Foundations of Communication Library Edition

Editor Roland Posner

E. M. Barth / E. C. W. Krabbe

From Axiom to Dialogue

A philosophical study of logics and argumentation

Walter de Gruyter · Berlin · New York 1982

Library of Congress Cataloging in Publication Data

Barth, E. M.

From axiom to dialogue.

(Foundations of communication)

Bibliography: p.

Includes indexes.

1. Logic. I. Krabbe, E. C. W. (Erik C. W.), 1943-

II. Title. III. Series.

BC61.B37 1982

160

82-16223

ISBN 3-11-008489-9 (lib. bdg.)

CIP-Kurztitelaufnahme der Deutschen Bibliothek

Barth, Else M .:

From axiom to dialogue: a philosoph. study of logics and argumentation / E. M. Barth; E. C. W. Krabbe. – Berlin; New York: de Gruyter, 1982.

(Foundations of communication: library ed.)

ISBN 3-11-008489-9


NE: Krabbe, Erik C. W .:

© Copyright 1982 by Walter de Gruyter & Co., vormals G. J. Göschen'sche Verlagshandlung – J. Guttentag, Verlagsbuchhandlung – Georg Reimer – Karl J. Trübner – Veit & Comp., Berlin 30. Printed in Germany.

Alle Rechte des Nachdrucks, der photomechanischen Wiedergabe, der Herstellung von Photokopien – auch auszugsweise – vorbehalten.

Satz und Druck: Arthur Collignon GmbH, Berlin.

Buchbinder: Lüderitz & Bauer, Berlin.

Preface

Most books on modern logic, whether textbooks or otherwise, fall into one of two classes. The first is that large group of texts aimed exclusively at readers whose main interest lie in the foundations of mathematics, and who maintain that all other problems concerning logics and their uses are derivative, and should be treated, if at all, as secondary. The other class contains elementary textbooks that are obviously written for persons who have not yet acquired even the beginnings of philosophical, historical or scientific sophistication, or who are at least willing to forget about it for the period of their instruction in logic.

It seemed to us that yet a third approach to the relationship between logic, philosophy and our culture at large is possible and valuable, and in fact that a new attitude is long overdue. The present book is therefore written specifically with the following audience in mind: philosophers and students of general philosophy, as well as scholars and students in neighboring fields such as linguistics, physics, communication, political science, law, sociology, economics, cognitive psychology, theology, and the humanities. We hope that it will in some measure satisfy the basic needs for information about and instruction in logic, as felt by persons from these fields of contemplation and research, and that it will show or suggest to them something of the relationship between logic and their own academic or practical pursuits.

The book is not really meant for students of mathematics, although we hope that some of them, too, will be interested in parts of it. They have their own books, containing considerable material that we do not even mention in passing here. On the other hand, we believe that it would be a mistake to try to avoid "mathematical" symbolism entirely, especially as this may help to eliminate misinterpretations (admittedly after an initial period of learner's confusion). Nor should one abstain from using mathematical methods, wherever there are potential readers — those who are mathematically trained — who will demand such a treatment before they are able to agree that our conclusions are sound. It is not, however, merely to obtain this agreement, important though it is, nor is it merely to conform to academic fashion, that we have made some use of mathematical methods. We consider that everyone, from engineers to theologians (not necessarily very different people, by the way), should be shown with what care modern logical theories are formulated and evaluated. The metalogical problem of the "completeness" (relative to something else) of a logic system is therefore discussed throughout. Philosophical readers, on the other hand, should be taught this without being led to assume that mathematics is in all respects metaphysically fundamental and verbal intercourse in all respects derivative. We have tried consistently to treat the verb "to prove" as, basically, a ternary relative verb: someone proves (or fails to prove) something to someone. To drop consistently the words "to someone", even in basic uses of the verb

VIII

"to prove" — and this is still a habit among logicians — is to enshroud the topic in mystery and invite accusations of "elitism" or "authoritarianism" which can in fact be avoided.

A second aim of our book is to contribute to the development of a theory of rational and critical argumentation by offering a complete formulation of *Lorenzen's dialogue method* in "formal" logic, with forays into "material" logic in the form of material dialogues; this we hope to have brought within the reach of non-mathematicians.

Third, we intend to show — for propositional logics — the equivalence of the various contemporary approaches to elementary formal logic: the dialogue method and dialogical tableaux, axiomatic derivations, natural deductions and deductive tableaux, model theory and semantic tableaux. This is an extension of the programme of: E. W. Beth, Formal Methods (1962), where the dialogue method is missing (for chronological reasons), and where natural deduction is not well distinguished from the method of deductive tableaux. In Formal Methods, Beth spoke of the unity of the three methods. His book, moreover, was hastily written and as a result it has never been much read, despite its contents, which were eminently suited (at that time, 1962) to the purpose of explaining logic, and what logic is, to the general philosopher. We believe that no text is available in any language that incorporates all these approaches and demonstrates their "unity". This degree of comprehensiveness explains the length of our book.

We shall show this (i.e., the equivalence of several different approaches) for three logics, namely "classical" (two-valued) logic, constructive (or, intuitionistic) logic and minimal logic; and this we shall do for three different language forms, viz. for purely implicational languages and for languages with, as well as for languages without, a "rigid" sentential descriptor for falsity or absurdity.

Our aims are not only didactic in the narrower sense. We should like to think that the following features of the book have a certain originality:

- Sections on the philosophy of logic and on the historical development of the general outlook on what logic is all about (Chapters I, II, XII, and interwoven with other topics at numerous places);
- A normative foundation for Lorenzen's dialogue method, and thereby for elementary logics in any style, presented in a way suited to the goal of establishing a social contract about verbal behavior (Chapter III);
- A conceptual basis in, among other things, the notion of a conflict of avowed opinions, bringing to the fore the thesis that logical (dialectical) activity has conflict resolution as its intrinsic goal;
- Dialectical rules for minimal logic, with and without rigid sentential descriptors for falsity (Chapter IV);
- Particularly simple algorithms for transformation of (closed) dialogical strategy tableaux into (closed) deductive tableaux, which are clearly distinguished from the former; and also for the transformation of (closed) deductive tableaux into natural deductions (Chapter VII); also for the transformation of (closed) classical, constructive and minimal semantic tableaux into winning strategies (Chapter XI);

Preface

 Discussion of the ways in which material (e.g., ostensive) methods and moves can be incorporated into dialectic systems (Chapter IV);

- Reinterpretation of Kripke's constructive and of Kripke-styled minimal epistemic models of growth of knowledge into dialectical models of growth of agreement; in other words, the models for the various dialectic systems classical, constructive, minimal are taken from the field of argumentational activity itself (Chapter IX);
- Completeness/Soundness proofs for the dialogical tableau method in formal logic via the deductive and semantic tableau methods, together with dialectical models. Thereby we have circumvented Gentzen's cut-elimination theorem and its analogues, which are conceptually inaccessible to the majority of general philosophers.

More important still, these new philosophical models are of immediate interest in themselves, offering a new perspective for logic and general philosophy. The budding Theory of Argumentation may, given these models, be regarded as a self-contained field and a self-contained philosophical programme, i.e., as a philosophical and a practical pursuit which is independent of remnants of classical, "ontology"-based, epistemology. Social (dialectical) models are offered corresponding to dialectic systems (as shown in Chapter XI).

Perspectives such as these are sketched briefly in Chapter XII, where we discuss the possibility that "ontology", even in its analytic form, was constructed as an ("the") absolute theoretical state — a notion without which processes of growth of agreement could not formerly be conceived, and without which structures of models for such processes could not be formulated. Two-valuedness belongs with ontology construed as "the" final or absolute state.

In order to present all this material to as many philosophers as possible, and in a single volume, we have refrained from a discussion of the treatment of quantifiers or of modal operators. The book contains examples and exercises, and is also intended for use as a textbook. It has become almost standard behavior to announce in logic texts that "no previous knowledge of logic is required"; and there have been some bold attempts at teaching the theories of Gödel within the first academic year. We do not join this chorus. An extensive introductory course is, for practically everybody, a prerequisite for the second and third parts, but not for the first part (and perhaps not for Chapter XII), which can be read — and in large measure understood — by anyone with some philosophical experience. In our courses for philosophy students (which of course also contained other material) we have found that material such as that in Part One can be profitably treated in the second year of the curriculum (at university level), and the second and third parts in the third year. Courses based on this book can be envisaged which do not follow the order of presentation of topics that we have chosen here. Thus a course may very well start with natural deduction (Chapter VI), or with dialectical models (Chapter IX).

The cultural and practical importance of logic (logics) is often mentioned but rarely demonstrated. It is usual to find the whole subject, including its history, treated in isolation from practically all philosophy, to say nothing of (other) public affairs. We wanted to write a text which would meet a number of culturally hot philosophical topics head-on. (What are we to understand by dialec-

X Preface

tics? Are formal logics reactionary?, and so on.) This may sound pretentious, but someone has to break the ice surrounding modern logic, and to run the risks that this implies.

We have been much stimulated by the response of our students in Utrecht and, later, in Groningen. We are grateful to them as well as to many others — to colleagues and students in the social sciences, for example — for encouragement and tokens of interest in the connections and perspectives discussed here. We received helpful criticism or other valuable comment from F. H. van Eemeren, R. Grootendorst, J. A. Hoeben, M. Henket, T. Kruiger, K. Lorenz, J. D. North, V. Sánchez Valencia, F. H. H. Schaeffer, E. Thijssen, F. J. M. M. Veltman and R. de Vrijer. Their comments led to a number of improvements in the text.

Warm thanks are due to those who undertook the arduous task of typing our manuscript. Large parts of the text were meticulously handled by F. A. Mulder at the Centrale Interfaculteit, Utrecht, and by C. A. M. Roy. F. C. van der Louw and P. M. Vooijs-Treffers did their utmost to help complete the typing as we became pressed for time. We wish to thank C. A. M. Roy and P. van Ulsen for their assistance in proofreading. The book would not have contained any indexes but for the efforts of P. van Ulsen.

Our especial gratitude is to C. A. M. Roy, of the University of St. Andrews, who also improved our English. Being a trained psycho-linguist she understood what she read, offered enlightened comments on grammar, idiom and style, and with the greatest of tact even pointed out inconsistencies in our presentation.

There are others whom we do not mention by name but to whom we are grateful for their constant support.

Groningen and Utrecht February 1981/March 1982 E. M. Barth and E. C. W. Krabbe

An Analytic Table of Contents in which are listed definitions, rules, lemmas, theorems and important terms

		VII XXXVII
PART ONE: L	OGICS ANI	DIALECTICS
Chapter I.	The philoso	ophical situation
I.1.	critical dialog	atic system to a contract about rules for gues. A survey of the forms of logical theory in of the century
	three "lav	vs of thought" of traditional logic 3
	The Theo	retical Cube (Figure I.1.) 4
	(i)	syntactical dimension; logical constants, lexicon 3-5
	(ii)	dimension of logical strength; classical logic, constructive (intuitionistic) logic; minimal logic 5-7
	(iii)	dimension of modes of presentation, or "garbs"; axiomatic garb; inferential garb; model-theoretic garb; dialectical garb
		 The algebraic approach; 2. Axiomatics; 3. Model theory; 4. Natural deduction; 5. Sequent systems; Method of semantic tableaux, counter-example, valuation problem, reduction rules; 7. Method of deductive tableaux, deduction problem; Dialogue games; 9. Method of dialogical tableaux.
12	The unity of	the garbs and methods in modern logic 13

I.3.		ent uses of "formal" and "deductive" and ent views about the grounds of validity 14
	(i)	$form_1, formal_1 \dots 14-15$
	(ii)	form ₂ , formal ₂ ; formally, deductively valid, formal consequence; bona consequentia, deduction in "logical space" (formal ₁), suppositio naturalis (potentialis); formal ₂ deduction 15-19
	(iii)	form ₃ , formal ₃ , formal ₃ procedure 19
I.4.		ng and social contract: ten theses on the flogic
	principal o	bjective of theoretical logic 19-20
		Principle of the Absolute; 'the logic', 20
		ystem or principle (σ) ; σ_1 should be pre-
	quate in re	llectual language-problem (π) ; σ is adespect of π ; σ_1 is objectively better than jectively valid; problem-solving validity . $20-21$
	company (zip ; logical convention; social contract; (γ) ; σ is a conventional principle of γ ; σ is alid; intersubjective/conventional validity; ni-conventional validity
I.5.	From Cogito	to Dubito
I.6.		conflicts, agression, and critical discus-
	(i)	conflicts of opinion 25
	(ii)	status quo; flux of opinions; power systems; critical debate 25-26
I.7.	Glimpses from	n traditional philosophy 26
,	(i)	debate; topics; probable dialectics; rhetoric
	(ii)	ars disserendi; Vernunftlehre; Wissenschaft der Logik; dialectica 26–27
	(iii)	external Secondness; das Du; associa-

Analytic Table of Co	ontents	XIII
	(iv)	pessimism; optimism; Great Chain of Being; Principle of Plenitude 27-28
	(v)	Widerstreit, Gegner; pre-predicative 28
	(vi)	deductive and inductive thought; dictum de omni et nullo; killing and in- carceration 28-30
	(vii)	idea; idealists; idea-ists; interior mono- logue
	(viii)	Sinn (unclear meaning of –); heyday of ideas, – of public meanings, – of sentences, – of sequents 30–31
	(ix)	arena for discussions about research into foundations
	(x)	conflict of avowed opinion 32
	(xi)	externalization, – of space, – of demonstration, – of conflict 32–33
	(xii)	any opponent; no error 33-34
	(xiii)	opposition; asymmetry; asymmetric polyadic predicates; electrical conflicts; to be incompatible; critical discussion
	(xiv)	social conflict, $$ of avowed opinion . 35
	(xv)	fundamentum in re; fundamentum in human disagreement
Chapter II		e languages, dialectical languages, and
	the impo	rtance of syntax for logic 37
II.1.		odological considerations concerning the guage forms
		anguage, artificial –, natural –; represent, ation
	formal sc	ience, empirical –; empirical intuition 39
		istica universalis; calculus ratiocinator;

II.2.	Declarative (descriptive) languages of the form 3 41
	the language J_1 ; elementary/atomic sentence (atom), connective, sentence, grammatical (formation) rules, syntax, construction diagram, principal operator; conditional (sentence), antecedent, consequent, purely implicational languages/languages of the form J ; mode of construction, application of J ; proper) subsentence, J formula; dummy sentence, the language J_0 ; the arrow; generating specifications (inductive clauses), generating/inductive/recursive definitions, generated/inductive class
	occurrence; Convention 4: mixed sequence of symbols
II.3.	Declarative (descriptive) languages of the forms \mathfrak{T} and \mathfrak{T}^{Λ}
	languages of the form \mathfrak{T} ; negations, conjunctions, veliunctions; the language \mathfrak{T}_0 , the ampersand, the vee, the tilde; languages of the form \mathfrak{T}^{Λ} , Λ (absurd/decidedly false sentence or veliunction of sentences)
II.4.	Dialectical languages and language forms 50
	non-descriptive/non-declarative/dialectical sentence forms, challenging/hypothetical ——, interrogative
	, exclamatory
	dialectically augmented language forms $\mathfrak{I}_{\mathbf{D}}$, $\mathfrak{I}_{\mathbf{D}}$,
	$\mathfrak{T}^{\Lambda}_{\mathbf{D}}$
	dialectical language/D-language $\mathfrak{L}_{\mathbf{D}}$, $\mathfrak{L}_{\mathbf{D}}^{\Lambda}$ 51
	declarative sentence assertive —, hypothetical —, question, exclamation; statement, assertive —, hypothetical —
II.5.	Speech acts
	list of schools and theories, with most prominent speech acts; theory of argumentation, verbal dialectics, verbalized "double focus", interaction of
	speech acts 52
	Exercises

Analytic Table of C	Contents	XV	
Chapter III		opinion and methods for their54	
	•	valid; dialectica, Obligation Game, lefinit; language-invariant rules 54-55	
Ш.1.	Conflicts of av	rowed opinions	
	Def. 1	conflict of avowed opinions, thesis, concessions, pure/simple conflict, mixed —	
		of avowed opinion, opposition of opinion	
III.2.	Deciding to di	scuss. Dialogue attitudes 57	
	Def. 2	resolved 57	
		al attitudes, statemental dialogue atti-	
	Def. 3	pro-position 58	
	Def. 4	contra-position	
	Def. 5	neutral position 58	
III.3.	Proponent and	l Opponent	
	dialectical i	oles 58–59	
	Def. 6	<i>Proponent</i>	
	Def. 7	<i>Opponent</i> 58	
III.4.	Speech acts .		
	Speaker, Ci	ritical Listener (Critic), aU 59	
	Def. 8	counter-attack/counter-criticism 59	
	defense, pU	ve/indirect defense, ca; protective/ direct U; The Principle of (verbal) Externaliza- lectics, ExtDial; aiU, pijU, ca; to criticack, to challenge	
III.5.		ry rules of some plausible systems of ics	
	FD E1	P and O 62	
	FD E2	general attitudes of P and O 62	
	FD E3	defense act: protective or counteractive	

	FD E4	= ExtDial	62
	FD E5	non-permitted moves	63
	FD E5 super	non-permitted moves	63
III.6.	Systematic diale	ectics	63
	FD S1	(fundamental norm) defense by making another statement	63
	Def. 9	stage	63
	Def. 10	(appropriate) chain of arguments	63
	Def. 11	(appropriate) discussion	64
	Def. 12	intermediary thesis; local thesis	64
	Def. 13	local concessions	64
	Def. 14	local conflict	65
	Def. 15	local discussion	65
	Def. 16	pertains to	65
	FD S2	conditional defense by means of a new local thesis	65
	Exercise		67
ш.7.		ics: The possibility of unconditional	68
	FD R1	(fundamental norm) sometimes an attempt by P shall be successful	68
	Def. 17	appropriate Ipse dixisti!-remark	68
	FD R2	unconditional defense by Ipse dixisti! .	69
	FD R3	loss of rights	70
	Exercise		70
III.8.	Winning and los	ing: Definitions and immediate effects .	71
	FD W1	winning a chain of arguments by rational means	71
	FD W2	losing a chain of arguments by rational means	71
	FD W3	"irrational"	71
	Def. 18	completed chain of arguments	72

Analytic Table of C	ontents	XVI	Ι
	FD W4	a. successful defense; b. successful refutation 72	2
	FD W5	expression, by N, of \overline{N} having won 72	2
	FD W6	expression, by N, of \overline{N} having lost 72	2
	FD W7	reopening of discussions 72	2
	Exercise .		2
Ш.9.		tween expression of statemental dialogue oss of rights 73	3
	Def. 19	contrary dialogue attitudes 73	3
	Exercise		4
III.10.	Rights and ob	oligations	4
	[ca; p _{il} U, .	$[,p_{ij}U,,p_{ik}U]$ $[$ 74	4
III.11.	Mixed conflict	s	4
	simple/pure	ixed conflicts, interference among conflicts; fundamental asymmetry in licts	5
III.12.	"Natural" rule	s; "Consequences" 75	5
	(i)	The "naturalness" of the rules suggested here	5
		logic, theory of argumentation, higher-order rules	5
	(ii)	A note on the meaning of "consequence" in this book	5
III.13.	Thoroughgoing	g dialectics 76	5
	FD T1	(fundamental norm) opportunity to attempt attacks/defenses in all possible manners	6
	line of attac	ck/defense	
	FD T2	retracing one's steps	5
	FD T3	losing a chain of arguments on account of retracing one's steps	5
	Exercise		7

III.14.	Orderly dialecti	cs	77
	FD 01	(fundamental norm) rights and duties determinate	77
	FD O2	a. loss of contra-position; b. loss of right to defend	77
	FD O3	retention of dialogue attitudes and obligations	78
	FD O4	isolation of local discussion	78
	FD O5	a. assuming neutral position; b. cancelling of obligations	78
	Exercises .		79
III.15.	Dynamic dialec	tics	79
	FD D1	(fundamental norm) flux of opinions	79
	FD D2	unavoidable decisions to be reached as soon as possible	79
	FD D3	limiting branching off	80
	FD D4	dynamic chain of arguments	80
	FD D5	one utterance at each stage 80-	-81
	FD D6	limitation of counter-attacks	81
	FD D7	O must attack at once or not at all	82
	Def. 20	a. dialogue situation; b. dialectically equal	83
	Def. 21	winning strategy	83
	FD D8	no useless repetition of local thesis	85
	Exercises .		86
III.16.	Dynamic dialec	tics (II)	86
	FD D9	clearly defined structural operators	86
	FD D10	decomposition	86
	F ₂ D 1	strip rules ("Lorenzen strips"): Rule, Rule, Rule, Rule,	-88
	Exercise .		89

Analytic Table of Contents XIX			ΊX	
Chapter IV.		Variants of fo	rmal ₃ dialectics	90
		completion of (non-generate	of systems of formal ₃ dialectics; fallacy ed move)	90
	IV.1.	Constructive dia	electic systems	90
	IV.1.1.	A dialectic syste	em with constructive implication	90
		FD R2≡	(fundamental closure rule) if and only if <i>Ipse dixisti</i> !	90
		Def. 1	CID (constructive-IF dialectics)	90
	IV.1.2.		em with constructive implication, con- ction and negation	91
		Def. 2	CND (constructive-NOT dialectics)	91
	IV.1.3.	A dialectic syste	em with constructive Λ	93
		Def. 3	appropriate Absurdum dixisti!-remark .	94
		FD R2≡v	if and only if <i>Ipse dixisti!</i> or <i>Ab-surdum dixisti!</i>	94
		Def. 4	CΛD (constructive-Λ dialectics)	94
			orthand notation for —; discussion, chain s for a sequent	-96
		Exercises		96
	IV.2.	Minimal dialecti	ic systems	96
	IV.2.1.	A dialectic syste	em with minimal implication	96
		Def. 5	MID (= CID)	96
	IV.2.2.		em with minimal Λ: A stricture on the	97
		Def. 6	MΛD (minimal-Λ dialectics)	97
	IV.2.3.	•	em with minimal implication, conjunc- n and negation	97
		FD M-NOT	a restriction on the permitted counter- attacks	97
		Def. 7	MND (minimal-NOT dialectics)	98
		Exercises		98
	IV.3.	Classical dialect	ic systems	98
		FD K	P retains its unused defense rights	98

IV.3.1.	A dialectic syste	em with classical implication 100
	Def. 8	KID (classical-IF dialectics) 100
IV.3.2.	A dialectic syste	em with classical Λ
	Def. 9	KAD (classical-Λ dialectics) 100
IV.3.3.		em with classical implication, conjunc- n and negation101
	Def. 10	KND (classical-NOT dialectics) 101
	F_2DK	protective defense by double negation . 102
	Exercises	
IV.4.	Summary	
	schematic su	rvey (Figure IV.6) 103
	Theorem 1	P has a winning strategy in minimal (constructive) system ⇒ P has a winning strategy in constructive (classical) system
IV.5.	Formal ₃ materi	al dialectic systems
	experimentar material trut to accept or	res, formal ₂ moves; ostensive means, tion, consultation, computation; h procedure, material falsity procedure, reject implicitly/explicitly; the classes
IV.5.1.		Material procedures subjoined to our systems
	Def. 11	appropriate Verum dixi!-remark 105
	Def. 12	appropriate Falsum dixisti!-remark 105
	FD R2M	if and only if Ipse dixisti!, or Absurdum dixisti!, or Verum dixi!, or Falsum dixisti!
	FD DM1	P may demand application of the material truth procedure to atomic local thesis
	FD DM2	P may demand application of the material falsity procedure to atomic concession

Analytic Table of C	ontents	XXI
IV.5.2.		ts under complete opposition: A formal ₃ ctic system
	Def. 13	mixed conflict under complete oppo- sition 109
	Def. 14	White, Black (roles) 109
	Def. 15	revision of Def. 11, Def. 12 109
	FD M1	revision of FD DM1 110
	FD M2	revision of FD DM2 110
	FD M3	revision of FD R2M 110
	Def. 16	MatDial (material dialectics for the resolution of mixed conflicts under complete opposition)
	Exercises	
hapter V.	_	ategies and dialogical strategy
	dialectical	reconstruction of the notion of 'logical
V.1.	Dialogue sequ	ents 117
	Def. 1	dialogue sequent 118
	official sys	tem, P-liberalized system 119
	Lemma 1	equivalence of official systems and P-liberalized systems
		notation for dialoque sequents; aiZ,
	[a _i Z]	
		quents: P, OI, OII, OIII
		quents: P, OI, OII, OIII
	types of se	120–121

V.2.	Strategy diagra	ms 124
V.2.1.	Tree diagrams	
	Def. 3	tree; root; predecessor
		infinite tree, successor, final node, to
	dominate, p	ath, branch 126
	Def. 4	tree diagram 126
	Def. 5	N-strategy diagram 126-127
	Def. 6	N-winning strategy diagram 127
V.2.2.	Rules for const	ructing P-winning strategy diagrams 128
		rules, choice rules, closure rules; rules
		II, OIII→, etc., Pd, P→, etc., Pid,
V.2.3.	König's Lemma	on trees
	Def. 7	finitely branching
	Lemma 3	König's Lemma
	Exercises .	
V.3.	Dialogical strate	egy tableaux
v .5.		
		bleaux, tree form notation, subtableaux, tableau
	Caveats 1-6	
	schematic re	presentation of rules 137-139
	Exercises .	
V.4.	Some simple pr	operties of dialectic systems 139
	Lemma 4	local discussions are finite 139
	measure of t	he complexity of dialogue situations 139
	Lemma 5	a chain of arguments in MatDial is finite
	Lemma 6	subformula property 141
	Lemma 7	each chain has finitely many local
		discussions
	Def. 8	locally finite
	Theorem 2	the official dialectic systems and MatDial are locally finite

Analytic Table of Co	ontents	XXIII
	Lemma 8.	winning strategy diagrams are finite 142
		n winning strategy diagrams, structural induction on formulas)
	R_{At}	restriction of <i>Ipse dixisti!</i> to atomic statements
	Theorem 3	admissibility of R_{At} 142
	Exercises .	
V.5.	Equivalence of	NOT-dialectics with Λ-dialectics 145
	equivalence	of dialectic systems
	Theorem 4	equivalence NOT-dialectics/Λ-dialectics
	Def. 9	illicit application of P^{Λ} ; well-arranged tableau
	Def. 10	Λ-property
	Def. 11	essential occurrence of Λ 150
	Lemma 10	no creation of essential occurrences of $\Lambda \dots $
	Lemma 11	transformation into well-arranged tableaux (MAD)
	Exercises .	
Chapter VI.	Natural dedu	ection 154
	for natural of	n and elimination of hypotheses, system deduction, int-elim-system, linear
VI.1.	Minimal natura	al deduction rules
VI.1.1.	Minimal deduc	tion rules for implication 156
	MP	Modus Ponens Rule 156
	dots, dashes	, operative
	CP	Rule of Conditional Proof 157
	scope, scope	e indicator, subordinate deduction 157
	TRIV	Trivial Deduction Rule, iteration rule . 157

	Dei. 1	natural deduction)	
	Def. 2	deduction for a sequent according to a linear system of natural deduction 158	
VI.1.2.		ion rules for conjunction, veljunction,	
	-	Separation Rules	
		Conjunction Rule	
	CONJ	,	
	CD	Rule of Case Distinction, Constructive Dilemma	
	AD_1, AD_2	Addition Rules, adjunction rules, veljunction rules	
	ECΛ	Ex Contradictione Sequitur Λ 162	
	RΛ	Reductio ad A Rule 162	
	Def. 3	MAnd (minimal-Λ natural deduction) . 163	
	$\Lambda_1, \Lambda_2 \dots$		
	Theorem 5	variants of MΛnd, etc 163	
VI.1.3.		ion rules for negation that do not in-	
	ECQN	Ex Contradictione Sequitur Quaelibet Negatio	
	MR	Minimal Reduction Rule 165	
	Def. 4	MNnd (minimal-NOT natural deduction)	
	Exercises .		
VI.2.	Constructive na	tural deduction rules 166	
VI.2.1.	An additional constructive deduction rule for Λ 16		
	ΕΛQ	Ex Λ Sequitur Quodlibet 166–167	
	Def. 5	CAnd (constructive-A natural deduction)	
VI.2.2.		onstructive rule for negation that does	
	ECQ	Ex Contradictione Sequitur Ouodlibet 167–168	

Analytic Table of Co	ontents	XXV
	Def. 6	CNnd (constructive-NOT natural deduction)
	Exercises .	
VI.3.	Classical natura	deduction rules
VI.3.1.		lassical deduction rule that involves
	P	Peirce's Rule
	Def. 7	KInd (classical-IF natural deduction) 169
VI.3.2.	An additional c	lassical deduction rule that involves A 170
	РΛ	<i>Peirce-</i> Λ- <i>Rule</i> 170
	Def. 8	KAnd (classical-A natural deduction) . 170
VI.3.3.	Additional class	sical rules that do not involve Λ 170
	KR	Classical Reduction Rule 170-171
	Def. 9	KNnd (classical-NOT natural deduction)
	EM	Rule of Excluded Middle 171-172
	DN	Double Negation Elimination Rule 171–172
	Theorem 6	variants of KNnd 172
	Exercises .	
VI.4.	Purely hypothe	tical variants 174
VI.5.	Replacement of	f equivalents 176
*	REP	Replacement of Equivalents 176
	Def. 10	a. equivalent to under (premises); b. interdeducible with 177
	Lemma 1	lemmas for replacement 177
	Theorem 7	admissibility of REP 177-178
	Exercises .	
Chapter VII.	Deductive tal	oleaux 180
	-	ired goal firmly in mind; reduce problem roblems

VII.1.		aux with implication as the only logical
VII.1.1.		aux with minimal (and constructive)
	premises (Π) problem, left	oblem (Π/Z), concludendum (Z), ; reduction rule, trivial deduction rule, right rule; $\rightarrow 1$, $\rightarrow r$ (rules for the closed problem, c (<i>Closure Rule</i>)180-182
	Def. 1	a. deductive tableau for a sequent, based on a system of reduction rules; b. closed deductive tableau 182
	Lemma 1	a closed deductive tableau is finite 182
	Def. 2	MIdt or CIdt (a system of rules for constructing deductive tableaux) 184
	Lemma 2	"tape theorem" for MIdt 185
VII.1.2.	Deductive ta	bleaux with classical implication 189
	Lemma 3	no closed tableau for some "classically valid" sequents
*	Def. 3	KIdt 191
	Lemma 4	"tape theorem" for KIdt 192
	Exercises	
VII.2.		of dialogical tableaux into deductive
	unit, half a u	nit
	Lemma 5	P-winning strategy (MID, KID) ⇒ closed deductive tableau (MIdt, KIdt) . 196
	Exercises	
VII.3.	The theory of d forms T and T	eductive tableaux, for languages of the
	(rules for vel	r (rules for conjunction), $v l$, $v r_1$, $v r_2$ junction), $\sim l_{\Lambda}$, $\sim r_{\Lambda}$, $\sim l_{min}$, $\sim l$, $\sim r$ gation); other rules: Λc , $\rightarrow \Lambda K$, $\sim K$ 198–202
	Def. 4	MΛdt, MNdt, CΛdt, CNdt, KΛdt, KNdt
	Theorem 8	(the full "tape theorem") closed deductive tableaux ⇒ natural deduction

Analytic Table of Con	ntents	XXVII
	Theorem 9	P-winning strategy ⇒ closed deductive tableau
	Exercises	212
Chapter VIII.	Axiomatics .	213
	"philosophic metaphysical	with philosophy of mathematics, al" logics, meta-logic; comparison with l-logical deduction from (First) Prinsers
VIII.1.		with minimal (and constructive)
	Def. 1	axiom of minimal-IF axiomatics (Axs 1, Axs 2)
	axiom schem	a, axiom, Rule of Substitution 214
	Def. 2	MIax
	Def. 3	a. axiomatic deduction for a sequent according to an axiom system; b. axiomatic proof; c. thesis 215-216
	Lemma 1	the deduction theorem for minimal-IF logic
	Exercises	
VIII.2.	Other axiom sys	stems
	Axs v1, Axs $Axs \sim min, A$ negation); Ax	&2, Axs &3 (axioms for conjunction); v2, Axs v3 (axioms for veljunction); $xs \sim 1$, $Axs \sim 2$, $Axs \sim 3$ (axioms for $xs P$; $Axs \Lambda 1$, $Axs \Lambda 2$, $Axs \Lambda 3$, $Axs \Lambda 4$ Λ)
	Def. 4	a. KIax; b. MΛax, CΛax, KΛax, MNax, CNax, KNax
	Theorem 10	(the "deduction theorem") natural deduction ⇒ axiomatic deduction 221
	Exercises	

Growth of agreement: Dialectical models for construc-

IX.3.

	agreement, P Agreement, ((Agreement) agreed, diale- tive, (r	agreement, Principle of Cumulation/Preservation of Agreement, (possible) dialectical situation (d), A (Agreement), N (Non-agreement), Agreed, Notagreed, dialectical development relation (R), cumulative ———, (non-) trivial cumulative development			
	Def. 5	normal dialectical structure 245			
	Positively-Ag	reed-in-d, Not-Agreed-in-d 246			
	Def. 6	a. interpretation; b. cumulative 246			
	Def. 7	constructive dialectical model 246			
	labeled graph	ns			
	Def. 8	constructive valuation (Sem_{At}^c , Sem^c &, Sem^c v, $Sem^c \rightarrow$, $Sem^c \sim$, $Sem^c \wedge$) 248			
	Lemma 3	"rules for N" 248			
	Lemma 4	cumulation of agreement 249			
	Def. 9	a. constructive model for Π/Γ ; b. constructive counter-example to Π/Z ; c. constructively valid (sequent) . 249–250			
	Lemma 5	constructive validity of the rule MP 250			
	Theorem 13	(second soundness theorem) the constructive axiomatic method is dialectically sound			
	Exercises				
IX.4.	Absurdity and a	bsurdity and minimal dialectical models 252			
	absurd dialec	etical situation, normal — 252			
	Def. 10	minimal dialectical structure 253			
	Def. 11	cumulative interpretation (on a minimal dialectical structure) 253			
	Def. 12	minimal dialectical model 253			
	Def. 13	minimal valuation (Sem ^m _{At} , Sem ^m →, Sem ^m &, Sem ^m ν, Sem ^m ~, Sem ^m Λ)			
	Lemma 6	"rules for N "			
	Lemma 7	cumulation of agreement 254			

		Def. 14	a. minimal model for Π/Γ ; b. minimal counter-example to Π/Z ; c. minimally valid (sequent)	255
		Theorem 14	(third soundness theorem) the minimal axiomatic method is dialectically sound even when absurd situations are admitted	255
		Theorem 15	classical (constructive) logic is stronger than constructive (minimal) logic	256
		Exercises		256
	IX.5.	Non-cumulative	dialectical models	257
			nns, companies of —; kinds of non- ogic; rationality	257
Chapter	X.	Semantic tabl	eaux	258
			inding out whether a sequent is modelvalid	258
	X.1.	Semantic tablea	ux for classical implication	259
		tion rule, triv	oblem, validity problem (Π/Γ) ; reductial evaluation problem, trivially valid; es for the conditional) 259-	-260
		Lemma 1	M is a model for the sequent on the left \Leftrightarrow M is a model for at least one sequent on the right	260
		C (Closure R	ule)	260
		Def. 1	a. classical semantic tableau for a sequent, based on a system of reduction rules; b. closed classical semantic tableau	261
		Def. 2	KIst	261
		Lemma 2	a closed semantic tableau (KIst) is finite	261
		Theorem 16	closed classical semantic tableau (KIst) ⇒ sequent is classically valid	261
		Def. 3	U has had sufficient attention by the (left/right) rules, concerning Π/Γ	263
		Def. 4	open sequent	264

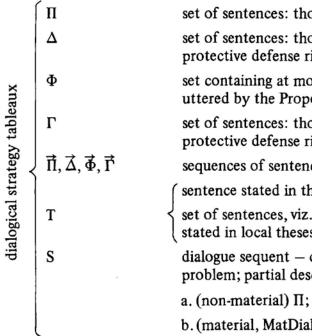
Analytic Table of Conter	nts	X	XXI
	Def. 5	Hintikka sequent	264
	Lemma 3	Hintikka sequents are classically invalid	265
	Lemma 4	tableau for Π/Γ containing Hintikka sequent shows classical invalidity of Π/Γ	265
	directives (A) tableaux (KI), (B), (C) for constructing semantic st)	266
	Lemma 5	tableau constructed in accordance with (C) will close or yield Hintikka sequent	266
	Theorem 17	(first completeness theorem) sequent is classically valid ⇒ a closed semantic tableau can be constructed	267
	Def. 6	a. decision procedure; b. decidable concept	267
	Theorem 18	(first decidability theorem) a. 'classical validity' is a decidable concept; b. to construct a semantic tableau in accordance with our directives is to apply a	
		decision procedure	
	Exercises		268
X.2. Th	ne theory of co	lassical semantic tableaux, for languages and \mathfrak{T}^{Λ}	269
	,	les for conjunction), $v L$, $v R$ (rules for $\sim L$, $\sim R$ (rules for negation)	269
	Lemma 6	[≈ Lemma 1]	269
	CΛ (a new cl	osure rule)	269
	Def. 7	a. KNst; b. KAst	270
	Lemma 7	[≈ Lemma 2]	270
	Theorem 19	[≈ Theorem 16]	270
	Def. 8	sufficient attention	271
	Lemma 8	[\approx Lemma 3 and Lemma 4]	271
	directive (C'))	273
	Lemma 9	[≈ Lemma 5]	273
	Theorem 20	(second completeness theorem) [≈ Theorem 17]	273

	Theorem 21	(second decidability theorem) [≈ Theorem 18] 273
	Exercises	
X.3. T	he theory of c	onstructive semantic tableaux 274
	Def. 9	a. model for a set of sequents; b. constructively (minimally) valid set of sequents
		$(=C^m)$ (a closure rule) 275-276
	Def. 10	CIst, MIst 276
	Def. 11	a. constructive (minimal) semantic tableau for a set of sequents, based on a system of reduction rules; b. constructive (minimal) semantic tableau for a sequent; c. closed constructive (minimal) semantic tableau
	vention 2: or $(=\& L^m), \& 1$ $v L^c (=v L^m)$ $\sim L^c, \sim R^c (n)$	t; Convention 1: dashes and dots; Concern of rule applications; & L ^c R ^c (=& R ^m) (rules for conjunction); , v R ^c (=v R ^m) (rules for veljunction); rules for negation); CA ^c (a closure
	Lemma 10	M is a model for the set of sequents on the left ⇔ M is a model for at least one of the sets of sequents on the right 279
	Def. 12	a. CNst; b. CAst
	Lemma 11	a closed semantic tableau (CIst, CNst, CAst) is finite 280
	Theorem 22	closed constructive semantic tableau ⇒ (set of) sequent(s) is constructively valid
	Def. 13	in the set Σ , the sentence U has had sufficient attention by the (left/right) rules concerning the sequent Π/Γ 281
	Def. 14	open set of sequents 281
	Def. 15	Hintikka set (of sequents) 282
	Lemma 12	Hintikka sets are constructively invalid 282

	Lemma 13	tableau for Σ containing Hintikka set shows that Σ is constructively invalid .	283
	Def. 16	a. creative rules, normal rules; b. internally complete (sequent)	285
	directives (A), (B), (C)	286
	Lemma 14	tableau constructed in accordance with (C) will close or yield Hintikka set	286
	Theorem 23	(third completeness theorem) (set of) sequent(s) is constructively valid ⇒ a closed constructive semantic tableau can be constructed	288
	Theorem 24	(third decidability theorem) a. 'constructive validity' is a decidable concept; b. to construct a constructive semantic tableau in accordance with our directives is to apply a decision procedure	288
,	Exercises		288
X.4. TI	-	ninimal semantic tableaux	289 290
	Def. 17	MAst, MNst	
	Lemma 15	[≈ Lemma 10]	
	Lemma 16	[≈ Lemma 11]	
		[≈ Theorem 22]	
	Def. 18	sufficient attention 292-	
		[≈ Lemma 12]	
		[≈ Lemma 13]	
	Lemma 19	[≈ Lemma 14]	294
	Theorem 26	(fourth completeness theorem) [≈ Theorem 23]	295
	Theorem 27	(fourth decidability theorem) [≈ Theorem 24]	295
	The Theoreti	cal Cube, dressed up (Figure X.2)	295
	Exercises		296

Chapter XI.	The unity of the garbs — and what next	297
	the unity of the garbs and of the methods in (elementary) modern logic	297
XI.1.	How to prove the missing link	297
	Theorem 28 (stated) a semantic tableau for Π/Z is closed \Rightarrow there is a P-winning strategy for $\Pi/_{O}Z$ 2	!97
XI.2.	Constructive and minimal systems. Equivalences concerning the existence of winning strategies	298
	Lemma 1	299
XI.3.	Classical systems. Equivalences concerning the existence of winning strategies	00
	Lemma 2	00
XI.4.	Classical systems. From closed semantic tableau to winning strategy for the Proponent	00
	Lemma 3 closed semantic tableau for $\Pi/\Gamma \Rightarrow$ P-winning strategy for Π/P (classical systems)	801
	Exercise	
XI.5.	Constructive and minimal systems. From closed semantic tableau to winning strategy for the Proponent 3	302
	Lemma 4 closed semantic tableau for $\Sigma \Rightarrow$ for at least one $\Pi/\Gamma \in \Sigma$, there is a P-winning strategy for Π/P (constructive and	
	minimal systems)	302
	Exercise 3	305
XI.6.	Full circle	305
	Theorem 28 (proved)	305
	schematic survey (Figure XI.1)	306
	Theorem 29 the unity of the garbs	306
	consequence: Gentzen's Hauptsatz	307
XI.7.	What next in the Theory of Argumentation? 3	307

Analytic Table of Co	ontents XXXV
Chapter XII.	From ontology to flux of opinions 309
	ratio; traditional logic, neglect of fallacy, ontology 309
XII.1.	Ontology and discussion: Two paradigms in logic and epistemology
	two contrary paradigms
XII.2.	How to generate the object of ontology 310
	APA (Aristotle's – and Plato's – Principle of the Absolute), ω_{Re1} ; R^{as} (asymmetric relation obtained from R); ω_{R}^{as} , d^* (Being) 310–312
XII.3.	The logic of the final state. Ontological valuation 312
	(ultimate) ontological valuation (Sem→ont, Semont) in a constructive model satisfying APA
XII.4.	The notions 'Truth' and 'Falsity'
	'the (absolute, final) set of dialectical or material procedures
XII.5.	Instantaneous (etc.) ontology
	True-at-t, False-at-t 314
XII.6.	Model theory and ontology. The Replacement Theory of the Notion of Truth
XII.7.	From dialectics ad quem to dialectics a quo 315
	terminus ad quem; vectorial mode of thought; terminus a quo
Bibliography	317
Index of names .	327
Index of subjects	329


A List of Variables

	A value of the variable	is $a(n)$
E 5 (γ	company, dialectical subject
problem	π	logico-intellectual language problem discerned by a company γ
	d	dialectical situation of a company/dialectical subject γ
ons,	D	set of dialectical situations d
otic -	R	development relation, to be defined on D
of -	Ras	asymmetric relation obtained from R
older philsophical notions, analysis of —	$\omega_{ m R}, \omega_{ m R}$ as	conceptual result of applying Aristotle's Principle of the Absolute to R (to R ^{as})
	т	type of sentence tag for indicating objective truth [ontological value, truth value]
	F	type of sentence tag for indicating objective falsity [ontological value, truth value]
	S [see below]	ontological structure (T, F)
	σ	language system or principle, (system of) rule(s) for uses of language; — considered by γ in pursuit of/ as/ a solution to π
purely descriptive languages	£	language (lexicon — here a set of atomic sentences —, logical constants, and syntactic rules), purely descriptive (declarative) —
	Λ	veljunction of all absurd/decidedly false sentences
	c v	language containing at least one absurd/decidedly false sentence
а	T,,Z	sentence

classical (ontological) semantics	I [see below]	classical (ontological) interpretation of a language $\mathfrak C$ (here, function from atomic sentences to the elements of $\{T, F\}$)
	M [see below]	classical (ontological) model $\langle S, I \rangle = \langle T, F, I \rangle$ with respect to a language \mathfrak{L}
	v _M [see below]	classical valuation (function) of (the sentences of) a language $\[\mathcal{L} \]$, induced by a classical (ontological) model M
	N	dialectical role, e.g., Proponent or Opponent
tics	$\mathfrak{L}_{\mathbf{D}},\mathfrak{L}_{\mathbf{D}}^{\mathbf{\Lambda}}$	dialectically augmented language
	T, \ldots, Z T, T_1, T_n	statement
	T, T_1, T_n	thesis, initial thesis, nth local thesis
	Con, Con_1, Con_n	set of concessions, set of initial concessions, nth set of local concessions
	S	stage in a dialogue/discussion
	S	dialogue situation (constellation of rights, obliga- tions and attitudes, at the beginning of a chain of arguments or at the completion of some stage s)
ialec	aU	verbal attack on U
formal ₃ dialectics	dU	move in defense of U against the attack aU
rma	ca	counteractive/indirect defense (counter-attack)
Ç	pU	protective/direct defense of U
	a_iU	sentence used in an attack on U of the i'th kind
	$p_{ij}U$	sentence used in a protective defense of U of the j'th kind, against an attack on U of the i'th kind
	π π_0	set of $\left\{\begin{array}{l} \text{implicitly} \\ \text{explicitly} \end{array}\right\}$ accepted sentences (based on some material truth procedure adopted by γ)
	F F ₀ >	set of $\left\{\begin{array}{l} \text{implicitly} \\ \text{explicitly} \end{array}\right\}$ rejected sentences (based on some material falsity procedure adopted by γ)

A List of Variables XXXIX

dialectical semantics	A	type of sentence tag for indicating positive agreement on a sentence (in some dialectical situation d and by some dialectical subject γ) [dialectical value]
	N	type of sentence tag for indicating lack of posi- tive agreement on a sentence [dialectical value]
	Abs	set of absurd dialectical situations
	8	dialectical structure, normal: $\langle A, N, D, R \rangle$, or minimal: $\langle A, N, D, Abs, R \rangle$
	I	interpretation of a language $\mathfrak L$ or $\mathfrak L^\Lambda$ on a dialectical structure (here, function from atomic sentences and dialectical situations to the elements of $\{A, N\}$)
	M	dialectical model $\langle S, I \rangle = \langle A, N, D, R, I \rangle$ (or = $\langle A, N, D, Abs, R, I \rangle$) of a language \mathfrak{L} or \mathfrak{L}^{Λ}
	v _M	constructive or minimal valuation (function) of (the sentences of) a language $\mathfrak L$ or $\mathfrak L^\Lambda$, induced by a dialectical model M
	τ	tableau, tree diagram
Beth-tableaux	Π [see below]	set of sentences: premises in a deduction problem, or sentences to be given the value T (or the value A) in a solution of a valuation problem
	Γ[see below]	set of sentences: those which in a solution of a valuation problem are to be given the value F (or the value N)
	Z	concludendum (a sentence)
	S [see below]	sequent Π/Z or Π/Γ — characterizes a deduction/valuation problem; partial description of a dialectical situation d
	Σ	set of sequents; partial description of a dialectical model

set of sentences: those stated as concessions set of sentences: those representing structural protective defense rights on the Opponent's side set containing at most one sentence, viz., the one uttered by the Proponent in the preceding stage set of sentences: those representing structural protective defense rights on the Proponent's side sequences of sentences (compare $\Pi, \Delta, \Phi, \Gamma$) sentence stated in the local thesis T

set of sentences, viz., the set of all sentences that are stated in local theses up to a certain stage dialogue sequent — characterizes a strategy problem; partial description of a dialogue situation

- a. (non-material) Π ; $\Delta/T/_N \Phi$; Γ
- b. (material, MatDial) $\vec{\Pi}$; $\vec{\Delta}/\mathbb{T}/_{\mathbf{N}} \vec{\Phi}$; $\vec{\Gamma}$