzahl der Teilmengen berech-
net werden. Das Verfahren wird uns durch einen andern Namen 
nahegelegt. Anstelle von Teilmengen spricht man auch von Po-
tenzmengen. Zur Berechnung der Teilmengen geht man so vor, 
daß zuerst die Elemente abgezählt werden; die so erhaltene Zahl 
wird als Potenz von 2 geschrieben, also: 
^Anzahl Elemente = X e i i m e n g e n . Bei der Menge M = {1, 2, 3 , 4 , 5} 
haben wir 5 Elemente, folglich 2 5 Teilmengen. Entsprechend 
kommen wir bei 23 Elementen auf 2 2 3 Teilmengen und bei n Ele-
menten auf 2 ° Teilmengen. Die Potenz- oder Teilmenge von M 
schreiben wir P (M). Wir zeigen, daß die Mengen mit 0 bis 3 Ele-
menten 2 ° bis 2 3 Teilmengen enthalten, wobei die entsprechenden 
Teilmengen aufgezählt werden. 

Elemente Teilmengen 
A = { } P(A) = {0} 2 ° = 1 
B = { a } P(B) = { { a } , 0 } 2 1 = 2 
C = {a , b} P(C) = { { a } , { b } , { a b } , 0 } 2 2 = 4 
D = {a , b, c} P(D) = { { a } , { b } , { c } , { a b } , D = {a , b, c} 

{ b c } , { a c } , { a b c } , 0 } 2 3 = 8 

Als ungewohnt fallen uns zwei Mengen auf. Jede Menge ist eine 
(unechte) Teilmenge von sich selber, und die leere Menge ist eine 
echte Teilmenge einer jeden Menge. Deshalb gelten immer 

M ^ M und 0 c M 

Es sind dies die beiden Mengen, die bei der Aufzählung der Teil-
mengen am leichtesten übersehen werden. 

Übung 1.0.2 

Gegeben seien die drei Mengen: 

A = {Sieb} 
B = {Eis, Musik, Ida} 
C = { 1 , 2 , 3 , 4 , 5} 

1. Wie viele Elemente hat die Menge A? 
2. Ist „ S i e " eine Teilmenge von A? 
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3. Ist „Akkord" eine Teilmenge von B? 
4. Wieviel Elemente hat die Menge C? 
5. Geben Sie die Teilmengen von A an 
6. Geben Sie die Teilmengen von B an 
7. Geben Sie die Teilmengen von C an 

Diese Überlegungen gehen über mathematische Spielereien hin-
aus. Deshalb wollen wir zwei Punkte daraus noch etwas eingehen-
der betrachten. Der erste betrifft das Verhältnis zwischen Teil-
menge und Elementbeziehung (c i , e), der zweite den Unterschied 
zwischen Null und der leeren Menge (0,0) . 

1.0.2.1 Inklusion und Elementbeziehung 

Die Teilmengenbeziehung wird auch Inklusion genannt. Dieser 
Name empfiehlt sich, weil er die Gefahr vermindert, den höchst 
bedeutsamen Unterschied zur Elementbeziehung zu übersehen. In 
der Umgangssprache werden beide unterschiedslos mit „ist" wie-
dergegeben. 

(1) Alfred ist Lehrer 

Hier besagt das „ist" , daß ein Gegenstand, nämlich Alfred, unter 
einen Begriff fällt. Wir sagen einfacher: „Alfred ist ein Element der 
Klasse Lehrer" und schreiben diese Aussage so: a e L . 

(2) Die Schwalbe ist ein Vogel 

In dieser Aussage (2) geht es nicht darum, eine bestimmte Schwal-
be wiederum als Gegenstand zur Klasse der Vögel zu zählen. Ob-
gleich der bestimmte Artikel verwendet wird (die Schwalbe), ist 
sinngemäß nicht eine einzelne Schwalbe gemeint, sondern die gan-
ze Schwalbenklasse. Das „ist" bedeutet demnach, daß die Klasse 
der Schwalben in der Klasse der Vögel eingeschlossen ist. 

Der Unterschied zwischen Elementbeziehung und Inklusion be-
steht darin, daß im ersten Fall eine Beziehung von einem oder 
mehreren Gegenständen zu Klassen ausgesprochen wird, im an-
dern Fall eine Beziehung von Klassen zu Klassen. 

Die beiden „ist" haben unterschiedliche Eigenschaften, die sich 
logisch exakt beschreiben lassen. Die Inklusion ist nämlich transi-
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tiv, nicht aber die Elementbeziehung. Was Transitivität bedeutet, 
das wird später ausführlich erklärt. Vorderhand mag die Andeu-
tung anhand zweier Beispiele genügen. 

A ist größer als B „größer als" ist transitiv 
B ist größer als C 
Also ist A größer als C . 

A ist Vater von B „Vater sein von" ist nicht transitiv 
B ist Vater von C 
Also ist A nicht Vater von C 

Zunächst wollen wir das Verhältnis zwischen Elementbeziehung 
und Inklusion noch etwas vertiefen. Das sei an zwei Mengen F und 
G gezeigt. 

F = { 2 , 4 , 6 } 
G = {3, { 2 , 4 , 6 } } 

Die Menge F enthält 3 Elemente, folglich 2 3 = 8 Teilmengen. Die 
Menge G enthält jedoch nur 2 Elemente, wovon freilich eines sel-
ber eine Menge ist. Also 2 2 = 4 Teilmengen. 

Übung 1.0.2.1 

1) Zählen Sie die Elemente und die Teilmengen von F und G 
auf. 

An dieser Aufzählung können Sie unmittelbar ablesen: 

Für die Menge 

F = {2 ,4 , 6} gilt: 2 e F; 4 e F; und {2} c F; {4} c: F 
hingegen: 2 qt F; 4 <£ F; 

Für die Menge 

G = {3, {2, 4, 6 } } gilt: 3 e G ; {2, 4, 6} e G; und {3} $ G; 
hingegen: 3 <£ G; {2} G 

Nun können wir uns die Transitivität der Inklusion verdeutlichen. 
Gegeben seien die beiden Mengen 
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H = { 1 , 2 } 
1 = { 1 , 2 , 3 } 

Dann gilt: Wenn {2} c= H ist und H <= I, dann ist auch {2 } c I. 
Demgegenüber ist die Elementbeziehung nicht transitiv. Gegeben 
seien die beiden Mengen 

H = { 1 , 2 } 
K = {7, 9, {1, 2 } } 

Wenn nun 2 e H ist und H 6 K, dann braucht 2 nicht ein Element 
von K zu sein, was es in diesem Beispiel tatsächlich auch nicht ist. 

An einem falschen Syllogismus lassen sich diese Beziehungen phi-
losophisch verwerten: 

Menschen sind zahlreich 
Sokrates ist ein Mensch 
Also ist Sokrates zahlreich 

Hier fällt uns die Mehrdeutigkeit des Wortes „ist" auf. In der 
ersten Prämisse wird „ist" im Sinne der Inklusion aufgefaßt, in der 
zweiten als Elementbeziehung. Wenn wir die Prämissen korrekt 
formalisieren, dann erkennen wir sofort, daß ein Schluß unerlaubt 
ist, weil wir es nicht mit zwei Inklusionen zu tun haben 

M c Z 
S E M 

Es folgt 
S ^ Z 

Wir können die Ursache des Fehlschlusses auch anders formulie-
ren: Der Mittelterm „Mensch" ist zweideutig. In der 1. Prämisse 
ist er als Klasse einer Menge - d.h. Menge einer Menge oder 
Klasse einer Klasse - aufgefaßt, in der 2. hingegen als gewöhnliche 
Menge. Deshalb läßt sich der gleiche Syllogismus auch so formali-
sieren: 

{ M } e Z 
S e M 

Also S £ Z 

Wir haben es hier mit zwei Mengen zu tun, die genauer zu unter-
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scheiden sind, die Menge der Menschen und die Menge der Zahl-
reichen. 
Die Menge oder Klasse der Menschen enthält Individuen. 

M = {Albert, Brigitte, Claudia . . . } 

Deshalb läßt sich in aller Strenge behaupten: Sokrates ist ein 
Mensch, Brigitte ist ein Mensch usw. Man sagt auch, die Indivi-
duen fallen unter den Begriff Mensch. 

Anders bei der Menge der Zahlreichen. „Zahlreich" ist ein Be-
griff; seine Elemente sind nicht Individuen, sondern selber Klas-
sen. Wir nennen nicht den Sand zahlreich oder das Wasser; der 
Sand ist körnig, das Wasser durchsichtig usw. Aber was ist denn 
zahlreich? Unter zahlreich fassen wir alle Klassen zusammen, die 
mehrere Elemente enthalten können, also: 

Z = {{Sandkörner}, {Wassertropfen}, {Bücher}, . . . 
{Menschen}} 

Hier fallen nicht mehr Individuen unter einen Begriff, sondern 
Begriffe werden einem andern Begriff untergeordnet. Diese äu-
ßerst wichtigen Zusammenhänge der Prädikation hat erst Gottlob 
Frege (1848—1925) systematisch untersucht. 

Übung 1.0.2.1 

2) Beurteilen sie den folgenden Text 

„Die Ist-Verknüpfung unterliegt der Transitivität: wenn A B und 
B C ist, dann gilt: A ist C: ,Wenn Pferde Einhufer und Einhufer 
Wirbeltiere sind, dann sind Pferde Wirbeltiere'. Unter Verwen-
dung des Begriffs ,Enthalten' kann man also auch sagen: Wenn ein 
Enthaltenes wieder enthält, ist dieses zweite Enthaltene auch im 
ersten Enthaltenden." (F. Schmidt, Die symbolisierten Elemente 
der Leibnizschen Logik. Zeitschrift für Philos. Forschung 20 
(1966) 597). 

1.0.2.2 Null und leere Menge 

Der Unterschied zwischen Null und leerer Menge sei an arithmeti-
schen Beispielen verdeutlicht. 
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Die Gleichung ,3x = 4x ' ist für bestimmte Zahlen erfüllt, die wir 
die Lösungsmenge nennen. Im vorliegenden Fall schreiben wir die 
Lösungsmenge so: {0}. Sie hat also - wenn wir von der Unendlich-
keit absehen - ein einziges Element, nämlich 0. 

Dagegen ist bei der folgenden Gleichung: ,3 + x = 4 + x' die Lö-
sungsmenge die leere Menge. Die leere Menge hat kein Element. 
Deshalb ergibt die Lösungsmenge der zweiten Gleichung nicht 0, 
sondern 0, oder was dasselbe ist: { }. Die Lösungsmenge der er-
sten Gleichung hat 1 Element, die Zahl 0, die Lösungsmenge der 
zweiten Gleichung jedoch keines. Verwirrungen können deshalb 
auftreten, weil in der Umgangssprache beide mit ,nichts' ausge-
drückt werden. 

Übung 1.0.2.2 

(1) Es regnet und es regnet nicht = 0 
(2) n + ( - n ) = 0 

Bei (2) sind für „n" beliebige Zahlen einzusetzen. 
(H.W. Johnstone, The Law of Non-Contradiction. Logique et 
Analyse 3 (1960) 3 -4 ) . 

Sind (1) und (2) korrekte Formulierungen? 

1.1 Operationen mit Mengen 

(1) „Im chemischen Labor sind die Plätze beschränkt. Einigen 
Studenten macht das Experimentieren Freude, andere ziehen es 
vor, die Berichte in den Büchern nachzulesen". Dasselbe könnte 
man auch so ausdrücken: 

(2) „Es gibt 32 Laborplätze. 19 Studenten haben Freude am Ex-
perimentieren, 7 möchten lieber die Berichte in Büchern nachlesen 
und 6 wollen sich dazu nicht äußern". 

Häufig wird die Ansicht vertreten, die zweite Darstellungsweise 
sei eine Übersetzung der ersten in Quantitäten. Das ist ein bedau-
erlicher Irrtum, denn was hier geschehen ist, hat nichts mit einer 
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Qualitätseinbuße zu tun. Es ist eine Präzisierung. Die Umgangs-
sprache benutzt nur zwei präzise Mengenangaben: einer und alle. 
Die Zwischenstufen werden mit „einige", „mehrere", „viele", 
„die meisten" usw. angegeben. Damit wird vage ausgedrückt, was 
sich in Zahlen exakt angeben läßt. 

Die Mengenlehre setzt sich zur Aufgabe, Mengen untereinander 
auf exakte Weise zu vergleichen. Dazu braucht man nicht Zahlen 
zu benutzen, denn ein präziser Vergleich läßt sich durchführen, 
sobald die logischen Operationen genau definiert sind. Soweit 
Zahlen vorkommen, dienen sie nur der Erläuterung. Die Grund-
operationen, die hier besprochen werden, stehen der Alltagsspra-
che sehr nahe. Einige der wichtigsten seien kurz aufgezählt. 

Unter dem Komplement oder der Komplementärmenge verstehen 
wir die Ergänzungsmenge. Da die Ergänzung zu einem Ding aus 
sämtlichen übrigen Dingen der Anschauung oder des Denkens 
besteht, könnten wir uns leicht ins Uferlose verlieren. Deshalb 
schränken wir unsere Rede jeweils auf einen Grundbereich ein. 

Als Beispiel bestehe unser Grundbereich aus allen Menschen. Sie 
lassen sich einteilen nach dem Gesichtspunkt, ob sie am Mittag 
Suppe essen. Dann bilden jene, die auf die Suppe verzichten das 
Komplement. Die Menge der Suppenesser wollen wir mit S be-
zeichnen, das Komplement mit S'. S und S' bilden zusammen die 
Menge M des Grundbereiches. 

Dieser Sachverhalt läßt sich an einer Zeichnung ablesen 

Solche Diagramme werden von Leibniz, Euler und Venn benützt 
und heißen Eulerkreise oder Venn-Diagramme. 

1 .1 .1 Das Komplement 

M 

Allgemein gilt: Die Komplementärmenge ist das Komplement 
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oder die Ergänzung zu A, so daß A und A' zusammen die Menge B 
ergeben. Drei verschiedene Situationen können entstehen: 

1) ist A ein Teil der Menge M, dann ist A' der ergänzende Teil, 
so daß A und A' zusammen die ganze Menge ausmachen. 

2) Ist A = M, dann ist A' = 0 

3) Ist A = 0, dann ist A' = M 

Den Grundbereich bezeichnet man mit 1. Dann lassen sich 2) und 
3) auch so ausdrücken: Wenn A = 1, dann ist A' = 0, und wenn 
A = 0, dann ist A' = 1. 

Übung 1.1.1 

1) 1 = {Tonleiter der ganzen Töne} 
A = {f, g, a, h} 
A ' = ? 

2) 1 = {Familie} 
B = {Vater} 
B ' = ? 

3) 1 = {Zweibeiner} 
C = {Mensch} 
C ' = ? 

4) 1 = {Regenbogenfarben} 
D = {orange, gelb, grün, blau, indigo, violett} 
D ' = ? 

5) 1 = {Tiere im Zirkus Knie} 
E = 0 
E ' = ? 

2 Bucher, Logik 
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6) 1 = {Großbritannien} 
F = {England, Schottland, Wales} 
F ' = ? 

1.1.2 Die Vereinigungsmenge 

Die Vereinigung zweier Mengen umfaßt alle Elemente der beiden 
Mengen. Alle Andalusier mögen in der Menge A zusammengefaßt 
werden, alle Männer, die Bariton singen in der Menge B. Dann 
umfaßt die Vereinigungsmenge V von A und B alle Andalusier, 
alle Baritonsänger und erst recht die andalusischen Baritone. Sym-
bolisch schreiben wir 

V = A u B (sprich: „A zu B" oder „A vereinigt mit B"). 

Der Funktor „ u " heißt Summator. Mit den Eulerkreisen läßt sich 
die Vereinigungsmenge von A und B so darstellen: 

Unter Durchschnittsmenge — auch Intersektion oder Schnittmen-
ge — von A und B verstehen wir jene Menge, die aus den Elementen 
besteht, die den beiden Mengen A und B gemeinsam sind. Wenn 
wir das vorige Beispiel übernehmen, dann gehören zum Durch-
schnitt I alle Andalusier, die Bariton singen. Wenn alle Andalusier 
nur Bass, Sopran oder Alt sängen, dann wäre die Durchschnitts-
menge die leere Menge. Durchschnitt heißt hier natürlich nicht 
Mittelbildung. 

I = A n B (sprich „A mit B" oder „A geschnitten B"). Der Funk-
tor „ n " heißt Produktor. Im Diagramm: 

V = A u B 

1.1.3 Die Durchschnittsmenge 

I = A n B 
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Aus der Definition der Vereinigung und dem Durchschnitt erge-
ben sich folgende Überlegungen: Für jede beliebige Menge A gilt: 

A u A ' = l 
A n A' = 0 

Ferner lassen sich folgende Zusammenhänge an den Diagrammen 

Die Ähnlichkeit mit der traditionellen Arithmetik ist bemerkens-
wert; die Parallele bricht erst ab bei der Gegenüberstellung von 4. 
und 4a). 

ablesen: 

1. A n 0 = 0 
2. A u 0 = A 

3. A n l = 1 
4. A u 1 = 1 

la) a • 0 = 0 
2a) a + 0 = a 

3a) a • 1 = a 
4a) a + 1 = a + 1 

Übung 1.1.3 

Gegeben sind die beiden Mengen A und B 

B 

1) Welche Behauptungen sind richtig? 
1. Alfred ist ein Element von A u B 
2. Alfred ist ein Element von A n B . 

2» 
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3. A n B = 4 Elemente. 
4. {Berta, Daniel} c ( A u B ) 
5. {Christa} e (A u B) 
6. {{Gisela}} c ( A u B ) 
7. {Gisela} c ( A u B ) 

2) Zählen Sie auf: 
1. Die Elemente von A u B 
2. Die Teilmengen von A n B . 

Unter der Differenzmenge A \ B verstehen wir die Menge derjeni-
gen Elemente von A, die nicht zur Menge B gehören. Wenn die 
Menge A alle Andalusier umfaßt und die Menge B die Baritonsän-
ger, dann bedeutet A \ B alle Andalusier abzüglich der Baritonsän-
ger. Symbolisch schreiben wir: 

D = A \ B (sprich: „A ohne B") . Der Funktor „ \ " heißt Differen-
ziator. Im Diagramm dargestellt: 

Hier gelten die folgenden Beziehungen für alle Mengen: 
ist B = 0, dann ist A \ B = A 
Ist B = A, dann ist A \ B = 0 

Mit diesen Operationen lassen sich bereits einige elementare Be-
ziehungen überprüfen. Wir wollen dies anhand von zwei und drei 
Mengen zeigen. 

1.1.4 Die Differenzmenge 

D = A \ B 

1.2 Die Auswertung 

1.2.1 Die Überprüfung zweier Mengen 

Zunächst numerieren wir die Felder zweier überschneidender 
Mengen auf folgende Weise: 
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Nun können wir für die Buchstaben die entsprechenden Zahlen-
werte einsetzen und anschließend die vorgesehenen Operationen 
ausführen. Dazu einige Beispiele: 

Beispiel 1: A u B 

Die Menge A hat zwei Elemente, nämlich 1 und 3. So schreiben 
wir: 

A = { 1 , 3 } 
Für B: B = {3, 2} oder in der Reihenfolge: B = {2, 3} 

Nun lautet die Aufgabe, A und B zu vereinigen, also A u B : 
{1, 3} u {2, 3 } . Die Vereinigung umfaßt alle Elemente, die sowohl 
zu A oder zu B gehören, folglich {1, 3, 2, 3} . Wir ordnen die Ele-
mente und schreiben das zweimal erwähnte Element 3 nur einmal. 
Dann erhalten wir: { 1 , 2 , 3 } . Unsere Lösung lautet somit: 

A u B = { 1 , 2 , 3 } 

Beispiel 2: A n B 

Dieselbe Aufgabe läßt sich auch für den Durchschnitt zweier Men-
gen stellen, nämlich für A n B . Die entsprechenden Zahlenwerte 
sind wieder den Eulerkreisen zu entnehmen und ergeben einge-
setzt: {1, 3} n {2, 3 } . Der Durchschnitt besteht aus jenen Elemen-
ten, die sowohl zur Menge A als auch zur Menge B gehören. 3 ist 
das einzige Element, das diese Bedingung erfüllt. Daher: 
A n B = {3} . 

Beispiel3: A \ B 

Schließlich wollen wir noch die Differenz A \ B ausrechnen. Wir 
setzen ein: {1, 3 } \ { 2 , 3} . Die Differenz besagt, die Elemente der 
Menge B sollen von denjenigen aus A abgezogen werden. Wir 
haben deshalb von der Menge A {2, 3} abzuzählen. Da jedoch in 
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der Menge A das Element 2 nicht enthalten ist, bleibt uns nur das 
Element 3 abzuzählen. Daher erhalten wir: A \ B = {1 } . 

Beispiel4: A u B ' 

Für A setzen wir wieder ein: { l , 3} . B' ist das Komplement vonB. B 
ist { 2 , 3 } , also ist B ' = {1 } . Somit lautet unsere Aufgabe: 
{ 1 , 3 } u {1} = { 1 , 3 } . Der Zeichnung entnehmen wir, daß die Ele-
mente 1 und 3 zusammen genau die Menge A ausmachen. Deshalb 
dürfen wir schreiben: { l , 3 } = A. Damit haben wir einen kompli-
zierten Ausdruck vereinfacht, da wir nachweisen konnten, daß 
A u B ' = A ist. Die vier Zeichen A u B' sind durch ein einziges 
ersetzt worden, durch A. Vereinfachen heißt hier, die Anzahl der 
Zeichen verringern. 

Beispiel 5: A ' n B ' 

Da A = {1, 3} ist und A' = { 2 } , B = {2,3} und folglich B' = {1} , 
so bekommen wir: {2} n {1 } = 0. 

Natürlich kann auch der umgekehrte Weg beschritten werden. 
{1, 2, 3} läßt sich in algebraische Form übersetzen, z.B. als A u B. 

Beispiel 6: ( A u B ) n B ' 

Hinsichtlich der Klammern gilt die in der Algebra übliche Regel: 
Vom Innern der Klammern her auflösen. 

1. Schritt: ( A u B ) = { 1 , 2 , 3 } 
2. Schritt: B' = {1} 
3. Schritt: { l , 2 , 3 } n { l } = {1} 

Es wäre unerlaubt, die Klammern zu mißachten und von B n B ' 
auszugehen. 

Beispiel7: A u B = B u A 

Ist die Kommutativität für die Operation u gültig? 

A u B = { 1 , 3 } u { 2 , 3 } = { 1 , 2 , 3 } 
B u A = {2, 3} u { 1 , 3 } = { 1 , 2 , 3} 

Also ist A u B = B u A, d. h. die Vereinigung ist kommutativ. 
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Übung 1.2.1 

1) Prüfen Sie die Kommutativität für Durchschnitt und Diffe-
renz: 
1. A n B = B n A 
2. A \ B = B \ A 

2) Zeigen Sie, daß die Mißachtung der Klammerfolge beim 
Beispiel 6 zu einem Fehler führt. 

3) Beweisen Sie die Gültigkeit der Gesetze von De Morgan: 
1. ( A n B ) ' = A ' u B ' 
2. ( A u B ) ' = A ' n B ' 

4) Welche der folgenden Gleichungen sind gültig? 
1. A n ( A u B ) = A 
2. A u ( A n B ) = A 
3. ( A n B ) u ( A ' n B ) u ( A n B ' ) = 1 
4. ( A ' n B ' ) u ( A ' n B ) u ( A n B ' ) = 1 

5) Drücken Sie die folgenden Mengen in je zwei algebraischen 
Formeln aus, wobei die eine möglichst kurz sein soll: 
1. {3} 
2. {2} 
3. { 1 , 2 } 

6) Vereinfachen Sie: 
1. ( A u B ' ) n ( B ' u A ) 
2. ( A n B ) u ( A ' u B ) 
3. B \ ( A n B ) 
4. (AuB)\(A\B) 
5. ( A n B ) u ( A n B ' ) u ( A ' n B ) u ( A ' n B ' ) 
6. ( ( A n B ) u ( A ' n B ) u ( A n B ' ) ) . 

1.2.2 Die Überprüfung dreier Mengen 

Zur Überprüfung weiterer Gesetzmäßigkeiten, etwa der Assozia-
tivität, benötigen wir eine zusätzliche Menge. Dadurch wird der 
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Aufwand etwas mühsamer, aber grundsätzlich ändert sich nichts. 
Anhand der Diagramme erkennen wir, daß eine dritte Menge vier 
zusätzliche Überschneidungsmöglichkeiten mit sich bringt, was 
eine neue Numerierung der Felder verlangt. 

C 

Wenn wir etwa die Assoziativität prüfen wollen, so steht zur Fra-
ge, ob ( A u B ) u C = A u ( B u C ) sei oder nicht. 

Wir beginnen mit dem linken Klammerausdruck: 

A u B = { 1 , 2 , 4 , 5 , 6 , 7 } und 
C = {3, 5, 6, 7 } . Die ganze linke Seite ergibt: 

{1, 2 , 4 , 5 , 6, 7} u {3, 5, 6 , 7 } = {1, 2, 3 , 4 , 5 , 6 , 7 } 

Für den rechten Klammerausdruck erhalten wir: 

B u C = { 2 , 3 , 4 , 5 , 6 , 7 } und 
A = {1, 4, 6, 7 } . Dann ergibt die ganze rechte Seite 

{2, 3, 4 , 5 , 6 , 7 } u { 1 , 4 , 6, 7 } = { 1 , 2 , 3 , 4 , 5 , 6 , 7 } 

Die linke Seite des Gleichheitszeichens ergibt gleich viel wie die 
rechte. Das besagt, daß also ( A u B ) u C = A u ( B u C ) ist und 
daß die Vereinigung assoziativ ist. 

Übung 1.2.2 

1) Wie steht es mit der Assoziativität von Durchschnitt und 
Differenz? 
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1. ( A n B ) n C = A n ( B n C ) 
2. (A\B)\C = A\(B\C) 

2) Gilt das distributive Gesetz? 

1. A u ( B n C ) = ( A u B ) n ( A u C ) 
2. A n ( B u C ) = ( A n B ) u ( A n C ) 
3. A n (B\C) = ( A n B ) \ ( A n C ) 

3) Gilt die Antidistributivität? 

1. A \ ( B u C ) = ( A \ B ) n ( A \ C ) 
2. A \ ( B n C ) = ( A \ B ) u ( A \ C ) 

4) Wieviel gibt in Zahlen ausgedrückt? 

1. A u ( A ' n B n C ) 
2. ( A u B ' ) n ( B ' u C ) 
3. ( A n B ) u ( A n C ) u ( B n C ) 

5) Vereinfachen Sie 

1. ( ( A n A ' ) n ( B u C ) ) u ( A n B ) 
2. ( A u B ' ) n ( A ' u Q n ( B u C ' ) 

6) Welche der folgenden Gleichungen sind gültig? 

1. A\(B\C) = A \ ( A u B ) 
2. (A\B)\C = A \ ( B u C ) 
3. (B\C) = ( A u B ) \ C 
4. ( A n B ) = A \ ( ( A u B ) \ B ) 
5. ( ( A u B ) n C ) \ B = ( B u C ) ' 

7) Drücken Sie algebraisch aus 

1. {3, 6} 
2. { 2 , 4 } 
3. { 2 , 4 , 5 } 
4. { 1 , 3 , 5 } 

8) Gegeben seien die drei Mengen A, B, C: 

A = {Mathematik, Physik, Philosophie, Deutsch} 
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B = {Englisch, Geschichte, Deutsch, Philosophie} 
C = {Philosophie, Griechisch, Latein, Französisch} 

Was bedeuten dann: 

1. ( A u B ) n C 
2. A u ( B u C ) 
3. ( A u B ' ) n C 
4. A n A ' 
5. {Philosophie, Deutsch, Griechisch, Latein, Französisch} 
6. Vereinfachen Sie: A \ ( B u C ) 

9) Zeichnen Sie 

1. ( A \ B ) u ( A \ C ) 
2. B u ( ( ( A u ( B n A ) ) \ A ) u ( ( C n A ) \ ( A n B n C ) ) 
3. ( ( A u B ) ' u ( A n B n C ) ) 

10) Drücken Sie die hervorgehobenen Felder algebraisch aus: 

11) An einem internationalen Kongreß haben sich Teilnehmer 
aus den Sprachregionen der ganzen Welt zusammengefun-
den. Das überträgt sich auf die Kommissionen. In einer 
solchen Kommission ist ein Sprachengewirr von drei ver-
schiedenen Idiomen zu hören. 8 Teilnehmer reden arabisch, 
6 baskisch und 4 chinesisch. Wäre dabei kein Polyglott, so 
bestünde die Kommission aus 18 Mitgliedern. Nun können 
sich aber drei arabisch Sprechende auch baskisch unterhal-
ten, zwei baskisch Sprechende chinesisch und ein Mitglied 
sogar in allen drei Sprachen. Wie viele Teilnehmer hat die 
Kommission? 
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Die Aussagenlogik befaßt sich mit Aussagen. Unter einer Aussage 
verstehen wir einen Satz, von dem es sinnvoll ist zu fragen, ob er 
wahr oder falsch sei. Für gewöhnlich stehen die Aussagen im Indi-
kativ. Frage-, Wunsch-, Befehls- oder Ausrufesätze werden nicht 
als Aussagen angesehen. Das Verhältnis zwischen Sätzen und Aus-
sagen ist so, daß unter den vielen Sätzen nur ein Ausschnitt als 
Aussagen gilt, nämlich jene, die beschreibend behaupten. Es ist 
beinahe einfacher aufzuzählen, welche Sätze keine Aussagen sind. 
Das gilt für die folgenden: 

1) Frage-, Wunsch-, Befehlssätze usw. 
2) Modalsätze: Sätze mit „möglich", „notwendig", „unbe-

dingt" usw. 
3) Nichtwohlformulierte Sätze: Dann und so traf. 
4) Sinnlose Sätze: Die Bücher weinen gefiederte Felsen. 
5) Aussageformen: Die kluge Hausfrau benutzt x für saubere 

Wäsche. 

Mit den nichtwohlformulierten und den sinnlosen Sätzen können 
wir gar nichts anfangen. Die Aussageformen hingegen gehen so-
fort in eine Aussage über, sobald die Variable ,x' — die Unbekann-
te - ersetzt wird. Auf die Besonderheiten von 1) gehen wir nicht 
ein, auf 2) später. 

Übung 2 

Welche Sätze sind Aussagen? Geben Sie den Grund an für die 
Nichtaussagen 

1. Die Milch ist sauer. 
2. Haben Sie 5 Minuten Zeit für mich? 
3. Am Samstag ist das „Rössli" immer besetzt. 
4. 2 + 2 = 7. 
5. Kauf dir doch einen Volvo! 
6. Die Stadt x ist berühmt wegen des Bärengrabens. 
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7. Er spricht dauernd über die Dollarkrise. 
8. 4 2 . 
9. David besiegte Goliath mit einer Steinschleuder. 

10. Vermutlich ist das Dampfschiff. 
11. Gut, daß der Regen wieder aufgehört hat! 
12. Bis ins 17. Jahrhundert glaubte man an einen Zusammenhang 

zwischen Mondphasen und Krankheiten. 
13. Der Schulanfang ist auf den 15. Oktober angesetzt. 
14. Die Waage ist ungenau. 
15. Wenn ein Mensch denkt, arbeitet er dann? 
16. Es regnet. 
17. Es ist unmöglich, aus einer Krähe eine Amsel zu machen. 
18. Wir fahren mit der SBB im schönen Schweizerland. 

2.1 Die Formalisierung von Aussagen 

Da wir fortwährend mit einzelnen Aussagen umgehen, dürfte es 
vorteilhaft sein, eine Abkürzung zu verabreden, oder wie die Logi-
ker sagen, eine Formalisierung vorzunehmen. Die Mathematiker 
drücken ihre Unbekannten mit ,x', ,y' usw. aus. Analog wählen 
wir ,p', ,q' usw. als Variable. Doch stellen wir mit ,p', ,q' usw. 
nicht Zahlen und auch nicht einzelne Worte dar, sondern ganze 
Sätze, genauer gesagt: Aussagen. Weil die Buchstaben die Stelle 
von Aussagen einnehmen, nennen wir sie Aussagenvariable. Liegt 
eine konkrete Aussage vor, dann mag sie als Konstante durch 
einen großen Buchstaben symbolisiert werden. Bevorzugt wird 
der Anfangsbuchstabe des Substantivs, des Verbs oder des Adjek-
tivs. Beispiel: 

Der Hahn kräht symbolisch: H 

Die Aussage ist also durch ,H' dargestellt. Die Buchstabenwahl ist 
belanglos, man hätte ebenso gut ,K' schreiben können. Wichtig 
ist, daß jede Aussage durch einen einzigen Buchstaben vertreten 
wird, mag der sprachliche Ausdruck kurz oder lang sein. Deshalb 
kann ein harmloses ,H' etwa bedeuten: 

H Der Hahn kräht 
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H Der Hahn kräht am frühen Morgen 
H Der Hahn kräht am frühen Morgen unaufhörlich 

zum Entsetzen aller schlechtgelaunten Nachbarn. 

Verboten ist jedoch, zwei Aussagen innerhalb des gleichen Kon-
textes mit demselben Buchstaben darzustellen. Also: 

Der Hahn kräht und Hans wacht auf 

H und H falsch 
H und W richtig 

Eine Aussage, die sich durch einen einzigen Buchstaben bezeich-
nen läßt, nennt man Atomsatz. Die Negation eines Atomsatzes ist 
selber ein Atomsatz. Sätze, die nicht Aussagen in unserem Sinne 
sind, werden nicht symbolisiert. 

Übung 2.1 

Formalisieren Sie: 
1. Othmar ist Organist. 
2. Am Freitag gibt es Fisch. 
3. Endlich kommt der Mai! 
4. Die Edelsteine sind beleidigt. 
5. Er drückt sich ständig um die Übungen. 
6. Vorgestern traf ich sie wieder am Bahnhof. 
7. Soll ich das nochmals wiederholen? 
8. Er sang fröhlich inmitten seiner Freunde beim dritten Glas. 
9. Die Anschrift ist gänzlich unleserlich. 

10. Der letzte Sommer hat. 
11. Globi kann alles. 
12. Keine Rosen ohne Dornen. 
13. Wie nett, daß der Onkel Fritz doch noch eine Frau gefunden 

hat! 
14. Alice ist mißmutig, weil die Spaghetti verkocht sind. 
15. O du lieber Augustin, alles ist hin! 
16. Radetzki litt chronisch unter Geldmangel. 
17. „Handtuch" heißt auf englisch „towel". 
18. Vorsicht beim Schließen! 
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19. Wollen wir wetten, daß der Stadtpräsident eine Rede hält? 
20. Der Kodex 914 von St. Gallen ist die bedeutendste Quelle für 

die kritische Ausgabe der Benediktsregel. 

2.2 Die Formalisierung von Aussagenverknüpfungen 

In der Sprache scheint es zwei Arten von Wörter zu geben, solche, 
die etwas bedeuten, wie „Elefant", „Konfitüre", „beten", „stol-
pern" usw. und daneben Wörter ohne Bedeutung wie „aber", 
„zwar", „weil", „so" usw. Das Mittelalter hat die letzteren Syn-
kategoremata genannt. Unter ihnen sind zwei Gruppen zu unter-
scheiden und zwar: 

1) „zwischen", „indessen", „nun", usw. 
2) „und", „oder", „nicht" usw. 

Es ist nicht unmittelbar einsichtig, wodurch sich die Synkategore-
mata der ersten Gruppe von denen der zweite abheben sollen. 
Doch ist der Unterschied sehr bedeutsam. Die zweite Gruppe hat 
einen engen Zusammenhang mit der Wahrheit der Sätze, während 
die erste in dieser Beziehung bestenfalls neutral ist und von uns 
nicht weiter beachtet werden muß. 

Aus der zweiten Gruppe werden wir fünf Synkategoremata aus-
wählen. Sie werden auch Funktoren genannt, genauer Wahrheits-
wertfunktoren, weil sie die Gesamtwahrheit verknüpfter Atom-
sätze bestimmen. 

Bei der Darstellung wollen wir mit dem Negator beginnen. Er 
entspricht ziemlich genau dem umgangsprachlichen „nicht". Als 
Abkürzung wählen wir „~i" . Mit diesem Negationszeichen, das 
vor die Aussage gesetzt wird, stellen wir den Negator dar. Es han-
delt sich dabei um einen einstelligen Funktor. Einstellig heißt er 
deshalb, weil auf ihn eine einzige Aussage folgt. Wenn „ O " bedeu-
tet „Ostern ist 1985 im April", dann bedeutet „—i 0" soviel wie 
„Ostern ist 1985 nicht im April". Die Negation verneint die auf sie 
folgende Aussage. 

Bei den zweistelligen Funktoren wollen wir mit dem „und" begin-
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nen, in Symbolschrift „ A " . Dieser Funktor ist deshalb zweistellig, 
weil vor dem „und" wie auch nachher je eine Aussage zu stehen 
hat, um den Bedingungen wohlformulierter Aussagenverknüp-
fungen zu genügen. 

Der zweite zweistellige Funktor ist das „oder", das symbolisch 
mit „ v " wiedergegeben wird. 

Als dritter Funktor der zweistelligen Gruppe gilt die Implikation, 
die mit einem Pfeil „ - > " geschrieben wird. Umgangssprachlich 
entspricht die Implikation ungefähr der sprachlichen Wendung 
„wenn . . . dann . . . " . 

Der vierte zweistellige Funktor, der mit dem Zeichen ,,<->" wie-
dergegeben wird, kann als „dann nur nur dann, wenn . . . " oder 
„genau dann, wenn . . . " gedeutet werden. 

Wir wollen die fünf Funktoren zusammenstellen: 

—i nicht 
A und 
v oder 
—> wenn . . . dann . . . 
<-> dann und nur dann, wenn . . . 

Diese Funktoren sind logische Konstanten. Sie dienen dazu, Aus-
sagen oder Aussagenvariable zu verknüpfen. Eine Aussagenver-
knüpfung ist ein Molekularsatz. Jede Funktorenverknüpfung 
— außer der Negation — macht Atomsätze zu Molekularsätzen. 

Nun können wir uns mit der Formalisierung der Aussagenver-
knüpfungen vertraut machen. Das soll anhand zweier Aussagen 
geschehen, nämlich „Die Sonne scheint" und „Josef geht in den 
Wald". Die Symbolisierung lautet: 

S Die Sonne scheint 
J Josef geht in den Wald 

I S Die Sonne scheint nicht 
i J Josef geht nicht in den Wald 

Entsprechend werden die Aussagenverknüpfungen gebildet: 

S A J Die Sonne scheint und Josef geht in den Wald 
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S v J Die Sonne scheint oder Josef geht in den Wald 
S -> J Wenn die Sonne scheint, dann geht Josef in den 

Wald 
S <-> J Genau dann, wenn die Sonne scheint, geht Josef in 

den Wald 

Übung 2.2 

1) Formalisieren Sie: 

1. Herodot war nicht Musiker. 
2. Rauchen ist ungesund und Schokolade macht dick. 
3. Wenn die Feuerwehr rechtzeitig eintrifft, dann wird das 

alte Haus gerettet. 
4. Er bezahlt die Steuern genau dann voraus, wenn ihm der 

Zins gutgeschrieben wird. 
5. Er bleibt zu Hause oder seine Frau spielt nicht Bridge. 
6. Wenn sich der Hund nicht wohlfühlt, dann wedelt er 

nicht. 

Das Prinzip der Formalisierung ist höchst einfach: Die Aussagen 
müssen mit dem dafür vorgesehenen Funktor verknüpft werden. 
Freilich treten in der Praxis manchmal Unsicherheiten auf. Sie 
können dadurch verursacht sein, weil die Umgangssprache reich-
haltig ist und für einen Ausdruck, den wir durch einen einzigen 
Funktor darstellen, mehrere Wörter benutzt. Einige damit ver-
bundene Formalisierungsschwierigkeiten sollen erwähnt werden. 

2.2.1 Die Und-Verknüpfung 

„Die Sonne scheint und Josef geht in den Wald" ist eine problem-
lose Aussagenverknüpfung durch Konjunktion. Zwischen die bei-
den Aussagen wird ein „und" gestellt und damit ist die Verknüp-
fung vollzogen. Leider sind nicht alle Konjunktionen so leicht 
durchschaubar. Sehen wir uns einige Beispiele an. 

(1) Das Schachspiel ist aufregend und unterhaltsam 

Das linke Argument des „und" ist zweifellos eine Aussage. Hinge-
gen ist „unterhaltsam" anscheinend ein Einzelwort und folglich 
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keine Aussage. In Wirklichkeit profitiert jedoch die Umgangsspra-
che von der Tatsache, daß in jenen Fällen, in denen einem Ding 
zwei, drei oder noch mehr Eigenschaften zugeschrieben werden, 
der Name des Dinges nicht jedesmal wiederholt werden muß. 
Beim vorliegenden Beispiel handelt es sich tatsächlich um zwei 
Aussagen, die explizit so auszudrücken wären: „Das Schachspiel 
ist aufregend und das Schachspiel ist unterhaltsam". Nun erken-
nen wir, daß auch das vermeintliche Einzelwort eine abgekürzte, 
aber korrekte Aussage ist; entsprechend lautet die ganze Formali-
sierung so: 

(1) A A U 

Die Umgangssprache — und das gilt von jeder sogenannten wissen-
schaftlichen Fachsprache in gleicher Weise — darf nicht gedanken-
los in die Symbolschrift übertragen werden. Bevor mit der Forma-
lisierung eingesetzt wird, müssen die logisch relevanten Satzstruk-
turen erfaßt sein. Ein solches Verständnis ist nicht identisch mit 
dem Begreifen des Inhaltes, ist jedoch eine notwendige Bedingung 
dazu. An Vertrautheit mit der Sprache ist soviel vorausgesetzt, 
daß Strukturgleichheiten und -Verschiedenheiten erkannt werden, 
selbst wenn sie durch den Buchstaben nicht angedeutet sind. Es 
geht hier um die irritierende Tatsache: 

- Nicht überall deutet das „und" auf eine konjunktive Aussa-
genverknüpfung hin. 

— Ab und zu liegt eine Aussagen Verknüpfung durch Konjunk-
tion vor, ohne daß dieser Sachverhalt am „ u n d " abzulesen 
wäre. 

Diese beiden Arten sollen kurz besprochen werden. 

2.2.1.1 Vermeintliche Konjunktion 

Die deutsche Sprache kennt mindestens zwei Scheinkonjunktio-
nen. Die eine ist ein harmloses Stilmittel, die andere eine Falle für 
traditionelle Sprachanalyse. 

Wenn das Stilmittel konzentriert wiederholt wird, ist es leicht 
durchschaubar wie etwa in der Zwingliübersetzung des Markus-
evangeliums. Abgesehen vom Einführungssatz werden nicht nur 
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bis in die Mitte des Kapitels 7 alle Kapitel, sondern auch alle Ab-
schnitte mit dem Wort „und" eingeleitet in der Absicht, den grie-
chischen Text möglichst wortgetreu wiederzugeben. Indessen hat 
das „und" an diesen Stellen durchaus nicht die Bedeutung kon-
junktiver Satzverknüpfungen; es ist eine bloß rhetorische An-
knüpfung an das Vorhergegangene. Dieses „und" gehört somit 
der 1. Klasse der Synkategoremata an. Daraus entnehmen wir die 
erstaunliche Tatsache, daß selbst Synkategoremata mehrdeutig 
sein können, auch wenn sie uns als bedeutungslos erscheinen. 

Der zweite Fall ist für die Logik folgenreicher. Wir gehen von den 
beiden Sätzen aus: 

(1) Franz und Othmar sind Sänger 
(2) Franz und Othmar sind Nachbarn 

Die beiden Aussagenverknüpfungen scheinen grammatikalisch 
gleich gebaut zu sein. In Wirklichkeit schreibt jedoch der Satz (1) 
zwei Menschen eine Eigenschaft zu, die beiden zukommt. Dazu 
erlaubt die Umgangssprache, wie wir bereits gesehen haben, eine 
Abkürzung. Ausführlich dargestellt bedeutet die Aussage (1) fol-
gendes: „Franz ist ein Sänger und Othmar ist ein Sänger." Hinge-
gen läßt sich (2) nicht in dieser Weise deuten; denn „Franz ist ein 
Nachbar" ist kein wohlformulierter Satz; er muß lauten: „Franz 
ist ein Nachbar von Othmar" oder es muß mindestens implizit 
ergänzt werden: „Franz ist ein Nachbar von jemandem". Was hier 
vorliegt ist nicht eine Konjunktion aus zwei einfachen Aussagen, 
vielmehr eine elementare Relation. Aus der Relationslehre, die wir 
später darstellen werden, geht hervor, daß unter der Bedingung, 
wie sie (2) ausspricht, auch Othmar ein Nachbar von Franz ist. Es 
handelt sich aber um eine einzige Aussage und deshalb lautet die 
Formalisierung von (1) und (2) so: 

(1) F A 0 
(2) N 

Selbstverständlich dürfte (2) auch durch „ F " dargestellt werden, 
nur muß man sich darüber klar sein, daß dieses „ F " mit dem „ F " 
aus (1) nicht identisch ist. Es ist deshalb ratsam, einen andern 
Buchstaben für (2) zu wählen. 
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2.2.1.2 Konjunktive Aussagenverknüpfungen ohne „und" 

Eine Formalisierung ist immer eine Abstraktion. Bei unseren For-
malisierungen dürfen jene Nuancen weggelassen werden, die lo-
gisch nicht relavant sind. Die Umgangssprache benutzt nämlich 
eine reiche Wortpalette, um mit der konjunktiven Verknüpfung 
von Sätzen auch noch bestimmte Schattierungen sichtbar zu ma-
chen. So sagt man etwa, „Er kommt zum Mittagessen, aber bleibt 
nicht lange". Hier handelt es sich um zwei Aussagen, die statt 
durch ein „und" durch ein „aber" verknüpft sind. Im „aber" 
steckt ein leichter Gegensatz, eine Nuance, die im „und" nicht 
mehr enthalten ist. Da sie jedoch rhetorischen und nicht wahr-
heitsbestimmenden Wert hat, verzichtet der auf Wahrheit ausge-
richtete Logiker auf ihre Berücksichtigung. Derartige Schattierun-
gen gibt es noch weitere. So könnte das „aber" gegebenenfalls 
durch „doch", „obwohl", „während" usw. ersetzt werden. Die 
Schriftsprache kennt überdies die Möglichkeit, die Und-Funktion 
durch ein Komma anzudeuten, etwa: „Er hat sich lange, einge-
hend und erfolgreich darum bemüht". Überdies kann das „und" 
sogar aus der sprachlichen Darstellung verschwinden, wenn die 
Konjunktion verneint wird. 

Die Verneinung einer durch „und" gebildeten Satzverknüpfung 
mag auf verschiedene Art wiedergegeben werden. Verständlich, 
aber ungebräuchlich ist: 

(3) Franz geht nicht schwimmen, und Othmar geht nicht 
schwimmen 

An Stelle von (3) wird man eher sagen: 

(4) Franz und Othmar gehen nicht schwimmen 

oder 
(5) Weder Franz noch Othmar geht schwimmen 

Zweifellos ist (3) so schwerfällig, daß es in der deutschen Sprache 
nicht ausgesprochen wird. Statt (4) kann jederzeit auch (5) einge-
setzt werden, wobei das „und" auf den ersten Blick verschwunden 
ist, jedoch bei genauerer Analyse im „weder - noch" als Vernei-
nung zu finden ist. 
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Eine andere Situation liegt im folgenden Beispiel vor: 

(6) Er raucht und trinkt nicht 

Die Zweideutigkeit wird uns bewußt beim Versuch der Formali-
sierung: 
(6a) R A - I T 

(6b) - I R A - I T 

(6a) besagt, daß er raucht, aber nicht Trinker ist, hingegen be-
hauptet (6b), er sei Totalabstinent. Meistens wird aus dem Kon-
text ersichtlich, ob (6a) oder (6b) gemeint sei. Man mag auch 
wünschen, daß die Aussage (6), wenn sie im Sinne von (6a) beab-
sichtigt ist, umgangssprachlich eindeutig formuliert werde, näm-
lich: „Er raucht, aber er trinkt nicht". Auf jeden Fall, wenn wir die 
Aussage (6), wie man pathetisch so gerne sagt, „beim Wort neh-
men", ist sie mehrdeutig. 

Der Reichtum der Umgangssprache bringt es mit sich, daß aller-
hand Nuancen auch bei den übrigen Funktoren anzutreffen sind. 
Sie zu erfassen gehört zu den bekanntesten Anfängerschwierigkei-
ten in der Formalisierung, weil der durchschnittliche Sprecher mit 
seiner Sprache umzugehen weiß, ohne jedoch mit ihren logischen 
Strukturen explizit vertraut zu sein. Mit etwas Vorsicht und Üb-
ung lassen sich hier verhältnismäßig leicht die bestehenden Lük-
ken ausbessern. Etwas kürzer als beim „und" sei noch auf einige 
schwierige Zusammenhänge der übrigen Funktoren aufmerksam 
gemacht. 

2.2.2 Die übrigen Funktoren 

Die Disjunktion: Das „oder" wird in drei verschiedenen Bedeu-
tungen verwendet, wobei eine davon vernachlässigt werden kann, 
weil sie äußerst selten vorkommt. Die beiden übrigen nennen wir 
das inklusive und das exklusive „oder". Die Erklärung ihrer Un-
terschiede folgt später. Für die Formalisierung bereitet das „oder" 
geringfügige Schwierigkeiten verglichen mit dem „und", weil un-
sere Umgangssprache weniger Umschreibungen für „oder" kennt. 
Täuschen läßt man sich oft von einigen alltäglichen Redewendun-
gen, wie etwa „Kinder und Rentner zahlen halben Preis". Hier 
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wird das „und" offensichtlich als „oder" aufgefaßt. Deshalb darf 
nicht das formalisiert werden, was gesagt wird, sondern das Ge-
meinte. 
Die Implikation: Statt „wenn . . . dann . . . " können ebenfalls Er-
satzwendungen in der Umgangssprache benutzt werden, etwa 
„falls", „es sei denn . . . " , , , . . . ist eine hinreichende Bedingung für 
. . . " , „wenn immer . . . " usw. Wichtig ist festzuhalten, daß das 
„weil" trotz seiner scheinbaren Ähnlichkeit kein ebenbürtiger 
Ausdruck ist, denn es hat eine wesentlich verschiedene Aufgabe zu 
erfüllen. Ebenfalls ist auch die konditionale Implikation keine 
Wahrheitsfunktion. „Wenn Hitler 1935 gestorben wäre, dann wä-
re Osterreich nicht heimgeholt worden." Dieser irreale Satz soll 
nicht als Wahrheitsfunktion der Implikation gelten. 

Daneben ist auf die asymmetrische Funktion der Implikation auf-
merksam zu machen. Das Argument vor dem Implikationszeichen 
nennen wir „Antezedens" oder „Vordersatz", jenes, das auf das 
Implikationszeichen folgt „Konsequens" oder „Nachsatz". Ante-
zedens und Konsequens sind die beiden Argumente der Implika-
tion. Die Asymmetrie hat zur Folge, daß Vordersatz und Nachsatz 
nicht gegeneinander ausgetauscht werden dürfen. Bei den übrigen 
Funktoren ist dieser Austausch erlaubt aufgrund einer Regel, die 
wir später kennen lernen. 

Wird bei der Implikation der Vordersatz mit dem Nachsatz ver-
tauscht, so geht damit eine Sinnänderung einher. Das machen wir 
uns zunutze, um mit Hilfe des gleichen Funktors eine weitere Aus-
sagenverknüpfung auszudrücken. Die Umstellung von Anteze-
dens und Konsequens entspricht dem alltagsprachlichen „nur 
dann . . . wenn . . . " . Das soll an Beispielen verdeutlicht werden: 

(7) Wenn die Sonne scheint, dann geht Josef in 
den Wald S -»• W 

(8) Nur wenn die Sonne scheint, geht Josef in 
den Wald W -> S 

Diesen Sachverhalt können wir uns inhaltlich plausibel machen, 
denn (8) ist gleichbedeutend mit „Wenn Josef in den Wald geht, 
dann scheint die Sonne". Dieses „nur wenn . . . dann . . . " wird in 
der Alltagssprache durch mehrere verschiedene Wendungen wie-
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dergegeben: „ . . . ist eine notwendige Bedingung . . . " , „ . . . voraus-
gesetzt, daß . . . " , „ . . . insofern als . . . " usw. 

Die Äquivalenz: Die Äquivalenz kann ebenfalls unter verschiede-
ner Gestalt in der Umgangssprache auftreten. Sie hat die gleiche 
Bedeutung wie „wenn p, dann q und wenn q, dann p " , so daß wir 
schreiben: p < + q . Dieser Ausdruck ist gleichbedeutend mit „p ist 
eine hinreichende und notwendige Bedingung für q " . Die Grund-
form der Äquivalenz ist „dann und nur dann, wenn . . . " oder 
„genau dann, wenn . . . " Statt dieser umständlichen Ausdrucks-
weise kann oft auch kurz „muß" stehen, etwa „Wenn ein Pferd ein 
Schimmel ist, dann muß es weiß sein". Das dürfte die geläufigere 
Redeweise sein als „dann und nur dann, wenn ein Pferd ein Schim-
mel ist, ist es weiß", obwohl dies korrekt wäre. 

Übung 2.2.2 

1) Formalisieren Sie: 

1. Hans studiert Biologie oder Chemie. 
2. Im Anfang schuf Gott Himmel und Erde. 
3. Das Bier ist trinkbar, aber nicht kalt. 
4. Wenn das Konzert öffentlich ist, dann spielt der Solist 

gut. 
5. Nur wenn das Konzert öffentlich ist, spielt der Solist 

gut. 
6. Weder Napoleon noch de Gaulle waren Engländer. 
7. Die höchste Steigung der Gotthardbahn beträgt 27 Pro-

mille, jene der Engelbergerbahn jedoch 246 Promille. 
8. Nur wenn eine Zahl ungerade ist, läßt sie sich nicht 

durch 2 teilen. 
9. Heidi und Bruno haben am 14. Juli geheiratet, obwohl 

sie nicht Franzosen sind. 
10. Die Türe ist offen oder zu. 
11. Der Millionär befürchtet, daß sein Vermögen kleiner 

wird, der Philosoph, daß sein Unvermögen größer wird. 
12. Die Katze fängt Vögel statt Mäuse. 
13. Es genügt nicht, daß Hans kommt, damit Alice bleibt. 
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14. Er geht in die Oper, falls nicht Wagner auf dem Pro-
gramm steht. 

15. Carl spielt Klavier und Orgel, Praxedis hingegen Kla-
vier und Harfe. 

16. Ein erfolgreicher Witz muß eine Pointe haben. 

2) Formalisieren Sie weiter 

1. Nicht p, sondern q 
2. Weder p noch q 
3. p, falls q 
4. Nur p, wenn q. 
5. p ist eine hinreichende Bedingung für q. 
6. p ist eine notwendige Bedingung für q. 

3) Übersetzen Sie die Aussagenverknüpfungen in Worte mit 
dem Vokabular: 
T = Die Temperatur steigt 
R = Es hat geregnet 
K = Der Kirschbaum blüht 

1. (T A R) -> K 
2. (T R) <-• (—i T v R) 
3. —i (K —»• R) 
4. - i T v (K R) 
5. T <->—i K 
6. K —• (R A ~~I T) 

4) „ ,p <-> q' soll stehen für: ,Sokrates ist der Philosoph, wel-
cher den Giftbecher nahm'" E. Walther, Kleiner Abriß der 
Mathematischen Logik (Kevelaer 1950). zit. J.v. Kempski, 
Max Bense als Philosoph. Archiv f. Philos. 4 (1952) 280. 
Wie beurteilen Sie diese Behauptung? 

2.3 Klammerregeln 

Da nicht bloß zwei, sondern beliebig viele Aussagen miteinander 
verknüpft werden dürfen, können sich bei Unachtsamkeit Mehr-
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deutigkeiten einschleichen, wie etwa in der folgenden Aussagen-
verbindung: 
(1) A v B - > C 
Dieser Ausdruck kann auf zwei Arten interpretiert werden: 

(la) (A v B) -> C oder 
(lb) A v (B -» C) 

(la) Wenn Albert oder Brigitte ins Kino geht, dann bleibt Clau-
dia zu Hause. 

(lb) Albert geht ins Kino, oder, wenn Brigitte geht, dann bleibt 
Claudia zu Hause. 

(la) und (lb) sind offensichtlich nicht identisch. Wir werden spä-
ter eine einfache Methode kennen lernen, um den Unterschied 
zwischen den beiden genau auszudrücken. 

Beachtung verdient auch die Negation. 

(2) Es ist nicht der Fall, daß Emil raucht oder trinkt 

Die Negation bezieht sich hier auf die ganze Aussagenverknüp-
fung, so daß sich folgende Formalisierung aufdrängt: 

(2a) - i (R v T) 

Wenn man die Klammern wegließe, dann würde sich die Negation 
auf die erste Konstante beschränken 
(2b) - i R v T 
was der etwas sonderbaren Behauptung entspräche: „Emil raucht 
nicht oder er trinkt". Das Sonderbare liegt aber nur am zufällig 
gewählten Beispiel. Die Struktur von (2 b) kann sinnvoll etwa so 
gedeutet werden: 

(3) Emil geht nicht weg oder er nimmt das Auto 

Das heißt: Er beabsichtigt hier zu bleiben; falls er es sich gleich-
wohl anders überlegen sollte, dann nimmt er das Auto. 

(3a) - i W v A 

Wenn keine Klammern vorhanden sind, dann gilt die Konvention, 
daß „ a " und „ v " stärker binden als „ ->" und „«-»". Gemäß 
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dieser Konvention müßte (1) als (la) gedeutet werden. Wir wer-
den jedoch auch bei (la) Klammern zulassen, auch wenn sie, 
streng genommen, überflüssig wären. Reicht die Konvention hin-
gegen nicht aus wie bei der Formel ( lb), dann werden Klammern 
unerlässlich. Daher ist der Ausdruck ,A -» B -> C' nicht wohlfor-
muliert; je nachdem, ob er ,(A —> B) —> C oder ,A —• (B —> C)' 
bedeuten soll, behauptet er etwas Verschiedenes. 

Übung 2.3 

Formalisieren Sie 
1. Entweder gehen wir schwimmen, oder wenn wir nicht 

schwimmen gehen, dann machen wir Musik. 
2. Er ist nur dann mutig, wenn er im Wirtshaus sitzt und die Frau 

nicht bei ihm ist. 
3. Wir können nicht beides haben, den Fünfer und das Weggli. 
4. Er hat nicht Wein getrunken, oder wenn er Wein getrunken 

hat, dann fährt er nicht mit dem Auto. 
5. Es ist nicht der Fall, daß er Wein getrunken hat und Auto 

fährt. 
6. Wenn der Dirigent einen falschen Einsatz gibt oder der Pianist 

zwei Seiten gleichzeitig dreht, dann stimmt die Harmonie 
nicht. 

7. Die Versammlung ist beschlußfähig, oder wenn sie es nicht ist, 
dann heben wir sie auf. 

8. Bei Einbruch, Brand und Diebstahl zahlt die Versicherung, 
jedoch nicht bei Hagel. 

9. Nur bei Einbruch und Brand zahlt die Versicherung, bei Dieb-
stahl nicht. 

10. Der Computer unterbricht den Schüler nicht, es sei denn, um 
Fehler anzuzeigen oder den Stromausfall zu melden. 

11. Der Gast ist abgereist ohne die Rechnung zu bezahlen, oder er 
hat einen Spaziergang gemacht und kommt jeden Augenblick 
zurück. 

12. Wenn Verena weder ein Streich- noch ein Schlaginstrument 
spielt, jedoch sicher singt, dann spielt sie ein Holzinstrument 
oder Orgel und komponiert. 
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Eine Bemerkung zu den uneinheitlichen Symbolzeichen der Logi-
ker: Meistens bestehen die Unterschiede in geringfügigen Neben-
sächlichkeiten, etwa wenn die Konjunktion mit „ . " oder „ & " 
geschrieben wird. Eine einzige Schreibweise macht eine Ausnah-
me, die deshalb gesondert erlernt werden muß. Es handelt sich um 
die polnische Notation. Sie hat den Vorteil, keine Klammern zu 
benötigen und gleichwohl immer eindeutig zu bleiben. In dieser 
Hinsicht ist sie allen andern Schreibweisen überlegen. Darauf ge-
hen wir später ein. 

Zusammenstellung einiger wichtiger Fachausdrücke 

p, q, r ... 
A, B, C . . . 
- I , A, V, -
p 

A 
—i—i C 
p v q 
A -> B 
h p v q ) - » 
P 
p V p 
(pvp ) ->p 
(p V q) -> r 
A B 

( p - q ) 

Aussagenvariable 
Aussagenkonstante 
Logische Konstante 

Atomsätze 

Molekularsätze oder Formeln 

1 Argument, 1 Variable 
2 Argumente, 1 Variable 
3 Argumente, 1 Variable 
3 Argumente, 3 Variable 
A = Antezedens, Vordersatz; 
B = Konsequens, Nachsatz 

2.4 Die Wahrheitsfunktionen 

Als Wahrheitswerte seien nur zwei zugelassen: das Wahre und das 
Falsche. Unter dieser Voraussetzung kann ein Einzelargument nur 
wahr oder falsch sein. Die Wahrheit oder Falschheit einer Satzver-
knüpfung hängt von der Wahrheit oder Falschheit der einzelnen 
Argumente ab. Wir wollen die Leistung für die bereits bekannten 
Funktoren im Hinblick auf die Wahrheitswerte untersuchen. 
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2.4.1 Die Negation 

Die Negation ist jene Funktion, die einem Argument den entge-
gengesetzten Wahrheitswert zuschreibt. Die Aussage „Die Lampe 
brennt" kann für eine bestimmte Lampe wahr oder falsch sein. Ist 
sie wahr, dann ist die Verneinung „Die Lampe brennt nicht" 
falsch; ist hingegen die Aussage „Die Lampe brennt nicht" für eine 
bestimmte Lampe wahr, dann ist bei diesem Zustand ihre Vernei-
nung „Die Lampe brennt" falsch. Daraus folgt, daß wir mit der 
Bejahung eines Satzes gleichzeitig das kontradiktorische Gegenteil 
verneinen. Das läßt sich verallgemeinert in einer Wahrheitstafel 
darstellen: 

p 
wahr falsch 
falsch wahr 

F 1) Blau ist eine Farbe 
I 2) Hirsche sind Insekten 
B 3) Belgien ist kleiner als Luxemburg 
V 4) San Marco ist in Venedig 
Welche Aussagen sind wahr? 

Blau ist tatsächlich eine Farbe, also ist ,F' wahr. Hingegen sind 
Hirsche keine Insekten, sodaß ,1' falsch und folglich, 11' wahr ist. 
Belgien übertrifft Luxemburg flächenmäßig um mehr als das elffa-
che. Die Aussage ,B' ist falsch und daher , i B' wahr. Alle Besu-
cher von Venedig wissen, daß San Marco die Hauptkirche ist. ,V' 
ist also wahr. 

Man hätte die Frage auch so stellen können: Welche Aussagen 
sind falsch 
Antwort: —I F, I, B, ~l V. 

Eine einzelne Variable ist also wahr oder falsch. Die Übersicht 
wird erschwert, sobald zwei (p A q), drei (p A q A r) oder noch 
mehr Variable gegeben sind. Wir reden hier absichtlich von Va-
riablen und nicht von Argumenten, weil etwa bei den Argumenten 
(p v p v p) der Wahrheitswert von der einzigen Variable ,p' ab-
hängig ist. Ist ,p' wahr, dann ist der ganze Ausdruck wahr; ist ,p' 
falsch, dann überträgt sich das wieder auf den ganzen Ausdruck; 
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denn eine Behauptung, die dreimal ausgesprochen wird, hat nicht 
mehr Wahrheit oder Falschheit als eine einmalige Aufzählung. 
Wenn jedoch ,p v q' vorliegt und ,p' falsch ist, dann steht der 
Wahrheits wert "von ,q' noch offen. Daraus ersehen wir: sobald wir 
es mit zwei oder mehr Variablen zu tun haben, gibt es mehrere 
Kombinationen zwischen wahr und falsch. 

Wie groß die Anzahl der Kombinationsmöglichkeiten bei zwei 
Variablen ist, das läßt sich an einem Beispiel darstellen. Nehmen 
wir an, wir hätten einen Sack mit weißen und farbigen Kugeln. 
Nun greife ich mit beiden Händen hinein und nehme je eine Kugel 
aus dem Sack heraus. Kurzes Nachdenken belehrt uns, daß nur die 
folgenden vier Kombinationen zu erwarten sind: 

linke Hand rechte Hand abgekürzt 
weiß weiß w w 
weiß farbig w f 
farbig weiß f w 
farbig farbig f f 

Falls wir nun bei der Abkürzung „w" als „wahr" und „ f " als 
„falsch" deuten, so haben wir die Wahrheitskombinationen 
wahr—falsch zweier Variablen vor uns. International hat sich da-
bei eine einheitliche Schreibweise durchgesetzt. Für „wahr" wird 
„ 1 " geschrieben, für „falsch" „0" . 

Eine Wahrheitsfunktion mit zwei Variablen ist dann eindeutig 
definiert, wenn der Wahrheitswert für jeden der vier möglichen 
Fälle eindeutig festgelegt ist. Das ist gleichbedeutend mit einer 
strengen Definition unserer bereits bekannten Funktoren. Sie sol-
len einzeln untersucht werden. 

2.4.2 Die Konjunktion 

„Der Briefträger bringt die Zeitung und ein Paket". Das sind zwei 
durch eine Konjunktion verbundene Aussagen, die sich formal so 
darstellen lassen: ,Z A P'. Wie bereits bekannt, gibt es für zwei 
Variable vier Kombinationsmöglichkeiten hinsichtlich der Wahr-
heit oder Falschheit. Wir schreiben diese vier Fälle unter die Buch-
staben ,Z' und ,P', was folgende Tabelle ergibt: 
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P A Z 
1 1 
1 0 
0 1 
0 0 

Diese Aussagenverknüpfung ist dann wahr, wenn sowohl die erste 
Aussage wahr ist wie auch die zweite, also wenn der Briefträger 
mit der Zeitung auch das Paket abliefert. Wir sagen, sie sei falsch, 
wenn er ohne Paket ankommt oder wenn er das Paket zustellt 
ohne Zeitung und erste recht, wenn er weder Zeitung noch Paket 
bringt. Das deuten wir so an, daß die Spalte unter dem Konjunk-
tionszeichen dort eine „ 1 " erhält, wo beide Variable 1 sind, also in 
der ersten Zeile. Die übrigen drei Zeilen füllen wir mit „ 0 " aus. 
Dann lautet die Definition der Konjunktion allgemein so: 

p A q 
1 1 l 
1 0 0 
0 0 l 
0 0 0 

Aus dieser Wahrheitstafel entnehmen wir, daß die Konjunktion 
gemäß Definition genau dann wahr ist, wenn beide Aussagen 
wahr sind. Statt vertikal können wir unser Resultat aus der a -
Spalte auch horizontal schreiben: 1000. Das hat nichts mit tausend 
zu tun; es ist vielmehr die exakte Definition des Funktors „ A " . 

Beispiele zur Konjunktion: 
F A V 1) Blau ist eine Farbe und San Marco ist in 

Venedig. 
Z A A 2) 12 ist teilbar durch 2 und Pflaumen sind 

Aprikosen. 
P a - I B 3) Paris ist eine Stadt und Holz brennt nicht. 
—1 I A —1 S 4) Die Eskimos leben nicht in Italien und die 

Neger nicht auf dem Südpol. 
Welche Aussagenverknüpfungen sind 
wahr? 

Im Beispiel 1) sind beide Aussagen wahr, deshalb auch die ganze 
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Aussagenverknüpfung. Bei 2) ist ,A' falsch, denn Pflaumen sind 
keine Aprikosen. Deshalb ist 2) als Ganzes falsch, obwohl die 
Aussage ,Z' wahr ist. Wir haben es mit der zweiten Zeile unserer 
Definition zu tun, wo sich aus dem wahren ,p' und dem falschen 
,q' etwas Falsches ergibt, was als „ 0 " zwischen die beiden gesetzt 
wird. Da jedermann weiß, daß Holz brennbar ist, also ,B' wahr 
und ,—IB' falsch, so ist auch die Aussage 3) falsch. Den Eskimos 
wäre es in Italien zu warm, sie wohnen nicht dort. Daher i s t 1 1 ' 
wahr. Entsprechend fänden es die Neger auf dem Südpol zu kalt 
und so ist auch , IS' wahr. Da beide Argumente der Konjunktion 
wahr sind, ist die gesamte Aussagenverknüpfung wahr. 

2.4.3 Die Disjunktion 

Als Beispiel für eine Disjunktion wählen wir den Satz: „Zum 
Nachtisch gibt es Käse oder Früchte". Unter der Disjunktion ver-
stehen wir jene Funktion mit zwei Argumenten, die nur dann 
falsch ist, wenn beide Argumente falsch sind, also wenn es weder 
Käse noch Früchte gibt. Die Wahrheitstafel der Disjunktion lautet 
demnach verallgemeinert so: 

p v q 
1 1 1 
1 1 0 
0 1 1 
0 0 0 

Auch hier ist das Resultat der Definition aus der Spalte unter dem 
Funktor „ v " abzulesen und kann horizontal übertragen werden: 
1110. Der Funktor läßt sich in der Umgangssprache so umschrei-
ben: „Eines von beiden, vielleicht auch beides". Das entspricht 
genau dem lateinischen „vel", das auf deutsch nicht gerade ein-
deutig mit „oder" übersetzt wird. Die Formel „und/oder", die 
man in juristischen Texten und neuerdings wieder vermehrt in 
theologischen Arbeiten antrifft, ist ein Pleonasmus, wie aus der 
Definition von „ v " hervorgeht. Die Wahrheitstabelle bringt es 
an den Tag. 

Nun kann aber das umgangssprachliche „oder" eine weitere Be-
deutung annehmen, die Kontravalenz, die an einem Beispiel er-
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klärt werden soll. „Albert ist Katholik oder Protestant". Da es 
nicht möglich ist, beiden Konfessionen gleichzeitig anzugehören, 
nimmt die Wahrheitstabelle den Wahrheitswert 0110 an. Dieses 
ausschließende „oder" wird lateinisch mit „aut-aut" und deutsch 
mit „entweder-oder" übersetzt. Die konsequente lateinische Un-
terscheidung wird von der deutschen Sprache allerdings nicht 
übernommen, so daß die bedeutsame Abweichung zwischen Dis-
junktion und Kontravalenz nur vom Kontext her feststellbar wird. 
Ich muß im voraus wissen, wie Katholiken zu Protestanten stehen, 
um zu erfassen, daß es sich bei diesem Beispiel um eine Kontrava-
lenz handelt. Weniger zweideutig müßte gesagt werden: „Entwe-
der ist Albert Katholik oder Protestant". Der Logiker hat der 
Sprache indessen keine Vorschriften über konsequenten Ge-
brauch zu machen; er stellt nur fest, wie sorglos im Alltag gespro-
chen wird, eine Tatsache, die sich nur wegen der unerhörten Re-
dundanz nicht chaotisch auswirkt. 

Da sich die Kontravalenz, wenn auch etwas umständlich, mit Hil-
fe der Disjunktion darstellen läßt - Albert ist Katholik oder Prote-
stant, aber nicht Katholik und Protestant — so wollen wir auf die 
Einführung einer zusätzlichen logischen Konstante für die Kon-
travalenz (symbolisch: >—<) verzichten. Wir begnügen uns mit der 
Disjunktion, die von einigen Autoren Adjunktion genannt wird. 

Beispiele zur Disjunktion: 

F v V 1) Blau ist eine Farbe oder San Marco ist in 
Venedig. 

Z v A 2) 12 ist teilbar durch 2 oder Pflaumen sind 
Aprikosen. 

i P v B 3) Paris ist nicht eine Stadt oder Holz brennt. 
I v S 4) Die Eskimos leben in Italien oder die Neger 

auf dem Südpol. 
Welche Aussagenverknüpfungen sind wahr? 

Im Beispiel 1) sind beide Aussagen wahr, deshalb auch die ganze 
Aussagenverknüpfung. Bei 2) ist ,Z ' wahr. Da die Disjunktion als 
ganze wahr ist, wenn mindestens eines ihrer Argumente wahr ist, 
so vermag auch das falsche ,A' am Wahrheitswert von 2) nichts 
mehr zu ändern. Bei 3) haben wir ein wahres ,B', was ausreicht für 
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die Wahrheit der Aussagenverknüpfung. Hingegen ist bei 4) so-
wohl ,1' wie ,S' falsch, also alle Disjunktionsglieder. Deshalb ist 4) 
falsch. 

2.4.4 Die Implikation 

Der Wahrheitswert der Implikation läßt sich nicht mehr so leicht 
aus einem Beispiel ablesen. Versuchen wir es für den Anfang 
gleichwohl. 

„Wenn Erika die höchste Punktzahl erreicht, so ist sie Siegerin". 
Daraus kann ohne Zögern entnommen werden, daß wir eine Im-
plikation für richtig halten, wenn Vordersatz und Nachsatz zu-
treffen. Ebenso einsichtig ist es, daß der Wert der Implikation 
falsch ist, wenn der Vordersatz wahr, hingegen der Nachsatz 
falsch ist. Wir müßten es als ungerecht empfinden, wenn Erika 
trotz der höchsten Punktzahl nicht Siegerin wäre. Aber wie steht 
es mit den beiden Möglichkeiten in denen der Vordersatz falsch 
ist? Diese beiden Fälle wollen wir als wahr festsetzen unabhängig 
davon, ob uns die zur Verdeutlichung beigezogenen Beispiele zu 
überzeugen vermögen. Danach erhalten wir folgende Wahrheits-
tabelle für die Implikation: 

p -»• q 

1 1 1 
1 0 0 
0 1 1 
0 1 0 

Die Umgangssprache gibt diesen Funktor mit „wenn . . . dann . . . " 
wieder. Es ist zweifellos der Funktor, der unter den bisher behan-
delten von unserem intuitiven Verständnis am meisten abweicht, 
und dies nicht bloß in den Fällen eines falschen Vordersatzes. 
Unser schwankender Gebrauch kommt daher, weil wir im tägli-
chen Umgang zwei zusätzliche außerlogische Voraussetzungen 
annehmen: Erstens deuten wir in eine Wenn-dann-Aussage ein 
Kausalverhältnis hinein, das mit der Implikation nicht beabsich-
tigt ist, und zweitens behalten wir uns Wenn-dann-Aussagen vor-
wiegend für jene Fälle vor, wo der Vordersatz noch nicht eindeutig 
wahr oder falsch ist. Beispiele: 
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1) Wenn die Temperatur unter Null Grad sinkt, so gefriert das 
Wasser. 

2) Wenn das Wetter am Sonntag schön ist, dann machen wir 
einen Ausflug. 

Beide Sätze sind echte Implikationen, nur steckt in beiden viel 
mehr, als durch die Implikation ausgedrückt wird. Das Wenige, 
das die streng definierte Implikation aussagt, das soll dafür konse-
quent durchgehalten werden. Welche Schwierigkeiten dabei auf-
treten mögen, das zeigt der folgende Vergleich: 

1. Erika hat die höchste Punktzahl. 
2. Erika ist Siegerin. 
3. Bonn ist in Deutschland. 
4. Das Wasser gefriert bei Null Grad. 

Die vier Aussagen seien wahr. Aus ihnen lassen sich die beiden 
Implikationen bilden: 

(1) Wenn Erika die höchste Punktzahl hat, dann ist sie Siegerin 
(2) Wenn Bonn in Deutschland ist, dann gefriert Wasser bei 

Null Grad 

Das Beispiel (2) ist befremdlich, weil zwischen Bonn und dem 
gefrorenen Wasser kein Kausalzusammenhang besteht und weil 
überdies Vordersatz und Nachsatz zum vornherein als wahr be-
kannt sind. Bei (1) liegt wohl ein Kausalzusammenhang vor, — die 
Logik reicht bei weitem nicht aus, die Kausalität zu analysieren, 
schon gar nicht der elementare Ausschnitt, mit dem wir uns hier 
befassen - auf jeden Fall kann man sich einen Zeitpunkt ausden-
ken, wo der Ausgang noch nicht entschieden ist. Aber wenn sich 
dann Erika tatsächlich die höchste Punktzahl geholt hat, soll dann 
von diesem Augenblick an der Satz (1) als falsch anzusehen sein? 
Die Alltagssprache hält ihn weiterhin für richtig, auch wenn es 
jetzt üblich ist zu sagen: „Erika hat die höchste Punktzahl erlangt 
und ist Siegerin". Nuancen zwischen (1) und (2) sollen keineswegs 
geleugnet werden. Doch sind sie nicht von solcher Tragweite, daß 
sie den Logiker umzustimmen vermöchten, seine Implikation an-
ders zu definieren. 

Was sollen wir ferner von einer Implikation mit falschem Vorder-
3 Bucher, Logik 
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satz halten? Es lassen sich auch hier Beispiele und Gegenbeispiele 
anführen, die unsere Definition der Implikation als sinnvoll oder 
als unvernünftig erscheinen lassen. Ein sinnvolles Beispiel wäre 
etwa das folgende: 

(3) Wenn Karajan dirigiert, dann ist das Haus voll 

Nehmen wir an, Karajan sei verhindert, so daß der Vordersatz 
falsch wird. Muß deswegen das Haus leer sein? Das entspricht 
nicht der Intuition; erfreulicherweise sind Konzerte nicht selten 
auch unter andern Dirigenten gut besucht. Es ist also nicht zum 
vornherein abwegig, eine Implikation mit falschem Vordersatz als 
wahr zu definieren. 

Wie steht es schließlich bei der Implikation mit falschem Vorder-
satz und falschem Nachsatz? Auch hier gibt es umgangssprachli-
che Rechtfertigungen für das Vorgehen der Logiker. Göbbels soll 
gesagt haben: „Wenn wir den Krieg verlieren, dann heiße ich Mei-
er" . Mit dieser Implikation wollte er etwas Wahres sagen; er hielt 
es für ausgeschlossen, den Krieg zu verlieren und dachte nicht im 
entferntesten an eine Namensänderung. Beide Argumente galten 
in seinen Augen als falsch, die Aussage war als wahr vorgetragen 
und ist auch so verstanden worden. 

Entscheidend für die Definition des Logikers ist letztlich nicht die 
Tatsache, daß er auf dieser Grundlage Beispiele vernünftig analy-
sieren kann: es gibt genügend beunruhigende Gegenbeispiele. Der 
tiefste Grund für das strenge Festhalten des Logikers an der Defi-
nition seiner Implikation liegt im inneren Zusammenhang mit den 
andern Funktoren, an der Geschlossenheit des Systems. 

Beispiele zur Implikation: 

H -» M 1) Wenn Heu dürres Gras ist, dann hat die 
Stunde 60 Minuten. 

— | H - > M 2) Wenn Heu nicht dürres Gras ist, dann 
hat die Stunde 60 Minuten. 

H - » n M 3) Wenn Heu dürres Gras ist, dann hat die 
Stunde nicht 60 Minuten. 

—iH - * — i M 4) Wenn Heu nicht dürres Gras ist, dann 
hat die Stunde nicht 60 Minuten. 
Welche Aussagen sind wahr? 
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Bei 1) sind ,H' und ,M' wahr, also auch die 
Implikation. Bei 2) i s t i H' falsch. Eine Impli-
kation mit falschem Antezedens ist zum vorn-
herein wahr, was sich auf 2) überträgt. Bei 3) 
haben wir einen wahren Vordersatz und einen 
falschen Nachsatz. Das ist der einzige Fall, bei 
dem eine Implikation falsch ist. Bei 4) haben 
wir es wieder mit einer wahren Implikation zu 
tun, weil Vordersatz und Nachsatz falsch sind. 

2.4.5 Die Äquivalenz 

Die Äquivalenz ist eine weitere zweistellige Funktion. Sie läßt sich 
an einem Beispiel etwa so ausdrücken: „Alice geht genau dann 
zum Ball, wenn sie eingeladen wird". Die Äquivalenz schreiben 
wir so: ,A <-* E'. 

Der Wahrheitswert der Äquivalenz läßt sich aus dem Schriftbild 
ablesen: Der Funktor ist ein nach zwei Seiten gerichteter Pfeil. Für 
die Implikation haben wir den Wahrheitswert als 1011 definiert. 
Der Rückkehrpfeil gilt dual dazu als 1101. Zusammen ergibt das 
1001, wie wir aus der Tabelle ersehen: 

P q 
1 1 1 
1 0 0 
0 0 1 
0 1 0 

Die Äquivalenz ist also genau dann wahr, wenn beide Aussagen 
gleich sind, d.h. beide wahr oder beide falsch. 

Sprachlich läßt sich die Äquivalenz durch verschiedene Wendun-
gen wiedergeben: „ . . . dann und nur dann, wenn . . . " , „ . . . genau 
dann, wenn . . . " , „wenn . . . dann . . . und umgekehrt", „ . . . ist eine 
hinreichende und notwendige Bedingung für . . . " usw. In wissen-
schaftlichen Texten sind überdies noch folgende Abkürzungen 
üblich: 

deutsch: gdw = genau dann, wenn . . . 
frz.: ssi = si et seulement si . . . 
engl.: iff = if and only if . . . 

3 * 



68 2. Die Aussagenlogik 

Die Umgangssprache empfindet all diese Ausdrücke meist als 
schwerfällig und sagt kurzerhand: „wenn . . . dann . . ." . Beispiel: 
„Wenn heute Montag ist, dann ist morgen Dienstag". Dem Sach-
verhalt nach handelt es sich eindeutig um eine Äquivalenz und 
nicht um eine Implikation, was durchschaut sein muß, bevor die 
Formalisierung einsetzt. 

Beispiele zur Äquivalenz: 

R <-> K 1) Wenn die Figur rund ist, dann ist es ein 
Kreis. 

—i A <-» U 2) Genau dann, wenn der Hörer nicht aufge-
legt wird, ist das Gespräch unterbrochen. 

Welche Aussagen sind wahr? 

Beispiel 1) ist richtig formalisiert. Die Wenn-dann-Aussage ver-
birgt eine Äquivalenz. Da beide Aussagen wahr sind, ist die ganze 
Aussagenverknüpfung wahr. Auch 2) ist richtig formalisiert. Hin-
gegen sind die Wahrheitswerte ungleich, daher ist die Äquivalenz 
falsch. 

Wir haben nun fünf Funktoren definiert und ihnen folgende Werte 
gegeben: 

- i 1 0 
A 1 0 0 0 
v 1 1 1 0 
- • 1 0 1 1 
« • 1 0 0 1 

Mit dieser Erkenntnis lassen sich die folgenden Aufgaben leicht 
lösen. 

Übung 2.4.5 

1) Welche Aussagen sind wahr? 
1. ~~i (London liegt am Rhein). 
2. (4 + 9 = 12) v (Nelken verbreiten einen angenehmen 

Duft). 
3. (Der Schnee ist schwarz) -» (Der Schnee ist weiß). 
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4. (5 ist eine Primzahl) A (Einige Schweizer lieben Karten-
spiele). 

5. (Tauben fressen Schlagen) -» (Paris liegt im Schwarz-
wald). 

6. ~i (Es gibt rote Rosen) v (Manchmal regnet es in Lu-
zern). 

7. (Die Großmutter geht spazieren) v (4 ist eine Quadrat-
zahl). 

8. (Franz ist Hausbesitzer) <-• (Franz bezahlt hohe Steuern). 
9. (Alle Mädchen heißen Rita) - * (Einstein war ein großer 

Physiker). 

2) Formalisieren Sie die folgenden Aussagenverknüpfungen 
und geben Sie den Wahrheitswert an: 

1. Mücken sind Insekten, und das Tote Meer ist salzig. 
2. Einige Offiziere sind Piloten, und auf den Montag folgt 

der Sonntag. 
3. Ein ehemaliger UNO-Generalsekretär heißt Waldheim, 

oder Salat ist gesund. 
4. Tokio ist die Hauptstadt von Japan, oder Schneeglöck-

lein sind blau. 
5. Wenn Mozart ein Musiker war, darin ist 4 + 4 = 8. 
6. Wenn 2 - 3 = 7 ist, dann war Mozart ein Musiker. 
7. Wenn der Jupiter keine Monde hat, dann ist John Ame-

rikaner. 
8. Amseln singen melodiös, oder der Fiat ist ein italieni-

sches Auto. 
9. Genau dann, wenn wir ein Raumplanungsgesetz haben, 

wird der Autofriedhof nicht mehr geduldet. 
10. Wenn der Computer ein Philips ist, spricht das für Qua-

lität. 
3) A und B sind wahr, X , Y, Z falsch. Bestimmen Sie die Wahr-

heitswerte 
1. A A B 
2. A A X 
3. - i A A X 
4. A A - i Z 
5. —i—i B A - i Y 
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6. - I ( - 1 A A Y) 
7. (A A Z) A ( - : Y A B) 
8. A A B A - i (Y A - i Z) 
9. - i [A A (B A - i (Y A - i (Z A - : A)))] 

10. A v Y 
11. - i A v Z 
12. (A A B) v - i X 
13. —: A v —: Z v - i (A A B) 
14. A -> Y 
15. Y A 
16. A (B v - i Z) 
17. (Z A A) ( - i A v B v n Z ) 
18. B -> [ Y -> (Z B)] 

4) Wie steht es mit der Wahrheit der folgenden Satzverknüp-
fungen, wenn die vier Aussagen eingesetzt werden: 
P: Piaton war Grieche (wahr) 
A: Aristoteles war der Lehrer von Alexander (wahr) 
K: Kant hat im Mittelalter gelebt (falsch) 
R: Rüssel war ein Freund von Hegel (falsch) 
a) 1. ( - 1 R v K) -» P 

2. ~i i (K -> ~i A)] 
3. (A A - i K) (P A - i R) 
4. - i P v ( - i A -> K) 
5. - l K - » - i R 
6. ( i P v K) —> (A A ~i R) 
7. —: ( - 1 P v - i A) v R 
8. i A -> ( i K A —i R) 

b) Ändert sich der Wahrheitswert, wenn in 2, 4 , 7, 8 l A' 
durch ,A' ersetzt wird, wenn in 3, 6 ,A' durch , i A' 
ersetzt wird? Beantworten Sie die Fragen mit ja oder 
nein. 

5) Wer sich nicht für mathematische Beweise interessiert, der 
mag 5) übergehen und gleich bei 2.5 weiterlesen. Für die 
andern wird hier nicht eine Aufgabe gestellt, sondern ein 
Beweis für die Einzigkeit der leeren Menge vorgelegt. Den 
Schlüssel dazu liefert die Implikation. 
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Es genügt zu zeigen, daß die leere Menge von A = der leeren Men-
ge von B ist, also 0A = 0B . Das trifft dann und nur dann zu, wenn 
jedes Element von 0A auch Element von 0B ist. 

1. a sei ein beliebiges, aber festes Element von A. Dann ist die 
Aussage „a ist ein Element von 0 A " sicher falsch. Folglich ist 

(1) „Wenn a Element von 0A , dann ist a Element von 0 B " wahr. 

P q p = a e 0A 

0 1 q = a e 0B 

Da ,p' falsch ist, ist die ganze Implikation zum vornherein wahr, 
welches auch der Wert von ,q' sein mag. 

2. Ist nun b ein beliebiges festes Element der Menge B, so ist die 
Aussage „b ist Element von 0 B " ebenfalls falsch. Folglich ist die 
Implikation 

(2) „Wenn b Element von 0B , dann ist b Element von 0 A " wahr 

q p q = b e 0B 

0 1 0 p = b e 0A 

Da die beiden Implikationen für jedes beliebige a e A und jedes 
beliebige b e B gelten, so ist tatsächlich 0A = 0B . Es gibt also nur 
eine Menge, die keine Elemente enthält. Sie heißt die leere Menge 
und wird mit 0 bezeichnet. Das war zu beweisen. 

2.5 Die Auswertung der Wahrheitsfunktionen 

Die Formalisierung oder Symbolisierung ist kein Ziel, sie ist bloß 
eine Durchgangsstufe. Sie befähigt uns zu einer exakten Auskunft 
darüber, wann eine Aussagenverknüpfung wahr oder falsch ist. 
Wenn uns beispielsweise jemand sagt, im letzten Jahr hätten sich 
die Autounfälle in unserem Land erhöht, dann nehmen wir eine 
solche Aussage zunächst als wahr hin, weil wir dem Wissen des 
Sprechers vertrauen. Wir können keinen logischen Grund geltend 
machen, nach dem der Satz in Zweifel zu ziehen wäre. Hingegen, 
wenn der gleiche Sprecher auch noch hinzufügt, im letzten Jahr 
hätten sich alle Arten von Unfällen in unserem Land verringert, 
dann greifen wir aus logischen Gründen ein. Dazu ist jeder Hörer 
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berechtigt, selbst wenn der Sprecher ein berühmter Statistiker ist 
und wir von diesem Gebiet nichts verstehen. Denn die Behauptung 
„Autounfälle haben zugenommen und alle Arten von Unfällen 
haben sich verringert" ist widersprüchlich. Der Widerspruch ist 
aus logischen Gründen unhaltbar. Widerspruch oder Nichtwider-
spruch läßt sich am Wahrheitswert der Aussagenverknüpfung ab-
lesen. So bleibt uns zu zeigen, wie man zu diesen Wahrheitswerten 
kommt. 

Für das Aufstellen der Wahrheitstafel wählen wir ein einfaches 
Beispiel. Wir gehen von einer Satzverknüpfung aus, von der wir 
zum vornherein wissen, daß sie wahr ist. Das ist sicher der Fall für 
„Die Sonne scheint genau dann, wenn die Sonne scheint". Zuerst 
symbolisieren wir diese Behauptung: 

S <-> S 
Als nächsten Schritt zählen wir die Anzahl der Aussagen (konstan-
ten oder -variablen). In unserem Beispiel ist es eine einzige, näm-
lich ,S', die zweimal auftritt, also zwei Einsetzungen hat. Gemäß 
unserer Annahme hat eine Aussage genau zwei Wahrheitswerte, 
sie kann wahr oder falsch sein. Deshalb setzen wir unter alle ,S' 
eine „ 1 " und eine „ 0 " : 

S S 
1 1 
0 0 

Als dritter Schritt folgt die Auswertung der Äquivalenz. Wir ver-
gleichen die Wahrheitswerte in den Spalten von oben nach unten. 
In unserem Beispiel haben wir in der ersten Zeile zweimal eine „1". 
Gemäß unserer Äquivalenzdefinition (1001) ergibt die Äquivalenz 
zwischen zwei „ 1 " selber eine „ 1 " . Deshalb schreiben wir unter 
„<->•" zwischen die beiden „ 1 " eine „ 1 " . Anschließend erfolgt der 
Vergleich der zweiten Zeile. Die Definition der Äquivalenz besagt, 
daß dann, wenn beide Argumente den Nullwert haben (1001), der 
Gesamtwert wieder „ 1 " ist. Diese „ 1 " setzen wir in die zweite 
Zeile. Das ergibt folgendes Bild: 

S S 
1 1 1 
0 1 0 
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Die Spalte unter dem Funktor ,,<->" enthält jetzt zwei „ 1 " . Das ist 
unser Beweis für die logische Wahrheit des Ausdrucks. Wenn in 
der Spalte des Hauptfunktors - hier haben wir nur einen Funktor 
und deshalb nimmt er auch die Stelle eines Hauptfunktors ein — 
alle Stellen mit „ 1 " belegt sind, dann ist die Verknüpfung immer 
wahr, wie im vorliegenden Beispiel. Stehen unter dem Hauptfunk-
tor nur „ 0 " , dann ist der Ausdruck immer falsch. Zeigen sich „ 1 " 
und „ 0 " gemischt, dann können wir die Bedingungen angeben, 
unter denen die Verknüpfung wahr oder falsch ist. 

Bereits komplizierter wird der Nachweis in einem Beispiel mit 
zwei Variablen: 

(p v q) <-» (q V p) 

Hier liegen zwei Variable vor, ,p' und ,q'. Bei zwei Variablen gibt 
es vier Kombinationsmöglichkeiten von wahr—falsch. Wir schrei-
ben sie gleich unter die entsprechenden Variablen: 

( p v q ) « ( q v p) 
1 1 1 1 
1 0 0 1 
0 1 1 0 
0 0 0 0 

Der Hauptfunktor ist hier die Äquivalenz. Zuerst müssen die Ne-
benfunktoren ausgewertet werden. Deshalb beginnen wir sogleich 
mit ,p v q'. Die Definition der Disjunktion besagt, daß die Dis-
junktion nur dann falsch ist, wenn ihre beiden Argumente falsch 
sind. Das ist spaltenabwärts in der 4. Zeile der Fall. Wir setzen 
dort eine „ 0 " ein. Die übrigen drei Zeilen bekommen eine „ 1 " . 
Nun gehen wir zur Auswertung des zweiten Funktors über. 
,q v p' ist wiederum eine Disjunktion und auch sie bekommt in 
der letzten Zeile eine „ 0 " . Jetzt sieht unser bisheriges Resultat -
um die Übersicht zu erleichtern, lassen wir die ,p' und ,q' Werte 
weg, die wir jetzt ohnehin nicht mehr brauchen - so aus: 

( p v q ) » ( q v p) 
1 1 1 
1 1 1 
1 1 1 
0 1 0 
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Es muß deutlich und eindeutig erkennbar sein, welches der Haupt-
funktor ist, der zuletzt auszuwerten ist. Dazu stehen Klammern 
zur Verfügung. Es sei nochmals daran erinnert, daß die Funktoren 
enger binden in der Reihenfolge, wie wir sie aufgezählt haben, also 
~~1, A , v , -> , Das hat zur Folge, daß etwa bei der Formel 

p v - i q 

nach dem Anschreiben der Wahrheitswerte unter ,p' und ,q' zuerst 
die Negation auszuwerten ist und erst dann die Disjunktion. Eine 
allfällige Zweideutigkeit ist durch Klammern zu beheben. Dabei 
wird die aus der Arithmetik bekannte Regel von der Logik über-
nommen: Klammern sind von innen her aufzulösen. 

Bei den folgenden Beispielen sind die Schritte numeriert, wie sie 
der Reihe nach auszuführen sind. Die höchste Zahl, also der letzte 
auszuführende Schritt, gibt jeweils den Hauptfunktor an. 

2 1 2 1 3 3 2 1 

p (p V p) — i ~ I p < - > p p V (p — > q) 
1 1 1 1 l 1 0 1 1 l 1 1 0 1 1 l 
0 1 0 0 0 0 1 0 1 0 1 1 1 1 0 0 

0 0 0 0 1 1 
0 0 0 0 1 0 

5 4 6 1 3 2 
~ i (P V q) <-» — i p A — i q 
0 1 1 l 1 0 1 0 0 l 
0 1 1 0 1 0 1 0 0 0 
0 0 1 I 1 1 0 0 0 l 
1 0 0 0 1 1 0 1 1 0 

Das 3. Beispiel ist falsch, was sich daraus ersehen läßt, daß unter 
dem Hauptfunktor 3 in der vierten und fünften Zeile je eine „ 0 " 
steht. Beim letzten Beispiel hätten wir auf der linken Seite begin-
nen können, also in der Reihenfolge: 4, 5, 1, 2, 3, 6. 

Bisher haben wir in unseren Beispielen jeweils eine oder zwei Va-
riable zugelassen. Es gibt keinen Grund für eine solche Beschrän-
kung. Wenn jedoch drei, vier oder noch mehr Variable auftreten, 
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dann nimmt die Kombinationsmöglichkeit der Wahrheitswerte in 
rascher Folge zu: 

1 Variable 2 1 = 2 Zeilen 
2 Variable 2 2 = 4 Zeilen 
3 Variable 2 3 = 8 Zeilen 
4 Variable 2 4 = 16 Zeilen 
5 Variable 2 5 = 32 Zeilen 
n Variable 2" = 2" Zeilen 

Bei drei Variablen schreiben wir die Wahrheitswerte analog unter 
die betreffenden Buchstaben. Es empfiehlt sich dabei, systema-
tisch vorzugehen. Die erste Variable wird zur Hälfte mit „ 1 " be-
legt, der Rest, d.h. die andere Hälfte mit „0" . Bei der zweiten 
Variablen wird jede Hälfte nochmals unterteilt und bei der dritten 
finden wir fortwährende Abwechslung von „ 1 " und „0" . Das 
sieht so aus: 

P q r 
1 1 1 
1 1 0 
1 0 1 
1 0 0 
0 1 1 
0 1 0 
0 0 1 
0 0 0 

Das gleiche Verfahren wird bei vier und mehr Variablen ange-
wandt. Bei p, q, r, s haben wir 2 4 = 16 Zeilen. Deshalb wird unter 
,p' in den ersten 8 Zeilen „ 1 " gesetzt, in den übrigen überall , ,0" . 
Bei der zweiten Variable ,q' zuerst 4mal „ 1 " , dann 4mal „ 0 " , 
wieder 4mal „ 1 " usw. Bei der dritten jeweils mit 2mal „ 1 " , 2mal 
„ 0 " usw. und bei der letzten abwechslungsweise „ 1 " und „ 0 " . 
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Beispiel mit 3 Variablen: 

1 5 2 4 3 
(p <-» q) — • [(P A m ) — (q A m)] 
1 1 l 1 1 1 1 1 l 1 1 
1 1 l 1 1 0 0 1 l 0 0 
1 0 0 1 1 1 1 0 0 0 1 
1 0 0 1 1 0 0 1 0 0 0 
0 0 1 1 0 0 1 1 1 1 1 
0 0 1 1 0 0 0 1 1 0 0 
0 1 0 1 0 0 1 1 0 0 1 
0 1 0 1 0 0 0 1 0 0 0 

Übung 2.5 

1) Beweisen Sie mit Hilfe der Wahrheitstabellen die Gültigkeit 
der folgenden Aussagenverknüpfungen: 

1. (p v p) p 
2. q ->• (p v q) 
3. ( p v q ) - » ( q v p) 
4. [p v (q v r)] - > [ q v ( p v r)] 
5. (q —> r) —> [(p v q) —> (p v r)] 

Das sind die 5 Axiome der Principta Mathematica von 
Whitehead/Russell. Ihre Gültigkeit ist eine notwendige, 
aber nicht hinreichende Bedingung, um ein Axiomensystem 
zu konstituieren. Anstelle von 4. und 5. ist denn auch von 
Bernays eine Verbesserung vorgeschlagen worden: 

4a. (p ->• q) [(r v p ) - » ( r v q)] 

Beweisen Sie auch die Gültigkeit von 4a. 
2) Beweisen Sie die Gültigkeit der folgenden Axiome, die Fre-

ge seinem System zugrunde legt: 

1. p -> (q -> p) 
2. [p -> (q r)] -> [q -» (p r)] 
3. [p -» (q r)] [(p q) -» (p - r)] 
4. (p q) -» (—I q - > - i p ) 
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5. —i —i p —• p 
6. p —>• —i —i p 

3) 1. Wenn Hans spazieren geht, dann nimmt er den Hund 
mit. 
Formalisieren Sie die Aussage 1. und kontrollieren Sie, 
ob sie dasselbe besagt wie: „Wenn Hans nicht spazieren 
geht, dann nimmt er den Hund nicht mit". 

2. Wenn Werner mit einem Auto fährt und es ein Sportwa-
gen ist, dann ist es ein Jaguar. 
Ist 2. identisch mit (a) oder (b) 
(a) (W A S) -> J (b) W —»(Sa J) 

3. Wenn der Hund bellt, dann fürchte ich mich. 
a) Wie lautet diese Aussage verneint? 
b) Prüfen Sie das Resultat mit der Wahrheitstabelle 
nach. 

4. Wenn Urs keinen Fehler macht, dann wird er belohnt. 
Folgt daraus logisch, daß ihm die Belohnung entzogen 
wird, falls er einen Fehler macht? 

5. [ p A ( p - » q ) - > q ] « [ p - > ((p q) -> q ) ] 

4) Welche der folgenden Aussagen oder Aussagenverknüp-
fungen werden impliziert von p v q ? 
l . p 
2. q 
3. p v q 
4. p A q 
5. ~l p V q 
6. p a i q 
7. - I q p 
8. p «-» q 

5) Welche der folgenden Aussagen sind äquivalent? 
1. ( p - > q ) « ( p v q) 
2. (p -»• q) <-» ( - : p v - 1 q) 
3. (p q) <-> (-1 p v q) 
4. (p q) (p v - : q) 
5. (p -+ q) «-»• (p -* q) 
6. (p q) <->• ( - 1 q ->-1 p) 
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2.5.1 Tautologie, Kontradiktion und Kontingenz 

Tautologie und Kontradiktion nehmen in der Logik eine Sonder-
stellung ein. Es sind zwei Grenzfälle, mit denen wir vorsichtig 
umzugehen haben. Deshalb ist es nötig, genau zu wissen, was sie 
besagen. 

Tautologie: 
Als Beispiel einer Tautologie wollen wir die folgende Aussagen-
verknüpfung betrachten: 

(1) p v - i p 

Daß es sich hier tatsächlich um eine Tautologie handelt, das läßt 
sich an der Bewertung erkennen. In der Spalte unter dem Haupt-
funktor sind alle auftretenden Werte 1. Die wahren Bewertungen 
einer Aussagenverknüpfung bilden den Spielraum. Eine Tautolo-
gie ist demnach dadurch gekennzeichnet, daß sie den totalen Spiel-
raum hat, während etwa die Aussagenverknüpfung ,p A q' nur 
den Spielraum der ersten Zeile hat. 

Eine Tautologie ist trivialerweise wahr, weil sie den totalen Spiel-
raum hat, denn aufgrund des totalen Spielraumes schließt sie kei-
ne Möglichkeit aus, und deshalb nennt man sie auch Leerformel. 
Eine Tautologie bleibt wahr, welcher konkrete Sachverhalt auch 
immer vorliegen mag. Deshalb sagt derjenige, der eine Tautologie 
ausspricht, nicht etwas Falsches, aber er vermittelt keine Informa-
tion. 
Es ist in weiten Kreisen üblich, eine leicht durchschaubare Tauto-
logie zu belächeln. Das gilt etwa für die Behauptung „Es regnet 
oder es regnet nicht", was eine Einsetzung für das Beispiel (1) ist. 
Gewiß ist das trivial, aber Trivialität, Tautologie oder Leerformel 
darf weder mit Lächerlichkeit noch mit Einfalt verwechselt wer-
den. Der tautologische Gehalt kann manchmal übersehen werden, 
weil er verschleiert ist, wie im Beispiel „Hans schläft oder ist 
wach". Was der gesunde Menschenverstand bei hinreichender 
Anstrengung noch zu bewältigen vermag, das gelingt ihm in ab-
nehmendem Maße mit der Steigerung der Komplexität von Aussa-
genverknüpfungen. Spätestens bei einer Aussagenverknüpfung 
mit fünf Variablen wird auch für einen denkgewohnten Wissen-
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schaftler eine Tautologie völlig undurchschaubar. Er ist dann auf 
eine Methode für die Wahrheitsauswertung angewiesen. 

Der Laie fragt sich erstaunt, zu was Tautologien nützlich sein 
könnten, wenn sie zugegebenermaßen leer sind. Nun, die Leere 
bezieht sich einzig auf die Information hinsichtlich der Wirklich-
keit. Dadurch werden Tautologien freilich nicht, wie man voreilig 
vermuten möchte, wertlos. Als immer wahre Aussagenverknüp-
fungen sind Tautologien logische Gesetze. Da sie die Eigenschaft 
haben, zum vornherein gültig zu sein, bedeutet das einerseits, daß 
sie keinen empirischen Sachverhalt hervorbringen, andererseits, 
daß sie ohne empirische Prüfung auskommen. Was aus logischen 
Gründen wahr ist, ist immer wahr; oder was dasselbe ist, es ist 
tautologisch oder trivialerweise wahr. 

Kontradiktion: 
Die Kontradiktion läßt sich allgemein so formulieren: 

(2) p A - I p 

Die Auswertung zeigt uns unter dem Hauptfunktor lauter Nullen. 
Damit haben wir den leeren Spielraum. Der leere Spielraum darf 
nicht verwechselt werden mit der Leerformel; die Kontradiktion 
ist die Verneinung einer Leerformel. 

Wer eine Kontradiktion ausspricht, der behauptet zum vornher-
ein etwas Unsinniges. Ebensowenig wie für die Tautologie muß 
für die Kontradiktion eine Auskunft von irgendeinem Sachgebiet 
eingeholt werden. Eine Kontradiktion ist eine logische Kategorie, 
der in der Wirklichkeit nichts entspricht. In der materiellen oder 
geistigen Welt finden wir nur Gegensätze wie hart—weich, gut -
bös usw., aber nicht gleichzeitig hart und nicht hart. Eine ver-
meintliche Kontradiktion in der Wirklichkeit ist ein Anzeichen für 
eine mangelhafte Beschreibung eines Sachverhaltes. 

Manchmal wird Kontradiktion gleichgesetzt mit Absurdität. 
Wenn etwa einem Politiker vorgeworfen wird, er rechtfertige die 
Sklaverei, dann mag er antworten: „Das ist absurd". Der Hörer 
versteht dann „das habe ich nie gesagt", „das kann ich gar nicht 
gesagt haben" usw. Wer das Wort „absurd" benutzt, der meint 
für gewöhnlich noch etwas Zusätzliches, nämlich, die Anschuldi-
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gung stehe in Widerspruch zu seinen oder zu allgemein anerkann-
ten Prinzipien. 

Nur weil Tautologien logische Gesetze und Kontradiktionen die 
Verneinung von logischen Gesetzen sind, haben sie diese unbe-
schränkte Gültigkeit. Während die Kontradiktion in der Rede un-
ter allen Umständen zu vermeiden ist, besitzt die Tautologie eine 
Nützlichkeit, die sich allerdings nicht auf faktische Aussagen be-
zieht. 
Kontingenz: 
Unter Kontingenz verstehen wir hier eine Aussagenverknüpfung, 
die wahr oder falsch sein kann. Beispiel: „Wenn es Mittwoch ist, 
dann ist die Bäckerei geschlossen". 

(3) M -> G 

Die Wahrheitstafel würde eine Mischung zwischen „1" und „0" 
zeigen, nämlich in der zweiten Zeile eine „0", in allen übrigen eine 
„1". Da unter den vier Zeilen aus logischen Gründen keine einen 
Vorzug besitzt, so haben wir es mit einer logisch indeterminierten 
Form zu tun. Ob heute Mittwoch ist oder ein anderer Wochentag, 
ob die Bäckerei offen oder geschlossen ist, diese beiden Fragen 
können nicht mit logischen Mitteln entschieden werden. Die vor-
gängige Bestimmung des Wahrheitswertes der Einzelaussagen ist 
jedoch Voraussetzung für die Beurteilung der Gesamtwahrheit 
von Beispiel (3). Darin zeigt sich der Unterschied zu den Tautolo-
gien, die zum vornherein wahr, und der Kontradiktionen, die zum 
vornherein falsch sind, welchen Wahrheitswert auch immer die 
einzelnen Aussagen tatsächlich annehmen mögen. 

Kontingente Aussagen sind logisch nicht eindeutig festgelegt und 
nur aufgrund weiterer empirischer Informationen entscheidbar. 
Ihr Wahrheitsgehalt kann nicht durch die Logik allein bestimmt 
werden. 

Wenn in der Philosophiegeschichte von Kontingenz gesprochen 
wird, so ist darunter etwas anderes zu verstehen. Auf diesen Kon-
tingenzbegriff werden wir in anderem Zusammenhang noch zu 
sprechen kommen. 
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Übung 2.5.1 

1) Der kleine Prinz 

„Der kleine Prinz blieb stehen, und da er müde war, gähnte er. ,Es 
verstößt gegen die Etikette in Gegenwart eines Königs zu gähnen', 
sagt der Monarch. ,Ich verbiete es dir'. ,Ich kann es nicht unter-
drücken', antwortete der kleine Prinz ganz verwirrt. ,Ich habe eine 
weite Reise gemacht und habe nicht geschlafen'. ,Dann', sagte der 
König,,befehle ich dir zu gähnen. Ich habe seit Jahren niemanden 
gähnen sehen, das Gähnen ist für mich eine Seltenheit. Los! Gähne 
noch einmal! Es ist ein Befehl'. ,Das ängstigt mich, ich kann nicht 
mehr', stammelte der kleine Prinz und errötete. ,Hm, hm!' ant-
wortete der König. ,Also dann befehle ich dir, bald zu gähnen und 
bald . . . ' Denn der König hielt in hohem Maße darauf, daß man 
seine Autorität respektiere. Er duldete keinen Ungehorsam. Er 
war ein absoluter Monarch. Aber da er sehr gütig war, gab er 
vernünftige Befehle." A. de Saint-Exupéry, Der kleine Prinz 
(München 1978) 3, 521. 

Weisen Sie nach, daß sich der kleine Prinz strikte an den Befehl des 
Königs hält. Warum? 

2) „Sätze, in denen das ,x' vorkommt, gelten als Leerformeln. So 
jedenfalls in einem Wittgensteinischen oder in einem an ein sol-
ches sich anlehnenden Sprachspiel". H. Ogiermann, Metaphysik 
der Zukunft. Festschr. J . B . Lötz. (Hg.) de Vries (J.)/Brugger (W.) 
(Frankfurt a .M. 1973) 74. 

Wie beurteilen Sie diese Behauptung (ohne bei Wittgenstein 
nachzusehen)? 

3) „Das Sein ist nicht unmittelbar in sich widersprüchlich, es 
begründet jedoch die Möglichkeit des Widerspruchs, die jederzeit 
eintreten kann. Der Widerspruch selbst ist indessen ausgeschlos-
sen." P.-C. Courtès, Teilhabe und Kontingenz bei Thomas von 
Aquin. (Hg.) K. Bernath, Thomas von Aquin. Philosophische Fra-
gen (Darmstadt 1981) 2, 275. 

1. Was ist von der Möglichkeit eines Widerspruchs zu halten, die 
jederzeit eintreten kann, während der Widerspruch ausge-
schlossen ist? 



82 2. Die Aussagenlogik 

2. Wie kann der Autor sein Anliegen verständlich formulieren? 

4) „(1) Eine ,Leerformel' von der Form: ,X ist entweder A oder 
nicht A' enthält nämlich immerhin insofern eine ,Information', 
das heißt, eine bestimmte Aussage über etwas, als in einem sol-
chen Satz zumindest die mögliche Verwirklichung zweier Fälle, 
nämlich ,A' und ,nicht A', vorausgesetzt wird. (2) Ein solcher Satz 
wäre also zumindest insofern keine Leerformel, als er sowohl das 
Bestehen als auch das Nichtbestehen eines Sachverhalts einkalku-
liert. (3) Formallogisch kann zwar der Satz: ,X ist A oder nicht A' 
niemals falsch sein, weil er immer dann wahr ist, wenn eins von 
beiden wahr ist. (4) Empirisch dagegen kann ein Satz gerade da-
durch falsch werden, daß er zwei Möglichkeiten unterstellt, von 
denen empirisch nur eine gegeben ist. (5) So ist der Satz: ,Der Papst 
ist entweder katholisch oder er ist nicht katholisch' formal nicht 
zu beanstanden, empirisch aber falsch, da der Papst nur katho-
lisch sein kann . . . (6) Ein Satz, der in seinem ,oder'-Teil eine 
andere Möglichkeit auch nur in Betracht zieht, müßte also inso-
fern als falsch bezeichnet werden, als diese Möglichkeit im vorlie-
genden Fall tatsächlich nicht gegeben ist. (7) An unseren Beispie-
len läßt sich nun sehr schön zeigen, wie fragwürdig es ist, Sätze 
von der Form: ,X ist A oder nicht A' als ,Leerformeln' zu disquali-
fizieren." H. Seiffert, Einführung in die Wissenschaftstheorie 
(München 51972) 1, 229-230. 

Beurteilen Sie jeden einzelnen Satz ganz genau. 

2.5.2 Die teilweisen Wahrheitstafeln 

Bei der Auswertung von 2 Variablen bekommen wir in der Wahr-
heitstafel 4 Zeilen, mit 3 Variablen bereits 8 Zeilen. Sollten wir es 
gar mit 5 Variablen zu tun haben, dann wird es mühsam, die 
Wahrheitstafel mit den 32 Zeilen auszufüllen. Eine solche Wahr-
heitstafel gibt uns eine totale Übersicht über alle Wahrheitswerte. 
Oft sind wir jedoch gar nicht an solcher Vollständigkeit interes-
siert; statt dessen möchten wir manchmal mit geringem Aufwand 
herausbekommen, ob eine Satzverknüpfung tautologisch ist. Das 
kann indirekt nachgewiesen werden. In der Praxis erleichtern 
Teilweise-Wahrheitstafeln die Auswertung. 
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Von einer tautologischen Formel weiß man, daß sie immer wahr 
ist. Nun gehen wir von der Annahme aus, die zu prüfende Formel 
sei falsch. Das wird angedeutet, indem unter den Hauptfunktor 
provisorisch der Wahrheitswert „ 0 " gesetzt wird. Wenn sich aus 
den Folgerungen ein Widerspruch ergibt, so ist das ein Beweis 
dafür, daß die Annahme nicht berechtigt war und es sich tatsäch-
lich um eine tautologische Formel handelt. Entsteht jedoch kein 
Widerspruch, so wird dadurch die falsche Annahme bestätigt und 
es handelt sich nicht um eine Tautologie. 

Beispiel: 

P P 
Wir nehmen an, die Äquivalenz sei falsch. Daher setzen wir unter 
das Äquivalenzzeichen eine „0" . Nun gibt es zwei Möglichkeiten: 

a) ,p' sei wahr. Dann wird unter ,p' eine 1 gesetzt. Das zweite ,p' 
ist eine Einsetzung oder eine Wiederholung der gleichen Variable, 
muß also ebenfalls mit „ 1 " unterstellt werden. Die Äquivalenz 
zweier wahrer Aussagen ist jedoch wahr, so daß sich die ursprüng-
liche Annahme „ 0 " als falsch erwiesen hat. 

b) ,p' sei falsch. Dann belegen wir die Variable ,p' mit „0" . Für 
das zweite ,p' muß ebenfalls eine 0 gesetzt werden. Die Äquivalenz 
zweier falscher Aussagen ist aber wahr, so daß wir wiederum 1 
bekommen und sich die Annahme als falsch herausgestellt hat. 
Infolge der gescheiterten Widerlegung hat sich das Beispiel als 
wahr erwiesen. 

Die Widerlegung der falschen Annahme ist auf zwei Arten durch-
geführt worden. Zur Überprüfung genügt eine der beiden Kon-
trollen a) oder b). Hier sollte nur gezeigt werden, daß ein zufälliges 
Herausgreifen eines Wahrheitswertes die Prüfung nicht beein-
flußt. 
Weiteres Beispiel: 

(P v q) ->•-! (p A q) 
1 0 0 

1 
1 1 

0 
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Aufgrund der Annahme, die Aussage sei falsch, setzen wir eine 0 
unter die Implikation, unter den Hauptfunktor. Eine Implikation 
ist nur falsch, wenn der Vordersatz wahr und der Nachsatz falsch 
ist. Deshalb setzen wir unter den Hauptfunktor des Vordersatzes 
eine 1, unter den Nachsatz eine 0. Beim Vordersatz hätten wir nun 
drei verschiedene Fälle zu überprüfen. Daher wenden wir uns dem 
einfacheren Nachsatz zu. Wenn i (p A q)' falsch ist, dann muß 
die Bejahung, also ,(p A q)' wahr sein. Eine Konjunktion ist nur 
wahr, wenn alle Argumente wahr sind. Folglich sind ,p' und ,q' 
wahr. Dann ist aber die Verneinung dieser Konjunktion, also 
, i (p a q)' falsch, was mit der ursprünglichen Annahme überein-
stimmt. Es ist also nicht gelungen, die Annahme von der Falsch-
heit zu widerlegen. Deshalb ist das Beispiel tatsächlich falsch. 

Wenn uns der Wahrheitswert der Aussagen bekannt ist, dann kön-
nen wir auch den umgekehrten Weg wählen. 

Beispiel: 
Wilhelm Teil war ein Schweizer T 
Winston Churchill war ein Franzose C 

Falls Teil ein Schweizer oder Churchill ein Franzose, jedoch Teil 
kein Schweizer war, dann gilt, daß wenn Churchill ein Franzose 
war, Teil ein Schweizer war. 

Übung 2.5.2 

1) Prüfen Sie die Wahrheit der folgenden Aussagen Verknüp-
fung mit Hilfe von teilweisen Wahrheitstafeln 
1. (p V p) —> (p A p) 
2. (p -» q) ( - 1 p v q) 

( ( T v C ) a - I T ) (C - > T ) 
1 0 0 1 0 Í 

1 
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3 . - l (p A q) ( - 1 p v - 1 q) 

4. (p q) [(r A p) —> (q A r)] 
•5. [p —• { i q —»• r)] C(P a r) q] 
6 . [ p ( - 1 q v p ) ] - > (q A - 1 p) 
7. (p v q) -»• (p A q) v (p A - I r) 
8. [ ( p V q) —> r ] —» [ ( p - r ) A (q - » r ) ] 

2) Wenn Urs und Gabriela in der Schule sind, dann spielt Hei-
di auf der Flöte, und wenn Othmar auf dem Cembalo spielt, 
dann ist Gabriela nicht in der Schule, und wenn Franz auf 
Besuch kommt, dann hört Heidi mit der Flöte auf zu spie-
len, und wenn alles dies zutrifft, dann spielt Othmar auf 
dem Cembalo, vorausgesetzt, daß Urs in der Schule ist und 
Franz auf Besuch kommt. (Ockham, 14. Jahrhundert. Vgl. 
J . Salamucha, Die Aussagenlogik bei Wilhelm Ockham. 
Franziskan. Studien 32 (1950) 116.) 
Prüfen Sie 2) mit einer teilweisen Wahrheitstafel. 

3) Geben Sie für die folgenden Aussagen an, ob sie wahr oder 
falsch sind. 
1. Jede Disjunktion, bei der ein Argument eine Tautologie 

ist, ist tautologisch. 
2. Jede Disjunktion, bei der ein Argument eine Kontradik-

tion ist, ist als ganze kontradiktorisch. 
3. Jede Konjunktion mit einer Tautologie ist eine Tautolo-

gie. 
4. Jede Konjunktion mit einer Kontradiktion ist eine Kon-

tradiktion. 
5. Jede Implikation, deren Vordersatz eine Tautologie ist, 

ist eine Tautologie. 
6. Jede Implikation, deren Vordersatz eine Kontradiktion 

ist, ist eine Kontradiktion. 
7. Jede Implikation, deren Nachsatz eine Tautologie ist, ist 

eine Tautologie. 
8. Jede Implikation, deren Nachsatz eine Kontradiktion ist, 

ist eine Kontradiktion. 
9. Die Negation einer Kontradiktion ist eine Tautologie. 

10. Die Negation einer Tautologie ist eine Kontradiktion. 
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11. Jede Implikation, deren Vordersatz kontingent ist, ist 
kontingent. 

12. Jede Implikation, deren Nachsatz kontingent ist, ist kon-
tingent. 

2.5.3 Zwischenergebnis 

Der verständnisvolle Umgang mit den Wahrheitstafeln verschafft 
uns mindestens drei wertvolle Einsichten: 

— Die Aussagenlogik besitzt ein Entscheidungsverfahren. Darun-
ter verstehen wir ein mechanisches Vorgehen, bei dessen Anwen-
dung jede Aussagenverknüpfung nach einer endlichen Anzahl von 
Schritten auf ihre Gültigkeit hin eindeutig geprüft werden kann. 
Wahrheit oder Falschheit kann aufgrund einer allgemein aner-
kannten und überprüfbaren Methode nachgewiesen werden, es 
bleibt nicht mehr der Einsicht des einzelnen überlassen. Dieses 
rechnungsähnliche Prüfverfahren, ja schon der ganze Aufbau, hat 
dazu geführt, von einem Kalkül zu reden. 

— Bei Aussagenverknüpfungen kommt dem Spielraum große Be-
deutung zu. Liegt der totale Spielraum vor wie bei der Tautologie, 
dann haben wir eine informationsleere Verknüpfung vor uns. Der 
leere Spielraum ist gleichbedeutend mit einem Widerspruch. Aus 
der Gegenüberstellung ergibt sich, daß jene Behauptungen aussa-
gekräftiger sind, die den eingeschränkteren Spielraum haben. Des-
halb ist der Informationsgehalt einer Konjunktion wertvoller als 
derjenige einer Disjunktion. 

— Logische Gesetze sind Tautologien oder allgemeingültige 
Strukturgesetze. Wissenschaftler neigen manchmal dazu, sie und 
die Folgerungen aus ihnen für notwendig zu halten. Das kann 
durchaus richtig verstanden werden. Nur bleibt zu beachten, daß 
es noch einen strengeren Notwendigkeitsbegriff gibt; er steht kor-
relativ zur Allgemeingültigkeit, die hier nicht absolut behauptet 
wird. Die Allgemeingültigkeit der Aussagenlogik bezieht sich auf 
den Rahmen, in dem die Definitionen aufgestellt wurden. Die Ab-
klärung der Frage, wie weit Tautologien Denk- oder gar Seinsge-
setze ausdrücken, gehört in den Bereich der Erkenntnistheorie, 
wozu hier nicht Stellung genommen wird. 
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2.6 Die Deduktion 

„Eine einzelne Aussage ist wahr, wenn sie mit der Wirklichkeit 
übereinstimmt". Solche Aussagen sind Beschreibungen. Wenn wir 
argumentieren, dann ist vieles an unserer Rede nicht beschrei-
bend, sondern gefolgert. Eine gültige Folgerung setzt jedoch vor-
aus, daß die logischen Strukturen respektiert werden. Mit Hilfe 
von Wahrheitstafeln können wir diese Bedingung zwar nachprü-
fen. Doch bleibt weiterhin offen, welche Regeln wahrheitskonser-
vierend sind, d. h. welche Regeln zu Schlüssen führen ohne den in 
den Prämissen enthaltenen Wahrheitswert zu ändern. 

Die Regeln dienen dazu, aus unseren Behauptungen weitere wahre 
Behauptungen abzuleiten. Grundsätzlich kommt man mit sehr 
wenigen Regeln aus. Eine größere Anzahl erlaubt indessen kürzere 
Ableitungen. Da insbesondere dem Anfänger kürzere Ableitungen 
durchsichtiger erscheinen, wollen wir uns den Umgang mit ver-
hältnismäßig vielen Regeln aneignen. Wir verzichten also auf 
Sparsamkeit zugunsten einer verständlicheren Darstellung. 

Unsere zwanzig Regeln unterteilen wir in zwei Gruppen: Schluß-
und Äquivalenzregeln. Dazu sei noch bemerkt, daß die Kinder in 
den frühesten Jahren die meisten der hier besprochenen Regeln 
zusammen mit der Sprache erlernen. 

Bei der Darstellung der Regeln wählen wir einen einheitlichen 
Ablauf. Zuerst wird die Regel in ihrer allgemeinen Formulierung 
vorgelegt. Daran schließen sich soweit nötig Bemerkungen an, 
gefolgt von einer unterschiedlichen Anzahl von Beispielen. 
Schließlich kann der Leser an den Übungen sein Verständnis der 
Regeln nachprüfen. 

Schlußregeln 

1. Modus ponens (MP) 

p q 
P 

q 
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Oberhalb des Striches stehen die Prämissen, unterhalb alles, was 
gefolgert werden darf. Wir haben es demnach beim Modus ponens 
mit zwei Prämissen zu tun, aus denen eine einzige Folgerung abzu-
leiten ist. In Worten können wir die Regel so ausdrücken: Wenn 
eine Implikation gegeben ist und zugleich ihr Vordersatz, dann 
dürfen wir auf ihren Nachsatz schließen. Es handelt sich um 
Schlüsse der folgenden Art: 

1. Wenn Kurt Bundesrat ist, dann wohnt er in Bern 
2. Kurt ist Bundesrat 
3. Also wohnt er in Bern 

Dieser Schluß kommt uns natürlich vor. Der Eindruck der Selbst-
verständlichkeit rührt daher, weil eine Regel verwendet wird, mit 
deren Allgemeingültigkeit wir längst vertraut sind, nämlich die 
Abtrennungsregel oder Regel des Modus ponens. 

Zur Überprüfung einer Deduktion wählen wir eine einheitliche 
Schreibweise. Wir beginnen mit der Formalisierung der Prämis-
sen. Für das genannte Beispiel erhalten wir: 

Nachdem alle Prämissen aufgezählt sind, wird rechts von der letz-
ten Prämisse das gesuchte Resultat in / hingesetzt. Bei unse-
rem Beispiel ist es ,B'. Das sieht dann so aus: 

Die weiteren Schritte werden fortlaufend numeriert. Auf der rech-
ten Seite zeigen die Zahlen und Regelabkürzungen an, aus wel-
chen Zeilen und mit welchen Regeln die betreffende Behauptung 
erarbeitet wurde. Dann sieht unser Beispiel, vollständig formali-
siert, so aus: 

1. A -> 
2. A 

B 

1. A -> B 
2. A / B 

1. A B 
2. A /.-• B 
3. B 1, 2, MP 

,MP" bedeutet, daß mit der Regel Modus ponens geschlossen 
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wurde und zwar unter Verwendung der ersten und zweiten Prä-
misse. Nachdem uns diese Regel tatsächlich zum gesuchten ,B' 
geführt hat, setzen wir davor noch drei Punkte, so: Sie bedeuten: 
Quod erat demonstandum = was zu beweisen war. 

Weitere Beispiele: 

1. Wenn es nicht regnet, dann besuche ich die Tante 
2. Es regnet nicht 
3. Also besuche ich die Tante 

Formal: 

1 . - i R T 
2 . - i R /.-.T 
3. T 1,2, MP 

Aus diesem Beispiel ersehen wir, daß es unerheblich ist für die 
Anwendung des Modus ponens, ob der Vordersatz bejaht oder 
verneint ist. Die Regel darf immer dann angewandt werden, wenn 
die zusätzliche Prämisse genau dem Vordersatz entspricht. Des-
halb gilt auch: 

1. Wenn es Samstag oder Sonntag ist, dann geht Gisela ins 
Konzert 

2. Es ist Samstag oder Sonntag 
3. Also geht sie ins Konzert. 

1. (S v T) K 
2. S v T /•-. K 
3. K 1,2 , MP 

Falsch wäre jedoch die folgende Ableitung: 

1. (A B) C 
2. A / B^ 
3. B 

Mit der einzigen Zusatzprämisse ,A' darf aus der Implikation in 1. 
nichts abgeleitet werden. 

Übung 2.6.1 

1) 1. Wenn das Baby schläft, dann ist es friedlich 
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2. Das Baby schläft 
3. Also ist es friedlich 

2) 1. Wenn der Käse Löcher hat, dann ist es Emmentaler 
2. Der Käse ist Emmentaler 
3. Also hat er Löcher 

3) 1. ((p A q) v r) —» (f v s) 
2. (p A q) v r / 

4) Wie ist die Redeweise logisch zu erklären: „Wer A sagt, 
muß B sagen"? 

2. Modus tollens (MT) 

p -»• q 

Die Regel des Modus tollens kommt zur Anwendung, wenn außer 
der Implikation als Zusatzprämisse die Verneinung des Nachsat-
zes vorliegt. Dann darf auf die Verneinung des Vordersatzes ge-
schlossen werden. 

1. Wenn Markus den Zug verpaßt hat, dann ist er in Berlin geblie-
ben 

2. Er ist nicht in Berlin geblieben 
3. Also hat er den Zug nicht verpaßt 

1. V -> B 
2. - i B /.-• - i V 
3. - i V 1, 2, M T 

Der Anfänger unterläßt es oft aus Unachtsamkeit, den mit Hilfe 
des Modus tollens erschlossenen Vordersatz zu verneinen, insbe-
sondere dann, wenn er in der Implikation schon verneint ist. 

Beispiel: 
1. Wenn es nicht kalt ist, dann trägt Silvia keinen Pelz. 
2. Nun trägt sie einen Pelz. 
3. Also ist es kalt. 
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1. - l K - > - l P 
2. P /.-. K 
3. - i - i K 1, 2, M T 

Wie wir schon bei der Auswertung der Wahrheitstafeln gesehen 
haben, so hebt sich auch hier die doppelte Negation auf. Das ist so 
selbstverständlich, daß man beim inhaltlichen Überlegen des Bei-
spiels die doppelte Negation meistens unterdrückt. Wir wollen 
uns allgemein merken: eine gerade Anzahl von Negationen hebt 
sich auf. 

Übung 2.6.2 

1) Wenn Gabriela weiter spielt, dann kommt sie zu spät. Ga-
briela kommt nicht zu spät. Also spielt sie nicht weiter. 

2) Wenn es schneit, dann reisen die Touristen nicht ins Enga-
din. Die Touristen reisen ins Engadin. Also? 

3) 1. (p v q) —> I (r A i s) 

2. r A —1 s / 

4) Wenn Protagoras gegen die Götter geschrieben hat, dann 
wurde er gemäß dem Strafgesetz zu Recht verurteilt. Wenn 
er nicht gegen die Götter geschrieben hat, dann ist seine 
Einleitung neu zu überdenken. Er ist nicht zu Recht verur-
teilt worden. Also ist seine Einleitung neu zu überdenken. 

Aufgrund der beiden Regeln Modus ponens und Modus tollens 
ergibt sich bereits eine bedeutsame Einsicht: Aus einer Implika-
tion darf nichts geschlossen werden. Um zu einem gültigen Schluß 
zu kommen, ist eine Zusatzprämisse unerläßlich. Sofern diese Zu-
satzprämisse identisch ist mit dem Vordersatz der Implikation, 
dann schließen wir mit dem Modus ponens; ist sie identisch mit 
der Negation des Nachsatzes — also nicht mit dem Nachsatz selber 
- so schließen wir auf die Negation des Vordersatzes. Die übrigen 
Schlüsse sind nicht gültig. 

1. Wenn der Bewerber sich nicht ausweist, bekommt er das Doku-
ment nicht. 
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2. Er weist sich aus. 
3. Also bekommt er das Dokument. 

1. - i A - > - | D 
2. A / D^ 
3. D ? 

Dieser Schluß ist falsch, weil die zweite Prämisse nicht identisch ist 
mit dem Vordersatz der Implikation. Noch weniger ist die 
2. Prämisse identisch mit der Verneinung des Nachsatzes. Deshalb 
darf auch nicht mit Modus tollens geschlossen werden. Modus 
ponens und Modus tollens - sowie ihre später zu behandelnden 
Umformungen — sind aber die beiden einzigen gültigen Regeln für 
eine Implikation. Da die Voraussetzung für keine der beiden gege-
ben ist, dürfen wir im vorliegenden Fall nicht schließen. Der Ver-
stoß gegen eine der beiden Regeln heißt Rückschluß oder Fallada 
consequentis. Es sind die am häufigsten anzutreffenden Logikfeh-
ler der elementaren Logik. 

Übung 2.6.2 

5) Wie muß im letzgenannten Beispiel die 2. Prämisse lauten, 
damit ein gültiger Schluß zustande kommt? 

Sind die folgenden Schlüsse korrekt, oder was folgt aus den Prä-
missen ? 

6) Wenn die Katze einen Hund sieht, dann macht sie einen 
Buckel. Sie macht einen Buckel. Also sieht sie einen Hund. 

7) Wenn Isabella Italienerin ist, dann ist sie Europäerin. Isa-
bella ist nicht Italienerin. Also ist sie nicht Europäerin. 

8) Wenn 2 • 2 nicht 4 ist, dann ist der Mond ein Würfel. Nun ist 
aber 2 - 2 = 4. Also? 

9) Wenn Pythagoras ein Amerikaner war, dann ist im recht-
winkligen Dreieck a 2 + b 2 = c 2 . Nun ist im rechtwinkligen 
Dreieck a 2 + b 2 = c 2 . Also? 

10) Wenn Thomas die Bibel für göttliche Offenbarung hält, 
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dann ist er nicht ungläubig. Thomas ist nicht ungläubig. 
Also hält er die Bibel für geoffenbart. 

11) „Der Philosoph, der tritt herein 
und beweiset Euch, es müßt so sein: 
Das Erst' wär so, das Zweite so, 
und drum das Dritt' und Vierte so. 
Und wenn das Erst' und Zweit' nicht wär, 
das Dritt' und Viert' wär nimmermehr." 

Goethe, Faust, Szene IV, Auftritt 2; 3 9 9 - 4 0 4 

3. Simplifikation (Simpl.) 

p A q A r 
P 

oder p A q A r 
q 

oder p A q A r 
r 

Aus einer Konjunktion darf ohne Zusatzprämisse geschlossen 
werden. Überdies dürfen alle Argumente einzeln behauptet wer-
den. 
Beispiele: 
1. Olbers war Arzt und Hobbyastronom 
2. Also war er Arzt 
Oder: 2a. Also war er Hobbyastronom 

1. A A H /.-• A 
2. A l a , Simpl. 
oder 
2 a. H l b , Simpl. 

1. Gespielt wird die Jupitersinfonie, die Unvollendete und Pacific 
231 
Also wird die Pacific 231 gespielt 

1. J A U A P /••• P 
2. P l c , Simpl. 

Innerhalb einer Deduktion dürfen alle zugelassenen Regeln belie-
big oft wiederholt werden. 

Beispiel: 
1. Wenn es Tag ist, dann gibt es Licht 
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2. Der Mond ist verschwunden und es ist Tag 
3. Also gibt es Licht 

1. T -> L 
2. V A T / L_ 

Um zielstrebig vorzugehen, empfiehlt es sich, gedanklich vom ge-
suchten Resultat auszugehen. Gesucht wird ,L'. Es kommt nur in 
der 1. Prämisse vor. Dort ist es allerdings mit einer Implikation 
verknüpft. Es ließe sich herausholen, wenn wir ,T ' hätten. In der 
Prämisse 2. ist ein ,T ' enthalten, das sich aufgrund der Simplifika-
tionsregel erschließen läßt. Bei Anwendung zweier Regeln erhal-
ten wir folgende Deduktion: 

1. T -> L 
2. V A T /.-• L 
3. T 2b, Simpl. 
4. L 3,1, MP 

Übung 2.6.3 

1) Wenn Gebhard zu einem Drink eingeladen wird, dann ist er 
lustig. Er faucht die Sekretärin an und ist nicht lustig. Also ? 

2) Wenn der Taxifahrer nicht arbeitet, dann geht er stempeln. 
Es ist Herbst, kalt, regnerisch und er arbeitet nicht. Also 
geht er stempeln. 

3) Wenn Churchill ein Franzose war, dann trank er Champag-
ner, aber wenn er ein Engländer war, dann trank er Whisky. 
Er war Engländer. Also trank er Whisky. 

4) Die Dachse bohren Höhlen, die Füchse wohnen darin und 
die Jäger machen sich auf die Jagd. Wenn die Dachse nicht 
ausgezogen sind, dann wohnen die Füchse nicht in der Höh-
le. Also sind die Dachse ausgezogen. 

5) Wenn ein Fahrgast den halben Preis bezahlt oder eine Er-
mäßigung bekommt, dann ist er Soldat, Student oder Rent-
ner. Nun ist der Fahrgast weder Soldat noch Student noch 
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Rentner. Also bezahlt er weder halbe Taxe noch bekommt 
er eine Ermäßigung. 

6) Wenn das nach dem ersten Weltkrieg ausgebrochene 
Kriegszittern nicht von den Nerven herrührte, dann war die 
Analyse von Oppenheimer richtig. Nonne ging psychothe-
rapeutisch vor und die Analyse von Oppenheimer bewährte 
sich nicht. Wenn das Kriegszittern von den Nerven ausging, 
dann konnte es nicht anatomisch behandelt werden. Folg-
lich konnte das Kriegszittern nicht anatomisch behandelt 
werden. 

4. Konjunktion (Konj.) 

P 
q 
p A q 

Die Konjunktionsregel erlaubt, Einzelaussagen durch Konjunk-
tionen zu verbinden. Es ist die inverse Regel zur Simplifikation. 

Beispiel: 
1. Olbers war Arzt 
2. Olbers war Hobbyastronom 
3. Also war er Arzt und Hobbyastronom 

1. A 
2. H /•-. A A H 
3. A A H 1, 2, Konj. 

Übung 2.6.4 

1) Es gibt Kastanien und Unterhaltung. Es gibt belegte Brote 
und das Nachtessen ist um sieben Uhr. Wenn das Nachtes-
sen um sieben ist und es Kastanien gibt, dann ist es Sauser-
abend. Also ist es Sauserabend und es gibt Unterhaltung. 

2) 1. - i t 
2. p A q 
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3. r A p 
4. (r A q) —* (s —• t) / p A ~ I s 

Geben Sie bei den folgenden Aufgaben die genauen Schritte und 
Regeln an: 

3) 1. p - q 
2. ((r v s) -*• z) A (—11 A u) 
3. (v v w) A (—11 A x) 
4. (v -* w) A p 
5. y -» t /..-. q A ~i y 
6 . p 
7. q 
8. t A u 
9. —11 

10. —i y 
11. q A - 1 y 

4) 1. (p q) -» r 
2. (s A t) -» u 
3. (v v w) A (t A —i r) A (—i x v y) 
4. —l z A s /. ' . u A —l (p -> q) 
5. t A —i r 
6. - i r 
7. - i (p -» q) 
8. s 
9. t 

10. s A t 
11. u 
12. u A ~1 (p q) 

5. Hypothetischer Syllogismus (HS) 

p -»• q q r 

P ->• r 

Der Hypothetische Syllogismus ist als Kettenschluß bekannt. In 
der einfachsten Form besteht er aus zwei Implikationen, deren 
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erster Nachsatz von der zweiten Prämisse als Vordersatz aufge-
nommen wird und dadurch die Verbindung herstellt. 

Beispiele: 
1. Wenn die Times eingeht, dann fehlt es an Informationen. 
2. Wenn die Löhne steigen, dann geht die Times ein. 
3. Also, wenn die Löhne steigen, fehlt es an Informationen. 

1. T -> I 
2. L -> T /••• L -> I 
3. L -> I 2,1, HS 

1. Wenn die Hypothekarzinse steigen, gehen die Mietpreise nicht 
zurück 

2. Wenn die Mietpreise nicht zurückgehen, dann sinkt der Le-
bensstandard 

3. Also wenn die Hypothekarzinse steigen, sinkt der Lebensstan-
dard. 

1 . H -> ~i M 
2. ~i M -> L /.-• H -> L 
3. H L 1,2, HS 

Übung 2.6.5 

1) Wenn es der Pfarrer eilig hat, dann geht er ziellos an die Pre-
digt heran. Wenn er ziellos an die Predigt herangeht, dann wird sie 
nicht kurz. Also wenn es der Pfarrer eilig hat, dann wird die Pre-
digt nicht kurz. 

2) Es ist nicht etwas Farbiges. Nur wenn es etwas Farbiges ist, ist 
es gelb. Wenn es eine Gelbmeise ist, dann ist es gelb. Also ist es 
nicht eine Gelbmeise. 

3) Wenn der Lord das Haus vergrößert, dann braucht er ein 
neues Zimmermädchen. Wenn er einen Fahrer einstellt, dann ver-
größert er das Haus. Wenn er einen Rolls Royce kauft, dann stellt 
er einen Fahrer ein. Also wenn er einen Rolls Royce kauft, braucht 
er ein neues Zimmermädchen. 

4) Wenn Hildegard an ihre Blumen und an den Hund denkt, 
4 Bucher, Logik 
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dann macht sie sich Sorgen. Sie hat am 2. August Geburtstag. 
Wenn sie Rosen bekommt, dann denkt sie an ihre Blumen und an 
den Hund. Wenn der 2. August einfällt, dann bekommt sie Rosen. 
Also macht sich Hildegard Sorgen. 

5) Wenn der Lehrling keine Lust hat an der Arbeit, dann wird er 
entlassen. Er sucht nicht nach einer neuen Stelle. Wenn er entlas-
sen wird, dann sucht er eine neue Stelle. Wenn es heiß ist, dann hat 
er keine Lust an der Arbeit. Also ist es nicht heiß. 

6) Wenn Meyer bei der Wahl anwesend ist, dann wird er Präsi-
dent. Er rechnet jeden Monat ab und bezahlt den Vereinsbeitrag 
pünktlich. Wenn er Mitglied ist, dann ist er bei der Wahl anwe-
send. Wenn er den Beitrag pünktlich bezahlt, dann ist er Mitglied. 
Also wird Meyer Präsident. 

7) Wo Glaube, da Liebe; wo Liebe, da Frieden; wo Frieden, da 
Segen; wo Segen, da Gott; wo Gott, keine Not. 

a) Was folgt daraus? 
b) Darf die Regel HS bei einer Wortkette eingesetzt wer-

den? 

8) 1. p - q 
2. r A s A t 
3. u -> p 
4. z 
5. t u / 

Hinweis: Wie schon bei der kurzen Ableitung in 2.6.3, so dürfen 
wir erst recht bei längeren Deduktionen die Konklusion nicht aus 
dem Auge verlieren. Gesucht wird ,q'. Es ist in der 1. Prämisse 
enthalten, jedoch durch eine Implikation mit ,p' verknüpft. Aus 
der 3. Prämisse könnte ,p' herausgeholt werden, vorausgesetzt, 
daß noch ,u' gegeben wäre. ,u' ist ferner in der 5. Prämisse vorhan-
den, aber auch wieder herauszuholen nur wenn ,t' gegeben ist. ,t' 
ist aus der zweiten Prämisse herauszuholen. Nun läßt sich der 
ganze Gedankengang rückwärts durchführen, indem man mit ,t' 
beginnt. 

9) 1. - 1 p -> (q r) 
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2. (q r) —> (r —» s) 
3. (q —> s) —• [t —> (s —• u ) ] 
4. t A i p / q - » u 

6. Disjunktiver Syllogismus (DS) 

p v q p v q 

~IP oder 

q p 

Wird durch eine Zusatzprämisse das eine Argument einer Dis-
junktion verneint, dann bleibt das andere übrig. 

1. Josef raucht Pfeife oder Zigarren 
2. Er raucht nicht Pfeife 
3. Also raucht er Zigarren 

1. Stephan studiert in Genf oder Luzern. 
2. Er studiert nicht in Luzern. 
3. Also studiert er in Genf. 

1. G v L 
2. - i L /.-• G 
3. G 2 , 1 , DS 

Übung 2.6.6 

1) Der Beweis ist sophistisch oder Achilles holt die Schildkröte 
ein. Wenn Achilles die Schildkröte einholt, dann versagt die Lo-
gik. Die Mathemat iker haben alles geprüft und die Logik versagt 
nicht. Also ist der Beweis sophistisch. 

2) Es regnet oder es regnet nicht. Nun regnet es. Folglich regnet 
es nicht. 

3) Pettenkofer lebte weiter oder seine Hypothese versagte. 

1. P v Z 
2 . - i P /.-. Z 
3. Z 2 , 1 , DS 

4» 
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Wenn die Hypothese versagte, dann wurde er in der Hygiene ab-
geschrieben. Er verschluckte öffentlich eine Kultur Cholerabazil-
len und wurde in der Hygiene nicht abgeschrieben. Also lebte 
Pettenkofer weiter. 

4) Der Fischer trinkt gerne Wein und der Müller singt im Män-
nerchor. Wenn der Metzger Hausbesitzer ist, dann wählt er nicht 
eine Linkspartei. Der Metzger ist Hausbesitzer oder der Müller 
singt nicht im Männerchor. Also trinkt der Fischer gern ein Glas 
Wein und der Metzger wählt nicht eine Linkspartei. 

5) Wenn Schopenhauer so früh aufstand wie Kant, dann hat er 
ihn in dieser Hinsicht gut nachgeahmt. Schopenhauer war einge-
bildet, liebte die Demokratie nicht und hatte Wutanfälle. In einem 
Wutausbruch warf er die Näherin die Stiege hinunter. Er stand so 
früh auf wie Kant oder war nicht eingebildet. Also hat er die 
Näherin die Stiege hinuntergeworfen und Kant im Frühaufstehen 
gut nachgeahmt. 

6) Dorothea bekommt ein Pferd oder ein Auto. Wenn sie ein 
Auto bekommt, fährt sie auf der Autobahn. Wenn sie ein Pferd 
erhält, dann reitet sie im Wald. Sie geht zu Fuß oder mit dem Zug, 
schwimmt und steigt auf die Berge, aber reitet nicht im Wald. Also 
fährt sie auf der Autobahn. 

7. Addition (Add.) 

P 
p v q 

Zu einer Aussage darf jede beliebige weitere Aussage durch Dis-
junktion hinzugefügt werden. Die Regel heißt allerdings nicht Dis-
junktions-, sondern Additionsregel. 

1. Hermann trinkt Bier 
2. Also trinkt Hermann Bier oder Wein 

1. B /••• B v W 
2. B v W 1, Add. 
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1. Der Mond ist rund 
2. Also ist der Mond rund oder die Tannen sind aus Holz. 

1. R /.-. R v T 
2. R v T 1, Add. 

1. Wenn Albert Trompete spielt oder Brigitte auf dem Klavier 
klimpert, dann ärgert sich Claudia. 

2. Albert spielt Trompete. 
3. Also ärgert sich Claudia 

1. (A v B) -» C 
2. A /.-. C 
3. A v B 2, Add. 
4. C 3 , 1 , MP 

1. Wenn Alfred und Bernhard ein Geschäft eröffnen, dann, wenn 
Cäsar auch dabei ist, wird es Konkurs und Verleumdung geben. 

2. Alfred, Bernhard und Cäsar eröffnen ein Geschäft. 
3. Also gibt es Konkurs oder Verleumdung. 

1. (A A B) -» [C -> (K A V)] 
2. A a B a C /.-. K v V 
3. A A B 2ab, Simpl. 
4. C —» (K A V) 3 , 1 , MP 
5. C 2c, Simpl. 
6. K a V 5 , 4 , MP 
7. K 6a, Simpl. 
8. K v V 7, Add. 

Übung 2.6.7 

1) l . ( n p v q ) - » r 
2. (s A r) —> t 
3. t -» u 
4. u A q a s / q v t 

2) 1. p -» q 
2. p v r 
3. r (r -> s) 
4. — i q / s v q 
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3) 1. p A q 
2. q -» (r A s) 
3. (r v s) -* (s «-» p) / s <-> p 

4) 1. —i p A q 1. —l p A q 
2. r -> s 
3. (q v r) (p t) 
4. s -»• p / s -> t 

8. Konstruktives Dilemma (KD) 

(p -» q) A (r -» s) 
p v r 

q v s 

In der Umgangssprache ist das Konstruktive Dilemma kaum ge-
bräuchlich. Deshalb wirken auch die Beispiele etwas gekünstelt. 
Immerhin ist diese Regel genau dann nützlich, wenn zwei Implika-
tionen vorliegen und dazu eine Disjunktion, die aus den Vorder-
sätzen der beiden Implikationen besteht. 

1. Wenn es regnet, dann wird die Straße naß, und wenn es kalt ist, 
dann heizen wir. 

2. Es regnet oder es ist kalt. 
3. Also ist die Straße naß oder wir heizen. 

1. Wenn der Vater früh kommt, macht Urs die Hausaufgaben 
rechtzeitig, und wenn die Mutter spät kommt, spielt Urs mit 
Gabriela. 

2. Urs spielt nicht mit Gabriela 
3. Der Vater kommt früh oder die Mutter spät 
4. Also macht Urs die Hausaufgaben rechtzeitig 

1. (R N) A (K H) 
2. R v K 
3. N v H 

/.-• N v H 
1,2, KD 

1. (V -> H) A (M S) 
2. —i S 
3. V v M 
4. H v S 
5. H 

/.-• H 
3,1, KD 
2, 4, DS 
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Übung 2.6.8 

1) Wenn Pia Überstunden macht, dann ist sie müde, und wenn 
sie in der Stadt wohnt, hat sie zu wenig Sonne. Sie macht Über-
stunden oder sie wohnt in der Stadt. Also ist sie müde oder hat zu 
wenig Sonne. 

2) Wenn Stephan portugiesisch spricht, dann geht er nach Brasi-
lien. Wenn er englisch spricht, dann geht er in die Wissenschaft. 
Wenn er türkisch spricht, dann macht er Kaffee. Er spricht eng-
lisch oder russisch. Wenn er russisch spricht, dann ist er als Politi-
ker verdächtig. Also geht er in die Wissenschaft oder ist als Politi-
ker verdächtig. 

3) Der Logiker ist frei in der Wahl der Regeln oder er benutzt die 
Simplifikation oder das Konstruktive Dilemma. Wenn er die Sim-
plifikation anwendet, dann ist er frei in der Wahl der Regeln, und 
wenn er das Konstruktive Dilemma benutzt, dann gelingt ihm die 
Lösung schneller. Wenn er frei in der Wahl der Regeln ist oder 
schneller zur richtigen Lösung kommt, dann ist er frei in der Wahl 
der Regeln oder er benutzt des Konstruktive Dilemma. Er ist nicht 
frei in der Wahl der Regeln. Also benutzt der klugerweise das 
Konstruktive Dilemma. 

4) 1. s t 
2. - 1 p A —1 r 
3. p v q v r v s 
4. (u v t) -> (p v q v r) 
5. q -» u / q 

9. Destruktives Dilemma (DD) 

(p -> q) A (r -> s) 
—1 q v ~ l s 

— i p v - 1 r 

Wer die Ähnlichkeit des Konstruktiven Dilemmas mit dem Modus 
ponens beachtet hat, dem wird auch die Analogie zwischen De-
struktivem Dilemma und Modus tollens nicht entgehen. 
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1. Wenn Johnny schwimmt, dann gibt es Wellen, und wenn er auf 
den Titlis steigt, dann bekommt er Muskelkater 

2. Es gibt nicht Wellen oder er bekommt nicht Muskelkater 
3. Also schwimmt Johnny nicht oder er steigt nicht auf den Titlis 

1. (S —> W) A (T —» M) 
2 . - i W V - I M /••• ~ i S v - i T 
3 . - i S v - i T 2 , 1 , DD 

1. Wenn es die Partei sagt, dann ist es richtig, und wenn es die 
Bank sagt, dann ist es teuer 

2. Es ist nicht richtig oder es ist nicht teuer 
3. Also sagt es nicht die Partei oder nicht die Bank 

1. (P R) A (B -» T) 
2. — i R v - i T /.-• ~i P y—iB 
3 . - i P v - i B 2 , 1 , DD 

Übung 2.6.9 

1) 1. —i—ip 
3. r s 
3. p -> q 
4. — i q v — i s 
5. (t A u) -> r / ~i (t A u) 

2) 1. (~ip v n r v t ) -> z 
2. r -» q 
3. —is 
4. p s /_z 

3) Zu Nr. 2) gibt es einen kürzeren Weg ohne die Regel DD. 
Wie verläuft er? 

4) 1. t - i r 
2. —i p 
3. (—i s v —11) -» (p v m) 
4. p v q v r 
5. s —I q / m 
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Äquivalenzregeln 

Die bisher erwähnten 9 Regeln können wir als Schlußregeln be-
zeichnen, weil sie Vorschriften für die Bedingungen sind, unter 
denen ein gültiger Schluß erreicht wird. Wir wollen noch 11 weite-
re Umformungs- oder Äquivalenzregeln beifügen. Sie dienen zur 
Vereinfachung von Ausdrücken, ohne ihren Wahrheitswert zu 
verändern. 

Eine Äquivalenzregel haben wir bisher öfters wenn auch uner-
laubterweise benutzt, nämlich die Regel der doppelten Negation. 
Unerlaubt war es deshalb, weil diese Regel als einzige nicht aus-
drücklich eingeführt wurde. Das soll hier nachgeholt werden. 

10. Doppelte Negation (DN) p <->-|—ip 

11. Kommutation (Komm.) ( p v q ) « ( q v p) 
( p A q ) « ( q A p) 

12. Assoziation (Ass.) [p v (q v r ) ] 
[p A (q A r ) ] 

[(P v q) v r ] 
<-• [(p A q) A r ] 

13. Idempotenz (Idemp.) ( p v p ) « p 
( P A P ) « P 

Übung 2.6.13 

1 . - i s 
2. (p q) A (q q) 
3. p v q v s 

14. Kontraposition (Kontr.) 

L ä 

(p - » q) (-1 q - 1 p) 

Übung 2.6.14 

1) Wenn das Alphorn ertönt, dann schlafen die Gäste nicht. 
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Wenn es ruhig ist, dann schlafen die Gäste. Also wenn das 
Alphorn ertönt, dann ist es nicht ruhig. 

i p v q v i r) - * 1 s 2) 1. 
2. —i p 
3. p [(t -» u) • 
4- h p v q ) - > [(u 

u ) ] 

(U 
V) 

V ) ] 
I w] 

15. Implikation (Impl.) ( p - » q ) « h p v q ) 

Übung 2.6.15 

1) 

2) 

3) 

4) 

1. p -
2. r V" 
3. p / r 

Gustav spielt Trompete oder Klavier. Er spielt Posaune 
oder nicht Klavier. Also spielt er Trompete oder Posaune. 

1. —I v -» (q - > ~ i x ) 
2. (t A u) - > n v 
3. p -> (q r) 
4. —l s V —l (q - > ~ i x ) 
5. (q r) s / i p v i (t A u) 

Entweder werden die Tarife gesenkt oder die Importe ge-
drosselt, oder unsere Käseindustrie blüht. Wenn die Tarife 
gesenkt werden, dann werden die Importe gedrosselt. Also 
blüht unsere Käseindustrie, oder die Importe werden ge-
drosselt. 

16. Distribution (Distr.) [p A (q v r)] 
[p v (q A r)] 

[ (p A q) v (p A r) ] 
[ (p v q) A (p v r)] 

Übung 2.6.16 

1) 1. p —> (q A r) 
2. r v (p A —i q) /_r 
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2) 1. (p v q) v (r A s) 
2. ( I p A s) A I ( i p A q) / ~ i p A r 

Die Distributionsregeln gelten auch für komplexere Ausdrücke, 
etwa: 

(p A q) v (r A s) <-> (p v r) A (p v s) A (q v r) A (q v s) 
(p v q) A (r v s) (p A r) v (p A s) v (q A r) v (q A s) 

17. Äquiva lenz (Äquiv. ) (P <-• q) * * [ ( p ~~* q) A (q —• p ) ] 
(P ** q) [ ( p A q) V ( - 1 p A - 1 q ) ] 

Übung 2.6.17 

1) 

2) 

Die Veilchen duften genau dann, wenn sie blühen. Nun 
duften sie nicht. Also blühen sie nicht. 

1. (r -» s) A (t v u) 
2. (-1 q -> r) - i p 
3. ( - 1 q -> s) -> (p v t) 
4. i p A is / q v u 

18. Exportation (Exp.) [(p A q ) - » r ] « [ p - > ( q - > r)] 

Übung 2.6.18 

1) Es ist nicht der Fall, daß die Amerikaner und Belgier ihr 
Geld aufwerten oder die Deutschen ruhig zusehen. Also 
wenn die Amerikaner ihr Geld aufwerten, dann werten es 
die Belgier nicht auf, oder die Deutschen sehen ruhig zu. 

19. Absorption (Abs.) P A (p v q) —» p 
p v ( p A q ) - » p 
P (P A q) (p q) 
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Übung 2.6.19 

1) 1. - i p v ( q A p ) 
2. —1 q v ~i r 
3. —i (p A q) r / (p A q) v (—I p A ~i q) 

20. De Morgan (De M) l ( p A q ) « (-1 p v q) 
- l (p v q) <-> (-1 p A - l q) 

Die De Morganschen Gesetze sind besonders wichtig, weil es für 
sie kein Ausweichen auf andere Regeln gibt. Sicherheit im Um-
gang mit ihnen soll freilich nicht durch Auswendiglernen erwor-
ben werden, man muß verstehen, wie diese Gesetze umgeformt 
werden. Dazu empfiehlt sich die Schreibweise von Hilbert, bei der 
die Negation als Balken über den zu negierenden Ausdruck ge-
stellt wird. 

Beispiele: 
Scholz Hilbert 
- i p p 
n p v q p v q 
-1 (p A q) p A q 
- l (p q) p q 

Zur Anwendung kommen die De Morganschen Gesetze, wenn 
ganze Klammerausdrücke negiert sind, also etwa bei, I (p A q)', 
was in der Schreibweise von Hilbert so lautet: ,p A q ' .Der Balken 
über dem Ausdruck wird folgendermaßen aufgelöst: 

1. In der Mitte wird er „durchschnitten". 
2. Die Konjunktion (bzw. Disjunktion) wird „umgestürzt", so 

daß die Konjunktion zur Disjunktion, bzw. die Disjunktion zur 
Konjunktion wird. 

p T q p T q 
p V q p A q 

Es bleibt nur noch, das Resultat wieder in die bekannte Schreib-
weise umzusetzen. Der Ablauf der Schritte läßt sich so zusammen-
stellen: 
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1. —I (p A q) Dual 1. —i (p v q) 
l a . p A q la . p v q 
l b . p v q l b . p A q 

2 . ~ i p v ~ i q 2. n p A n q 

Selbstverständlich lassen sich die De Morganschen Regeln auch 
bei verneinten Implikationen und Äquivalenzen einsetzen, nur 
müssen diese zuerst umgeformt werden in Disjunktionen bzw. 
Konjunktionen. 

l . - l ( p -> q) 

3. p A" 

2. —I 1 p v q ) Impl. 
2a. p v q 
2b. P A q 
2c. i I p A i q 

Übung 2.6.20 

1) Es trifft nicht zu, daß eine Schnecke sich nicht zusammenrol-
len und nicht schwimmen kann. Es stimmt zwar, daß sie nicht 
schwimmen kann. Also kann sie sich zusammenrollen. 

2) Wenn der Abgeordnete die Stimmen der Bauern erhält, dann 
gewinnt er die Landgegend, und wenn er die Stimmen der Arbeiter 
hat, dann gewinnt er die Stadt. Wenn er beide, sowohl Stadt und 
Land auf seiner Seite hat, dann wird er sicher gewählt. Er wird 
nicht sicher gewählt. Also fehlen ihm die Stimmen der Arbeiter, 
wenn er jene der Bauern gewinnt. 

21. Überflüssige Regeln 

Mit der Aufzählung der 20 Regeln sind wird weit über das hinaus-
gegangen, was unbedingt notwendig ist. Man könnte ohne sachli-
che Einschränkung mit einer weit geringeren Anzahl an Regeln 
auskommen. Die Kenntnis vieler Regeln erlaubt uns jedoch kürze-
re Deduktionen und besseres Nachzeichnen unserer intuitiven Ar-
gumentationen. An drei Beispielen soll gezeigt werden, wie 
Schluß- und Äquivalenzregeln untereinander austauschbar sind. 
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Beispiel 1 Ersetzen der Regel DS 
1. p v q 
2. —i p /.•• q 

Mit der Regel DS können wir aus den beiden Prämissen unmittel-
bar auf ,q' schließen. Wir können diese Regel jedoch auch so um-
gehen: 

3. ~"i p -»• q 1, Impl. 
4. q 2, 3, MP 

Beispiel 2 Ersetzen der Regel M T 
1- P - » q 
2. —i q /.-. ~i p 

Es empfiehlt sich ebenfalls, aus den beiden Prämissen direkt mit 
M T zu schließen. Derselbe Schluß läßt sich aber auch mittels an-
derer Regeln erreichen, etwa so: 

3. —I q —»• —i p 1, Kontr. 
4. - i p 2, 3, MP 

Beispiel 3 Ableitung der Exportation 
1. (p A q) -»• r 
2. ~1 (p A q) v r 1, Impl. 
3. (—i p v ~i q) v r 2, De M. 
4. —I p v (—i q v r) 3, Ass. 
5. p -» ( " l q v r ) 4, Impl. 
6. p -> (q -»• r) 5, Impl. 

Wir haben die Exportation abgeleitet; sie müßte folglich nicht 
notwendig als Regel vorgelegt werden. Diese gegenseitige Aus-
tauschbarkeit bei sachlicher Übereinstimmung erlaubt den Logi-
kern, in der Anzahl der zu verwendenden Regeln voneinander 
abzuweichen. 

Übung 2.6.21 Wiederholung aller Regeln 

1) Wenn die Olympiade in Davos oder in Zermatt ausgetragen 
wird, dann freuen sich die Schweizer und der Wirteverband. Der 
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Wirteverband freut sich nicht. Also wird die Olympiade nicht in 
Zermatt ausgetragen. 

2) —i (p <-> q) Lösen Sie die verneinten Klammerausdrücke 
auf. 

3) Wenn ich arbeite, dann komme ich zu Geld, aber wenn ich 
faul bin, dann habe ich es gemütlich. Entweder arbeite ich oder bin 
faul. Aber wenn ich arbeite, dann habe ich es nicht gemütlich, und 
wenn ich faul bin, dann komme ich nicht zu Geld. Deshalb habe 
ich es genau dann gemütlich, wenn ich nicht zu Geld komme. 

4) Wenn der Nordwind abflaut und der Föhn einsetzt, dann 
haben wir Sturm. Der Nordwind flaut ab und wir ziehen die Segel 
ein. Es ist nicht der Fall, daß bei Föhn das Deck trocken bleibt. 
Wenn wir Sturm haben, dann trifft es nicht zu, daß wir uns über 
die Warnung hinwegsetzen oder die Segel nicht einziehen. Also 
setzt der Föhn ein und wir beachten die Warnung. 

5) Der Onkel Walter steigt auf das Matterhorn, die Rigi oder 
den Pilatus. Genau dann, wenn er den Calanda bezwingt, steigt er 
auf die Bernina. Wenn er auf das Matterhorn klettert, dann steigt 
er auf den Pilatus. Nur wenn er auf den Pilatus oder die Rigi geht, 
bezwingt er den Pilatus oder den Eiger. Er steigt nicht auf den 
Pilatus. Wenn er auf die Rigi geht, dann geht er auf den Calanda. 
Also steigt er auf die Bernina. 

6) Franz liest Goethe und Schiller oder Marcel und Camus. Er 
liest nicht Goethe. Also liest er Camus. 

7) 1. (p v q) - r 
2. s t 
3. q A - 1 1 
4. p v s 
5. —I (v - > n w ) /.•• r A w 
6. q 
7. q v p 
8. p v q 
9. r 

10. v v w 
11. v A w 
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12. w 
13. r A w 

8) 1. p - (q - - 1 p) 
2. p <-» q /.-. - 1 p A — I q 
3. - 1 p V (—I q V - 1 p) 
4 . ( i q V i p) V i p 
5. — i q V (—i p V - 1 p) 
6. — I q V - 1 p 
7 . ~ i p v n q 
8. (p A q) V ( - 1 p A - 1 q) 
9. - I (p A q) 

9) 1. s —• i s 
2 . p - > (q s) 
3 . (t - » p) A (u - * q) /.•. t - > ~ i u 
4. - 1 s V —i s 
5 . i s 
6. (p A q) - » s 
7 . " i (p A q) 
8 . - 1 p V - 1 q 
9. - 1 1 V - 1 u 

10. t -> —i u 

10) 1. ( ~ i p - > - i q ) A (r - » s) 
2 . t (u v) 
3 . ( i w —> i s) A (x —> q) 
4. (—i y A —11) - * h p v n w ) 
5. - I (u v) 
6. - 1 y v (u - * v) /.•. x - » ~ i r 
7 . x - » q 
8. - 1 p —i q 
9. q ^ p 

10. i (u —> v) —» i t 
1 1 . - i t 
12. u A - I v 
13. I y v ( I u v v) 
1 4 . - i y 
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15. I y A 11 
16. — i p v — i w 
17. p - » n w 
18. - 1 w - » " i s 
19. r -» s 
20. — I s -» —1 r 
21. x -» —i r 

11) Ein Text aus 1 Korinther 15, 12-20. 

Gibt es aber keine Auferstehung der Toten, so ist auch Christus 
nicht auferweckt worden (V13). Ist Christus nicht auferweckt 
worden, so ist unsere Predigt leer, und auch der Glaube ist leer 
(V14). 

a) Was läßt sich aus diesen beiden Prämissen ableiten? 
Fügen wir die folgende Prämisse hinzu: 
Nun ist aber Christus auferweckt worden (V20) 

b) Was folgt jetzt 
ba) hinsichtlich der Auferstehung der Toten? 
bb) über die Leere des Glaubens? 

c) Behauptet Paulus: Es gibt keine Auferstehung der Toten? 

d) Ist die Auferstehung der Toten Voraussetzung für die Aufer-
stehung Christi? 

e) Thomas von Aquin hat so argumentiert: 

1. - i A - » - i C (V13) 
2. C (V20) 
3. C -» A 
4. A 
Geben Sie die Gesetze an, die Thomas benutzt hat. 

12) 1. (—I q v —1 y) - » [ z - » (s A —11)] 
2. —1 i p -» q) A (x -» z) 
3 . (—i q A ~ i p) - » ( ( s A n t ) - » x ) / i ( i x A z) 

13) 1. —i p —»• —i q 
2 . p v - 1 s 
3. ~i h -» s / ~i (h v ~~i q) -» p 
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14) 1. p v ~ i (q A —1 r) 
2. - 1 s v p 
3. —is —> i (t A I q) 
4. — i p 
5. —is / - i (t A - i r) 

15) 1. i p —* (q A r) 
2. (s —• 11) —> ( 11 A i p) 
3. (t v s) -» r LL 

16) 1. p V (—I q V p) 
2. q V (—l p V q) / (p A q) V (—I p A —l q) 

2.7 Konjunktive Normalform 

Die Distributionsregeln verhelfen uns zu einem neuen Entschei-
dungsverfahren. Bisher lernten wir als vollständige Entschei-
dungsverfahren die Auswertung der Wahrheitstafeln kennen. Mit 
Hilfe der Distributionsregeln können wir die konjunktive oder die 
disjunktive Normalform ausführen. Wir beschränken uns auf die 
Beschreibung der konjunktiven. 

Die konjunktive Normalform ist eine Reduktion der Aussagen-
verknüpfungen von Disjunktionen auf Konjunktionen. Wir wis-
sen, daß eine Konjunktionsverknüpfung genau dann wahr ist, 
wenn alle Argumente der Konjunktion wahr sind. Die Molekular-
formeln ihrerseits sind Disjunktionen, etwa von der Form 
, p v ~ i p'. Falls sich ein Gesamtausdruck als Konjunktion solcher 
Disjunktionen umformen läßt, dann ist er immer gültig. 

Beispiel 1 
1. (p v p) p 
2. (p v p) v p 1, Impl. 
3. (p A p) v p 2, De M . 

4. p v p 3, Idemp. 

Der Ausdruck , i p v p ' ist eine Tautologie, folglich immer wahr. 

Da zur Bildung der Normalformen häufig De Morgansche Geset-
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ze gebraucht werden, schreiben wir die Negationen nach Hilbert 
über die Aussagen. Es empfiehlt sich noch eine weitere abkürzen-
de Schreibweise: Die Konjunktionen schreiben wir mit ,, •", die 
Disjunktionen lassen wir ganz weg, was die Übersicht erleichtert. 

Beispiel 2 

1.q - * (pvq ) 
2. q v (p v q) 1, Impl. 
3. qpq 

Beispiel 3 
1. [p v (q v r)] - » [ q v ( p v r)] 
2. p v (q v r) v (qpr) 1, Impl. 
3. (p • q • r) v qpr 2, De M . 
4. pqpr • qqpr • rqpr 3, Dist. 

Alle drei Konjunktionsargumente bestehen aus Alternativen, von 
denen jede eine Tautologie darstellt; die erste ,pp', die zweite ,qq', 
die dritte ,rr'. 

Beispiel 4 
1. (p -> q) ( - : p -»• - I q) 
2. (p -> q) v ( p v q ) 1, Impl. 
3. (p v q) pq 2, Impl. 
4. (p • q) pq 3, De M . 
5. ppq • qpq 4, Distr. 

Weder das erste noch das zweite Konjunktionsglied ist eine Tau-
tologie. Folglich ist das Beispiel 4 keine Tautologie. 

Wenn es sich im Verlauf einer Distribution herausstellt, daß ein 
Konjunktionsglied selber schon eine Tautologie ist, dann darf 
man dieses Argument weglassen. Der Grund ist einleuchtend: bei 
einer Tautologie bleibt die tautologische Form erhalten, mögen 
noch so viele Variable daran angehängt werden. 

Beispiel 5 
1. (q -» r) ->• [(p v q) -» (p v r)] 
2. (q -> r) -> [(p v q ) v (p v r)] 1, Impl. 
3. (q -• r) —» [(p • q) pr] 2, De M. 
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4. (q —> r) —> (ppr • qpr) 
5. (q -> r) -> qpr 

3, Dist. 
4, Weglassen von ppr 

6. (q -> r) qpr 
7. (q v r)^ qpr 
8. (q • r) qpr 
9. qqpr • rqpr 

5, Impl. 
6, Impl. 
7, De M 
8, Dist. 

Die Beispiele, die wir bisher mit Wahrheitstafeln oder Deduk-
tionsregeln nachgeprüft haben, lassen sich ebenfalls durch die dis-
junktive Normalform kontrolfieren. Da bei einer Deduktion die 
Prämissen die Vordersätze eines Schlusses ausmachen, läßt sich 
jede Deduktion umschreiben. Sie hat folgende Form: 

(1.Prämisse, 2.Prämisse . . . )—> Konklusion 

Beispiel 6 

Beispiel 7 
1. p 
2. q 
3. r /.-. p A q A r 

1. (p A q A r) -» (p A q A r) 
2. (p A q A r) V (p A q A r) 1, Impl. 
3. (p v q v r) v (p A q A r) 2, De M. 
4. pqfp • pqrq • pqrr 3, Dist. 

Beispiel 8 
1. p q 
2. —I p / ~i q (falsch) 

1. [(p -> q) A - I p] - I q 
2- [(p - » q ) A p ] v q 1, Impl. 

1- p -»• q 
2. p /••• q 

1. [ ( p - > q ) A p ] -»• q 
2- [ (P -*• q) A p ] v q 
3- [(p q) v_p] v q 
4. [ ( p v q j v p ] v q 
5. (p • q) pq 

1, Impl. 
2, De M. 
3, Impl. 
4, De M, 
5, Dist. 6. ppq • qpq 
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3. (p V q ) v pq 
4. (ß ^q)_pq 
5. ppq • qpq 

2, Impl. 
3, De M. 
4, Dist. (keine Tautologie) 

Wie mit der Deduktionsmethode, so haben sich aufgrund der dis-
junktiven Normalform die Beispiele 6 und 7 richtig, hingegen 8 als 
falsch herausgestellt. 

Übung 2.7 

1. p (q -» p) 
2. (p -+ q) v (q m) 
3. ( p v q ) - t ( q v p) 
4. (p —• q) —»• ( i q —• i p) 
5- [p -» (q -» r)] [(p -» q) -> (p r)] 
6. [(p -» q) A (q - r)] -» (p - r) 
7. [(p q) a - I q] - i p 
8 . [ q v n ( ( p - » q ) - » ( n q - > n p ) ) ] - > n ( p A n p ) 
9. ~1 (p q) (r —»• I s) 

10. (p - (q -> r) A (p q)) (p r) 

Bisher haben wir aus bestimmten Prämissen einen Schluß gefol-
gert. Wir können die Prämissen dabei durch Annahmen erweitern. 
Dann folgt der Schluß aus den Prämissen und den Annahmer). 
Eine solche Deduktion scheint auf den ersten Blick weniger kräftig 
zu sein, weil mit beliebigen Annahmen sich so etwas wie Willkür 
einzuschleichen droht. Doch können wir je nach Art der Annah-
men diesem Vorwurf entgegentreten. Wir wollen uns mit zwei 
Arten von Annahmen befassen, dem konditionalen Beweis und 
dem indirekten Beweis. 

Eine beliebig gewählte Annahme braucht nicht zu einem willkürli-
chen Resultat zu führen, nämlich dann nicht, wenn die Annahme 

2.8 Annahmen 

2.8.1 Der Konditionale Beweis (KB) 
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wieder ausgelöst wird. In diesem Fall ist das Schlußresultat letzt-
lich doch wieder nur aus den Prämissen erschlossen worden; die 
Annahme ist bloß intern zum Zweck einer vereinfachten Deduk-
tion eingeführt worden. Wir kennen dieses Verfahren aus dem 
Beispiel des reichen Arabers. 

Ein Araber hatte 17 wertvolle Pferde. Sie sollten ungleichmäßig 
auf seine drei Söhne aufgeteilt werden und zwar im folgenden 
Verhältnis: Der älteste Sohn sollte die Hälfte bekommen, der 
zweite V3 und der jüngste % . Will man nicht den Metzger herbe-
mühen, empfiehlt es sich, ein Pferd auszuleihen. Das entspricht 
der Annahme, man habe 18 Pferde. Dann bekommt 

der 1. die Hälfte von 18 Pferden = 9 Pferde 
der 2. Ys von 18 Pferden = 6 Pferde 
der 3. Ys von 18 Pferden = 2 Pferde 

17 Pferde 

Nun wird die Annahme rückgängig gemacht, indem das geliehene 
Pferd dem früheren Besitzer zurückgegeben wird. Es ist ja nicht 
geteilt worden, und den Zweck hat es erfüllt, nämlich bei der sonst 
unausführbaren Rechenaufgabe auszuhelfen. 

Der konditionale Beweis erlaubt unter Umständen, eine langwie-
rige Deduktion zu verkürzen. Vorteilhaft wird er eingesetzt, wenn 
der Schluß eine Implikation ist. Zeigen wir das an einem Beispiel 

1. A / B -> A 

Aus ,A' läßt sich die Bedingung ,B —> A' erschließen. 

Übung 2.8.1 

1) Zeigen Sie, daß sich diese Deduktion auch mit Hilfe unserer 
bisherigen Regeln als richtig erweist. 

Der Einsatz des konditionalen Beweises geht davon aus, daß das 
nicht gegebene ,B' angenommen wird. Logisch gesehen ist jede 
beliebige Annahme vertretbar, sofern sie als solche deutlich ge-
kennzeichnet ist und am Schluß wieder ausgelöst wird. Wir deuten 
das mit einem Pfeil auf der linken Seite an. 



2.8 Annahmen 119 

1. A / B A 
- » 2. B KA KA = konditionale Annahme 

Im dritten Schritt wiederholen wir ,A'. Das heißt jetzt trivialerwei-
se, daß ,B' und ,A' gegeben sind. Genauer. Wenn ,B'> dann auch 
,A'. Damit können wir die Annahme auslösen. Das wird durch 
den heruntergezogenen und quer gerichteten Pfeilschwanz ange-
zeigt. Das Resultat ist der konditionale Beweis, abgekürzt KB: 

1. A /.-. B 

c 2. B KA 
3. A 1, Rep. Rep. = Repetition 
4. B -> A 2-3 KB 

Allgemein gilt: 

• p KA 

p q KB 

Der konditionale Beweis ist nicht, wie es den Anschein macht, eine 
ausgefallene logische Spitzfindigkeit. Er entspricht im Gegenteil 
einer häufig benutzten umgangssprachlichen Argumentation. 
Man stellt beispielsweise fest, daß das Auto anhält. Dann ist es 
nicht abwegig, die Überlegung anzustellen, der leere Benzintank 
könnte die Ursache für das Anhalten sein. Ich überlege so: 

1. Das Auto steht still (Tatsachenfeststellung). 
2. Wenn der Benzintank leer ist, dann steht das Auto still. 

1. läßt 2. vermuten. Freilich ist damit nicht gesagt, der Benzintank 
sei wirklich leer. Diese Behauptung wäre ein unerlaubter Rück-
schluß. 
Weiteres Beispiel: 

1. p q 
2. —i p - » r /••• q v r 

> 3. - i r K A 
4. p 3,2, M T 
5. q 4,1, MP 
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6. - i r q 3 - 5 KB 
7. r v q 6, Impl. 
8. q v r 7, Komm. 

Innerhalb derselben Deduktion dürfen beliebig viele Annahmen 
gemacht werden. Dabei sind zwei Bedingungen einzuhalten. Er-
stens müssen die Annahmen der Reihe nach wieder gelöst werden. 
Die Verletzung dieser Forderung zeigt sich im Überschneiden der 
Pfeile. Zweitens muß jede Annahme wieder ausgelöst werden. Ein 
Verstoß gegen die letztere Bedingung ist erkennbar an einem Pfeil 
ohne Schwanz. 

Beispiel mit zwei Annahmen. 
1. p -> (q r) 
2. r -» (q - * s) /.-• p -> (q -> s) 

• 3. p KA /.-. q —> s 
* 4. q KA /••• s 

5. q r 3 , 1 , MP 
6. r 4, 5, MP 
7. q - * s 6,2, MP 
8. s 4, 7, MP 
9. q -> s 4 - 8 KB 

10. p -» (q -»• s) 3 - 9 KB 

Wenn die Annahmen in der Reihenfolge der Konklusion, von 
links nach rechts, gesetzt werden, so wird dadurch eine Pfeilüber-
schneidung vermieden. Fehlerhaft kann die Ableitung werden, 
wenn man sich von den Prämissen verführen läßt. Dazu das glei-
che Beispiel mit umgeformter erster Prämisse: 

1. (q r) v - i p 
2. r -> (q -> s) / P -> (q -> s) 

* 3. q KA 
• 4. p KA 

5. q r 4 , 1 , DS 
6. r 3, 5, MP 
7. q s 6,2, MP 
8. s 3, 7, MP 
9. q s 3, 8, KB 

10. p -+ (q -» s) 4 - 9 , KB 
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Pfeilüberschneidungen sind unerlaubt. 
Schließlich noch ein Beispiel mit nicht ausgelöster Annahme: 

1. p -» q / p -> (q A r) 
• 2. p KA / q A r 

3. q 2 , 1 , MP 
* 4. r KA 

5. q A r 3, 4, Konj. 
6. p -» (q A r) 

Übung 2.8.1 

2) p q / ~l q -> ~l p 

3) 1. (p -> q) -> r 
2. s v q 

3. p - * is /_r 

4) (p q) A (q -> r) / p -> r 

5) 1. p - (q r) 
2. s -> (t A p) 
3. q / r v~=i s 

6) - / p -> (q -»• p) 

7) - / (p a q) —> p 

8) - / (p -> r) -> [(p A q) -» r] 

9) - / (p q) - [(p v r ) - > ( q v r)] 

10) 1. r (v ->• - i q) 
2. W ' I (p A s) 
3. —i (w v t) v / P -> (q -» (r ~> (s -» t))) 

2.8.2 Der indirekte Beweis (IB) 

In der Wahl der Annahmen unterscheidet sich der indirekte Be-
weis deutlich vom konditionalen. Der indirekte Beweis zweifelt 
das Resultat an. Logisch gesehen ist das gleichbedeutend mit sei-
ner Verneinung. Wenn sich dann im Lauf der Deduktion eine 
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Kontradiktion einstellt, dann ist das ein Anzeichen dafür, daß das 
verneinte Resultat eine unerlaubte Annahme war. Es ist der klassi-
sche Beweis ad absurdum. Der Vorgang läßt sich aus Beispielen 
deutlich ersehen. Analog zum konditionalen Beweis benutzen wir 
IA für indirekte Annahme und IB für indirekten Beweis. 

1. p A q 
2. - 1 q IA 
3. q lb , Simpl. 
4. q A I q 3, 2, Konj. 
5. - l q 2 - 4 IB 
6. q 5, D N 

Da wir bei 4. auf einen Widerspruch gestoßen sind, muß die ur-
sprüngliche Annahme 2. verneint werden. 

Der indirekte Beweis kann auch mit einem konditionalen ver-
knüpft werden. 

M p v q ) - » r 
2. (r v s) -» t /.-• p -> t 

* 3. p KA 
* 4. - i t IA 

5. - i (r v s) 4 ,2 , M T 
6. p v q 3, Add. 
7. r 6 ,1 , MP 
8. r v s 7, Add. 
9. (r v s) A —i (r v s) 8, 5, Konj. 

10. t 4 - 9 , IB 
11. p -» t 3-10, KB 

Übung 2.8.2 

1) l . p - * ( q v s) 
2. s v p 
3. (q v s) - > t ¿_t_ 

2) 1. (p —> q) A (r —» s) 
2, ( q v s ) - > t 
3. —11 / ~i (p v r) 
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3) 1. p / q v l g 

4) 1. ( p v q ) ^ ( r ^ s) 
2. (s —> t) —> (p A r) / _ s 

5) 1. (p v q) -» (r A s) 
2. (r v t) -> (s -» - 1 p) / ~ i p 

6) 1. (p A q) (r A s) 

2. q - * —I s / —ip v ~ i q 

7) 1. - I s / - l [((p -» q) A (q r)) A ((p —> r) —> s)] 

8) 1. (p A q) <-» ~ I r 
2. p -> q / r -> ~i p 

2.9 Reduktion von Funktoren 

Wir haben uns in der Darstellung der Aussagenlogik auf fünf 
Funktoren festgelegt. Das entspricht der üblichen Darstellungs-
praxis. Aus den zahlreichen Umformungsregeln ergibt sich, daß 
wir sachlich mit weniger auskommen könnten. Es lassen sich alle 
Aussagenverknüpfungen auf eines der folgenden drei Paare zu-
rückführen: 

- I , A 
~1, V 
~1» 

Übung 2.9 

1) q - * (p v q) 

2) p <-• q 

Geben Sie für beide Ausdrücke die Umformungen an: 

a) Negation und Konjunktion 
b) Negation und Disjunktion 
c) Negation und Implikation 

Nun haben schon Peirce 1880 und Sheffer 1913 herausgefunden, 
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daß es sogar möglich ist, mit einem einzigen Funktor auszukom-
men. Freilich ist keiner aus dem bisherigen Vorrat dazu geeignet. 
Deshalb haben die beiden Autoren je einen neuen Funktor defi-
niert, die Peircefunktion und den Shefferstrich: 

Peirce Sheffer 
P 1 q P I q 
1 0 1 1 0 1 
1 0 0 1 1 0 
0 0 1 0 1 1 
0 1 0 0 1 0 

Die Peircefunktion hat die gleiche Wahrheitstafel wie der Aus-
druck ,—l (p v q)'. Deshalb läßt er sich mit „weder p noch q " 
wiedergeben. Der Shefferstrich entspricht genau dem Ausdruck 
, I (p A q)'. Alle Funktoren lassen sich in einen der beiden um-
schreiben. Das sei nur an der Peircefunktion gezeigt: 

P 4 P 
(p I p) 4 (q 4 q) 
(p 4 q) 4 (P 4 q) 
((p 4 p) 4 q) 4 ((P 4 p) 4 q) 

p p 4 p 
p A q p 4 q 
p v q p 4 q 
p ->• q p 4 q 

Übung 2.9 

3) a) „Eine weitere Konsequenz ist Whitehead's Überzeugung, 
daß die Aussagenlogik, wenn sie auf der Inkonsistenz beruht 
(H. M. Sheffer zeigte, wie das System der ,Principia Mathematica' 
auf der Inkonsistenz als der einzigen Undefinierten Relation aufge-
baut werden kann. Er spricht zwar nicht von der Inkonsistenzrela-
tion, sondern von einer Operation namens „Rejektion" 
[ = Shefferstrich], „Non-Konjunktion") die fundamentale Tatsa-
che einer pluralistischen Prozeßmetaphysik reflektiert." V. Lowe, 
The Development of Whitehead's Philosophy (Ed.) A. Schilpp. 
Library of Living Philosophers (New York 1951) 121. 

b) Sheffer sagt folgendes: „Schließlich gelang es durch unglaub-
lich geistreiche symbolische Analysen, die Prinzipien der Forma-
len Logik auf eine kleine Anzahl grundlegender Aussagen zu redu-
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zieren, die in einer äußerst geringen Anzahl von Grundbegriffen 
ausgedrückt wird. Bei dieser Behandlung der Logik ist die Ökono-
mie der Basisbegriffe dermaßen bedeutsam, daß die Ersetzung der 
zwei Aussagenoperatoren Negation und Disjunktion durch einen 
einzigen Operator der Nicht-Konjunktion von den Autoren für 
eine kardinale Verbesserung der neuen Auflage angesehen wird." 
H. M. Sheffer, Rez. A. N. Whitehead/B. Russell, Principia Mathe-
matica. vol. 1 (21925) Cambridge Univ. Press. Isis 8 (1926) 229. 

1. Um was geht es Sheffer (in Text b)? 
2. Wie stehen Rejektion oder Nicht-Konjunktion zu einer 

inkonsistenten Relation ? 
3. Reflektiert diese Inkonsistenz die Tatsache einer plurali-

stischen Prozeßmetaphysik? 

Bis in die neueste Zeit hinein vermochte man unter dieser Verein-
fachung kaum mehr als eine theoretisch bemerkenswerte Tatsa-
che zu vermuten. Inzwischen hat sich eine Verwirklichung in der 
Praxis auffinden lassen. 

Die Elektronik hat es bei den einfachsten Schaltungen mit Serien-
und Parallelschaltung zu tun. Die beiden lassen sich als Und- und 
Oder-Verknüpfungen realisieren. 

Hier kann nur Strom durchfließen, wenn der Kreis ganz geschlos-
sen ist, also wenn ,p' und auch ,q' geschlossen sind. Das entspricht 
der Konjunktion. 

Anders ist es bei der Parallelschaltung: 

Serienschaltung 
(Und - Verknüpfung) 

j . Parallelschaltung 
(Oder-Verknüp-
fung) q 
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Für den Stromdurchfluß genügt es, daß ,p' oder ,q' geschlossen ist. 
Selbstverständlich fließt auch Strom, wenn beide geschlossen sind. 
Das entspricht den Bedingungen unserer Disjunktion. 

Beispiele: 
1) (p A q) v (p A r) 

,p' kommt zweimal vor. 
Da beide Disjunktionsar-
gumente Konjunktionen 
sind, brauchen wir zwei 
Kreise und ,p' erscheint 
zweimal. 

2) p v (q A r) 

Es lassen sich auch kompliziertere Deduktionen darstellen, etwa 
die folgende: 

3) 1. p q 
2. —1 q 
3. p v r /_r oder [((p q) A —i q) A (p v r)] -» r 

oder in der disjunktiven Normalform: 
(p A l q) v q v ( l p A l r) v r 

Die Tautologie von 3) 
wirkt sich so aus, daß 
immer Strom fließt, 
welche Werte die Va-
riablen annehmen mö-
gen. 

Zur Realisierung von Schaltsystemen werden aus technischen 
Gründen Nand- und Nortore bevorzugt. „Nand" ist ein engli-
scher Wortverschnitt aus „not" und „and", beziehungsweise 
„Nor" aus „not" und „or". Nor entspricht unserer Peircefunk-

- i ' i ' h 
A B 

A B 
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tion, Nand dem Shefferstrich. Damit hat einmal mehr eine theore-
tische Spielerei eine technische Anwendung gefunden. 

Der überragende Vorteil der polnischen Schreibweise besteht in 
einer Anordnung, die auf Klammern verzichten kann und den-
noch höchste Präzision erreicht. Das läßt sich an Beispielen aus 
der Arithmetik erklären: 

Analog dazu ließe sich die polnische Notation etwa so einsetzen: 

Wer nicht gerade Hewlett Packard programmiert, dem erscheint 
diese Umschreibung bestenfalls verwirrend. Doch brauchen sich 
diese Bedenken nicht auf die Logik zu übertragen. 

Die Funktoren werden nicht mit Symbolzeichen, sondern mit gro-
ßen Buchstaben dargestellt und zwar auf folgende Weise: 

N Negation 
K Konjunktion 
A Disjunktion 
C Implikation 
E Äquivalenz 

Der Funktor wird dem Argument vorgestellt. Damit wird seine 
Reichweite angedeutet. 

Beispiele 

2.10 Polnische Notation 

(2 + 5) • 7 = 49 2 + (5 • 7) = 37 

+ 25 • 7 = 49 2 + • 57 = 37 

1. Np 
2. Kpq 
3. CApqp w i ^ y Ur" v Hl r F 

5. CCpqCCqrCpr (p -> q) -> [(q -> r) -» (p r)] 

p A q 
(P V q) P 

Wird die Übersetzung unübersichtlich, dann empfiehlt es sich, auf 
der rechten Seite der Formel zu beginnen. Bei 5. sehen wir sogleich, 
daß ,p -> r' impliziert wird von ,q -> r'. 
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Ferner greifen wir für die Negation auf die Vereinfachung von 
Hilbert zurück. Der Strich über dem Funktor oder der Variable 
erleichtert die Übersicht. Wir schreiben an Stelle der original pol-
nischen Notation Np, NKpq, KNpNq leichter lesbar 

Übung 2.10 

Übersetzen Sie in polnische Notation: 
l - ( p v p ) - » p 
2. p (p v p) 
3. (p q) ( - 1 p v q) 
4. [(p q) a - i q] - i p 
5. (-1 p A - I q) - l (p v q) 

Diese Schreibweise verhilft uns zu einer neuen Beweistechnik. Es 
ist die Technik der Semantischen Tafeln, die mit der polnischen 
Notation vereinfacht wird. 

Der Zweck solcher Tafeln besteht darin, Folgen von Disjunktio-
nen zu erhalten. In der vorgelegten Schreibweise läßt sich unmit-
telbar ablesen, ob sie tautologisch sind oder nicht. Tautologien 
sind erwünscht, weil sie die Tafeln schließen. Ein Blick genügt, um 
erkennen zu lassen, daß die zwei ersten Reihen geschlossen sind, 
nicht aber die dritte und vierte: 

P P 
p q r a p q p p s r 
q q _ _ 
p q p p r s q q p 

Da man sich zwischen den Variablen Disjunktionen zu denken 
hat, ist ,p p' - was dasselbe bedeutet wie ,p v —i p' - offensicht-
lich eine Tautologie. Dasselbe gilt von ,q q', mag dieser Ausdruck 
noch von einer beliebigen Anzahl weiterer Variablen gefolgt sein. 

Der Grundgedanke besagt nun: Sobald Disjunktionen hergestellt 
sind, dürfen die Funktoren gestrichen werden. Die Streichungsre-

P 
Kpq 
Kpq 

~IP 
- I (p A q) 
""i p a ~i q 
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geln sind daher Anweisungen, die mit der Streichung der Funkto-
ren durch ausgeklügelte Umformungen Disjunktionen produzie-
ren. 
Wir beginnen mit der Streichungsdefinition der Funktoren A, C, 
K. Unter ihnen ist die A-Regel die einfachste. Aus ,p v q' den 
Ausdruck ,p q' herstellen heißt, das Disjunktionszeichen weglas-
sen. Das Streichen des ,A' bei ,A p q' führt zum selben Ergebnis: 

p q'. Ähnlich führen wir ,p —» q' mit der Implikationsregel 
auf , i p v q ' zurück und wenn wir das Disjunktionszeichen 
grundsätzlich weglassen, erhalten wir ,p q'. Folglich lautet unsere 
C-Regel: ,C p q' gestrichen ergibt p q'. Und schließlich noch 
die K-Regel. Wir wissen, daß ,—I (p A q)' mit De Morgan in 

i p v —I q' umzuformen ist, also in ,p q'. Daher definieren wir 
die Streichungsregel ,K' so: ,K p q' führt zu ,%. p q'. Somit gel-
ten zunächst folgende drei Regeln: 

Die Streichungsregel C im 3. Beispiel verlangt, den Vordersatz der 
Implikation zu verneinen. Der Vordersatz kann aber selber ein 
komplexer Ausdruck sein, etwa eine Konjunktion wie im vorlie-
genden Beispiel. Es liegt also folgende Struktur vor: 

(P A q) -» p 

Daher ist hier aufgrund der C-Regel K zu verneinen. Der Reihe 
nach ergeben sich folgende Schritte: 

A p q 
C p q 
K p q 

A p q 
<ß p q 
i p q 

Beispiele: 
1. A p p 
2. A K p q p 
3. C K p q p 

A P P _ 
A ^ p q p 
<£ K p q p 

p -> q 

C K p q p 
0 K p q P 
£ K p q p 

c 
K 

Wir nennen alle drei Formeln geschlossen, weil mindestens eine 
5 Bucher, Logik 
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Variable mit ihrer Negation auftritt. Die Beispiele sind also allge-
meingültig. Diese geschlossenen Zeilen sind disjunktive Normal-
formen, ein bereits bekanntes Entscheidungsverfahren. 

Übung 2.10 

6) p - » ( p v q ) 
7) (p q) v (q -» p) 
8) (p A - I p) q 
9) (p A q) (p v q) 
10) Zeigen Sie, daß Cpq = Kpq ist. 

Außer den drei Regeln A, C und K müssen noch ihre Negationen 
besprochen werden. In der Aufzählung gehen wir diesmal alpha-
betisch rückwärts, also nach der Reihenfolge K, C und Ä. Die 
Umformung durch De Morgan fördert eine versteckte Konjunk-
tion zutage. Aufgrund dieser Konjunktion ist bei den drei Regeln 
eine Besonderheit zu beachten. 

Eine Konjunktion ist nur dann eine Tautologie, wenn alle Argu-
mente Tautologien sind. Im einfachsten Fall besteht die Konjunk-
tion aus zwei Argumenten, ,p A q', wobei ,p' getrennt von ,q' zu 
untersuchen ist. Selbstverständlich liegt bei diesem Beispiel keine 
Tautologie vor, denn ,p' ist sowenig eine Tautologie wie ,q'. Hin-
gegen wäre etwa die Konjunktion ,(p v — i p) A (q v i q)' eine 
Tautologie. Da jedes Argument der Konjunktion zu überprüfen 
ist, ob es tautologisch sei, führt dieser Nachweis zu einer Aufsplit-
terung entsprechend der Anzahl der Konjunktionsglieder. Jedem 
Argument der Konjunktion bleibt somit eine eigene Zeile vorbe-
halten, was so geschrieben wird: 

p p v - i p = p_p 

q ' q v - i q q q ' 

Daran ist unmittelbar abzulesen, ob eine Tautologie vorliegt. Es 
ist genau dann der Fall, wenn eine Variable und gleichzeitig die 
Negation dieser Variable in jeder Zeile nachweisbar ist. 

Die für die Konjunktion erforderliche Aufsplitterung führt dazu, 
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die Streichung mit einem Zusatz zu belegen: 

K p q ^ P .q , 

Bei den Regeln ,C' und ,Ä' ist analog vorzugehen, weil hinter 
ihnen gleichfalls eine Konjunktion versteckt ist, wovon man sich 
mühelos überzeugt. ,C p q' ist dasselbe wie 1 (p -» q)', was 
äquivalent ist mit ,p A q'; ,A p q 'bedeute t , - i (p v q) 'und das ist 
wiederum äquivalent mit ,(p A q). Entsprechend" lauten die Re-
geln: 

C p q C p q und A p q | p q 

Die geschweifte Klammer in horizontaler Lage soll andeuten, daß 
die Variablen in gesonderten Zeilen unterzubringen sind, nämlich 

C p q 

P 

Es sind so viele Zeilen notwendig, wie es Konjunktionsargumente 
gibt. Alle Variablen, die vor der Aufsplitterung stehen, gelten für 
alle Zeilen. 

Beispiele: 
1) C p C q K p q 

f p ? q | p q 

Die erste Zeile lautet: p q p, die zweite p q q. Nur wenn 
alle Zeilen geschlossen ( = Tautologien) sind, ist die Formel 
allgemeingültig. 

5 * 
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2) 

4) 

C p C A p q q 
(Î p C A p q q 

q q 

C K C p q C p q q 

M í p q í h i 

q q 

q q 

3) C K A p q p q 

p p q 

q p q 

Übung 2.10 

11) [(p -> q) A q] -> p 
12) r —• ((p —> q) —> r) 
13) (p -> q) [(p A m) q] 
14) (p A q) <-> (q A p) 
15) -1 (p -» q) « (p A - I q) 



3. Die aristotelische Logik 

Die aristotelische Logik gehört zu den bedeutendsten Kulturereig-
nissen der Antike. Bis ins Mittelalter wurde sie, zusammen mit den 
Anfängen der Aussagenlogik, den Studenten als die wichtigste 
Grundlage für wissenschaftliches Arbeiten beigebracht. Seit der 
Renaissance ist die Aussagenlogik ziemlich vollständig in Verges-
senheit geraten. Soweit die aristotelische Logik der Abneigung 
nicht ganz zum Opfer gefallen ist, hat man sie auf einige langweili-
ge Banalitäten eingeschränkt. Die Folge davon war, daß etwa 
Kant die ihm bekannte Rumpflogik für aristotelisch hielt und da-
mit den Vater der Logik in Mißkredit brachte. 

Wenn im 20. Jahrhundert die aristotelische Logik in den Ruf einer 
bloß historischen Kuriosität gelangt ist, so mag das verständlich 
sein vom Wunsch praktischer Anwendungen her. Ein mittelmäßig 
begabter Student löst tatsächlich jeden Syllogismus so schnell wie 
der Fachmann für aristotelische Logik. Es wäre aber verfehlt, bei 
der heutigen Darstellung der aristotelischen Logik das Ziel auf 
diesen Aspekt einzuschränken. Im Vordergrund steht die Absicht, 
den Begriff eines überschaubaren Systems zu vermitteln. Dazu eig-
net sich die aristotelische Logik in besonderem Maße, weil sie 
abgeschlossen und auf ein enges Gebiet begrenzt ist. 

Was hier dargestellt wird, müßte eher den Namen „Klassische 
Logik" tragen, weil es Systematisierungen und damit zum Teil 
Abweichungen von Aristoteles sind. Doch die moderne Logik hat 
die klassische integriert. Von daher ist auch erkennbar, daß die 
aristotelische Logik als spezielle Theorie kaum auf die Anwen-
dung praktischer Probleme ausgerichtet ist. 

3.0 Einige Begriffe der aristotelischen Logik 

In der aristotelischen Tradition hat man sich kaum mit der Aussa-
genlogik befaßt. Dagegen ist eine bemerkenswerte Theorie von 
Schlußfolgerungen entwickelt worden, bei der die Elemente inner-
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halb der Aussagen analysiert wurden. Der Anwendungsbereich ist 
jedoch für die Praxis deswegen ziemlich unbedeutend, weil nur 
Aussagen mit Subjekt, Kopula und Prädikat zugelassen sind. 

Zunächst müssen wir das Zeichen vom Gegenstand unterschei-
den. Das Zeichen nennen wir Subjekt und die Sache, auf die es sich 
bezieht Suppositum. Somit ist das Subjekt einer Prädikataussage 
dasjenige Wort einer Aussage, das angibt, auf welches Supposi-
tum die Aussage sich bezieht. 

Das Prädikat drückt eine gewisse Idee aus, die wir uns vom Suppo-
situm bilden. Nach der traditionellen Philosophie ist es unserem 
Denken nicht möglich, alle Eigenschaften eines Suppositums auf 
einmal zu erfassen. Deshalb drückt das Prädikat immer nur eine 
aus, mag sie auch höchst komplex sein. Das Zu- oder Absprechen 
geschieht durch die affirmative oder negative Kopula „ist" oder 
„ist nicht". 

Es gibt konkrete und allgemeine Subjekte. Konkrete Subjekte sind 
„ich" , „hier", „dieser" usw. Eine zeigende Gebärde muß das Sup-
positum begleiten, um keine Verwechslung zu provozieren. Mit 
den konkreten Subjekten hat sich die traditionelle Logik erst im 
Mittelalter beschäftigt. 

Um über allgemeine Subjekte zu reden, müssen wir zuvor den 
Begriff des Attributes präzisieren, der seinerseits am besten erklärt 
wird, wenn wir vom Prädikat ausgehen. 

Das Prädikat unterscheidet sich vom Subjekt darin, daß es nur 
eine bestimmte Eigenschaft ausdrückt und nicht den ganzen Ge-
genstand der Wirklichkeit. Betrachten wir zwei Aussagen mit 
demselben konkreten Subjekt: 

(1) Dies ist ein Kugelschreiber 
(2) Dies ist aus Plastik 

Die Prädikate sind verschieden. Aus der Konjunktion der beiden 
Aussagen erhalten wir: 

(3) Dies ist ein Kugelschreiber und dies ist aus Plastik 

was beinahe dasselbe scheint wie: 
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(4) Dieser Kugelschreiber ist aus Plastik 

Daß jedoch (3) und (4) nicht mehr dasselbe sind, zeigt sich bei der 
Verneinung. Denn die verneinte Aussage (3) lautet: 

(3') Es ist nicht der Fall, daß dies ein Kugelschreiber und dies 
aus Plastik ist. 

Für gewöhnlich möchte man jedoch mit der Verneinung nicht 
bestreiten, daß es ein Kugelschreiber sei, sondern nur, daß er nicht 
aus Plastik sei. Deshalb sagen wir, „Kugelschreiber" spielt nicht 
mehr die Rolle eines Prädikates, sondern ist zu einem Attribut 
geworden. „Dieser Kugelschreiber ist blau" besteht aus dem At-
tribut „Dieser Kugelschreiber" und dem Prädikat „blau". Das 
Attribut ist nicht mehr ein Prädikat; als ehemaliges Prädikat ist es 
dem Subjekt einverleibt worden. Von der Negation erwartet man 
lediglich die Verneinung des Prädikates, das Attribut hingegen 
bleibt von der Negation unberührt. Häufig ist indessen von der 
Problemstellung her die genaue Unterscheidung zwischen Subjekt, 
Prädikat und Attribut überflüssig. Dann sprechen wir kurz von 
Termen. 

Wie werden universale und partikuläre Subjekte gebildet? 

Das konkrete Subjekt „dieser" wird weggelassen, an seine Stelle 
tritt 

- für das universale Subjekt: „alle", „kein" 
- für das partikuläre Subjekt: „einige", „einige . . . nicht" 

Die Quantität des Subjektes - genauer des Attributes - teilt sich 
der ganzen Aussage mit. Wenn das Attribut universell genommen 
ist, dann wird die Aussage eine „universale Aussage" genannt. 

Nun können wir verschiedene Arten von Subjekten unterscheiden: 

1) Konkretes, unanalysiertes Subjekt (dieser, du, usw.) 
2) Konkretes Subjekt mit Attribut (dieser Kugelschreiber) 
3) Allgemeines universales Subjekt (Alle Hunde . . . ) 
4) Allgemeines partikuläres Subjekt (Einige Tiere . . . ) 

Wir befassen uns nur mit den allgemeinen Subjekten. 
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3.1 Die kategorischen Sätze und das logische Quadrat 

Als kategorische Sätze innerhalb der aristotelischen Logik sind 
nur Atomsätze zugelassen von der Form: Subjekt, Kopula, Prädi-
kat. Sie lassen sich auf die vier folgenden Formen zurückführen: 

1) Universal bejahend 
2) Partikulär bejahend 
3) Universal verneinend 
4) Partikulär verneinend 

Allgemeine 
Subjekte 

universal 

partikulär 

Alle S sind P 
Einige S sind P 
Kein S ist P 
Einige S sind nicht p 

bejahend Alle S sind P 

verneinend Kein S ist P 
bejahend Einige S sind P 

verneinend Einige S sind 
nicht P 

An die Stellen von ,S' oder ,P' dürfen wir Namen einsetzen, aller-
dings mit der Einschränkung, daß sie nicht leer sind, wie „Einhör-
ner", „Nixen", „König der Schweiz" usw. 

Die Beziehungen dieser vier Urteilsarten lassen sich am logischen 
Quadrat veranschaulichen. Dazu wird eine Formalisierung einge-
führt mit Hilfe von vier Vokalen a, e, i und o. Sie sind den lateini-
schen Wörtern „aff irmo" und „nego" entnommen, affirmo für 
die bejahenden und nego für die verneinenden Sätze. In der Sym-
bolsprache werden sie zwischen ,S' und ,P' gesetzt. 

Alle S sind P S a P 
Einige S sind P S i P 
Kein S ist P S e P 
Einige S sind nicht P S o P 

(affirmo) 
(affirmo) 
(nego) 
(nego) 

Das gegenseitige Verhältnis dieser Beziehungen läßt sich am logi-
schen Quadrat ablesen. 



3.1 Die kategorischen Sätze und das logische Quadrat 137 

SaP k konträr ^ SeP 
o .s n 1 

t r e r o CT » 
C 

er a , , t u 
d.k 
,1, rt 

d k -Q 
3 a 1 3 3 r o "> t r. n l 

k ° Sch SiP subkonträr SoP 

— Aus dem Quadrat ersehen wir: SaP — SoP und SiP — SeP bilden je 
ein Paar kontradiktorischer Aussagen. Beide können nicht 
wahr, aber auch nicht falsch sein. Wenn die eine Behauptung 
wahr ist, dann ist die andere falsch und umgekehrt. Weil von 
der Wahrheit der einen auf die Falschheit der andern geschlos-
sen werden darf, sagt man, die beiden würden sich ergänzen. 

— Konträre Sätze können nicht zugleich wahr, jedoch gleichzeitig 
falsch sein. 

— Subkonträre Sätze können zugleich wahr, nicht aber zugleich 
falsch sein. 

— Bei der Subalternation darf von oben nach unten geschlossen 
werden, nicht umgekehrt. 

Daneben gelten noch einige Beziehungen, die aus dem Quadrat 
nicht ersichtlich sind. Es geht um die Konversionen: 

— Unter der Konversion versteht man jene Operation, bei der At-
tribut und Prädikat vertauscht werden, ohne die Art der Kopula 
zu verändern. Dabei sind zwei Möglichkeiten zu unterscheiden: 

— bei der conversio simplex ( S a P zu P a S) bleibt die Quan-
tität gleich, 

— bei der conversio per accidens ( S a P zu P i S) verändert 
sich auch die Quantität. 

Die häufig verwendeten Ausdrücke „Gegensatz" oder „Gegen-
teil" sind mehrdeutig und können anhand des Quadrates präzise 
gefaßt werden. 

Beispiel: 
1) weiß — schwarz 
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2) weiß — nicht weiß 
3) weiß - farbig 

1) stellt eine konträre Beziehung dar, 2) eine kontradiktorische 
und 3) eine subalterne. Aristoteles versteht unter dem Wider-
spruch das kontradiktorische Gegenteil. 

3.2 Der klassische Syllogismus 

Wird aus zwei Sätzen von der Form Subjekt, Kopula, Prädikat, ein 
dritter von gleichem Aufbau gefolgert, so sprechen wir von einem 
Syllogismus. Zwei Grundsätze sind zu beachten, deren Verletzung 
die Schlußformen ungültig macht: 

- Im Schlußsatz darf nie ein Term auftreten, der in keiner der 
Prämissen vorgekommen ist. 

- Prinzip des „latius hos" (latius hos quam praemissae conclusio 
non vult). Im Schlußsatz darf kein Term mit einer Quantität 
vorkommen, die größer wäre als die Quantität, mit der er in den 
Prämissen vorkommt. Die Verletzung heißt „ein Trugschluß 
des latius hos" . 

Der Syllogismus ist ein Schluß von zwei Prädikataussagen auf eine 
dritte. 

Alle B sind C 
Alle A sind B 
Also sind alle A C 

Prämissen und Schlußsatz enthalten zusammen drei Attribute und 
drei Prädikate. Attribute und Prädikate des Schlußsatzes müssen 
in je einer der Prämissen vorkommen. Damit bleibt in beiden Prä-
missen je eine Stelle übrig für einen weiteren Term. Er muß die 
Verbindung zwischen den beiden Prämissen herstellen und heißt 
deshalb Mittelterm. Jener Term, der im Schlußsatz als Prädikat 
auftritt, soll „größerer Term" heißen und mit „ G " bezeichnet 
werden. Er muß auch in einer Prämisse vorkommen, die wir die 
„größere" oder „maior" nennen (Obersatz). Der andere Term 
heißt „der kleinere Term" ; entsprechend reden wir von „kleinerer 
Prämisse" oder „minor" (Untersatz). Dann haben wir folgendes 
Schema: 
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Alle M sind G 
Alle K sind M 
Also sind alle K G 

maior 
minor 
Konklusion 

Zur Gültigkeit sind ferner die fünf Regeln zu beachten: 

1) Es kommen nur drei verschieden Terme vor, wobei der Mit-
telterm nicht mehr in der Konklusion auftreten darf. 

2) Der Mittelterm muß in beiden Prämissen denselben Inhalt 
haben und mindestens in einer universell genommen werden. Die 
Vorschrift der Universalität nennt man „Distributionsregel". Sie 
ist so zu verstehen: 

Aus (1) „Alle Menschen sind Lebewesen" folgt, daß auch dieser 
Mensch ein Lebewesen ist. Aber es folgt nicht, daß jeder Mensch 
dieses Lebewesen ist. Wir sagen deshalb, „Mensch" stehe für alle 
Supposita, das Attribut sei universell genommen, hingegen das 
Prädikat „Lebewesen" partikulär. Ein negativer Satz supponiert 
anders. Aus „Kein Mensch ist ein Pferd" darf geschlossen werden 
„Dieser Mensch ist nicht ein Pferd" und auch „Kein Mensch ist 
dieses Pferd". Subjekt und Prädikat sind hier universell genom-
men. Das natürliche Sprachempfinden belehrt uns ausreichend 
über die universelle Supposition des Subjektes, nämlich „Alle . . . " 
und „Kein . . . " Hingegen merke man sich für die universelle Sup-
position des Prädikates: Sie trifft nur auf negative Sätze zu, also 
„Kein . . . ist P " und „Einige . . . sind nicht P" . Das führt zu folgen-
der Übersicht: 

Ferner haben die traditionellen Logiker drei weitere Regeln for-
muliert, die sich auf die Art der Kopula des Schlußsatzes beziehen: 

3) Zwei affirmative Prämissen können keinen negativen Schluß 
ergeben. 

4) Wenn eine Prämisse negativ ist, dann muß auch der Schluß-
satz negativ sein. 

Subjekt Prädikat 
A universell partikulär 
E universell universell 
I partikulär partikulär 
O partikulär universell 
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5) Aus zwei negativen Prämissen (EE, EO, OE; OO) läßt sich 
nichts schließen. 

3.3 Die gültigen Figuren und Modi des Syllogismus 

Seit dem 14. Jahrhundert haben die Scholastiker vier Figuren un-
terschieden. Sie heben sich durch die Stellung des Mittelterms von-
einander ab. 

I .Figur 2. Figur 3.Figur k. Figur 

Die Figuren lassen sich dem Gedächtnis leicht einprägen; sie kön-
nen als ein stilisiertes „ W " gedeutet werden: \||/ 

Wenn die Qualität (Bejahung, Verneinung) und die Quantität (al-
le, einige) der Prädikataussagen bestimmt ist, erhält man für jede 
Figur die verschiedenen Modi. Daraus ergibt sich, daß wir es mit 
endlich vielen Syllogismen zu tun haben. Die Anzahl läßt sich 
genau bestimmen. Es liegen jeweils 2 Prämissen vor, bei denen jede 
die Möglichkeit hat, eine A, E, I oder O-Prämisse zu sein. Das 
ergibt 16 Möglichkeiten. Aber auch der Schlußsatz kann eine die-
ser vier Formen annehmen, also 16.4 = 64 Modi. Wenn wir weiter 
bedenken, daß diese 64 Modi in vier verschiedenen Figuren aufge-
stellt werden können, bekommen wir total 64.4 = 256 Syllogis-
men. 
Aufgrund der Regeln werden jedoch die meisten Syllogismen aus-
geschlossen. Offensichtlich ist nur ein kleiner Teil aller theoreti-
schen Kombinationen der 256 Syllogismen verwertbar. Die Regel 
5) lautet z. B., aus zwei negativen Prämissen dürfe nichts geschlos-
sen werden. Unter den 256 Syllogismen sind aber auch Modi wie 
EEE, EEI, EEO und sogar EEA enthalten, die auszuscheiden sind. 
Wenn wir jene zurückbehalten, die mit keiner Regel in Konflikt 
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geraten, dann bleiben nur noch 24 Syllogismen übrig. Es sind die 
folgenden: 

1. Figur 2. Figur 3. Figur 4. Figur 
AAA AEE * AAI * AAI 

* AAI * AEO All AEE 
All AOO * EAO * AEO 
EAE EAE EIO * EAO 

* EAO * EAO IAI EIO 
EIO EIO OAO IAI 

Die mit * bezeichneten Modi haben einen abgeschwächten 
Schlußsatz, der zwar gültig ist, aber weniger schließt als er eigent-
lich könnte. 

Beispiel: 
Alle Menschen sind vernunftbegabt 
Alle Griechen sind Menschen 
Also sind einige Griechen vernunftbegabt 

Da aus den Prämissen korrekt zu schließen ist „Alle Griechen sind 
vernunftbegabt", ist es nicht falsch zu sagen, daß auch einige von 
ihnen vernunftbegabt sind. Wenn wir jedoch diese abgeschwäch-
ten Formen ausscheiden — was in der modernen Logik vorgesehen 
ist — dann bleiben nur noch 15 Syllogismen übrig. 

Um sich die gültigen Syllogismen zu merken, haben die Logiker 
der Spätscholastik künstliche Wörter gebildet, die die verschiede-
nen Modi darstellen, wobei die Vokale den Typ der Aussagen 
angeben; der erste Vokal entspricht dem Modus der ersten Prä-
misse, der zweite gibt den Modus der zweiten Prämisse an und der 
dritte Vokal den Modus des Schlußsatzes. Die mnemotechnischen 
Verse für die vier Figuren lauten 

Barbara, Celarent, primae, Darii, Ferioquc. 
Cesare, Camestres, Festino, Baroco, secundae. 
Tertia grande sonans recitat (Darapti), (Felapton), 
Disamis, Datisi, Bocardo, Ferison. Quartae 
sunt (Bamalip), Calemes, Dimatis, (Fesapo), Fresison. 
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Fügt man der 1. Figur noch (Barbari) und (Celaront) bei, der 2. 
(Cesarop) und (Camestrop), sowie der 4. (Calemop), dann haben 
wir die 24 gültigen syllogistischen Modi beisammen, wobei die 
abgeschwächten in ( ) gesetzt sind. 

Diese mnemotechnischen Wörter sind sehr rationell zusammenge-
stellt. Sie enthalten alle Regeln der Syllogismen. Das ist der einzige 
Sinn der kursiv gedruckten Wörter. Die nicht kursiv gedruckten 
Wörter geben auf Lateinisch an, zu welchen Figuren die Modi 
gehören, also primae (figurae) usw. 

Praktisches Vorgehen: 
1. Zuerst werden die Modi der beiden Prämissen bestimmt. 
2. Anhand der Mittelterme erkennt man die Figur. 
3. Mit Hilfe des Merkverses kann die Konklusion aufgesucht wer-

den, oder, wenn sie schon gegeben ist, ihre Gültigkeit nachge-
wiesen werden. 

Sollten die beiden ersten Bedingungen nicht oder nicht eindeutig 
zu erfüllen sein, dann ist der Syllogismus verschwommen und lo-
gisch unbrauchbar. 

Beispiel 1: 
Alle Menschen sind vernünftig 
Alle Griechen sind Menschen 
Also sind alle Griechen vernünftig 

1. Bestimmung der Modi: Die 1. Prämisse ist eine A-Prämisse, die 
zweite ebenfalls und auch die Konklusion. Also liegt ein Syllogis-
mus mit den Modi AAA vor. 2. Bestimmung der Figur: Die Figur 
wird aus der Stellung des Mitteltermes ersichtlich. Mittelterm ist 
„Mensch". In der ersten Prämisse steht er an der Stelle des Sub-
jekts, in der zweiten an derjenigen des Prädikates. Das deutet auf 
die erste Figur hin. 

Das ergibt: 1. Figur, AAA. 

3. Für den Nachweis der Gültigkeit haben wir drei Möglichkeiten: 

a) Wir gehen sämtliche Regeln durch. Wenn keine verletzt wur-
de, so ist das ein Beweis, daß der Syllogismus richtig ist. Dieses 
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Vorgehen ist jedoch viel zu umständlich. Dazu kommt noch die 
psychologisch begreifliche Neigung, die Kontrolle nachlässig aus-
zuführen, sobald man den Syllogismus als richtig empfindet. Da-
her ist diese Überprüfung nicht zu empfehlen. 

b) Wir schauen auf der Tabelle nach, ob unter der 1. Figur ein 
AAA zu entdecken ist. Das trifft zu und zwar gleich in der 1. Zeile. 
Also ist die Gültigkeit des Syllogismus gesichert. 

c) Da man nicht immer die Tabelle zur Hand hat, sind die mit-
telalterlichen Logiker auf den Gedanken verfallen, den Merkvers 
„Barbara, Celarent ..." auswendig zu lernen. Wir lassen ihn im 
Geist ablaufen und vernehmen, daß in der ersten Figur 4 gültige 
Syllogismen zu erschließen sind, nämlich Barbara, Celarent, Darii 
und Ferio. Unsere drei gesuchten „a" sind tatsächlich dabei, näm-
lich im Wort „Barbara". Deshalb sagen wir: Bei unserem Beispiel 
handelt es sich um einen gültigen Syllogismus der 1. Figur, Bar-
bara. 

Beispiel 2: 
Alle Schachspieler sind Logiker 
Einige Hausfrauen sind nicht Logiker 
Also sind einige Hausfrauen nicht Schachspieler 

1. Bestimmung der Modi: Die erste Prämisse ist eine A, die zweite 
eine O und die Konklusion ebenfalls eine O-Aussage. Also: AOO. 

2. Figur: Der Mittelterm ist „Logiker". Gemäß der Stellung wird 
damit die 2. Figur repräsentiert. Gibt es in der 2. Figur AOO? 

3. Der Merkvers enthält in der 2. Figur: Cesare, Camestres, Fe-
stino, und Baroco. Unsere gesuchten drei Vokale finden wir im 
Wort „Baroco". Deshalb sagen wir: Es handelt sich um einen 
gültigen Syllogismus der 2. Figur, Baroco. 

Beispiel 3: 
Alle Philosophen sind Denker 
Einige Denker sind weltfremd 
Also sind einige Philosophen weltfremd 
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Modi: All 
Fig.: 4. 

Am auswendig gelernten Vers könne wir für die 4. Figur aufzäh-
len: (Bamalip), Calemes, Dimatis, (Fesapo) und Fresison. Keines 
dieser Wörter enthält die Vokale All. Also ist der Syllogismus 
ungültig. 

Übung 3.3 

Geben Sie für jeden Syllogismus Figur und Merkwort an (z.B. 1., 
Barbara) wenn er falsch ist nur die Figur und die Vokale (z.B. 1., 
EEI) 

1) Alle Fische sind Wassertiere 
Einige Säugetiere sind Fische 
Also sind einige Säugetiere Wassertiere 

2) Alle Sänger sind fröhlich 
Einige Jäger sind nicht fröhlich 
Also sind einige Jäger nicht Sänger 

3) Alle Kölner sind Menschen 
Alle Deutschen sind Menschen 
Also sind alle Kölner Deutsche 

4) Alle Löwen sind Pflanzenfresser 
Alle Kühe sind Löwen 
Also? 

5) Alle Lügner sind unglaubwürdig 
Einige Lügner sind Zeitungsleute 
Also? 

6) Jedes Huhn ist ein Zweibeiner 
Keine Katze ist ein Huhn 
Also ist keine Katze ein Zweibeiner 

7) Kein Ochse ist ein Vogel 
Kein Fisch ist ein Ochse 
Also ist kein Fisch ein Vogel 
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8) Kein Minister ist Polizist 
Alle Minister sind Gäste 
Also einige Gäste sind nicht Polizisten 

9) Einige Preßluftbohrer machen nicht nervös 
Alle Preßluftbohrer sind Lärmquellen 
Also machen einige Lärmquellen nicht nervös 

10) Alle Nichtraucher sparen Geld 
Kein Vegetarier ist Raucher 
Also sparen alle Vegetarier Geld 

11) Alle Armen sind Flüchtlinge 
Einige Flüchtlinge sind bemitleidenswert 
Also? 

12) Kein Fisch ist ein Vierbeiner 
Einige Säugetiere sind Fische 
Also? 

13) Keine Schwierigkeit ist unüberwindbar 
Einige unüberwindbare Situationen sind lächerlich 
Also sind einige Schwierigkeiten lächerlich 

14) Alle Pferde sind Einhufer 
Alle Einhufer sind Säugetiere 
Also sind alle Säugetiere Pferde 

Im Mittelalter sind die Prämissen erweitert worden von Klassen 
auf Individualnamen. Seither gibt es den Syllogismus vom sterbli-
chen Sokrates: 

Alle Menschen sind sterblich 
Sokrates ist ein Mensch 
Also ist Sokrates sterblich 

Die zweite Prämisse läßt sich nur als A- oder I-Prämisse deuten. 
Beide Vorschläge sind brauchbar. Bei der I-Deutung bekämen wir 
eine 1. Figur und hätten nach Darii zu schließen, bei der A-Deu-
tung 1. Figur nach Barbara. Das Mittelalter hat der A-Deutung 
den Vorzug gegeben mit der Überlegung, Syllogismen der folgen-
den Art sollen gültig sein: 
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Sokrates ist weise 
Sokrates ist ein Mensch 
Also ist ein Mensch weise 

Diese 3. Figur ist nach der A-Deutung ein Darapti, nach der I-
Deutung wird der Schluß (III) unerlaubt. 

Übung 3.3 

15) Alle Italiener sind Europäer 
Galilei war ein Italiener 
Also? 

16) Gisela ist Pianistin 
Alle Pianisten sind Künstler 
Also einige Künstler heißen Gisela 

17) Kein Hund ist eine Katze 
Rex ist ein Hund 
Also ist Rex keine Katze 

Die traditionellen Schulbücher haben auf die häufigsten Gefahren 
hingewiesen, die einen Syllogismus zu verfälschen drohen. Freilich 
haben sie dabei, statt allgemein vor der Verschwommenheit der 
Sprache zu warnen, die Mehrdeutigkeit der Quaternio termino-
rum als Sonderfall überschätzt. Es handelt sich dabei um einen 
Syllogismus, der scheinbar vorschriftsmäßig aufgebaut ist. Eine 
eingehendere Analyse zeigt indessen eine Mehrdeutigkeit des Mit-
telterms. Er besitzt zwei verschiedene Bedeutungen, so daß es sich 
in Wirklichkeit um einen Syllogismus mit vier Termen handelt. 

Beispiel: 
Alles Geistige ist unkörperlich 
Alkoholika sind geistig 
Also sind Alkoholika unkörperlich 

Die Zweideutigkeit im Wort „geistig" dürfte schwer zu übersehen 
sein. In Wirklichkeit ist diese Art Mehrdeutigkeit in der Praxis 
äußerst selten verglichen mit andern Fehlern. 

Die folgende Übung geht auf Texte von Fachleuten ein, die sich für 
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Logik zuständig halten und deshalb Rat erteilen. Geben Sie eine 
genaue Beurteilung. 

Übung 3.3 

18) „Der wichtigste (unter Umständen zur Irreführung bewußt 
beabsichtigte) Schlußfehler ist die Quaternio terminorum, wo ein 
M in verschiedener Bedeutung verwendet wird, wodurch vier Be-
griffe im Syllogismus vorkommen: S, P, M t , M 2 . 

Beispiel: 
Steine sind billiges Straßenpflaster 
Diamanten sind Steine 
Daher sind Diamanten billiges Straßenpflaster" 
(A. R. Wieser, Philosophie. Einführung und Orientierung. 
Deuticke (Wien 1969) 41). 

19) „Verdeckt wird häufig die quarternio durch Gleichheit des 
Begriffswortes bei verschiedenem Sinn und Umfang. Es gibt den 
typischen Gelehrten, der mit Ausnahmen und in verschiedenem 
Grade gewisse Eigentümlichkeiten hat, aber auch einen Allge-
meinbegriff des Gelehrten, dessen Merkmale jeder Gelehrte tra-
gen muß. 

Der Gelehrte ist vergeßlich (Typ) 
Du bist Gelehrter (Allgemeinbegriff) 
Es folgt nicht: Du bist vergeßlich" 
(J. Münzhuber, Eine Einführung in die Philosophie. Die Eg-
ge (Nürnberg 1948) 50-51). 

20) „Die Russen sind Planwirtschafter 
Präsident Roosevelt ist ein Planwirtschafter 
Also ist Präsident Roosevelt ein Russe - oder wenigstens ein 
russischer Agent. Dieser falsche Syllogismus würde sogar 
einen Logiker schockieren". 
(St. Chase, The Tyranny of Words (New York 1938) 146). 

21) „1. Nicht alle Tiere sind Elephanten 
2. Jeder Elephant ist Nicht-Mensch 
Also: Nicht alle Tiere sind Nicht-Menschen. . . . 
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Unser Syllogismus ist richtig gebildet. Zweimal steigen wir 
vom engeren Begriff oder durch eingeengte Begriffe zu Grö-
ßerem auf. Wir haben also dem Prinzip des Größeren und 
Kleineren Genüge getan". (EW. Platzeck, Von der Analo-
gie zum Syllogismus (Paderborn 1954) 94). 

3.4 Beweis der Syllogismen 

Unter einem Beweis versteht man in der Syllogismentheorie die 
Rückführung der 2., 3. und 4. Figur auf die 1. Die Gültigkeit der 
1. Figur wird dabei vorausgesetzt. Für die Rückführung geben die 
mnemotechnischen Worte durch die Konsonanten die einzuhal-
tenden Regeln an. 

Alle Wörter beginnen mit den Konsonanten „B", „C", „D" oder 
„F". Das gilt auch für alle vier Modi der 1. Figur, nämlich Bar-
bara, Celarent, Darii und Ferio. Sie sind vorausgesetzt. Alle Wör-
ter, die mit „B" beginnen - Baroco und Bocardo sind die beiden 
Ausnahmen, so daß nur Bamalip übrig bleibt — werden auf Bar-
bara zurückgeführt. Ähnlich die mit „C" beginnenden Wörter auf 
Celarent usw. Daneben sind in den mnemotechnischen Wörtern 
noch Regeln aufgezählt, die durch Konsonanten angedeutet sind: 

„s" Der Konsonant „s" gibt an, daß man die durch den vorher-
gehenden Vokal bezeichnete Aussage vollkommen (simpli-
citer) konvertieren soll. Das bedeutet, Subjekt und Prädikat 
sind zu vertauschen, also S a P in P a S zu überführen. 

„p" Der Konsonante „p" gibt an, daß man eine unvollkomme-
ne Konversion (per accidens) ausführen soll. Sie besteht in 
der Vertauschung von Subjekt und Prädikat wie bei „s", 
zusätzlich aber in der Veränderung der Quantität. Aus ei-
ner A-Prämisse wird eine I und umgekehrt. Also aus S a P 
gibt es P i S. 

„m" Der Konsonant „m" gibt an, daß die Reihenfolge der Prä-
missen vertauscht werden soll (mutare). 

„c" Der Konsonant „c" besagt, daß der Beweis durch Zurück-
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führen auf einen Widerspruch (per contradictionem) ge-
führt wird. Dieser Fall wird gesondert behandelt. 

Die übrigen Konsonanten „r " , „ n " , „ t " und „ q " , sowie die Voka-
le, die zuweilen nach dem dritten Vokal auftreten (z. B. Baralip-
ton), haben keine Bedeutung. Der Ablauf der Beweise soll nun an 
einigen Beispielen gezeigt werden. 

Beispiel 1: 
Kein Pilot ist blind 
Einige Blinde sind Musiker 
Also sind einige Musiker nicht Piloten 

Es handelt sich um eine 4. Figur mit den Modi EIO, d. h. Fresion. 
Fresion wird auf Ferio zurückgeführt. Dabei sind die beiden Vo-
kale „ e " und „ i " von einem „ s " gefolgt. Damit ist die Vorschrift 
gegeben, die beiden Prämissen simpliciter zu konvertieren. An der 
Konklusion haben wir nichts zu ändern, da das auf „ o " folgende 
, ,n" keine Bedeutung hat. Wir schreiben links den ursprünglichen 
Syllogismus hin, rechts die vorschriftsgemäß umgeformten Aussa-
gen. 
Fresion (4. Figur) Ferio (1. Figur) 
Kein Pilot ist blind Kein Blinder ist Pilot 
Einige Blinde sind Musiker Einige Musiker sind blind 
Einige Musiker sind nicht Piloten Einige Musiker sind nicht Piloten 

Angesichts dieses Resultates sagen wir: Der Beweis eines Fresison 
der 4. Figur ist geglückt. 

Beispiel 2: 
Camestres (2. Figur) Celarent (1. Figur) 
Alle Hunde sind Vierbeiner Kein Vierbeiner ist eine Ente 
Keine Ente ist ein Vierbeiner Alle Hunde sind Vierbeiner 
Keine Ente ist ein Hund Kein Hund ist eine Ente 

Soll ein Camestres bewiesen werden, so kann das nur durch Zu-
rückführung auf Celarent geschehen. Als ersten auszuführenden 
Schritt deutet uns das „ m " zwischen „ a " und „ e " an, daß diese 
beiden Prämissen zu vertauschen sind. Vertauschen bedeutet hier, 
die 1. Prämisse als 2. zu betrachten und die 2. an die Stelle der 1. zu 
setzen. Auf das erste „ e " folgt noch ein „s" , wodurch zusätzlich 
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eine conversio simplex verlangt wird. Das wäre der zweite Schritt. 
Sollten die Schritte vertauscht werden, also zuerst die conversio 
simplex an der „e"-Prämisse ausgeführt werden mit anschließen-
der Vertauschung der Prämissen, so wäre das ohne Einfluß. Doch 
vergessen wir nicht, auch der Schlußsatz ist noch von einem „s" 
gefolgt, so daß auch er simpliciter konvertiert werden muß. 

Beispiel 3: 
(Fesapo) (4. Figur) Ferio (1. Figur) 
Kein Mensch ist ein Tier * Kein Tier ist ein Mensch 
Alle Tiere sind Lebewesen Einige Lebewesen sind Tiere 
Also sind einige Lebewesen Also sind einige Lebewesen 

nicht Menschen nicht Menschen 

(Fesapo) steht in Klammern. Dieser Schluß wird von der moder-
nen Logik nicht anerkannt. Hingegen findet der daraus gewonne-
ne Ferio ohne Einschränkung die Zustimmung der heutigen Logi-
ker. — Die 1. Prämisse ist simpliciter konvertiert worden, bei der 2. 
wurde eine conversio per accidens ausgeführt. Neben der Ver-
tauschung von Subjekt und Prädikat verlangt sie auch eine Ände-
rung der Qualität, d. h. daß „alle" in „einige" umzuwandeln ist. 

Übung 3.4. 

1) Kein Weinbauer ist Mitglied im Blauen Kreuz 
Einige Walliser sind Mitglieder im Blauen Kreuz 
Also sind einige Walliser nicht Weinbauern 

2) Alle Säugetiere atmen durch Lungen 
Einige Säugetiere sind Wassertiere 
Einige Wassertiere atmen durch Lungen 

3) Einige Tiergifte sind Arzneien 
Alle Arzneien sind nützliche Substanzen 
Also sind einige nützliche Substanzen Tiergifte 

4) Kein Auto ist rostfrei 
Alle Autos sind teuer 
Einige teuren Dinge sind nicht rostfrei 
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5) Einige Kirchen sind renoviert 
Alle Kirchen sind Gotteshäuser 
Einige Gotteshäuser sind renoviert 

6) Kein Vater ist eine Mutter 
Einige Mütter sind Verteranen 
Also sind einige Veteranen nicht Väter 

Der Konsonant „ c " nimmt eine Sonderstellung ein. Davon sind 
nur die beiden Wörter Baroco und Bocardo betroffen, die per 
contradictionem auf Barbara zurückzuführen sind. 
Man geht dabei von der Annahme aus, der Gegner akzeptiere die 
Prämissen, leugne aber den Schluß. Wer eine Behauptung ablehnt, 
der muß das kontradiktorische Gegenteil dieser Behauptung aner-
kennen, weil es implizit mitbehauptet wird. Das kontradiktori-
sche Gegenteil der Konklusion wird als Prämisse eingesetzt, um 
daraus zusammen mit einer anderen Prämisse einen Barbara-
Schluß zu folgern, der seinerseits in Widerspruch steht zu einer der 
Prämissen, die der Gegner gemäß der Anfangsannahme anerkannt 
hat. Der Vorgang ist identisch mit dem, was wir in der Aussagen-
logik einen indirekten Beweis genannt haben. 

Beispiel 1: 
Baroco Barbara 
Alle Filme sind belehrend Alle Filme sind belehrend 
Einige Vorstellungen sind nicht Alle Vorstellungen sind Filme 

belehrend Alle Vorstellungen sind belehrend 
Einige Vorstellungen sind nicht 

Filme 

Eine Prämisse bleibt erhalten und wird auf die rechte Seite gesetzt. 
Es ist jene, die nicht vom „c" gefolgt ist, also die A-Prämisse. Als 
weitere Prämisse wird die Konklusion von Baroco eingesetzt, je-
doch in ihrem kontradiktorischen Gegenteil. 

F B 

V B 
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Aus diesen beiden Prämissen läßt sich jetzt nach Barbara schlie-
ßen: „Also sind alle Vorstellungen belehrend". Diese Konklusion 
steht in kontradiktorischem Gegensatz 
2. Prämisse, einer Annahme des Gegners. 

zur ursprünglich 

V 
V 

B 

B 
F 

Der Gegner muß jetzt zugeben, daß der von ihm ursprünglich 
bestrittene Schluß eben doch gültig ist. 

Beispiel 2: 
Bocardo 
Einige Kirschen sind nicht rot 
Alle Kirschen sind Früchte 
Einige Früchte sind nicht rot 

Barbara 
Alle Früchte sind rot 
Alle Kirschen sind Früchte 
Alle Kirschen sind rot 

Die A-Prämisse — bei Bocardo ist es die zweite — wird als gültig 
übernommen und auf die rechte Seite gesetzt. Für die fehlende 
weitere Prämisse wird wieder das kontradiktorische Gegenteil der 
Bocardo-Konklusion eingesetzt. Also aus „Einige Früchte sind 
nicht rot" ergibt sich kontradiktorisch „Alle Früchte sind rot". 
Aus diesen beiden Prämissen folgt der Barbara-Schluß: „Also sind 
alle Kirschen rot". Er steht in kontradiktorischem Gegensatz zur 
1. Prämisse von Bocardo. 

K 

K 
F 

F 
R 

R 

F 
R 

7) Alle Quadrate sind viereckig 
Einige Figuren sind nicht viereckig 
Also sind einige Figuren nicht Quadrate 
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8) Einige Beamte sind nicht verheiratet 
Alle Beamten sind in der Pensionskasse 
Einige Mitglieder der Pensionskasse sind nicht verheiratet 

9) Alle Lose sind Treffer 
Einige Papiere sind keine Treffer 
Einige Papiere sind keine Lose 

10) Einige Bücher sind nicht gebunden 
Alle Bücher sind Kostbarkeiten 
Einige Kostbarkeiten sind nicht gebunden 

3.5 Sorites 

Bisher sind wir bei den aristotelischen Syllogismen immer von 
zwei Prämissen ausgegangen. Wird ein Schluß aus drei, vier oder 
beliebig vielen Prämissen abgeleitet, so spricht man von einem 
Sorites. Ein Sorites (ö acopöq = Haufe) ist eine Aufeinanderfolge 
von Syllogismen, bei denen die Zwischenschlüsse nicht ausge-
schrieben sind. Das sei an einem Beispiel gezeigt: 

1. Einige Straßenmarkierungen sind Pappeln 
2. Alle Pappeln sind Bäume 
3. Alle Bäume sind Pflanzen 
4. Keine Pflanze ist ein Stein 
5. Also sind einige Straßenmarkierungen nicht Steine 

Es gibt keine klassische Regel, die erlauben würde, den Schluß 
direkt aus den vier Prämissen zu folgern. Nur der mühsame Um-
weg ist vorgesehen: Aus zwei Prämissen wird ein Schluß gefolgert. 
Die Konklusion kann ihrerseits wieder als Prämisse benutzt wer-
den, aus der zusammen mit der folgenden Prämisse eine zweite 
Konklusion gefolgert wird usw. Demnach läßt sich unser Beispiel 
so lösen 

1. Einige Straßenmarkierungen sind Pappeln 
2. Alle Pappeln sind Bäume 
3. Also: Einige Bäume sind Straßenmarkierungen 

3. 
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4. Alle Bäume sind Pflanzen 
5. Also: Einige Pflanzen sind Straßenmarkierungen 

5. 
6. Keine Pflanze ist ein Stein 
7. Also: Einige Straßenmarkierungen sind nicht Steine 

Manchmal müssen die Prämissen zuerst wie in einem Puzzle-Spiel 
in die richtige Reihenfolge gebracht werden, bevor man über-
haupt schließen kann. Auf jeden Fall zeigt uns dieser simple Sori-
tes, wie kompliziert die aristotelische Logik bereits in einfachsten 
Fällen wird. 

Übung 3.5 (freiwillig) 

1) Alle Diplomaten sind taktvoll 
Einige Regierungsvertreter sind Diplomaten 
Alle Regierungsvertreter sind Leute des öffentlichen Lebens 
Also sind einige Leute des öffentlichen Lebens taktvoll 

2) Frauen sind unlogisch 
Niemand ist verachtet, der Autofahren kann 
Unlogische Personen sind verachtet 
Also sind Frauen nicht Autofahrer 

3) Jeder geistig Gesunde kann logisch schließen 
Kein Verrückter kann als Richter walten 
Keiner deiner Freund kann logisch schließen 
Also kann keiner deiner Freunde als Richter walten 

3.6 Enthymem 

Im alltäglichen Leben werden die Prämissen nicht immer so deut-
lich und vollständig ausgesprochen, wie es ein Logiker wünschen 
möchte. Selbstverständlichkeiten werden vorausgesetzt, ohne er-
wähnt zu werden. Eine Prämisse, die nur „im Geist" vorhanden ist 
und nicht ausgesprochen wird, nennt man seit den Griechen En-
thymem (¿v vk>HQj). 
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Beispiel: 
Hans ist Musiker 
Nur Naturwissenschaftler sind zur Tagung eingeladen 
Also ist Hans nicht eingeladen 

Wer diesen Schluß als richtig empfindet, der hat die Zusatzprä-
misse unterstellt: Kein Musiker ist Naturwissenschaftler. Auf die-
se Weise vermag die Logik durch Rückfragen uneingestandene 
Prämissen aufzudecken. 

Ein weiteres Beispiel: 
Judith ist die Schwester von Stephan 
Also ist Judith ein Mädchen 

Für diesen Schluß wird die von niemandem bestrittene Zusatzhy-
pothese verwendet: Alle Schwestern sind Mädchen. 

Mit dem letzten Beispiel sind wir einmal mehr an die Grenzen der 
aristotelischen Logik gestoßen. Der Ausdruck „Schwester von" ist 
bereits zu komplex, um noch bewältigt werden zu können. Es fehlt 
der Syllogistik an der Analyse von Relationsausdrücken. Selbst die 
einfachen Wahrheitswertfunktoren sind nicht systematisch unter-
sucht worden. Deshalb trifft man immer wieder auf Schlüsse, die 
der gesunde Menschenverstand längst als richtig eingesehen hat, 
die mit dem Einsatz der traditionellen Logik jedoch unlösbar sind. 
Es sei das einfache Beispiel erwähnt: 

Alle Planeten sind rund oder viereckig 
Kein Planet ist viereckig 
Also sind die Planeten rund 

Bevor wir zeigen, wie die neue Logik solche Beschränkungen über-
steigt, sei abschließend auf den Zusammenhang der aristoteli-
schen Logik zur Mengenlehre eingegangen. 

3.7 Syllogistik und Mengenlehre 

Die traditionelle Sprachanalyse unterscheidet zwischen Subjekt 
und Prädikat. „Alle Bäume sind Pflanzen" kann als Illustration 
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dienen, wobei „Bäume" das Subjekt und „Pflanzen" das Prädikat 
ist. In der Terminologie der Mengenlehre sind beides Mengen 
oder Klassen. Demnach haben wir es beim Syllogismusschema 

M P 
S M 
S P 

mit 6 Klassen zu tun. Genauer sind es drei Klassen, die paarweise 
auftreten, nämlich zwei „ M " , zwei „ S " und zwei „P" . Die aristo-
telische Logik ist demnach eine Drei-Klassen-Lehre. Deshalb darf 
diese Logik als Spezialfall der Mengenlehre aufgefaßt werden. 
Von einem Spezialfall reden wir wegen der zweifachen Einschrän-
kung: 
— Während die Mengenlehre zwischen einer bis beliebig viele 

Mengen zuläßt, müssen es bei Aristoteles immer genau drei 
sein. 

— Die Mengenlehre legt sich keine Beschränkung in den Operatio-
nen auf; Aristoteles läßt nur die einfachsten zu. 

Diese Einschränkungen erlauben uns, die aristotelischen Aussa-
gen durch einen einzigen Funktor darzustellen und zwar in Glei-
chungen, die auf Null gelöst sind. Der bevorzugte Funktor ist der 
Durchschnitt oder die Intersektion. 

„Kein A ist B " besagt nun, der Durchschnitt zwischen A und B 
enthalte kein Element, d. h. 0 Elemente. Das drücken wir so aus 

A n B = 0 

Ebenso einfach läßt sich beschreiben, der Durchschnitt sei nicht 
leer. Es ist die bloße Verneinung der ersten Aussage, also 

A n B * 0 
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„Der Durchschnitt von A und B ist nicht leer" ist jedoch eine 
negative Formulierung für „Einige A sind B" . 

Wie läßt sich nun „Alle A sind B " ausdrücken? An den Eulerkrei-
sen lesen wir ab, daß dies gleichbedeutend ist mit der Behauptung, 
außerhalb von B gebe es kein Element, also B' sei Null. Diese 
Tatsache können wir als Durchschnitt von A und B so darstellen: 

A n B' = 0 

Das entspricht genau der Aussage „Alle A sind B" . 

Wird die Gleichheit verneint, so haben wir die kontradiktorische 
Aussage dazu: 

A n B' 4= 0 

Sie ist gleichbedeutend mit der Behauptung, der Durchschnitt von 
A und B' sei nicht Null, oder in der Umgangssprache „Einige A 
sind nicht B" . 

Damit haben wir alle kategorischen Satzformen in Gleichungen 
umgeschrieben: 

Die einzige Operation brauchen wir nicht zu schreiben. Überdies 
wählen wir bei der allgemeinen Darstellung in Anlehnung an Sub-
jekt-Prädikat die kleinen Buchstaben „ s " und „p " . Das führt zu 
folgender nützlichen Schreibweise: 

Mit diesem Instrumentarium können wir nun die Gültigkeit eines 
Syllogismus untersuchen. Das Prüfverfahren ist dasselbe, das wir 
bei Baroco und Bocardo verwendet haben, nämlich der indirekte 
Beweis. Den Ablauf wollen wir an konkreten Beispielen zeigen. 

Alle A sind B 
Kein A ist B 
Einige A sind B 
Einige A sind nicht B 

A n B ' = 0 
A n B = 0 
A n B + 0 
A n B ' =|= 0 

S a P sp' = 0 
S e P sp = 0 
S i P sp + 0 
S o P sp' 4= 0 
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Beispiel 1: 
Alle Meisen sind Singvögel 
Alle Blaumeisen sind Meisen 
Also sind alle Blaumeisen Singvögel 
1. ms' = 0 
2. brn' = 0 
3. bs' = 0 

Der indirekte Beweis geht davon aus, die Konklusion sei falsch. 
Das ist gleichbedeutend mit der Anerkennung des kontradiktori-
schen Gegenteils. Daher klammern wir die Konklusion ein und 
setzen das kontradiktorische Gegenteil als 4. Schritt hin: 

4. bs' + 0 

Von jetzt an werden nur diese neue Konklusion und die beiden 
Prämissen im Auge behalten. Unter diesen drei Sätzen sind immer 
2 Gleichungen und 1 Ungleichung zu finden. Die beiden Gleichun-
gen — im vorliegenden Beispiel sind es die beiden Prämissen — 
werden addiert. Das ergibt: 

5. ms'bm' = 0 

Aus der Mengenlehre wissen wir, daß der Durchschnitt einer 
Menge mit ihrem Komplement die leere Menge ergibt. Daher fällt 
in unserer Gleichung der Mittelterm mit seinem Komplement 
weg. Übrig bleibt: 

6. s'b = 0 

Dieses Resultat steht im Widerspruch zur Annahme 4. Deshalb 
muß die Hypothese 4. als falsch angesehen werden, folglich war 
der Schluß 3. korrekt. 

Beispiel 2: 
Kein Walzer ist ein Bolero 
Einige Tänze sind Boleros 
Also sind einige Tänze nicht Walzer 
1. wb = 0 
2. tb =t= 0 
3. tw' * 0 
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Das kontradiktorische Gegenteil zu 3. lautet: 

4. tw' = 0 

Nun sind wieder die beiden Gleichungen - hier sind es 1. und 4. -
zu addieren; das ergibt 

5. wbtw' = 0 

Da sich w mit dem Komplement w' wieder aufhebt, bleiben bt 
übrig, oder kommutiert tb, also 

6. tb = 0 

Dieses Resultat steht in kontradiktorischem Gegensatz zur 
2. Prämisse. Es ist also falsch, folglich auch die in 4. gesetzte An-
nahme. 
Beispiel 3: 

1. Alle Autos sind Kraftfahrzeuge 
2. Alle Mercedes sind Kraftfahrzeuge 
3. Also sind alle Mercedes Autos 

1. ak' = 0 
2. m k ' = 0 
3. (ma' = 0) 
4. ma' + 0 
5. ak'mk' = 0 

Weiter kommen wir nicht. In 5. hebt sich der Mittelterm nicht auf 
und so läßt sich der Widerspruch nicht nachweisen. Folglich ist 
der Syllogismus ungültig. 

Übung 3.7 

A) Prüfen Sie die Syllogismen 1) bis 7) aus der Übung 3.3 mit 
dieser neuen Methode. 

Bei allen modernen Prüfverfahren fallen die sogenannten schwa-
chen Syllogismen weg, d. h. sie gelten als falsch. Da die Mengen-
lehre ebenfalls als modern anzusehen ist in dieser Hinsicht, so hat 
man sich auf die gleichen Folgen einzustellen. 
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Beispiel 4: 

1. Keine Rose ist eine Enziane 
2. Alle Enziane sind blau 
3. Also sind einige Rosen nicht blau 

1. re = 0 
2. e b ' = 0 
3. rb'=t= 0 

Es handelt sich um einen (Fesapo) der 4. Figur. Wenn wir das 
kontradiktorische Gegenteil der Konklusion bilden 

4. r b ' = 0 

erhalten wir drei Gleichungen und keine Ungleichung mehr. 
Dadurch wird die Aufgabe unlösbar und die moderne Logik 
betrachtet den Syllogismus als falsch. Darin eine Schwäche der 
modernen Logik sehen zu wollen, dürfte wohl nicht die richtige 
Antwort sein. Immerhin soll eine etwaige Beurteilung nicht 
übersehen, wie seltsam die Behauptung der traditionellen Logik 
ist „Einige Rosen sind nicht b lau" , obgleich jedermann genau 
weiß, daß es überhaupt keine blauen Rosen gibt. 

Übung 3.7 

B) Prüfen Sie die Syllogismen 8) bis 14) aus der Übung 3.3. 
C) Kontrollieren Sie in allen Figuren 

a) E I O 
b) A O O 

D) Warum ist AAA nur in der 1. Figur gültig? 
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Die Beziehung zwischen Aussagen- und Prädikatenkalkül läßt 
sich mit einem Netz vergleichen. Die Aussagenlogik ist grobma-
schig, es bleiben nur ganze Aussagen darin hängen. Die Prädika-
tenlogik vermag Prädikate und andere Satzteile zu erfassen. Der 
Vergleich trifft ferner auch in dieser bedeutsamen Hinsicht noch 
zu, daß mit dem kleinen Netz alle großen Fische - die des Aussa-
genkalküls — gefangen werden können, aber nicht umgekehrt. Im 
Alltag haben wir es manchmal auf kleine Fische abgesehen. Die 
bisher behandelte Aussagenlogik ist eine derart armselige Spra-
che, daß sie vor einfachsten Argumentationen eines Kleinkindes 
kapitulieren muß. Wenn es sagt: „ M a m a ist lieb und gut" , dann 
möchte es zwei Eigenschaften vom gleichen Individuum ausdrük-
ken. Die Formalisierung ,L A G' zeigt nicht an, ob hier von einem 
oder von zwei Individuen gesprochen wird. Um den einfachen 
Sachverhalt logisch darzustellen, haben wir die Sprache auf Satz-
teile auszuweiten. 

4.0 Aufbau von Prädikataussagen 

Der Prädikatenkalkül übernimmt die gesamte Aussagenlogik von 
der Symbolik bis zu deren Interpretation. Die Hilfsmittel der Aus-
sagenlogik bestehen aus fünf logischen Konstanten (-1, A, v , —>, 
<-») und einer unbeschränkten Anzahl von Buchstaben als Platz-
halter für Aussagen (für Variable p, q, r . . . , für Konstante A, B, 
C . . . ) . Um nur schon die Syllogismen zu überprüfen, müssen die 
Aussagen im aristotelischen Sinn auf eine verfeinerte Analyse vor-
bereitet werden. Wir haben es deshalb mit Aussagen von der fol-
genden Art zu tun: 

Der Mensch ist vernünftig 
Der Bahnhof ist alt 
Veilchen sind blau usw. 

Es scheint sich da um Aussagen zu handeln, die sich von den in der 

6 Bucher, Logik 



162 4. Der elementare Prädikatenkalkül 

Aussagenlogik behandelten gar nicht unterscheiden. Das ist auch 
richtig. Nur sind wir hier an einem anderen Aspekt interessiert. 
Wir betrachten sie nicht bloß als wahr oder falsch in ihrer Gesamt-
heit, vielmehr nach einer inhaltlichen Beziehung. Dabei fällt auf, 
daß von den Menschen, dem Bahnhof und den Veilchen etwas 
ausgesagt wird. Die Dinge, von denen etwas ausgesagt wird, sind 
Individuen, und das, was ausgesagt wird, sind Eigenschaften. Ei-
genschaften nennen wir Prädikate. Ob nun von einem Individuum 
etwas mit Hilfe eines Adjektivs oder einer anderen Wortkategorie 
ausgesagt wird, das ist belanglos. Deshalb sind für uns die folgen-
den Satzarten identisch: 

Brigitte ist eine Schwatzbase 
Brigitte ist schwatzhaft 
Brigitte schwatzt ununterbrochen usw. 

4.1 Individuen- und Prädikatausdrücke 

In der Prädikatenlogik stellen wir jedes Individuum mit einem 
Buchstaben dar, ebenfalls jede Eigenschaft, die von ihm ausgesagt 
wird. Überdies muß unmittelbar ersichtlich sein, ob es sich um ein 
Individuum oder um ein Prädikat handelt. Entgegen der Konven-
tion in der deutschen Sprache wählen wir für die Bezeichnung von 
Individuen kleine und für Prädikate große Buchstaben. 

Also: 
Individuen 

Prädikate 

s 
m 
v 
j 

K 
L 
D 
G 

Sonne 
Mond 
Venus 
Jupiter 

kugelförmig 
leuchtend 
durchsichtig 
gummig 

Mit diesem Vokabular lassen sich Sätze formen von der Art: 

Ks Die Sonne ist kugelförmig 
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Lv Die Venus leuchtet 
Dm Der Mond ist durchsichtig 

Diese verfeinerte Sprache erlaubt bereits, Beziehungen darzustel-
len, die wir bisher übergehen mußten. 

Beispiel: 

(1) Albert singt oder Berta ißt Kuchen 
(2) Albert singt oder ißt Kuchen 

Aussagenlogik: (1') A v B 
(2') A v K 

Die Formalisierung (1') beschränkt sich auf eine Disjunktion zwei-
er Aussagen. Dabei bleibt unausgesprochen, ob eine inhaltliche 
Verknüpfung vorliegt. Bei (2') ist die Beziehung von einer Art, die 
nicht mehr übergangen werden darf. Die Formalisierung (1') ist 
zufriedenstellend, hingegen (2') keineswegs. Die Prädikatenlogik 
erlaubt uns folgende Verfeinerung: 

Prädikatenlogik: (1") Sa v Kb 
(2") Sa v Ka 

(1") ist zwar gegenüber (1') unnötig kompliziert, hingegen sagt 
(2") eine Beziehung aus, die aus (2') nicht zu entnehmen ist. 

Die Individuen können auch durch Variable x, y, z . . . ersetzt 
werden. Dann bekommen wir Aussageformen von der Art. 

(3') Sx v Kx x singt oder ißt Kuchen 
(4') Sx v Ky x singt oder y ißt Kuchen 

In der Alltagssprache reden wir nicht von „ x " , sondern von „je-
mand". Deshalb dürfen (3') und (4') so übersetzt werden: 

(3) jemand singt oder ißt Kuchen 
(4) jemand singt oder jemand (anders) ißt Kuchen 

Übung 4.1 

Formalisieren Sie: 
1. Der Ofen brennt. 

6* 
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2. Der Ofen brennt nicht. 
3. Der Ofen brennt und Alfred friert nicht. 
4. Der Ofen brennt und ich friere. 
5. Wenn der Ofen brennt, dann frierst du nicht. 
6. Francesco ist nicht Italiener, oder er ist musikalisch. 
7. Nur wenn es Dohlenfüße sind, sind sie rot oder gelb. 
8. Genau dann, wenn die Figur rechtwinklig und gleichseitig ist, 

ist sie quadratisch. 

4.2 Quantoren 

Wir sind jetzt in der Lage, Sätze mit konkreten Subjekten zu über-
setzen. „Dieser Tisch ist rund" wird mit „ R t " wiedergegeben. 
Doch hat schon Aristoteles festgehalten, daß wir, um von allge-
meinen Subjekten reden zu können, seien sie universal oder parti-
kulär, Quantoren einzuführen haben. Es geht dabei um die aus 
dem aristotelischen Syllogismus bekannten All- und Existenz-
quantoren. Bisweilen heißen sie auch Operatoren. 

Für das allgemeine universale Subjekt „Alle Dinge sind . . . " führen 
wir die Abkürzung ein: ,V. Dann wären wir geneigt, „alles ist 
rund" so zu übersetzen: ,(V) r'. Diese Übersetzung ist jedoch unzu-
lässig, denn „rund" ist ein Prädikat und Prädikate können nur von 
Individuen ausgesagt werden. Ein Quantor ist durchaus kein Indi-
viduum. Aber von was wird denn „rund" ausgesagt? Von „al-
lem". „Alles" ist eine Abkürzung für „alle Dinge". Mit der Be-
hauptung „Alles ist rund" meinen wir „Alle Dinge sind rund". Die 
Dinge nennen wir ,x\ „rund" ist also ein Prädikat, das von ,x' , in 
unserem Fall von allen ,x' ausgesagt wird. 

(Alle Dinge) sind rund 
(Vx)Rx 

Wir lesen die Formel so: „Für alle x, die Dinge sind, gilt: diese x 
sind rund." Der Quantor kann nie allein stehen. Wir haben immer 
(Vx), (Vy), (Vz) usw. In Worten: Für alle Dinge, die x sind, gilt — 
für alle Dinge, die y sind, g i l t . . . usw. Entsprechend formalisieren 
wir: 
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(Vx)Gx alles ist gut 
(Vx) Vx alles ist verloren 
(Vx) Fx alles fließt 

Je nachdem, ob die Negation vor oder hinter den Quantor gesetzt 
wird, verschiebt sich der Sinn. 

(1) - l (Vx)Bx 
Nicht alles ist brauchbar, d.h. einiges ist es nicht. 

(2) (Vx) i Bx 
Alles ist nicht brauchbar, d.h. nichts ist brauchbar. 

Der Formulierung (2) ist eine gewisse Mehrdeutigkeit nicht abzu-
sprechen, da die Negation auf „alles" oder auf das Prädikat ver-
weisen kann. Die Verbindung mit dem Prädikat ist zwar häufiger; 
dennoch gibt es kein radikales Verbot der Umgangssprache, die 
Negation auf den Quantor zu beziehen. Dann würde die Aussage 
so zu deuten sein: „Einiges ist doch brauchbar". Um diese Fehl-
deutung zu vermeiden, genügt es, die Formalisierung in aller Aus-
führlichkeit in die Umgangssprache zu übertragen. In Worten: 
„Für alle Dinge, die x sind gilt, sie sind nicht brauchbar". Das ist 
gleichbedeutend mit „Kein Ding ist brauchbar" oder „alles ist 
unbrauchbar". 

Ein zweiter Quantor wird für das allgemeine partikuläre Subjekt 
eingeführt „einige Dinge sind . . . " Als Abkürzung wählen wir ,3'. 
Manchmal reden wir dabei etwas unbestimmt von „etwas". Ana-
log zum Allquantor formalisieren wir: 

(Etwas) ist rund 
(3x)Rx 

Die Formel wird so gelesen: „Es gibt ein x, das rund ist". Unter 
„etwas" oder „es gibt einige" verstehen wir „mindestens ein 
Ding"; es können auch mehrere sein, jedoch nicht alle. 

(3x)Gx etwas ist gut 
(3x)Vx etwas ist verloren usw. 

Dieselbe Vorsicht wie beim Allquantor ist auch hier mit den Nega-
tionen geboten. 
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- i (3x)Fx 
Es gibt nicht etwas, das fließt = Nichts fließt. 

( 3 x ) - i F x 
Es gibt etwas, das nicht fließt = Einiges fließt nicht. 

Mit diesen beiden Quantoren können wir alle Quantitäten und 
Qualitäten der aristotelischen Syllogismen ausdrücken: 

(Vx) Gx Alle Dinge sind gut Alles ist gut 
(3x) Gx Einige Dinge sind gut Einiges ist gut 
(Vx) I Gx Kein Ding ist gut Nichts ist gut 
(3) i Gx Einige Dinge sind Einiges ist 

nicht gut nicht gut 

Die gegenseitigen Beziehungen lassen sich, wie bei Aristoteles, im 
logischen Quadrat darstellen: 

(Vx)Px k konträr l (3x)Px 

n .s 
t r r o 

a d .k l 

d'k a t r o t r. n l 
k ° Sch (3x)Px subkonträr (Vx)Px 

Es mag aufgefallen sein, daß sich jede Aussage auf zweifache Wei-
se darstellen läßt, nämlich mit einem All- und mit einem Existenz-
quantor. 

Alles ist gut (Vx)Gx und —I (3x)—I Gx 
Etwas ist gut (3x)Gx und ~~i (Vx) l Gx 

(Vx)—iGx und —i (3x)Gx Nichts ist gut 
Einiges ist 

nicht gut (3x)—i Gx und —i (Vx)Gx 

Diese Beziehungen mache man sich inhaltlich klar. Sie sollen nicht 
auswendig gelernt werden, doch müssen sie bei aufmerksamem 
Nachdenken korrekt formalisiert werden können. 
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Übung 4.2 

Formalisieren Sie und bezeichnen Sie kontradiktorische und kon-
träre Gegensätze: 

1. Alles ist teuer 
2. Nichts ist teuer 
3. Nicht alles ist teuer 
4. Etwas ist teuer 

Formalisieren Sie und geben Sie an, welche Aussagen äquivalent 
sind: 

5. Einiges ist nicht käuflich 
6. Alles ist nicht käuflich 
7. Es gibt nichts, das nicht käuflich ist 
8. Alles ist käuflich 
9. Nicht alles ist käuflich 

10. Nichts ist käuflich 

Im allgemeinen reden wir nicht von allen Dingen, sondern von 
einigen Millionären, von den meisten Unfällen oder von allen 
Stechmücken. Wir treffen eine Auswahl aus der Gesamtmenge 
aller Dinge. Wenn behauptet wird „Alle Smaragde sind grün", 
dann heißt das, daß aus der Grundmenge aller Dinge die Smarag-
de herausgeholt werden und ihre Farbe als grün bezeichnet wird. 
Es ist empfehlenswert für den Anfänger, diesen Sachverhalt in der 
Umgangssprache so vorzubereiten, daß die Formalisierung er-
leichtert wird. Also: Für alle Dinge gilt, wenn sie Smaragde sind, 
dann sind sie grün. Diese Formulierung sei an einigen Beispielen 
mit All- und Existenzquantor verdeutlicht. 

Allquantor 
Alle Smaragde sind grün 

Für alle Dinge gilt, wenn sie Smaragde sind, dann sind sie 
grün 
(Vx) (x sind Smaragde ->• x sind grün) 
(Vx) (Sx Gx) 

Alle Kuchen sind frisch 
Für alle Dinge gilt, wenn sie Kuchen sind, dann sind sie 
frisch 
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(Vx) (x sind Kuchen -> x sind frisch) 
(Vx) (Kx -» Fx) 

Alles Wasser ist verschmutzt 
Für alle Dinge gilt, wenn sie Wasser sind, dann sind sie 
verschmutzt 
(Vx) (x ist Wasser -»• x ist verschmutzt) 

Existenzquantor 
Einige Smaragde sind grün 

Für einige Dinge gilt, daß sie Smaragde sind und grün 
(3x) (x sind Smaragde A x sind grün) 
(3x) (Sx A Gx) 

Einige Kuchen sind irisch 
Für einige Dinge gilt, daß sie Kuchen sind und frisch 
(3x) (x sind Kuchen A x sind frisch) 
(3x) (Kx A Fx) 

Einiges Wasser ist verschmutzt 
Für einige Dinge gilt, daß sie Wasser sind und verschmutzt 
(3x) (x ist Wasser A X ist verschmutzt) 
(3x) (Wx A Vx) 

Man beachte, daß die Aussagen „Alle A sind B " und „Einige A 
sind B " neben einem deutlich ausgedrückten Quantorenunter-
schied noch einen Strukturunterschied verbergen. Er wird formal 
verdeutlicht, indem die Allaussage mit „—>", die Existenzaussagen 
mit „ A " formalisiert werden. Dieser Strukturunterschied kommt 
nur im ausführlicheren Sprachgebrauch zum Vorschein: „Für alle 
Dinge, wenn sie A sind, dann sind sie B " , nicht aber bei „Alle A 
sind B" . 

Mit diesen Hilfsmitteln lassen sich die kategorischen Aussagen 
von Aristoteles so wiedergeben: 

4) Einige Schwäne sind nicht weiß (3x) (Sx A Wx) 

(Vx) (Wx Vx) 

1) Alle Schwäne sind weiß 
2) Einige Schwäne sind weiß 
3) Kein Schwan ist weiß 

(Vx) (Sx -» Wx) 
(3x) (Sx A Wx) 
(Vx) (Sx - l Wx) 

Mit der Formulierung von 1) und 2) sind wir bereits vertraut. Bei 
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3) müssen wir uns den Inhalt einsichtig machen. Wörtlich sagt die 
Aussage: Für alle x gilt, wenn sie Schwäne sind, dann sind sie nicht 
weiß. Ähnlich bei 4): Für einige x gilt, daß sie Schwäne sind und 
nicht weiß. 

Übung 4.2 

Formalisieren Sie: 
11. Alle Straßen sind krumm 
12. Nicht alle Straßen sind krumm 
13. Einige Straßen sind krumm 
14. Viele Straßen sind nicht krumm 
15. Keine Straße ist krumm 
16. Einige Tomaten sind grün 
17. Keine Münze ist gefälscht 
18. Einige Erdbeeren sind nicht reif 

Jede kategorische Aussage im Sinne von Aristoteles läßt sich auf 
zweifache Art ausdrücken, mit Existenz- oder Allquantor. Statt zu 
sagen „Alle Straßen sind Parkplätze" kann ich gleichwertig be-
haupten: „Es gibt keine Straße, die nicht ein Parkplatz ist". 
Gleichbedeutend mit „Einige Straßen sind nicht Parkplätze" ist 
„Nicht alle Straßen sind Parkplätze". 

Die verfügbaren Formalisierungen seien zusammengestellt an-
hand der folgenden Aussagen: 

Alle Straßen sind Parkplätze 
Keine Straße ist ein Parkplatz 
Einige Straßen sind Parkplätze 
Einige Straßen sind nicht Parkplätze 

klassisch Mengenlehre 
S a P 
S e P 
S i P 
S o P 

sp' = 0 
sp = 0 
sp + 0 
s p ' * 0 
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Prädikatenlogik 

(Vx) (Sx -> Px) ++- I (3x) (Sx A -1 Px) 
(Vx) (Sx ^ - i Px) - i (3x) (Sx a Px) 
(3x) (Sx a Px) - i (Vx) (Sx - i Px) 
(3x) (Sx a Px) <-• - l (Vx) (Sx -> Px) 

Wir müssen beide Schreibweisen der Prädikatenlogik kennen. Der 
Grund dürfte einleuchtend sein. Bei einer Deduktion müssen näm-
lich zuerst alle Negationen vor einem Quantor weggeschafft wer-
den. Folglich muß man in der Lage sein, jede Formel der zweiten 
Gruppe in eine der ersten umzuwandeln. Das ist sehr einfach. 

Die Negation vor dem Quantor wird hinter den Quantor gesetzt 
bei gleichzeitigem Quantorenaustausch. So wird —I (Vx) zu (3x) —I 
und i (3x) zu (Vx) —I. Diese Umformung nennen wir Quantoren-
austausch (QA). Die Negation hinter dem Quantor wird nach den 
Regeln von De Morgan weiter verarbeitet. 

Beispiele: 

— i(3x) (Ax a i Bx) 
(Vx)- i (Ax a ^ i Bx) 
(Vx) (Ax A Bx ) 
(Vx) ( - 1 Ax v Bx) 
(Vx) (Ax -»• Bx) 

-1 (Vx) (Ax -> - l Bx) 
QA (3x)—i (Ax - > j p B x ) Q A 

(3x) (Ax -> Bx ) 
(3x) (Ax v Bx ) 
(3x) (Ax a Bx) 

In der Praxis führt das zu keinen nennenswerten Schwierigkeiten. 
Als Faustregel für die Negationen merke man sich: Die alte Form 
enthält zusammen mit der umgewandelten genau zwei Negatio-
nen. 

Übung 4.2 

19. Schreiben Sie die Beispiele 11-18 mit dem andern Quantor. 
20. Zeichnen Sie alle Formeln an, die korrekt das Sprichwort aus-

drücken: „Die Würfel sind gefallen" 

a) W e) Wg i) (Vx) (Wx Gx) 
b) G f) Gw j) (Vx) (Gx ->• Wx ) 
c) - i G g) (Vx) Wx k) (3x) (Wx a Gx) 
d) W a G h) (3x)Gx 1) ( 3 x ) ( G x a W x ) 
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21. (i) „Es gibt kein x, das Rabe ist." ~~i (3x) Rx 
(ii) „Es gibt ein x, das nicht Rabe ist." (3x) i Rx 

Auch diese beiden Negationen fallen zusammen. Sie behaupten, 
daß es nicht gäbe, was es — als deiktisch Konstituiertes — doch gibt. 
Rehfus (W.D.), Didaktik der Philosophie. Grundlage und Praxis 
(Düsseldorf 1980) 132. 

1. Zeigen Sie formal, wie die beiden Sätze zusammenfallen. 
2. Was wird mit ihnen genau behauptet? 

4.3 Übersetzungen aus der Umgangssprache 

Die Alltagssprache hat die Eigenart, einige für die Logik bedeutsa-
me Unklarheiten zu überdecken. Wir haben früher bereits solche 
Fälle getroffen, etwa „Kinder und Rentner bezahlen halbe Taxe". 
Bevor die Formalisierung einsetzt, muß erfaßt werden, daß der 
Sprecher hier nicht ein „und", sondern ein „oder" meint. Wird 
diese vorlogische, semantische Analyse fehlerhaft ausgeführt, 
dann reicht selbst die raffinierteste Formalisierung nicht aus, den 
Fehler wieder auszugleichen, weil die Logik nur wahrheitskonser-
vierend, nicht aber wahrheitsschöpfend ist. 

4.3.1 Gattungsnamen 

Unter dem Quantor „alle" verstehen wir wirklich alle Individuen 
aus der vorgängig bezeichneten Grundmenge. Sind nicht alle ge-
meint, so ist der Existenzquantor zu benutzen. „Nicht alle" um-
faßt deshalb alles zwischen eins bis beinahe alle, also „einige", 
„manche", „viele", „die meisten" usw. Genau wie bei den Prä-
missen eines aristotelischen Syllogismus Klarheit über die Modi 
bestehen muß, so muß eindeutig entscheidbar sein, welchen 
Quantor wir für die Formalisierung zu wählen haben. Vorsicht ist 
bei den Allaussagen am Platz, die nicht ohne weiteres als solche zu 
erkennen sind. 

Beispiele: 
(1) Die Eidechse ist ein Schuppenkriechtier 
(2) Die Eidechse ist grün 
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Die Aussage (1) faßt „Eidechse" als Gattungsnamen auf und ist 
deshalb so zu übersetzen: „Für jedes x gilt, wenn x eine Eidechse 
ist, dann ist es ein Schuppenkriechtier". Formal: 

(1') (Vx) (Ex Sx) 

Dagegen scheint sich offensichtlich die Aussage (2) auf eine be-
stimmte Redesituation zu beziehen. Es ist wohl kaum die falsche 
Behauptung beabsichtig „Alle Eidechsen sind grün". Vielmehr 
scheint von einem Einzelindividuum die Rede zu sein. Daher: 

(2') (3x) (Ex A Gx) 

Wenn es sich nur um ein einziges, bestimmtes Exemplar von Ei-
dechsen handelt, dann dürfen wir ihm den konkreten Namen „ a " 
geben. Dadurch entfällt der Quantor: 

(2") Ea A Ga 

4.3.2 Personen 

„Alles" deutet auf eine Aussage über alle Dinge, hingegen „alle" 
ist eine Einschränkung und meint Menschen oder Personen. Des-
halb werden wir, falls es vom Kontext her erforderlich ist, bei 
„alle" jeweils „Menschen" oder „Personen" ergänzen. Ebenso für 
„niemand", „nicht eine Person", bzw. „keine Person". 

Beispiel: 
Alle sind zurück 
(Vx) (Px -> Zx) 

,Px' bedeutet: die x, die Personen sind. Die Formel (Vx) Zx besagt 
eher „alles ist zurück", womit das Ausgeliehene oder sonst etwas 
gemeint ist. 

4.3.3 Erweiterung durch mehrere Prädikate 

Die aristotelische Logik schreibt einem Individuum nur eine einzi-
ge Eigenschaft zu. Eine Ausnahme bilden jene Fälle, wo zwei Ei-
genschaften durch eine Konjunktion verbunden sind. Dann lassen 
sich aber zwei Aussagen daraus herstellen. Sind die beiden Aussa-
gen jedoch durch eine Disjunktion verknüpft, durch Implikation 
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oder Äquivalenz, dann sind sie in der aristotelischen Logik nicht 
mehr zulässig. Diese Einschränkung ist unnatürlich. Da sich unse-
re Alltagssprache nicht daran hält, wird sie von der Prädikatenlo-
gik nicht übernommen. Deshalb müssen wir uns auch mit der 
Formalisierung folgender Aussagen vertraut machen: 

Einige Wälder sind Sauerstoff- und Ruhespender 
(3x) [x sind Wälder A (x sind Sauerstoff- A x sind 
Ruhespender)] 
(3x) [Wx A (Sx A Rx) ] 

Alle Elefanten sind indischer oder afrikanischer Herkunft 
(Vx) [x sind Elefanten —> (x sind indisch v x sind 
afrikanisch)] 
(Vx) [Ex (Ix v Ax)] 

Einige Häuser sind sonnig, gut isoliert und teuer, oder billig 
und mehrstöckig 
(3x) [x sind Häuser A (x sind sonnig A x sind gut 
isoliert A x sind teuer) v (x sind billig A x sind 
mehrstöckig)] 
(3x) [Hx A (Sx A Ix A Tx) v (Bx A Mx) ] 

Jeder Bewerber, der Brillenträger oder farbenblind ist, 
braucht einen Sonderausweis 
(Vx) (wenn x Bewerber ist -» (x ist Brillenträger v x ist 
farbenblind) -» benötigt x einen Sonderausweis) 
(Vx) ((Bx -> (Cx v Fx)) Sx) 

Übung 4.3.3 

1) 1. Die Kuh ist schwarz. 
2. Die Kuh ist ein Säugetier. 
3. Die Tulpe ist eine Blume. 
4. Die Tulpe ist gelb. 
5. Alles fehlt. 
6. Nichts ist unvergänglich. 

2) 1. Jeder ist willkommen. 
2. Keiner fehlt. 
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3. Einige sind Verräter. 
4. Alle sind zufrieden. 
5. Die meisten sind da. 
6. Wenige sind Ehrenbürger. 

1. Die meisten Italiener sind ehrlich. 
2. Schwarze Tulpen gibt es nicht. 
3. Alle politischen Einwände sind nicht demagogisch. 
4. Viele Verkehrssünder werden nicht bestraft. 
5. Die meisten Übungen sind unterhaltsam, aber schwer. 
6. Alle Personenwagen sind betriebsbereit. 
7. Alle kontrollierten Personenwagen sind betriebsbereit. 
8. Nur die kontrollierten Personenwagen sind betriebsbe-

reit. 
9. Betriebsbereite Personenwagen müssen kontrolliert sein. 

10. Alle jungen sportlichen Schweizer sind militärdienst-
pflichtig. 

11. Der Turner ist frisch, fromm, froh, frei. 
12. Äpfel und Birnen sind nahrhaft. 
13. Es gibt keine Raben, die nicht schwarz sind. 
14. Nicht alle, die reden, haben etwas zu sagen. 
15. Einige Medikamente sind nur gefährlich, wenn sie in 

Überdosis eingenommen werden. 
16. Alles, was glänzt, ist nicht Gold. 

Formalisieren Sie die folgenden Aussagen mit beiden Quan-
toren: 
1. Einige Vögel können rückwärts fliegen. 
2. Nur die Fische haben Kiemen. 
3. Alle Papageien und Kolibri sind bunte Vögel. 
4. Manches, was laut und modern ist, ist kein Theater-

stück. 
5. Kein Auto, das über 10 Jahre alt ist, wird repariert, wenn 

es ernsthaft beschädigt ist. 
6. Es gibt keine elektrische Ladung, die nicht ein ganzzahli-

ges Vielfaches elektrischer Elementarquanten wäre. 

Formalisieren Sie und geben Sie an, welche Sätze äquivalent 
sind: 
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1. Einige Nachbarn sind hilfsbereit und beliebt. 
2. Alle Nachbarn sind hilfsbereit und beliebt. 
3. Einige hilfsbereite Nachbarn sind beliebt. 
4. Nur hilfsbereite Nachbarn sind beliebt. 
5. Alle hilfsbereiten Nachbarn und nur sie sind beliebt. 
6. Kein Nachbar ist beliebt, wenn er nicht hilfsbereit ist. 
7. Einige nichtbeliebte Nachbarn sind nicht hilfsbereit. 
8. Kein hilfsbereiter Nachbar ist unbeliebt. 
9. Jeder Nachbar ist beliebt, sofern er hilfsbereit ist. 

10. Einige Nachbarn sind nur beliebt, wenn sie hilfsbereit 
sind. 

Wer die Beispiele 1) bis 5) korrekt gelöst hat, darf die Aufgabe 
6) übergehen. 

6) Formalisieren Sie: 
1. Nicht jede Geburtstagsparty ist ein Erfolg. 
2. Der Hund ist ein Fleischfresser. 
3. Alle Raben und Dohlen sind Vögel. 
4. Alle Raben und Dohlen sind schwarze Vögel. 
5. Die Vögel, die nicht schwarz sind, sind weder Raben 

noch Dohlen. 
6. Der Hund ist braun. 
7. Früchte und Gemüse sind vitaminreich. 
8. Nicht jeder berühmte Schauspieler ist talentiert. 
9. Kein Marsmensch ist Europäer. 

10. Nur Polizisten und Feuerwehrleute sind beide unent-
behrlich und einsatzbereit. 

11. Nur die ETH-Architekten sind diplomierte Architekten. 
12. Nicht alle Zeitungen sind lesenswert, aber jene, die es 

sind, liegen in der Bibliothek auf. 
13. Der Bürger, der den Stimmzettel nicht einlegt, vernach-

lässigt seine Pflicht. 
14. Keiner darf die Geleise überschreiten, ausgenommen 

Bahnangestellte und Ordnungshüter. 
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4.4 Quantorenregeln und Deduktion 

Für die Deduktion in der Prädikatenlogik gilt folgendes: 
- In den Prämissen müssen die Quantoren aufgelöst werden. 
- Die verbleibenden Formeln werden mit den Regeln der Aussa-

genlogik bearbeitet. 
- Bei der Konklusion müssen die Quantoren wieder eingesetzt 

werden. 

Es gelten folglich bei der Deduktion in der Prädikatenlogik die 
gleichen Regeln wie im Aussagenkalkül. Neu hinzu kommen nur 
die Quantorenregeln. Da wir zwei Quantoren aufzulösen und 
zwei einzuführen haben, werden vier neue Regeln benötigt. 

4.4.1 Die V-Elimination (Universelle Einsetzung, Universelle 
Spezialisierung) ist eine Regel, die uns sagt: wenn alle x P sind, 
dann ist auch ein konkretes Individuum ,a' ein P. 

(Vx)Px 
— - V 

Pa 

Diese Regel ist in der Tradition unter dem Namen „Dictum de 
omni et nullo" bekannt. 

4.4.2 Die V-Einführung (Universelle Verallgemeinerung, Uni-
verselle Generalisierung) ist das umgekehrte Verfahren. Wenn wir 
von einem individuellen Kreis sagen, sein Umfang sei Durchmes-
ser mal Pi, so dient dabei der Kreis als Repräsentant für alle Kreise. 
Deshalb darf die behauptete Eigenschaft auf alle Kreise ausge-
dehnt werden. 

(Vx)Px 

4.4.3 Die 3-Elimination (Existenzielle Einsetzung, Existenzielle 
Spezialisierung) ist trivial. Der Existenzquantor behauptet, daß es 
wenigstens ein Individuum gibt, das bei der Einsetzung zu einer 
wahren Aussage führt. Die 3-Elimination gibt diesem Individuum 
einen Namen. 
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(3x) Px 

Pa 

4.4.4 Die 3-Einführung (Existenzielle Verallgemeinerung, Exi-
stenzielle Generalisierung) ist ebenfalls trivial. Denn wenn es we-
nigstens eine einzige Einsetzungsinstanz gibt, so können wir auch 
verallgemeinernd darüber sprechen. Verallgemeinern heißt natür-
lich nicht die Behauptung aufstellen, es gebe mehrere. 

Pa 

(3x) Px + 

Einsatz der Quantorenregeln: 

— Die V-Elimination ist immer durchführbar. 

— Die V-Einführung darf nur vorgenommen werden, wenn die 
Deduktion aus einer oder mehreren Allaussagen gewonnen wur-
de. Das in 4.4.2 erwähnte Beispiel ist ein Sonderfall; es ist eine 
versteckte Allaussage. 

— Die 3-Elimination kennt eine Einschränkung. Werden inner-
halb einer Deduktion mehrere 3-Eliminationen ausgeführt, so ist 
für jede neue Prämisse eine andere Einsetzungskonstante zu wäh-
len. Der Grund liegt darin, weil von einem Ding beispielsweise 
ausgesagt werden kann, es sei eine Kugel; sollte von einem Ding 
behauptet werden, es sei blau, dann dürfen wir nicht dem Trug-
schluß verfallen, es sei von einer blauen Kugel die Rede. Mögli-
cherweise wird von einer rostigen Kugel und einer blauen Wap-
penscheibe gesprochen, also von zwei gänzlich verschiedenen In-
dividuen. 
— Die 3-Einführung ist immer durchführbar. 

— Negationen vor einem Quantor müssen immer entfernt wer-
den, bevor eine V- oder 3-Elimination ausgeführt wird. 

Diese Regeln sollen an einigen Beispielen erprobt werden. 

1) Alle Bäume sind Pflanzen 
Alle Fichten sind Bäume 
Also sind alle Fichten Pflanzen 
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1. (Vx) (Bx -> Px) 
2. (Vx) (Fx Bx) /.-. (Vx) (Fx -> Px) 
3. Ba Pa 1, - V 
4. Fa -» Ba 2, - V 
5. Fa Pa 3 , 4 , HS 
6. (Vx) (Fx -> Px) 5, + V 

In 3. und 4. wird die V-Elimination aus den beiden Prämissen 
durchgeführt. 5. ist ein Schluß mit aussagenlogischen Mitteln. Bei 
6. ist die V-Einführung erlaubt, weil 5. aus 3. und 4. erschlossen 
wurde, die beide aus Allprämissen hervorgegangen sind. 

2) Alle Wallonen sind Patrioten 
Einige Belgier sind Wallonen 
Also sind einige Belgier Patrioten 

1. (Vx) (Wx Px) 
2. (3x) (Bx A Wx) /••• (3x) (Bx A Px) 
3. Wa -> Pa i , - v 
4. Ba A Wa 2, - 3 
5. Ba 4a, Simpl. 
6. Wa 4b, Simpl. 
7. Pa 6, 3, MP 
8. Ba A Pa 5, 7, Konj. 
9. (3x) (Bx A Px) 8, + 3 

Bei 9. wäre eine V-Ein£ührung unerlaubt, weil der 4. Schritt aus 
einer 3-Elimination gewonnen wurde. 

3) Alle Menschen sind sterblich 
Piaton ist ein Mensch 
Also ist Piaton sterblich 
1. (Vx) (Mx Sx) 
2. Mp /••• Sp 
3. Mp Sp 1, - V 
4. Sp 2 , 3 , MP 

Die 1. Prämisse gilt für alle menschlichen Individuen, also für Al-
bert, Brigitte, Cäsar, Piaton usw. Deshalb dürfen wir bei 3. nach 
ausgeführter V-Elimination jeden beliebigen Individuennamen 
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einsetzen, unter ihnen auch ,p'. Daraus ergibt sich dann: Piaton ist 
sterblich. 

4) Aus den Prämissen von 3) kann auch geschlossen werden: 
Also ist jemand sterblich, (3x) Sx oder (3x) (Mx A Sx). Das ist die 
existenzielle Verallgemeinerung des Schlusses „Piaton ist sterb-
lich". Da die 2. Prämisse nur von einem einzigen Individuum 
spricht, darf in der Konklusion keine V-Einführung stattfinden. 
Freilich wäre sie zufällig beim vorliegenden Beispiel nicht falsch; 
es wäre nur die triviale Wiederholung der 1. Prämisse. 

5) Kein Hund ist ein Elefant 
Keine Mücke ist ein Hund 
Also ist keine Mücke ein Elefant 
1. (3x) (Hx A Ex) 
2. - I (3x) (Mx A Hx) / - I (3x) (Mx A Ex) 

Wir wissen zwar, daß dieser Syllogismus falsch ist, denn schon 
Aristoteles stellte das Verbot auf, aus zwei negativen Prämissen zu 
schließen. Wir wollen sehen, wie sich das in der Deduktion be-
merkbar macht. 
Zuerst müssen die Prämissen umschrieben werden, um die Nega-
tionen vor den Quantoren wegzuschaffen. 

3. (Vx) (Hx - i Ex) 
4. (Vx) (Mx - i Hx) / (Vx) (Mx -> - i Ex) 
5. Ha -» i Ea 3, - V 
6. M a -» ~~i Ha 4, - V 

Weiter kommen wir nicht, denn aus 5. und 6. läßt sich nichts 
schließen. 

6) Einige Schwäne sind weiß 
Einige Tiere sind weiß 
Also sind einige Tiere Schwäne 
1. (3x) (Sx A Wx) 
2. (3x) (Tx A Wx) / (3x) (Tx A Sx) 
3. Sa A Wa 1 , - 3 
4. T a A Wa 2, - 3 (falsch!) 

Hier wurde die Regel der 3-Elimination verletzt. Da bereits in 3. 



180 4. Der elementare Prädikatenkalkül 

eine 3-Elimination ausgeführt wurde, darf beim zweiten Vorkom-
men nicht mehr die Konstante ,a' verwendet werden. Die korrekte 
Ausführung ab 4. wäre so: 

4. Tb A Wb 3 , - 3 
5. Sa 3 a, Simpl. 
6. Tb 4a, Simpl. 
7. Tb A Sa 6, 5, Konj. 

Solange nicht feststeht, daß a = b ist, dürfen wir keine 3-Einfüh-
rung vornehmen. Was uns die korrekte Anwendung der Regel 
lehrt, ist kaum überraschend: Die traditionelle Logik wußte auch 
hier, aus zwei individuellen Prämissen darf nicht geschlossen wer-
den. 
Die moderne Logik erlaubt, die aristotelischen Syllogismen als 
formal gültig darzustellen, allerdings einmal mehr mit der Ein-
schränkung, daß die abgeschwächten Syllogismen nicht zugelas-
sen werden. Woran liegt es, daß ein Barbari der 1. Figur ungültig 
sein soll? 

Alle Italiener sind Europäer 
Alle Napolitaner sind Italiener 
Also sind einige Napolitaner Europäer 
1. (Vx) (Ix Ex) 
2 . (Vx) (Nx -> Ix) / (3x) (Nx A E X ) 

3. Ia -> Ea 1, - V 
4. Na ->• Ia 2, - V 
5. Na Ea 3, 4, Hs 

Weiter gelangen wir nicht. Der Grund für das Versagen liegt in der 
(Vx) Px 

Tatsache, daß — nicht gültig ist. Das läßt sich an einem 
(3x) Px 

Beispiel verdeutlichen. 

1. Alle grünen Schwäne sind im Basler-Zoo 
2. Also gibt es grüne Schwäne im Basler-Zoo 
(Vx) ((Sx A Gx) -> Bx) 
(3x) ((Sx A Gx) A Bx) 

Der 1. Satz ist zudem wahr. Wer nicht dieser Ansicht ist, mag den 
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Gegenbeweis antreten, indem er die grünen Schwäne zeigt, die 
nicht im Basler-Zoo sind. Da niemand auf diesen ausgefallenen 
Vorschlag eingehen wird, lohnt es sich nochmals zur bekannten 
und kurzen Begründung der modernen Logiker zurückzukehren. 
Sie lautet: Eine Allaussage kann die leere Menge enthalten. Das ist 
in unserem Beispiel tatsächlich der Fall, denn es gibt keine grünen 
Schwäne. Und das ist der einzige Grund für die Ablehnung der 
abgeschwächten Syllogismen, also durchaus nicht irgendeine ver-
steckte Abneigung gegen Aristoteles. 

Ferner ist zu beachten, daß innerhalb einer konditionalen Annah-
me keine universelle Verallgemeinerung auszuführen ist. 

Beispiel: 

Übung 4.4.4 

Deduzieren Sie: 
1) Alle Lügner sind unglaubwürdig 

Einige Lügner sind Zeitungsleute 
Also sind einige Zeitungsleute unglaubwürdig 

2) Alle Flüchtlinge sind arm 
Einige Arme sind bemitleidenswert 
Also sind einige Flüchtlinge bemitleidenswert 

3) Kein Käufer wird betrogen 
Einige Käufer sind Händler 
Also werden einige Händler nicht betrogen 

4) Alle Sportler sind gesund 
Alfred ist ein Lehrling und Sportler 
Also sind einige Lehrlinge gesund 

5) Alle Studenten essen Reis oder Fisch 
Alle Reisesser sind Japaner 

unerlaubt 
3. Pa -» (Vx)Px 
4. (Vy) (Py (Vx)Px) 
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Nicht alle Studenten sind Japaner 
Also gibt es einige Studenten, die Fisch essen 

6) Nur autoritäre Staaten sind Bürokratien 
Autoritäre Staaten sind Diktaturen 
Also sind einige Bürokratien Diktaturen 

7) Alle Paddler sind ehrgeizig oder faul 
Kein Ehrgeiziger ist glücklich 
Einige Paddler sind glücklich 
Also sind einige Paddler faul 

8) Keine Ente tanzt Walzer 
Kein Offizier ist dem Walzer abgeneigt 
Alle Bewohner meines Hühnerstalles sind Enten 
Also ist kein Bewohner meines Hühnerstalles ein Offizier 
(Lewis Carroll) 

9) Alle Zerstreuten und Alkoholiker sind verkehrsgefährdend 
Frau Dupont ist nicht verkehrsgefährdend, obwohl sie 
Sonntagsfahrerin ist. 
Also ist Frau Dupont nicht Alkoholikerin 

10) Alle Sterne sind Planeten oder Fixsterne 
Einige Sterne gehören zum Sonnensystem 
Die Sterne sind genau dann Fixsterne, wenn sie nicht zum 
Sonnensystem gehören 
Einige Sterne gehören nicht zum Sonnensystem 
Also sind einige Sterne Fixsterne 

Geben Sie bei den beiden folgenden Aufgaben die genauen Schritte 
an 

11) 1. (Vx) (Ax - i Bx) 
2. - 1 (3x) (Cx A - l Dx) 
3. (3x) (Ax A - i Dx) /.-. (3x)~i (Cx v Bx) 
4. (Vx) (Cx ->• Dx) 
5. Ca -»• Da 
6. Aa -» — i Ba 
7. Aa A ~i Da 
8. Aa 
9. —i B a 
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10. - l Da 
11. - 1 Ca 
12. —I Ca A —: Ba 
13. - i (Ca v Ba) 
14. (3x)~i (Cx v B x ) 

12) 1. (Vx) [(Ax v Bx) -v Cx] 
2. (3x) [(Cx v Ex) A - : Fx] /••• (Vx) (Ax -> Fx) 
3. (Vx) [(Cx v Ex) -»• Fx] 
4. (Aa v Ba) -> Ca 
5. - 1 (Aa v Ba) v Ca 
6. (—I Aa A —I Ba) v Ca 
7. Ca v (—i Aa A — i Ba) 
8. (Ca v - l Aa) A (Ca v —i Ba) 
9. Ca v —: Aa 

10. —i Aa v Ca 
11. (—I Aa v Ca) v Ea 
12. ~I Aa v (Ca v Ea) 
13. Aa (Ca v Ea) 
14. (Ca v Ea) -»• Fa 
15. Aa -» Fa 
16. (Vx) (Ax -» Fx) 

Deduzieren Sie: 
13) 1. (Vx) (Px Qx) 

2. - i (Vx) Qx / (3x) i Px 

14) 1. - i (3x) (Px -> Mx) 
2. (Vx) (Sx Mx) / (Vx) (Sx -> - i Px) 

15) 1. - I (3x) (Ax A - I Bx) 
2. -\ (3x) (Cx A Bx) / - 1 (3x) (Ax A Cx) 

Hx) 16) 1. (Vx) (Fx Gx) A (3x) (Fx A 
2. (Vx) ((Fx A Jx) —> I Hx) 
3. (3x) (Fx A Gx) / (3x) (Fx A - I Ix) 

17) 1. (Vx) [(Fx ->• Gx) (Hx -> - 1 Fx)] 
2. (Vx) (Hx Jx) 
3. (Vx) (Jx - Fx) 
4. (3x) (Gx A Jx) / (3x)~i Hx 
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18) 1. (Vx) [(Ax A (Ux v Ix)) - i (Hx v Cx)] 
2. (3x) [Ax A (Ix A Bx)] 
3. (Vx) [(Ax A Wx) - > h H x - > Dx) ] 
4. (Vx) (Ax -> Wx) 
5. (3x) (Wx A Dx) / (3x) (Ax A DX) 

19) Der Mensch lebt nicht vom Brot allein. 
Der Arme lebt vom Brot allein. 
Also ist der Arme kein Mensch. 

20) Einige Photographen sind geschickt, aber nicht einfalls-
reich. 
Nur Künstler sind Photographen. 
Einige Photographen sind nicht geschickt. 
Jeder Handwerker ist geschickt. 
Also ist nicht jeder Künstler ein Handwerker. 

21) Alle Musiker und Handwerker sind geachtet. 
Radiotechniker und Automechaniker sind Handwerker. 
Nur Persönlichkeiten mit Fachkenntnissen sind geachtet. 
Also sind die Radiotechniker Persönlichkeiten mit Fach-
kenntnissen. 

22) Alle Mitglieder, die den Beitrag nicht bezahlt haben, sind 
anwesend. 
Alle Auswärtigen sind Mitglieder. 
Einige Auswärtige sind nicht anwesend. 
Also gibt es einige Mitglieder, die den Beitrag bezahlt ha-
ben. 

23) 1. In diesem Haus sind außer Katzen keine Tiere. 
2. Tiere, die gern den Mond anschauen, eignen sich als 

Schoßtiere. 
3. Wenn ich ein Tier verabscheue, so gehe ich ihm aus dem 

Weg. 
4. Es gibt kein fleischfressendes Tier, das nachts nicht 

heult. 
5. Jede Katze fängt Mäuse. 
6. Nur die Tiere in diesem Haus mögen mich gut leiden. 
7. Känguruhs eignen sich nicht als Schoßtiere. 
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8. Nur Fleischfresser fangen Mäuse. 
9. Ich verabscheue Tiere, die mich nicht leiden mögen. 

10. Tiere, die nachts heulen, schauen gern den Mond an. 
Also gehe ich Känguruhs aus dem Weg. (Lewis Carroll) 

Vokabular: 
T x : x ist ein Tier in diesem Haus. 
Kx: ist ein Katze. 
Ax: ist ein Tier, das gern den Mond anschaut. 
Sx: x ist ein Tier, das sich als Schoßtier eignet. 
Vx: x ist ein Tier, das ich verabscheue. 
Wx: x ist ein Tier, dem ich aus dem Weg gehe. 
Fx: x ist ein Fleischfresser. 
Nx: x ist ein Tier, das nachts heult. 
M x : x ist ein Tier, das Mäuse fängt. 
Gx: x ist ein Tier, das mich leiden mag. 
Px: x ist ein Känguruh 

24) Alle unschädlichen Spione reden 
Nicht alle Spione werden nicht ausgetauscht 
Alle Spione, die nicht reden, sind unschädlich, wenn sie 
ausgetauscht sind. 
Also gibt es einige Spione, die reden. 

25) 1. (Vx) [ - i Px - i (Qx v R x ) ] 
2 . - i ( 3 x ) - I [ ( P x A T X ) Sx] 
3. (Vx) (Px Tx) 
4. (Vx) Q x / (Vx) Sx 

26) 1. (Vx) [Ax —> I (Bx A I Cx)] 
2. - i (Vx) (Ax Dx) 
3. (Vx) [ (Cx Ex) A B x ] / (3x)Ex 

27) 1. (Vx) [ W x (Xx -> Y x ) ] 
2. (3x) [ X x A (Zx A - i Ax) ] 
3. (Vx) [ (Wx -> Yx) -> (Bx -»• Ax) ] 

/ ( 3 x ) ( Z x A - I B X ) 
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28) 1. (Vx) [(Lx v Mx) [ (Nx A O X ) V P X ] -» Q x ] 
2. (3x) (Mx A - i Lx) 
3 . (Vx) [ ( ( O x - > Q x ) A - I R X ) M x ] 
4. (3x) (Lx A - i Mx) 

/ Qx) (Nx -> -> Rx) 

29) 1. Alle Einbrecher, die nicht Linkshänder sind, werden 
überprüft. 

2. Alle überprüften Gäste sind Linkshänder oder es gibt 
keinen, der überprüft wird und nicht Linkshänder und 
nicht Gast ist. 

3. Rudolf wird überprüft, obwohl er kein Gast und kein 
Linkshänder ist. Also sind alle einbrechenden Gäste 
Linkshänder. 

30) 1. Alle Urner oder Luzerner sind Innerschweizer und 
Steuerzahler. 

2. Alle Innerschweizer oder Engländer, falls sie Frauen oder 
über 20 Jahre alt sind, sind stimmberechtigt. 
Also sind alle Urner, falls sie Frauen sind, stimmberech-
tigt. 

31) „Und es gibt folgewidrige Schlüsse aus wahren Prämissen. 
Beispiel: 
1. Wer mordet, übertritt das Gesetz. 
2. Schopenhauer hat nie gemordet. 
3. Also hat er nie das Gesetz übertreten. Daher genügt es 

auch nie, zur Widerlegung einer Ansicht die Folgewidrig-
keit ihrer Ableitung aufzuweisen: Jene Ansicht kann 
dennoch zutreffen, weil Inkonsequenz mit Wahrheit ver-
einbar ist." (E. Schneider, Logik für Juristen. Die Grund-
lagen der Denklehre und der Rechtsanwendung. (Mün-
chen 21972) 111-112) 

1) Prüfen Sie die Gültigkeit des Schlusses nach. 
2) Was braucht es zur Widerlegung einer Ansicht? 
3) Wie ist der Satz zu verstehen „Inkonsequenz ist mit 

Wahrheit vereinbar"? 
4) Woran ist der Verfasser gescheitert? 

32) „Der folgende Schluß gleicht dem Modus Barbara. 
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Wenn jemand eine Sache kauft, wird er zur Zahlung des 
Kaufpreises verpflichtet. 
A hat eine Sache gekauft. 
Also ist A zur Zahlung des Kaufpreises verpflichtet worden. 

Die Bedingung ,wenn jemand eine Sache kauft' kann als Mittelbe-
griff behandelt werden. Die Zahlungsverpflichtung wäre dann 
Prädikat und A Subjekt. Alle drei Urteile des Syllogismus sind 
allgemein bejahend." (E. Schneider, Logik für Juristen [siehe Bei-
spiel 31)] 149) 

1. Was heißt, der Schluß „gleicht" einem Modus Barbara und was 
versteht der Autor darunter? 

2. Zeigen Sie, was unser Autor an diesem Barbara für Subjekt, 
Prädikat und Kopula hält. 

3. Bilden Sie den Syllogismus mit dem vom Autor vorgeschlage-
nen Mittelterm und zeigen Sie, daß es kein Barbara ist. 

4.5 Die Verwendung mehrerer Quantoren 

Bisher wurde in allen Beispielen von einem Individuum jeweils 
eine oder mehrere Eigenschaften ausgesagt. Nicht selten könnte es 
wünschenswert sein, die gleiche Eigenschaft mehreren Individuen 
zuzuschreiben, etwa „Einige Katzen und Vögel sind Haustiere". 
Daher wollen wir uns mit den Grundzügen vertraut machen, die 
bei der Formalisierung mehrerer Individuen zu beachten sind. 

4.5.1 Der Bereich der Quantoren 

Aussagen von der Art „Wenn alle Wolkenkratzer versichert sind, 
dann sind einige Häuser versichert" beruhen auf der Vorausset-
zung, Wolkenkratzer seien Häuser. Das läßt sich so formalisieren: 

(Vx) (Wx -> Vx) (3x) (Hx A Vx) 

Diese Formalisierung ist zwar korrekt. Da es sich jedoch um eine 
Satzverknüpfung mit verschiedenen Subjekten handelt, ist es vor-
teilhaft, unterschiedliche Quantoren zu wählen. Verständlicher 
wäre demnach: 

(Vx) (Wx Vx) (3y) (Hy A Vy) 



188 4. Der elementare Prädikatenkalkül 

Weitere Beispiele: 

Wenn alle Straßen vereist sind, dann sind die Autobahnen vereist. 

(Vx) (Sx -»• Vx) (Vy) (Ay -»• Vy) 

Wenn alle Bewohner abwesend sind, dann brechen die Diebe ein 

(Vx) (Bx Ax) -»• (3y) (Dy A Ey) 

Einige Blätter sind grün, andere gelb 

(3x) (Bx A Gx) A (3y) (By A Hy) 

Wenn nicht alle Seile reißfest sind, dann sind einige Fasern nicht 
aus Nylon 

- I (Vx) (Sx -»• Rx) (3y) (Fy A Ny) 

Übung 4.5.1 
1) Wenn alle Lehrer musikalisch sind, dann sind es auch die 

Kindergärtnerinnen. 
2) Wenn ein Tanker versinkt, dann ist (ein Teil der) Natur 

zerstört. 

3) Wenn einige Vierbeiner langohrig sind, dann sind einige 
Langohrige Vierbeiner. 

4) Wenn kein Zug verspätet ist, dann verspäten sich nicht alle 
Reisenden. 

Bei der Formalisierung ist genau auf den Bereich der Quantoren zu 
achten. Quantoren haben die Aufgabe, Variable zu binden. Da 
müssen wir zunächst zeigen, was unter gebundenen und freien 
Variablen zu verstehen ist. 

In den Aussagen ,(Vx)Px', , (3x)Px' , ,(Vy)Py' ,(3z)Pz', ,(Vz)Pz' 
usw. sind die Variablen durch den jeweiligen Quantor gebunden. 
Hingegen nennen wir in ,(Vx)Pa', (3z) Px', (Vz)Af' usw. die Va-
riablen ,a', ,x', ,f' frei. 

Der Wirkungsbereich eines Quantors ist beschränkt. Ein Quantor 
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bindet nur den unmittelbar auf ihn folgenden Ausdruck bis zum 
nächsten logischen Zeichen. 

(1) (3x) Ax A Bx A Cx 

In (1) ist nur das ,x' bei ,A' gebunden, die beiden übrigen sind frei. 
Deshalb sollte die Formel weniger irreführend so geschrieben wer-
den: 
(2) (3x) Ax A Ba A Ca 

Sollte jedoch mit (1) beabsichtigt sein, alle Konjunktionsglieder zu 
binden, dann sind Klammern erforderlich und zwar so: 

(3) (3x) (Ax A Bx A Cx) 

Es ist ein beachtlicher Unterschied, ob es sich um gebundene oder 
freie Variable handelt. (2) und (3) ließen sich etwa so interpretie-
ren: 
(2) Es gibt etwas Anziehendes und Anita ist beliebt und char-
mant. 
(3) Es gibt etwas Anziehendes, das belgisch und charmant ist 
(z. B. die Stadt Brügge) 

Ähnlich auch 

(4) (Vx) (Ax -» Bx) Alles Anziehende ist bezaubernd 

(5) (Vx) Ax Bx Wenn etwas anziehend ist, dann ist Xaver 
ein Blumenhändler 

Gebundene Variable müssen eindeutig im Wirkungsbereich eines 
Quantors stehen. Bei mehreren Quantoren kann das einen Quan-
torenaustausch bedingen, der leicht übersehen wird. 

Beispiel: 
(6) Wenn etwas gestohlen wurde, dann sind die Hausbewohner 
entsetzt. 

(3x) Gx - (Vy) (Hy - Ey) 

Der Existenzquantor bezieht sich ausschließlich auf den Vorder-
satz der Implikation. Die Formalisierung ist korrekt. Ein ähnlicher 
Fall könnte jedoch so aussehen: 
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(7) Wenn etwas gestohlen wurde, dann wird es ersetzt. 

(3x)Gx -> Ex 

Wir wissen bereits, daß der Existenzquantor nur das ,x' von ,G' 
bindet, nicht aber das zweite ,x'. Eine solche Bindung ist jedoch 
beabsichtigt, denn das Pronomen es der zweiten Aussage ist rück-
bezüglich auf das Prädikat gestohlen in der ersten Aussage. Nach 
bewährtem Vorgehen könnten wir versucht sein, Klammern zu 
setzen. Damit hat sich jedoch unversehens eine Bedeutungsände-
rung eingeschlichen. Um den Sachverhalt von (7) korrekt wieder-
zugeben, müssen wir schreiben: 

(8) (Vx) (Gx ->• Ex) 

d.h. alles Gestohlene wird ersetzt. 

Sobald die Sätze komplexer sind, müssen weitere Vorsichtsmaß-
nahmen beachtet werden. Dazu die folgenden Beispiele: 
(9) Wenn jemand eingeladen ist, dann, wenn niemand mit dem 
Auto fahrbereit ist, verspätet sich jemand 

Vokabular: 
Px: x ist eine Person Ex: x ist eingeladen 
Py: y ist eine Person Fx: x ist fahrbereit 
Pz: z ist eine Person Vx: x verspätet sich 

Wir erhalten: 
(9) (3x) (Px A Ex) -> [(Vy) (Py Fy) -> (3z) (Pz A Vz)] 

Dazu drei allgemeine Bemerkungen: 
Erstens sind die eckigen Klammern wie bisher bedeutungsmäßig 
identisch mit den runden. Wahrnehmungspsychologisch läßt sich 
bei der Diskussion um Klammerverschiebungen leichter verfol-
gen, wohin sie versetzt werden. 

Zweitens dürfen beim Beispiel (9) die mit eckigen Klammern be-
setzten Stellen nicht klammerlos sein; es läge sonst eine mehrdeu-
tige Aussagenverknüpfung vor, analog dem Beispiel ,p —• q -» r', 
das einen unterschiedlichen Wahrheitswert annimmt, je nachdem, 
ob die zwei ersten oder die beiden letzten Variablen enger zusam-
mengefaßt werden. 



4.5 Die Verwendung mehrerer Quantoren 191 

Drittens ist es bei k o m p l e x e n Ausdrücken oft von Vortei l , den 
Bereich der R e d e auf die wesentl ich auftretenden Individuen ein-
zuschränken. W a s wesentl ich ist, kann erst best immt werden be im 
Überbl ick über die ganze Aufgabe. So erkennen wir , daß bei (9) 
überall von Personen gesprochen wird, so daß wir vereinfachend 
schreiben dürfen: 

(9') (3x) E x -»• ((Vy)—I Fy (3z) Vz) 

Die Einschränkung des Redebereiches richtet sich nach der Pro-
blemstellung. Bedingung ist einzig, die e inmal getroffene Ein-
schränkung im betreffenden K o n t e x t durchzuhalten. 

Sollte (9) so zu verstehen sein, daß sich unter der genannten Bedin-
gung der Eingeladene verspätet , dann müßte die Formal is ierung 
anders lauten, allerdings nicht so: 

(10) (3x) E x ->• [(Vy) ( - : Fy V x ) ] (falsch) 

Das letzte V o r k o m m e n der Var iablen ,x ' ist außerhalb des Berei-
ches des ersten Q u a n t o r s , , x ' ist also nicht gebunden. D e r Fehler 
darf jedoch nicht so korrigiert werden: 

(11) (3x) [ ( E x (Vy) ( - : Fy V x ) ] (falsch) 

Denn hier wiederholt sich die gleiche Sinnverschiebung, der wir 
bei (8) begegnet sind. Die korrekte Formalis ierung von (10) lautet 
so 

(Vx) [ E x (Vy) ( - 1 Fy V x ) ] 

M a n kann sich allgemein merken: Bezieht sich „ e i n i g e " oder „et -
w a s " im Vordersatz einer Impl ikat ion auf eine Stelle im Nachsa tz , 
so ist er sozusagen ausnahmslos mit e inem Al lquantor zu formal i -
sieren. 

Übung 4.5.1 

5) O b w o h l etwas verschoben ist, f inden sich die Besucher zu-
recht. 

6) W e n n etwas musikalisch ist, dann ist es hörenswert . 
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7) Wenn jemand ein Fahrzeuglenker ist, und ein Kind wird 
angefahren, dann ist er versichert. 

8) Wenn ein Musiker zum Konzert nicht erscheint, dann ist 
das Publikum enttäuscht, und er bezahlt eine Konventio-
nalstrafe. 

9) Wenn alle regieren und keiner gehorcht, dann sind alle (Re-
gierenden) geprellt. 

10) 1. Alle Tulpen sind Blumen. 
2. Wenn einige Blumen nicht rot sind, dann ist nichts Kata-

logisiertes eine Blume. 
3. Alle katalogisierten Pflanzen sind Tulpen. 
4. Also ist jede nicht rote Tulpe, wenn sie eine Pflanze ist, 

nicht katalogisiert. 

11) 1. Alle Urkunden sind unterschrieben. 
2. Alle rechtsgültigen Dokumente sind Urkunden. 
3. Wenn einige Dokumente unterschrieben sind, dann ist 

alles Unterschriebene verbindlich. 
4. Also, wenn einige Urkunden nicht verbindlich sind, dann 

ist alles unterschrieben oder es ist nicht der Fall, daß die 
Dokumente rechtsgültig sind. 

4.5.2 Quantoren und ihre Distribution 

Einige erforderliche Einschränkungen lassen sich inhaltlich ver-
deutlichen. Wenn es weiße Schwäne gibt, dann gibt es etwas Wei-
ßes und es gibt auch Schwäne. Das läßt sich so ausdrücken: 

(3x) (Wx A Sx) (3x)Wx A (3x)Sx 

Wenn es aber etwas Weißes gibt und auch Schwäne, darf man 
daraus schließen, daß es weiße Schwäne gibt? Diese Umkehrung 
kann gewiß nicht allgemeingültig sein; es genügt, statt „weiß" und 
„Schwan" die harmlose Ersetzung „viereckig" und „Kreis" vor-
zunehmen, und der Widerspruch wird deutlich erkennbar. Die-
sem Fehler wird in der Deduktion vorgebeugt durch die Vor-
schrift, bei einer 3-Einsetzung dürfe nicht zweimal dieselbe Kon-
stante verwendet werden. Die wichtigsten Vorschriften der Quan-
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torendistribution sind in den folgenden Formeln zusammenge-
faßt: 

1. (3x) (Px A Qx) (3x)Px A (3x)Qx 
2. (3x) (Px v Qx) <-• (3x) Px v (3x) Qx 
3. (Vx) (Px A Qx) <-• (Vx)Px A (Vx)Qx 
4. (Vx) (Px -» Qx) (Vx) Px -> (Vx) Qx 
5. [(3x) Px (3x) Qx] (3x) (Px Qx) 
6. (Vx) Px v (Vx) Qx (Vx) (Px v Qx) 

Man beachte, daß nur die Formeln 2. und 3. Äquivalenzen sind, 
alle übrigen sind Implikationen. 

Die Distributionsgesetze gelten auch für zusammengesetzte Aus-
drücke. Dazu zwei Beispiele: 

(1) Jeder Koffer hat eine Ausdehnung und ein Gewicht 
(Vx) [Kx (Ax A Gx)] 

Die Struktur dieser Aussage ist dieselbe wie bei 3., genauer: 
,p —• (q A r)'. Sie läßt sich umformen über die Implikation 
, I p v (q A r)' und Distribution ,( I p v q) A ( L p v r)' zu 
,(p -» q) A (p —> r)'. Deshalb gilt auch 

(1) (Vx) [Kx -> (Ax A Gx)] 
(Vx) (Kx -* Ax) A (Vx) (Kx -> Gx) 

In gleicher Weise wird die Distribution wie bei 2. eingesetzt für das 
folgende Beispiel: 

(2) Es gibt rote oder duftende Blumen 
(3x) [Bx A (Rx v Dx)] <-> 
(3x) (Bx A Rx) v (3x) (Bx A D X ) 

4.5.3 Pränexe Normalform 

Wir gehen zunächst von folgender Definition aus: Bei der Formel 

(Vx) [P X Qx] 

nennen wir den Quantor — oder gegebenenfalls die Quantoren — 
Präfix, den anschließenden Klammerausdruck Matrix, also 

(Präfix) [Matrix] 
7 Bucher , Logik 
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Bevor in einer Formel mit mehreren Quantoren Quantorenelimi-
nationen vorgenommen werden, ist es zweckmäßig, die Quanto-
ren als Präfix zu schreiben, also pränexe Normalformen herzustel-
len. Eine pränexe Normalform liegt vor, wenn 

— die Quantoren als Präfix aufgeführt sind, 
— kein Quantor verneint ist, 
— der Wirkungsbereich der Quantoren auf die ganze Matrix aus-

gedehnt ist. 

Die folgenden Formeln sind nicht in pränexer Normalform: 

1. (Vx)Px Qa 
2. (Vx)Px - f (3y) Qy 
3. (Vx)-n (Vy) (Px Qy) 
4. (Vx) (Px - (Vy) Qy) 

Bei 1. ist der Wirkungsbereich des Quantors nicht auf ,Qa' ausge-
dehnt, bei 2. nicht auf den y-Quantor, bei 3. ist ein Quantor ne-
giert und bei 4. ist die Matrix nicht quantorenfrei. 

Bei der Bildung der pränexen Normalform (PN) werden zuerst 
negierte Quantoren ausgetauscht. Aus l (Vx) . . . ' ergibt sich 
,(3x)—i . . . ' und aus i (3x) . . . ' entsprechend ,(Vx)—i.. . ' Nach 
diesen Schritten dürfen die durch Konjunktion oder Disjunktion 
verbundenen Quantoren als Präfix vorangestellt werden. 

Beispiele: 
1) 1. (3x)Px A - 1 (3x)Qy 

2. (3x)Px A ( V y ) - i Q y 1. QA 
3. (3x) (Vy) (Px A Qy) 2, PN 

2) 1. (Vx) Px v - 1 (3y) Qy v - i (Vz) - | Rz 
2. (Vx)Px v (Vy) -1 Qy v (3z)-|~i Rz 1, QA 

3. (Vx) (Vy) (3z) (Px v n Q y v Rz) 2, PN 

Negierte Formeln sind zuerst mit Hilfe von De M . aufzulösen. 

Beispiele: 
3) 1 . - i (p v (Vx)Px) 

2 . - l p A - l (Vx) Px 1, D e M . 
3. - i p A ( 3 x ) - i P x 2, QA 
4. (3x) ( - 1 p A - i Px) 3, PN 
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4) 1. - i (3x) (Px A (3y) Qy) v (Vz) Rz 
2. (Vx)-i (Px A (3y) Qy) v (3z)—i Rz 
3. (Vx) (-1 Px v - i (3y) Qy) v (3z)—i Rz 
4. (Vx) (-1 Px v (Vy)-i Qy) v (3z)—i Rz 
5. (Vx) (Vy) (3z) (-1 Px v - I Qy v - i Rz) 

Übung 4.5.3 

Stellen Sie pränexe Normalformen her: 

1) (Vx) ((Px -> Qx) v (3y) (Ry A Sy)) 
2) (3x) ((Px A Qx) A (3y) (Py v (Vz) (Fz -» Gz)) 
3) - i ((p v q) A (Vx)Px) / (3x) (Px ~i (p v q)) 
4) 1 (Vx) i (3y) ( i (p A (3z) Az) 

/ (3x) (3y) (Vz) (Az ~i p) 

Dagegen ist bei der Implikation der Vordersatz mit Vorsicht um-
zuformen. Die Implikationsregel verhilft uns zu einer Disjunktion, 
wobei die folgenden zwei Fälle der Negation zu unterscheiden 
sind: 

1) 1. (Vx) (Px - (3y)Qy) 
2. (Vx) ( i Px v (3y) Qy) 
3. (Vx) (3y) (Px - Qy) 

2) 1. (Vx)Px - (3y)Qy 
2. - i (Vx) Px v (3y) Qy 
3. (3x) I Px v (3y) Qy 
4. (3x) (3y) (Px ^ Qy) 

Quantoren lassen sich bei Konjunktionen, Disjunktionen sowie 
beim Nachsatz einer Implikation direkt herausholen. Hingegen 
beim Vordersatz einer Implikation führt die pränexe Normalform 
zu einem Quantorenaustausch: 

(Vx) Px -> p <-> (3x) (Px p) 
(3x) Px p <-• (Vx) (Px p) 

Die Kenntnis der pränexen Normalform ist deshalb unerläßlich, 
weil eine V- oder 3-Ersetzung nur über ganze Formeln ausgeführt 
werden darf. 

1, QA 
2, De M. 
3, QA 
4, PN 

7 * 
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Übung 4.5.3 

5) (Vx)Ax p 
6) (3x)Ax p 
7) i [(Vx)Px -» (Vy)Qy] 
8) (3x)Ax -> [(Vy)By -» (3z) Cz] 

/ (Vx) (3y) (3z) f A x (By -» Cz)1 



5. Die Relationen 

Im Jahre 1936 hat Church bewiesen, daß der zweistellige Prädika-
tenkalkül kein allgemeines Entscheidungsverfahren kennt. Unter 
einem Entscheidungsverfahren verstehen wir ein eindeutiges Vor-
gehen, das aufgrund einer endlichen Anzahl von Schritten die All-
gemeingültigkeit feststellen läßt. Ein solches Entscheidungsver-
fahren ist für den Aussagenkalkül mit der Matrizenmethode oder 
der Distribution gegeben. Wir werden noch eine Sonderform se-
mantischer Tafeln einführen, die ein Entscheidungsverfahren für 
den einstelligen Prädikatenkalkül liefert. Bei den Relationen ist 
der Nachweis für die Nicht-Allgemeingültigkeit nicht zu erbrin-
gen, und deshalb ist es berechtigt, von den Relationen gesondert 
zu reden. Abgesehen von diesem wichtigen theoretischen Ge-
sichtspunkt ist die Relationslogik eine natürliche Ausweitung des 
Prädikatenkalküls. 

Wir haben öfters angedeutet, daß nicht alle zusammengesetzten 
Ausdrücke als Verknüpfung von Aussagefunktionen darstellbar 
sind. Erinnern wir uns an die Art der Beispiele wie 

(1) Othmar und Josef sind Musiker 
(2) Othmar und Josef sind Brüder 

Die Aussage (1) läßt sich als Konjunktion zweier Aussagen deuten 
und kann in dieser Form vom Aussagenkalkül behandelt werden. 
Hingegen läßt die Aussage (2) eine solche Interpretation nicht zu. 
Überdies scheint es nicht ganz einfach, anzugeben, worin sich (2) 
von (1) abhebt, da die beiden Sätze scheinbar gleich gebaut sind. 
Aber diesen Unterschied müssen wir herausstellen. 

5.1 Ontologische Voraussetzungen 

In einer durch Konjunktion verbundenen Aussagenverknüpfung 
wird zwei Subjekten dasselbe Prädikat zugesprochen. Seit der Re-
naissance bis in die neueste Zeit hinein war die Verallgemeinerung 
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verbreitet, ein Urteil lasse sich nur in Subjekt-Prädikatform aus-
drücken. Man konnte sich für diese Auffassung neben der ver-
meintlich klaren Einsicht auf bedeutende Philosophen stützen, 
selbst auf Kant, der vom Urteil sagt, es sei jener Verstandesakt, 
worin zwei Begriffe miteinander verbunden werden. Gemäß die-
ser Auffassung besteht also ein Urteilsakt grundsätzlich darin, daß 
einem Subjekt ein Prädikat zu- oder abgesprochen wird. Um die 
Allgemeingültigkeit dieses Schemas zu demonstrieren, sind jene 
Aussagen, die sich nicht einordnen lassen wollten, gewaltsam um-
geformt worden. Aus „Sokrates läuft" und „es regnet" wurden 
„Sokrates ist laufend" und „Regen ist daseiend" (Vgl. J . Gredt, 
Die aristotelisch-thomistische Philosophie, Bd. 1, Logik und Na-
turphilosophie (Freiburg 1935) 39). Das ist die Folge einer be-
stimmten philosophischen Anschauung, nämlich der aristoteli-
schen Metaphysik. 

Alle Probleme lassen sich metaphysisch analysieren. Wenn wir es 
jedoch für den Aussagen- und Prädikatenkalkül unterlassen haben 
auf die metaphysische Grundlage einzugehen, so scheint auch jetzt 
kein Grund vorzuliegen, anders zu handeln. Wir kommen zu-
nächst ohne metaphysische Analyse weiter. Was uns zu diesem 
Weg ermutigt, das ist der Mißerfolg von Aristoteles. Bei all seiner 
Einsicht gelang ihm eine logische Analyse der Relationen nicht, so 
daß er schließlich glaubte, für die Relationen eine andere meta-
physische Basis postulieren zu müssen als für die Syllogismen. Das 
hat zu höchst verworrenen und seltsamen Auffassungen geführt. 
Inzwischen geben traditionelle Kreise wenigstens für die Theolo-
gie zu, die Erfahrung sprenge die antike Aufteilung der Wirklich-
keit in die Substanz als das Eigentliche und die Akzidentien als das 
bloß Zufällige (Vgl. J . Ratzinger, Einführung in das Christentum 
(München 1968) 143). 

Nach Aristoteles besteht die ganze Wirklichkeit aus Substanzen 
mit ihren Akzidentien. Innerhalb der Sprache werden die Substan-
zen durch Subjekte ausgedrückt, die Akzidentien durch Prädikate. 
„Der Tisch ist weiß" besteht aus dem Subjekt Tisch; das Subjekt 
ist eine Substanz, von der das Prädikat „weiß" ausgesagt wird. 
Das Prädikat ist ein Akzidens des Tisches, das ebenso gut rot oder 
blau sein könnte, ohne den Tisch wesentlich zu verändern. Von 
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einer Substanz werden also Akzidentien ausgesagt. Bei der Frage, 
ob die Relation eine Substanz oder ein Akzidens sei, entschließt 
sich Aristoteles, wenn auch mit schwerem Herzen, für das Akzi-
dens. Freilich unterläßt er es nicht, die besondere Art hervorzuhe-
ben. Die Relation nimmt eine Sonderstellung ein, ihr Sein ist be-
sonders schwach. Was dieses „schwache Sein" jedoch heißen soll, 
das ist bei weitem nicht klar. Aber nachdem die mittelalterliche 
Theologie auf dieser Grundlage die Relationen im Zusammen-
hang mit dem Trinitätsdogma weiter verfolgte, da begann sich 
allmählich der Eindruck zu verfestigen, es handle sich um ein theo-
logisches Spezialproblem. Historisch gesehen sind die Relationen 
erst von Leibniz etwas ausführlicher untersucht worden. Unglück-
licherweise sind seine Arbeiten fast bis in unser Jahrhundert weit-
gehend unbeachtet geblieben, so daß man De Morgan als den 
eigentlichen Begründer der Relationslogik anzusehen hat. Ein 
weiterer Förderer war Peirce und vor allem Schröder (1841-1902), 
der den dritten Band (1895) ausschließlich den Relationen wid-
met. Demgegenüber hält Maritain noch 1946 die Relationen für 
das Ergebnis einer Konfusion in der Analyse zwischen logischem 
und wirklichem Subjekt, worauf namentlich Leibniz und Russell 
hereingefallen seien. 

5.2 Die heutige Auffassung der Relationen 

Wir stehen wieder vor ähnlichen Grenzen, wie sie uns beim Über-
gang vom Aussagenkalkül zum Prädikatenkalkül bewußt wurden. 
Es gibt Aussagen, deren Struktur sich innerhalb eines bestimmten 
Systems nicht hinreichend klar ausdrücken lassen. Dazu drei Bei-
spiele: 
(1) Heidi spielt Klavier und Josef singt 
(2) Heidi spielt Klavier und singt 
(3) Köln liegt zwischen Basel und Hamburg 

Das Beispiel (1) ist im Aussagenkalkül problemlos formulierbar; 
,H A J ' . Die Art des Beispiels (2) gab Anlaß, den Prädikatenkalkül 
einzuführen ,Kh A Sh'. Beispiel (3) stellt eine einfache Relation 
dar. Wir könnten versuchen, das Beispiel nach dem Rat der tradi-
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tionellen Philosophie so umzuformen: „Köln ist zwischen Basel 
und Hamburg liegend". Offensichtlich wäre „zwischen" ein 
Funktor, der sich nicht auf einen der bisher besprochenen Funkto-
ren zurückführen ließe. Wir hätten also: 

(3') (Köln ist) zwischen (Basel und Hamburg liegend) 
(3') K zwischen B 

Bei der ausgefallenen Formulierung von (3') wollen wir uns nicht 
aufhalten. Das Ungewohnte ist kein ausreichendes Kriterium, um 
etwas abzulehnen. Hingegen ist „Basel und Hamburg" als einzel-
nes Prädikat aufgefaßt zu undifferenziert. Zudem drückt nach tra-
ditioneller Auffassung das Prädikat eine mögliche Eigenschaft des 
Attributes aus. Hier wirkt es indessen reichlich befremdend, „Ba-
sel und Hamburg" als Eigenschaft von Köln anzusehen. Aus die-
ser Sackgasse vermochte sich die traditionelle Analyse nicht zu 
befreien. 

Gehen wir von den zwei Beispielen aus: 

(4) Franz und Othmar sind musikalisch 
(5) Franz und Othmar sind verwandt 

Die wesentlich neue Einsicht besteht darin, daß in (4) zwar den 
beiden Individuen die gleiche Eigenschaft zugesprochen wird; bei 
(5) ist aber nicht von einer Eigenschaft die Rede, sondern von 
einem Verhältnis, in dem die beiden Individuen zueinander ste-
hen. Das dürfte in uns die Vermutung aufkommen lassen, daß es 
beim Urteilen nicht immer darum geht, den Subjekten Prädikate 
zu- oder abzusprechen; nicht selten steht die Frage im Vorder-
grund, in welcher Beziehung Dinge zueinander stehen. Diese Sicht 
ist es, die die Beispiele (4) und (5) voneinander unterscheidet. Die 
systematische Untersuchung solcher Beziehungen macht den In-
halt der Relationslogik aus. Wir halten also fest, daß Relationen 
nicht Eigenschaften von Individuen aussagen, sondern die Bezie-
hungen unter den Individuen angeben. 

Im Alltag wie in der Wissenschaft sind solche Beziehungen minde-
stens so bedeutsam, wie das Zu- oder Absprechen von Eigenschaf-
ten. Ein Gegenstand kann über, unter, neben einem andern liegen; 
ein Mensch kann in freundschaftlichen, verwandtschaftlichen, be-
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ruflichen Beziehungen zu einem andern stehen; ein Gegenstand 
kann einer Person gehören, eine Person kann Verfügungsrechte 
über gewisse Gegenstände haben usw. usw. Keine Wissenschaft 
kommt ohne solche Beziehungen aus, erst recht nicht Philosophie 
oder Theologie. Das wurde bis vor hundert Jahren übersehen, was 
den Entdecker der Relationslogik zum überraschenden Urteil über 
die Vergangenheit veranlaßte: Die traditionelle Logik — d. h. das, 
was man in Frankreich oder Deutschland seit der Mitte des 
16. Jahrhunderts für Logik hält —, so stellt De Morgan verblüffend 
fest, reicht nicht aus, den elementaren, einsichtigen Sachverhalt zu 
beweisen: „Wenn alle Pferde Tiere sind, dann sind auch alle Pfer-
deköpfe Tierköpfe". Tatsächlich läßt sich dieser harmlose Schluß 
nicht auf die einstellige Prädikatenlogik zurückführen. Deshalb 
sind derartige Beispiele in den gängigen Schulbüchern kurzerhand 
verschwiegen worden. 

Die Überlegenheit der heutigen Relationsauffassung ist dreifach: 

- Wir umgehen Sprachverdrehungen. „Basel und Hamburg" ist 
kein Prädikat, auch nicht ein komplexes. 

- Die logische Untersuchung der Relationen ist durchführbar un-
ter den gleichen metaphysischen Voraussetzungen, die für die 
Aussagen- und Prädikatenlogik gemacht wurden. 

- Beispiele von der Art „Tier-Tierkopf" lassen sich zufriedenstel-
lend analysieren. 

5.3 Die Symbolisierung der Relationen 

Zweifellos stellt schon die einfache Prädikataussage eine Relation 
dar, also die Beziehung zwischen einem Ding und einer Eigen-
schaft. Doch wir behalten uns den Namen „Relation" für eine 
Beziehung vor, die mindestens zwischen zwei Dingen besteht. 

5.3.1 Symbolisierung von Konstanten 

Zur Symbolisierung verwenden wir eine Schreibweise, die auf der 
Prädikatenlogik aufgebaut ist. Im Schriftbild unterscheiden sich 
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Relationen bestenfalls durch die Besetzung mehrerer Individuen-
stellen. Während ,Px' ein Prädikatausdruck ist für Sätze wie: 

Der Tisch ist blau 
Die Rübe ist roh 
Die Drossel ist flügge 

so bezeichnen wir mit ,Rxy' eine Beziehung zwischen ,x' und ,y'. 
Beispiele 

Trm Ramseier trinkt Milch 
Lbc Bernhard liebt Claudia 
Fhv Hans fährt einen Volvo 

Wir sprechen hier von zweistelligen oder dyadischen Relationen. 
Selbstverständlich gibt es auch drei- und mehrstellige Relationen 
wie: 

Sokn Othmar schickt Käthy einen Nelkenstrauß. 
Eabsd Albert erpreßt Bernhard wegen Steuerhinterzie-

hung zum dritten Mal. 

Übung 5.3.1 

Formalisieren Sie: 
1. Albert telephoniert Sylvia. 
2. Paulus schrieb den Römerbrief. 
3. Lausanne ist nicht größer als Paris. 
4. Rita besuchte mich. 
5. Einstein verwirrte die Zeitgenossen durch die Relativitäts-

theorie. 
6. Japan eroberte den Markt mit den Kleinwagen. 
7. Franz führte Ruth nicht in den Club ein. 
8. Köln liegt zwischen Basel und Hamburg. 
9. Arnold war wütend über Bernhard wegen Claudia. 

10. Wenn der Vater dem kleinen Mathias ein Stück Fleisch gibt, so 
gibt es Mathias dem Hund weiter. 
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5.3.2 Symbolisierung mit einem Quantor 

Es ändert sich prinzipiell nichts, ob wir es mit tri- (drei-), tetradi-
schen (vierstelligen-) oder noch höherstelligen Relationen zu tun 
haben. Die Argumente werden der Reihe nach aufgeführt. Dabei 
können eine oder mehrere Individuenstellen durch Quantoren ge-
bunden sein. Beispiele mit nur einem Quantor: 

1. Alle Kapitäne sehen den Mond (Vx) (Kx - * Sxm) 
2. Einige Amerikaner besuchen 

das Rütli (3x) (Ax A Bxr) 
3. Wenige Touristen kennen das 

Matterhorn nicht (3x) (Tx A —I Kxm) 

Übung 5.3.2 

Formalisieren Sie: 
1. Alle Jazzfans lieben Armstrong. 
2. Franz kennt jemanden, den er bewundert. 
3. Franz kennt jemanden, der ihn bewundert. 
4. Kein Gesundheitsfanatiker trinkt Coca Cola. 
5. Jeder, der größer ist als Alice, ist nicht kleiner als Beatrice. 

5.3.3 Symbolisierung mehrerer Quantoren 

Die Übertragung aus der Umgangssprache hat bei den Relationen 
noch eine besondere Tücke. Statt zu sagen „a sieht b " kann der 
gleiche Sachverhalt auch mit „b wird von a gesehen" ausgedrückt 
werden. Da die Passivform die Struktur nicht verändert, müssen 
beide Sachverhalte gleich formalisiert werden. Allerdings ist mit 
der Passivform bisweilen der Nebeneffekt verbunden, daß gewisse 
Individuenstellen unerwähnt bleiben. Sie gelten jeweils als „selbst-
verständlich", wie etwa im Beispiel: „a wurde gesehen", was un-
gekürzt so lauten müßte: „a wurde von jemandem gesehen". Die 
Aktivform zeigt deutlicher an, ob es sich um eine zwei-, drei- oder 
noch mehrstelligere Relation handelt. Manchmal ist es unum-
gänglich, die versteckten Relationsargumente sichtbar zu machen. 
Auf jeden Fall kann jede Formalisierung einer Relation zweifach 
in die Alltagssprache übersetzt werden, aktiv oder passiv. 
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Die Maschine erschüttert alles 
Alles wird von der Maschine erschüttert 
Die Maschine erschüttert etwas. 
Etwas wird von der Maschine erschüttert. 
Alles erschüttert die Maschine 
Die Maschine wird von allem erschüttert 
Etwas erschüttert die Maschine 
Die Maschine wird von etwas erschüttert 

Die zweite Individuenstelle kann ebenfalls quantifiziert werden: 

1. (Vx) (Vy)Exy Alles erschüttert alles. 
2. (Vy) (Vx)Exy Alles wird von allem 

erschüttert. 
3. (3x) (3y)Exy Etwas erschüttert etwas. 
4. (3y) (3x) Exy Etwas wird von etwas 

erschüttert. 
5. —i (Vx) (Vy) Exy Nicht alles erschüttert alles. 
6. - i (Vy) (Vx) Exy Nicht alles wird von allem 

erschüttert. 

Bis hierher dürfen die Quantoren beliebig umgestellt werden. 
Doch gilt dies nicht mehr für die beiden folgenden Fälle: 

7. (Vx) (3y)Exy Alles erschüttert einiges 
8. (3y) (Vx)Exy Einiges wird von allem 

erschüttert 

Die beiden Formeln 7. und 8. zeigen eine große Ähnlichkeit. Indes-
sen bringen die vertauschten Quantoren eine völlig verschiedene 
Bedeutung mit sich. Das läßt sich intuitiv erfassen am Beispiel der 
Relation Liebe. 

Die Formel 7. besagt dann, daß alle Menschen irgend einen Men-
schen lieben, also etwa: Jeder Mensch liebt seine Mutter. 

Formel 8. dagegen besagt, daß es einen Menschen gibt, der von 
allen Menschen geliebt wird, etwa der heilige Franziskus. 

Trotz des beachtlichen Unterschieds sind die beiden Formeln 
nicht unabhängig voneinander; die eine läßt sich aus der andern 

(Vx) Emx 

(3x) Emx 

(Vx) Exm 

(3x)Exm 
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folgern, jedoch nicht umgekehrt. Genauer: Aus 8. folgt 7., aber aus 
7. folgt nicht 8. Das sei kurz aufgezeigt. 

(Vy) (3x)Rxy 1. (3x) (Vy) Rxy /.-. 1 
2. (Vy) Ray - 3 
3. Rab - V 
4. (3x) Rxb + 3 
5. (Vy) (3x) Rxy + V 

Die umgekehrte Ableitung ist nicht gültig. Wir wollen sehen wes-
halb: 

1. (Vx) (3y) Rxy / (3y) (Vx)Rxy 
2. (3y) Ray - V 
3. Rab - 3 
4. (Vx) Rxb unerlaubt 

Bei 3. haben wir ,b' aus einer 3-Elimination abgeleitet. Dann dür-
fen wir nicht anschließend die Relationskonstante ,a' durch einen 
Allquantor binden. Im Schritt 4. fallen wir zwar nicht in den Feh-
ler, einen durch existenzielle Einsetzung erhaltenen Ausdruck 
- nämlich ,b' - zu verallgemeinern. Aber solange ,b' nicht gebun-
den ist, darf auch ,a' nicht universell verallgemeinert werden. Da 
also ,b' von einem Existenzquantor abgeleitet wurde, kann es 
nur wieder durch einen Existenzquantor gebunden werden, so daß 
wir als einzigen Ausweg wieder auf Schritt 2 zurückfallen. Es gilt 
deshalb: 

(3x) (Vy) Rxy (Vy) (3x)Rxy 

Was hier formal abgehandelt wurde, läßt sich intuitiv verständlich 
machen. Solange bei Relationen eine Argumentstelle als Konstan-
te vorhanden ist, sind Argumentvertauschungen harmlos. Bei-
spiel: 

Alle lesen den Nebelspalter 
Also wird der Nebelspalter von allen gelesen 

(Vx)Lxn -> (Vx)Lnx korrekt 

Der Schluß ist richtig. Gefährlich wird die Lage, wie unzählige, 
falsch gelöste philosophische Beispiele zeigen, sobald das zweite 
Relationsargument mit einem Quantor versehen ist. Analog zum 
Nebelspalterbeispiel: 
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Alle lesen etwas (eine bestimmte Zeitschrift) 
Also wird etwas (eine bestimmte Zeitschrift) von allen gele-
sen 

(Vx) (3y) Lxy (3y) (Vx)Lxy (falsch) 

Der Unterschied läßt sich so skizzieren: 

Menschen Nebelspalter Menschen Zeitschriften 

Aus der Tatsache, daß jeder eine Zeitung liest, folgt nicht, daß ein 
und dieselbe Zeitung von allen gelesen wird. 

Beispiele zur Formalisierung 
1. Alle Nachtwächter kennen einige Sternbilder 

(Vx) [ x sind Nachtwächter —> es gibt einige Sternbilder, 
und die x kennen sie] 

(Vx) [ N x -»• es gibt einige y, die Sternbilder sind, und die x 
kennen y] 

(Vx) [ N x (3y) (Sy A Kxy)] 
Nx: x ist Nachtwächter 
Sy: y ist ein Sternbild 
Kxy: x kennt y 

2. Einige Händler tauschen alle Modelle ein 
(3x) [ x sind Händler A für alle Modelle gilt: die x tauschen 

sie ein] 
(3x) [Hx A für alle y, die Modelle sind, gilt: die x tauschen 

die y ein] 
(3x) [Hx A (Vy) (My Txy) ] 

Hx: x ist Händler 
My: y ist Modell 
Txy: x tauscht y ein 

3. Jeder Jäger sieht einige Hasen 
(Vx) [x sind Jäger es gibt Hasen, und die x sehen die 

Hasen] 
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(Vx) [ Jx -» es gibt y, die Hasen sind, und die x sehen die y] 
(Vx) [ Jx - (3y) (Hy A Sxy)] 

Jx: x ist Jäger 
Hy: y ist Hase 
Sxy: x sieht y 

4. Jeder liebt sich selbst 
(Vx) (x sind Personen ->• die x lieben sich selbst) 
(Vx) (Px —• die x lieben die x) 
(Vx) (Px -> Lxx) 

Px: x ist Person 
Lxx: x liebt x 

Übung 5.3.3 

Formalisieren Sie und geben Sie das benutzte Vokabular an: 
1. Einige Erdbeben verursachen Schaden. 
2. Viele Bauern ernten keine Kartoffeln. 
3. Alle Gärtner begießen die Blumen. 
4. Jeder Arbeiter verdient seinen Lohn. 
5. Alle Angestellten benutzen den Lift. 
6. Nur die Angestellten benutzen den Lift. 
7. Die Angestellten müssen den Lift benutzen. 
8. Wenn du dir selbst hilfst, so hilft dir Gott. 

5.3.4 Die vollständige Aufzählung der Argumentstellen 

Um nicht auf die metaphysische Frage, wodurch sich Prädikate 
von Relationen unterscheiden, eingehen zu müssen, spricht man 
in der Logik auch von ein- oder mehrstelligen Prädikaten. Nach 
dem erfreulichen Prinzip, wenn immer möglich die am wenigsten 
aufwendige Sprache für die Formalisierung zu wählen—die Aussa-
genlogik gilt als einfacher gegenüber der einstelligen Prädikaten-
logik, diese als einfacher verglichen mit der zweistelligen usw. — 
können wir oft in der mehrstelligen Prädikatenlogik eine oder 
mehrere Stellen unterdrücken. Wird bei einer zweistelligen eine 
Stelle nicht formalisiert, so hat in der Sprache der traditionellen 
Terminologie anscheinend ein Übergang von einer Relation auf 
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ein Prädikat stattgefunden. Was immer das heißen mag, metaphy-
sische Fragen sollen uns weiterhin nicht beunruhigen. Wir sind 
zunächst eher daran interessiert, herauszufinden, wie viele Stellen 
formalisiert werden müssen. Betrachten wir dazu die folgenden 
Beispiele: 

(1) Alfons wird bewundert Ba 
(2) Alfons wird vom Nachbarn bewundert Ban 
(3) Alfons wird vom Nachbarn beim Banf 

Frühturnen bewundert 

Ist nun „bewundern" ein-, zwei- oder sogar dreistellig? Aufgrund 
von Beispiel (3) offensichtlich dreistellig. Dennoch sind die 
Schreibweisen von (2) und sogar (1) korrekt. Es gilt die allgemeine 
Regel, aufwendige Formalisierungen zu vermeiden, die voraus-
sichtlich in der anschließenden logischen Überlegung nicht benö-
tigt werden. 

Beispiel 1 
Alfons wird vom Nachbarn beim Frühturnen bewundert 
Also wird jemand vom Nachbarn beim Frühturnen bewun-
dert 

Für die Deduktion schlagen wir zwei Lösungswege vor: 

Der Lösungsweg a) ist aufwendig. Von den drei aufgezählten Ar-
gumentstellen bleiben zwei von der Deduktion unberührt. Des-
halb ist die Deduktion b) vorzuziehen, b) ist eine Reduktion auf 
das streng Notwendige. 

a) 1. Banf 
2. (3x) Bxnf 

b) 1. Ba 
2. (3x)Bx 

turnen bewundert 
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Beispiel 2 
Alfons wird vom Nachbarn beim Frühturnen bewundert 
Also wird jemand von jemandem bei einer Tätigkeit be-
wundert 
1. Banf /••• (3x) (3y) (3z) (Px A Py A TZ A Bxyz) 
2. (3z) Banz 
3. (3y) (3z) Bayz 
4. (3x) (3y) (3z) Bxyz 

Px: x ist eine Person 
Py: y ist eine Person 
Tz: z ist eine Tätigkeit 

Bxyz: x wird von y bewundert we-
gen z 

Die Formalisierung von Beispiel 2 kann nicht vereinfacht werden 
mit Ausnahme, daß beim Resultat die ,Px', ,Py' und ,Tz' weggelas-
sen werden. 

Beispiel 3 
Der Nachbar hat Alfons beim Frühturnen bewundert, und 
die Mutter hat Beatrice beim Frühturnen bewundert 
Also sind beide von jemandem beim Frühturnen bewundert 
worden 
1. Bna A Bmb /.-. (3x) (3y) (Bxa A Byb) 

Es besteht kein Anlaß, bei Beispiel 3 ein zusätzliches Prädikat für 
„Frühturnen" einzuführen. 

Bisweilen lassen sich durch sprachliche Umformungen zweistelli-
ge Prädikate auf einstellige reduzieren. 

(4) Jakob trinkt Kaffee T jk 
(5) Jakob ist Kaffeetrinker Kj 

Doch wer bei solchen Reduktionen auf die Elemente natürlicher 
Sprachstrukturen zu stoßen hofft, der täuscht sich insofern, als 
dieses Vorgehen weder allgemein gültig noch allgemein wünsch-
bar ist. 



210 5. Die Relationen 

Übung 5.3.4 

Formalisieren Sie alle Argumentstellen: 
1. Adelheid spielt. 
2. Adelheid spielt Tennis. 
3. Adelheid spielt Tennis gegen Berta. 
4. Adelheid spielt Tennis gegen Berta in den Europameisterschaf-

ten. 
5. Einige reden. 
6. Alle reden mit einigen. 
7. Alle reden mit einigen über den Verlust. 
8. Alle reden mit einigen über den Verlust aller Aktien. 

5.3.5 Der Genitiv 

Wir reden von Werners Auto, von Monikas Pferd oder von Hilde-
gards Blumen. Der Genitiv dient häufig zur Bezeichnung einer 
Besitzangabe. Dabei wird eine Beziehung ausgesprochen zwischen 
einer Person und einem Ding. Im allgemeinen benutzen wir dazu 
das Wort „haben" im Sinne von „Werner hat einen Jaguar". 
Dementsprechend sind folgende Formalisierungen zugelassen: 

(1) Werners Jaguar Hwj 
(2) Monikas Pferd Hmp 
(3) Hildegards Blumen Hhb 

Mit dem Wort „haben" braucht jedoch nicht unbedingt ein Besitz 
ausgedrückt zu sein. Auch Sätze von der folgenden Art sind geläu-
fig: 
(4) Mein Fernsehapparat hat Röhren Hfr 
(5) Wolfgang hat Pech Hwp 
(6) Walter hat Geistesgegenwart Hwg 
(7) Stephan hat Vernunft Hsv 

Die beiden Beispiele (6) und (7) sind indessen bereits fragwürdig. 
Sie ließen sich besser so formulieren: 

(8) Bernhard ist geistesgegenwärtig Gb 
(9) Stephan ist vernünftig Vs 

Die Aussagen (6) und (7) sind ungebräuchlich formuliert; falsch 
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dagegen sind sie nur für denjenigen, der einen metaphysischen 
Unterschied sehen will zwischen Relationen und Prädikataussa-
gen. Vom sprachlichen Gesichtspunkt aus ist (8) und (9) vorzuzie-
hen. Allerdings stößt diese Übersetzungsart sehr bald an Grenzen, 
denn 

(10) Mein Fernsehapparat ist röhrig 
(11) Wolfgang ist pechig 

sind unzumutbare Übersetzungen von (4) und (5). Zufällig hat uns 
die Sprache Adjektive zur Verfügung gestellt für „hat Vernunft" 
oder „hat Geistesgegenwart", nicht aber für „hat Röhren" oder 
„hat Pech". Diese Sprachwillkür sollte uns nicht überstürzt meta-
physische Unterschiede zwischen ein- und zweistelligen Prädika-
ten vermuten lassen. 
Ferner deutet bei weitem nicht jedes „haben" auf eine Besitzanzei-
ge hin. 

Beispiel: 

(12) Judith hat eine Schwester Hjs 

Man kann eine Schwester gewiß nicht so haben, wie man ein Auto 
oder ein Pferd hat. Erfreulicherweise gibt uns die Sprache auch 
hier wieder eine Ausweichmöglichkeit, um dem unangemessenen 
„haben" zu entgehen, nämlich so: 

(13) Jemand ist die Schwester von Judith Sxj 

Manchmal mag sich Unschlüssigkeit einstellen angesichts der 
Wahl zwischen einer alltäglichen Ausdrucksweise, die sich vom 
Empfinden her der Symbolisierung widersetzt und einer gequälten 
Umformung. Soll man „Die Rosen haben Dornen" mit „haben" 
symbolisieren oder umformen in „Die Rosen sind dornig"? Letzt-
lich hängt die Beurteilung vom Sprachempfinden ab. In unserem 
Beispiel hat es so entscheiden: „Die Rosen haben Dornen". Im 
Zweifelsfall ziehen wir es vor, die Formalisierung dem vorgeleg-
ten Ausdruck anzugleichen, statt nach ausgefallenen Übersetzun-
gen zu suchen. Wenn etwa Andreas von den Masern befallen wur-
de, dann mag auf zweifache Weise von diesem beklagenswerten 
Zustand gesprochen werden: 
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(14) Andreas ist masrig 
(15) Andreas hat die Masern 

M a 
Ham 

(15) spricht von einer Beziehung H zwischen Andreas und den 
Masern. Während traditionelle Philosophen (14) als die einzig 
korrekte Darstellung ansehen mögen, geben wir sprachlich ein-
deutig (15) den Vorzug. 

„Haben" wird selbstverständlich nicht als Relation formalisiert, 
wenn es nur die Vergangenheit ausdrückt. 

(16) Pia hat gelacht Lp 
(17) Berta hat sich mit Urs gezankt Zbu 

Übung 5.3.5 

Formalisieren Sie: 
1. Eugen hat einige graue Haare. 
2. Wer einen Freund hat, hat Sicherheit. 
3. Keiner hat alles. 
4. Jeder Sohn hat einen Vater, aber nicht jeder Vater einen Sohn. 
5. Jeder Schweizer hat einen Paß. 
6. Verneinen Sie 5. 

Bisher haben wir alle Beispiele jeweils als zeitlos aufgefaßt. Nun 
kann es aber bei gewissen Verknüpfungen gerade auf Zeitzusam-
menhänge abgesehen sein. Diese Aufgabe kann den Quantoren 
übertragen werden. Für „immer" eignet sich der Allquantor, der 
so eingesetzt wird: „Für alle x, die Zeitpunkte sind, g i l t . . . " Eben-
so läßt sich „manchmal" mit dem Existenzquantor darstellen. 

(1) Albert ruft manchmal den Bruder an, wenn er in Geldnot ist 
(3t) (Gat Aab) 

(2) Othmar schreibt Käthi immer dann, wenn sie getrennt sind 
(Vx) [ T x -> (Gokx Sokx)] oder (Vt) (Gokt -> Sokt) 

Es bleibt jedoch zu beachten, daß ein Zeitwort keine unfehlbare 
Angabe dafür ist, daß die Aussage zeitlich zu verstehen wäre. „Ra-

5.3.6 Die Zeit 
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ben sind immer schwarz" heißt nichts anderes als „Alle Raben 
sind schwarz". 

Übung 5.3.6 

1. Konrad und Beatrice reisten zu verschiedenen Zeiten ab ( = : 
gleich; 4=: verschieden). 

2. Lügen haben kurze Beine. 
3. Du kannst einige Leute immer belügen und alle Leute manch-

mal, aber du kannst nicht alle Leute immer belügen (Abraham 
Lincoln). 

4. Diese Kuh kann jeden Tag kalben. 

Übung 5.3.6 (Wiederholung) 

Formalisieren Sie: 
1) 1. Es gibt Medikamente, die schlechter sind als alle Krank-

heiten. 
2. Einige Verkäufer beeinflussen alle Kunden. 
3. Nicht jeder ist Meister seines Faches. 
4. Wer ein unglückliches Kind hat, ist selber unglücklich. 
5. Keine Regel ohne Ausnahme. 
6. Was sich liebt, das neckt sich. 
7. Irren ist menschlich. 
8. Keine Rosen ohne Dornen. 
9. Nur wer sich selbst vertraut, vertraut andern. 

10. Keiner bringt einem andern etwas bei, außer er hat es 
sich selber beigebracht. 

2) 1. Einige Busfahrer transportieren die Touristen über ei-
nige Pässe. 

2. Eine Person, die freundlich zum einen ist, ist es auch zum 
andern. 

3. Jeder, der etwas leistet, wird von jemandem beneidet. 
4. Es gibt einen Laden, aus dem jeder etwas kauft. 
5. Einige Leute kaufen alles in einem Laden. 
6. Wer andern etwas wegnimmt, ist ein Dieb. 
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7. Zirkusleute erschrecken einige Zuschauer mit Akroba-
tik. 

8. Jeder leiht jemandem etwas. 
9. Jeder Student löst einige Aufgaben, aber keiner löst alle. 

10. Wer andern eine Grube gräbt, fällt selbst hinein. 

3) 1. Einige Geschäftsleute unterhalten sich freundlich im La-
den mit ihren Kunden über das Wetter. 

2. Jeder liest etwas im einen oder anderen Buch. 
3. Wer einigen alles glaubt, der glaubt anderen nichts. 
4. Wo es R^uch gibt, da gibt es Feuer. 
5. Wenn Zürich 400000 Einwohner hat, dann ist es die 

größte Schweizerstadt. 

5.4 Deduktion 

Quantoren dürfen nur eliminiert werden, wenn sie am Anfang 
einer ganzen Formel stehen und sich auf die ganze Formel bezie-
hen. Für die Deduktion gelten sonst die bisher bekannten Regeln. 
Beispiele 

Beispiel 1 

1. Alle Rosen haben Dornen 
2. Also hat auch die Adenauerrose Dornen 

1. (Vx) (Rx (3y) (Dy A Hxy)) 
/••• Ra -> (3y) (Dx A Hay) 

2. Ra (3y) (Dy A Hay)l , - V 

1. Hitler verhöhnte alle Engländer 
2. Churchill war Engländer 
3. Also verhöhnte jemand Churchill 

1. (Vx) (Ex ->• Vhx) 
2. Ec /••• (3x) Vxc 
3. Ec -»• Vhc 1, - V 
4. Vhc 2, 3, MP 
5. (3x) Vxc 4 , -1 -3 

Es gibt Schlüsse, die wir intuitiv leicht bewältigen, die aber ver-
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hältnismäßig viel Aufwand erfordern, sobald verlangt wird, den 
formalen Ablauf exakt nachzuweisen. Dazu gehört etwa der fol-
gende Schluß: 

Mercedes sind Autos 

Also, wer Mercedes fährt, fährt Auto 

Die erste Prämisse ist leicht zu formalisieren: 

(Vx) (Mx Ax) 
Die traditionelle Logik gerät mit der Konklusion an Grenzen. 
Denn im Gegensatz zur Prämisse haben wir es nicht mehr mit den 
gleichen Elementen zu tun, nämlich mit den Autos, sondern mit 
Autofahrern. Das sind offensichtlich Menschen, die in einer be-
stimmten Beziehung zu Autos und Mercedes stehen. Die traditio-
nelle Logik war gezwungen, die Konklusion etwa so zu formalisie-
ren: 

(Vy) (Fy -» Gy) 
Alle Mercedesfahrer sind Autofahrer 

Diese Formel kann aber als Konklusion nicht allgemeingültig sein, 
denn sie müßte etwa die Deutung einschließen: „Alle Mercedes 
sind Autos, also sind alle Eichhörnchen Klettertiere." Da für die 
Buchstaben Beliebiges eingesetzt werden darf, wäre grundsätzlich 
nichts gegen die Einsetzung einzuwenden: „Wenn alle Zündhölzer 
abgebrannt sind, dann wackeln alle Büchergestelle." Das ist alles 
andere als logisch zwingend. 

Beim Formalisieren des Autofahrbeispiels gehen wir von einem 
konkreten Fahrer aus: 

Hildegard fährt Mercedes Fhm 

Weiter muß die Tatsache explizit ausgesprochen werden, daß ein 
Mercedes ein Auto ist, also Am. Die Konjunktion ergibt: 

Am A Fhm 

oder existenziell verallgemeinert: Es gibt ein Ding, das ein Auto ist 
und Hildegard fährt dieses Ding: 

(3y) (Ay A Fhy) 
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Diesen Satz können wir erweitern: Wenn etwas ein Mercedes ist, 
den Hildegard fährt, dann ist es ein Auto, das Hildegard fährt: 

(3y) (My A Fhy) (3y) (Ay A Fhy) 

Das gilt aber nicht bloß für Hildegard, vielmehr für alle Mercedes-
fahrer: 

(Vx) [(3y) (My A Fxy) (3y) (Ay A Fxy)] 

Somit lautet unsere Behauptung: 

(Vx) (Mx -> Ax) / (Vx) f(3y) (My A Fxy) -> (3y) (Ay A Fxy)~| 
Für die Ableitung wird sich die Konditionale Annahme empfeh-
len. 

Übung 5.4 

1) 1. Wer immer das Gebäude betreten hat, wurde gesehen 
2. Jeder, der Priska gesehen hat, erinnert sich an sie 
3. Niemand erinnert sich an Priska 
4. Also hat Priska das Gebäude nicht betreten 

2) 1. Alle Angestellten grüßen alle Direktoren 
2. Kein Angestellter grüßt alle Konkurrenten 
3. Es gibt Angestellte 
4. Also ist kein Direktor ein Konkurrent 

3) 1. Alle Eingaben wurden an alle Ratsmitglieder weiterge-
leitet 

2. Es gab einige Eingaben zur Steuersenkung 
3. Also war eine Eingabe über Steuersenkung an einige 

Ratsmitglieder weitergeleitet worden 

4) 1. (3x) (Ax A Bx) (Vy) (Cy Dy) 
2. (3y) (Cy A Dy) / (Vx) (Ax -> ~ i Bx) 

5) 1. (Vx) [Ax (Vy) (3z) Rxyz] 
2. (3x) Ax / (3x) (3y) (3z) Rxyz 

6) 1. Wenn der Pfeil während der Zeit t fliegt, so gibt es in 
jedem Augenblick seines Fluges einen Ort, an dem er sich 
in diesem Augenblick befindet. 
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2. Wenn es einen solchen Ort gibt, an dem sich der Pfeil in 
jedem Augenblick seines Fluges befindet, so ruht der 
Pfeil während der ganzen Zeit seines Fluges. 

3. Also, wenn der Pfeil während der Zeit t fliegt, so ruht der 
Pfeil während der ganzen Zeit t. 
oder: Also fliegt der Pfeil nicht. 

t: t ist ein Zeitpunkt 
Bptx: p befindet sich zur Zeit t am Ort x 

Fpt: p fliegt zur Zeit t 
Rpt: p ruht zur Zeit t = p fliegt nicht zur 

Zeit t 

7) Alle Kreise sind Figuren 
Also, wer Kreise zeichnet, zeichnet Figuren. 

5.5 Die polnische Schreibweise der Prädikatenlogik 

Für die polnische Schreibweise der Prädikatenlogik brauchen wir 
nur die Darstellungsweise der Quantoren und die entsprechenden 
Streichungsregeln beizufügen. 

5.5.1 Schreibweise der Quantoren 

Die Quantoren werden gemäß der bisherigen Schreibweise ohne 
Klammern beigefügt. 

V x P x (Vx)Px 
3 x P x (3x) Px 
V x C P x Q x (Vx) (Px Qx) 
C_V x P x 3 y Q y (Vx)Px (3y)Qy 
3x K P x Q x (3x) (Px A Qx) 
3x K P x Q x (3x)~i (Px A Qx) 

Übung 5.5.1 

1. Pa ->• (Vx) Px 
2. (Vx) Px (3x) —i Px 
3. (Vx) Px -» - i (3x) Px 
4. (Vx)Px - i ( 3 x ) - i P x 
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5.5.2 Streichungsregeln 

Streichung des Allquantors 

Nachdem der Allquantor gestrichen ist, wird die Variable, die er 
bindet, durch eine „ 1 " ersetzt. Bei einem zweiten oder dritten 
Quantor werden die Variablen durch Zahlenkonstante in der üb-
lichen Reihenfolge „ 2 " , „ 3 " usw. ausgetauscht. 

Streichung des Existenzquantors 

Die Variablen des gestrichenen Existenzquantors werden durch 
Buchstaben ausgetauscht, „ a " für den ersten Existenzquantor, 
„ b " für den zweiten usw. 

1 
V x P x y X P X 

a 1 
3 x P x ^ x P x 

a 
Beispiele: 

1 
V x C P x Q x y x £ P x Q x 

1 1 
a b 

A 3 x P x 3 y Q y ^ x P x p y Q y 
a b 

1 a 
V x C 3 y F x y 3 z G z x ) f x f 3 y F x y ^ z G z x 

1 2 a 1 
Wir haben es auch hier wieder auf die Allgemeingültigkeit abgese-
hen. Sie zeigt sich in den Tautologien. Dabei ist hier auf die Ein-
schränkung zu achten, daß nur dann von Tautologien zu sprechen 
ist, wenn ein Prädikat mit seiner Negation auftritt und die Reihen-
folge der Variablen gewahrt bleibt. 

Tautologien: P I , PI 
Qab, Qäb 

Keine Tautologien: PI , Q1 
PI , P2^_ 
Q12, Q21 
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Beispiele 

V x C K P x Q x P x 
1 

y x £ £ P x Q x P x 
1 1 1 

P T Q l PI 

Vx Vy C Pxy A Qxy Pxy 
1 2 

y X y/y (ß Pxy Qxy Pxy 
12 12 12 

1 2 P12T Q12 P12 

Eine geschlossene Tafel ist der Beweis für die Allgemeingültigkeit. 
Will der konsequente Nachweis der Tautologie nicht gelingen, 
dann muß die Frage der Gültigkeit vom zweistelligen Prädikaten-
kalkül an offen bleiben. 

Allerdings sind noch nicht alle Wege ausgeschöpft, auf denen 
Tautologien herstellbar sind. Das ist etwa der Fall bei einer For-
mel wie 

C V x P x V x P x (Vx) Px (Vx) Px 

die intuitiv tautologisch erscheint, sich mit dem bisherigen Mate-
rial jedoch nicht schließen läßt, denn: 

a 1 
( c y x P x y x p x 

a 1 
a,Pä~, 1,P1 

stellt mit Pa und PI keine Tautologie dar. Nun muß es aber einen 
Ausweg geben, diese offensichtliche Gültigkeit doch zu beweisen. 
Das geschieht tatsächlich durch Auswechseln der Buchstaben. 
Wir dürfen a = 1 setzen, wodurch die Formel schließbar wird. 
Freilich ist eine solche Ersetzung zwei Einschränkungen unter-
worfen, der Vorschrift der Einheitlichkeit und der Reihenfolge. 

(Vx) ((Px A Qx) Px) 

(Vx) (Vy) ((Pxy - (Qxy v Pxy)) 
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Einheitlichkeit 

Wird a = 1 gesetzt, dann muß dies konsequent durchgehalten 
werden. 
Beispiel: 

C K 3 x F x 3 x G x 3 x K F x G x 
1 2 a 

£ JC ^ x F x ^ x G x ^ x K F x G x 
1 2 a a 

F a a = 1 
1, F l , 2, G2 a unerlaubt 

G a a = 2 

Der Grund für die Willkürwahl zwischen 1 und 2 ist einsichtig. Es 
soll damit verhindert werden, daß aus der Tatsache eines runden 
Gegenstandes und eines kubischen Gegenstandes gefolgert wird, 
es würde einen kugelförmigen Würfel geben. 

Anders sieht die Lage aus, wenn in der Aufsplitterung Aliquante-
ren auftreten. Sofern sie in entgegengesetzten Hälften vorkom-
men, dürfen die gleichen Zahlen gewählt werden. 
Beispiel: 

C V x K F x G x K V x F x V x G x 

<P)1 x £ F x G x I 
a a 

1 1 
^ y x F x y x G x 

i I 

F a , Ga 
1, F l a = 1 

1, G l a = 1 

Eine Tafel kann nie geschlossen werden, wenn keine negierten 
Grundformeln vorliegen. Dasselbe gilt auch für Tafeln mit ver-
schiedenen numerischen Konstanten wie etwa PI , P2. 

Ferner kann es vorkommen, daß keine numerische Konstanten 
vorhanden sind. Dann dürfen solche unter bestimmten Bedingun-
gen eingeführt werden. 
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Reihenfolge 

Die Beurteilung der Reihenfolge richtet sich nach dem Bereich, 
den der Quantor bindet. Die exakte Reichweite wird in der Quan-
torenskizze (Q-Skizze) festgehalten. Allgemein gilt: Reicht ein 
Quantor über einen andern hinaus, dann wird der erste Quantor 
über dem zweiten geschrieben. Sind die beiden selbständig, dann 
drückt sich das durch Nebeneinanderstellen aus. Beispiele sollen 
dies verdeutlichen. 

Beispiel 1 Q-Skizze 
1 2 a 1 

(Vx) (Vy) (3z) Pxyz ergibt Vx Vy 3z Pxyz 2 

Beispiel 2 
1 2 a Q-Skizze 

(Vx) Px v (Vy) Qy v (3z) Rz A AVx Px Vy Qy 3z Rz 1 2 a 

Beispiel 3 
(Vx) [(3y) Pxy -> (3z) ((Vw) Qzw (3v) Rv)] Q-Skizze 
Vx C 3y Pxy 3z C Vw Qzw 3v Rv 1 

1 2 a _b c 2 a 
Vx C 3y Pxy 3z C Vw Qzw 3v Rv b c 

Die Vorschrift über die Reihenfolge legt nun fest: Buchstaben dür-
fen durch Zahlen ersetzt werden, wenn ein Weg durch die Skizze 
führt. Der Weg gilt dann als gangbar, wenn eine Zahl dem Buch-
staben vorhergeht. So darf bei der Q-Skizze — sofort das „ a " durch 

a 
a 

„ 1 " ersetzt werden, hingegen ist — nicht weiter zu bearbeiten, weil 

der Buchstabe nicht jener Zahl vorausgehen darf, durch die er 
ersetzt werden soll. So darf im Beispiel 1 der Buchstabe „ a " ausge-
tauscht werden und zwar durch „ 1 " oder „2" . Für Beispiel 2 ist 
das ohnehin der Fall. Auch für Beispiel 3 gilt die Erlaubnis der 
Ersetzung. 
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Ein Sonderfall liegt vor im Zusammenhang mit der Existenz. Als 
Beispiel sei die Formel ,(Vx)Px —> (3x)Px' gegeben: 

C Vx Px 3x Px Q-Skizze 
a b a b 

<P f x Px Px 

Wir können diese Formel mit der modernen Logik als ungültig 
betrachten oder eine Existenzannahme postulieren. Das letztere 
wirkt sich an der Q-Skizze so aus, daß über ,a' und ,b' eine , ,1" 
gesetzt wird, so daß dann die beiden Buchstaben ebenfalls als „ 1 " 
ersetzt werden dürfen. Also: 

1 

1 1 

Beispiel 4 
(Vx) (3y) (Pxy -> Qxy) 

a 1 
C Vx 3y Pxy Qxy 

Das Beispiel 4 ist nicht schließbar 

Nun läßt sich die Vorschrift über die Reihenfolge exakter fassen: 
Buchstaben dürfen durch Zahlen ersetzt werden, wenn ein Weg 
durch die Skizze führt. Dies ist der Fall unter drei Bedingungen: 

1. Der Weg berührt jeden Buchstaben oder jede numerische Kon-
stante nur einmal. 

2. In jeder Kolonne berührt der Weg zuerst den höheren, dann den 
niedrigeren Eintrag. 

3. Der Durchgang berührt zuerst eine Zahlenkonstante, bevor ein 
Buchstabe an der Reihe ist, der durch die Konstante ersetzt 
wird. 

In den Beispielen 1) und 2) ist es erlaubt, ,a' durch „ 1 " oder „ 2 " zu 
ersetzen. Im Beispiel 3) steht die Wahl offen, alle Buchstaben belie-
big durch „ 1 " oder „ 2 " zu ersetzen. 

Die Vorschrift 3. verbietet, daß Beispiel 4 geschlossen wird. Zuerst 
muß die numerische Konstante auftreten, dann erst ist der Buch-
stabe erlaubt. Dagegen darf die Tafel a b geschlossen werden, 

Q-Skizze 
a r 
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wenn sie aus zwei Existenzoperatoren erhalten wurde, ohne daß 
eine Zahl vorhanden ist. 

Ist eine Formel immer noch nicht geschlossen, so gibt es schließ-
lich die Auswertung der Duplikate, ein Verfahren, auf das wir 
aber nicht eingehen wollen. 

Übung S.S.2 

5 . - I ( V X ) P X ( 3 x ) - i P x 
6. (Vx) (Px v Qx) (Vx)Px v (Vx)Qx 
7. - i ( 3 x ) P x (Vx) —i Px 
8. (Vx) Px v (Vx) i Px Warum ist 8. nicht das Ausgeschlosse-

ne Dritte? Wie lautet die korrekte Formulierung? 
9. (3x) (Vy)Rxy -» (Vy) (3x)Rxy 

10. (Vx) (3y) Rxy ->• (3y) (Vx)Rxy 

5.6 Die Identität 

Die Relationslogik steht noch vor einer Grenze, die verhältnismä-
ßig leicht auszuweiten ist. Mit dem bisherigen Sprachmaterial ist 
es bestenfalls möglich, zum Ausdruck zu bringen, daß zwei ver-
schiedene Variable für zwei verschiedene Gegenstände stehen 
müssen. Es genügt, die Aussage ,Ax A I Ay' als wahr anzuneh-
men. Wenn ,x' und ,y' dasselbe wären, dann läge ein Widerspruch 
vor. Also sind sie verschieden. Wie können wir aber ausdrücken, 
daß zwei Individuen oder zwei Aussagen dieselben sind? Wir 
möchten nicht auf Behauptungen verzichten, etwa daß der Kom-
ponist der Brandenburgischen Konzerte Bach ist, also daß zwei 
verschiedene Bezeichnungen sich auf den einen Gegenstand bezie-
hen. 
Wir fügen der Relationslogik ein neues Zeichen hinzu, „ = " . Es ist 
ein Funktor, eine logische Konstante, die die Identität zwischen 
zwei Namen von Gegenständen bezeichnen soll. ,a = b' bedeutet 
also, daß ,a' und ,b' identisch sind, daß ,b' nur ein anderer Name 
für ,a' ist. Deshalb gilt alles, was von ,a' ausgesagt wird auch von 
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5.6.1 Identität und Äquivalenz 

Die Identität ist weit strenger als die Äquivalenz. Die Äquivalenz 
besagt auf der logischen Ebene nur Gleichheit der Wahrheitswer-
te. Im alltäglichen Leben ist uns der Unterschied zwischen Äquiva-
lenz und Identität sehr wohl vertraut. Freilich sind die meisten 
Äquivalenzverhältnisse des Alltags nicht Äquivalenzen von Wahr-
heitswerten, viel häufiger sind es Marktwerte. So hört man bei-
spielsweise: „1 Tafel Schokolade kostet 1.60 Fr . " Hier ist der 
Handelswert beider Gegenstände äquivalent. Nur wer unmittel-
bar in die Münzen beißen wollte, um sich den Gang ins Kaufhaus 
zu ersparen, würde durch diese Handlung zeigen, daß er die Äqui-
valenz von der Identität nicht zu unterscheiden weiß. 

5.6.2 Identität und Prädikation 

Die meisten Unklarheiten im Verständnis der Identität ergeben 
sich aus der Abgrenzung zur Prädikation. Die Umgangssprache 
erschwert das Verständnis, weil beide Aussagen mit „ist" gebildet 
werden. Wir wollen uns den Unterschied zwischen den beiden 
verdeutlichen. 

Das Prädikat drückt eine Eigenschaft aus, die dem Attribut zu-
kommt. Faßt man die Aussage als Zugehörigkeitsbehauptung auf, 
dann entspricht dem Prädikat eine Klasse von Gegenständen, z. B. 
„Das Kleid ist weiß". Das Prädikat ist hier die Klasse der weißen 
Gegenstände. Es wird jedoch nicht behauptet, das weiße Kleid sei 
mit dieser Klasse identisch. Was genau ausgesprochen wird, ist 
einzig das: Das Suppositum ist mit einem Element dieser Klasse 
identisch. Die Prädikationsaussage behauptet demnach nicht, das 
Prädikat der Aussage treffe ausschließlich auf das Suppositum zu 
oder nur auf das Suppositum. Eine Aussage von dieser Ausschließ-
lichkeit liegt nur dann vor, wenn die Kopula bedeutet „ist defini-
tionsgemäß oder „ . . . ist genau dann, wenn . . . " usw. Das sind 
aber relativ seltene Fälle. 

Die Identitätsaussage schließt ein, Attribut und Prädikat seien in 
ihren Eigenschaften gleich. Eine Folge davon ist die gegenseitige 
Austauschbarkeit. Das trifft für die Prädikataussage gerade nicht 
zu. Dadurch vermag die Prädikataussage nicht nur weniger, son-
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dem etwas anderes auszusagen als die Identität. Sehen wir uns 
diesen Sachverhalt an der Gegenüberstellung zweier Beispiele an: 

Die beiden Beispiele haben den gleichen Aufbau, aber offensicht-
lich entgegengesetzten Wahrheitsgehalt. Der Syllogismus von (1) 
ist falsch, derjenige von (2) richtig. Ist (2) zufällig richtig, dank der 
geschickten Zusammenstellung der Prämissen oder etwa gar, weil 
wir es mit Zahlen zu tun haben? Keineswegs. Die Gültigkeit 
kommt einzig daher, weil das „ist" bei (2) ein anderes ist als das 
von Beispiel (1). Im Beispiel (1) haben wir Prädikataussagen, bei 
(2) Identitäten. Die Identität läßt sich mit „ist gleichwertig" oder 
„ist identisch mit" übersetzen. Sollten wir diese Umschreibung 
unerlaubterweise auf Beispiel (1) übertragen, so würde uns das 
Sprachempfinden entschieden davon abraten. „Der Elefant ist 
gleichwertig mit groß" oder „Der Elefant ist identisch mit groß" 
verträgt sich nicht mit unserem Grammatikverständnis. 

Übung 5.6.2 

1) Beweisen Sie durch die Formalisierung der folgenden Aussa-
gen die Fähigkeit, die verschiedenen „ist" zu unterscheiden. Grei-
fen Sie nötigenfalls auf die Symbolisierungshilfe der Mengenlehre 
zurück: 

1. Aristoteles ist weise 
2. Bern ist die Hauptstadt der Schweiz 
3. Menschen sind Lebewesen 
4. So ist es 
5. A = A + 1 

Beurteilen Sie die folgenden Texte: 
2) „Von diesen Gesetzen hat der Identitätssatz eine streng logi-
sche Bedeutung; ja, man kann zeigen, daß alle rein logischen Re-
geln sich ausschließlich auf diesen Satz zurückführen lassen , . . . " 
(H.H. Holz, Leibniz (Stuttgart 1958) 90) 

Der Elefant ist groß 
Der Walfisch ist groß 
Also ist der Wal ein Elefant 

1 3 - 3 ist (2.4) + (2.1) 
6 + 4 ist (2.4) + (2.1) 

Also: 6 + 4 ist 13 - 3 
(2) ( 1 ) 

8 B u c h e r , Logik 
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Wie zeigt man, daß sich alle logischen Regeln auf die Identität 
zurückführen lassen? 

3) „Alle S sind P, M ist S, deshalb M ist P. Verallgemeinert 
könnte man sagen, es sei von der einfachen mathematischen Art: 
Wenn A = B und C = A, dann C = B (M. Frost. Justice and the 
Nature of Legal Argumentation. Actes du Congrès mondial de 
Philosophie du Droit et de Philosophie Sociale (Bruxelles 1971), 
280). 

4) „Das ,ist' ist ein Binde- und Verhältniswort. Identität ist ein 
Sachverhalt; . . . auch in dem Urteil: x folgt auf y, oder auseinan-
dergelegt: x ist folgend auf y, sind Subjekt, Kopula und Prädikat 
enthalten; ausgesagt wird, was x in Bezug auf y ist". (C. Nink, Die 
mathematisch-logistische Symbolsprache in philosophischer 
Sicht. Scholastik 15 (1940) 61, Anm.8). 

5) „,Dieses Blatt ist grün'. Das Grünsein ist dem Blatt identisch 
in dem . . . dargelegten Sinne; denn es wird vom Blatt ausgesagt; 
das Blatt ist eben durch das Grün in sich grün bestimmt. Es ist aber 
nicht formell, sondern nur materiell identisch mit dem Grün, d. h. 
in sich ist es grün, aber aus sich könnte es ebenso gut rot — wie es 
tatsächlich im Herbst ist - und damit nicht grün se in , . . . Das Blatt 
ist also aus sich indifferent gegenüber ,grün' und ,nicht grün'. 
Dieses Verhältnis bezeichnet man als materielle Identität. Ihr ent-
spricht der materielle kontradiktorische Gegensatz". 
(F. M. Sladeczek, Das Widerspruchsprinzip und der Satz vom hin-
reichenden Grunde. Scholastik 2 (1927) 11-12). 

1. Können Sie exakt, kurz und verständlich beschreiben, was der 
Autor unter formell und unter materiell identisch versteht? 

2. Worin unterscheidet sich der materielle kontradiktorische Ge-
gensatz vom formell kontradiktorischen? 

5.7 Einige Eigenschaften der Relationen 

Bisher haben wir Relationen nur unter dem Gesichtspunkt ihrer 
Argumentstellen betrachtet. Dabei sind ein-, zwei- oder n-stellige 
unterschieden worden. Unabhängig von dieser Einteilung lassen 
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sich Relationen zweckmäßig aufgrund ihrer Eigenschaften ordnen 
und beschreiben. 

Gehen wir von der Aussage aus: „x ist größer als y" . Daraus 
entnehmen wir intuitiv: „Also ist y nicht größer als x " . Haben wir 
damit eine erste allgemeine Eigenschaft von Relationen entdeckt? 
Wenn das zuträfe, dann läge ein Gesetz vor, das sich so schreiben 
ließe: 

(Vx) (Vy) (Rxy -> - | Ryx) 

Die Enttäuschung wird nicht lange auf sich warten lassen. Das 
scheinbare Gesetz gilt zwar für die Relation „größer als" und 
vermutlich für alle „ähnlichen" Relationen. Aber worin besteht 
die Ähnlichkeit? Ist etwa die Relation „gleichgroß" ähnlich mit 
„größer als"? Wohl kaum, denn auch bei „gleichgroß wie" läßt 
sich ebenfalls intuitiv erfassen, daß wohl immer gilt: 

(Vx) (Vy) (Gxy Gyx) 

Damit sind wir eher zufällig auf vermutete Gesetze gestoßen. Lei-
der sind sie nicht für alle Relationen gültig. 

Das Ziel unserer Aufgabe könnte nun so umschrieben werden: 
Wir stellen eine Klassifikation für Relationen auf und suchen nach 
exakten Kriterien, wann eine Relation „ähnlich" ist mit der Grup-
pe „größer als", wann mit derjenigen von „gleichgroß wie". Da-
bei wollen wir uns jedoch nicht auf diese beiden willkürlich her-
ausgegriffenen Relationen beschränken, sondern die Aufgabe et-
was systematischer anfassen. 

Jene Eigenschaften, die allen Relationen zukommen, nennen wir 
analytische, jene, die nur einer bestimmten Relation oder Rela-
tionsgruppe zukommen, sollen synthetische heißen. Dann ist die 
nachfolgende Darstellung auf die Untersuchung synthetischer Ei-
genschaften ausgerichtet. Dabei wollen wir uns auf drei Grundei-
genschaften beschränken. 

5.7.1 Die Reflexivität 

Reflexiv: Eine Relation heißt genau dann reflexiv, wenn jedes Re-
lationsglied die Relation R zu sich selbst hat. 
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Beispiel: x hat die gleiche Haarfarbe wie y 
x ist aus dem gleichen Stoff wie y 

Irreflexiv: Eine Relation heißt genau dann irreflexiv, wenn kein 
Gegenstand diese Relation R zu sich selbst hat. 

x ist nicht äquivalent mit x (sich selber) 
x ist nicht Vater von x (sich selber) 

Non-reflexiv: eine Relation heißt genau dann non-reflexiv, wenn 
es wenigstens einen Gegenstand gibt, der nicht in dieser Relation 
R zu sich selber steht. 

x hat eine hohe Meinung von y 
x verwundet y 

Formal 

reflexiv (Vx) (Vy) ((Rxy v Ryx) -> R x x ) 
irreflexiv (Vx) (Vy) ((Rxy v Ryx) -» —I R x x ) 
non-reflexiv (Vx) (3y) ((Rxy v Ryx) A — i R x x ) 

Unter den reflexiven Relationen gibt es noch eine Besonderheit. 
Wir nennen eine Relation totalreflexiv, wenn jeder Gegenstand 
diese Relation zu sich hat. Eine solche Relation ist „identisch sein 
mit" . Formal: (Vx)Ixx. 

Die Relationen von Eigenschaften lassen sich bildlich darstellen 
mit Hilfe von Pfeildiagrammen. 

C3 ° 
reflexiv irreflexiv non-ref lex iv 

5.7.2 Die Symmetrie 

Symmetrisch: Eine Relation heißt genau dann symmetrisch, wenn 
sie jedesmal, insofern sie einem geordneten Paar von Gegenstän-
den zukommt, auch dem umgekehrt geordneten, aber aus densel-
ben Gegenständen bestehenden Paar zukommt. 
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Beispiel: 

x ist gleich groß wie y 
x ist verheiratet mit y 

Asymmetrisch: Eine Relation heißt asymmetrisch, wenn sie jedes-
mal, falls sie einem geordneten Paar von Gegenständen zukommt, 
nicht auch dem umgekehrt geordneten, aber aus denselben Gegen-
ständen bestehenden Paar zukommt. 

x ist im Norden von y 
x ist älter als y 

Non-symmetrisch: Eine Relation heißt genau dann non-symme-
trisch, wenn es wenigstens ein geordnetes Paar von Gegenständen 
gibt, dem sie zukommt, während sie denselben Gegenständen bei 
umgekehrter Reihenfolge nicht zukommt. 

x liebt y 
x ist Bruder von y 

Formal: 
symmetrisch 
asymmetrisch 
non-symmetrisch 

In Pfeildiagrammen 

symmetrisch asymmetrisch non-symmetrisch 

5.7.3 Die Transitivität 

Transitiv: Eine Relation heißt dann transitiv, wenn je zwei Gegen-
stände, die mit einem dritten in der Relation R stehen, auch unter 
sich in der Relation R stehen. 

Beispiel: 
x ist größer als y 
x ist schneller als y 

(Vx) (Vy) (Rxy -> Ryx) 
(Vx) (Vy) (Rxy -> Ryx) 
(Vx) (3y) (Rxy A - l Ryx) 
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Intransitiv: Gilt die Transitivität nie, dann heißt eine solche Rela-
tion intransitiv. 

x ist Vater von y 
x ist links von y 

Non-transitiv: Eine Relation heißt genau dann non-transitiv, 
wenn es der Fall ist, daß transitive Relationen mindestens in einem 
Fall intransitiv sind. 

x ist verschieden von y 
x ist Freund von y 

Formal: 
transitiv (Vx) (Vy) (Vz) ((Rxy A Ryz) -> Rxz) 
intransitiv (Vx) (Vy) (Vz) ((Rxy A Ryz) ->• —L Rxz) 
non-transitiv (3x) (3y) (3z) ((Rxy A Ryz) A —I Rxz) 

In Pfeildiagrammen: 

Q b c a b c a b c 

transitiv intransitiv non-transitiv 

Nun soll an zwei Beispielen gezeigt werden, wie sich diese Defini-
tionen zu Analysen von Relationseigenschaften eignen. Wir be-
schränken uns auf die drei definierten Eigenschaften. 

Beispiel 1 
Welche Eigenschaften hat die Relation „größer als"? Wir stellen 
die Frage nach Reflexivität, Symmetrie und Transitivität. 

1. Ist ,x ' größer als es selber? Das kann nicht sein, also haben wir 
es mit Irreflexivität zu tun. 

2. Wenn ,x' größer ist als ,y', ist ,y' dann größer als ,x'? Gewiß 
nicht; folglich handelt es sich um Asymmetrie. 

3. Wenn ,x' größer als ,y' ist und ,y' größer als ,z', ist dann ,x' 
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größer als ,z'? Ja , und deshalb haben wir es mit der Transitivität 
zu tun. So können wir zusammenfassen: 

„größer als" ist - irreflexiv 
— asymmetrisch 
- transitiv 

Die Analyse bleibt unbeeinflußt davon, ob „größer als" im Sinn 
eines arithmetischen Zahlenvergleichs aufgefaßt wird, als Kör-
permaß oder gar als moralische Qualifikation. 

Beispiel 2 
„gleichgroß wie" 

1. ,x' ist gleichgroß wie es selber, also reflexiv. 
2. Wenn ,x' gleichgroß ist wie ,y', dann ist auch ,y' gleichgroß wie 

,x', also haben wir eine symmetrische Relation vor uns. 
3. Wenn ,x' gleichgroß ist wie ,y' und ,y' gleichgroß wie ,z', dann 

ist auch ,x' gleichgroß wie ,z', folglich ist die Relation transitiv. 
Das führt uns zu folgendem Resultat: 

„gleichgroß wie" ist - reflexiv 
— symmetrisch 
- transitiv 

Beim Beispiel 2 handelt es sich um eine r(eflexive), 
s(ymmetrische), t(ransitive) Relation, die auch RST-Relation 
oder Äquivalenzrelation genannt wird. 

Übung 5.7 

1) Geben Sie die Eigenschaften der folgenden Relationen an: 

1. x wohnt auf der gleichen Meereshöhe wie y 
2. x hat dasselbe Einkommen wie y 
3. x grüßt y 
4. x liegt über y 
5. x sorgt für y 
6. x ist früher als y 
7. x ist niedriger als y 
8. x ist links von y 
9. x ist Bruder von y 
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10. x ist Geschwister von y 
11. x steht senkrecht auf y 
12. x ist parallel zu y 
13. x schneidet y (Alltag und Geometrie) 
14. x ist spiegelbildlich zu y 

2) Zeichnen Sie mit Pfeilen die Relation „Schwester von" unter 
den Geschwistern: 

1. Alice, Brigitte, Claudia 
2. Alice, Brigitte, Franz 
3. Alice, Franz, Gustav 
4. Franz, Gustav, Hans 

3) Zählen Sie die Eigenschaften der folgenden drei Relationen 
auf und stellen Sie sie in Pfeildiagrammen dar: 

1. Tochter 
2. Enkel 
3. Der Hund beißt den Briefträger 

4) 1. Zeichnen Sie das Pfeildiagramm einer RST-Relation 
2. Die Menge M sei: M = {1,2 ,3 ,4 ,5} . Dazu ist die Relation 

Gab gegeben, die bedeutet: größer als. Sie ist in Pfeilform darge-
stellt, so daß ein Pfeil von a nach b führt, wenn a größer als b ist. 
Ordnen Sie den einzelnen Punkten die entsprechenden Elemente 
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5) „Zuvor müssen wir uns aber über den Begriff Relation noch 
besser verständigen, weil sein Geltungsbereich von vielen Logisti-
kern über Gebühr und ohne hinreichenden inneren Grund einge-
schränkt wird. . . . Relation . . . deckt sich im Grunde mit dem 
stoischen augustinischen Ausdruck der Nachbarschaft. . . . Es ist 
der weiteste Begriff, den wir dem Wort Relation zu Grunde le-
gen". (E.W. Platzeck, Von der Analogie zum Syllogismus (Pader-
born 1954) 34). 

1. Analysieren Sie die Relation Nachbarschaft. 
2. Handelt es sich bei „Nachbarschaft" um einen weiten Begriff? 

6) ,,a) Wenn zwei Dinge einem Dritten gleich sind, dann sind sie 
es auch unter sich, b) Wenn zwei Dinge einem Dritten nicht gleich 
sind, dann sind sie auch unter sich nicht gleich". (R. Descartes, 
Règles pour la direction de l'esprit. Regle XII). 

1. Ist b) die Negation von a)? 
2. Bestimmen Sie die Relationseigenschaften von a) und b) 
3. Was wird von b) gegenüber a) verneint? 
4. Geben Sie ein Gegenbeispiel zur Behauptung b). 

7) „Es ist klar, daß Formeln wie die folgende 
A > B 
B > C 

also A > C 
keinen wirklichen Syllogismus darstellen, denn der Syllogismus 

B ist größer als C, 
nun ist A größer als B, 
also ist A größer als C 

wäre unkorrekt und nur zufällig wahr aufgrund der Einsetzungen 
(en raison de la matière), da der Mittelterm im Ober- und Unter-
satz nicht derselbe ist („B" im einen Fall, „größer als B" im an-
dern)." (J. Maritain, Eléments de Philosophie. II L'ordre des con-
cepts. 1. Petite Logique (Logique formelle) (Paris 151946) 297). 

1. Liegt ein Syllogismus vor? 
2. Stimmen Sie der Behauptung vom unterschiedlichen Mittel-

term zu? 
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3. Welche Einsetzungen sieht der Autor für A, B, C vor? 
4. Wie kommt Maritain auf den Gedanken, das Beispiel sei nur 

zufällig wahr und von den Einsetzungen abhängig? 

8) „ . . . in der Alltagssprache, ist der praktische Gebrauch der 
Relation ,ist größer als' anstelle der Kopula nur legitim, weil ein 
derartiger Pseudo-Syllogismus ( . . . ) die folgenden Syllogismen 
impliziert oder voraussetzt, die wirkliche Syllogismen sind und 
nach denen leicht zu schließen ist: 

1. Alles größer als größer als C ist größer als C. 
Nun ist B größer als C, 
also alles größer als B ist größer als C. 

2. Alles größer als B ist größer als C. 
Nun ist A größer als B, 
Also ist A größer als C. 

Das sind zwei völlig einwandfreie Syllogismen, wobei der 1. ein 
indirekter Syllogismus ist. Es ist immer möglich, einen indirekten 
Syllogismus in einen direkten umzuwandeln." (Maritain, ebd. 
198). 

1. Was ist von der Formulierung der jeweils ersten Prämisse zu 
halten? 

2. Sind die Syllogismen einwandfrei? 
3. Was will der Autor formal und inhaltlich sagen? 
4. In welchem Verhältnis steht das Beispiel 8) zu 7)? 

5.8 Der Funktionsbegriff 

Wir sind jetzt in der Lage, einen sehr wichtigen Begriff exakt fas-
sen zu können, nämlich den Begriff der Funktion. Häufig wird 
Funktion als synonym mit „Aufgabe", „Pflicht" usw. gebraucht, 
etwa im Zusammenhang „Die Funktion des Richters ist die 
Rechtssprechung". Die Mathematik hat für ihren Gebrauch ge-
nau definiert, was unter Funktion verstanden werden soll. Es ist 
ein Begriff von hohem Abstraktionsgrad und deshalb häufig an-
wendbar außerhalb der Mathematik. 
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Funktion ist eine bestimmte Relation. Zur Erläuterung gehen wir 
von zwei Mengen aus, dem Definitionsbereich (D) und dem Wer-
tebereich (W). Eine Funktion liegt genau dann vor, wenn jedes 
Element aus dem Definitionsbereich D die Relation R zu höch-
stens einem Element der Menge W hat. Was das bedeutet, läßt sich 
aus der Zeichnung ablesen: 

Eine genauere Definition lautet so: 

1 . a e D 
b e W 

2. Zu jedem Element a e D gibt es genau ein Paar (a, b). 

In der Pfeildarstellung zeigt sich eine Funktion daran, daß von 
jedem Element von D genau ein Pfeil ausgeht. Man nennt die 
Funktion nacheindeutige Relation. 

Beispiele von Funktionen: 

Übung 5.8 

1) Besteht eine Funktion zwischen den Studenten, die um 9 Uhr 
morgens die Vorlesung besuchen und ihrer Schuhgröße? 
2) Erklären sie den Satz von Wittgenstein: „Die Aussagenlogik 
ist eine Funktion der Wahrheit". 

D W 

Mathematik: Quadratwurzel sein von 
Alltag: Zum Vater haben 

5.9 Verknüpfung von Relationen 

Relationen können miteinander verkettet werden. Anhand der 
zwei wichtigsten Verknüpfungen aus dem Alltag, nämlich den 
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Relationspotenzen und den Relationsprodukten, wollen wir se-
hen, was darunter zu verstehen ist. 

5.9.1 Relationspotenz 

Eine Relation, die aus zwei gleichen Relationen besteht, nennen 
wir Relationspotenz. Solche Relationspotenzen sind etwa „Lehrer 
des Lehrers von", „Nachbar des Nachbarn von" usw. Wir benut-
zen die Symbolik aus der Arithmetik und schreiben „ L 2 " oder 
„ N 2 " . Entsprechend müßte eine einfache Relation, etwa „Vater 
von" als „ V 1 " gedacht werden, wobei die Einerpotenz nach dem 
Vorbild der Mathematik nicht geschrieben wird. 

Die Analogie läßt sich ins Gebiet der negativen Exponenten fort-
setzen. Mit „ R ~ 1 , 1 bezeichnen wir die Konverse oder Inverse von 
„ R " , d.h. diejenige Relation, die in allen R-Paaren gilt, aber in 
umgekehrter Reihenfolge der Glieder. Gilt „ R a b " , so auch 
„ R _ 1 b a " , und umgekehrt. Dem Übergang zur inversen Relation 
entspricht im Pfeilbild die Umkehrung aller Pfeilrichtungen. 

Beispiele zu Relationspotenzen: 

Großvater, Freund des Freundes, Schwester der Schwester 
usw. 
Die Konverse ist uns aus der Mathematik bekannt: Wenn 
7 > 4, dann gilt auch 4 < 7 . 

Die Relation Elter ist die Konverse der Relation Kind und umge-
kehrt. Die Konverse der Relation Enkel ist Großvater (-mutter) 
und umgekehrt. Die Konverse der Relation Quadrat ist die Qua-
dratwurzel. 
Seit dem Mittelalter wird in der theologischen Literatur die Rela-
tion Vaterschaft und Sohnschaft diskutiert. „Vaterschaft" ist ein 
sogenannter Piatonismus, eine platonische Ausdrucksweise für „a 
ist Vater von b" . Diese Relation können wir analysieren, sie ist 

- irreflexiv 
- asymmetrisch 
- intransitiv 

Es fällt auf, daß Vater und Sohn die gleichen Relationseigenschaf-
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ten besitzen. Aus der Pfeildarstellung läßt sich die eine Relation als 
Konverse zur andern erkennen. 

Übung 5.9.1 

Der Schluß 

B ist größer als C 
A ist größer als B 
also ist A größer als C 

hat im Ober- und Untersatz nicht die gleichen Terme, nämlich 
„ B " im einen, „größer als B " im andern Fall (Vgl. J . Maritain, 
297. wörtlich: Beispiel 8), Übung 5.7). 

1. In welchen Kategorien analysiert der Autor diesen Schluß? 
2. Warum ist eine solche Analyse wertlos? 

5.9.2 Relationsprodukt 

Unter einem Relationsprodukt (oder Verkettung) zweier Relatio-
nen R und S, bezeichnet mit R/S, versteht man diejenige Relation, 
die dann und nur dann zwischen x und y besteht, wenn es ein z gibt 
derart, daß x zu z die Relation R und z zu y die Relation S hat. 

(R/S) ab heißt: „a ist ein R von einem S von b" . 

(R/S) xy ist definiert: 

(3z) (Rxz A Szy) 

Auf Relationsprodukte treffen wir im Alltag häufig. Beispiele da-
für sind „ein Sohn von einem Bruder", „größer als die Hälfte 
von", „der Mieter eines Hauses von" usw. Auf ein solches Beispiel 
soll näher eingegangen werden: 

„Gatte einer Tochter von". 

Es gibt eine Relation G/T, wenn es ein z gibt derart, daß x der 
Gatte von z und z die Tochter von y ist. Wählen wir für x und y 
Konstanten: 

j: Josef 
a: Anna 
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Dann lautet der Ausdruck: 

(G/T) ja = Josef ist der Gatte einer Tochter von Anna 

Die Umgangssprache liebt es, für komplizierte und sich häufig 
wiederholende Ereignisse einfache Namen zu wählen. Statt „Gat-
te einer Tochter von" sagt man „Schwiegersohn". Deshalb lesen 
wir üblicherweise: 

(G/T) ja = Josef ist der Schwiegersohn von Anna 

Im allgemeinen ist das Relationsprodukt nicht kommutativ, es gilt 
also meistens: R/S 4= S/R. Wenn a ein Freund eines Lehrers von b 
ist, dann ist b eher selten ein Lehrer eines Freundes von a. 

Übung 5.9.2 

1. Alle Kinder meines Vaters sind meine Geschwister. 
2. Alle Söhne und Töchter von Mathias sind Kinder meines Va-

ters. 
3. Mathias ist mein Vater. 
4. Also sind die Töchter von Mathias meine Schwestern. 

1. Führen Sie das benutzte Vokabular an. 
2. Zeigen Sie die Gültigkeit des Schlusses. 
3. Was fällt Ihnen am Schluß auf? 

5.10 Deduktion einfacher Relationen 

Schlüsse mit Relationen enthalten beinahe regelmäßig enthyme-
matische Prämissen. Als Enthymeme, das heißt nichtausgespro-
chene Prämissen, sind nur Behauptungen zulässig, mit denen man 
allgemein einverstanden ist, also etwa „wenn etwas schwerer ist 
als ein anderer Gegenstand, dann sind die beiden nicht gleich 
schwer", „Wasser ist naß" , „Blumen sind Pflanzen" usw. 

Beispiel 
1. Monika ist jünger als Judith 
2. Stephan ist älter als Monika 
3. Also ist Monika jünger als Stephan 
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1. Jmj 
2. Asm /.'. Jms 
3. (Vx) (Vy) (Axy *-* Jyx) Zusatzprämisse 
4. (Vy) (Asy <-• Jys) 3, - V 
5. Asm <-• Jms 4, —V 
6. (Asm -* Jms) A (Jms -> Asm) 5, Äquiv. 
7. Asm Jms 6a, Simpl. 
8. Jms 2, 7, MP 

Ohne die Prämisse 3. ist die Deduktion nicht ausführbar. Es han-
delt sich dabei um eine von niemand angezweifelte Prämisse: 
Wenn der erste älter ist als der zweite, dann ist der zweite jünger 
als der erste. Selbstverständlich muß eine derartige Prämisse nicht 
ausgelöst werden, weil es sich nicht um eine konditionale Prämisse 
handelt. Somit verlangt eine korrekte Deduktion nicht nur eine 
intuitive Treffsicherheit in der Wahl der Regeln, sondern auch 
noch den sichern Blick für das Auffinden der verschwiegenen Prä-

Übung 5.10 

1) 1. Albert verdient gleich viel wie Bernhard und Bernhard 
gleich viel wie Cäsar. 

2. Also verdient Albert gleich viel wie Cäsar. 

2) 1. Alle Rolls Royce sind teurer als irgend ein Auto. 
2. Einige Citroens sind teurer als jeder Volkswagen. 
3. Also sind alle Rolls Royce teurer als jeder Volkswagen. 



6. Modallogik 

Die Modallogik stellt eine Erweiterung dar, jedoch in einem tief-
greifenderen Sinn als etwa die Prädikatenlogik eine Erweiterung 
der Aussagenlogik ist. Auf der Ebene der Symbolisierung betrach-
tet, kommen bloß einige neue Funktoren hinzu und die entspre-
chenden Regeln. Inhaltlich liegt jedoch der folgenschwere Unter-
schied in der Tatsache, daß die Modallogik nicht mehr wahrheits-
funktional ist. 

Das besagt, daß in den bisher behandelten Gebieten die Kenntnis 
der Wahrheitswerte der einzelnen Aussagen genügt, um die Wahr-
heit einer Aussagenverknüpfung zu bestimmen. So belehren uns 
beispielsweise die Historiker, der Satz „Henri Dunant hat das 
Rote Kreuz gegründet" sei wahr. Formal mag diese Aussage mit 
,D' symbolisiert werden. Wenn ich nun weiß, daß ,D' wahr ist, 
dann darf ich behaupten. ,D v X' sei ebenfalls wahr — welche 
Aussage auch immer ,X' darstellen mag - , ferner , i D' sei falsch 
usw. Diese Voraussetzung erlaubt auch die Konstruktion von 
Tautologien, wo nur die logischen Ausdrücke wesentlich vorkom-
men und die deskriptiven unwesentlich sind. 

Philosophen halten manchmal auch noch andere Ausdrücke für 
wichtig, wie „möglich", „notwendig" usw. Das führt zur Modal-
logik. Eine geänderte Lage gegenüber der bisherigen Logik zeigt 
sich darin, daß der Satz „7 = 7" nicht nur wahr, sondern darüber 
hinaus notwendig wahr ist. Wie wir gesehen haben ist der Satz ,D' 
gleichfalls wahr, doch notwendig ist er durchaus nicht; es hätte 
etwa ein Stoiker den Gedanken der humanen Behandlung von 
Kriegsverletzten vorwegnehmen können, wobei er in der Zeit vor 
Christus und als Nicht-Schweizer vielleicht eine rote Palme als 
Fahne ausgesucht hätte. Die damit höchst wahrscheinlich verbun-
dene Namensänderung läßt die Tatsache unberührt, daß die Not-
wendigkeit nicht von der Wahrheit des Satzes allein abhängt, son-
dern im weiteren Sinn von der Bedeutung. Ist also der Wahrheits-
wert von Aussagen bestimmt, dann sind die Wahrheitswerte der 
Verknüpfungen dieser Aussagen eindeutig festgelegt; über die 
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Notwendigkeit ist indessen nichts vorentschieden, so daß wir zu 
einer Vielfalt von Systemen gelangen, die sich in der Stärke der zu 
beweisenden Theoreme unterscheiden. Damit geraten wir von der 
formalen Logik in die philosophische Logik. Die strenge Analogie 
mit der Aussagenlogik, die ein eindeutiges, fest umrissenes, abge-
schlossenes System darstellt, ist durchbrochen. Der Status der 
Modallogik mit ihren vielfältigen Systemen im Verhältnis zur 
klassischen Logik ist vergleichbar mit den nichteuklidischen Geo-
metrien und dem Euklidsystem. 

Wir schalten uns hier in ein Gebiet ein, das noch im Stadium der 
Entwicklung begriffen ist. Immerhin ist die Modallogik der Aus-
sagen unbestritten. Bis Anfang der 60er Jahre unseres Jahrhun-
derts hat der heftigste Gegner der modallogischen Prädikatenlo-
gik, Willard van Orman Quine, eine große Zahl Philosophen hin-
ter sich vereinigen können. Doch mit den semantischen Deutun-
gen von Hintikka, Kanger, Kripke, Montague haben diese Ein-
wände ihre Überzeugungskraft eingebüßt. 

6.1 Allgemeine Begriffe 

Unter Modalitäten versteht man Ausdrücke wie „notwendig", 
„möglich" usw. Sie haben Ähnlichkeit mit den Wahrheitswert-
funktoren und stimmen mindestens in der Hinsicht gegenseitiger 
Definierbarkeit überein nach dem Muster wie die Funktoren 
„ A ", „->", „<-•" usw. durch Disjunktion und Negation darstell-
bar sind. 

In der Modallogik legen wir den Möglichkeitsbegriff zugrunde. Er 
wird einer Aussage vorangestellt und gibt ihr dann die entspre-
chende Modalität. 

Beispiel: 
Augustinus war ein Philosoph 
Es ist möglich, daß (Augustinus war ein Philosoph) 

Es ist unwesentlich, daß in korrektem Deutsch die Worte inner-
halb der Klammer leicht umzustellen sind. Wir wollen für die 
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Möglichkeit den Funktor „ O " einführen. Entsprechend formali-
sieren wir die beiden Aussagen: 

A Augustinus war ein Philosoph 
O A Es ist möglich, daß Augustinus ein Philosoph 

war 
Da wir das Gesetz der doppelten Negation weiterhin aufrechter-
halten wollen, gibt es nur die folgenden vier Kombinationsmög-
lichkeiten mit der Negation: 

O A Es ist möglich, daß Augustinus ein Philosoph 
war 

O—i A Es ist möglich, daß Augustinus kein Philosoph 
war 

—i O A Es ist nicht möglich, daß Augustinus ein Philo-
soph war 

~~i O - 1 A Es ist nicht möglich, daß Augustinus nicht ein 
Philosoph war 

Der letztgenannte Ausdruck ist gleichbedeutend mit: „Es ist not-
wendig, daß Augustinus ein Philosoph war". Diese Einsicht er-
laubt uns, aufgrund der Möglichkeitsdefinition einen Notwendig-
keitsoperator einzuführen. Als symbolisches Zeichen wählen wir: 
• . Wie beim Möglichkeitsoperator, so erlaubt auch hier die un-
terschiedliche Stellung der Negation vier verschiedene Bedeutun-
gen anzuzeigen. Das Verhältnis der beiden Funktoren zueinander 
ist so definiert: 

• p = d f - i O - i p 

Die beiden sind also äquivalent: 

(1) D p i O - i p (Mod.) 

Wir ersetzen in (1) ,p' durch , i p', also p/ I p und erhalten: 

• —ip o - i - i p 

Da sich die doppelte Negation aufhebt, folgt: 

(2) ip « n O p 

Nach der genannten Definition ist K ) - ! jederzeit ersetzbar 
durch • , so daß auch gilt: 
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(3) - I 1 p « O p 

Das Verhältnis zwischen Modaloperatoren und Negationen läßt 
sich mit All- und Existenzoperator und ihren Verneinungen in 
Parallele setzen, weil die Beziehungen bis in Einzelheiten ver-
gleichbar sind. Der Quantorenaustausch ist wie der Austausch der 
Modaloperatoren eine echte Substitution. 

(Vx) (Px Qx) 
(3x) - i (Px Qx) (Vx)/-| (3x)-

Entsprechend läßt sich das logische Quadrat weiterhin als Para-
digma verwenden: 

(Vx )Px , ( 3 x ) P x 

(3x )Px i (Vx)Px 

Die Beziehungen des Quadrats bleiben gewahrt, wenn (Vx) Px 
durch i (3x)—I und • durch i O—i ersetzt werden. 

i O - ( V x ) - , P x 

. • ->p O -i P , (Vx ) - ,Px (3 x)—i Px 

6.1.1 Zur Definition der Modaloperatoren 

Negation, Konjunktion und Disjunktion werden wie bisher ver-
wendet, hingegen erfährt die Implikation und in ihrem Gefolge 
dann auch die Äquivalenz eine Veränderung. Die bisher benutzte 
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Implikation heißt nicht sonderlich glücklich materiale Implika-
tion. Weniger mißverständlich ließe sie sich nach dem Erfinder 
Philonische Implikation nennen, ein Name, der sich leider nicht 
durchgesetzt hat. Wichtiger für uns ist im Augenblick zu wissen, 
daß diese Implikation seit der Antike als irritierend empfunden 
wurde, weil sich daraus die sogenannten Paradoxa der Implika-
tion ergeben. Sie treten auf, sobald eine Aussage als wahr oder 
falsch bekannt ist. 

Beispiel: 
- ,p' sei falsch. Dann ist jede Aussage ,p -> q' wahr, was immer 

,q' an Wert annehmen mag. 
- ,p' sei wahr. Dann ist jede Aussage ,q - * p' wahr, welchen Wert 

auch immer ,q' annehmen mag. 
- Und schließlich, wenn von zwei Aussagen ,p' und ,q' beide Wer-

te als falsch oder als wahr bekannt sind, dann ist ,p —• q', 
,q —> p' und folglich auch ,p <-> q' wahr. 

Die Philonische Implikation schien Lewis zu schwach. Er suchte 
nach einem Wenn-dann-Funktor, der eine logische Verknüpfung 
zwischen Vorder- und Nachsatz ausdrückt. Die logische Verbin-
dung wollte er als notwendige Verknüpfung verstehen. Mit M o -
daloperatoren läßt sich diese logische Implikation oder wie er sie 
nannte, diese strikte Implikation ausdrücken. Sie ist konstruier-
bar, indem wir der materialen Implikation den Notwendigkeits-
operator voranstellen, also: • (p -> q) 

Die strikte Implikation ist so definiert: 

p => q = df • (p ->• q) 

was sich mit dem Möglichkeitsoperator so darstellen läßt: 

1. p => q 
2. • (p -» q) 
3. (p A—iq) 
4. - l O (p a - i q) 

Daher gilt auch 

P => q = df ~i O (p A - l q) 

2, De M . 
3, • i / i O 
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Mit diesen Definitionen halten wir uns im Bereich des Alltagsver-
standes auf. Und dennoch gibt es in diesem einfachen Rahmen 
eine Verknüpfung, die häufig fehlerhaft gedeutet wird. 

Es soll beachtet werden, daß • (p q) nicht gleichwertig ist mit 
p -» • q. In der Umgangssprache werden häufig irreführende 
Wendungen benutzt wie „Wenn p, dann muß es der Fall sein, daß 
q " . Was der Sprecher tatsächlich sagen will oder wozu er einzig 
berechtigt ist, das ist • (p -> q). 

Wenn ein Auto den Vortritt hat, dann hat ihn notwendiger-
weise der Stadtbus. 

Damit will man sagen, daß „Der Stadtbus hat den Vortritt" folgt 
notwendig aus „Autos haben den Vortritt". Das mag sinnvoll 
sein, aber eine Notwendigkeit liegt darin keineswegs, denn die 
Verkehrsgesetze lassen sich jederzeit abändern. Das Mittelalter 
hat deshalb eindringlich gewarnt: Verwechsle nicht p -> • q (ne-
cessitas consequentis) mit • (p -» q) (necessitas consequentiae). 

Übung 6.1.1 

1) Wenn Marius am 1. August in Spanien ist, dann ist er notwen-
digerweise am Tag der Bundesfeier im Ausland. 

Formalisieren Sie diese Aussagenverknüpfung. 

2) a) Aus dem Vorauswissen Gottes, das unabänderlich ist, 
„kann man nicht schließen, unsere Akte seien mit der absoluten 
Notwendigkeit notwendig, die man die Notwendigkeit des Fol-
genden (necessitas consequentis) nennt; sondern mit bedingter 
Notwendigkeit, die Folgenotwendigkeit (necessitas consequen-
tiae) heißt (Boethius, Trost der Philos.)." Thomas, De Ver. q. 24, 
a. 1, ad 13. Des hl. Thomas v. Aquin Untersuchung über die 
Wahrheit. In deutscher Übertragung von Edith Stein (Breslau 
1932-34) 2, 285. 

b) „Die aristotelische Unterscheidung zwischen absoluter Not-
wendigkeit (oder antezedenter) und bedingter (oder konsequen-
ter) Notwendigkeit erscheint explizit im Innersten der Theologie 
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selbst." J . Isaac, Le Peri Hermeneias en Occident de Boece ä Saint 
Thomas (Paris 1953) 48. 

1. Worin besteht der Unterschied zwischen Notwendigkeit des 
Folgenden und Folgenotwendigkeit im Text a) ? 

2. Ist die Terminologie von Text b) mit antezedenter und konse-
quenter Notwendigkeit vorzuziehen, und wie stehen die beiden 
Texte zueinander? 

3. Gibt es nach Thomas einen greifbaren Unterschied zwischen 
den beiden Notwendigkeiten, und steht ihm die Formulierung 
von a) oder b) näher? 

Wie beurteilen Sie die folgenden Aussagen 3) und 4) ? 

3) „Die Modalität betrifft die Kopula." W. Brugger, Die Moda-
lität einfacher Aussagenverbindungen. Scholastik 17 (1942) 218. 

4) „Die hypothetischen Aussagen [ = Implikationen] tragen alle 
die Modalität der Notwendigkeit." W. Brugger, Ebd. 220. 

6.1.2 Grundregeln 

Obwohl die Modaloperatoren nicht streng wahrheitsfunktional 
sind, müssen einige Wahrheitsbedingungen festgelegt werden. Ge-
nerell zu beachten sind zunächst die folgenden vier negativ formu-
lierten Bedingungen: 

• p * - i p 
• P + P 
• p 4= (p v - i p ) 
• p * (p A - i p ) 

Dagegen sind folgende drei Prinzipien intuitiv gültig und offen-
sichtlich auch annehmbar: 

1) 1.1 -5-!- NE (A necesse ad esse valet consequentia) 
P p 

1.2 EP (Ab esse ad posse valet consequentia) 
O P 

Die beiden Prinzipien 1.1 und 1.2 gehen auf Aristoteles zurück und 
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haben ihre lateinischen Namen im Mittelalter erhalten. Das erste 
heißt auch Notwendigkeitsaxiom, das zweite Möglichkeitsaxiom. 

2) Weiter scheint annehmbar, daß jede wahre Aussage nicht 
bloß wahr, sondern notwendig wahr ist. Wenn ,p' eine wahre 
Formel ist, dann ist nicht nur jede Aussage wahr, die die Form ,p' 
hat, sondern auch jede Aussage, die die Form , • p' hat. Also wenn 
,p' wahr ist, dann auch , D p ' . 

3) Was aus einer notwendigen Wahrheit folgt, ist selbst notwen-
dig. Also 

• p A (p => q) D q 

oder wie üblicherweise geschrieben wird: 

[ • p A D ( P q)] - ( D p - Dq) 

In allen Systemen bleiben 1) und 2) unverändert. Doch an die Stelle 
von 3) hätten wir eine andere Formel setzen können. Das würde zu 
einem geänderten System führen. 

Bevor wir diesen Gedanken weiterverfolgen, sei eine Zwischenbe-
merkung über einen Begriff eingefügt, der von den Modalbegrif-
fen nicht zu trennen ist und in der philosophischen Tradition bis 
heute eine große Rolle spielt: die Kontingenz. 

Übung 6.1.2 

1) „Wenn etwas notwendig ist, dann ist es auch möglich, aber 
das Gegenteil gilt nicht." Aristoteles, Hermeneutik 22 b 10. 

1. Zeigen Sie, daß aus dem Notwendigen das Mögliche 
folgt. 

2. Zeigen Sie, daß das Gegenteil unerlaubt ist. 

2) „Aus dem Notwendigen folgt nur das Notwendige". 
R. Jolivet, Traité de Philosophie (Paris 1949) 102. 

1. Was halten Sie von diesem grundlegenden Satz? 
2. Welche Konsequenzen ergeben sich? 
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6.1.3 Zum Kontingenzbegriff 

Aristoteles zögert zunächst bei der Wahl des Grundfunktors, ent-
schließt sich dann aber doch für den Möglichkeitsbegriff. Mit wel-
chen Schwierigkeiten er dabei zu kämpfen hat, das läßt sich sche-
matisch darstellen. 

In den Analytica Priora legt Aristoteles sinngemäß einen Kontin-
genzbegriff zugrunde, der sich in einem Dreieck darstellen läßt: 

notwendig v 7 unmöglich 

kontingent 

Dabei wird kontingent auf nicht genauer bezeichnete Art in Ge-
gensatz gestellt zu Notwendigkeit und Unmöglichkeit. Aristote-
les' Schüler Theophrast hat es vorgezogen, zur Erklärung das logi-
sche Quadrat zu benutzen, worin im die Renaissance und in neu-
erer Zeit die Neothomisten gefolgt sind. 

notwendig A E unmöglich 
• p - i O P 

Op - iöp 
möglich I 0 (kontingent ?) 

Häufig wird zweideutig gesagt, kontingent sei das, was möglich 
sei, manchmal auch, unter Kontingenz sei das zu verstehen, was 
nicht notwendig sei. Am logischen Quadrat lesen wir ab, daß die 
beiden Begriffe möglich und nicht notwendig durchaus nicht iden-
tisch sind, sondern im subkonträren Gegensatz stehen. 

Tatsächlich haben die Lateiner unterschieden zwischen possibile 
und contingens. Wahrscheinlich mit der Absolutsetzung der ari-
stotelischen Logik seit der Renaissance dürfte das Logische Qua-
drat seinen Platz als eine Art Naturkonstante erobert haben. Dar-
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aus hat sich die unsorgfältige Redeweise verbreitet, das kontradik-
torische Gegenteil zu notwendig sei als Kontingenz zu verstehen. 
Damit wäre zwar eine hinreichende Abgrenzung eingeleitet zwi-
schen dem Möglichkeits- und Kontingenzbegriff. Doch die 
Schwankung im Kontingenzbegriff wird ersichtlich, sobald wir 
auf die vorherige Definition zurückgehen, wonach das Kontingen-
te das ist, was sein kann aber auch nicht sein kann. Ist das nun 
gleichbedeutend mit möglich oder mit nicht notwendig? 

Von den Modalitäten her ist eine einleuchtende Lösung denkbar. 
Statt am Logischen Quadrat lassen sich die gegenseitigen Bezie-
hungen an einem Hexagon darstellen. Das sieht so aus: 

bestimmt 

U ^ 

notwendig A E unmöglich 
• p - i O P 

möglich 1 
O p —i Dp 

,0 nicht notwendig 

Y 

bilateral möglich 

K0NT1NGENZ 

Zusätzlich zu den bekannten vier Buchstaben wird an der Spitze 
ein „ U " hinzugefügt für die Disjunktion zwischen „A" oder „ E " , 
also zwischen notwendig oder unmöglich. Auf der horizontal 
spiegelbildlichen Gegenseite zeigt „ Y " die Konjunktion zwischen 
„I" und „ O " an, dem zweitseitig Möglichen. 

Die hexagonale Zeichnung macht deutlich, daß mit Kontingenz 
jeweils das bilateral Mögliche gemeint ist. Wenn das Nichtnot-
wendige als kontingent bezeichnet wird, so ist darunter nur ver-
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schwommene Sprache zu erkennen, die in Wirklichkeit eben doch 
das bilateral Mögliche meint. Für das bilateral Mögliche gibt es 
zwei Formulierungen: 

1) a) möglich, aber 
b) möglicherweise auch nicht: O p A O — i p 

2) a) nicht unmöglich, aber 
b) auch nicht notwendig: ~~i—lOpA —i • p 

Da die Kombinationen l a + 2b und l b + 2a nichts wesentlich 
Neues beitragen, sind die Möglichkeiten erschöpft, gemäß denen 
die Kontingenz darstellbar ist. Wenn jeweils von kontingent oder 
nicht notwendig gesprochen wird, so muß der Kontext darüber 
Auskunft geben, ob damit eine undeutliche Abkürzung für 1) oder 
2) gemeint ist oder ob ein schlichter Fehler vorliegt. 

Der Möglichkeitsbegriff schließt eine Mehrdeutigkeit ein, je nach-
dem ob seine Beziehungen zu den übrigen Modalitäten am 
Dreieck, am logischen Quadrat oder am Hexagon erläutert wer-
den. Beim Kontingenzbegriff liegt der Fall insofern einfacher als 
höchst bescheidene logische Mittel bereits zu einer brauchbaren 
Explikation führen. Im Zug weiterer Entwicklungen ist das pos-
sibile dem einseitig Möglichen reserviert worden, während das 
zweiseitig Mögliche als kontingent bezeichnet wird. Das Wesent-
liche an diesem Kontingenzbegriff liegt darin, daß die Negation 
einer kontingenten Tatsache nicht mehr kontingent ist, sondern 
den kontradiktorischen Gegensatz zu , ,U" anzeigt. 

Übung 6.1.3 

1) „Möglich und kontingent besagen dasselbe." Thomas von 
Aquin, De propositionibus modalibus (Vives 27, 550). 
1. Wie beurteilen Sie diese Behauptung? 
2. Wie schätzen Sie Thomas von Aquin in der Logik ein? 

2) (1) Gott kann nicht wollen, daß die Bejahung und Vernei-
nung gleichzeitig wahr sei. Das ist aber in jeder Unmöglichkeit 
eingeschlossen, die sich selbst widerspricht, sofern sie also einen 
Widerspruch einschließt. (2) „Einigen Dingen aber kommt nach 



6.1 Allgemeine Begriffe 251 

der Weise ihrer Natur zu, daß sie sein und nichtsein können und 
nicht notwendig sind. Also will er [Gott], daß einige Dinge sein 
und nichtsein können" (Thomas von Aquin, Summa contra Gen-
tiles, Kap. 85, Übersetzung von Karl Albert usw. (Darmstadt 
1974) 315-317). 
1. Wie verhalten sich die Texte (1) und (2) zueinander? 
2. Wie beurteilen Sie das Verhältnis, wenn der Kursivtext aus (2) 

so lautet: Igitur vult aliquas res esse contingentes ? 
3. Wie würden Sie (2) sinngemäß formulieren? 

3) (1) Es gibt Dinge, „von denen es möglich ist, daß sie beste-
hen, aber auch möglich ist, daß sie nicht bestehen. Dafür ist der 
Ausdruck ,kontingent' gebräuchlich." . . . (2) „,Kontingent' heißt 
zunächst soviel wie nicht notwendig. Das würde auch das Unmög-
liche umfassen." O. Muck, Philosophische Gotteslehre (Düssel-
dorf 1983) 130-131. 
1. Drücken die beiden Kontingenzdefinitionen dasselbe aus? 
2. Welcher Kontingenzbegriff umfaßt das Unmögliche? 

4) „Ein Syllogismus in AEA kann nach AAA (Barbara) umge-
wandelt werden. Gegeben sei der Syllogismus: 

— Es ist möglich, daß jeder Logiker (b) unverstanden (a) ist.(A) 
— Es ist möglich, daß kein vernünftiger Mensch (c) ein Logiker (b) 

— Es ist möglich, daß jeder vernünftige Mensch (c) unverstanden 

Würde dieser Syllogismus kategorisch aufgefaßt, dann wäre er 
unkorrekt. Doch können wir die minor [ = 2. Prämisse] umfor-
men dank der Antistrophe, einer Sondereigenschaft kontingenter 
Aussagen: 

— Es ist möglich, daß kein vernünftiger Mensch (c) ein Logiker (b) 
ist O - 1 (3x)ax 

wird zu: 
- Es ist möglich, daß jeder vernünftige Mensch (c) ein Logiker (b) 

ist O (Vx) ax 

ist. (E) 

(a) ist. (A) 

F. Chenique, Eléments de logique classique (Paris 1975) 2, 273—4. 
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1. Formalisieren Sie den Syllogismus 
2. Handelt es sich, wenn die Modaloperatoren gestrichen werden, 

um einen kategorischen Syllogismus des Modus AEA? 
3. Auf welche Sondereigenschaften dürfte der Autor bei den kon-

tingenten Aussagen anspielen? 
4. Wie rechtfertigen Sie die Umformung von <>~i (3x) ax in 

O(Vx) ax? 

6.1.4 Wahrheitsmatrizen 

Nach welchen Gesichtspunkten dürfen abgeänderte Formeln hin-
zugefügt und neue Systeme konstruiert werden? Lewis hat dazu 
brauchbare Beispiele vorgelegt. Er hat eine Reihe von Systemen 
entwickelt, die unter den Namen Sj bis S5 bekannt sind. Vorder-
hand sei nur bemerkt, daß es noch Zwischensysteme gibt und 
Systeme, die außerhalb dieses Rahmens stehen. Aus dieser Fülle 
wählen wir zunächst ein System aus, um anhand von Wahrheits-
matrizen begreiflich zu machen, warum sich dabei nicht eine un-
bestrittene Lösung aufdrängt. Als Grundlage für diese Diskussion 
wählen wir das System S3. 

Für die Modallogik gibt es kein Entscheidungsverfahren, wonach 
sich die Wahrheit nach einer Anzahl endlicher Schritte bestimmen 
läßt wie bei der Aussagenlogik. Es gibt indessen eine logische 
Technik, die erlaubt, bestimmte Aussagenverknüpfungen als 
nicht logische Wahrheiten auszuschließen. Damit sind wir neben-
bei auch schon mit der grundsätzlichen Frage konfrontiert, war-
um es mehrere Modalsysteme gibt. Logikgegner sehen darin bis-
weilen den Beweis für die sprichwörtliche Veranlagung der Philo-
sophen zum Monolog, was sie daran hindern soll, sich auf ein 
einziges System zu einigen. In Wirklichkeit steckt dahinter weder 
ein Mangel an Gesprächsbereitschaft noch an Toleranz, sondern 
die Tatsache, daß wir bis heute nicht eindeutig wissen, ob es ein 
einziges System geben wird, mit dem wir die Realität erfassen 
können. Die besten Systeme, die wir zur Zeit besitzen sind nicht so 
gut, daß sie alle Qualitäten der übrigen Systeme integriert hätten. 

Es lassen sich intuitiv verschieden strenge Modalausdrücke unter-
scheiden. Schon Leibniz hat aufmerksam gemacht auf den Unter-
schied zwischen logischer und physischer Notwendigkeit. Zu den 
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logischen Notwendigkeiten gehören logische oder mathematische 
Gesetze, zu den physischen die Gesetze der Experimentalwissen-
schaften. Das Verhältnis der beiden läßt sich kurz so andeuten: 
Was beispielsweise physikalisch notwendig (unmöglich) ist, 
braucht diese Modalität logisch nicht zu besitzen. Hingegen was 
logisch notwendig (unmöglich) ist, muß es auch physikalisch sein. 
1 dm3 Gold ist 19,3 kg schwer. Das ist eine physikalische Notwen-
digkeit, auf die sich die Prüfstelle für die Reinheit des Goldes 
definitionsmäßig verläßt, indem sie Fälschungen mit der Waage 
nachweist, ohne den Block in Pulver zu zerreiben. Das Gewicht ist 
nicht logisch notwendig, denn auf dem Mond wäre es bloß 
3,1845 kg. Dagegen ist eine logische Notwendigkeit wie etwa 
„2 + 2 = 4" immer richtig, ob wir uns auf der Erde oder auf dem 
Mond aufhalten. 

In dieser Situation geht man theoretisch vor; es werden Modelle 
entwickelt mit bestimmten Eigenschaften, zu denen etwa die Wi-
derspruchsfreiheit gehört. Einige Systeme sind besser geeignet, un-
sere Einstellungen zur Wirklichkeit darzulegen als andere. Des-
halb werden sie auch bevorzugt. 

Der Begriff der Wahrheitsmatrizen darf hier nur analog verstan-
den werden. Wir behelfen uns genauer gesagt mit Quasi-Wahr-
heitstafeln. Die Einschränkung auf Quasi-Tafeln ist deshalb er-
forderlich, weil sich den Zahlen keine zufriedenstellende Wahr-
heitswerte zuschreiben lassen. Wir wählen 4 Zahlen, die wir so 
interpretieren wollen: 

1 logisch wahr 
2 wahr, aber nicht logisch wahr 
3 falsch, aber nicht logisch falsch 
4 logisch falsch 

Bei dieser 4wertigen Logik könnten wir sagen, 1 oder 2 würden für 
wahr (1), 3 oder 4 für falsch (0) stehen. 

Die Definition der Funktoren zeigt einleuchtend, warum es meh-
rere Systeme geben kann. Während die Negation eindeutig zu de-
finieren ist, lassen sich für die beiden Modaloperatoren folgende 
Werte vorschlagen: 
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' P 
4 
3 
2 
1 

0 • 
1 2 
1 4 
1 4 
3 4 

Der Notwendigkeitsoperator ist abhängig vom Möglichkeitsope-
rator. Deshalb übertragen sich abgeänderte Werte des Möglich-
keitsoperators entsprechend auf den Notwendigkeitsoperator. 
Die folgenden Beispiele mögen andeuten, mit welch differenzier-
ten Werten der Möglichkeitsoperator zu belegen ist: 

O p (S t ) 
2 
2 
2 
4 

O p (S3) 
1 
1 
1 
3 

O p (S4) 
1 
2 
1 
4 

O p (S5) 
1 
1 
1 
4 

Von der Wahl des Modaloperators hängen die Definitionen der 
strengen Implikation und strengen Äquivalenz ab. Im Anhang 1 
wird ausführlicher auf den Aufbau des Systems S 3 eingegangen. 

6.1.5 Systematik der Modalsysteme 

Die Abweichungen der Systeme lassen sich am besten von der 
Axiomatik her verstehen. Lewis geht von 10 Axiomen aus: 

Ai (p A q) => (q A p) 
A 2 (p A q) => p 
A 3 p => (p A p) 
A 4 ((p A q) A r) => (p A (q A r)) 
A 5 ((p => q) A (q => r)) (p => 

A 6 P => O P 

A 7 0 ( p A q ) = > O p 
A 8 (p => q) => ( O p => O q ) 
A 9 D p -> • D p 
A 1 0 O p ^ \JOp 

r) 

Die ersten fünf Axiome sind diejenigen des Aussagenkalküls mit 
strikter Implikation. Sie können ersetzt werden surch jedes belie-
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big bewährte Axiomensystem, also jenes von Frege, Russell, Hil-
bert, Curry usw. Fügt man dem Aussagenkalkül A 6 hinzu, so er-
halten wir damit das erste Modalsystem S j . Es ist allerdings un-
vollständig in dem Sinn, daß sich neue Axiome und Schlußregeln 
hinzufügen lassen, ohne daß es widersprüchlich wird. Diesen Um-
stand nutzte Lewis aus, denn die Erweiterung um je eines der vier 
Axiome A 7 - A 1 0 bringt ein neues System hervor und zwar in 
Richtung auf zunehmende Strenge. Im einzelnen heißt das: Wenn 
das in Sx nicht enthaltene und nicht ableitbare Axiom A7 beige-
fügt wird, entsteht daraus: 

S 2 : S t + 0 ( p Aq) => Op 

Lewis hat sein System S 2 als das eigentliche System der strikten 
Implikation angesehen. Aber darin folgen ihm nicht alle Logiker. 
Analog zu den Paradoxien der materialen Implikationen in der 
Aussagenlogik treten nämlich in S 2 Paradoxien der strikten Impli-
kation auf, nämlich 

O p => (q => p) und 
O p => (p => q) 

Viele Logiker halten diese Sätze für falsch und lehnen deswegen 
das System S 2 ab. — Wenn wir dem S j anstelle von A 7 ein anderes 
Axiom beifügen, nämlich A g , dann erhalten wir S 3 . 

S 3 : S j + fp => q) => ( O p => O q ) 

Analog lassen sich S 4 und S 5 konstruieren, die aufgrund von A 9 

oder A 1 0 zustande kommen. Die fünf S-Systeme sind also folgen-
dermaßen aufgebaut: 

S t = Die 5 Axiome + A 6 

s 2 = s t + A7 
= + 
= S^ -(- AG 

S5 = SI + A 1 0 

Es gibt noch zahlreiche Zwischenstufen und Ergänzungen. Bei-
spiele: S0.5 ist schwächer als S j . Fügt man S 2 das Axiom 

O O p 
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hinzu, so erhalten wir S 6 , das unabhängig von S 1 - S 5 ist und un-
verträglich mit S 4 und S 5 usw. 

Diese allgemeine Zusammenstellung mag vorderhand genügen. 
Wir wollen uns einigen Systemen und deren Entscheidung zuwen-
den. 

Die modale Aussagenlogik geht schon auf Aristoteles zurück. Im 
Mittelalter ist die Argumentations- und Wissenschaftssprache 
eingehend analysiert worden, wobei vor allem die modale Aussa-
genlogik in den Blickpunkt gerückt ist. Die heutige Logik ver-
sucht, die Erkenntnisse zusammenzufassen und auf die modale 
Prädikatenlogik auszudehnen. Sehr viele Probleme der Modalitä-
ten lassen sich aber bereits auf der Grundlage der modalen Aussa-
genlogik besprechen. 

Wir beginnen mit einem einfachen System. Es ist eingeschränkt in 
einer Weise wie etwa die aristotelische Syllogistik, die nur dann 
anwendbar ist, wenn genau zwei Prämissen mit je einer Subjekt-
Prädikataussage vorliegen, die überdies weiteren Zusatzbedin-
gungen unterworfen sind. Dadurch ist die praktische Anwendbar-
keit eher selten eintreffenden Situationen vorbehalten. Unser 
Hilfssystem ist in dem Sinne eingeschränkt, daß nur Aussagenver-
knüpfungen zugelassen sind, deren Atomformeln jeweils die glei-
che Anzahl der Modaloperatoren enthalten. 

Zugelassen Ausgeschlossen 

Zur theoretischen Vervollständigung mag noch eine genauere Be-
schreibung von der Axiomatik her angeschlossen werden. Das 
einfache System besteht aus folgenden Elementen: 

6.2 Modale Aussagenlogik 

6.2.1 Ein einfaches System 

• p -»• O p 
0 0 ( p -> P) 

P O p 
• (P V D P ) 
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1. aus den 5 Axiomen der klassischen Aussagenlogik in strikter 
Implikation 

2. aus zwei Modalaxiomen 

2.1 p O p 
2.2 0 ( p v q ) - » 0 p v 0 q 

Das Axiom 2.1 ist genau unser Axiom A 6 . Hingegen ist 2.2 nicht 
genau das charakteristische Axiom S 2 , denn 2.2 setzt nicht die 
strenge Äquivalenz voraus. Unser Hilfssystem ist also ein Zwi-
schensystem zwischen S t und S 2 . Aber das soll uns nicht weiter 
beschäftigen. 

Zur Auswertung empfiehlt sich hier die polnische Schreibweise 
mit der Streichungstechnik, die wir früher schon benutzt haben. 
Den Notwendigkeitsoperator schreiben wir mit L, denjenigen der 
Möglichkeit mit M und die strenge Implikation als C . Als Defini-
tion gelten die unter 6.1.1 und 6.1.2 genannten Beziehungen. Da-
nach sind die beiden Modalfunktoren gegeneinander austausch-
bar. In der polnischen Notation ist dies übersichtlich: 

Lp = d f Mp 

Die große Ähnlichkeit der Modaloperatoren mit den Quantoren 
der Prädikatenlogik wird dazu benutzt, die Streichungsregeln zu 
übertragen. Der Notwendigkeitsoperator wird durch eine Zah-
len- und der Möglichkeitsoperator durch eine Buchstabenkon-
stante ersetzt. 

Lp j[ p und Mp p 

Auswertung 

Unter jede Variable wird zuerst die Konstante Null „ 0 " geschrie-
ben und dann folgt die bereits bekannte Auswertung. 

Beispiele: 

1 a 

L C p q 
1 

K M p M q 
a b 

^ p q 
0 o 
1 l 

fc 1)« p tyl q 
0 0 
a b 

9 Bucher, Logik 
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Eine modale Aussagenverknüpfung ist unter den bisher bekannten 
Bedingungen geschlossen, nämlich genau dann, wenn eine Va-
riable gleichzeitig mit ihrer Negation auftritt. 

Beispiele: 
L C p p 
1 
^ P P 

0 0 
1 1 

1, p p geschlossen 
0 0 
1 1 

M M C p p 
a b 

# # <P P P 
0 0 
a a a, b, p p geschlossen 
b b 0 0 

a a 
b b 

Übung 6.2.1 

1) L C K p p q 
2) C L q L C p q 
3) C L p M p 
4) C A M p q A M p M q 
5) C K L p L q M K p q _ 
6) C K L C p q L C p q M p 

Dieses System gilt als schwach. Wir wenden uns einem stärkeren 
zu, dem System T. 

6.2.2 Das System T 

Das System T enthält folgende Elemente: 

1. Die Axiome des Aussagenkalküls 
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2. Die Definitionen von • , O , und o 
3. Die zwei zusätzlichen Axiome 

• p —> p Notwendigkeitsaxiom 
• (p -> q) ->• ( D p D q ) 

4. Die Notwendigkeitsregel: 
Wenn p eine wahre Aussage ist, dann auch • p 

Das System T legt keine Beschränkungen auf in der Anzahl der 
zugelassenen Modaloperatoren. Deshalb gilt etwa die im Hilfssy-
stem ausgeschlossene Formel 

p -» O p C p M p 

geradezu als charakteristisch für T . 

S j enthält fast die ganze Basis von T . S 2 ist noch stärker als S l 5 

aber immer noch nicht so stark wie T . T ist deshalb mit S 2 zu 
vergleichen. Es enthält S 2 , ist aber selber nicht in S 2 enthalten. T 
enthält jedoch S 3 nicht mehr. 

Da unser einfaches System in T enthalten ist, sind alle Theoreme 
dieses Systems auch T-gültig. Es gibt aber T-gültige Formeln, die 
im einfacheren System nicht als gültig nachweisbar sind. Bevor 
wir genauer darauf eingehen, soll anhand von einigen Beispielen 
gezeigt werden, wie zur Entscheidung Wahrheitstafeln und De-
duktion eingesetzt werden können. 

Wir wählen die Technik der teilweisen Wahrheitstafeln mit nur 
zwei Wahrheitswerten wahr—falsch. Dabei wird die Formel als 
falsch angenommen. Stellt sich infolge der Zuordnung der Werte 
ein Widerspruch ein, so ist damit die Annahme als ungerechtfer-
tigt nachgewiesen. 

Als Ergänzung zur Aussagenlogik verlangt die Modallogik eine 
zusätzliche Anweisung, wie mit • und O umzugehen ist. Es soll 
gelten: Wenn ,p' wahr ist, dann muß erst recht , O p ' wahr sein. 
Entsprechend müssen wir ,p' den Wert „ 1 " zuschreiben, wenn 
, D p ' den Wert „ 1 " hat. Es wird also genau bestimmt: 

wenn D p (1), dann auch p (1) 
wenn p (1), dann auch O p (1). 

9. 
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Wird unter diesen Voraussetzungen ein Widerspruch aufgezeigt, 
so ist damit die T-Gültigkeit bewiesen. 

1) Wir zeigen, daß • p - * p richtig ist 
1. • p p 

1 0 0 0 
1 

2) Ist die Formel D — i p -» (p =s- q) gültig? 
2. • - i p • (p -> q) 

1 1 0 0 1 0 1 0 
1 

Übung 6.2.2 

Beweisen Sie a) mit Wahrheitstafeln, b) in polnischer Notation: 

1) ( D p v D q ) - » D ( p v q) 
2) Op - [ D ( p - q) A D ( p - - i q ) ] 
3) [ • p A • (p A q) - * r ] -» • (q -» r) 

3) Wir beweisen, daß aus • p —• p folgt: p —> O P 

1. D p -» p Pr. 
2. D - i p - » " i p 1, p / - i p 
3. —1 —ip ^ —lEH —ip 2, Kontr. 
4. p —> —i • i p 3, D N 
5. p -> O p 4, Mod. 

4) Ferner beweisen wir, daß • (p A q) ( • p A • q) 
1. ( p A q ) p Pr. 
2. • (p A q) -» D p 1, • 
3. • (p A q) -» D q 1, • 
4. D ( p A q) -> ( D p A D q ) 2 , 3 , Konj . 
5. D p - » • (q • (p A q)) 4, Exp. 
6. • (q ^ (p A q)) ( • q • (p A q)) 5, Modal-

7 . G p - » ( D q - > D ( p A q)) 
8. ( D p A • q) • (p A q) 
9. • (p A q) <-• ( • p A • q) 

Verschiebung 
5, 6, HS 
7, Exp. 
4, 8, Konj . 
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Das System T enthält keine Reduktionssätze. Darunter verstehen 
wir logische Gesetze, mit denen sich Anhäufungen von Modalope-
ratoren vereinfachen lassen. Deshalb kann es im System T eine 
unendliche Anzahl distinkter Modalitäten geben. 

Wenn es bisher den Anschein machte, im System T sei alles intu-
itiv erfaßbar, so gibt es auch hier gleichwohl Beispiele, die den 
Rückgriff auf die polnische Notation empfehlen. 

Um eine T-Formel zu schließen und damit die Gültigkeit nachzu-
weisen, gilt weiterhin das beim Hilfssystem geübte Vorgehen. Die 
charakteristische Regel, mit der eine gültige T-Formel zu schlie-
ßen ist, lautet: Ein Buchstabe darf in den Auswertungsspalten ein-
heitlich gestrichen werden. Das soll an zwei Beispielen erläutert 
werden: 

C p M p 
a 

£ p m p 
0 0 

i 
p p 
0 0 

i 

C K p q M K p q 

<P t P q W 
0 0 

p q o o 

If p q 
0 0 
a a 
P 
0 
i 
q 
0 
i 

Übung 6.2.2 

4) ,C M p M M p 
5) C C p q C L p q 
6) C L C p q L C L p q 
7) L C L C p q L C L p q 

Zum System T gehören weiter die früheren Regeln in strikter 
Form, also der strikte Modus ponens, der strikte Modus tollens 
usw. 
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((p q) A p) => q SMP 
((p -> q) A—iq) => - i p S M T 
((p v q ) A - i p ) => q SDS 
((p - q) A (q -> r)) => (p - r) SHS 
((p q) A (r - s)) A (p v r)) => (q v s) SKD 
p =s> (p v p) SAdd. 
(p A q) => p SSimpl. 
(p A q) => q SSimpl. 
(p A q) => (p A q) SKonj. 

Übung 6.2.2 

Zeigen Sie, daß 

8) S M T 
9) SHS 

10) SKonj. 
11) SKD 

bereits zum Hilfssystem gehören. Wie steht es mit der Modaldis-
tribution 12) ? 

12) < > ( p A q) => ( O p A O q ) 

Die strikte Äquivalenz 

Die strikte Äquivalenz bringt keine neuen Schwierigkeiten mit 
sich. Sie läßt sich so definieren: 

P o q = df • (P q) 

Nun können wir einige Äquivalenzen untersuchen, die auch für 
die strikte Äquivalenz gelten. 

• p ( - i p => p) 
(strikte consequentia mirabilis) 

• n p o (p = > — i p ) 
(strikte negative consequentia mirabilis) 

Die bisher genannten strengen Implikationen sind auch strikte 
Äquivalenzen: 
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(p => q ) <s> • (p q) 
(p =j> q ) «> - i • (p a - l q) 
- I ( p => q ) O ( p A - l q) (p q ) «j» ( - , q - , p) 

(p o q) o (q p) 

" i ( p o q ) » O h p « q ) 
—I (p <s> q) O o (p «•• —l q) 
(p q) • (p q) 
(p <t> q) (p q) A (q => p) 

Die folgenden beiden Austausche der Modaloperatoren lassen 
sich als strikte Äquivalenzen schreiben: 

• ( p A q ) « . ( G p a • q) 
O ( p v q ) ( O p V O q ) 

Fügt man dem System T das Brower-Axiom (p -» • O p) Hinzu, 
dann bekommen wir ein System, das zwischen T und S5 liegt, 
jedoch unabhängig von S 4 ist. Das soll nicht weiter ausgeführt 
werden. 

6.2.3 Das System S 4 

Das System S 4 läßt iterierte Modalitäten zu. Darunter verstehen 
wir Folgen mehrerer Modaloperatoren hintereinander, etwa 
• p -» • • p. Um solche Modalhäufungen zu vereinfachen, 
braucht es Reduktionsgesetze. Das sind Anweisungen, wie iterier-
te Modalitäten zu eliminieren sind. Das System S 4 kennt eine sol-
che. Regel. Danach ist es erlaubt, eine Kette gleicher Modalopera-
toren auf einen einzigen Modaloperator zu reduzieren. LLLLp 
wird zu Lp. 

Von der Systematik aus ist die Herkunft von S 4 leicht zu rechtferti-
gen. Es genügt, dem System Sx das Axiom A 9 beizufügen, nämlich: 

A9 D P - D D P 
Dieses Axiom ist charakteristisch für S 4 . An seiner Stelle hätte 
gleich der Reduktionssatz D p <-> • • P beigefügt werden kön-
nen. Doch das Axiom genügt, weil die andere Hälfte der Äquiva-
lenz bereits ein Theorem von T ist. • • p —> [Up ist nämlich 
entstanden aus: 
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1. Q p - > p NE 
2. D D p D p l , p / D p 

Aus theoretischen Sparsamkeitsgründen fügen wir deshalb dem S 4 

nur die noch fehlende Implikation als Axiom bei. Das ergibt uns 
gleichwohl den Reduktionssatz • p <-> D D p , womit der dop-
pelte Notwendigkeitsoperator jederzeit auf einen einfachen redu-
ziert werden kann. Die gleiche Überlegung gilt nun aber auch für 
den Möglichkeitsoperator. A 9 läßt sich mit dem Möglichkeitsope-
rator so darstellen: O O p O P- Da hier gleichermaßen der an-
dere Teil der Implikation bereits zu T gehört, gilt ebenfalls der 
Reduktionssatz: O P O O p - Das hat zur Folge, daß sich eine 
ununterbrochene Folge von „ • " oder „ O " auf ein einziges Mo-
dalzeichen reduzieren läßt. Das sei an zwei Beispielen gezeigt. 

Beispiel 1: 
Aus D p D d p folgt O O p -» O p 

1- D p - * D D p Axiom S 4 

2. E l - i p - > • • - ! p 1, p / - i p 
3. n < > p - > ~ i O O p 2, Mod. 
4. O O p O p 3, Kontrap. 

Beispiel 2 
Aus • p p folgt O • O p -» O p 

1. D p p NE 
2. D O . p - » O p 1, p / O p 
3. O D O p - > O O p 2, (p q) ( O p O q ) 
4. p -> O p EP 
5. O p O O p 4, p / O p 
6. O O p - * O P (vorheriges Beispiel) 
7. O D O p O p 3 , 6 , HS 

Die polnische Notation bewährt sich vor komplizierteren For-
meln einmal mehr. Um eine Auswertungstafel zu schließen, gilt: 
Von zwei aufeinanderfolgenden Zahlenkonstanten darf die obere 
gestrichen werden. Diese Regel darf beliebig oft wiederholt wer-
den, nur die ,0' ist nie zu streichen. 
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Beispiele: 
C M M p M P 

1 2 a 
<p $ jyi p P a 

0 0 
l a 
2 

A L L L L L p M 
1 2 3 4 5 a 

A t l t l l P W 
0 0 
t a % 

i 
i 

Übung 6.2.3 

1) C L p L L p 
2) C L p L L L L p 

T ist in S 4 enthalten, doch gibt es neben den formalen auch philo-
sophische Gründe, die es nahelegen, uns mit einem System wie S 4 

zu befassen. Da es nicht mehr ohne weiteres einsichtig ist, ob 
etwas notwendigerweise notwendig sei, falls es notwendig ist, hat 
dies zu Kontroversen geführt. Nun können wir sagen, daß derjeni-
ge, der diese Behauptung aufrecht hält, innerhalb des S 4 Systems 
argumentiert und er damit seine Behauptungen auf ein vernünfti-
ges System bezieht. Nun gibt es aber auch die Meinung, die nicht 
nur eine notwendige Aussage für notwendigerweise notwendig 
ansieht, sondern diese Notwendigkeit jeder Modalität zuschreibt. 
Wenn etwas möglich ist, dann soll es auch notwendigerweise 
möglich sein. Wie weit das berechtigt ist, dazu gibt die Modallo-
gik eindeutig Auskunft. Beides ist nämlich möglich. Wer nur die 
Notwendigkeit für notwendig hält, operiert mit dem System S 4 , 
wer jede Modalität für notwendig hält, legt das System S 5 zugrun-



266 6. Die Modallogik 

de. Die beiden sind wohlunterschieden, sie dürfen nicht gegen-
einander ausgespielt werden. Sie stehen in dem Verhältnis zuein-
ander, daß eine Lehrmeinung in einem schwächeren (S4) oder in 
einem stärkeren Sinn (S5) vertreten werden kann. Sehen wir uns S 5 

etwas an. 

6.2.4 Das System S 5 

Das letzte System, das wir besprechen wollen, ist S 5 . Hier lassen 
sich nicht nur gleiche Modaloperatoren reduzieren, sondern auch 
vermischte. Deshalb läßt sich beispielsweise eine Formel wie 
• O O D O D D D p einfach auf • p reduzieren. 

Von der Systematik her gesehen gehen wir von aus, dem einzig 
das Axiom 1 0 beigefügt wird. Das Axiom 10 lautet: 

Aio O p - > D O p 

Die für S 5 charakteristische Regel heißt auch starkes Reduktions-
prinzip, während die von S 4 als schwaches Reduktionsprinzip gilt. 

Der Unterschied zwischen S 4 und S 5 geht aus den andern Matri-
zendefinitionen hervor. 

S 4 S 4 s 5 s 5 

o • O • 
1 1 1 1 1 
2 2 4 1 4 
3 1 3 1 4 
4 4 4 4 4 

S 4 s 5 

= > 1 2 3 4 => 1 2 3 4 
1 1 4 3 4 1 1 4 4 4 
2 1 1 3 3 2 1 1 4 4 
3 1 4 1 4 3 1 4 1 4 
4 1 1 1 1 4 1 1 1 1 

Die Schließungsregel lautet: Alle Eintragungen dürfen gestrichen 
werden mit Ausnahme der letzten. 
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Dazu zwei Beispiele: 
C M L P L P 

1 a 2 
£ fr l P L P 

0 0 a = 2 
t 2 
a 

C L P M L L M M L P 
a b 1 2 c d 3 

c l P jyi l l jyi yi % P 
0 0 
a * 

t 
l 
t 
* 
3 

Übung 6.2.4 

1) Zeigen Sie die Gültigkeit des Grundaxioms von S 5 . 
2) C M L M L L p L p 
3) C K M q M p M L M L K L M q L L M q 

6.3 Modale Prädikatenlogik 

Wie die Aussagenlogik durch die Prädikatenlogik erweitert wird, 
so ist auch die Modallogik der Aussagen zu erweitern, wenn dar-
aus eine Modallogik der Prädikate entstehen soll. 

Die Stellung des Modalperators gibt der Aussage einen anderen 
Sinn, je nachdem ei vor oder hinter dem Quantor steht. Da sind 
mit wenigen Prädikaten überraschend viele Kombinationen auf-
stellbar. 
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Beispiele: 
M 3 x K F x G x Es ist möglich, daß der Fluß gefro-

ren ist. 
3 x M K F x G x Es gibt etwas, das möglicherweise 

ein Fluß und gefroren ist. 
3 x K F x M G x Es gibt Flüsse, die möglicherweise 

gefroren sind. 
3 x K M F x G x Es gibt etwas, das möglicherweise 

ein Fluß ist und gefroren ist. 
M V x C F x G x Es ist möglich, daß alle Flüsse gefro-

ren sind. 
V x M C F x G x Für alle Dinge ist es möglich, daß, 

wenn es Flüsse sind, sie gefroren 
sind. 

V x C F x M G x Alle Flüsse sind möglicherweise ge-
froren. 

V x C M F x G x Alles, was möglicherweise ein Fluß 
ist, ist gefroren. 

Diese Übersicht deutet bereits an, wie kompliziert der Einzelfall 
werden kann. Intuitiv hat man beispielsweise den Eindruck, 3 x K 
F x M G x würde 3 x M K F x G x implizieren. Wir dürfen uns nicht 
auf die bloße Intuition verlassen, sie könnte uns leicht auf Abwege 
bringen wie im genannten Beispiel. Denn hier ist die gleiche Vor-
sicht geboten wie bei der Umstellung von All- und Existenzquan-
toren in der Prädikatenlogik. 

Streichungsregeln 

Die wichtigste Ergänzung betrifft die Anordnung der Quantoren 
und Modaloperatoren. Wir legen fest: Es wird wie gewohnt eine 
„0" unter die Prädikate gesetzt. Die Zahlen oder Buchstaben der 
Quantoren werden neben die Null gestellt oder neben die Zahl 
oder den Buchstaben, die durch Streichen des Modaloperators 
entstanden sind. Im Hilfssystem sieht das so aus: 
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C L V x F x M V x F x 
a b c 1 

f i j f x F x ] ) « ) f x F x 
0 0 b = 1 
ab c l a = c = 2 

C V x L F x 3 x M F x 
a b c d 

1 t f x l F x f i x t y l F x 
Oa Oc a = c = 1 
b d b = d = 2 

Hingegen ist der folgende Ausdruck kein Theorem: 

C V x L F x M B x F x 
a b c d 

Oa 0 
b cd 

Kein Theorem, weil a und d nicht in Verbindung zu bringen 
sind. 

C L V x K F x G x K L V x F x L V x G x 
a b _ 1 2 1 2 

f f j f x j t F x G x K 
0 0 
ab ab 

: i f x F x x G x 
0 0 
12 12 
0 
12 

0 
12 

b = 2 

Eine konjunktive Verzweigung mit All- und Notwendigkeitsope-
ratoren erlaubt, für beide Zweige dieselben Zahlen zu wählen. 

Übung 6.3. 

1) C L V x F x M 3 x F x 
2) C K L V x F x L V x G x L V x K F x G x 
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3) C M_3 x K F x G x K M 3 x G x M_3 x G x 
4) C 3 x M A F x G x 3 x M K F x G x 

6.3.1 Die verschiedenen Welten von Leibniz 

Leibniz entwickelt in seiner Théodicée den Gedanken von den 
verschiedenen Welten. Damit legt er einen Erklärungsversuch vor, 
der angesichts des Übels in der Welt gleichwohl von einem guten 
Gott zu reden erlaubt. Das Problem spitzt sich zu mit der Feststel-
lung, die unglücklichen Menschen hätten das Schlechte durch ihre 
Bosheit verursacht. Wie würde das Lebensende aussehen, wenn 
diese Individuen für das Gute eingestanden wären ? Diese gedach-
ten Lebensabläufe bilden die verschiedenen Welten. 

In der bildhaften Darstellung von Leibniz rollt ein möglicher Le-
bensablauf jeweils in einem Zimmer ab. Die verschiedenen Zim-
mer versinnbilden den Gedanken, daß der Mensch aus dem reich-
haltigen Lebensangebot ständig Auswahlen treffen muß. Ist der 
Entscheid gefallen, so bedeutet dies nicht nur die Verwirklichung 
des einen Angebotes, sondern gleichzeitig Ausschluß aller übri-
gen. Beispiel: Als Ferienort steht mir die ganze Welt offen. Sobald 
ich die Fahrkarte für Venedig gebucht habe, sind Alicante, Mal-
lorca oder Sörenberg ausgeschlossen. Mit der Verwirklichung der 
ausgewählten Möglichkeit verblassen die andern, und im Rück-
blick gelten sie nur noch als Gedankenspiele. Das zeigt Leibniz an 
einem treffenden Vergleich: Sextus beklagt sich, er sei unglück-
lich. Jupiter hört davon und weissagt ihm: „Wenn du von Rom 
fortgehst, dann wirst du ein anderes Schicksal erfahren." Der 
starrköpfige historische Sextus ließ sich davon nicht beeindruk-
ken, er blieb, und so mußte er gerechterweise die Folgen tragen. In 
einem Traum wird nun gezeigt, wie sich die Welt für Sextus hätte 
verändern können. Im ersten Zimmer ist Sextus nach Korinth ge-
gangen, findet einen Schatz, wird reich, beliebt, angesehen, hoch-
betagt und von der ganzen Stadt verehrt. Im zweiten Gemach ist 
Sextus nach Thrazien ausgewandert, heiratet die Königstochter 
und wird als Thronerbe eingesetzt; die Untertanen beten ihn an. In 
den angrenzenden Zimmern sieht man unendlich viele weitere Bil-
der des Sextus, der dem Jupiter gehorcht hat. 
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Das sind die verschiedenen Welten. Sie sind in Pyramidenform 
aneinandergereiht. An der Spitze ist die wirkliche Welt, das Leben, 
wie es die Geschichte über Sextus berichtet. Die übrigen Zimmer 
zeigen, wie es ihm hätte ergehen können, wenn er sich an den Rat 
von Jupiter gehalten hätte. 

Die Leibnizstrategie gibt uns ein Bild, wovon die verschiedenen 
Modalsysteme handeln und verschafft uns Einsicht darüber, wie 
diese Systeme von den unterschiedlichen Restriktionen abhängen, 
die wir an die Zugänglichkeitsrelation stellen. Eine mehr techni-
sche Darstellung dieser Beziehungen findet sich im Anhang 2. 

6.3.2 Die Vielzahl der Modelle 

Die Eigenschaften der Reflexivität, Transitivität und Symmetrie 
erlauben die Kombination einer Vielzahl von Modellen. In der 
Modallogik erweist sich ferner die Annahme der Existenz sowie 
die Quasiäquivalenz als einflußreich, so daß wir über folgende 
Eigenschaften nachdenken wollen: 

Existenz E 
Reflexivität R 
Transitivität T 
Symmetrie S 
Quasiäquivalenz Q 
Quasiäquivalenz: Für alle Elemente a, b und c der Menge 
M: wenn Hab und Heb, dann Hac. 

Aus der Systematisierung dieser 5 Eigenschaften erhalten wir 
2 5 = 32 Kombinationen. Analog zur theoretischen Errechnung 
der aristotelischen Syllogismen gibt es hier zwar keine verbotenen 
Kombinationen, jedoch redundante. Da etwa Q und R zusammen 
S und T implizieren, werden wir einige Wiederholungen auslas-
sen. Immerhin bleiben noch die folgenden 15 Kombinationen üb-
rig-
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E R T s Q 
1. 1 1 1 1 1 S 5 

2. 1 1 1 0 0 S 4 

3. 1 1 0 1 0 Brouwer 
4. 1 1 0 0 0 T 
5. 1 0 1 0 1 
6. 1 0 1 0 0 
7. 1 0 0 1 0 
8. 1 0 0 0 1 
9. 1 0 0 0 0 Hilfssyst 

10. 0 0 1 1 1 
11. 0 0 1 0 1 
12. 0 0 1 0 0 
13. 0 0 0 1 0 
14. 0 0 0 0 1 
15. 0 0 0 0 0 

Bei Berücksichtigung der Irreflexivität, Nonreflexivität, Asymme-
trie, Nonsymmetrie usw. würde sich die Anzahl möglicher Syste-
me noch gewaltig vergrößern. 

Die verschiedenen Modalsysteme stimmen nun darin überein, daß 
sie als Quantifizierung über die Zugänglichkeitsrelation der ver-
schiedenen Welten laufen. Sie unterscheiden sich in den unter-
schiedlichen Einschränkungen, die als exakt definierbare Forde-
rungen an die Zugänglichkeit gestellt werden. Genauer ausge-
drückt: Ein Modalsystem ist interpretierbar als ein geordnetes 
Tripel <0, W, Z > , bei dem W die Objektmenge aller Welten ist, 0 
ein Element dieser Menge und Z die Relation, die für die Elemente 
von W definiert ist. Wie die Tabelle zeigt, haben wir nur Modelle 
mit Existenzannahmen besprochen. Daneben setzen die Systeme 
folgende Eigenschaften voraus: 

T reflexiv 
5 4 reflexiv, transitiv 
5 5 reflexiv, transitiv, symmetrisch 
Brouwer reflexiv, symmetrisch 

Was die einzelnen Eigenschaften bewirken, ist nun leicht zu erfas-
sen. Wird die Existenzannahme anerkannt, so heißt das, bei der 
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Formel C L p M p dürften die Buchstaben durch Konstanten er-
setzt werden. Anderfalls ist die Formel nicht schließbar. Reflexivi-
tät stellt die Beziehung zwischen Modalität und Wahrheit her, 
etwa bei CLpp. Transitivität führt zur ersten Reduktion der Mo-
dalitäten. Während von der Reflexion her offen bleibt ob die Al-
ternative Hac gilt, wenn Hab und Hbc vorliegen, wird diese Bezie-
hung durch die Transitivität entschieden. Und schließlich sorgt 
die Symmetrie dafür, daß aus der Alternative des Ersten zum 
Zweiten auch die Alternative des Zweiten zum Ersten zum Zug 
kommt. 

Um nochmals zu Leibniz zurückzukehren, könnten wir jetzt bes-
ser verstehen, was es für Sextus bedeutet, die Welt in Korinth sei 
für ihn vorstellbar. Angenommen, er werde gefragt, ob eine Aus-
sage ,p' möglicherweise wahr sei, etwa „Im Winter sinkt die Tem-
peratur bis 30 Grad unter Null". Er wird sie so verstehen, daß er 
sich als Antwort überlegt, ob dies in Rom, Korinth, Thrazien oder 
an einem anderen ihm bekannten Ort zutrifft. Wenn er nichts von 
Hochalpen oder vom Nordpol weiß, dann wird er die Frage ver-
neinen. Die Frage, ob im Sommer die Temperatur notwendiger-
weise über 20 Grad steigt, wird er nur dann bejahen, wenn an allen 
Orten, die er kennt, diese Wärme tatsächlich vorkommt. 

Falls Transitivität vorliegt, braucht es deswegen nicht Symmetrie 
zu geben. Ich kann mir eine Welt ohne Farben vorstellen. Würde 
es bei uns aber keine Farben geben, so könnte sich niemand eine 
Welt mit Farben vorstellen. Falls das Wort „Farbe" im Sprachvor-
rat vorhanden wäre, so würde es doch nur die Intensität, den 
Kontrast oder sonst eine Schattierung zwischen schwarz und weiß 
bedeuten. Die fehlende Symmetrie zeigt an, daß in diesem Fall nur 
S 4 sagt, was gültig ist. 

Der Gedanke an eine Vielfalt möglicher Systeme sollte uns ver-
traut sein, wenn wir uns an die Barcan-Formel heranwagen. 

6.3.3 Die Barcan-Formel 

Im Jahre 1946 hat Ruth Barcan eine Formel vorgelegt, die eine 
große Diskussion ausgelöst hat und einige bisher übersehene Zu-
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sammenhänge in ein neues Licht gestellt hat. Die Barcan-Formel 
lautet: 

0 ( 3 x ) P x (3x)OPx 

Den Unwillen vieler Logiker hat diese Formel hervorgerufen, weil 
ihre Interpretation der Intuition langjähriger Gepflogenheiten wi-
derspricht. Die Grundlage dazu hat Abelard im Mittelalter aus-
führlich besprochen in den Modalitäten de dicto und de re, die 
ihrerseits auf Aristoteles zurückgehen. 

In den Sophistischen Widerlegungen stellt Aristoteles die Frage, 
ob ein Mensch gehen kann, wenn er sitzt und schreiben, wenn er 
nicht schreibt. Sein Lösungsvorschlag lautet, wir hätten zu unter-
scheiden zwischen sensu composito ( = de dicto) und sensu diviso 
( = de re). 

Die Modalität de dicto bezieht die Modalität auf die ganze Aussa-
ge. „Es ist möglich, daß ein Mensch sitzt" O (3x) (Mx A Sx). Da-
gegen beschränkt sich die Modalität de re auf das Prädikat: 
„Es gibt einen Menschen, der möglicherweise sitzt" 
(3x) (Mx A O Sx). Die beiden Modalitäten werden als aufeinan-
der rückführbar betrachtet und zwar so: Wenn es einen Menschen 
gibt, der möglicherweise sitzt, dann ist es möglich, daß ein 
Mensch sitzt. Mit andern Worten: de re Möglichkeit impliziert de 
dicto Möglichkeit, aber nicht umgekehrt. Eine gesunde Logik soll-
te genau das zeigen, nämlich daß 

(1) C 3 x M P x M 3 x P x gültig 
(2) C M 3 x P x 3 x M P x ungültig 

ist. Nun ist aber (2) die berüchtigte Barcan-Formel und die Be-
hauptung lautet nun, die beiden seien gleichermaßen beweisbar. 

(3) (Vx) • (Px Qx) -» • ((Vx)Px -» (Vx)Qx) 

Die Formel (3) ist falsch. Es scheint zwar, sie hätte Ähnlichkeit mit 

(4) D ( p - q) -> ( D p D q ) 

Indessen steht bei (3) „ • " nach dem Allquantor, im Nachsatz vor 
den Quantoren. 
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(5) • (Vx) (Px Qx) -»• • ((Vx) Px (Vx)Qx) 

ist leichter beweisbar. Es ist ein Spezialfall der BF (Barcan-Formel) 

BF (Vx) • Px • (Vx) Px 

Aus BF folgt O (3x) Px => (3x) O Px 

Die BF ist eine These aus dem Brouwer-System, das aus dem Prä-
dikatenkalkül zusammen mit dem Axiom p D O p besteht. 

6.4 Epistemische, deontische und zeitliche Modalitäten 

Die Unterscheidung zwischen notwendig und nicht notwendig be-
zieht sich bei Aristoteles auf Substanz und Akzidens, sie leitet sich 
direkt von der Metaphysik her. Abstrahiert man von der aristote-
lischen Metaphysik, dann ist es sinnvoll, neben den alethischen 
— die auch ontische Modalitäten genannt werden - andere Moda-
litäten zu beachten. Die wichtigsten sind: 

— die epistemischen Modalitäten 
ich weiß, daß p 
ich glaube, daß p 

— die deontischen Modalitäten 
es ist vorgeschrieben, daß p 
es ist erlaubt, daß p 

— die zeitlichen Modalitäten 
es ist immer der Fall, daß p 
es trifft manchmal zu, daß p 

— die evaluativen Modalitäten 
es ist gut, daß p 
es ist schlecht, daß p 

Wenn die Modallogik in dieser Breite einsetzbar wäre, so dürfte 
man darin die definitive Beherrschung der Modalitäten sehen. Lei-
der sind wir mit einer unübersehbaren Zahl von Abweichungen 
konfrontiert, die das erhoffte Ziel hinausschieben. Wie wider-
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spenstig die intuitive Vorstellung der einen Modalität sich zu einer 
andern verhält, das mögen fünf konkrete Beispiele zeigen. 

A-l C L p M p 
Was man weiß, das glaubt man gleichzeitig; was obligatorisch ist, 
das ist erlaubt, und was immer der Fall ist, das trifft auch auf 
einzelne Momente zu. Insofern scheint A-l epistemisch, deontisch 
und zeitlich plausibel zu sein. Es wäre eine unerhörte Stütze, wenn 
es uns gelänge, die generelle Übertragbarkeit der alethischen Mo-
dalitäten nachzuweisen. 

A-2 C L p p 
Dieses einfachste Axiom aus S j erweist sich nur zeitlich als an-
nehmbar. Es widerstrebt der deontischen Interpretation. Der Satz 
„Menschenrechte sind nach der UNO-Charta vorgeschrieben, 
also werden sie eingehalten" ist ein bedauerliches Gegenbeispiel. 
Auch epistemisch läßt es sich nicht aufrecht erhalten, denn „ich 
wußte, daß die Jägerhütte mit Rundhölzern verkleidet ist, doch 
der Augenschein hat mir einfache Holzladen gezeigt". Ich kann 
etwas wissen, was sich nachher als falsch erweist. Die erhoffte 
Parallele zwischen „möglich" und „glauben" bestätigt sich nicht; 
eine wahre Aussage muß immerhin möglich sein, aber eine wahre 
Aussage braucht nicht unbedingt von jemandem geglaubt zu wer-
den. 
A-3 A M p M p 
A-3 gilt für epistemische Modalitäten nicht mehr. „Ich glaube daß 
der Dollar sinkt, oder ich glaube, daß der Dollar nicht sinkt" ist 
nicht erschöpfend; als Laie in Währungsfragen habe ich mögli-
cherweise überhaupt keine Meinung, was gemäß epistemischer 
Deutung von A-3 nicht vorgesehen ist. Die Äquivalenz zwischen 
A-2 und A-3 beruht auf der Voraussetzung, daß die Modalopera-
toren gegenseitig definierbar sind. Das trifft auf der epistemischen 
Ebene nicht mehr zu. 

A-4 C M p L C p q 
Dieses Theorem ist berüchtigt im deontischen Bereich. Es besagt, 
daß eine Handlung, die moralisch verboten ist und gleichwohl 
ausgeführt wird, die Verpflichtung in sich trägt, alles zu tun, was 
man will. 
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A-5 C p M p 
A-5 ist moralisch unannehmbar, weil darin eingeschlossen ist, was 
es in der Wirklichkeit gebe, das sei erlaubt. 

6.5 Das beste System der Modallogik? 

Bei der Interpretation der Kalküle hat sich bisher die Hoffnung 
nicht erfüllt, eine intensivere Beschäftigung mit den Modalitäten 
würde gleichsam unausweichlich zu einem bestimmten System 
führen, in dem sich epistemische, deontische und zeitliche Zusam-
menhänge in einheitliche Strukturbeziehungen zusammenfassen 
ließen. Formal sind denn auch verschiedene Systeme konstruier-
bar, je nach der Festlegung der Eigenschaften für die Z-Relation. 
Bis in die neueste Zeit haben viele Autoren gemeint, es würde 
letztlich ein geistreiches Formelspiel betrieben, aus dem jeder ein 
ihm passendes Modalsystem auswählen könne. Einen Ausweg aus 
dieser unbefriedigenden Situation haben uns die Anstrengungen 
der semantischen Interpretationen gebracht. Eine derartige Inter-
pretation besteht im Versuch, formale Wahrheitsbedingungen an-
zugeben unter gleichzeitigem Einbezug von Aspekten der Wirk-
lichkeit, wobei es nahe lag, auf die Welten von Leibniz zurückgrei-
fen. 
Durch die semantischen Interpretationen wird die Wahl unseres 
Systems nicht mehr von der Intuition abhängig, welche Formeln 
wir als der Wirklichkeit angepaßt ansehen sollen, von wo aus wir 
uns bestimmen lassen. Wir können uns jetzt fragen, welches Mo-
dell im Rahmen einer konkreten Problemstellung unserem Begriff 
für modale Deduktion am besten entspricht. Bei dieser Entschei-
dung geht es durchaus nicht willkürlich zu. Wir haben uns darauf 
zu besinnen, auf welche Art wir bisher bei modalrelevanten Argu-
mentationen vorgegangen sind. Ähnlich wie sich aus der Beurtei-
lung der Goldbachschen Vermutung die Vorliebe für intuitionisti-
sche oder klassische Mathematik entnehmen läßt, so lassen sich 
aus geeigneten Beispielen ablesen, welchem Modalsystem ein 
Denker den Vorzug gibt. 

Nehmen wir etwa an, wir hätten es mit metaphysischer Notwen-
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digkeit und Möglichkeit zu tun. Auf dem Hintergrund von Leibniz 
können wir fragen: Sind wir der Ansicht, daß das metaphysisch 
Notwendige sich von Welt zu Welt verändert? Wenn wir diese 
Frage bejahen, dann haben wir dem T , Brower-System oder S 4 

zugestimmt. Denn in all diesen Systemen ändert sich der Notwen-
digkeitsbegriff, wenn wir von einer Welt in die andere übergehen. 
Wenn wir aber diese Situationsveränderung hinsichtlich metaphy-
sischer Modalitäten ablehnen, d. h. also, wenn wir metaphysisch 
Notwendiges als unveränderlich von einer Welt zur andern anse-
hen, dann haben wir uns für S 5 entschlossen. S 5 ist das einzige 
System, das mit der Äquivalenzrelation eine entsprechende Zu-
gänglichkeitsrelation definiert. Das ist der Grund, warum sich die 
meisten Philosophen für S 5 entschieden haben. 



Anhang 1 

Wahrheitsmatrizen der Modallogik 

Da wir schon bei einstelligen Funktoren 4 Zeilen bekommen, wür-
de die Darstellung der zweistelligen auf 16 Zeilen anschwellen. 

p q = > A V <=> 

1 1 2 1 1 1 1 2 
1 2 4 2 1 2 2 4 
1 3 4 3 1 3 3 4 
1 4 4 4 1 4 4 4 
2 1 2 2 1 1 2 4 
2 2 2 2 2 1 1 2 
2 3 4 0 0 3 4 4 
2 4 4 4 2 3 3 4 
3 1 2 3 1 1 3 4 
3 2 4 0 0 2 4 4 
3 3 2 3 3 1 1 2 
3 4 4 4 3 2 2 4 
4 1 2 4 1 1 4 4 
4 2 2 4 2 1 3 4 
4 3 2 4 3 1 2 4 
4 4 2 4 4 1 1 2 

Die untereinander geschriebenen 16 Zeilen lassen sich vermeiden 
durch Kompaktdarstellung, ein Verfahren, das wir schon bei der 
zweiwertigen Logik hätten verwenden können. Die Funktoren der 
zweiwertigen Logik lassen sich vergleichsweise so darstellen: 

A 1 0 V 1 0 1 0 1 0 

1 1 0 1 1 1 1 1 0 1 1 0 

0 0 0 0 1 0 0 1 1 0 0 1 
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Für unsere 4wertige Logik ergäbe dies: 

A 1 2 3 4 V 1 2 3 4 - > 1 2 3 4 
1 1 2 3 4 1 1 1 1 1 1 1 2 3 4 
2 2 2 4 4 2 1 2 1 2 2 1 1 3 3 
3 3 4 3 4 3 1 1 3 3 3 1 2 1 2 
4 4 4 4 4 4 1 2 3 4 4 1 1 1 1 

1 2 3 4 1 2 3 4 1 2 3 4 
1 1 2 3 4 1 2 4 4 4 1 2 4 4 4 
2 2 1 4 3 2 2 2 4 4 2 4 2 4 4 
3 3 4 1 2 3 2 4 2 4 3 4 4 2 4 
4 4 3 2 1 4 2 2 2 2 4 4 4 4 2 

Aus dem Rahmen fallen nur die beiden Definitionen 2, 3 für A 
und v . Im einen Fall sind sie logisch falsch, im andern logisch 
wahr. Aber dieses Ärgernis ist nicht zu umgehen. Gewiß ließe sich 
auch erwägen, ob nicht die p q Beziehung abzuändern sei. Frei-
lich hätte dieser Eingriff zur Folge, daß 

p => (p A q) 
(p A q) => p 

nicht mehr logische Wahrheiten wären. Soweit wollen wir nicht 
gehen. Es bleibt indessen zu beachten, daß die 2, 3 Inkonsequenz 
nicht zerstörend ist. Wir haben nicht „wahr" , wo „falsch" sein 
sollte oder umgekehrt. Wir haben bloß in zwei Fällen strengere 
Werte als sie gerechtfertigt empfunden werden. 

Wir können nicht eine befriedigende Modallogik aufstellen, so-
lange nicht unendlich viele Werte angenommen werden. Aber 
welche Deutung ließe sich dann bei unendlich vielen Werten ge-
ben ? Man könnte auf die Vorstellung von Leibniz zurückgreifen 
mit den verschiedenen Welten. Für 4 Werte ließe sie etwa folgende 
Deutung zu: 

1 wahr in unserer und in der anderen Welt 
2 wahr in unserer und falsch in der andern Welt 
3 falsch in unserer und wahr in der andern Welt 
4 falsch in beiden Welten 
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Obwohl wir in der Modallogik gegen unendlich viele Werte ge-
drängt werden, so gibt es doch etliche Aspekte, die nicht von einer 
unendlichen Anzahl von Werten abhängen. Für zahlreiche Bezie-
hungen sind die 4-Wertetafeln ein ausreichendes Instrumenta-
rium. Das wollen wir uns verdeutlichen an den Quasi-Tafeln, die 
bei iterierten Modalitäten ihre Nützlichkeit erweisen. 

• • p OOP D D - i p O O - i p O D P D O P 
4 1 4 1 1 2 
4 1 4 1 3 2 
4 1 4 1 3 2 
4 1 4 1 3 4 

Die Verdoppelung von O ergibt eine logische Wahrheit, die Ver-
doppelung von • das Gegenteil. Gemischte Operatoren zeigen 
einige Sonderheiten 

• O p => D p O D p => D p O D P = > O P 
2 4 2 
2 4 2 
2 4 2 
2 4 2 

Zusammenfassung: 
1. Jede Aussage ist möglicherweise möglich. 
2. Keine ist notwendigerweise notwendig. 
3. Wenn eine Aussage möglicherweise notwendig ist, dann folgt 

nicht, daß sie notwendig ist. 
4. Wenn sie möglicherweise notwendig ist, dann ist sie möglich. 
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Semantische Deutung der Modallogik 

1. Semantische Deutung 

Was wir intuitiv über die verschiedenen Welten zu sagen wissen, 
steht in einer Beziehung zu unserer wirklichen Welt. Diese Bezie-
hung wird an Modellen beschrieben. Eine Semantik für die Mo-
dalkalküle geben heißt deshalb, entsprechende Modelle aufbauen. 
Wir bekommen so ein T-Modell, ein S4-Modell usw. 

Diese Modelle stimmen darin überein, daß sie aus einem geordne-
ten Tripel bestehen, aus <0, W, Z ) . Dabei gilt: 

0 = unsere Welt 
W = {0, Wj, w2, w3...} 
Z: Relation zwischen 0 und einer Welt W 

W ist die Menge aller Welten und Z eine Relation zwischen unse-
rer Welt 0 und einer Welt W. Die Beziehung Z kann als Zugäng-
lichkeitsrelation gedeutet werden. Unter zugänglich versteht man 
nicht bloß Sichtbares oder Greifbares; der Begriff ist weit zu fassen 
und umschließt alles, was irgendwie denkbar ist. 

Diese Relation Z steht nun im Zentrum der Untersuchung. Das ist 
leicht erklärbar, weil nämlich die verschiedenen Modalsysteme 
die Folge der verschiedenen Eigenschaften von Z sind. Ich möchte 
diesen wichtigen Sachverhalt zweifach darstellen, zuerst etwas all-
gemein am T-System und dann etwas exakter für alle Systeme. 

1.1 Einführende Darstellung der Z-Relation 

Für das T-System ist erforderlich, daß die Relation Z reflexiv ist. 
Das bedeutet bei unserer Leibnizinterpretation, daß jede Welt sich 
selber zugänglich ist. Wenn wir zugänglich hier als visuelles Sehen 
auffassen, müßten alle Bewohner einer Welt sehen können, daß sie 
Bewohner dieser Welt sind. 

Das Modell läßt sich deuten als eine binäre Funktion zwischen 
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Atomsätzen aus T und den möglichen Welten hinsichtlich der 
Wahrheitswerte. Das bedeutet, daß jede Atomformel von T in 
jeder Welt wahr oder falsch ist. Dann genügen folgende vier Be-
dingungen: 
1. ,—i p' ist wahr in W genau dann, wenn ,p' in W falsch ist 
2. ,p v q' ist wahr in W genau dann, wenn ,p' in W oder ,q' in W 

wahr ist 
3. , 0 p' ist wahr in W genau dann, wenn es wenigstens eine mögli-

che Welt Wx gibt, in der ,p' wahr ist und W t ist für 0 zugänglich. 
4. , • p' ist wahr in W genau dann, wenn für alle W, die 0 zugäng-

lich sind, ,p' in diesen W wahr ist. 

Die Regeln 1. und 2. legen den Aussagenkalkül fest; echte Modal-
regeln sind nur 3. und 4. 

Mit diesen Regeln, zusammen mit der Relation Z, die reflexiv ist, 
lassen sich alle Formeln entscheiden, ob sie T-gültig sind. Daß 
z.B. das Notwendigkeitsaxiom T-gültig ist, läßt sich so zeigen: 

, D p —• p' soll in allen Welten W gültig sein. In einer beliebigen 
Welt — etwa W7 - wird die Formel nur in einem einzigen Fall falsch 
sein, nämlich wenn der Vordersatz , • p' wahr und der Nachsatz 
,p' falsch ist. Nun ist aber p' dann wahr, wenn die 4. Regel 
erfüllt ist, d. h. ,p' ist wahr für alle Welten, die 0 zugänglich sind, 
folglich auch für W 7 . 

1.2 Verallgemeinerung der Z-Relation 

Wir haben unsere Welt mit ,0' bezeichnet. Alle anderen Welten 
lassen sich als Alternativwelten deuten. Von da aus können wir 
genauer darstellen, wie die zweistellige Funktion wirkt. Die Spra-
che des Formalsystems ist die Objektsprache, das semantische 
Modell ist in der Metasprache beschrieben. Als Namen von Mo-
dellmengen in der Metasprache wollen wir ,a', ,b', ,c' benutzen. 
Ein bestimmtes, festgelegtes Modell ist die wirkliche Welt ,0'. 
Wenn ,p' oder ,q' Formeln des Systems sind, dann sind [p] und 
[q] Sätze des Modells. Auf diese Weise lassen sich die Beziehun-
gen zwischen Formalsystem und dem Modell einfacher beschrei-
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ben. Denn jetzt können wir exakt sagen: p ist genau dann wahr, 
wenn [p] 6 0 ist. Folglich läßt sich beispielsweise nachweisen, daß 
C p A p q ein Modell der Welt ,0' ist. 

In einem Modellsystem stehen die Modellmengen alternativ zuein-
ander. Die Modellmenge a sei H-alternativ (Hintikka-alternativ) 
zur Modellmenge b. Dann läßt sich der Möglichkeitsoperator so 
definieren: [ O p] e b, wenn es im Modellsystem wenigstens eine 
Modellmenge b gibt, sodaß Hab und [p] £ a. 

Die Interpretation I auf ein Modellsystem M ist eine Funktion der 
Wahrheit zwischen Formal- und Modellsystem. Auf dieser 
Grundlage bekommen unsere Matrix-Zahlen einen Sinn: 

0 unsere Welt 
1 Alternativwelt zu 0 
2 Alternativwelt zu 1 
3 usw. 

Wir schreiben das so: H [2 ] [1 ] und H [1 ] [0 ] . Der Gedanke der 
Alternativwelten erlaubt auf einsichtige Weise über die Eigen-
schaften der Z-Relation zu reden. 

Reflexivität 

Die Reflexivität im System T besagt nun, daß jedes Modell zu sich 
selber alternativ ist. Dies wiederum ist eine Rechtfertigung für die 
Streichungsregel; denn C p M p ergibt nach der Streichung: 

P P 
0 0 

a 

Entweder ist nun [p] e 0 oder [p] e a, wobei H [a ] [ 0 ] . Da die 
Reflexivität gilt, ist 0 auch H-alternativ zu sich selber, so daß wir 
schreiben dürfen: 

P P 
0 0 
0 a 

Wir dürfen a durch 0 ersetzen oder besser weglassen, d. h. strei-
chen. 
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Transitivität 

Sofern wir den Blick auf die Reflexivität der Relation Z richten, 
erhalten wir das System T . Das System T führt zu S 4 , sobald die 
Bedingung der Transitivität hinzugefügt wird: Für alle Modell-
mengen a, b, c in M gilt, wenn Hab und Hbc, dann auch Hac. 

Also 

P 
0 
a 
b 
c 

Da nun H [a ] [0 ] und H [ b ] [a ] , so ist aufgrund der Transitivität 
H [ c ] [ b ] . Die Formel ist genau dann wahr, wenn [p] e c. Wenn 
jedoch H [ c ] [ b ] , dann auch H [ c ] [a ] . Die Streichung von ,b' 
bewahrt den Währheitswert der ursprünglichen Formel. Deshalb 
gilt: 

ß M M p M p p p 
0 0 
1 a 
2 

Hier darf ,1' gestrichen werden, weil entweder [p] £ 2 und H [ 2 ] 
[ 1 ] sowie H [ 1 ] [ 0 ] oder [p] e a, wobei [ a ] eine Alternative zu ,0' 
ist. [2 ] ist eine alternative Menge zu ,0' genau wie ,a', so daß ,a' 
durch ,2' ersetzt werden darf. 

Symmetrie 

Für alle Modellmengen a und b in M gilt: Wenn Hab, dann auch 
Hba. Wenn nun H [ 0 ] [ 1 ] und H [ l ] [ 0 ] wie auch H [ 0 ] [ a ] und 
H [ a ] [0] , aber auch H [ a ] [2 ] und H [ 2 ] [a] , dann stehen alle 
Zwischenglieder symmetrisch alternativ zueinander und dürfen 
gestrichen werden. Wir haben das System S 5 vor uns mit seinen 
bekannten Streichregeln. 
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1.0.1 
1) 1. {Josef, Jakob, Walter, Käthi ...} oder 

{1,2, 3,4...} 
2. {Reagan} oder {1} 
3.0 
4. Es ist keine Menge, denn es ist nicht definiert, was „ehr-

lich" heißt. 
2) 1. nicht äquivalent. 2. äquivalent. 

3. äquivalent. 4. nicht äquivalent. 

1.0.2 

1. 1. 2. nein. 3. nein. 4. 5 Elemente. 
5. {{Sieb}, 0}. 
6. {{Eis}, {Musik}, {Ida}, {Eis, Musik}, {Eis, Ida}, {Mu-

sik, Ida}, {Eis, Musik, Ida}, 0} 
7. {{1}, {2}, {3}, {4}, {5}, {1,2}, {1, 3}, {1,4}, {1,5}, {2, 3}, 

{2,4}, {2,5}, {3,4}, {3,5}, {4,5}, {1,2,3}, {1,2,4}, 
{1,2,5}, {1,3,4}, {1,3,5}, {1,4,5}, {2, 3, 4}, {2,3, 5}, 
{2,4,5}, {3,4,5}, {1,2,3,4}, {1,2,3,5}, {1,2,4,5}, 
{1,3,4,5}, {2,3,4,5}, {1,2, 3,4,5}, 0} 

1.0.2.1 

1) 1. F hat drei Elemente: 2, 4, 6. 
F hat acht Teilmengen 

{{2}, {4}, {6}, {2,4}, {2,6}, {4,6}, {2,4, 6}, 0}. 
2. G hat zwei Elemente: 3, {2, 4, 6} 

G hat vier Teilmengen: 
{{3}, {{2,4,6}}, {3, {2,4, 6}}, 0}. 

2) Der Autor unterscheidet nicht zwischen den verschiedenen 
Ist-Verknüpfungen. Nur die Inklusion unterliegt der Transitivität. 
Der Autor führt ein Beispiel an mit der Inklusion, wodurch er sich 
bestätigt sieht. Für den Begriff des Enthaltens gilt genau dasselbe: 
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Wenn er unter Enthalten die Inklusion versteht, dann ist die Be-
hauptung der Transitivität richtig, wenn er jedoch die Elementbe-
ziehung im Auge hat, dann trifft die Transitivität nicht zu. 

1.0.2.2 

(2) ist korrekt formuliert und auch gültig, denn wenn von einer 
beliebigen Zahl eine gleichgroße abgezählt wird, dann erhalten 
wir 0. Hingegen ist (1) falsch. Die Behauptung, es regne und es 
regne nicht, ist widersprüchlich und daher unsinnig. Unsinn und 0 
ist keineswegs dasselbe. - Der Philosoph, dem dieses Beispiel ent-
nommen ist, baut auf dieser Konfusion den „Beweis" auf, es kön-
ne widersprüchliche Axiomensysteme geben, die nützlich seien. 

1.1.1 

1) A' = {c,d,e} 
2) B' = {Mutter, Kinder} 
3) C' = {Hühner, Enten, Vögel} 
4) D' = {rot} 
5) E' = {alle Tiere des Zirkus Knie, von Affe bis Zebra} 
6) F = { } 

1.1.3 

1) 1. richtig 2. falsch 3. falsch 4. richtig 
5. falsch 6. falsch 7. richtig 

2) 1. Alfred, Berta, Christa, Daniel, Emil, Franz, Gisela 
2. {Christa}, {Daniel}, {Christa, Daniel}, 0 

1.2.1 

1) 1. {3} = {3} 
2. {1} # {2} 

2) B n B ' = 0 
A = {1,3} 

{ I , 3 } u 0 = {1,3} 
{1,3}+ {1} 
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3) 1. { 1 , 2 } = { 1 , 2 } 
2. 0 = 0 

4) 1. { 1 , 3 } = A 
2 . { 1 , 3 } = A 
3. { 3 } u { 2 } u { 1 } = 1 
4 . 0 u { 2 } u { l } * l 

5) l . A n B ; ( A u B ) \ ( A ' u B ' ) 
2 . A ' ; B \ A 
3. A ' u B ' ; ( A u B ) \ ( A n B ) 

6) 1 . { 1 , 3 } = A 
2. { 2 , 3 } = B 
3 . { 2 } = A ' 
4 . { 2 , 3 } = B 
5 . { 1 , 2 , 3 } = A u B 
6. 0 

1.2.2 

1) 1. { 7 } = { 7 } 
2 . { 1 } * { 1 , 6 , 7 } 

2) 1. { 1 , 4 , 5 , 6 , 7 } = { 1 , 4 , 5 , 6 , 7 } 
2 . { 4 , 6 , 7 } = { 4 , 6 , 7 } 
3 . { 4 } = { 4 } 

3) 1. { 1 } = { 1 } 
2 . { 1 , 4 , 6 } = { 1 , 4 , 6 } 

4) 1. { 1 , 4 , 5 , 6 , 7 } 
2 . { 1 , 3 , 6 , 7 } 
3 . { 4 , 5 , 6 , 7 } 

5) l . A n B 
2 . A n B n C 

6) { 1 , 6 , 7 } # 0 

2- { 1 } = W 
3. { 2 , 4 } + { 1 , 2 , 4 } 
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4. {4, 7} = {4, 7} 
5. {1} = {1} 

7) 1. C\B 
2. B\C 
3. B \ ( A n B n C ) 
4. ( A u C ) \ ( ( A n B ) u ( A n C ) ) 

8) 1. Philosophie 
2. 1 
3. C 
4. 0 
5. ( A n B ) u C 
6. A\B 

1 . 

10) 1. ( A n B ) \ C 
2. (AuC) ' 
3. B \ ( A n C ) 

2. 3. 

( A n B ) \ ( A n B n C ) 
(B\C)\A; (B\A)\C; B \ ( A u C ) 
B \ ( A n B n C ) ; (B\A)u(B\C) 

( B \ ( A n B ) ) \ ( B n C ) 

11) Es sind drei Lösungen möglich, eine arithmetische, eine 
mengentheoretische und eine zeichnerische. 
— Traditionelle Arithmetik: 
(1) 18 - 3 = 15 und 
(2) 15 - 2 = 13 

Was geschieht mit dem gemeinsamen Element? Nichts, denn es 
muß nicht mehr abgezählt werden, weil es bei (1) und (2) schon 
abgezählt wurde. Diese Lösung ist korrekt, aber wohl kaum son-
derlich einleuchtend. 

10 Bucher, Logik 
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- Mengenlehre 
Wir gehen aus von den drei Mengen: 
A = { 1 , 2 , 3 , 4 , 5,6,7, 8} 
B = { 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 } 
C = {15 ,16 ,17 ,18} 

Die erste Zusatzbedingung sagt, daß der Durchschnitt A n B ge-
nau 3 Elemente hat. Um dieser Bedingung nachzukommen, strei-
chen wir in der Menge B die ersten drei Elemente und setzen an 
ihre Stelle 1, 2, 3. Dann haben wir die neue Menge 

B 2 = { 1 , 2 , 3 , 1 2 , 1 3 , 1 4 } 

Die zweite Bedingung verlangt, daß der Durchschnitt B n C genau 
zwei gemeinsame Elemente enthält. Wir streichen bei C die beiden 
ersten Elemente und setzen an ihre Stelle zwei, die in B 2 enthalten 
sind. Dann erhalten wir 

C 2 = {12 ,13 ,17 ,18} 

Als letzte Bedingung muß ein Element allen drei Mengen gemein-
sam sein. Geben wir ihm den Namen 1. Es ist in A und B 2 bereits 
enthalten und braucht nur in C 2 eingeführt zu werden. Wenn wir 
nun 17 durch 1 ersetzen, dann wäre die letztgenannte Bedingung 
erfüllt, jedoch von den übrigen träfe eine nicht mehr zu. Wir hät-
ten jetzt als Durchschnitt von B 2 n C 2 drei Elemente, nämlich 12, 
13,1 statt nur 2. Deshalb setzen wir das Element 1 an die Stelle von 
13, wobei 17 erhalten bleibt. Nun können wir noch die Platznum-
mern in fortlaufender Reihenfolge anschreiben, und dann läßt 
sich an ihnen ablesen, wie viele Teilnehmer versammelt sind. Das 
ergibt: 

A = { 1 , 2 , 3 , 4 , 5, 6 ,7 , 8} 
B = { 1 , 2 , 3 , 9 , 1 0 , 1 1 } 
C = {1, 9 ,12 ,13 } 

Eine Kontrolle zeigt, daß die Mengenbildung A, B, C alle Bedin-
gungen erfüllt, nämlich: 

1. A hat 8 Elemente, B 6 und C 4. 
2. A n B = 3 Elemente und zwar {1, 2, 3} 
3. B n C = 2 Elemente, nämlich {1, 9} 
4. A n B n C = 1 Element, unser {1} 
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Es sind also 13 Teilnehmer in der Kommission. 

— Zeichnung 
Der einfachste Lösungsweg führt über die Zeichnung. Wir gehen 
von den oben genannten Bedingungen aus. Die Darstellung er-
weist sich als äußerst einfach, sobald man gemerkt hat wie vorteil-
haft es ist, den Weg rückwärts zu gehen. 

Die Bedingung 4. erfüllen wir, indem wir ein „ + " ins Feld 7 set-
zen. Für die 3. Bedingung ist bereits ein Element präjudiziert. Des-
halb wird nur 1 „ + " ins Feld 5 gesetzt. Entsprechend müssen 2 
„ + " ins Feld 4 gesetzt werden, um die Bedingung 2. zu erfüllen. 
Laut der 1. Bedingung enthält C 4 Elemente. Je eines steht im Feld 
7 und 4. Deshalb setzen wir noch 2 „ + " ins Feld 3. Die Menge B 
kommt nur auf 6 Elemente zu stehen, wenn wir noch zwei ins Feld 
2 setzen. Schließlich bleibt noch die Menge A übrig, die zu den 
bestehenden 3 Elementen noch fünf weitere braucht und zwar ins 
Feld 1, um der Bedingung von 8 Elementen zu genügen. Dann liegt 
folgender Sachverhalt vor: 

A v 
\ B 

/ + + /+ +\ + 
I + + + [ ) + 

\ / \+ J \ 
+ \ 

l + + / 

c 
1. ja 10. nicht wohlformuliert 
2. Frage 11. Ausruf 
3. ja 12. ja 
4. ja 13. ja 
5. Ausruf 14. ja 
6. Aussageform 15. Frage 
7. ja 16. ja 
8. nicht wohlformuliert 17. Modalaussage (möglich) 
9. ja 18. ja 

10* 
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2.1 

1. O 5. D 9. U 13. - 17. E 
2. F 6. B 10. - 14. A 18. -
3. - 7 . - 11. G 15. - 19. -
4 . - 8. S 12. R 16. R 20. K 

1 . n M 
2. —i G A D 
3. R - » G 

2.2 

4 . B « G 
5. H v - i B 
6. - i H - - i W 

2.2.2 

1 ) 1 . B v C 5. S O 9. H a - i F 1 3 . -
2. H a E 6. - I ( N v G ) L O . O v n O 1 4 . - I W - » 0 
3. T A - i K 7. G a E 11. M A P 15. (K A O) A (L A 
4. O S 8 . N T « N G 1 2 . V A H M 1 6 . P ^ E 

2) l . n p A q 4. p ->• q 
2. ~ i p A _ 1 q 5. p q 
3. q -» p 6. q p 

3) 1. Wenn die Temperatur steigt und es geregnet hat, dann blüht 
der Kirschbaum. 

2. Wenn die Temperatur steigt, dann hat es geregnet. Das ist 
gleichbedeutend mit: Die Temperatur steigt nicht oder es 
hat geregnet. 

3. Es ist nicht der Fall, daß es geregnet hat, wenn der Kirsch-
baum blüht. 

4. Die Temperatur steigt nicht oder wenn der Kirschbaum 
blüht, dann hat es geregnet. 

5. Genau dann, wenn die Temperatur steigt, blüht der Kirsch-
baum nicht. 

6. Wenn der Kirschbaum blüht, dann hat es geregnet und die 
Temperatur steigt nicht. 

4) Die Formalisierung ist unkorrekt. Der Relativsatz ändert 
nichts an der Tatsache, daß es sich um eine einzige Aussage 
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handelt. Als solche muß sie durch einen Atomausdruck for-
malisiert werden, also ,p' oder besser noch ,S*. 

2.3 

1. S v ( - i S - » M ) 7. B v ( n B -> A) 
2. M (W a - i F) 8. ( ( E v B v D ) - t V ) A ( H - » - i V ) 
3. - i (F a W) 9. V ((E v B) a - i D) 
4. - i W v (W —i A) 10. - i U v (F v A) 
5. - i (W a A) 11. (A a - i B) v (S a Z) 
6. (D v P) -» —i H 12. (-1 (S v T) a U) - » H v ( O a K ) 

2.4.5 

1) 1. w 
2. Wer den Duft der Nelken unangenehm empfindet, für 

den ist die Aussage falsch, andernfalls wahr. 
3 . -10 . 8. ist falsch, alle andern wahr. 

2) 1. M a S w 6. S -» M w 
2. P a M f 7. n M -+ A w 
3. W v G w 8. M v F w 
4. J v B w 9. R <-> — l G unentscheidbar 
5. M -> A w 10. P -> Q w 

3) Falsch sind 2, 3, 11, 14, alle andern wahr. 
4) a) Falsch ist 6, alle andern wahr. 

b) 2. nein, 4. ja, 7. ja, 8. nein, 3. nein, 6. ja 

1) 1. (p v p) ->• p 
1 1 1 1 1 
0 0 0 1 0 

2. q -» (p v q) 
1 1 1 1 1 
0 1 1 1 0 
1 1 0 1 1 
0 1 0 0 0 
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3. (p V q) — * (q V p) 
1 1 1 1 l 1 1 

1 1 0 1 0 1 1 
0 1 1 1 l 1 0 
0 0 0 1 0 0 0 

4. (p V (q V r » (q V (p V r ) ) ) 
1 1 1 1 1 1 l 1 1 1 1 

1 1 1 1 0 1 l 1 1 1 0 
1 1 0 1 1 1 0 1 1 1 1 
1 1 0 0 0 1 0 1 1 1 0 
0 1 1 1 1 1 l 1 0 1 1 
0 1 1 1 0 1 I 1 0 0 0 
0 1 0 1 1 1 0 1 0 1 1 
0 0 0 0 0 1 0 0 0 0 0 

5. (q — • r) — • ((P V q) — • (p vr))) 
1 1 1 1 1 1 l 1 1 1 1 
1 0 0 1 1 1 l 1 1 1 0 

0 1 1 1 1 1 0 1 1 1 1 
0 1 0 1 1 1 0 1 1 1 0 
1 1 1 1 0 1 l 1 0 1 1 
1 0 0 1 0 1 I 0 0 0 0 
0 1 1 1 0 0 0 1 0 1 1 
0 1 0 1 0 0 0 1 0 0 0 

4a. (p — q) - > ((r V q) (p V r ) ) 
1 1 l 1 1 1 l 1 1 1 1 
1 1 l 1 0 1 l 1 1 1 0 
1 0 0 1 1 1 l 1 1 1 0 
1 0 0 1 0 1 l 0 0 0 0 
0 1 I 1 1 1 0 1 1 1 1 
0 1 l 1 0 0 0 1 0 1 1 
0 1 0 1 1 1 0 1 1 1 0 
0 1 0 1 0 0 0 1 0 0 0 
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p (q p) 
1 1 1 1 1 
1 1 0 1 1 
0 1 1 0 0 
0 1 0 1 0 

(p (q r)) - > (q (p r)) 
1 1 1 1 1 1 1 1 1 1 1 
1 0 1 0 0 1 1 0 1 0 0 
1 1 0 1 1 1 0 1 1 1 1 
1 1 0 1 0 1 0 1 1 0 0 
0 1 1 1 1 1 1 1 0 1 1 
0 1 1 0 0 1 1 1 0 1 0 
0 1 0 1 1 1 0 1 0 1 1 
0 1 0 1 0 1 0 1 0 1 0 

(p (q ->. r» ((p — » q) — » (p — » r » 
1 1 1 1 1 1 1 1 I 1 1 1 1 
1 0 1 0 0 1 1 1 l 0 1 0 0 
1 1 0 1 1 1 1 0 0 1 1 1 1 
1 1 0 1 0 1 1 0 0 1 1 0 0 
0 1 1 1 1 1 0 1 1 1 0 1 1 
0 1 1 0 0 1 0 1 1 1 0 1 0 
0 1 0 1 1 1 0 1 0 1 0 1 1 
0 1 0 1 0 1 0 1 0 1 0 1 0 

(p q) q ~I p) 
1 1 I 1 0 l 1 0 1 
1 0 0 1 1 0 0 0 1 
0 1 1 1 0 l 1 1 0 
0 1 0 1 1 0 1 1 0 

5. i —i p p 6. p —»• —• —i p 
1 0 1 1 1 1 1 1 0 1 
0 1 0 1 0 0 1 0 1 0 
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3) 1. (S H) « ( - 1 S -» - I H) 
1 1 1 1 0 1 1 0 1 
1 0 0 0 0 1 1 1 0 
0 1 1 0 1 0 0 0 1 
0 1 0 1 1 0 1 1 0 

nicht äquivalent 

a) «W A S) - > J) «-> ((W - + S) — > J) 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 1 1 1 1 0 0 
1 0 0 1 1 1 1 0 0 1 1 
1 0 0 1 0 1 1 0 0 1 0 
0 0 1 1 1 1 0 1 1 1 1 
0 0 1 1 0 0 0 1 1 0 0 
0 0 0 1 1 1 0 1 0 1 1 
0 0 0 1 0 0 0 1 0 0 0 

b) ((A A S) — * J) <-> (A — • (S — > J)) 
1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 1 1 0 1 0 0 
1 0 0 1 1 1 1 1 0 1 1 
1 0 0 1 0 1 1 1 0 1 0 
0 0 1 1 1 1 0 1 1 1 1 
0 0 1 1 0 1 0 1 1 0 0 
0 0 0 1 1 1 0 1 0 1 1 
0 0 0 1 0 1 0 1 0 1 0 

Also b) ist identisch mit 2. 

3. B - » F , verneint: - 1 (B -» F). 
Matrix: (B F) -»• (B A F) 
In Worten: Der 0 1 1 1 1 1 0 0 1 
Hund bellt und 1 1 0 0 1 1 1 1 0 
ich fürchte mich 0 0 1 1 1 0 0 0 1 
nicht. 0 0 1 0 1 0 0 1 0 

4. (-1 F B) (F -> - i B) 
0 1 1 1 0 1 0 0 1 
0 1 1 0 1 1 1 1 0 
1 0 1 1 1 0 1 0 1 
1 0 0 0 1 0 1 1 0 nein. 
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5. (P A (P - > • q) — » q) < - * (p - > ((p q) — > q») 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 
0 0 0 0 1 1 1 0 0 1 0 1 1 1 1 
0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 

1. (P V q) — • P 2. (P V q) - q 
1 1 1 1 1 1 1 l 1 l 
1 1 0 1 1 1 1 0 0 0 
0 1 1 0 0 0 1 l 1 l 
0 0 0 1 0 0 0 0 1 0 

3. (p V q) (p V q) 4. (p V q) (P A q) 
1 1 1 1 1 1 1 1 1 l 1 l 1 1 
1 1 0 1 1 1 0 1 1 0 0 l 0 0 
0 1 1 1 0 1 1 0 1 l 0 0 0 1 
0 0 0 1 0 0 0 0 0 0 1 0 0 0 

5. (p V q) (-1 p V q) 
1 1 1 1 0 1 1 l 
1 1 0 0 0 1 0 0 
0 1 1 1 1 0 1 l 
0 0 0 1 1 0 1 0 

6. (p V q) - > (p A ~1 q) 
1 1 1 0 1 0 0 1 
1 1 0 1 1 1 1 0 
0 1 1 0 0 0 0 1 
0 0 0 1 0 0 1 0 

7. (p V q) — • (-1 q p) 
1 1 1 1 0 1 1 1 
1 1 0 1 1 0 1 1 
0 1 1 1 0 1 1 0 
0 0 0 1 1 0 0 0 

8. (p V q) - > (p — » q) 
1 1 1 1 1 1 1 
1 1 0 0 1 0 0 
0 1 1 0 0 0 1 
0 0 P 0 0 1 0 

Von ,p v q' werden 3. und 7. impliziert. 
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1. (P — > q) <-> (p V q) 
1 1 1 1 1 1 1 
1 0 0 0 1 1 0 
0 1 1 1 0 1 1 
0 1 0 0 0 0 0 

2. (P q) «-» (-1 p V ~1 q) 
1 1 l 0 0 1 0 0 1 
1 0 0 0 0 1 1 1 0 
0 1 l 1 1 0 1 0 1 
0 1 0 1 1 0 1 1 0 

3. (p q) (-1 p V q) 
1 1 l 1 0 1 1 1 
1 0 0 1 0 1 0 0 
0 1 l 1 1 0 1 1 
0 1 0 1 1 0 1 0 

4. (p q) <-+ (p V —1 q) 
1 1 l 1 1 1 0 1 
1 0 0 0 1 1 1 0 
0 1 l 0 0 0 0 1 
0 1 0 1 0 1 1 0 

5. (p — > q) < - • (p — > q) 
1 1 l 1 1 1 1 
1 0 0 1 1 0 0 
0 1 l 1 0 1 1 
0 1 0 1 0 1 0 

6. (p q) <-> (-1 q ~1 p) 
1 1 l 1 0 1 1 0 1 
1 0 0 1 1 0 0 0 1 
0 1 l 1 0 1 1 1 0 
0 1 0 1 1 0 1 1 0 

2.5.1 

1) Aus dem Kontext wird ersichtlich, daß die Aussage zu ergän-
zen ist: „Also dann befehle ich dir, bald zu gähnen und bald nicht 
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zu gähnen". Was immer der kleine Prinz jetzt tut—entweder gähnt 
er oder er gähnt nicht — er kann gar nicht gegen den Befehl des 
Königs verstoßen, denn dieser spricht eine Tautologie, eine Leer-
formel aus. 

2) Ein Satz mit einem ,x' ist eine Aussageform. Die Aussageform 
kann keine Leerform oder Tautologie sein, weil sie weder wahr 
noch falsch ist, solange das ,x' nicht ersetzt ist. Leerformel heißt 
totalen Spielraum haben, aber nicht unbestimmten Wahrheits-
wert wie die Aussageform. Es gibt keinen Grund, warum Wittgen-
stein oder andere Logiker von einem bewährten Sprachgebrauch 
abrücken sollten. 

3) 1. Nichts, das ist Konfusion. 
2. Es gibt keine Widersprüche im Sein, nur in der Sprache. 

4) (1) Eine Leerformel ist eine Tautologie. Bei ihr ist nicht die 
Rede von zwei Fällen, von A und (!) nicht A - das wäre eine 
Kontradiktion —, sondern von A oder nicht A. Damit sind ohne 
jegliche Einschränkung alle Fälle angedeutet. Da folglich kein Fall 
ausgeschlossen wird, so ist eine Leerformel nichtssagend. Wenn 
ich im Zweifel darüber bin, ob ich den Regenschirm mitnehmen 
soll oder nicht und mir jemand versichert, „es regnet oder es reg-
net nicht", so hat er mir über den Regen genau gleich viel Informa-
tion geliefert, als wenn er geschwiegen hätte. Hier wird nur 
scheinbar über den Regen gesprochen. 

(2) Es wird nicht das Bestehen und Nichtbestehen eines Sach-
verhaltes einkalkuliert, sondern das Bestehen oder Nichtbestehen 
sämtlicher Sachverhalte. 

(3) richtig. 

(4) Sollten formallogisch richtige Sätze bei der Anwendung 
auf empirische Bereiche falsch werden - etwa „2 + 2 = 4 " - , dann 
würde sich die Theorie in der Praxis grundsätzlich nicht bewähren 
und niemand nähme sich die Mühe, eine Logik oder Mathematik 
zu entwickeln. Wer von den Planeten redet, von den sechs alten 
und den drei neuen, der legt die Addition zugrunde „6 + 3 = 9" . 
Um diesen Sachverhalt auszudrücken, sind Additionen wie 
„2 + 2 = 4" , „3 + 3 = 6" , „4 + 4 = 8" usw. nicht anwendbar, 
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aber deswegen nicht falsch. Ein formallogisch richtiger Ausdruck 
ist nicht auf jede empirische Situation anwendbar; er kann indes-
sen empirisch so wenig falsch werden, wie ein Kreis empirisch 
dreieckig sein könnte. 

(5) Unser Autor überträgt die Konfusion von (4) auf ein prak-
tisches Beispiel, auf den Satz (a): „Der Papst ist nicht katholisch". 
Selbstverständlich ist die Aussage (a) falsch. Aber erstens ist dieser 
Satz (a) nicht ableitbar aus der Disjunktion „Der Papst ist katho-
lisch oder nicht katholisch", zweitens ist Satz (a) keine Leerformel 
und drittens steht Satz (a) überhaupt nicht zur Diskussion. Die 
Leerformel lautet: „Der Papst ist katholisch oder nicht katho-
lisch" und dieser Satz ist immer wahr; zu dieser Erkenntnis gelan-
ge ich ohne zu wissen, wer der Papst ist und was katholisch heißt. 

(6) Die Disjunktion wird bei Logikern und Mathematikern 
so definiert, daß sie wahr ist, wenn mindestens eines der Argumen-
te wahr ist. Was unser Autor behauptet, ist schlichter Unsinn. 

(7) „Leerformel" ist keine Disqualifikation, sondern ein 
Fachausdruck für den totalen Spielraum, also ein Synonym für 
Tautologie, d.h. für eine immer wahre Aussagenverknüpfung. 

2.5.2 

1) 1. (p v p) (p A p) 
1 0 0 

0 0 0 0 0 

Eine Implikation ist nur falsch, wenn der Vordersatz wahr und der 
Nachsatz falsch ist. Beim Nachsatz, der hier aus einer Konjunk-
tion besteht, genügt es, daß eines seiner Argumente falsch ist. Da 
aber beide Argumente ,p' sind, führt deren Einsetzung der Werte 
bei der Disjunktion, also beim Vordersatz, zu einem Widerspruch 
mit der ursprünglichen Annahme. 

2. (p -> q ) - » ( " i p V q) 
1 0 0 

1 0 0 0 0 
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3. - I (p A q) -» (-1 p V - l q) 
1 0 0 
O l l i 0 0 

4. (p q) ((r A p) <-» (q A r) 
1 0 1 1 1 0 0 0 1 

1 0 0 

5. (p (-1 q r)) -» ((p A r) q) 
1 0 1 0 1 0 0 1 

1 0 0 

6. (p (-1 q v p)) -> (q A -1 p) 
1 1 0 1 1 1 0 1 0 0 1 

Diese Einsetzung ist widerspruchsfrei. Daher haben wir es 
bei 6. nicht mit einem logischen Gesetz zu tun. 

7. ((p v q) ((p A q) v (p A - l r)) 
1 1 0 0 0 0 0 

führt zu keinem Widerspruch 

8. ((p v q) r) -» ((p -»• r) A (q -> r)) 
1 0 0 

1 0 0 0 1 0 1 0 0 

2) [((U a G) H) A (O n G) A (F -» n H) -* ((U AF)-+ O)] 

1 1 1 0 0 

1 0 0 0 0 1 0 1 1 0 1 1 1 0 

U = 1 
G = 0 
H = 0 
0 = 0 
F = 1 

Dieses Beispiel stammt aus dem Mittelalter. Ockham hielt es für 
ein logisches Gesetz. Darin hat er sich zwar getäuscht. Aber er-
stens ist es bewundernswert, welch hohen Stand die mittelalterli-
che Logik erreicht hatte, da man sich immerhin an fünf Variable 
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heranwagte, und zweitens zeigt die vollständige Auswertung mit 
der Wahrheitstafel, daß von 32 Zeilen eine einzige falsch ist, genau 
jene, auf die wir mit der teilweisen Wahrheitstafel gestoßen sind. 
Duns Scotus hat dies erkannt; er heißt nicht zu Unrecht Doctor 
subtilis. 

3) 1, 4, 7, 9, 10 wahr, die übrigen falsch. 

2.6.1 

1) 1. S -» F 
2. S /.-. F 
3. F 2,1, MP 

2) 1. L -> E 
2. E l_L_ 
3. L 

3) 3. f v s 2,1, MP 

4) Aus „A" folgt bestimmt nicht „B". Gleichwohl handelt es 
sich um einen korrekten Schluß. Ausführlich dargestellt, verläuft 
er so: 

1. A B 
2. A /.-• B 
3. B 1,2, MP 

Die erste Prämisse wird als selbstverständlich vorausgesetzt und 
deshalb nicht ausgesprochen. Das Einflechten von unausgespro-
chenen Prämissen ist im täglichen Umgang üblich. So sagen wir 
auch „Müller hat den Wein bestellt, also zahlt er ihn". Das Zahlen 
ist keine logische Folge aus der Bestellung; sie wird es erst, weil bei 
dieser Gruppe die zusätzliche Regel gilt: Wer bestellt hat, bezahlt. 

2.6.2 

1) 1. G -> S 
2. —i S /.-. 
3. - i G 2,1, MT 
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2) 1. S ~ l E 
2. E /.-. 
3. —I S 2 ,1 , MT: Also schneit es nicht. 

3) 3. (p v q) 2 ,1 , M T 

4) 1. G -» V 
2. - i G E 
3 . - 1 V /••• E 
4. - i G 3 ,1 , M T 
5. E 4 ,2 , MP 

5) ~i Aoder D 

6) 1. H - » B 
2. B / H falsch 

7) 1. I - * E 
2. —il /—iE falsch 

8) l . - i Z W 
2. Z L ^ 

9) 1. A D 
2. D 

10) 1. O U 
2. - i U / -

11) Die ersten zwei Zeilen tragen nichts zur Deduktion bei. 
Deshalb setzen wir mit der Formalisierung erst bei der 3. Zeile ein. 

1. (E a Z) -» (D A V) 
2. (E a Z) / - i (D A V) 
3. -

Die Behauptung i (D'a V)' läßt sich nicht ableiten. Folgt dar-
aus, daß Goethe ein schlechter Logiker war? Vielleicht gerade 
nicht, denn es ist Mephistopheles — der Teufel ist von Natur aus 
ein Lügner —, dem dieser logische Fehler in den Mund gelegt wird. 
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2.6.3 

1) 1. D -»• L 
2. F A - i L /.-• - i D 
3. ~~1 L 2b, Simpl. 
4. - i D 3,1, MT 

2) 1. —I A S 
2. H A K A R A - I A /.-• S 
3. —i A 2d, Simpl. 
4. S 3,1, MP 

3) 1. (F C) A (E W) 
2. E . /.-. W 
3. E W lb, Simpl. 
4. W 2, 3, MP 

4) 1. D A F A J 
2. —i A —i F /.-• A 
3. F lb, Simpl. 
4. - i - i A 3, 2, MT 

5) ( H v E ) -» ( S v T v R ) 
2. - i (S v T v R) /.-• - i (H v E) 
3. (H v E) 2,1, MP 

6) l . n N O 
2. P A —i O 
3. N-*~iA /•-. —i A 
4. - i O 2b, Simpl. 
5. - i - i N 4,1, MT 
6. - i A 5,3, MP 
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2.6.4 

1. K A U 
2. B A N 
3. (N A K) -» S /.-. S A U 
4. N 2b, Simpl. 
5. K la , Simpl. 
6. N A K 4,5, Konj. 
7. S 6,3, MP 
8. U lb, Simpl. 
9. S A U 7, 8, Konj. 

S.p 2a, Simpl. 
6. r 3 a, Simpl. 
7. q 2b, Simpl. 
8. r A q 6,7, Konj. 
9. s t 8,4, MP 

1 0 . - i s 9,1, MT 
11. p A - 1 S 5,10, Konj 

6.p 4b, Simpl. 
7 . q 6,1, MP 
8. —11 A u 2b, Simpl. 
9. —11 8a, Simpl. 

10. —I y 9,5, MT 
11. q A - l y 7,10, Konj 

5. t A - 1 r 3b, Simpl. 
6. —1 r 5b, Simpl. 
7. - I (p q) 6,1, MT 
8. s 4b, Simpl. 
9. t 5a, Simpl. 

10. S A t 8,9, Konj. 
11. u 10, 2, MP 
12. u A —1 (p -» q) 11,7, Konj 
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1) 

2) 

3) 

4) 

5) 

6) 

1. E Z 
2 . Z —i K 
3 . E -> - i K 

1. —i F 
2 . G -> F 
3 . M - » G 
4 . M -»• F 
5 . - l M 

1. V Z 
2 . F -> V 
3. R F 
4 . R Z 

1. (B A H ) -> S 
2 . G 
3. R -> (B a H ) 
4 . G -> R 
5 . G S 
6. S 

1. - i L E 
2 . —i S 
3 . E S 
4 . H -> - i L 
5 . H S 
6. - i H 

1. A P 
2 . R A V 
3 . M - » A 
4 . V M 
5 . V -»• P 
6 . V 
7 . P 

2 . 6 . 5 

/•-. E - » ~ i K 
1, 2 , H S 

/ . - . - l M 
3 , 2 , H S 
1 , 4 , M T 

/ . - . R -> Z 
3 , 2 , 1 , H S 

/ . - . S 
4 , 3 , 1 , H S 
2 , 5 , M P 

/••• - i H 
4 , 1 , 3 , H S 
2 , 5 , M T 

/ . - . P 
4 , 3 , 1 , H S 
2 b , S i m p l . 
6 , 5 , M P 

7) a) 6. G - i N 1 , 2 , 3 , 4 , 5 , H S . 
In W o r t e n : W o G l a u b e , d a k e i n e N o t . 
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b) Wir haben die Regel HS nur für Aussagen definiert, 
nicht für Einzelworte. Der Schluß aus 7) bleibt dennoch 
gültig, weil die Worte abgekürzte Aussagen sind, „wo 
Glaube" = „wo der Glaube gelebt wird" oder „wenn 
der Glaube gelebt wird" usw. 

8) 6. t -> q 5 , 3 , 1 , HS 
7. t 2c, Simpl. 
8. q 7, 6, MP 

9) 5. - 1 p 4b, Simpl. 
6. q r 5 , 1 , M P 
7. r s 6,2, MP 
8. q s 6, 7, HS 
9. t -» (s u) 8, 3, MP 

10. t 4a, Simpl. 
11. s u 10, 9, MP 
12. q -> u 8 , 1 1 , HS 

2.6.6 

1) 1. S v A 
2. A -» V 
3. M A - I V /.-. S 
4. - i V 3b, Simpl. 
5. A 4, 2, M T 
6. S 5 , 1 , DS 

2) 1. R v - i R 
2. R / ~ i R 
3. R 1 , 2 , DS 

l R ' läßt sich aus den Prämissen 1 und 2 nicht heraus-
holen. Aufgrund der Regel DS folgt trivialerweise ,R ' . 

3) 1. P v V 
2. V -> A 
3. C A - I A /.-• P 
4. — i A 3b, Simpl. 
5. - i V 4, 2, M T 
6. P 6 , 1 , DS 
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4) 1. F A M 
2. H -> L 
3. H v - i M /.-. F A~IL 
4. F la, Simpl. 
5. M lb, Simpl. 
6. H 5,3, DS 
7.-iL 6,2, MP 
8. F a - i L 4,7, Konj. 

5 ) 1 . S I 
2. E a - i D A W 
3. N 
4. S v - i E /.-• N a I 
5. E 2a, Simpl. 
6. S 5,3, DS 
7. I 6,1, MP 
8. N a I 4,7, Konj. 

6) 1. P v A 
2. A -» B 
3. P -> W 
4. (F v Z) a S a C a - i W /.-• B 
5. -L W 4d, Simpl. 
6. - i P 5, 3, MT 
7. A 6,1, DS 
8. B 7,2, MP 

1) 5. q 
6. q v t 

2) 5 . - i p 
6. r 
7. r s 
8. s 
9. s v q 

2.6.7 

4b, Simpl. 
5, Add. 

4,1, MT 
5, 2, DS 
6,3, MP 
6,7, MP 
8, Add. 
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4. q lb , Simpl. 
5. r A s 4, 2, MP 
6. r 5a, Simpl. 
7. r v s 6, Add. 
8. s -» p 7 ,3 , MP 

5 . q lb , Simpl. 
6. q v r 5, Add. 
7. p -» t 6 ,3 , MP 
8. s t 4 ,7 , HS 

2.6.8 

1. (U M) A (W -* S) 
2. U v W /.-. M v S 
3. M v S 1, 2, KD 
1. P -> B 
2. E W 
3. T K 
4. E v R 
5. R ->• V /.-. W v V 
6. (E -* W) A (R V) 2 ,4 , Konj. 
7. W v V 4, 6, KD 
1. F v S v K 
2. (S -» F) A (K -»• L) 
3. (F v L) -> (F v K) 
4. - l F /.-. K 
5. S v K 4 ,1 , DS 
6. F v L 5, 2, KD 
7. F v K 6 ,3 , MP 
8. K 4 ,7 , DS 
6. (q -» r) A (s -» t) 5 ,1 , Konj. 
7 . - | p 2a, Simpl. 
8. —1 r 2b, Simpl. 
9. q v s 7, 8 ,3 , DS 

10. u v t 8 ,6 , KD 
11. p V q v r 10,4, MP 
12. q 11,7, 8, DS 
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4. p V q 
5. q v q 
6. q 

1, 3, DS 
4, 2, KD 
5, Idemp, 

2, 3, Konj 
4, 6, DD 
1, 7, DS 
8,5, MT 

2.4, Konj 
3, Add. 
6.5, DD 
7, Add. 
8,1, MP 

3,4, M T 
5, Add. 
6 ,1 

5.1, Konj 
2,4, DS 
7, 6, DD 
3, 8, MP 
9.2, DS 

/.-• A -> - i R 
2, Kontr. 
1, 3, HS 

2, Add. 
5,4, MP 
5, Add. 

1. A - > - i S 
2. R -» S 
3. - i S - » - i R 
4. A -> —i R 

5. —i p v q 
6. ( u « v ) - » n w 
7. — i p v q v - i r 

2.6.9 

1) 6. (p -» q) A (r -> s) 
7. —1 p v ~i r 
8. —i r 
9. —: (t A u) 

2) 5. (p s) A (r - q) 
6. —1 s v - 1 q 
7. —i p v ~i r 
8 . n p v n r v t 
9. z 

Statt 2) auch 3) 
3) 5 . - i p 

6. — i p v - i r v t 
7. z 

4) 6. (s —> i q) A (t —> i r) 
7. q v r 
8. —i s v - 1 1 
9. p v m 

10. m 

2.6.13 

2.6.14 
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8. - i s (t «-• u) 7,1, MP 
9. - l s w 8,6, HS 

10. w -» s 9, Kontr. 

2.6.15 

4. ~i q v r 2, Komm. 
5. q -> r 4, Impl. 
6. p r 1, 5, HS 
7. r 3, 6, MP 

1. T v K 
2 . P v - i K /.-. T v P 
3. T -» K 1, Impl. 
4. - i K v P 2, Komm. 
5. K -> P 4, Impl. 
6. - i T ->• P 3, 5, HS 
7. T v P 6, Impl. 

6. p -> s 3,5, HS 
7. s -> —i (q -» —1 x) 4, Impl. 
8. - i (q -*—ix) 1, Kontr. 
9. v —» i (t A u) 2, Kontr. 

10. p -»• ~1 (t A U) 6, 7, 8, 9, HS 
11. —1 p V—I (t A u) 10, Impl. 

1. (T v I) v K 
2. T I /.-. K v I 
3. T v (I v K) 1, Assoz. 
4. - i T -» (I v K) 3, Impl. 
5. - i I -f T 2, Kontr. 
6. n I -> (I v K) 5, 4, HS 
7. - i - i I v (I v K) 6, Impl. 
8. (I v I) v K 7, Assoz. 
9. I v K 8, Idemp. 

10. K v I 9, Komm. 
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2.6.16 

1) 3. —I p v (q a r) 1, Impl. 
4. ( n p v q ) A ( n p v r ) 3, Dist. 
5. (r v p) A (r v —i q) 2, Dist. 
6. ( i r —• p) A ( I r —> I q) 5, Impl. 
7. —l p v q 4a, Simpl. 
8. r v r 7,6, DD 
9. r 8, Idemp. 

2) 3. —I p A (s A —i (—i p A q)) 2, Assoz. 
4. -1 p 3a, Simpl. 
5. p v (q v (r A s)) 1, Assoz. 
6. q v (r A s) 5, 4, DS 
7. (q v r) a (q v s) 6, Dist. 
8. q v r 7a, Simpl. 
9. —1 p A (q v r) 4, 8, Konj. 

10. (—1 p A q) v (—i p A r) 9, Dist. 
11. —1 (—I p a q) 2b, Simpl. 
12. - l p A r 11,10, DS 

1) 1. D <-» B 
2. - i D /.-. - i B 
3. (D -> B) a (B -* D) 1, Äquiv. 
4. B D 3 b, Simpl. 
5. - i B 2,4, M T 

2) 5. - l s 4b, Simpl. 
6. r -> s la, Simpl. 
7. - i r 5 ,6 , M T 
8. i p 4a, Simpl. 
9. (( i q —> r) —• i p) A 

(—I p -» (—i q r)) 2, Äquiv. 
10. - i p (-1 q r) 9b, Simpl. 
11. - i q r 8,10, MP 
12. q 7,11, M T 
13. q v u 12, Add. 
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2.6.18 

1) 1. - I (A a B) v D /.-. A -> h B v D ) 
2. (A a B) -» D 1, Impl. 
3. A -» (B - D) 2, Exp. 
4. A ->• ( - : B v D) 3, Impl. 

2 .6 .19 

4. - 1 p v (p a q) 1, Komm. 
5. p (p A q) 4, Impl. 
6. p -»• q 5, Abs. 
7. q ~i r 2, Impl. 
8. - i r ->• (p A q) 3, Kontr. 
9. q -» (p A q) 7, 8, HS 

10. q - t ( q A p ) 9, Komm. 
11. q » p 10, Abs. 
12. p q 6,11, Äquiv. 
13. (p a q) v (-1 p A - 1 q) 12, Äquiv. 

2.6.20 

1) 1. - i (-1 Z A - i S) 
2. —i S /.-. Z 
3. Z a S 1, Hilbert 
4. Z v S 3, De M. 
5. Z 4,2, DS 

2) 1. (B —»• L) a (A A S) 
2. (S A L) G 
3. - i G A-, B - > - i A 
4. - i (S A L) 3 ,2, M T 
5. - i S v - i L 4, De M. 
6. —i L v —i S 5, Komm. 
7. - i B v - i A 6,2, DD 
8. B -> - i A 7, Impl. 
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2.6.21 

1) 1. (D v Z) -» (S A W) 
2 . - 1 W /•••-iZ 
3. - i W v - i S 2, Add. 
4. - i S v - i W 3, Komm. 
5. - i (S A W) 4, De M. 
6. - i (D v Z) 5 ,1 , M T 
7. - i D a - i Z 6, De M. 
8. - i Z 7b, Simpl. 

2) 1. 1 (p ~ q) 
2. (p -» q) A (q -> p) 
3. (p -» q) V (q -> p) 
4. (p v q) v (q v p) 
5. (p A —i q) v (q A —: p) 

3) 1. ( A - f G ) A ( F - . E) 
2. A v F 
3. (A - i E) A (F - i G) /.-• E <->~iG 
4. G v E 1,2 , DD 
5. G -» E 4, Impl. 
6. E -» ~1 A 3a, Simpl. Kontr. 
7. - i A -> F 2, Impl. 
8. F -> —i G 3b, Simpl. 
9. E - + ~ i G 6 ,7 , 8, HS 

10. (E -» - i G) A ( - i G -» E) 9, 2, Konj. 
11. E <-• G 10, Äquiv. 

4) 1. (N A F) -> S 
2. N A E 
3. —i (F —»• T) 
4 . S -> - i (~i W v - i E) /••• F A W 
5. F v T 3, Impl. 
6. F a - i T 5, D e M . 
7. F 6a, Simpl. 
8. N 2a, Simpl. 
9. N A F 8 ,7 , Konj. 

10. S 9 ,1 , MP 
11. - i (-1 W v - i E ) 10,4, MP 
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12. W A E 
13. W 
14. F A W 

11, De M. 
12a, Simpl. 
7,13, Konj. 

1. M v R v P 
2. C -* B 
3. M P 
4. ( P v E ) - t ( P v R) 
5 . - i P 
6. R -> C /••• B 
7. M v R 5,1, DS 
8. ( M - f P ) A ( R - » C) 3, 5, Konj. 
9. P v C 7, 8, KD 

10. C 9, 5, DS 
11. (C -> B) A (B —> C) 2, Äquiv. 
12. C B I Ia , Simpl. 
13. B 10,12, MP 

1. ( G A S ) V ( M A C) 
2. - i G /.-• C 
3 . - i G v - i S 2, Add. 
4. - i (G A S) 3, De M. 
5. M A C 4,1, DS 
6. C 5b, Simpl. 

6. 3a, Simpl. 
7. 6, Add. 
8. 7, Komm. 
9. 8,1, MP 

10. 5, Impl. 
11. 10, De M. 
12. I Ib , Simpl. 
13. 9,12, Konj. 

3. 1, Impl. 
4. 3, Komm. 
5. 4, Assoz. 
6. 5, Idemp. 
7. 6, Komm. 
8. 2, Äquiv. 
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9. 7, De M . 
10. 9, 8, DS 

4. 1, Impl. 
5. 4, Idemp. 
6. 2, Import. 
7. 5, 6, M T 
8. 7, De M . 
9. 8 , 3 , DD 

10. 9, Impl. 

7. 3 b, Simpl. 
8. l a , Simpl. 
9. 8, Kontr. 

10. 2, Kontr. 
11. 5 , 1 0 , MP 
12. 5, De M . 
13. 6, Impl. 
14. 12 ,13 , DS 
15. 14 ,11 , Konj. 
16. 15 ,4 , MP 
17. 16, Impl. 
18. 3 a, Simpl. 
19. l b , Simpl. 
20. 19, Kontr. 
21. 7 , 9 , 1 7 , 1 8 , 20, HS 

11) a) 1. - i A - 1 C 
2. - i C -> (P A G) 
3. n A -> (P A G) 1 ,2 , HS 
Wenn es keine Auferstehung der Toten gibt, dann ist 
unsere Predigt leer, und auch der Glaube ist leer. 

b) 4. C Zusatzprämisse (1 Kor. 15, 20) 
5. A 4 , 1 , M T Es gibt eine Auferstehung der Toten 
ba) Es läßt sich ,A' ableiten 
bb) Über ,G' folgt nichts, weder Bestätigung noch Wi-

derlegung. 
c) , I A' läßt sich nicht beweisen; es würde auch im Wider-
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12) 

13) 

14) 

spruch stehen zu ,A*. Also hat Paulus nicht gesagt, es 
gebe keine Auferstehung der Toten, 

d) ,A —• C' ist ebenfalls nicht abzuleiten. Folglich hält 
Paulus die Auferstehung der Toten nicht für die Voraus-
setzung der Auferstehung Christi. 

e) 3 . C A 1, Kontr. 
4. A 2 , 3 , MP 

4. - i ( - : p q) 2a, Simpl. 
5. - I (p v q) 4, Impl. 
6. i p A 1 q 5, De M. 
7. ~i q 6b, Simpl. 
8. —1 q v - 1 y 7, Add. 
9 . z —> ( s A 11) 8,1, MP 

1 0 . ~ i q A - 1 p 6, Komm. 
1 1 . ( s A n t ) X 1 0 , 3 , MP 
1 2 . z x 9,1, HS 
1 3 . — 1 z v x 12, Impl. 
1 4 . —1 (—1 x A z ) 14, De M. 

4. p v —i q 1, Impl. 
5. ~i q v p 4, Komm. 
6. —1 q v p v h 5, Add. 
7. h v -1 q v p 6, Komm. 
8. (h v —1 q) v p 7, DN 
9. (h v —i q) -» p 8, Impl. 

10. ~1 (h v ~1 q) -» p 9, Hilbert 

/.-. t r 
6. —1 ( q A — 1 r ) 4,1, DS 
7. ~i q v r 6, De M. 
8. q r 7, Impl. 
9. i (t A i q) 5, 3, MP 

1 0 . — 1 1 V q 9, De M. 
11. t q 10, Impl. 
12. t ^ r 11,8, HS 
1 3 . ~ 1 1 v r 12, Impl. 
14. - 1 ( t A - 1 r ) 13, De M. 
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4. p v (q A r) 1, Impl. 
5. (p v q) A (p v r) 4, Dist. 
6. (s v t) v 11 a —i p) 2, Impl. 
7. (s A t) V (t A p) 6, De M. 
8. (s V t) A (s V p) A (t V t) A (t V p) 7, Dist. 
9. p v r 5b, Simpl. 

10. —i p - • r 9, Impl. 
11. (t v s) v r 3, Impl. 
12. (t a s) v r 11, De M. 
13. r v (t A s) 12, Komm. 
14. (r v t) a (r v s) 13, Dist. 
15. r v s 14b, Simpl. 
16. s v r 15, Komm. 
17. ( 1 p —> r) A (s —> r) 10,16, Konj 
18. s v p 8b, Simpl. 
19. —i p v s 18, Komm. 
20. r v r 19,17, KD 
21. r 20, Idemp. 

3. (-1 q v p) v p 1, Komm. 
4. —1 q v (p v p) 3, Ass. 
5. —1 q v p 4, Idemp. 
6. (—1 p v q) v q 2, Komm. 
7. p v (q v q) 6, Ass. 
8. —i p v q 7, Idemp. 
9. ( - 1 q v p) a ( - 1 p v q) 5, 8, Konj. 

10. ( 1 q A I p) V ( 1 q A q) V 

(p A -1 p) v (p a q) 9, Dist. 
11. (p A q) v ( ~ i p A - i q ) 10, Komm. 

2.7 

1) 1. p - (q - p) 
2. p v (q v p) 
3. pqp 

2) 1. (p -»• q) v (q m) 
2. p v q v q v m 
3. pqqm 
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3) 1 . ( p V q ) - t ( q v p ) 
2 . ( p V q ) V ( q V p ) 

3 . ( p • q ) q p 
4 . p q p • q q p 

4 ) 1 . ( p - > q ) —• (—i q —»• —i p) 
2 . ( p V_q) ( q V p ) 
3 . ( p ^ q ) q p 
4 . p q p • q q p 

5 ) 1 . ( p - > (q - » r ) ) ( ( p - > q ) —• ( p —• r ) ) 
2 . ( p v (q v r ) ) v ( ( p v q)_ v ( p v r ) ) 

3 . ( p • ( q " r ) ) v ( p ' q ) v ( p v r ) 
4 . ( p ^ q • r ) v p p r ^ q p r 
5 . p q p r • q q p r • r q p r 

6) 1 . ( ( p q ) A (q - > r ) ) - » ( p r ) 

2 . ( ( p v q ) a (q v r ) ) v j p v r ) 
3 . ( p v q ) v (q v r ) v p r 
4 . ( p - q ) v (q_ - r )_p r 
5 . ( p ^ q ) v q p r • r p r 
6 . p q p r • q q p r 

7) 1 . ( ( p - > q ) a —i q ) —: p 

2 . ( p V q ) A q v p 
3 . p v q v q v p 
4 - ( p 

5 . p q p • q q p 

8) 1 . (q v - i ( ( p - > r) - > ( ~ i q - > ~ i p ) ) ) ( p A p ) 

2 . (q v j ( p - » q ) - > l q - > ~ i p ) ) v p v p 

3 . q • ( p v _ q ) v (q v p ) v p p 
4 . q • ( p • q ) v q p p p ^ 
5. qqppp • pqppp • qqppp 

9) 1 . - i ( p - » q ) « ( r - 1 s) 

2 . ( ~ i ( p ->• q ) —> (r —• - i s ) ) A ( ( r - > ~ i s) - » n ( p - > q ) 

3 . ( ( p v q ) v ( r v s ) ) A (r v s) v ( p v q ) 

4 . ( p v q ) v ( r v s) A ( r A s) v ( p A q ) 

5 . p q r s A ( r p • r q • s p • s q ) 

6 . p q r s r p • p q r s r q • p q r s s p • p q r s s q 
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10) 1 . (p -> (q -> r) A (p -> q)) (p - r) 

2. ( p v ( q v t ) A (p v q)) v (p v r) 
3. (p v (q v r) v (p v q)) v pr 

4 . (p • q • r) v (ppr • qpr) 

5. (p • q • r)_ v q p r 

6. pqpr • qqpr • rqpr 

2.8.1 

2. A v - i B 1, A d d . 

3. - i B v A 2 , K o m m . 

4 . B A 3 , Impl. 

i- p q /.'. —1 q —• —1 p 

r > 2 . —iq K A 

3 . - I P 2 , 1 , M T 

4. —1 q - » ~l p 2 -3 , K B 

-» 4. p K A 

5. ~i s 4 , 3 , M P 

6 . q 5,2, DS 
7. p q 4 - 6 , K B 

8. r 7 , 1 , M P 

1. (p q) A (q r) /.-. p - r 

i - 2. p K A 

3. p -> q l a , Simpl. 

4 . q 2 , 3 , M P 

5. q r l b , Simpl. 

6. r 4 - 5 , M P 

7 . p ^ r 2 - 6 , K B 

4. s K A 

5 . t A p 4 , 2 , M P 

6 . p 5 b , Simpl. 

7 . q -> r 6 , 1 , M P 

8. r 3 , 7 , M P 

9. s r 4 - 8 , KB 
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6) 

7) 

8) 

1. - /••• P ^ (q - P) 
[ - 2. p KA 

3. p v ~i q 2, Add. 
4. ~ i q v p 3, Komm. 
5- q -» P 4, Impl. 

6- p -» (q -»• p) 2 - 5 , KB 

1. - /•'• (P A q) P 
p» 2. p a q KA 
1 3 . p 2a, Simpl. 

4. (p a q) -» p 2 - 3 , KB 
oder 

r-» 2. ~1 p KA 
3. —i p v - 1 q 2, Add. 
4. - i (p a q) 3, De M. 
5. - 1 p i (p a q) 2 - 4 , KB 
6. (p A q) -> p 5, Kontr. 

1. - /••• (P - r) -»• ((q A q) —» r) 
— 2. p - r KA /•'• ( p A q ) - r 

3. p A q KA /.-. r 
4 . p 3 a, Simpl. 
5. r 4, 2, MP 

6. (p a q) -» r 3, 5, KB 

7. (p r) ((p A q) —» r) 2 - 6 , KB 

9) 1. - /••• (p -» q) -> ((p v r) (q V r)) 
2. p -> q KA /.-. (p v r) -> (q v r) 
3. p v r KA /.'. q v r 
4. ~•l q -> —i p 2, Kontr. 
5. —i p -» r 3, Impl. 
6. ~1 q -» r 4, 5, HS 
7. q v r 6, Impl. 

M p v r ) ^ ( q v r ) 3 , 7 , KB 

9. (p - q) ((p v r) -» (q v r)) 2 - 8 , KB 

11 Bucher, Logik 
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10) 
• 4. p 
• 5. q 
+ 6. r 

7. s 
8. (r A v) -» —I q 
9. —I (r A v) 

10. r v - 1 v 
11. r ->•-! v 
12. - i v 
13. w v t 
14. (p A s) - > n w 
15. p A s 
16. -1 w 
17. t 
18. s -> t 
19. r —> (s -> t) 
20. q -> (r - (s - t)) 
21. p - (q -» (r -» (s - t))) 

KA 
KA 
KA 
KA 
1, Exp. 
5, 8, MT 
9, De M. 
10, Impl. 
6,11, MP 
12, 3, M T 
2, Kontr. 
4, 7, Konj. 
15,14, MP 
16,13, DS 
7-17, KB 
6-18, KB 
5-19, KB 
4-20, KB 

2.8.2 

1) 

2) 

• 4. —11 
5. —i (q v s) 
6. — iq A — is 
7. - i s 
8 . p 
9. q v s 

10. t 
11. t A~11 
12. t 

4. p v r 
5. q v s 
6. t 
7. t A ~11 
8. - i (p v r) 

IA 
3,4, MT 
5, De M. 
6b, Simpl. 
7.2, DS 
8,1, MP 
9.3, MP 
10,4, Konj. 
4-11, IB 

IA 
4.1, KD 
5.2, MP 
6.3, Konj. 
4-7, IB 
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» 2. - l (q V - l q) IA 
3 . 1 q a q 2, De M. 
4. q v —i q 2-3, IB 

—• 3. i s IA 
4. —i s v t 3, Add. 
5. s -> t 4, Impl. 
6. p a r 5, 2, MP 
7 . p 6a, Simpl. 
8. p v q 7, Add. 
9. r s 8,1, MP 

10. r 6b, Simpl. 
11. s 10, 9, MP 
12. SA~1S 11, 3, Konj 
13. s 3-12, IB 

r* 3. p IA 
4. p v q 3, Add. 
5, r a s 4,1, MP 
6. r 5a, Simpl. 
7. r v t 6, Add. 
8. s -> —i p 7,2, MP 
9. s 5b, Simpl. 

10. —ip 9, 8, MP 
11. p A ~1 p 3,10, Konj 
12. —i p 3-11, IB 

r* 3. —1 (—1 p V ~1 p) IA 
4. p A q 3, De M. 
5. r a s 4,1, MP 
6. s 5 b, Simpl. 
7 . - i q 6, 2, M T 
8. q 4b, Simpl. 
9. q A ~I q 8, 9, Konj. 

10. —l—l (—l p v —l q) 3-9 , IB 
11. —l p V —l q 10, DN 

n* 
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7) 1. - i s /••• - i (((p q) A (q - r)) A ((p ->-r) s)) 
-»• 2. ((p -> q) A (q -» r) A (p -> r) s) IA 

3. p ->• q 2a, Simpl. 
4. q -»• r 2b, Simpl. 
5. p r 3 , 4 , HS 
6. (p -> r) -» s 2c, Simpl. 
7. s 5 , 6 , M P 
8. s A IS 7 , 1 , Konj. 
9. - 1 (((p -» q) A (q r)) A ((p r) - s)) 2 - 8 , IB 

8) /.-. r 
/••• (r —> i p) A ( i p —> r) 

|—• 3. r KA 
r * 4. p IA 

5. q 4, 2, M P 
6. p A q 4 , 5 , Konj. 
7.-IT 1 Impl.; 6 ,1 M P 
8. r A ~ i r 3, 7, Konj. 
9. ~i p 4 - 8 , IB 

10. r -> i p 3 - 9 , KB 
r—> 11. - i p KA 

[-»• 12. —I r IA 
13. p A q 12,1, Äquiv.; Impl. 
14. p 13a, Simpl. 
15. p A ~ i p 14,11, Konj. 
1 6 . - i - i r 12-15, IB 
17. - l p r 11-16, KB 
18. (r -> - i p) A (-1 p -» r) 10,17, Konj. 
19. r <-> ~i p 18, Äquiv. 

2.9 

1) a) - l (q A (-1 p A - l q)) 
b) - 1 q v (p V q) 
c) q -> (-1 p ^ q) 
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2) a) l (p A l q) A I (q A l p) 
b) n ( ( p v n q ) v (q v ~ i p ) ) 
c) - i ((p -»• q) -> - i (q p)) 

3) 1. Die Funktoren der Aussagenlogik sollen reduziert wer-
den. 

2. Rejektion oder Nicht-Konjunktion sind genau so streng 
definierte Funktoren wie Disjunktion oder Implikation. 
Von Inkonsistenz kann keine Rede sein. 

3. In keine Weise. Die Prozeßmetaphysik von Whitehead 
ist deshalb so hoch geschätzt, weil Whitehead nicht die 
geringsten Abstriche an der Logik gemacht hat. Als Mit-
verfasser der Principia Mathematica hat er gezeigt, wie 
brüchig das Klischee ist, ein Logiker sei kein Philosoph. 

2.10 

1. EAppp 
2. EpApp 
3. ECpqApq 
4. CKCpqqp 
5. CKpqApq 

6) P - > (P V q) 
C p A p q 

p A p q 
p p q 

7) (p q) V (q — > p) 
A c p q c q p 
A <P p q <P q p 

p q q p 

8) (p A —i p) - > q 
c K p p q 
£ p p q 

p p q 
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9) (p A q) -> (p V q) 
C K p q A p q 
f ? M i P 1 

p q p q 

10) Zeigen Sie, d a ß Cpq = Kpq ist. 
C p q K p q 
i p q £ p q 

p q = p q 

i i ) ((P -» q) A q) p 
C K C p q q p 
£ £ <P p q q P 

q P 

12) 

q q p 
r — ( { p — q ) — r ) 
C r C C p q r 
(ß r (ß C p q r 

W r 

13) 

(falsch) 

(P q) -»• ((P A m) q) 
C C p q C K p m q 
£ <p p q f ^ p m q 

P P m q 
q P m q 
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14) ( p A q ) « ( q A p) 
((p A q) (q A p)) A ((q A p) -
K C K p q K q p C K 

(P A q)) 
q p K p 

t <p g p q - q. p. £ £ q p i : p. q. 

p q 
q 

p q 
p 

q p 
p 

q p 

q 
- l (p q) (p A - l q) 

(p q) (p A - 1 q)) A ((p A —ijq) _-» -n (p 
K C C p q K p q C K p q C p q 
K ^ ^ p q K p q ^ K p q C p q 

p q 

3.2 
1) 1. Darii 
2) 2. Baroco 
3) 2. AAA falsch 
4) Alle Kühe sind Pflanzenfresser 1. Barbara 
5) Einige Zeitungsleute sind unglaubwürdig 3. Datisi 
6) 1. AEE falsch 
7) 1. EEE falsch 
8) 3. Felapton 
9) 3. Bocardo 

10) 1. Barbara 
11) Also sind einige Bemitleidenswerte arm. 4. All falsch 
12) Einige Säugetiere sind nicht Vierbeiner. 1. Ferio 
13) 4. Ell falsch 
14) 4. AAA falsch 
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3.3 

15) Galilei war ein Europäer 
16) Nach Umstellung der Prämissen 1. Barbara, aber G M 
17) Celarent 
18) Es handelt sich nicht um eine Quaternio terminorum, son-
dern um unklare Sprache. Das wird sichtbar, sobald man ver-
sucht, die Modi der Prämissen zu bestimmen. Die zweite Prämisse 
ist offensichtlich eine A-Prämisse. Doch wie steht es mit der er-
sten? Wird sie ebenfalls als A-Prämisse gedeutet, dann ist sie nicht 
wahr, denn Marmor, Bergkristalle, Smaragde sind kaum als billi-
ges Straßenpflaster zu betrachten. Aus einer unwahren Prämisse 
kann mühelos ein unwahrer Schluß folgen. Wird indessen die 
1. Prämisse als I-Prämisse aufgefaßt, dann liegen die Modi IA vor, 
aus denen in der 1. Figur der gewünschte Schluß nicht folgt. 

19) Wir vermögen einigermaßen mit Begriffen und Worten um-
zugehen, aber wie ein „Begriffswort" zu behandeln ist, das kön-
nen wir ohne Anleitung nicht herausfinden. Auch das übrige Vo-
kabular (Typ, Allgemeinbegriff) ist dermaßen inadäquat, daß der 
Autor seiner eigenen Verschwommenheit zum Opfer fällt. „Der 
Gelehrte ist vergeßlich" ist eine harmlose Allaussage und drückt 
das abgegriffene Klischee vom Gelehrten aus „Alle Gelehrten sind 
vergeßlich". Die zweite Prämisse enthält ein konkretes Subjekt. 
Mit „du" ist ein bestimmtes Individuum gemeint, das wir auch 
mit seinem Namen bezeichnen dürfen. Dann lautet die 2. Prämisse 
etwa „Sokrates ist ein Gelehrter". Es ist eine A-Prämisse. Aus AA 
ergibt sich in der ersten Figur Barbara und wir kommen zum 
Schluß: „Also ist Sokrates vergeßlich". Wenn wir, wie im Origi-
nal, das „du" beibehalten, dann ergibt sich die eindeutige Folge-
rung: „Also bist du vergeßlich", genau das, was der Autor in Ab-
rede stellt. 

20) Hier handelt es sich nicht um verschwommene Sprache, 
sondern um Unkenntnis der logischen Regeln. Es liegt nämlich 
eine 2. Figur vor, dazu die Modi AA. Daraus darf nichts geschlos-
sen werden. 

21) Der Verfasser fühlt sich unwohl, weil er offenbar die Kon-
klusion positiv faßt als „Einige Tiere sind Menschen". Wir fragen 
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zuerst nach den Modi der Prämissen. Während die 1. eine O-
Prämisse ist, gleicht die 2. einem Worträtsel. Übersetzt dürfte es 
etwa so zu verstehen sein: „Kein Elefant ist ein Mensch". Das ist 
freilich eine E-Prämisse. Aus OE — zwei negativen Prämissen - läßt 
sich weder in der 4. Figur noch sonstwo gültig schließen. Um sei-
nem fehlerhaften Syllogismus mehr Autorität zu verleihen, tieruft 
sich der Verfasser auf das „Prinzip des Größeren und Kleineren", 
eine Regel, die auf rege Phantasie, aber nicht auf Logikkenntnisse 
schließen läßt. 

3.4 

1) 

2) 

3) 

4) 

2. Fig. Festino 
W K 
X K 
X W 

3. Fig. Datisi 
S L 
S W 
W L 

4. Fig. Dimatis 
T A 
A S 

3. Fig. Felapton 
A R 
A T 
T R 

Ferio 
Kein Mitglied im Blauen Kreuz ist 
Weinbauer 
Einige Walliser sind Mitglieder im 
Blauen Kreuz 
Also sind einige Walliser nicht Wein-
bauern 

Darii 
Alle Säugetiere atmen durch Lungen 
Einige Wassertiere sind Säugetiere 
Einige Wassertiere atmen durch Lun-
gen 

Darii 
Alle Arzneien sind nützliche Substan-
zen 
Einige Tiergifte sind Arzneien 
Also sind einige Tiergifte nützliche 
Substanzen 

Ferio 
Kein Auto ist rostfrei 
Einige teuren Dinge sind Autos 
Einige teuren Dinge sind nicht rostfrei 
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5) 3. Fig. Disamis Darii 
K G Alle Kirchen sind Gotteshäuser 
R K Einige renovierte (Gebäude) sind Kir-
R G chen 

Einige renovierte (Gebäude) sind Got-
teshäuser 

6) 4. Fig. Fresioti Ferio 
V M Keine Mutter ist Vater 
M W Einige Veteranen sind Mütter 
W V Einige Veteranen sind nicht Väter 

3.4 

7) 2. Baroco Barbara 
Alle Quadrate sind viereckig 

'Alle Figuren sind Quadrate 
Alle Figuren sind viereckig 

8) 3. Bocardo Barbara 
»Alle Mitglieder der Pensionskasse sind 
verheiratet 
Alle Beamten sind in der Pensionskasse 
Alle Beamten sind verheiratet 

9) 2. Baroco Barbara 
Alle Lose sind Treffer 
Alle Papiere sind Lose 
Alle Papiere sind Treffer 

10) o Barbara 
rAlle Kostbarkeiten sind gebunden 
Alle Bücher sind Kostbarkeiten 
Alle Bücher sind gebunden 



Lösungen 331 

3.5 

1) 

2) 

D T D T 1. Fig. Darii 
R D R D 
R L R T Einige Regierungs-
L T R L vertreter sind taktvoll 

L T 3. Fig. Disamis 
Einige Leute des öffentlichen Le-
bens sind taktvoll 

F U U V 
V A F u 1. Fig. Barbara 
U V F V 
F A A V 2. Fig. Camestres 

A F Kein Autofahrer ist eine Frau 
oder F U 

U V 4. Dimatis 
F V 
A V A V 

V 2. Fig. Festino 
F A Einige Frauen sind 

nicht Autofahrer 

Eine Unklarheit liegt in der 1. Prämisse. Ist es eine A oder I-Prämis-
se? Den Tatsachen widerspricht die A-Prämisse eindeutig, denn es 
gibt — auch wenn es der Volksmund anders will — keine Anzeichen 
dafür, daß Frauen mit den logischen Regeln mehr Mühe hätten als 
Männer. Die Frauen sehen zwar die Welt anders, aber das ist eine 
Frage der Erkenntnistheorie und berührt die Logik nicht. 

3) G L G L 
V R F L 2. Fig. Camestres 
F L F G 
F R R G Jeder Richter ist geistig gesund. 

Umformung von V R . Jetzt 
können wir mit 2. Fig. und Cesa-
re schließen 

R F 
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3.7 

A) 1) fw' = 0 2) sf = 0 3) km' = 0 
sf =1=0 jf' =t= 0 dm' = 0 

(sw =1= 0) (js' * 0) (kd' = 0) 
sw = 0 js' = 0 kd' =(= 0 

fw' sf = 0 sf' jf' = 0 km' dm' = 0 
sf = 0 jf' = 0 falsch 

4) und 5) können nur kontrolliert werden, wenn auch die Konklu-
sion vorliegt. 

6) 7) ov = 0 
hz' = 0 fo = 0 
kh = 0 (fv = 0) 
(kz = 0) fv =|= 0 
kz =|= 0 ovfo = 0 falsch 

hz'kh = 0 falsch 

3.7 

B) 8) mp = 0 9) pn' =|= 0 10) ng' = 0 
mg' = 0 pl' = 0 vn' = 0 

(gp' * 0) (In' + 0) (vg' = 0) 
gp' = 0 In' = 0 vg' + 0 

falsch pl ' ln' = 0 ng' vn' = 0 
pn' = 0 vg' = 0 

11) und 12) sind nicht kontrollierbar, weil die Konklusion fehlt. 

13) sn = 0 14) pe' = 0 
nl 0 es' = 0 
(sl * 0) (sp' = 0) 
sl = 0 sp' 4= 0 

snsl = 0 pe' es' = 0 
falsch s 'p = 0 falsch 
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l .Fig. 2. Fig. 3. Fig. 4. Fig. 
mp = 0 pm = 0 mp = 0 pm = 0 
sm #= 0 sm + 0 ms 4= 0 ms 4= 0 
(sp' * 0) (sp' * 0) (sp' * 0) (sp' * 0) 
sp' = 0 sp' = 0 sp' = 0 sp' = 0 
sm = 0 sm = 0 sm = 0 sm = 0 

Ferio Festino Ferison Fresison 

l .Fig. 2. Fig. 3. Fig. 4. Fig. 
mp' = 0 pm' = 0 mp' = 0 pm' = 0 
sm' * 0 s p ' * 0 ms' 4= 0 ms' 4= 0 
(sp' * 0) (sm' * 0) (sp' 4= 0) (sp' * 0) 
sp' = 0 sp' = 0 sp' = 0 sp' = 0 

falsch Baroco falsch falsch 

l .Fig. 2. Fig. 3. Fig. 4. Fig. 
mp' = 0 pm' = 0 mp' = 0 pm' = 0 
sm' = 0 sm' = 0 ms' = 0 ms' = 0 
(sp' = 0) (sp' = 0) (sp' = 0) (sp' = 0) 
sp' 4= 0 sp' 4= 0 sp' 4= 0 sp' 4= 0 
sp' = 0 falsch falsch falsch 

Barbara 

In den Figuren 2 und 3 fällt der Mittelterm nicht weg und in der 4. 
sind die Komplemente vertauscht. 

4.1 

1. Bo 
2. —iBo 
3. Bo A ~ I Fa 
4. Bo A Fi 

5. Bo —: Fd 
6. If v Mf 
7. (Rf v Gf) Df 
8. (Rf A Gf) <-• Qf 

4.2 

1. (Vx)Tx 6a. (Vx)-iKx; 6b. - | ( V x ) K x 
2. - i ( 3 x ) T x 7. ~~i (3x) i Kx 
3. I (Vx)Tx 8. (Vx)Kx 
4. (3x)Tx 9. i (Vx) Kx 
5. (3x)—i Vx 1 0 . - i ( 3 x ) K x 
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Die Formulierung 6. ist zweideutig. Sie kann bedeuten: 
a) alles ist unverkäuflich 
b) nicht alles ist käuflich 

Äquivalent sind: 
a) 5, 9, 6b; b) 7, 8; c) 6a, 10. 

11. (Vx) (Sx K x ) 11'. - i (3x) ( S x a - i K x ) 
12. (Vx) (Sx Kx) 12'. (3x) (Sx A Kx) 
13. (3x) (Sx A Kx) 13'. (Vx) (Sx - | Kx) 
14. (3x) (Sx A - I Kx) 14'. - l (Vx) (Sx -» Kx) 
15. - I (3x) (Sx A Kx) 15'. (Vx) (Sx Kx) 
16. (3x) (Tx a Gx) 16'. - i (Vx) (Tx -» Gx) 
17. - : (3x) (Mx a Gx) 17'. (Vx) (Mx -» - | Gx) 
18. (3x) (Ex A - I Rx) 18'. - i (Vx) (Ex a R x ) 

20. a), b), f), i) 

21. 1. (i) (Vx) ~i Rx 
(ii) (3x)—i Rx 

Sie sind offensichtlich nicht identisch. 
2. (i) Alle Dinge sind nicht Raben = Es gibt keine Raben, 

(ii) Es gibt ein Ding [z.B. meine Schreibmaschine], das 
nicht ein Rabe ist. 

4.3.3 

1) 1. Sk 
2. (Vx) (Kx Sx) 
3. (Vx) (Tx ->• Bx) 
4. Gt 
5. (Vx) Fx 
6. - I (3x)-i Vx 

2) 1. (Vx) (Px Wx) 
2. (Vx) (Px Ax) 
3. (3x) (Px a Vx) 
4. (Vx) (Px -> Zx) 
5. (3x) (Px a Ax) 
6. (3x) (Px a Ex) 
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3) 1. (3x) (Ix A Ex) 
2. - i (3x) (Tx A Sx) 
3. - i (Vx) ((Ex A Px) Dx) 
4. (3x) (Vx A - i Bx) 
5. (3x) (Ux A (Vx A Sx)) 
6. (Vx) (Px Bx) 
7. (Vx) ((Px A Kx) -»• Bx) 
8. (Vx) (Bx -> (Px A Kx)) 
9. (Vx) ((Px A Bx) Kx) 

10. (Vx) ((Sx A Jx A Tx) -> Mx) 
11. (Vx) (Tx -»• (Fx A Gx A Hx A Ix)) 
12. (Vx) ((Ax v Bx) -+ Nx) 
13. (3x) (Rx A - i Sx) 
14. - i (Vx) (Rx Sx) 
15. (3x) (Gx (Mx A Ux)) 
16. (Vx) (Gx Ax) 

4) 1. (3x) (Vx A Rx) 
2. (Vx) (Kx Fx) 
3. (Vx) ((Px v Kx) -» (Bx A Vx)) 
4. (3x) (Lx A Mx A Tx) 
5. — I (3x) (Ax A Zx A Bx A Rx) 

(Vx) (Ax —» I (Zx A Bx A Rx)) 
6. — i (3x) ( L x A E X A H G x ) 
1'. - l (Vx) (Vx - i Rx) 
2'. - l (3x) (Kx A - i Fx) 
3'. - i (3x) ((Px v Kx) A - i (Bx v Vx)) 
4'. - i (Vx) ((Lx A Mx) - Tx) 
5'. (Vx)-1 (Ax A Zx A Bx A Rx) 

(Vx) ((—i Ax v - i Zx v —: Bx) v - i Rx) 
(Vx) (Ax (Zx -> (Bx -» - i Rx))) 

6'. (Vx)-i (Lx A Ex A - I Gx) 
(Vx) (Lx A Ex A Gx) 
(Vx) ( - 1 ((Lx A Ex) v Gx) 
(Vx) ((Lx A Ex) -+ Gx) 

5) 1. (3x) (Nx A Hx A Bx) 
2. (Vx) (Nx (Hx A Bx) 
3. (3x) ((Nx A Hx) A Bx) 
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4. (Vx) (Bx (Nx a Hx)) 
5. (Vx) ((Hx a Nx) <-• Bx) 
6. (Vx) ((Nx a -1 Hx) - i Bx) 
7. (3x) ((Nx a - i Bx) a - i Hx) 
8. (Vx) ((Nx a Hx) - l - i Bx) 
9. (Vx) ((Nx a Hx) Bx) 

10. (3x) ((Nx a Hx) -> Bx) 
Äquivalent sind 1, 3 sowie 8, 9. 

6) 1. - i (Vx) (Gx Ex) 
2. (Vx) (Hx Gx) 
3. (Vx) ((Rx v Dx) -> Kx) 
4. (Vx) ((Rx v Dx) -»• (Sx a Vx)) 
5. (Vx) ((Vx a - i Sx) -> - i (Rx a Dx)) 
6. Bh 
7. (Vx) ((Fx v Gx) Vx) 
8. - i (Vx) ((Sx a Bx) ->• Tx) 
9. (3x) (Mx a Ex) 

10. (Vx) ((Ux a Vx) (Px v Fx)) 
11. (Vx) ((Ax a Dx) -»• Ex) 
11. (Vx) ((Zx a Lx) -» Bx) 
13. (Vx) ((Bx A —I Sx) —• Vx) 
14. (Vx) ((Px a Ux) -> (Bx v Ox)) 

1) 1. (Vx) (Lx -» Ux) 
2. (3x) (Lx A Zx) 
3. La -» Ua 
4. La a Za 
5. La 
6. Ua 
7. Za 
8. Za A Ua 
9. (3x) (Zx a Ux) 

2) 1. (Vx) (Fx Ax) 
2. (3x) (Ax a Bx) 
3. Fa -> Aa 

4.4.4 

/.-. (3x) (Zx a Ux) 
1, - v 
2, - 3 
4a, Simpl. 
5, 3, MP 
4b, Simpl. 
7, 6, Konj. 
8, + 3 

/ (3x) (Fx a Bx) 
1, - V 
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4. Aa A Ba 
falsch 

1. (Vx) (Kx -1 Bx) 
2. (3x) (Kx A Hx) 
3. Ka -» i Ba 
4. Ka A Ha 
5. Ha 
6. - n Ka 
7. - l Ba 
8. Ha A — I Ba 
9. (3x) (Hx A —I Bx) 

1. (Vx) (Sx Gx) 
2. La A Sa 
3. Sa —> Ga 
4. Sa 
5. La 
6. Ga 
7. La A Ga 
8. (3x) (Lx A Gx) 

6) 1. (Vx) (Bx Ax) 
2. (Vx) (Ax ->• Dx) 
3. Ba Aa 
4. Aa -» Da 

2, - 3 

/.-• ( 3 x ) ( H x A - I B X ) 

1, - V 
2, - 3 
4b, Simpl. 
4a, Simpl. 
6, 3, MP 
5, 7, Konj. 
8, + 3 

/••• (3x) (Lx A Gx) 
1, - V 
2b, Simpl. 
2a, Simpl. 
4, 3, MP 
5, 6, Konj. 
7, + 3 

/••• (3x) (Sx A Fx)) 
1, - V 
2, - V 
3, - 3 
6a, Simpl. 
7, 4, MP 
6b, Simpl. 
9, 5, M T 
10, 8, DS 
7, 4, Konj. 
12, + 3 

/ (3x) (Bx A Dx) 
1, - v 
2, - V 

5) 1. (Vx) (Sx (Rx v Fx)) 
2. (Vx) (Rx -> Jx) 
3. (3x) (Sx A - L Jx) 
4. Sa (Ra v Fa) 
5. Ra - f Ja 
6. Sa A —1 Ja 
7. Sa 
8. Ra v Fa 
9. - I Ja 
10. - i Ra 
11. Fa 
12. Sa A Fa 
13. (3x)(Sx A Fx) 



338 Lösungen 

5. Ba -> Da 3 ,4 , HS 
6. (3x) (Bx Dx) 5, + 3 
In der modernen Logik ist es verpönt, von einigen Dingen 
das zu sagen, was offensichtlich von allen gilt. 

7) 1. (Vx) (Px -»• (Ex v Fx)) 
2. - i (3x) (Ex A Gx) 
3. (3x) (Px A Gx) /.-• (3x) (Px A Fx) 
4. (Vx) (Ex -» - i Gx) 2, QA 
5. Pa A Ga 3, - 3 
6. Pa 5a, Simpl. 
7. Pa - * (Ea v Fa) i, - v 
8. Ea v Fa 6 ,7 , MP 
9. Ga 5b, Simpl. 

10. Ea -» —1 Ga 4, - V 
11. —i Ea 9,10, M T 
12. Fa 11,8, DS 
13. Pa A Fa 6,12, Konj 
14. (3x) (Px A Fx) 13, + 3 

8) 1. - i (3x) (Ex A Wx) 
2. - I (3x) (Ox A - I Wx) 
3. (Vx) (Bx Ex) /••• - I (3x) (Bx A OX) 
4. (Vx) (Ex - f - i Wx) 1, QA 
5. (Vx) (Ox - Wx) 2, QA 
6. Ba -»• Ea 3, - V 
7. Ea —• I Wa 4 , - V 
8. Oa Wa 5, - V 
9. " i W a - t n O a 8, Kontr. 

10. Ba -> —i Oa 6 ,7 , 9, HS 
11. (Vx) (Bx - > ~ i O x ) 1 0 , + V 
12. - i (3x) (Bx A Ox) 11, QA 

9) 1. (Vx) ((Zx v Ax) Vx) 
2. - I Vd A Sd /.-. Ad 
3. (Zd v Ad) -+ Vd 1, - V 
4. - i Vd 2a, Simpl. 
5. - i (Zd v Ad) 4, 3, M T 
6. ~ I Zd A I Ad 5, De M. 
7. —1 Ad 6b, Simpl. 
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10) 

11) 

12) 

1. (Vx) (Sx (Px v Fx)) 
2. (3x) (Sx a Tx) 
3. (Vx)((Sx ->• Fx) <-• ~i Tx) 
4. (3x) (Sx A - 1 Tx) /.-. (3x) (Sx A 
5. ((Sa Fa) ->• - i Ta) a ( i Ta (Sa 

' 3, - V 
6. —i Ta (Sa -> Fa) 5b, Simpl. 
7. Sa a —i Ta 4, - 3 
8. —i Ta 7b, Simpl. 
9. Sa —• Fa 8, 6, MP 

10. Sa 7a, Simpl. 
11. Fa 10, 9, MP 
12. Sa a Fa 10,11, Konj. 
13. (3x) (Sx A Fx) 12, + 3 

4. 2, QA 
5. 4, - V 
6. i , - v 
7. 3, - 3 
8. 7a, Simpl. 
9. 8, 6, MP 

10. 7b, Simpl. 
11. 10,5, M T 
12. 11, 9, Konj. 
13. 12, De M. 
14. 13, + 3 

3. 2, QA 
4. 1, - V 
5. 4, Impl. 
6. 5, De M. 
7. 6, Komm. 
8. 7, Dist. 
9. 8a, Simpl. 

10. 9, Komm. 
11. 10, Add. 
12. 11, Ass. 
13. 12, Impl. 
14. 2, QA, - V 

Fa)) 
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15. 13, 14, HS 
16. 15, +V 

13) 3. Pa Qa 1, - V 
4. ( 3 x ) - | Q x 2, QA 
5. - i Qa 4 , - 3 
6. - i Pa 5, 3, M T 
7. (3x)- iPx 6 , + 3 

14) 3. (Vx)-i (Px -> Mx) 1, QA 
4. i (Pa -» Ma) 3, - V 
5. Pa A —: Ma 4, De M. 
6. Sa -> Ma 2, — V 
7. i Ma 5b, Simpl. 
8. Sa 7,6, M T 
9. —1 Sa v —: Pa 8, Add. 

10. Sa - > - i Pa 9, Impl. 
11. (Vx) (Sx -» - i Px) 10 ,+V 

15) 3. (Vx) - i (Ax A - i Bx) 1, QA 
4. (Vx)-i (Cx A Bx) 2, QA 
5. I (Aa A i Ba) 3 , - V 
6. Aa -> Ba 5, De M. 
7. - : (Ca A Ba) 4, - V 
8. Ca -> —I Ba 7, De M. 
9. Ba -* ~1 Ca 8, Kontrap. 

10. Aa —i Ca 6, 9, HS 
11. (Vx) (Ax - i Cx) 10 ,+V 
12. (Vx)-1 (Ax A Cx) 11, De M. 
13. - i (3x) (Ax A Cx) 12, QA 

16) 4. (3x) (Fx A Hx) lb , Simpl. 
5. Fa A Ha 4 , - 3 
6. (Fa A Ja) ->•-1 Ha 2 , - V 
7. Ha 5b, Simpl. 
8. - i (Fa A Ja) 7, 6, M T 
9. - l F a v — I Ja 8, De M. 

10. Fa 5a, Simpl. 
11. -1 Ja 10,9, DS 
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12. Fa a —i Ja 10,11, Konj. 
13. (3x) (Fx A - i Jx) 12, + 3 

5. Ga a Ja 4, - 3 
6. Ga 5a, Simpl. 
7. Ga v —1 Fa 6, Add. 
8. —1 Fa v Ga 7, Komm. 
9. Fa Ga 8, Impl. 

10. (Fa ->• Ga) (Ha Fa) i , - v 
11. Ha - > ~ i F a 9,10, MP 
12. Ja Fa 3, - V 
13. Ja 5b, Simpl. 
14. Fa 13,12, MP 
15. - : Ha 14,11, M T 
16. (3x)—i Hx 15, + 3 

6. Aa a (Ua v Ia) ->• - | (Ha v Ca) i , - v 
7. Aa a (Ia A Ba) 2, - 3 
8. Ia 7b, Simpl. 
9. (Ua v Ia) -» - I (Ha v Ca) 6b, Simpl. 

10. Ia v Ua 8, Add. 
11. Ua v Ia 10, Komm. 
12. (Ha v Ca) 11,9, MP 
13. n Ha a n Ca 12, De M. 
14. - i Ha 13a, Simpl. 
15. Aa Wa 4, - V 
16. Aa 7a, Simpl. 
17. Wa 16,15, MP 
18. Aa A Wa 16,17, Konj. 
19. (Aa a Wa) - > ( n H a - > Da) 3, - V 
20. n H a -» Da 18,19, MP 
21. Da 14,20, MP 
22. Aa a Da 16,21, Konj. 
23. (3x) (Ax a Dx) 22, + 3 

19) Die 1. Prämisse ist nur scheinbar wohlformuliert. Ohne Ne-
gation ausgedrückt lautet sie: Der Mensch lebt von Brot, 
Milch, Reis usw. 
Die Formalisierung: (Vx) (Mx(Bx v Mx v Rx .. .)) deutet 
das „usw." an, ist aber ungeeignet für eine Deduktion. 
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20) 1. (3x) (Px a Gx a i Ex) 
2. (Vx) (Px Kx) 
3. (3x) (Px A - l Gx) 
4. (Vx) (Hx Gx) /.-. (3x) (Kx a ~i H x ) ; oder: 

/.-• - i (Vx) (Kx -> Hx) 
5. Pa A 1 Ga 3, - 3 
6. Pa - f Ka 2 , - V 
7. Pa 5a, Simpl. 
8. Ka 7, 6, MP 
9. i Ga 5b, Simpl. 

10. Ha -> Ga 4, - V 
11. —i Ha 9 ,10 , M T 
12. Ka A — i Ha 8 ,11, Konj 
13. (3x) (Kx a - i H x ) 12, + 3 

21) 1. (Vx) ((Mx v Hx) Gx) 
2. (Vx) ((Rx v Ax) Hx) 
3. (Vx) (Gx -> (Px a Fx)) /••• (Vx) (Rx -> (Px a Fx)) 
4. (Ma v Ha) -> Ga i , - v 
5. (Ra v Aa) Ha 2, - V 
6. Ga -»• (Pa A Fa) 3, - V 
7. ~l (Ra v Aa) v Ha 5, Impl. 
8. (—i Ra A —1 Aa) v Ha 7, De M. 
9. (-1 Ra v Ha) a (—i Aa v Ha) 8, Dist. 

10. (Ra ^ Ha) a (Aa Ha) 9, Impl. 
11. i Ma a — i Ha) v Ga 4, Impl. 
12. (-1 Ma v Ga) a (—: Ha v Ga) 11, Dist. 
13. - I Ha v Ga 12b, Simpl. 
14. Ha ->• Ga 13, Impl. 
15. Ra -> Ha 10a, Simpl. 
16. Ra -> (Pa A Fa) 15, 14, 6, HS 
17. (Vx) (Rx -» (Px A Fx)) 16, + V 

22) 1. (Vx) ((Mx A - i Bx) -> Ax) 
2. (Vx) (Ex Mx) 
3. (3x) (Ex A - i Ax) /••• (3x) (Mx a Bx) 
4. Ea a —i Aa 3 , - 3 
5. (Ma a - i Ba) Aa 1 , - V 
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6. ~i Aa 4b, Simpl. 
7. (Ma a - i Ba) 5, 6, M T 
8. —i Ma v Ba 7, De M. 
9. Ea 4a, Simpl. 

10. Ea -»• Ma 2, - V 
11. Ma 9 ,10 , MP 
12. Ba 11,8, DS 
13. Ma a Ba 11,12, Konj. 
14. p x ) ( M x a B x ) 1 3 , + 3 

23) 1. (Vx) (Tx Kx) 
2. (Vx) (Ax Sx) 
3. (Vx) (Vx -»• Wx) 
4. (Vx) (Fx ->• Nx) 
5. (Vx) (Kx -» Mx) 
6. (Vx) (Gx Tx) 
7. (Vx) (Px -» - i Sx) 
8. (Vx) (Mx Fx) 
9. (Vx) (-1 Gx Vx) 
10. (Vx) (Nx Ax) /••• (Vx) (Px -> Wx) 
11. Pa - * i Sa 7 , - V 
12. — l Sa -» —i Aa 2, — V, Kontr. 
13. - i Aa - i Na 10, - V, Kontr. 
14. —i Na - * —i Fa 4, - V, Kontr. 
15. —1 Fa - 1 Ma 8, - V, Kontr. 
16. —I Ma — i Ka 5, — V, Kontr. 
17. - i Ka - i Ta 1, - V, Kontr. 
18. —1 Ta —i Ga 6, - V, Kontr. 
19. i Ga -» Va 9 , - V 
20. Va Wa 3, - V 
21. Pa -> Wa 11-21, HS 
22. (Vx) (Px Wx) 2 1 , + V 

24) 1. (Vx) ((Ux a Sx) Rx) 
2.-1 (Vx) (Sx - i Ax) 
3. (Vx) (Ax ((Sx a i Rx) - * Ux)) /.-. (3x) (Sx a Rx) 
4. (3x) (Sx a Ax) 2, QA 
5. Sa A Aa 4 , - 3 
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6. (Ua A Sa) ->• Ra i, - v 
7. ( n U a v n Sa) v Ra 6, Impl. 
8. Aa ((Sa A —i Ra) -> Ua) 3, - V 
9. Aa 5b, Simpl. 

10. (Sa A -1 Ra) Ua 9, 8, MP 
11. Sa 5a, Simpl. 
12. —: Ua v Ra 11,7, DS 
13. —1 Sa v Ra v Ua 10, Impl. 
14. Ra v Ua 13,11, DS 
15. —1 Ra Ua 14, Impl. 
16. Ua Ra 12, Impl. 
17. —: Ra Ra 15,16, HS 
18. Ra v Ra 17, Impl. 
19. Ra 18, Idemp. 
20. Sa A Ra 11,19, Konj. 
21. (3x) (Sx a Rx) 20, + 3 

5. (Vx) ((Px a Tx) Sx) 2, QA 
6. (Qa v Ra) -> Pa 1, - V , Kontr. 
7. Qa 4, - V 
8. Qa v Ra 7, Add. 
9. Pa 8, 6, MP 

10. (Pa Ta) a (Ta Pa) 3, - V 
11. Pa -> Ta 10a, Simpl. 
12. Ta 9 ,11, MP 
13. Pa a Ta 9,12, Konj. 
14. (Pa A Ta) Sa 5, - V 
15. Sa 13,14, MP 
16. (Vx) Sx 15, + V 

4. (3x)~i (Ax Dx) 2, QA 
5. —| (Aa -<• Da) 4, - 3 
6. Aa A —i Da 5, De M. 
7. Aa 6a, Simpl. 
8. Aa -» —i (Ba a —i Ca) 1, - V 
9. —1 (Ba A —1 Ca) 7, 8, MP 

10. —1 Ba v Ca 9, De M. 
11. (Ca Ea) A Ba 3, - V 
12. Ba I Ib , Simpl. 
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13. Ca 12,10, DS 
14. Ca -» Ea IIa, Simpl. 
15. Ea 13,14, MP 
16. (3x)Ex 15,+3 

27) 4. Wa (Xa -> Ya) 1, - V 
5. -1 Wa v (-1 Xa v Ya) 4, Impl. 
6. Xa A (Za A —I Aa) 2 , - 3 
7. Xa 6a, Simpl. 
8. - i Wa v Ya 7,5, DS 
9. Wa Ya 8, Impl. 

10. (Wa Ya) (Ba Aa) 3, - V 
11. Ba -» Aa 9,10, MP 
12. ~~i Aa 6c., Simpl. 
13. - i Ba 12,11, MT 
14. Za 6b, Simpl. 
15. Za A Ba 14,13, Konj. 
16. ( 3 x ) ( Z X A - I B X ) 1 5 , + 3 

28) 5. La A i Ma 4 , - 3 
6. La 5a, Simpl. 
7. La v Ma 6, Add. 
8. ((La v Ma) 

-> ((Na A Oa) v Pa) Qa) 1 , - V 
9. ((Na A Oa) v Pa) Qa 7, 8, MP 

10. ((Na A Oa) v PaJ v Qa 9, Impl. 
11. ((Na v_Oa) A Pa ) v Q a 10, De M. 
12. (Na A Pa_) v (Oa A Pa ) v Qa_ 11, Dist. 
13. (Na A Pa ) v (Oa v Qa) A (Pa v Qa) 12, Dist. 
14. NaOaQa • NaPa Qa • Pa OaQa • 

PaPa Qa 13, Dist. 
15. Na v Oa v Qa 14a, Simpl. 
16. - i Na v - i Oa v Qa 15, Hilbert 
17. Na -» (Oa Qa) 16, Impl. 
18. ((Oa -> Qa) A ~ I Ra) -*• Ma 3 , - V 
19. n M a - ^ n ((Oa Qa) A - I Ra) 18, Kontrap. 
20. ~~i Ma 5b, Simpl. 
21. (Oa -> Qa) A Ra 19, 20, MP 
22. (Oa -»• Qa) v Ra 21, De M. 
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23. (Oa Qa) -> Ra 22, Impl. 
24. Na ->• Ra 17,23, HS 
25. (3x) (Nx Rx) 24, + 3 

1. (Vx) ((Ex a - i Lx) ->• Ux) 
2. (Vx) ((Ux a Gx) -> Lx) v -"l (3x) (Ux a —i Lx a - -i Gx) 
3. 1 Gr A i Lr a Ur /.-. (Vx) ((Gx A Ex) Lx) 
4. (3x) (—i Gx a ~i Lx a Ux) 3, + 3 
5. (3x) (Ux a i Lx a i Gx) 4, Komm. 
6. (Vx) ((Ux a Gx) Lx) 5,2, DS 

• 7. Ga a Ea KA 
8. (Ua a Ga) -* La 6, - V 
9. (Ea A —i La) Ua 1, - V 

10. (Ga a Ua) La 8, Komm. 
11. Ga -> (Ua -» La) 10, Exp. 
12. Ga 7a, Simpl. 
13. Ua -> La 12,11, MP 
14. Ea -* (—1 La Ua) 9, Exp. 
15. Ea 7b, Simpl. 
16. ~~i La -> Ua 15,14, MP 
17. —1 La -» La 16,13, HS 
18. —1 La v La 17, Impl. 
19. La 18, Idemp. 
20. (Ga a Ea) -» La 7-19, KB 
21. (Vx) ((Gx a Ex) ->• Lx) 20, +V 
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30) 1. (Vx) ((Ux v Lx) -• (Ix A Sx)) 
2. (Vx) ((Ix v Ex) -• ((Fx v Zx) -• Tx)) 

/••• (Vx) (Ux -> (Fx -• Tx)) 
• 3. Ua KA 

4. (Ua v La) -> (Ia A Sa) 1 , - V 
5. Ua v La 3, Add. 
6. Ia A Sa 5 , 4 , MP 
7. ((Ia v Ea) -• ((Fa v Za) -• Ta) 2, - V 
8. Ia 6a, Simpl. 
9. Ia v Ea 8, Add. 

10. (Fa v Za) -• T a 9 , 7 , MP 
•11. Fa KA 
12. Fa v Za 11, Add. 
13. T a 12, 10, MP 
14. Fa -• T a 11-13 KB 
15. Ua -• (Fa -• Ta) 3 -14 , KB 
16. (Vx) (Ux -• (Fx -> Tx)) 15, + V 

31) 1) 1. (Vx) (Mx -• Gx) 
2. Ms / - i Gs 
3. Ms -• Gs 1, - V 

Mx: x ist Mörder 
Gx: x übertritt das Gesetz 
s: Schopenhauer 

Weiter kommen wir nicht. Der Schluß ist logisch falsch, er beruht 
auf einer Fallacia consequentis. 

2) Zur Widerlegung einer Ansicht braucht es a) oder b) 

a) Nachweis für die Unwahrheit einer Prämisse 
b) Nachweis einer unkorrekten Ableitung 

3) Der Satz darf nur so verstanden werden: Auf falschen Voraus-
setzungen kann ein logisch korrekter Schluß aufgebaut werden. 

4) Der Verfasser unterscheidet nicht zwischen Wahrheit und 
Gültigkeit. Statt dessen benutzt er das schillernde Wort „Folge-
widrigkeit". Er scheint darunter einen Schluß zu verstehen, dessen 
wahren Prämissen und korrekten logischen Ableitung das unbe-
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zwingbare Empfinden gegenüber steht, die Konklusion sei gleich-
wohl unannehmbar. Aber gerade das gibt es nicht. Im erwähnten 
Beispiel sind die Prämissen zweifellos wahr. Aus der Beschreibung 
geht hervor, daß der Autor den Schluß für logisch gültig ansieht. 
Da er in Wirklichkeit jedoch falsch ist, gibt es keine Folge, also 
auch keine unangenehme Folge oder Folgewidrigkeit. 

32) 1) Entweder ist es ein Modus Barbara oder es ist keiner. 
2) Im Sinne des Autors dürfen wir so formulieren: 

(1) 1. Jeder Käufer ist zur Zahlung verpflichtet 

S K P 

2. Alfred ist Käufer 

" T " " K P 

3. Also: Alfred ist zur Zahlung verpflichtet 

S K P 

3) Der Autor sagt wörtlich „Wenn jemand eine Sache kauft" 
( = wenn jemand Käufer ist) könne als Mittelterm behandelt wer-
den. Das führt zu folgendem Syllogismus: 

(2) 1. Wenn jemand Käufer ist, ist er zur Zahlung verpflichtet 
2. Alfred ist wenn jemand Käufer ist 
3. Also ist Alfred zur Zahlung verpflichtet 

In der 2. Prämisse erweist sich der Mittelterm, falls er identisch ist 
mit der Formulierung in der 1. Prämisse, als absurd. Allerdings 
muß er identisch sein, wenn wir uns nicht den Fehler einer quater-
nio leisten wollen. Folglich kann „wenn jemand Käufer ist" nicht 
Mittelterm sein. 

Die Schwierigkeit beginnt schon früher mit einer grundsätzlichen 
Schwäche. Welches Wort ist die Kopula in der 1. Prämisse ? Es sind 
zwei „ ist" vorhanden, die in der leicht abgewandelten Formulie-
rung unseres Autors verdeckt werden. 

a) Jemand ist Käufer 
b) Der Käufer ist zur Zahlung verpflichtet 

Die beiden sind aber nicht durch eine Kopula, sondern durch eine 
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Implikation verbunden. Gehen wir dabei von der abgeänderten 
Fassung 2) aus: 

(3) 1. Wenn jemand Käufer ist, ist er zur Zahlung verpflichtet 
2. Alfred ist Käufer 
3. Also ist Alfred zur Zahlung verpflichtet 

Dann stellt sich die Frage: Wie steht die 2. Prämisse zu a) ? Auf-
schluß darüber bekommen wir nur aus der Struktur von a). 

„Jemand ist Käufer" ist eine existenzielle Verallgemeinerung. 
Nach korrektem Sprachgebrauch darf für „ jemand" ein Individu-
um eingesetzt werden, etwa „Alfred". Das ergibt 

a') Alfred ist Käufer 

Die Struktur des Schlusses hat daher folgende Gestalt: 

(4) 1. Wenn (jemand ist Käufer), dann (der Käufer ist zur Zah-
lung verpflichtet) 

2. Alfred ist Käufer 
3. Also ist Alfred zur Zahlung verpflichtet 
formal 1. Wenn a), dann b) 

2. Nun a') 
3. Also b') 

Da für einen gültigen Schluß des Modus ponens der Vordersatz 
der Implikation — nicht etwa ein vordersatzähnlicher Ausdruck -
gegeben sein muß, wird die 1. Prämisse zuerst umzuformen sein 
auf: Wenn a'), dann b'). Das ist unproblematisch, weil die Bezie-
hung zwischen a) und a') das Verhältnis einer existenziellen Ver-
allgemeinerung zu einer Individueneinsetzung ist. Da der Autor 
dieses Verhältnis nicht kennt, beruht seine Argumentation auf 
folgender Willküranalyse: 

1. Jemand ist Käufer ist er ist zur Zahlung verpflichtet 

S K P 

2. Alfred ist Käufer 

S K P 

Bei 1. wird eine ganze Aussage als Subjekt deklariert, bei 2. ein 
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Teil der 1. Aussage. Wenn bei 2. „Alfred" Subjekt ist, dann ent-
spricht das genau dem „jemand" von Prämisse 1. Aber das muß 
der Autor verschweigen, sonst wäre er gezwungen zuzugeben, daß 
in der ersten Prämisse „jemand" und „er" zwei Subjekte sind, 
sowie „Käufer" und „zur Zahlung verpflichtet" zwei Prädikate. 

Zusammenfassung: Der Autor hat intuitiv korrekt eine existen-
zielle Einsetzung vorgenommen und anschließend einen MP aus-
geführt. Da diese Regeln nicht zu seinem Logikbestand gehören, 
er jedoch von der Richtigkeit des Schlusses überzeugt ist, beruft er 
sich dafür auf die Autorität von Aristoteles. Dabei darf er sich 
nicht auf eine exakte Darstellung einlassen, weil ihm selber die 
Schwankungen in seinem Subjektbegriff auffallen müßten. Sub-
jekt heißt im einen Fall Subjekt, im andern Fall ganze Aussage mit 
Subjekt, Kopula und Prädikat. Die Überlegenheit der modernen 
Logik zeigt sich darin, daß sie bei der Analyse eines Kernbegriffs 
wie Subjekt nicht nach Laune vom Teil zum Ganzen wechselt. 

4 . 5 . 1 

1) (Vx) (Lx -»• Mx) (Vy) (Ky My) 
2) (Vx) (Tx Vx) (3y) (Ny A Zy) 
3) (3x) (Vx A Lx) - » (3y) (Ly A Vy) 
4) (Vx) (Zx - » - i Vx) ->• - i (Vy) (Ry Vy) 

4.5.1 

5) (Vx) Vx -> (3y) (By A~iZy ) 
6) (Vx) (Mx Hx) 
7) (Vx) (Fx A (3y) (Ky A Ay) -> Vx) 
8) (Vx) ((Mx A - I Ex) ((3y) (Py A Fy) Bx)) 
9) (Vx) ((Px ->• Rx) A ((Vy) (Py Gy) Gx)) 

10) 1. (Vx) (Tx Bx) 
2. (3x) (Bx A - I Rx) - i (3y) (Ky A By) 
3 . (Vx) ( (Px A K x ) -> T x ) /••• (Vx) ( ( T X A - I R X ) 

-> (Px -> - I Kx)) 
4. (3x) (Bx A Rx) (Vy) (Ky By) 2, QA 
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•5. Ta a ~l Ra KA 
6. Ta -»• Ba i , - v 
7. Ta 5a, Simpl. 
8. Ba 7, 6, MP 
9. i Ra 5b, Simpl. 

10. Ba A —: Ra 8 ,9 , Konj. 
11. (3x) (Bx a - i R x ) 10, + 3 
12. (Vy) (Ky - | By) 11,4, MP 
13. Ka - i Ba 12, - V 
14. (Pa a Ka) Ta 3, - V 
15. (Pa A Ka) Ba 14,6, HS 
16. Ba —> i Ka 13,Kontrap. 
17. (Pa a Ka) Ka 15,16, HS 
18. i Pa v n Ka v ~i Ka 17, Impl. 
19. - l Pa v - i Ka 18, Idemp. 
20. Pa -»• —1 Ka 19, Impl. 
21. (Ta A i Ra) (Pa -*• ~ n Ka) 5-20, KB 
22. (Vx) [(Tx a - i Rx) ^ (Px " - iKx)] 21, +V 

11) 1. (Vx) (Ux Zx) 
2. (Vx) [(Rx A Dx) Ux] 
3. (3x) (Dx A Zx) (Vy) (Zy - Vy) 

/••• (3x) (Ux A - i Vx) -> (Vy) [ Z y v - i (Dy a Ry)] 
r-> 4. (3x) (Ux A - i Vx) KA 

5. (Ra a Da) -> Ua 2 , - V 
6. Ua Za 1, - V 
7. (Ra a Da) -> Za 5 ,6 , HS 
8. —i (Ra a Da) v Za 7, Impl. 
9. Za v —1 (Ra A Da) 8, Komm. 

10. (Vy) [Zy v - I (Dy A Ry)] 9, +V 
11. (3x) (Ux A -1 Vx) (Vy) [Zy v (Dy a Ry)] 

4-10, KB 

4.5.3 

1) (Vx) (3y) ((Px Qx) v (Ry a Sy)) 

2) (3x) (3y) (3z) (((Px A Qx) A Py) v (Fz - Gz)) 
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3) 2. p v q A (Vx)Px 1, Hilbert 
3. (p v q) v - i (Vx) Px 2, De M. 
4. —: (p v q) v (3x)—1 Px 3, QA 
5. (3x) ( - : (p v q) v - i Px) 4, QA 
6. (3x) ( n P x v - i ( p v q)) 5, Komm. 
7. (3x) (Px -> - l (p v q)) 6, Impl. 

4) 2. (3x)~i—i (3y)~i (p A (3z) Az) 1, QA 
3. (3x) (3y) (p A (3z) Az) 2, DN 
4. (3x) (3y) ( - : p v - i (3z) Az) 3, Impl. 
5. (3x) (3y) (-1 p v (Vz)-i Az) 4, QA 
6. (3x) (3y) (Vz) ( - : p v - i Az) 5, QV 
7. (3x) (3y) (Vz) ( n A z v n p ) 6, Komm. 
8. (3x) (3y) (Vz) (Az p) 7, Impl. 

4.5.3 

5) 1. ( 3 x ) A x - > p 
2. - i ( 3 x ) A x v p 1, Impl. 
3. ( V x ) - i A x v p 2, QA 
4. (Vx) (Ax p) 3, Impl. 

6) 1. (3x)Ax<->p 
2. ((3x) Ax —> p) A (p —> (3y) Ay) 1, Äquiv. 
3. (—i (3x) Ax v p) A ( i p v (3y) Ay) 2, Impl. 
4. (Vx) ( - 1 Ax v p) A ( - : p v (3y) Ay)3, QA 
5. (Vx) (3y) ((Ax ^ p) A (p ^ Ay)) 4, QA 

7) 1. i ((Vx) Px (Vy)Qy) 
2. ((Vx)Px -> (Vy)Qy) 1, Hilbert 
3. ((Vx)Px v (Vy)Qy) 2, Impl. 
4. (Vx) Px A - i (Vy) Qy) 3, De M. 
5. (Vx)Px A (3y) —i Qy) 4, QA 
6. (Vx) (3y) (Px A - i Qy) 5, PN 

8) 1. (3x)Ax ((Vy)By (3z) Cz) /.-. (Vx) (3y) (3z) 
(Ax -> (By ^ Cz)) 

2. - i (3x) Ax v ( - : (Vy) By v (3z) Cz) 1, Impl. 
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3. (Vx)-i Ax v (3y) i By v (3z) Cz 2, QA 
4. (Vx) (3y) (3z) (-1 Ax v ( - : By v Cz)) 3, PN 
5. (Vx) (3y) (3z) (Ax -> (By Cz)) 4, Impl. 

5.3.1 

1. Tas 6. Ejmk 
2. Spr 7. —i Efrc 
3. - i Glp 8. Zkbh 
4. Brm 9. Wabe 
5. Vezr 10. Gvmf -> Gmfh 

5.3.2 

1. (Vx) (Jx -> Lxa) 
2. (3x) (Kfx A Bfx) 
3. (3x) (Kfx A Bxf) 
4. (Vx) (Gx -» — i Txc) 
5. (Vx) (Gxa -1 Kxb) 

5.3.3 

1. (3x) (Ex A (3y) (Sy A Vxy)) 
Ex: x ist ein Erdbeben 
Sy: y ist ein Schaden 

Vxy: x verursacht y 

2. (3x) (Bx A (3y) (Ky A Exy) 
Bx: x ist Bauer 
Ky: y ist eine Kartoffel 

Exy: x erntet y 

3. (Vx) (Gx -» (3y) (By A Cxy)) 
Gx: x ist Gärtner 
By: y ist eine Blume 

Cxy: x begießt y 

4. (Vx) (Ax (3y) (Ly A Vxy)) 
Ax: x ist ein Arbeiter 

12 Bucher, Logik 
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By: y ist Lohn 
Vxy: x verdient y 

5. (Vx) (Ax (3y) (Ly A Bxy)) 
Ax: x ist Angestellter 
Ly: y ist Lift 

Bxy: x benutzt y 

6. (Vx) (3y) ((Ly A Bxy) Ax) 
7. (Vx) (Ax <-> (3y) (Ly A Bxy)) 
8. (Vx) (Hxx Hgx) 

Hxx: x hilft x 
Hgx: Gott hilft x 

5.3.4 

Wer sich zur Lebensmaxime macht, Relationsaus-
drücke zu umgehen, der mag 2. umformen in „Adel-
heid ist Tennisspielerin": Ta . Ab 3. versagt die Re-
duktion auf einstellige Prädikat endgültig. 

5. (3x) (Px A Rx) 
6. (Vx) (Px - * (3y) (Py A Rxy)) 
7. (Vx) (Px (3y) (Py A (3z) (Vz A Rxyz))) 
8. (Vx) (Px (3y) (Py A (3z) (Vz A (Vw) (Aw -> Rxyzw)))) 

5.3.5 

1. (3x) (Hx A Gx A Rxe) Hx: x ist Haar 
Gx: x ist grau 

Rxy: x hat y 
2. (Vx) ((Px (3y) (Fy A Hxy)) -> Sx) 
3. (Vx) (Px -> (Vy) I Hxy) 
4. (Vx) (Sx (3y) (Vxy A (Vy) (Vy -> (3x) (Sxy A Hyx)) 
5. (Vx) (Sx (3y) (Py A Hxy)) 
6. (3x) (Sx A (Vy) I (Py A Hxy)) 

1. Sa 
2. Sat 
3. Satb 
4. Satbe 
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5.3.6 

1. (3t) (3u) (Rkt A Rbu A (t * u)) 

2. Umformung: Nach kurzer Zeit setzt sich die Wahrheit durch: 
(Vt) (Kt <-> Dwt) 

Kt: t ist kurze Zeitspanne 
Dwt: Wahrheit setzt sich in t durch 

3. (Vt) (3x)Btx A (3t) (Vx)Btx A - i (Vt) (Vx)Btx 
t: Zeitpunkte 
x: Menschen 

4. Umformung: Die Zeit ist unbestimmt, aber kurz, zu der die Kuh 
das Kalb zur Welt bringt. 
(3t) (Ut A Kt A Kkt) 
Mit 4. will nicht gessagt sein, die Kuh bringe 7 Kälber zur Welt 
je Woche. 

5.3.6 

1. (3x) (Mx A (Vy) (Ky Sxy)) 
2. (3x) (Vx A (Vy) (Ky Bxy)) 
3. - : (Vx) (Px -» (3y) (Fy A Mxy)) 

<-> (3x) (Px A (Vy) (Fy - I Mxy)) 
4. (Vx) (3y) ((Kyx A Uy) Ux) 
5. (Vx) (Rx -> (3y) Ayx) 
6. (Vx) (Vy) ((Lxy A Lyx) (Nxy A Nyx)) 
7. Alle Menschen irren sich (= machen Irrtümer) 

(Vx) (Px (3y) (Iy A Mxy)) 
8. (Vx) (Rx (3y) (Dy A Hxy)) 
9. (Vx) (Vy) (Vxy -> Vxx) 

10. (Vx) ((Px -1 Bxx) (3y) (Py A - | Bxy)) 

2) 1. (3x) (3y) (3z) (Bx A Ty A Pz A Zxyz) 
2. (Vx) (3y) (Vz) ((Px A Fxy) (Pz Fxz)) 
3. (Vx) (3y) (3z) (Lxy -> (Pz A Bzx)) 
4. (3x) (Vy) (3z) ((Lx A Py) Kyzx) 
5. (3x) (Vy) (3z) (Px Kxyz) 
6. (Vx) (3v) Ozl ((Px A Py A Wxyz) Dx) 

12' 
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7. (3x) (3y) (3z) (Zx A Yy A AZ A Exyz) 
8. (Vx) (3y) (3z) ((Px A Py) - Lxyz) 
9. (Vx) (Sx A (3y) (Ay Lxy)) A (3x) (Vy) (Sx A Lxy) 

10. (Vx) (3y) (3z) ((Px A Py A Lz A Gxyz) -»• Fxz) 

3) 1. (3x) (3y) (3z) (3u) (Gx A Ly A Kz A Wu A Uxyzu) 
2. (Vx) (3y) (3z) (3u) (Px -> (Lxyz v Lxyu)) 
3. (Vx) (3y) (Vz) ((Px A Py A Gxyz) (3z) (Vu)Gxzu) 
4. (Vx) (Ox ((3y) (Ry A Hyx) (3z) (Fz A Hzx))) 
5. Vz (Vx) (Sx ->• - i Gxz) 

5.4 

1) 1. (Vx) (Bx ^ (3y)Gyx) 
2. (Vx) (Gxp -»• Exp) 
3. (Vx)-iExp /.-. - i Bp 
4. Gbp Ebp 2, - V 
5. ~i Ebp 3 , - V 
6. Gbp 5 ,4 , M T 
7. Bp -* (3y) Gyp 1 , - V 
8. Bp Gbp 7 , - 3 
9. - i Bp 6 ,8 , M T 

2) 1. (Vx) (Ax (Vy) (Dy Gxy)) 
2. (Vx) (Ax (Vy) (Ky -> Gxy)) 
3. (3x) Ax /.-• (Vx) (Dx -> - i Kx) 
4. Aa -» (Vy) (Dy ^ Gay) 1, - V 
5. Aa ->• (Db -»• Gab) 4, - V 
6. Aa 3, - 3 
7. Db Gab 6 ,5 , MP 
8. Aa (Vy) (Ky -»• Gay) 2, - V 
9. Aa -»• (Kb - i Gab) 8, - V 

10. Kb -»• ~i Gab 6, 9, MP 
11. Gab -> - i Kb 10, Kontr. 
12. Db ->• - i Kb 7,11, HS 
13(Vx) (Dx - + - l Kx) 1 2 , + V 

3) 1. (Vx) (Ex -> (Vy) (Ry Wxy)) 
2. Es /;, (3x) (Ex A (3y) (Ry ->• Wxy)) 
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4) 

5) 

6) 

3. Es (Vy) (Ry -
4. (Vy) (Ry -
5. Ra Wsa 
6. (3y) (Ry ->• Wsy) 
7. (3x)Ex 

Wsy) 
Wsy) 

1, - v 
2, 3, MP 
4, - V 
5, + 3 
2, + 3 

8. (3x) (Ex A (3y) (Ry Wxy)) 7,6, Konj., + 3 

3 . - | (Vy) i (Cy A I Dy) 
4. - i (Vy) (Cy - Dy) 
5. —: (3x) (Ax A Bx) 
6. (Vx)-I (Ax A Bx) 
7. (Vx) (Ax -» - iBx) 

3. Aa 
4. Aa 
5. 
6. 
7. 

9. 
10. 

(Vy) (3z) Rayz 
(Vy) (3z) Rabz 

(3z) Rabz 
Rabe 

(3z) Rabz 
(3y) (3z) Rayz 

(3x) (3y) (3z) Rxyz 

2, QA 
3, De M. 
4,1, M T 
5, QA 
6, De M. 

2, - 3 
1, - V 
3,4, MP 
5 , - V 
6 , - 3 
7 , + 3 
8, + 3 
9 , + 3 

1. (3t) Fpt (Vt) (3x) Bptx 
2. (3x) (Vt) Bptx -> (Vt)Rpt 

/ (3t) Fpt - (Vt)Rpt 
(3t) Fpt -> (Vt) ~~i Fpt 

- i (3t) Fpt v (Vt) ~i Fpt 
(Vt) —i Fpt v (Vt)—i Fpt 
(Vt) ~~i Fpt 

oder (Vt)Rpt 

Substitution 
Impl. 
QA 
Idemp. 

Der Schluß ist ungültig. Er scheint nach dem Hypothetischen Syl-
logismus konstruiert zu sein: 

p q 
q -» r also folgt p -* r 

Der Fehler wird leicht übersehen, doch der Nachsatz der 
1. Prämisse ist nicht identisch mit dem Vordersatz der 2. Prämisse. 
Die Struktur des Schlusses ist in Wirklichkeit so: 
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p q 
r -» s also ist p s falsch. 

In der Umgangssprache wird auf die Quantorenverschiebung zu 
wenig geachtet. Im vorliegenden Beispiel hängt die Gültigkeit völ-
lig von der Quantorenstellung ab. Es liegt der gleiche Fehler zu-
grunde wie beim falschen Schluß: 

Zu jedem Menschen gibt es einen Mann, der sein Vater ist. Wenn 
es nun einen Mann gibt, der Vater aller Menschen ist . . . 

7) 1. (Vx) (Kx Fx) /••• (Vx) ((3y) (Ky A Zxy) 
-> Oy) (Fy A Zxy)) 

r-> 2. (3y) (Ky A Zay) KA 
3. Kb A Zab 2 , - 3 
4. Kb Fb 1, - V 
5. Kb 3 a, Simpl. 
6. Fb 5,4, MP 
7. Zab 3 b, Simpl. 
8. Fb A Zab 6,7, Konj. 
9. (3y) (Fy A Zay) + 3 

10. (3y) (Ky A Zay) -»• (3y) (Fy A Zay) KB 
11. (Vx) ((3y) (Ky A Zxy) - (3y) (Fy A Zxy)) 10, +V 

5.5.2 

1. C P a V x P x 
2. C V x P x 3_x_ P x 
3. C V x P x 3 ^ P ^ 
4. C V x P x 3 x P x 
5. - i (Vx) Px -» (3x)—i Px 

C V x P x 3 x P x 
1 a_ 

<P f X ? X fl X P^c 
P I P a a = 1 

6. (Vx) (Px v Qx) -> (Vx) Px v (Vx) Qx 
CAVxPxQxAVxPxVxQx 
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£AVxPxQxAVxPxVxQx 

Pa PI Q2 
nicht schließbar 

Qa PI Q2 

7. - i (3x)Px <-» (Vx)- iPx 
- i (3x)Px -^O/x) - l Px a (Vx) i Px > i (3x) Px Q-Skizze 
KC3xPxVxPx CVxPx 3xPx a 1 und b 2 

a 1 b 1 
:^xPx)/xPx CyxPx ffxPx, a = 1 

PI b = 2 
Pb P2 

8. (Vx) Px v J V x ) - i P x 
AVxPxVxPx 

1 2 
AffxPxyxPx 

PI vT 

richtig: ( V x ) P x v n (Vx)Px 
AVxPxVxPx 

1 _ a 

fflxPxfxPx_ a = 1 
PI Pa 

9. (3x) (Vy)Rxy (Vy) (3x)Rxy 
C3xVyRxyVy3xRxy 

1 a 2 b 
<Pßx y Rxy^xRxy 

l a b2 gültig: 1 = b; a = 2 

10. (Vx) (3y) Rxy -» (3y) (Vx)Rxy 
CVx3yRxy3yVxRxy 

a 1 b 2 
<Pftx fiy Rxy^xRxy 

a l 2b 
ungültig: a 

2 



360 Lösungen 

5.6.2 

1) 1. Wa oder a e W 
2. B = H 
3. M <= L 
4. - Das „ist" kann nicht symbolisiert werden 

mit den bisherigen Mitteln; der Logiker ist 
daran nicht interessiert, denn es ist nur ein 
zufälliges bestätigendes „ist" , ein verstärk-
tes Ja . 

5. A = A + 1 Im strengen Sinn ist dies falsch. Es ist jedoch 
eine Schreibweise, die beim Programmieren 
üblich ist. Allerdings ist damit nicht die 
Identität gemeint, sondern eine Zuordnung. 

Das wäre die aufsehenerregendste Vereinfachung der Lo-
gik. 
1. ,A = B' ist nicht eine Verallgemeinerung von ,S ist P'. 
2. Es liegt eine zweifache Konfusion vor, einmal zwischen 

Prädikataussage und Identität, zum andern in der will-
kürlichen Zuteilung der einen Aussage zur Philosophie, 
der andern zur Mathematik. 

4) 1. Die Analyse, „ist" sei ein Binde- und Verhältniswort, 
erlaubt es dem Autor, an der wichtigen Frage vorbeizure-
den, welche Bedeutungen von „ist" zu unterscheiden 
sind. 

2. „Identität ist ein Sachverhalt" ist eine seltsame Aussage, 
die mindestens erklärt werden müßte. 

3. „x folgt auf y " in Subjekt, Kopula und Prädikat ausein-
andergelegt ist gewaltsame Sprachanalyse nach vorgege-
benem Gesichtspunkt. 

5) 1. formell identisch = Identität 
materiell identisch = Prädikataussage 

2. Keine Ahnung 

2) 

3) 
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5.7 

1) 1. reflexiv, symmetrisch, transitiv 
2. reflexiv, symmetrisch, transitiv 
3. non-reflexiv, non-symmetrisch, non-transitiv 
4. irreflexiv, asymmetrisch, transitiv 
5. non-reflexiv, non-symmetrisch, non-transitiv 
6. irreflexiv, asymmetrisch, transitiv 
7. irreflexiv, asymmetrisch, transitiv 
8. irreflexiv, asymmetrisch, transitiv 
9. irreflexiv, non-symmetrisch, transitiv 

10. irreflexiv, symmetrisch, transitiv 
11. irreflexiv, symmetrisch, intransitiv 
12. irreflexiv, symmetrisch, transitiv 
13. a) non-reflexiv, non-symmetrisch, non-transitiv 

(intransitiv) 
b) irreflexiv, symmetrisch, non-transitiv 

14. irreflexiv, symmetrisch, intransitiv 

1. 2. 3. U. 

3) 1. irreflexiv, asymmetrisch, intransitiv 
2. irreflexiv, asymmetrisch, intransitiv 
3. non-reflexiv, asymmetrisch, non-transitiv 
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5) 1. irreflexiv, symmetrisch, non-transitiv 
2. Die Frage ist unentscheidbar, weil der Autor nirgends 

definiert, was er unter einem weiten oder engen Relationsbegriff 
versteht. Das gleiche unklare Vorgehen erlaubt auch nicht zu kon-
trollieren, worin die Logiker den Geltungsbereich der Relation 
eingeschränkt hätten. 

6) 1. nein, obwohl es Descartes so versteht. 
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2. a) reflexiv, symmetrisch, transitiv 
b) reflexiv, symmetrisch, intransitiv 

3. Es wird die Transitivität verneint. Descartes glaubt clare 
et dinstincte zu sehen, daß damit auch die Verneinung der Symme-
trie verbunden sei. 

4. Wenn die Spurenbreite der Deutschen Bundesbahn und 
der Französischen Nationalbahn nicht mit derjenigen der Transsi-
birischen Bahn übereinstimmt, so folgt daraus nicht, es müßte 
beim Übergang von Deutschland nach Frankreich der Radabstand 
verschoben werden. 

7) 1. Es liegt kein aristotelischer Syllogismus mit Subjekt und 
Prädikat vor. 

2. Es gibt keinen Mittelterm. Die Analyse ist falsch, denn 
wir haben kein Subjekt ,B', auch kein Prädikat „größer als B", 
sondern nur die beiden Relationen „A größer als B" und „B größer 
als C". 

3. Der Autor sagt nicht, was für ,A', ,B', ,C' einzusetzen ist. 
Da er aber nur die Prädikatenlogik kennt, braucht es nicht explizit 
erwähnt zu werden, daß ohnehin nur Prädikate in Frage kommen. 
Das erwähnte Beispiel bleibt bei dieser Einsetzung sogar richtig. 

4. Erstens läßt sich Maritain offensichtlich leiten von der 
Vorstellung: Nur was innerhalb der (aristotelischen) Logik als 
allgemeingültig nachzuweisen ist, verdient diesen Namen. Das 
Beispiel ist nicht auf den Syllogismus reduzierbar, folglich nicht 
allgemeingültig. 

Zweitens nennen traditionelle Lehrbücher das Beispiel häufig ein 
„mathematisches Axiom" und erläutern es etwa so: „Wenn 7 > 4 
und 4 > 2, dann ist auch 7 > 2". Vermutlich nimmt Maritain mit 
dieser Traidition an, soweit Zahlen eingesetzt werden, sei das 
Beispiel immer wahr; Schwankungen im Wahrheitswert machen 
sich erst bemerkbar bei der Übertragung auf die Philosophie. 

Darin liegt die Wurzel für Maritains grundsätzliche Verständnis-
losigkeit gegenüber der Logik. Zum zweiten Punkt ist zu bemer-
ken, daß Zahlen gewiß nicht dasselbe wie materielle Dinge sind. 
Dieser Unterschied ist indessen belanglos für die Allgemeingültig-
keit des Beispiels, das ja nur die Transitivität der Relation „größer 
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als" festhält. Der Autor unterdrückt den für das Verständnis uner-
läßlichen Hinweis, nämlich daß für „A", „B", ,,C" Namen einzu-
setzen sind. Alles andere ist nebensächlich, weil der Wahrheits-
wert unberührt bleibt, ob Namen von Zahlen oder etwa Personen 
- Albert ist größer als Bernhard, Bernhard größer als Cäsar, also 
ist Albert größer als Cäsar - bevorzugt werden. Maritain legt für 
seine Behauptung nicht einmal vage Andeutungen zu einem Ge-
genbeispiel vor. 

8) 1. Die Zumutung an die Syntax nimmt mit der Kenntnis des 
Originaltextes nicht ab: „Tout plus grand que plus grand que C" 
und „Tout plus grande que B est plus grand que C". 

2. Da die erste Prämisse nicht wohlformuliert ist, bleibt die 
Frage unentscheidbar. Der 1. Syllogismus lautet nämlich: 

„Tout plus grand que plus grand que C est plus grand que 
C. 
Or B est plus grand que C, 
donc tout plus grand que B est plus grand que C." 

Daran schließt sich überdies die Vermutung, ein Druckfehler sei 
bis zur 15. Auflage noch nicht korrigiert worden, weil in diesem 
„Syllogismus" kein „A" vorkommt, nur zweimal „B" und vier-
mal „C". 

3. Formal sollen Syllogismen aufgestellt werden. Das zeigt 
sich an der gequälten Formulierung der 1. Prämisse, die als affir-
mative Allaussage angedeutet wird. Was der Autor inhaltlich sa-
gen will, das wird deutlicher an der zweiten Formulierung. Offen-
bar meint er: 

Wenn B größer als C 
A größer als B 

dann A größer als C. 

Der unbeholfene Ausdruck „Alles größer als" — oder ebenso gro-
tesk auf französisch „Tout plus grande que" — ist nur die Konse-
quenz aus der Subjekt-Prädikat-Einteilung, der die gesamte Logik 
unterworfen wird. 

4. Maritain hat die Transitivität im Beispiel 7) als nicht 
allgemeingültig abgelehnt, während er im Beispiel 8) die Eigen-
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schaff an derselben Relation exemplifiziert — diesmal nur völlig 
unzureichend formuliert — für einen einwandfreien Syllogismus 
hält. 

5.8 

1) Jeder Student hat genau eine Schuhgröße. Also handelt es sich 
um eine Funktion. 

2) Der Definitionsbereich bestehe aus allen Aussagen der Aussa-
genlogik. Als Wertebereich sind die Wahrheitswerte wahr oder 
falsch aufzufassen. Jeder Aussage innerhalb der Aussagenlogik 
entspricht nun einer dieser Werte. Also liegt eine Funktion vor. 

5.9.1 

1. Der Autor kennt nur die logischen Kategorien Subjekt-Prädi-
kat. Von da aus sieht er die Verknüpfungen so: 

B ist größer als C 

Subfekt Prädikat 

^ ist größer als B 

Subjekt Prädikat 

Da der Mittelterm in den beiden Prämissen nicht identisch ist, darf 
nach der Subjekt-Prädikatlogik nichts geschlossen werden, wie 
der Autor richtig bemerkt. 

2. Erstens ist die Analyse wertlos, weil sich aus den beiden Prämis-
sen keine Konklusion ergeben soll, obgleich uns der gesunde 
Menschenverstand nicht nur belehrt, daß es sie gibt, sondern auch 
wie sie lautet. Es müßte sofort eine Begründung angeschlossen 
werden, warum uns hier der gesunde Menschenverstand im Stich 
läßt. Der Autor geht nicht darauf ein, weil er keine Gründe auf-
zählen könnte und überdies zu befürchten hätte, die Beweislast 
würde sich auf die andere Komponente verschieben, nämlich auf 
das Subjekt-Prädikatschema. Immerhin muß man dem Autor zu-
gute halten, daß er wenigstens einen — wenn auch untauglichen — 
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Versuch unternimmt, den Widerspruch aufzulösen. Seine Strate-
gie sieht eine leichte sprachliche Umstellung vor mit der Wirkung, 
die Anwendung des Subjekt-Prädikatschemas zu rechtfertigen 
und parallel dazu die Übereinstimmung mit den Erkenntnissen des 
gesunden Menschenverstandes zu belegen (vgl. das Beispiel 8), 
Übung 5.7). Er geht so vor: 

Alles größer als B ist größer als C 

Subjekt Prädikat 

A ist größer als B 

Subjekt Prädikat 

Das holprige Deutsch der 1. Prämisse — bei Maritain nicht minder 
ausgefallenes Französisch — ist nicht der Unachtsamkeit des Druk-
kers anzulasten. Der Verfasser nimmt es in Kauf um der Kon-
struktion eines identischen Mittelterms willen. Denn damit hat er 
eine der bisher fehlenden Bedingungen nachgeholt und so das 
Haupthindernis für den Schluß ausgeräumt. 

So denkt Maritain. Doch ist das Subjekt des Obersatzes dermaßen 
ungewohnt formuliert, daß es Verdacht erregen müßte. Vermut-
lich will der Autor sagen: „Alles, was größer als B ist, ist größer als 
C". Warum sagt er es nicht so? Weil außer dem Quantor („alles, 
was") für das Subjekt „größer als B ist" übrigbliebe. Soll das 
störende „ist", das ja nicht viel beiträgt, weggelassen werden? 
Seine Harmlosigkeit beweist es, wenn es ohne Schaden zum Prädi-
kat der 2. Prämisse hinzugefügt werden darf, so daß der Untersatz 
lautet: „A ist größer als B ist". Diese Aussage klingt indessen nicht 
weniger seltsam als der Obersatz vor der Korrektur. 

Aus all diesen Umstellungen ergibt sich: Die Konstruktion des 
identischen Mitteltermes gelingt nicht ohne Sprachverletzung, die 
im besten Fall so diskret verdeckt wird, daß der Logikanfänger 
über sie hinwegliest. 

Zweitens versagt die Subjekt-Prädikateinteilung für die Analyse 
der Relationen bereits auf der Vorstufe zu den Syllogismen. Das 
sei am folgenden Beispiel gezeigt: „a ist Mutter von b". Aus 
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a ist Mutter von b 

Subjekt Prädikat 

folgt nichts. Dagegen ist für Relationen immerhin die Konverse 
definiert, was zur Folge hat, daß aus Mab folgt: M - 1 b a , oder in 
der Umgangssprache: „a ist Mutter von b, also ist b ein Kind von 
a" . Analog läßt sich aus „B ist größer als C" die vertraute Konver-
se erschließen „also ist C kleiner als B" . Selbstverständlich ist für 
die Subjekt-Prädikataussage keine Konverse definiert; aus „Die 
Villa ist alt" folgt keineswegs „Das Neue ist eine Hütte". 

Einfache Schlüsse wie ,(Gab A Gbc) Gac' lassen sich nur 
durch die Relationslogik rechtfertigen. Dasselbe gilt auch für ele-
mentare Analysen wie etwa die Konverse von Rxy. Damit ist die 
Behauptung von Maritain als falsch erwiesen, jede Relation (syllo-
gisme oblique) lasse sich auf einen kategorischen Syllogismus (syl-
logisme direct) zurückführen (Vgl. J. Maritain, 298). Unfreiwillig 
zeigen seine Beispiele den Bankrott der Subjekt-Prädikataussagen 
als logisches Universalschema. 

5.9.2 

1. Vokabular: 

a: ich selber 
Gxy: x ist Geschwister von y 
Fxy: x ist Sohn von y 
Txy: x ist Tochter von y 
Sxy: x ist Schwester von y 

(K/V)xy: x ist Kind des Vater von y 

2. Deduktion 

1. (Vx) (3z) ((Kxz A Vza) Gxa) 
2. (Vx) (3z) ((Fxz v Txz) -» (Kxz A Vza)) 
3. Vma / (Vx) (Txm —> Sxa) 

Wir gehen von der bekannten Verwandtschaftsdefinition aus, daß 
alle Töchter eines Vaters Schwestern zu seinen übrigen Kindern 
sind. 
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4. (Vx) (Vy) (3z) ((Txz A Vzy) —• Sxy) Zusatzprämisse 

Das gilt auch für Mathias, der mein Vater ist. 

5. (Vx) ((Txm A Vma) -»• Sxa) 

Durch logische Umformungen erhalten wir: 

6. (Tbm A Vma) Sba 5 , - V 
7. (Vma A Tbm) -» Sba 6, Komm. 
8. Vma ->• (Tbm Sba) 7, Exp. 
9. Tbm Sba 8,3, MP 

10. (Vx) (Txm Sxa) 9, +V 

3.Überflüssige Regeln 
Das Resultat führt uns die überraschende Tatsache vor Augen, 
daß die 1. und 2. Prämisse nicht einmal benutzt wurden. Wir hät-
ten sie deshalb auch kürzer so schreiben können: 

1'. (Vx) ((K/V)xa Gxa) 
2'. (Vx) ((Fxm v Txm) (K/V)xa) 

Sie tragen deshalb nichts ein, weil „Geschwister" ohnehin als 
„Bruder oder Schwester" zu definieren ist, so daß wir früher oder 
später am Enthymem der 4. Prämisse nicht vorbeikommen. Zu-
sammen mit 3. genügt es jedoch für die Ableitung, was auf den 
ersten Blick nicht vorauszusehen war. 
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5.10 

1. Gab A Gbc /••• Gac 
2. (Vx) (Vy) (Vz) ((Gxy A Gyz) Gxz) Zusatzhypothese 
3. (Vy) (Vz) ((Gay A Gyz) ->• Gaz 2, - V 
4. (Vz) ((Gab A Gbz) -> Gaz) 3, - V 
5. (Gab A Gbc) Gac 4, - V 
6. Gac 1,5, MP 

1. (Vx) (Rx (Vy) (Ay Txy)) 
2. (3y) (Cy A (Vz) (Vz -» Tyz)) /.-. (Vx) (Rx -> 

(Vz) (Vz -> Txz)) 
3. (Vx) (Vy) (Vz) ((Txy A Tyz) —> Txz) Zusatzhypothese 
4. (Vx) (Cx -» Ax) Alle Citroens 

sind Autos 
—»5. Ra KA 
—•6. Vc KA 

7. Cb A (Vz) (Vz Tbz) 2 , - 3 
8. Cb 7a, Simpl. 
9. Cb -»• Ab 4, - V 

10. Ab 8,9, MP 
11. Ra -» (Vy) (Ay -» Tay) 1. - V 
12. (Vy) (Ay Tay) 5,11, MP 
13. Ab Tab 12, - V 
14. Tab 10,13, MP 
15. (Vz) (Vz Tbz) 7b, Simpl. 
16. Vz Tbc 15, - V 
17. Tbc 6,16, MP 
18. (Vy) (Vz) ((Tay A Tyz) Taz) 3, - V 
19. (Vz) ((Tab A Tbz) Taz) 18, - V 
20. (Tab A Tbz) -» Tac 19, - V 
21. Tab A Tbc 14,17, Konj. 
22 . Tac 21, 20, MP 
23. Vc Tac 6-22, KB 
24 . (Vz) (Vz -> Taz) 23, +V 
25. Ra (Vz) (Vz Taz) 5-24, KB 
26. (Vx) (Rx -»• (Vz) (Vz Txz)) 25, +V 
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6.1.1 

1) • (A B). A ->• Q B wäre falsch. 

2) 1. In dieser Terminologie ist der Unterschied nicht greifbar. 
Der Leser wird den Eindruck nicht los, die Beschreibung 
erschöpfe sich in harmlosen Wortumstellungen. 

2. Beide Texte sind gleicherweise farblos und lassen den 
Leser im dunklen über das, was gemeint ist. Die Ver-
schiedenheit ist jedoch so einschneidend wie zwischen 
„Mädchen-Handelsschule" und „Mädchenhandel-
Schule". Überdies stehen a) und b) im Gegensatz zuei-
nander, denn sie behaupten: 

a) absolute Notwendigkeit = Notwendigkeite des Fol-
genden 

b) absolute Notwendigkeit = antezedente Notwendig-
keit 

3. Der Unterschied nach Thomas besteht zwischen 
p —• Q q und • (p —» q). Daher wird das Verbot der 
absoluten Notwendigkeit (p • q) mit „Notwendig-
keit des Folgenden" besser ausgedrückt als mit „anteze-
denter Notwendigkeit". Man darf sich kaum ausdenken, 
was denn b) unter der bedingten Notwendigkeit zu ver-
stehen vermag. 

3) Bei den Modalaussagen bezieht sich die Modalität auf die 
Aussagen, bei den Prädikataussagen auf die Prädikate. Es ist wohl 
metaphysischer Übereifer, der die aristotelische Logik verabsolu-
tiert und von daher die Modalität der Kopula zuschreiben möchte. 

4) Diese Behauptung ist eindeutig falsch. Es muß zwischen 
materialer Implikation und strenger Implikation unterschieden 
werden. Der Autor ist vermutlich von der Strenge des Modus po-
nens, der mit Hilfe der materialen Implikation ausgeführt wird, 
dermaßen bezaubert, daß er darin die höchste Strenge sieht, die er 
bedenkenlos mit „Notwendigkeit" bezeichnet. 
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6.1.2 

1) 1. 1. D p - » p 
A necesse ad esse valet consequentia 

2. p <> P 
Ab esse ad posse valet consequentia 

3. G p -> O p 1 ,2 , HS 

2. Das Gegenteil ist ausdrücklich verboten. Es gibt auch 
keine Regel, die aus etwas Wirklichem auf Notwendiges schlösse, 
auch nicht vom Möglichen auf das Wirkliche. 

2) 1. Der Satz findet sich in der ganzen Tradition nirgends. 
2. Die Konsequenz wäre der Ruin jeglicher Modalitätenlo-

gik, weil ja nur die Repetition, also Banalitäten erlaubt wären. Sie 
reichen nicht aus zur Entwicklung einer Modalitätenlogik. 

6.1.3 

1) 1. Kontigenz ist nicht ein Synonym von möglich. Deshalb 
dürfen die beiden nicht identifiziert werden. 

2. Das Beispiel ist schrecklich. Es ist jedoch bei Thomas ein 
einmaliger „Ausrutscher", der sich denn auch nur in seiner Erst-
lingsschrift findet. Thomas hat mit etwa 19 Jahren diese Stelle und 
weitere mißratene Stellen aus einer Vorlage kopiert, die ihrer-
seits einen Anfänger vermuten läßt. 

2) 1. Text (1) verlangt, es dürfe keinen Widerspruch geben. 
Text (2) behauptet, Gott wolle, daß es widersprüchliche 
Dinge gebe 
Die beiden Texte stehen in kontradiktorischem Gegen-
satz zueinander. 

2. Der lateinische Text spricht von kontingenten Dingen, 
die Gott will. Das ist völlig kohärent mit der Vorstellung, das 
Unmögliche müsse ausgeschlossen sein. Nur die Fehlübersetzung 
(contingens = sein und nichtsein) - ein paar Zeilen später wird 
nachgedoppelt - konstruiert diesen Widerspruch, den es bei Tho-
mas überhaupt nicht gibt. 

3. Einigen Dingen aber kommt nach der Weise ihrer Natur 
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zu, daß sie sind, obwohl sie nicht zu sein brauchen, also nichtsein 
könnten. Folglich will er, daß einige kontingente Dinge verwirk-
licht sind. 

3) 1. Der Begriff (1) spricht über das bilateral Mögliche, hin-
gegen (2) über das Nichtnotwendige. Die beiden sagen 
nicht dasselbe aus. 

2. Von der Kontingenz ist Notwendigkeit wie Unmöglich-
keit ausgeschlossen. Daher umfaßt kein Kontingenzbe-
griff das Unmögliche. 

4) 1. 1. O(Vx) (Lx - > - | B z ) 
2. O - i (3x) (Vx A - i Lx) / (3x) (Vx A ~ I Bx) 

2. Es ist ein EAE. 
3. O p A 0 ~ i P 
4. Die Umformung dürfte O (Vx) ax ergeben oder auf-

grund der KontingenzO -1 (3x) ax A <>(3x) ax, besten-
falls (3x)ax. 

1) L c K P p 
1 
l V % P P 

0 0 
1 1 

2) C L q L c 
a 1 

£ l q l V 
0 
a 

3) c L P M p 
a b 
l P p 

0 0 
a b 



4) 

5) 
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A M P M q A M p M q 
1 1 a b 

Ä tfi P jjft q A D« p VI q 
0 0 0 0 
1 l a b 

P P q 
0 0 0 
1 a b 

q P q 
0 0 0 
l a b 

K L p L q M K P q 
a b c 

£ l p l q Vi P q 
0 0 0 0 
a b c c 

P 
0 

P q c 
0 0 q a 
a b 0 

c 
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= b = l 

= b = c = l 
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L C p q M p 
b 1 
l £ p q $ p 

0 0 0 
b b 1 

p p 
0 0 
b 1 

q p 
o o 
b l 

p p 
o o 

q b 
0 q p 
a 0 0 

b 1 

6.2.2 

a) Wahrheitstafeln 

1) ( • P V • q) - (p V q) 
0 0 1 0 0 0 0 0 0 
1 1 

2) O p - ( • (p - q) A • (p -> -1 q)) 
1 1 0 1 1 1 1 0 0 1 0 0 1 

Kein Widerspruch, also ungültig 

3) ( • p A • (p -> q) -» r)) -» • (q r) 
1 1 0 0 1 0 0 

0 
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6) C K L C p q 

<P % l ? p q 
o o 

p 
0 
a 
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b) Polnische Notation 

1) 

2) 

C A 

<p X 

C M 
1 

£ # 

L 
b 
l 

L A 
1 
£ A 

p q 

p q 
0 o 
1 l 
p q 

0 o 
1 1 a = b = 1 

q 
o 
b 

L 
2 

p q 

p q 
0 o 
1 l 

1 c 
2 

p q 

p ] 
r 

l £ P q £ £ P q 
0 0 0 0 0 
1 2 2 2 2, 

P q 
p 0 0 
0 2 2 
1 P q 

0 0 
2 2 

nicht 
schließbar 
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3) 

4) 

5) 

C K L p 

£ £ l P o 

L C K p q 
b 

L 
1 
C q r 

C M p M M p 
l a b 

£ ifi. p jyi vi p n n 0 
1 

<p ] - p q r l £ q r 0 0 0 0 0 
b b b 1 1 
p q r 
0 0 0 
b l 1 

q q r 
0 0 0 
b l 1 

r q r a=b=l 
0 0 0 
b l 1 

= 1 

C C p q C L p q 
a 

£ E P q i l p q 
0 0 0 0 

a 
P P q 
0 0 0 

i 
q P q 
0 0 0 

i 



Lösungen 377 

6) 

7) 

C L C 
a 

<p % 

L 
1 
l <P 

p q 

L 
a 
l 

L 
1 

L 
b 

p q 

<p p q l t l P q 
0 0 0 0 
a a 1 l 

b 

P p q 
0 0 0 
a 1 l 

V> 
q p q 
0 0 0 
a 1 

K 

l 

p q L 
2 

L 
b 

p q 

E P q £ V L p q 
0 0 0 0 
1 1 1 I 
a a 2 2 

b 

P P q 
0 0 0 
1 1 l 
a 2 2 

tf 
q P q 
0 0 0 
1 1 l 
a 2 

y> 
2 

a = 2 
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8) 

9) 

10) 

L 
1 

L 
1 

c p q q p 

ff; p q p 
0 0 0 0 
1 l l l 

p q p 
0 0 0 
1 l 1 

q q p 
0 0 0 
l l 1 

c p q c q 

p q £ q 

C p 

L C K p q K p q 
1 
£ £ K p q K p q 

0 0 0 0 
1 1 1 1 

p q 
o o 
usw. 
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K K C p q C r s A p r A q s 

' p q < r s 1 l P f i q s 
0 0 0 0 0 0 0 0 
1 l 1 1 1 1 I 1 

P q s 
r 0 0 0 
0 1 l 1 

1 r q s 

p 0 0 0 
0 1 l 1 

1 P q s 
s 0 0 0 
0 1 l 1 

1 ? q s 
0 0 0 
1 l 1 

P q s 
r 0 0 0 
0 1 l 1 

1 r q s 

q 0 0 0 
0 1 l 1 

l P q s 
s 0 0 0 
0 1 l 1 

1 f q s 
0 0 0 
1 l 1 



380 Lösungen 

12) D ( 0 ( p A q h ( O p A O q ) ) 
L C M K p q K M p M q 
1 2 a b 
t p q f P l ä q 

0 0 0 0 
1 1 1 1 
2 a b 

P q 
0 0 
1 1 
2 2 

P 
0 
1 

6.2.3 

1) C L P L L P 
a 1 2 
l P % * P 

0 0 
a * 

2 a = 2 

2) c L P L L L L L 
a 1 2 3 4 5 
* P £ £ £ 2 l 

a = 5 
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6.2.4 

1) C M p L M P 
1 2 a 

£ ijfl p ]L $ P 
0 0 
1 

a 1 = a 

2 C M L M L L p L p 
1 a 2 b c 3 

<£ ffL % $ £ £ P £ P 
0 0 
t 3 
i 
2 

c c = 3 

C K M q M P M L M L K L M q L L M P 
1 2 a 3 b 4 5 b 6 7 d 

£ % W q $ P : (C £ jyi q l P 
0 0 0 0 
l 2 * * 

3 } 
v y> 
i i 
f 0 

7 
d 

q 
c 

p 
d 

c = l 
d = 2 
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6.3 

1) 

2) 

3) 

C L Vx F x M 3 x Fx 
a b c d 

£ l y x Fx ^ x F x 
0 0 
ab cd 

a = c = 1 

C K L Vx F x L Vx G x L Vx K F x G x 
a b c d 1 2 

<t * i n F x l )fx G x ^ f x ] C F x G x 
0 0 0 0 
ab cd 12 12 

F x 
F ^ G x 0 
0 0 12 

ab cd G x 
a = c = 1 
b = d = 2 

0 
12 

C M 3 x K F x G x K M 3 x F x M 3 x G x 
1 2 a b c d 

<ß W K F x G x H 
0 0 
12 12 

F x G x 
0 0 
12 12 

: ]yi ^ x F x jyi ^ x G x 
0 0 
ab cd 
Fx 
0 
ab 

G x 
0 
cd 

a = c = 1 

b = d = 2 
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4) C 3x M A F x G x 3x M K Fx G x 
a 1 2 b 

£ fix tyl f E T Gx 1t Fx G i 
Oa Oa 02 02 
1 1 b . b . 

Fx 
Fx Gx 02 a = 2 
Oa Oa b b = 1 
1 1 G x 

02 
b 
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Logische Zeichen und Abkürzungen 

' Komplement 32 
e ist ein Element von 22, 27ff. 
^ ist kein Element von 23 
c: echte Teilmenge = Inklusion: enthält 25, 27ff. 
<£- nicht echte Teilmenge 28 
£ unechte Teilmenge 25 
0, { } leere Menge 24 
n Durchschnitt 34 
u Vereinigung 34 
\ Differenz 36 
~ l , — Negator, s. Negation 46, 59, N, s. Hilbert 
A , • Konjunktor, s. Konjunktion 47, 58, 60, 115, K 
v Disjunktor, s. Disjunktion 47, A 
—• Implikator, s. Implikation 47, 64ff., C 
=> strikter Implikator, s. strikte Implikation, C' 244,257 
«-• Äquivalentor, s. Äquivalenz 47, 54, 67f. , E 

strikter Äquivalentor, s. strikte Äquivalenz, E' 262 
= Identität 223 ff. 
4= nicht identisch 156 f. 
J, Peircefunktion 124 
| Sheffer-Strich 124 
R/S Relationsprodukt 237f. 
p/ l p Substitution von ,p' durch , i p' 242 
• Notwendigkeitsoperator 242 
O Möglichkeitsoperator 242 
/ abgeleitetetes oder abzuleitendes Resultat 88 

Quod erat demonstrandum ( = Theorem) 89 
(Vx) . . . Allquantor, universaler Operator 164 
(3x) . . . Existenzquantor, partikulärer Operator 165, 168 
— V UE oder V-Elimination 176 
+ V UV oder V-Einführung 176 
— 3 EE oder 3-Elimination 177 
+ 3 EV oder 3-Einführung 177 

(ß, Streichungsregeln für Funktoren 129 
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Streichungsregel für Allquantor 218 ff. 
^x Streichungsregel für Existenzquantor 218 ff. 
^ p q Aufsplit terung 131 

ci KA 117 oder IA 119 
sp' = 0 Alle s sind p 157, 169 
sp = 0 Kein s ist p 157, 169 
sp 4= 0 Einige s sind p 157, 169 
sp' 4= 0 Einige s sind nicht p 157, 169 
A, B, C 1. Mengen (Mengenlehre) 22 

2. Aussagenkonstante (Aussagenlogik) 44 
A 2 Relationspotenz 236 
a, b, c 1. Elemente (Mengenlehre), häufiger: 1, 2, 3 . . . 22 
p ,q , r 2. Aussagenvariable 44 
A, E, I, O s. a, e, i, o 136, 141, 169 
a Alle 136, 169 
e Kein 136, 169 
i Einige 136, 169 
o Einige . . . nicht 136, 169 
A Disjunktion 127 
^L-Regel Streichungsregel 129 
Abs. Absorption 107 
Add. Addition 100 
Äquiv. Äquivalenz 67f. 
Ass. Assoziation 105 
BF Barcan-Formel 273 ff. 
C Implikation 127 
C' Strikte Implikation 244, 257 
c per contradictionem 148 ff. 
^-Regel Streichungsregel 129, 131 
D Kontravalenz 62 ff. 
DD Destruktives Dilemma 103 
De M De Morgan 108 
Distr. Distribution 106 
D N Doppelte Negat ion 91 
DS Disjunktiver Syllogismus 99 
E Äquivalenz 127 
E' strikte Äquivalenz 262 
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EE Existenzielle Einsetzung s. 3-Elimination 
EP Ad esse ad posse valet consequentia 246 
Exp. Exportation 107 
EV Existenzielle Verallgemeinerung s. 3-Einführung 
G großer Term 138 f. 
gdw genau dann, wenn . . . 67 s. Äquivalenz 
Hilbert andere Schreibweise der Negation 108, 115 
HS Hypothetischer Syllogismus 96 
IA Indirekte Annahme 119 f. 
IB Indirekter Beweis 121 £. 
Idemp. Idempotenz 105 
Impl. Implikation 47, 53, 64ff. 
K Konjunktion 127 
K kleiner Term 138 f. 
K-Regel Streichungsregel 129, 131 
KA Konditionale Annahme 117 ff. 
KB Konditionaler Beweis 117 f. 
KD Konstruktives Dilemma 102 
Komm. Kommutation 105 
Konj. Konjunktionsregel 60ff. 
Kontr. Kontraposition 105 
L Notwendigkeitsoperator 257 
M Mittelterm 138 
M Möglichkeitsoperator 257 
m mutare 148 
Mod. Austausch von Modaloperatoren 242 
MP Modus ponens 87ff. 
MT Modus tollens 90 f. 
N Negation 127f. 
NE A necesse ad esse valet consequentia 246 
P conversio per accidens 148 
PN Pränexe Normalform 193 f. 
QA Quantorenaustausch 170, 189 f. 
QV Quantorenverschiebung s. Pränexe Normalform 
P, Q, R Prädikate 162 ff. 
R, S,T Relationen 201 ff. 
Rep. Repetition 119 
Rxy zweistellige Relation 202 
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s conversion simplex 148 
s, Modalsystem 255 
s2 Modalsystem 255 
s3 Modalsystem 255 
S 4 Modalsystem 263ff., 273, 278 
S 5 Modalsystem 266f., 278 
S 6 Modalsystem 266 
Simpl. Simplifikation 93 
T Modalsystem 258 ff. 
U Bestimmtes im Hexagon 249 
UE Universale Einsetzung s. V-Elimination 
UV Universale Verallgemeinerung s. V-Einführung 
Y Kontingenz 249 
Z-Relation Zugänglichkeitsrelation 272, 277 



Sachverzeichnis 

aber 51 
Ableitungsregel s. Schlußregel und Äquivalenzregel 
Absorptionsregel 107 
Abtrennungsregel 88, s. Modus ponens 
Additionsregel 100 
V-Einführung 176, 181 
V-Elimination 176 
affirmo 136 
Adjunktion 63, s. Disjunktion, nichtausschließende 
Allaussage 171 f. 
Allquantor 164 
alle 136, 164, 172 
alles 164 f. 
Alternative s. Disjunktion 
Alternativwelt 283, s. Welten 
Annahme 117 ff. 
—, konditionale 118 f. 
- , indirekte 121 f. 
Antecedens s. Vordersatz 
Äquivalenz 47, 54, 67f. 127 
- , strikte 262f. 
Äquivalenzregel 107 
Äquivalenzrelation 231 
Argument 58f., 208 
Assoziationsregel 105 
Asymmetrie 53, 229 
Atomsatz 45, 58, 136 
Attribut 134f., 224 
—, partikulär genommen 139 

universell genommen 139 
Aufsplitterung 131 
Aussage 43 
—, universal bejahende 136 
—, universal verneinende 136 
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- , partikulär bejahende 136 
- , partikulär verneinende 136 
—, konträre 137 
- , kontradiktorische 137 
Aussageform 43 
Aussagenfunktor s. Wahrheits(wert)funktor 
Aussagenkonstante 44, 58 
Aussagenvariable 44, 58 
Aussagenverknüpfung 46 
Austausch von Regeln 109 f. 

von Modaloperatoren 263 f. 
aut 63 s. Disjunktion, ausschließende 
Axiom 254f. 

Barbara 141, 145 
Barbari 141f., 180 
Baroco 151 
Bedingungssatz 54 
—, hinreichende Bedingung 53 
—, notwendige Bedingung 53 
—, hinreichende und notwendige Bedingung s. Äquivalenz 
Befehl s. Satz 
bejahend 89, 136 
Beweis 
—, ad absurdum s. indirekter Beweis 
- , deduktiver s. Deduktion 
- d e s Syllogismus 142 f., 145, 148 ff. 
- indirekter 121 f., 151 
Bocardo 151 
Brower-System 275, 278 

Calemop 142 
Camestrop 142 
Celarent 141 
Celaront 141 f. 
Cesarop 142 
Consequens s. Nachsatz 
Conversio 
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—, per accidens 137 
- , simplex 137 

Exklusor s. ausschließende Disjunktion 
Darapti 146 
Darii 145 
Deduktion 87ff., 176ff., 214ff„ 238f. 
de dicto 274 
De Morgan 108 
de re 274 
Deontische Modalitäten 275 f. 
Destruktives Dilemma s. Dilemma 
Differenz 36 
Dilemma 
—, destruktives 103 
—, konstruktives 102 
Disjunktion 47, 52f., 62f. 127 
- , ausschließende = exklusiv 52, 62 f. 
- , nichtausschließend = inklusiv 52, 62 
Disjunktiver Syllogismus 99 
Distribution 106 
- , von Quantoren 192 f. 
doch 51 
Doppelte Negation 91, 105 
Dreieck, logisches 248 
dual s. De Morgan und Distribution 
Durchschnitt 34 

3-Einführung 177, s. Quantoreneinführung 
einige S sind P 136 
einige S sind nicht P 136 
Einheitlichkeit 220 
einiges s. etwas 
Element 19f., 22, 27 
Elementaraussage s. Atomaussage 
3-Elimination 176, s. Quantorenelimination 
enthalten s. Teilmenge 
Enthymem 154 f. 
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Entscheidungsverfahren 86, 114, 197 
Epistemische Modalität 275 f. 
Ergänzungsmenge s. Komplementärmenge 
etwas 165 
Eulerkreis 32 
evaluative Modalität 275 f. 
Existenzannahme 222, 272f. 
existenzielle Einsetzung s. 3-Einführung 
existenzielle Elimination s. 3-Elimination 
Existenzquantor 165 
Exklusion s. ausschließende Disjunktion 
Exportationsregel 107 

Fallacia consequentis 92, 119 
Figuren des Syllogismus 140 
Form 13 ff. 
Formel s. Molekularsatz 
Fragesatz s. Satz 
Funktion 234 f. 
Funktor 46 
- , aussagenbildender s. Quantor 
—, Bindung 56 f. 
- , Definition 59 ff. 
—, Hauptfunktor 73 f. 
—, Nebenfunktor 73 f. 
—, einstelliger 46 
—, zwei- oder mehrstelliger 46 f. 

Ganzes 20 
Gattungsname 171 
genau dann, wenn . . . s. Äquivalenz 
Gegensatz 
- , kontradiktorischer 137 
—, konträrer 137 
- , subkonträrer 137 

subalterner 137 
Gesetz 
- , der doppelten Negation 105 

14 Bucher, Logik 
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De Morgan 108 
logisches 79f., 86 

größerer Term 138 f., s. maior 
Grundbereich 32 
gültig 16 f. 

haben 210ff. 
Hauptfunktor 73 
Hexagon, logisches 249 
Hilfssystem 256f. 
Hypothetischer Syllogismus 96 

Idempotenz 105 
Identität 223 
—, Äquivalenz 224 
- , Prädikation 224f. 
Identitätsaussage 224f. 
immer 212 
Implikation 47, 53, 64f., 127 
—, materielle 244 
- , strikte 244 
Implikationsregel 106 
Importation s. Exportation 
Indirekter Beweis 121 f. 
—, syllogistischer 145 
Individuenkonstante 145, 162, 178 f. 
Individuenvariable 163 
Inklusion s. Teilmenge 
Intersektion s. Durchschnitt 
Inverse, s. Konverse 
Irreflexivität 228 
iterierte Modalität 263 
jeder s. alle 
jemand 172 

Kalkül 86 
Kausalität 64 f. 
Kettenschluß s. Hypothetischer Syllogismus 



Sachverzeichnis 403 

kleinerer Term 138f., s. minor 
kein S ist P 136 
Klammern 38, 55ff., 74 
Klasse s. Menge 
Klassenlogik 19 
Kommutation 105 
Kommutationsregel 105 
Kommutativität 38 
Komplementärmenge 32 f. 
Konditionale Annahme 117 ff. 
Konditionaler Beweis 117ff. 
Konjunktion 47, 48ff., 60f., 115, 127 
Konjunktionsregel 95 
Konjunktive Normalform 114ff. 
Konklusion 14 
Konsequens s. Nachsatz 
Konstante 
—, logische 47, 161 
—, s. Aussagenkonstante oder Individuenkonstante 
Konstruktives Dilemma s. Dilemma 
kontingent 248 ff. 
kontradiktorisch 137 
konträr 137 
Kontraposition 105 
Kontravalenz s. Disjunktion, ausschließende 
Konverse einer Relation 236 
Konversion 137 
- , per accidens 137 

simplex 137 
Kopula 134 
korrekt s. gültig 

Latius hos 138 
Leerformel s. Tautologie 
Leibnizkreise s. Eulerkreise 
Leibniz-Welten, s. Welten 

Maior 138 f. s. größerer Term oder Obersatz 
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manchmal 212 
Matrix 
—, s. Wahrheitstafel 
- , s. Präfix 
Menge 19, 22 
—, äquivalente 23 
—, Ergänzungsmenge s. Komplementärmenge 
- , leere 24, 31, 136, 181 
—, Potenzmenge s. Teilmenge 
minor 138 f. 
Mittelterm 138 f. 
—, partikulär genommen 139 
- , universal genommen 139 
Modalitäten 241 
Modus 140 f. 
Modus ponens 87 f. 
- , strikter 261 f. 
Modus tollens 90 
- , strikter 261 f. 
Möglichkeit 242 
Möglichkeitsaxiom 247 
Molekularsatz 47, 58 
muß 54 

Nachsatz 53, 58, 64f. 
nacheindeutig s. Funktion 
Nand-Tor 125 f. 
Nebenfunktor 73 s. Hauptfunktor 
necessitas consequentiae 245 
necessitas consequentis 245 
Negation 46, 59 f., 127 
nego 136 
niemand 172 
non-reflexiv 228 
non-symmetrisch 229 
non-transitiv 230 
Nor-Tor 125 f. 
Notwendigkeit 242 
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Notwendigkeitsaxiom 247 
Notwendigkeitsregel 259 
Null 30 f. 
nur 53 

Obersatz s. maior 
obwohl 51 
oder s. Disjunktion 
Oder-Schaltung s. Nor-Tor 
Operator s. Quantor 

Parallelschaltung s. Nor-Tor 
Person s. jemand 
Pierce-Functor 124, 126 
Polnische Notation 127ff., 217ff., 257ff., 268f. 
Ponendo ponens s. Modus ponens 
Ponende tollens s. Modus tollens 
Potenzmenge s. Teilmenge 
Prädikat 134, 162, 224 
—, zwei-, drei-, mehrstellig s. Relation 
Prädikataussage 224f. 
Prädikation 30 
Präfix 193 
Prämisse 14, 88, 153 

kleine und große 138 
Pränexe Normalform 193 f. 
Produktor s. Durchschnitt 

Quadrat, logisches 137, 166, 243, 248 
Qualität 31f., 140, 166 
Quantifikatoren s. Quantoren 
Quantität der Aussage 135, 138, 166 
Quaternio terminorum 146 
Quantoren 164ff. 
—, Allquantor 176 

, Elimination 176 
, Einführung 176 

—, Existenzquantor 177 
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, Elimination 176 
, Einführung 177 

- , Austausch 170, 195 
Bereich 188ff. 
Distribution 192f. 
Regeln 177 

Redebereich 136, 167, 191 
Reduktion von Funktoren 123 f. 
Reduktionsprinzip von Modaloperatoren 261, 263 
—, schwaches 264 
—, starkes 266 
Reflexivität 227f., 273, 284 
Regeln 87 ff. 
—, Äquivalenzregeln 105 ff. 
- , Schlußregeln 87 ff. 
Reihenfolge 221 
Relation 
- , Potenz 236 
- , Produkt 237 
—, zwei-, drei-, mehrstellig 202 
- , RST-Relation s. Äquivalenzrelation 
Rückschluß s. Fallacia consequentis 
Satz 43 
—, Befehlssatz 43 
—, Fragesatz 43 
- , Wunschsatz 43 
Schluß 14, 17 
Schnittmenge s. Durchschnitt 
Serienschaltung s. Nand-Tor 
Sheffer-Strich 124, 127 
Simplifikation 93 f. 
sinnlos 43 
Sorites 153 
Spielraum 78 
Streichungsregeln 129, 218 
—, der Funktoren 129 
—, der Quantoren 268 
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- , der Modaloperatoren 
subaltern 137 
Subjekt 135 
- , allgemeines 134 
- , konkretes 134, 164 

universal 135, 139, 164 
- , partikulär 135, 139, 165 
subkonträr 137 
Summator s. Vereinigung 
Supposition 139 
Suppositum 134, 224 
Syllogismus 138 
Symmetrie 228, 273, 285 
Synkategorem 46 

Tautologie 78 f. 
Teil 20 
Teilmenge 25, 27 
—, echte 25 
—, unechte 25 
Term 135 
- , größerer s. maior 
—, kleinerer s. minor 
totalreflexiv 228 
Transitivität 28f., 229f„ 273, 285 

Und 47, 60f., 115, 127 
Und-Schaltung s. Nand-Tor 
Universelle 
—, Einsetzung 176 s. V-Elimination 
—, Verallgemeinerung 176 s. V-Einführung 
Untermenge s. Teilmenge 
Untersatz s. minor 
Urteil s. Aussage 

Variable 58 f. 
- , freie 189 
- , gebundene 188f. 
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vel 62 s. Disjunktion, nichtausschließende 
Venn-Diagramm s. Eulerkreis 
Vereinigung 34 
verneint 89, 136 
Verkettung von Relationen 235 ff. 
Vordersatz 53, 58, 64 

Während 51 
wahr 16f., 58 
Wahrheitswert 58 
- , Mengen 36ff., 155ff. 
- , Aussagen 71ff., 127ff. 
—, Prädikatenlogik 217 ff. 
- , Modalausdrücke 263 f. 
Wahrheits(wert)funktion 58 
Wahrheitsfunktor 46 
Wahrheitstafel 72 
- , teilweise 82ff., 259f. 
- , Quasi-Wahrheitstafeln 253f., 281, 279ff. 
weder — noch 51 
weil 53 
Welten 270ff., 280, 282ff. 
Wenn . . . dann . . . s. Implikation 
Widerspruch 79 
Wirkungsbereich des Quantors 188f. 
Wohlgeformt 21, 43, 47, 57 
Wohlunterschieden s. wohlgeformt 
Wunsch s. Satz 

zeitliche Modalitäten 275 f. 
Zugänglichkeitsrelation 272, 277, 282ff. 





Regeln 

1) Aussagenlogik 

1. Modus ponens (MP) 

P q 
P 

2. Modus tollens (MT) 
p -» q 

- 1 q 

3. Simplifikation (Simpl.) 
P A q 
P 

5. Hypothetischer Syllogismus 
(HS) 

4. Konjunktion (Konj.) 

P 
q 
p A q 

6. Disjunktiver Syllogismus 
(DS) 
p v q 
~ I P 

7. Addition (Add.) 

P 
p v q 

9. Destruktives Dilemma (DD) 
(p -• q) A (r -> s) 
n q v n s 

n p v n t 

8. Konstruktives Dilemma 
(KD) 
(p ->• q) A (r -> s) 
p v r 

q v s 

10. Doppelte Negation (DN) P * * ~ 1 p 

11. Kommutation (Komm.) (P A q) (q A p) 

(P v q) « (q V p) 

12. Assoziation (Ass.) [p A (q A r)] ** [(p A q) A r ] 
[P v (q v r)] [(p V q) V r ] 

13. Idempotenz (Idemp.) P •+ (p A p) 
P (p V p) 

14. Kontraposition (Kontr.) (P- q) <-» ( - 1 q - > - 1 p) 

15. Implikation (Impl.) (P-->• q) « ( - 1 p V q) 

16. Distribution (Distr.) 

17. Äquivalenz (Äquiv.) 

18. Exportation (Exp.) 

[p A (p v r)] •+ [(p A q) V (p A r)] 
[p v (p A r)] •• [(p v q) A (p v r)] 

(p « q) «-» [(p -»• q) A (q -> p)] 
(p « q) [(p A q) V ( - 1 p A - 1 q)] 

[(p A q) -> r ] <->• [p -> (q ->• r)] 



19. Absorption (Abs.) 

20. De Morgan (De M) 

p A (p V q) <-» p 
p V (p A q) « p 

p (p A q) *+ (p q) 

- l (p A q) « ( - 1 p V - l q) 
- i (p v q) ( - 1 p A - l q) 

2) Aristoteles, Mengenlehre, Prädikatenlogik 

Barbara, Celarent, primae, Darti, Ferioque. 
Cesare, Camestres, Festino, Baroco, secundae. Alle A sind B 
Tertia grande sonans recitat (Darapti), {Felapton), Kein A ist B 
Disamis, Datisi, Bocardo, Ferison. Quartae Einige A sind B 
sunt (Bamalip), Calemes, Dimatis, (Fesapo), Fresison. Einige A sind nicht B 

Klassisch Mengenlehre Prädikatenlogik 
S a P A n B ' = 0 s p ' = 0 (Vx) (Sx -» Px) « ~i (3x) (Sx A - I Px) 
S e P A r > B = 0 s p = 0 (Vx) (Sx - » - ] Px) (3x) (Sx A PX) 
S i P A n B =t= 0 sp 4= 0 (3x) (Sx A Px) «• (Vx) (Sx -> - | Px) 
S o P A n B ' + O sp' * 0 (Ex) (Sx A - | Px) •+ (Vx) (Sx -> Px) 

3) Quantorenlogik 
(Vx) Px (3x)Px 

- (UE) ~ (EE) 
Pa Pa 

Pa Pa 
+ ( U V ) "z—-r— + (EV) (Vx) Px (3x) Px 

4) Polnische Schreibweise und Streichungsregeln 
Negation —i p p A p q ^ p q K p q p q 
Konjunktion p A q K p q 
Disjunktion p v q A p q C p q ^ j p q C p q (p p q 
Implikation p -» q C p q 
Äquivalenz P q E p q K p q ^ p q A p q ^ p q 

5) Modallogik 

• p .'. p NE A necesse ad esse valet consequentia 
p .'. O p EP Ab esse ad posse valet consequentia 

P => q =df • (p - » q) : C 'pq = d f L C p q 
p <» q = d f • (p *+ q): E'pq = d f L E p q 

= L K C p q C q p 

a _a_ 12 1 2 a 
T : p - t O p iCp iyip S4 : • p -> • • p C i p j i f i p S5: O p • O p oyipji.iyip 

0 0 0 0 0 P 

i a t 1 l 
2 a 
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