
3 Conformal mapping
Second Hypothesis: That small regions of the Earth should be displayed as similar figures in the
plane.

Leonhard Euler, “On the mapping of spherical surfaces onto the plane” (1777)

3.1 Motivation: classifying complex regions up to conformal
equivalence

As we discussed in Chapter 1, the notion of a conformal mapping is a highly appealing
geometric idea that can be explained to anyone without any requirement that they ever
heard of complex analysis, let alone understand any of the mathematics underlying it.
Anyone who can appreciate the art of M. C. Escher (see Fig. 1.2 on p. 8) will intuitively
grasp that there is something special and beautiful about conformal maps.

Conformalmaps are also an important tool in the toolkit of appliedmathematicians.
They have many applications for solving important partial differential equations that
show up in physics, engineering, and in other areas as diverse as cartography [68] and
medical imaging [37].

In this chapter, we will approach the area of conformal mapping from a purely
complex-analytic direction. We will see that this side of the theory has a beauty all
its own, which, while subtle and requiring patience and contemplation to appreciate,
equals and perhaps surpasses the more obvious aspects appreciated by art lovers and
equation solvers.

Let Ω ⊂ ℂ be a complex region. In complex analysis, we often wish to understand
the classes of functionsℋ(Ω) andℳ(Ω) of holomorphic andmeromorphic functions on
Ω, respectively. You might think that the structures of these classes of functions would
depend in some highly sensitive way on the particular choice of the region Ω. As it turns
out, this is largely untrue: although the structure of such a family does vary somewhat,
there are large families of regionsΩ forwhich the structure ofℋ(Ω) (respectively,ℳ(Ω))
is the same across all members of a given family, so that it is in practice enough to un-
derstand what is happening in one representative region of each family. Moreover, the
question ofwhich family a particular regionΩbelongs to can inmany cases be answered
using topological properties of Ω.

To make this idea precise, we define an equivalence relation on regions that cap-
tures the notion that for two regions Ω and Ω′, ℋ(Ω) and ℋ(Ω′) “have the same struc-
ture.” This relation is called biholomorphism or conformal equivalence. We say that
Ω andΩ′ are conformally equivalent if there is a bijective holomorphicmap g : Ω→ Ω′

whose inverse is also holomorphic. Such a map g is called a biholomorphism, biholo-
morphicmap, or conformalmap. Note that a conformal mapmust satisfy g′(z) ̸= 0 for

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
https://doi.org/10.1515/9783110796810-004



3.1 Motivation: classification of complex regions � 119

any z ∈ Ω, by Corollary 1.58. It is trivial to check that the relation of conformal equiva-
lence is, as its name suggests, an equivalence relation.1

If Ω and Ω′ are conformally equivalent and related by a conformal map g : Ω→ Ω′,
then each holomorphic function (respectively, meromorphic function) f : Ω → ℂ can
be used to define a holomorphic (respectively, meromorphic) function f̃ : Ω′ → ℂ by

f̃ = f ∘ g−1.

It is immediate to check that the correspondence f 󳨃→ f̃ defines a bijection between
ℋ(Ω) and ℋ(Ω′) (respectively, between ℳ(Ω) and ℳ(Ω′)). Thus the conformal map
allows us to translate any question about holomorphic or meromorphic functions on Ω′

to a question about holomorphic or meromorphic functions on Ω. The definition of
conformal equivalence therefore captures precisely the notion of equivalence we were
interested in.

In many areas of mathematics, when we find an interesting equivalence relation,
this immediately leads to a standard set of interesting questions: how do we determine
equivalence? Can we describe all equivalence classes, or at least some particularly sim-
ple or important ones? Do there exist some canonical representatives in each of those
equivalence classes? How can we construct a map demonstrating equivalence, and to
what extent is it unique? And so on. Asking such questions for this particular equiva-
lence relation turns out to be very fruitful and is what the area of conformal mapping
is about.

Examples. Here are some regions that seem worth thinking about from the point of
view of conformal mapping, both theoretically and because they arise in applications
(for example, in the study of Laplace’s equation in mathematical physics, electrostatics,
hydrodynamics, etc):
1. the complex plane ℂ
2. the punctured plane ℂ \ {0}
3. the unit disc𝔻 = {z ∈ ℂ : |z| < 1}
4. the upper half-planeℍ = {z ∈ ℂ : Im(z) > 0}
5. the Riemann sphere2 ℂ̂ = ℂ ∪ {∞}

1 In this chapter, we use the term “conformal map” with a slightly different meaning than the sense in
which this term was used in Subsection 1.3.4. That subsection was concerned with understanding the
property of being conformal as a local property; here we develop the conceptually much richer set of
ideas related to understanding maps that are globally conformal—that is, conformal everywhere in the
local sense but also bijective. Moreover, the conformal maps from Subsection 1.3.4 were not assumed to
be orientation preserving. Here we focus on conformal maps that are holomorphic, which in particular
means that they are orientation preserving (see (1.25)).
2 The Riemann sphere is not quite a complex region in the usual sense; technically, it is a Riemann sur-
face, but we will still count it and trust that you understand how the various definitions apply in that sit-
uation; refer to Section 1.11. Actually, the same classification questions we are addressing in the context



120 � 3 Conformal mapping

6. the slit plane ℂ \ (−∞, 0]
7. a strip S(x1, x2) = {z ∈ ℂ : 0 < Re(z) < 1}
8. a rectangle {z ∈ ℂ : 0 < Re(z) < 1, a < Im(z) < b}
9. an annulus A(r1, r2) = {z ∈ ℂ : r1 < |z| < r2}
10. a quadrant {z : Re(z) > 0, Im(z) > 0}
11. an ellipse {z = x + iy : ( xA )

2 + ( yB )
2 < 1}

12. the plane with an interval removed, ℂ \ [−1, 1]
13. the upper half-plane with an interval removed,ℍ \ [0, i]
14. a “blob” (Fig. 3.1)

Figure 3.1: Two blob-shaped regions. Are they conformally equivalent?

Can you guess what is the correct grouping of these regions according to conformal
equivalence? (Note: in example 9 of the annulus, we in fact have a family of regions,
which may not all be conformally equivalent to each other.) By the end of this chapter,
you will know the answers.

Since conformal maps are continuous, the relation of conformal equivalence is a
stronger notion of equivalence than topological equivalence (a. k. a. homeomorphism).
We record this obvious but important fact as a lemma.

Lemma 3.1. If regionsΩ andΩ′ are conformally equivalent, then they are homeomorphic.

Next, if regions Ω and Ω′ are conformally equivalent, with the conformal map g :
Ω → Ω′ relating them, then is g unique? If not, can the extent to which it is not unique
be made precise? The answer to these questions is described in terms of the automor-
phism group of a complex region. More precisely, if g̃ : Ω → Ω′ is another conformal
map, then the map h : Ω→ Ω defined by

h = g−1 ∘ g̃

of conformal equivalence apply more generally in the theory of Riemann surfaces. We will encounter
an interesting example of the classification of a class of Riemann surfaces up to conformal equivalence
in Chapters 4 and 5; see Sections 4.15, 5.5, and 5.11.
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is a conformal equivalence map between Ω and itself. We call such a map a (conformal)
automorphism of Ω. Conversely, if g : Ω → Ω′ is a conformal map and h : Ω → Ω is a
conformal automorphism, then g̃ : Ω→ Ω′ defined by

g̃ = g ∘ h

is also a conformal map from Ω to Ω′, and clearly every conformal map g̃ : Ω → Ω′

can be represented in such a way for some automorphism h : Ω → Ω (just define h
as above). Thus the family of automorphisms of Ω precisely measures the extent of the
nonuniqueness of the conformal map g : Ω → Ω′ for any Ω′ that is conformally equiv-
alent to Ω. This family has the algebraic structure of a group, with the group operation
being composition of maps, and is thus referred to as the automorphism group of Ω. We
denote this group by Aut(Ω). We will seek to give explicit descriptions of automorphism
groups whenever this is possible.

To conclude this general discussion, we note one additional useful fact about con-
formal maps.

Lemma 3.2. In the definition of conformal equivalence, the condition that g−1 is holo-
morphic can be dropped, that is, if g : Ω → Ω′ is holomorphic and bijective, then g−1 is
automatically holomorphic.

Proof. Since g satisfies g′(z0) ̸= 0 for any z0 ∈ Ω, the inverse function theorem (Theo-
rem 1.56) implies that the inverse map g−1 exists locally in a neighborhood of g(z0) as a
holomorphic function for any z0 ∈ Ω. Since g is a bijection, the inverse function exists
globally (in the sense of set theory) as a function g−1 : Ω′ → Ω. The fact that g−1 is locally
holomorphic implies that the global inverse function g−1 is holomorphic, which is the
claim of the lemma.

In the next few sections, we begin to classify some of the main conformal equiva-
lence classes that every complex analyst should be familiar with. The most important
classification result in this chapter is the Riemann mapping theorem, which is formu-
lated in Section 3.4.

Suggested exercises for Section 3.1. 3.1.

3.2 First singleton conformal equivalence class: the complex plane
The first conformal equivalence class we discuss contains just a single element, the com-
plex plane. This is explained by the following theorem.

Theorem 3.3. Let g : ℂ → Ω be a conformal map betweenℂ and a region Ω. Then Ω = ℂ,
g(z) is a conformal automorphism, and g(z) has the form

g(z) = az + b

for some complex numbers a, b with a ̸= 0.
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Proof. Let g : ℂ → Ω be a conformal equivalence map. We will prove that g(z) is of the
form g(z) = az + b with a ̸= 0 just based on the assumption that it is an entire function
and that it is injective; the additional claims that Ω = ℂ and g(z) is an automorphism
will then follow.

Since g(z) is an entire function, it is either a polynomial, or it is not. We treat each
of those two cases separately (proving that g(z) is of the desired form in the first case
and proving that the second case cannot occur).

If g(z) is a polynomial, it cannot be a constant since those certainly are not injective
maps. We claim that it also cannot be a polynomial of degree k ≥ 2, which if true would
leave only the option of a linear function g(z) = az + b with a ̸= 0. The fact that poly-
nomials of degree higher than 1 are not injective is easy to see: a polynomial of degree
k has k roots counting with multiplicity, which means that either there are at least two
distinct zeros (contradicting the assumption of injectivity), or there is a single zero of
multiplicity k, which means that the polynomial is of the form g(z) = c(z − a)k . This
polynomial is clearly also not injective since in that case the equation g(z) = 1 has k
distinct solutions.

It remains to consider the other possibility of an entire function that is not a poly-
nomial. In that scenario, we claim that g(z) has an essential singularity at z = ∞. For
otherwise, by our classification of singularities (Section 1.12), g(z) must have a pole of
some order k at infinity. However, having such a pole implies that the rate of growth
of |g(z)| is restricted by the order of the pole; specifically, g(z) satisfies a bound of the
form |g(z)| ≤ A + B|z|k for all z, where A and B are positive real constants. Now a well-
known argument frombasic complex analysis (Exercise 1.25) implies that g(z) is actually
a polynomial of degree at most k, which is a contradiction.

We are now in a good position to apply the Casorati–Weierstrass theorem (Theo-
rem 1.46) about the behavior of functions near an essential singularity. Denote w0 =
g(0). Since g(z) is an open mapping by the open mapping theorem (Theorem 1.50), the
image g(𝔻) of the unit disc under g(z) contains an open neighborhood E of w0. But by
the Casorati–Weierstrass theorem the image g(ℂ \ D≤R(0)) of the complement of any
closed disc around 0 (i. e., any neighborhood of∞) is dense in ℂ and therefore has a
nonempty intersection with E. This intersection means that there exist points z1 ∈ 𝔻
and z2 ∈ ℂ \ DR(0) for which

g(z1) = g(z2).

Now if R > 1, then z1 ̸= z2. We have therefore shown that g(z) is not injective, which
contradicts our initial assumption. Thus the scenario of a conformal map on ℂ that is
not a polynomial is impossible, and the proof is complete.

By Theorem 3.3 the group of conformal automorphisms of ℂ is

Aut(ℂ) = {z 󳨃→ az + b : a, b ∈ ℂ, a ̸= 0}.
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3.3 Second singleton conformal equivalence class: the Riemann
sphere

There is a second conformal equivalence class that is a singleton, the Riemann sphere.
The following result is the analogue of Theorem 3.3 for ℂ̂.

Theorem 3.4. If g : ℂ̂ → Ω is a conformal map between ℂ̂ and a region Ω, then Ω = ℂ̂,
g(z) is a conformal automorphism, and g(z) has the form

g(z) = az + b
cz + d

(3.1)

for some complex numbers a, b, c, d with ad − bc ̸= 0.

Proof of Theorem 3.4. We start by proving that Ω = ℂ̂. Assume that this is not the case,
i. e., that there is at least one point w ∈ ℂ̂ that is not in the image g(ℂ̂). We can assume
without loss of generality that w = ∞; otherwise, replace the map g(z) with g̃(z) =

1
g(z)−w . Once g̃(z) is shown to be of the desired form (3.1), solving the equation g̃(z) =

1
g(z)−w for g(z) shows that g(z) is of that form as well.

Since g(z) does not take the value∞, it also cannot approach infinity, that is, there
does not exist a sequence (zn)

∞
n=1 of points in ℂ̂ for which g(zn) → ∞. If such a sequence

existed, we could use the fact that ℂ̂ is compact to extract a convergent subsequence
znk → Z ∈ ℂ̂, whence it would follow, since g(z) is a continuous function, that g(Z) = ∞,
which cannot happen since∞ is not in the image of g(z).

The fact that g(z)does not approach∞means simply that g(z) is a bounded function
and a holomorphic one at that (our a priori assumption that allows Ω to contain the
point∞ only means it is meromorphic). Thus it is a bounded entire function and hence
constant by Liouville’s theorem, a contradiction.

Having established that Ω = ℂ̂, we now know that g(z) is a genuine automorphism
of ℂ̂. Denote w = g(∞). Once again, we can assume without loss of generality that w =
∞; otherwise, replace themap g(z)with g̃(z) = 1

g(z)−w as before. Under this assumption,
the restriction of g(z) toℂ is a conformal automorphism ofℂ, so from the discussion in
the previous section we know that g(z) is of the form az+b for some a, b ∈ ℂ, a ̸= 0.

By Theorem 3.4 the group of conformal automorphisms of ℂ̂ is

Aut(ℂ̂) = {z 󳨃→ az + b
cz + d
: a, b, c, d ∈ ℂ, ad − bc ̸= 0}. (3.2)

The elements of this group are known asMöbius transformations. An important and
easy-to-check property of such transformations is that they act as 2 × 2 linear transfor-
mations; more precisely, given two Möbius transformations

T1(z) =
a1z + b1
c1z + d1

and T2(z) =
a2z + b2
c2z + d2

, (3.3)
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their composition is given by

(T1 ∘ T2)(z) =
αz + β
γz + δ
, (3.4)

where α, β, γ, δ are the entries of the matrix

(
α β
γ δ
) = (

a1 b1
c1 d1
)(

a2 b2
c2 d2
) . (3.5)

For this reason, Möbius transformations are also known as fractional linear transfor-
mations.

The group (3.2) is also sometimes referred to as the projective linear group (of
order 2 over the complex numbers) and denoted PSL(2, ℂ). The reason for this termi-
nology is as follows. If we define the special linear group (of order 2 over the complex
numbers) by

SL(2, ℂ) = {(a b
c d
) : a, b, c, d ∈ ℂ, ad − bc = 1} ,

then we can easily check that the association mapping a matrix ( a b
c d ) ∈ SL(2, ℂ) to the

Möbius transformation z 󳨃→ az+b
cz+d is a surjective group homomorphism, which has the

subgroup {±( 1 00 1 )} as its kernel. Thus, by the first isomorphism theorem in group theory,
the group Aut(ℂ̂) can be identified with the quotient group

SL(2, ℂ)/{±( 1 00 1 )}.

The quotienting operation in this context is often referred to as projectivization, which
leads to the name projective linear group both for the quotient group and the occasional
use of the same name and notation for the group of Möbius transformations.

The group PSL(2, ℂ) is an important group inmathematics and even has interesting
connections to physics; see the box overleaf.

Suggested exercises for Section 3.3. 3.2.

3.4 The Riemann mapping theorem

We have seen two conformal equivalence classes consisting of a single element each.
Obviously, if all other equivalence classes were also singletons, the situation would be
extremely boring, and the notion of conformal equivalence would not even deserve its
own name. It is easy to see however that the true situation is, at least, more complicated
than this simplistic scenario (see Exercise 3.3).
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The group PSL(2, ℂ) and the night sky of a relativistically
moving observer
Suppose you get into a spaceship and speed away from Earth, reaching a velocity of αc, where c is the
speed of light, and the fraction α is substantial (say, higher than 5%). We know from science fiction
movies that your view of the stars as you peer through the spaceship window will appear distorted. But
how, exactly? This problem has a delightful connection to complex analysis and the automorphism group
PSL(2,ℂ) of the Riemann sphere. In fact, your view of the celestial sphere of stars gets transformed by a
Möbius transformation acting on the celestial sphere precisely as if it were the Riemann sphere.

Mathematically, the connection is roughly as follows: it is well known from the theory of special
relativity that an observer moving at relativistic velocity v relative to the Earth (which for the sake of
discussion we assume is an inertial frame of reference) will have their time and space coordinates trans-
formed from the Earth’s time and space coordinate system according to a type of linear transformation
known as a proper, orthochronous Lorentz transformation. The group of such transformations can be
represented as the group of 4 × 4 real matrices

L↑+ = {T ∈ Mat4×4(ℝ) : det(T) = 1, T1,1 < 0, T
⊤XT = X},

where X is the 4× 4 diagonal matrix with diagonal entries −1, 1, 1, 1. In fact, it can be shown that L↑+ is iso-
morphic to PSL(2,ℂ) and that the isomorphism ρ : L↑+ → PSL(2,ℂ) is such that for the moving observer
with a given associated Lorentz transformation T , the distortion of themoving observer’s celestial sphere
relative to the celestial sphere of the static frame of reference is described precisely by the Möbius trans-
formation ρ(T), under the obvious identification between the celestial sphere and the Riemann sphere.
See [53, Appendix B] and [55, Ch. 1] for the details of this surprising result.

On this optimistic note, it looks like there ought to be some interesting phenomena
for us to explore. This brings us to one of the most fundamental results on conformal
mapping, the Riemann mapping theorem, which identifies the first nontrivial confor-
mal equivalence class and the one that undoubtedly plays the most central role in com-
plex analysis.

Theorem 3.5 (Riemann mapping theorem: simple version). Let Ω,Ω′ ⊂ ℂ be simply con-
nected complex regions with Ω,Ω′ ̸= ℂ. Then Ω and Ω′ are conformally equivalent.

As an immediate corollary, we get an interesting result in topology, an illustration of
the principle that the often symbiotic relationship between complex analysis and topol-
ogy involves a flow of ideas in both directions.

Corollary 3.6. Any two simply connected regions in the plane are homeomorphic.

This well-known result can also be proved without the use of complex analysis.
See [W17] for a related discussion.

To prove Theorem 3.5, we will need to develop some new theoretical ideas (which
are also interesting in their own right and are of broader applicability). A more precise
version of the theorem is stated in Section 3.7.

Tangentially to that effort, we also wish to understand the structure of the auto-
morphism groups Aut(Ω) for regions Ω belonging to the conformal equivalence class
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described by the theorem. By Exercise 3.1 all such groups are isomorphic in such a way
that the isomorphism between any two can be described in terms of conformal equiv-
alence maps g : Ω → Ω′ relating different class members. Thus, to understand the
automorphism groups, it is in fact sufficient to classify the automorphisms for just one
representative member of the class. There are two fairly canonical choices for such a
member, the unit disc𝔻 and the upper half-planeℍ (and those two are easy to relate to
each other, though doing so is still interesting). We discuss these regions in the next two
sections.

Suggested exercises for Section 3.4. 3.3.

3.5 The unit disc and its automorphisms

The next result, known as the Schwarz lemma, is a simple yet powerful result about
holomorphic functions from the unit disc to itself that keep the origin fixed. It is an
important tool on the path to characterizing the automorphisms of the unit disc.

If g : 𝔻 → 𝔻, then we say that g(z) is a rotation map, or simply a rotation, if it is
of the form g(z) = eiθz for some θ ∈ [0, 2π).

Lemma 3.7 (The Schwarz lemma). Let g : 𝔻 → 𝔻 be a holomorphic function that satisfies
g(0) = 0. Then:
1. |g(z)| ≤ |z| for all z ∈ 𝔻.
2. If |g(z)| = |z| for some z ̸= 0, then g(z) is a rotation.
3. |g′(0)| ≤ 1.
4. If |g′(0)| = 1, then g(z) is a rotation.

Proof. Since g(z) has a zero at z = 0, we know that it satisfies |g(z)| ≤ C|z| for some
C > 0 and all z in some neighborhood of 0. This is a weaker inequality than the one we
are trying to prove, but in fact it is a helpful observation, as it can be restated as the
claim that h(z) = g(z)/z satisfies |h(z)| ≤ C for all z ∈ 𝔻 \ {0}; that is, h(z) is bounded in a
puncturedneighborhoodof 0 andof course holomorphic there. ByRiemann’s removable
singularity theorem (Theorem 1.38), h(z) therefore has a removable singularity at 0 and
can be extended to a holomorphic function on all of 𝔻 (which we still denote h(z), as
per the usual convention when talking about analytic continuation). Now let z ∈ 𝔻 \
{0}, and let r be a real number with |z| < r < 1. By the maximum modulus principle
(Theorem 1.51) the maximum modulus of h(z) in the closed disc of radius r around 0 is
attained at the boundary of that disc. Therefore we have that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

g(z)
z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 󵄨󵄨󵄨󵄨h(z)
󵄨󵄨󵄨󵄨 ≤ max|w|≤r

󵄨󵄨󵄨󵄨h(w)
󵄨󵄨󵄨󵄨 ≤ max0≤t<2π

󵄨󵄨󵄨󵄨h(re
it)󵄨󵄨󵄨󵄨 = max0≤t<2π

|g(reit)|
r
≤
1
r
.

(In the last step, we used the fact that g(z)maps𝔻 into itself, so |g(w)| ≤ 1 for allw ∈ 𝔻.)
Since this is true for all |z| < r < 1, we then have that
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󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

g(z)
z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ inf
|z|<r<1

1
r
= 1,

that is, |g(z)| ≤ |z|, which was the first claim of the lemma. Now claim 3 also fol-
lows by taking an additional limit of these inequalities as z → 0, since |g′(0)| =
| limz→0

g(z)−g(0)
z | = limz→0 |

g(z)
z |.

Now, for the claim 2, note that an equality for some z ∈ 𝔻 in the bound |h(z)| ≤ 1
means that |h(z)| attains its maximal value in the interior of the disc. By the condition
for equality in the maximum modulus principle, h(z) must be a constant, which is of
unit magnitude (since we know that |h(z)| = 1 for some z). That is, we have shown that
h(z) ≡ eiθ for some θ or, equivalently, that g(z) is a rotation, giving claim 2.

Similarly, for the fourth claim, if 1 = |g′(0)| = limz→0 |
g(z)
z | = limz→0 |h(z)| = |h(0)|,

then again we see that |h(z)| attains its maximum value in the interior of the disc (in this
case at z = 0) and infer using the same argument as above that g(z) is a rotation.

Corollary 3.8 (Automorphisms of the unit disc that fix 0). The automorphisms g : 𝔻 → 𝔻
of the unit disc that fix 0 (that is, satisfy g(0) = 0) are precisely the rotations.

Proof. Obviously, a rotation is a conformal automorphism of𝔻 that fixes 0. Conversely,
let g : 𝔻 → 𝔻 be an automorphism that fixes 0. Then both g(z) and its inverse func-
tion g−1(z) satisfy the assumptions of the Schwarz lemma. It follows that |g(z)| ≤ z and
|g−1(w)| ≤ w for all z,w ∈ 𝔻; or, setting w = g(z) for an arbitrary z ∈ 𝔻 in the second
inequality,

󵄨󵄨󵄨󵄨g(z)
󵄨󵄨󵄨󵄨 ≤ z and |z| ≤

󵄨󵄨󵄨󵄨g(z)
󵄨󵄨󵄨󵄨 󳨐⇒

󵄨󵄨󵄨󵄨g(z)
󵄨󵄨󵄨󵄨 = |z|

for all z ∈ 𝔻. By part 2 of the Schwarz lemma, g(z) is a rotation.

We can now exhibit a more general two-parameter family of automorphisms of𝔻,
which are obtained by composing rotationswith an additional family of automorphisms
that do not fix 0. As a first step, for w ∈ 𝔻, we define the Möbius transformation

φw(z) =
w − z
1 − wz
. (3.6)

Lemma 3.9. The transformation φw is an automorphism of 𝔻. Moreover, it has the fol-
lowing properties: (a) φw(0) = w; (b) φw(w) = 0; (c) φ

−1
w = φw.

Proof. Properties (a)–(c) are trivial to check through a direct calculation, which I leave
as an exercise. For the claim that φw is an automorphism, note that if |z| = 1, then

󵄨󵄨󵄨󵄨φw(z)
󵄨󵄨󵄨󵄨 =
|w − z|
|1 − wz|

=
|w − z|
|1 − wz| ⋅ |z|

=
|w − z|
|z − wzz|

=
|w − z|
|z − w|
= 1.

Thus φw maps the unit circle into itself. It is also injective (as a meromorphic function
on ℂ) since it is a Möbius transformation. Therefore either φmaps the unit disc𝔻 into
itself and maps the complement 𝔻̃ = {|z| > 1} of the closed unit disc into itself, or φw
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maps 𝔻 into 𝔻̃ and maps 𝔻̃ into 𝔻. However, we know that φw(0) = w and w ∈ 𝔻, so
that rules out the latter possibility. Finally, since we have established that φw(𝔻) ⊂ 𝔻,
and we know that φ−1w = φw, the mapping of 𝔻 into itself by φ is bijective, and φw is a
conformal equivalence.

The composition of an arbitrary member of the family of rotations (specified by a
real-valued parameter θ ∈ [0, 2π)) and an arbitrary member of the family φw, specified
by the point w ∈ 𝔻, is a map of the form

z 󳨃→ eiθ w − z
1 − wz
.

It turns out that all automorphisms of the unit disc are of this form. This is the well-
known characterization of the automorphism group Aut(𝔻), given in the following the-
orem.

Theorem 3.10 (Automorphisms of the unit disc). A function g : 𝔻 → 𝔻 is an automor-
phism of𝔻 if and only if it is of the form

g(z) = eiθ w − z
1 − wz

(3.7)

for some θ ∈ [0, 2π) and w ∈ 𝔻. The pair (θ,w) in this representation is unique.

Proof. The “if” part was already explained above. To prove the “only if” claim, let g :
𝔻 → 𝔻 be an automorphism. Denote w = g−1(0) ∈ 𝔻, and let h = g ∘ φw. As the
composition of two automorphisms of 𝔻, h(z) is itself an automorphism of 𝔻. It also
leaves z = 0 fixed. By Corollary 3.8 it is a rotation and can be expressed as h(z) = eiθz for
some θ ∈ [0, 2π). Therefore g(z) = (h ∘ φw)(z) is of the desired form (3.7).

For the uniqueness claim, note that (3.7) implies that w = g−1(0), which determines
w uniquely for a given automorphism g. Now ifw ̸= 0, then we have g(0) = eiθw, which
can be written as eiθ = g(0)/w, and thus θ is also determined uniquely from the map g.
In the second case where w = 0, we are back to the scenario of an automorphism that
fixes 0, which we have seen must be a rotation g(z) = eiθz, with θ again clearly being
uniquely determined.

An alternative, but less frequently used, characterization of the automorphisms of
the unit disc is given in the next result. The proof is left as an exercise (Exercise 3.4).

Theorem 3.11 (Automorphisms of the unit disc: alternative representation). A function g :
𝔻 → 𝔻 is an automorphism of𝔻 if and only if it is of the form

g(z) = μz + ν
νz + μ

(3.8)

for some μ, ν ∈ ℂ satisfying |μ|2 − |ν|2 = 1. The pair (μ, ν) is unique.
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The explicit description of the automorphisms of 𝔻 in terms of the representa-
tions (3.7)–(3.8), involving formulas that one rarely encounters outside of complex anal-
ysis, masks the fact that the group of such automorphisms bears a close relationship
with a standard matrix group you may be familiar with from linear algebra, the theory
of Lie groups, topology, and other areas. As we will see in the next section, the connec-
tion becomes apparent when we switch from the unit disc to its “conformal sibling,” the
upper half-plane.

Suggested exercises for Section 3.5. 3.4.

3.6 The upper half-plane and its automorphisms

Lemma 3.12. The unit disc𝔻 and the upper half-planeℍ are conformally equivalent. The
pair of maps Φ : ℍ → 𝔻 and Ψ : 𝔻 → ℍ given by

Φ(z) = z − i
z + i

and Ψ(z) = −i z + 1
z − 1

(3.9)

give an explicit pair ofmutually inverse conformalmapsmapping each of the regions onto
the other.

Proof. Note that if z = x + iy, then |Φ(z)|2 = |z−i|
2

|z+i|2 =
x2+(y−1)2

x2+(y+1)2 , which is < 1 if and only if
Im(z) = y > 0 (the geometric meaning of this statement is simply that Φ(z) is the ratio
of the distances of z to i and −i, and the upper half-plane is precisely the locus of points
that are closer to i than to −i). Thus Φ mapsℍ into𝔻 and the complement ofℍ into the
complement of 𝔻. Since we know that Φ is a conformal map when regarded as a map
from ℂ̂ to itself, this is enough to imply that it mapsℍ surjectively and conformally onto
𝔻. Finally, it is trivial to verify by direct calculation that the inverse map to Φ(z) is given
by the formula defining Ψ(z).

Theorem 3.13 (Conformal automorphisms of the upper half-plane). A function g : ℍ →
ℍ is a conformal automorphism if and only if it is of the form

g(z) = az + b
cz + d

(3.10)

for real numbers a, b, c, d satisfying ad − bc = 1. The numbers a, b, c, d in this representa-
tion are unique up to a single choice of sign, in the sense that if a, b, c, d and a′, b′, c′, d′

are coefficients in two distinct representations, then (a′, b′, c′, d′) = ±(a, b, c, d).

Proof. “If”: assume that g(z) has the stated form (3.10) with a, b, c, d real and ad−bc = 1.
As we already know from Theorem 3.4, g(z) is a conformal automorphism of ℂ. More-
over, since a, b, c, d ∈ ℝ, we have
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Im(az + b
cz + d
) = Im((az + b)(cz + d)

|cz + d|2
)

=
1
|cz + d|2

Im(ac|z|2 + bd + adz + bcz) = ad − bc
|cz + d|2

Im(z). (3.11)

This immediately implies that Im(g(z)) > 0 if and only if Im(z) > 0, that is, g is an
automorphism ofℍ.

“Only if”: assume that g ∈ Aut(ℍ). Then f = Φ ∘ g ∘ Ψ is an automorphism of the
unit disc, where Φ and Ψ are given in (3.9). By Theorem 3.11, f can be expressed as

f (z) = μz + ν
νz + μ

for some μ, ν ∈ ℂ with |μ|2 − |ν|2 = 1. To calculate what this means for g = Ψ ∘ f ∘ Φ, we
switch to the notation of matrix multiplication, which, as we know from (3.3)–(3.5), is
a way to represent the action of Möbius transformations. The matrices associated with
the action of Φ, Ψ, and f are

Φ = (1 −i
1 i
) , Ψ = (−i −i

1 −1
) , f = (μ ν

ν μ
) .

Therefore the map Ψ ∘ f ∘ Φ is represented by the matrix product

ΨfΦ = (−i −i
1 −1
)(

μ ν
ν μ
)(

1 −i
1 i
) .

More explicitly, if we denote μ = x + iy and ν = u + iv to represent μ, ν in terms of their
real and imaginary parts, then this matrix product is

ΨfΦ = (−i −i
1 −1
)(

x + iy u + iv
u − iv x − iy

)(
1 −i
1 i
)

= 2i(−x − u −y + v
y + v −x + u

) =: 2i(a b
c d
) .

Thenumbersa, b, c, d thus definedare real, andmoreover it is easy to check thatad−bc =
1 (hint: determinants). Note that the scalar factor 2imultiplying the matrix is irrelevant
when we go back to considering g as a Möbius transformation instead of a matrix, that
is, we see that g(z) is indeed of the form az+b

cz+d with a, b, c, d as claimed in the theorem.

The automorphism group

Aut(ℍ) = {z 󳨃→ az + b
cz + d
: a, b, c, d ∈ ℝ, ad − bc = 1}

is known as the projective special linear group (of order 2 over the real numbers)
and sometimes denoted PSL(2, ℝ). By the natural association between 2×2 matrices and
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Möbius transformations discussed in Section 3.3, it can be identified with the quotient
group

SL(2, ℝ)/{±I},

where SL(2, ℝ) is the special linear group of order 2 overℝ (the group of invertible 2× 2
realmatriceswith determinant 1), and {±I} is its subgroupwith two elements containing
the identity matrix and its negation.

3.7 The Riemann mapping theorem: a more precise formulation
We formulated in Section 3.4 a version of the Riemann mapping theorem that identi-
fies an interesting conformal equivalence class of complex regions. Conceptually, this is
what I regard as themain content of the theorem. Note that this formulation is carefully
“neutral” in the sense of not singling out any member of the equivalence class as being
more important or worthy of attention than others. However, in practice, we already
discussed the fact that the unit disc and upper half-plane are each in their own way
somewhat canonical members of the class. By contrast, other member regions such as,
say, the unit square, seldom play a particularly important role in the theory, although
from a purely geometric point of view, theymay be just as natural, and theymay appear
in specific applications.

Furthermore, as we inch our way toward a proof of the theorem, it does in fact
become convenient to fix a specific member of the class—the unit disc—as the target
region for the conformal maps we will construct. Another small conceptual advance
is to add more information about the conformal map mapping a given region Ω to 𝔻
so as to ensure uniqueness. This leads us to the following more detailed version of the
theorem.

Theorem 3.14 (Riemann mapping theorem: detailed version). Let Ω ⊂ ℂ be a simply con-
nected complex region with Ω ̸= ℂ, and let z0 ∈ Ω. Then there exists a unique biholomor-
phism F : Ω→ 𝔻 with the property that
1. F(z0) = 0
2. F′(z0) is a positive real number.

Proof of uniqueness. Let F1 and F2 be two biholomorphisms with the properties de-
scribed in the theorem. Then the conformal map Φ = F2 ∘ F

−1
1 is an automorphism of𝔻

that fixes 0, so by Corollary 3.8 it is a rotation, that is, of the form Φ(z) = az for some a
with |a| = 1. On the other hand, the constant a can be expressed as

a = Φ′(0) = F′2(F
−1
1 (0))(F

−1
1 )
′
(0) =

F′2(z0)
F′1(z0)
,

which shows that it is a positive real number. It follows that a = 1 and Φ(z) ≡ z, that is,
F1 ≡ F2.
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The history of the Riemann mapping theorem
The Riemann mapping theorem was formulated by the great Bernhard Riemann in 1851 as part of his
PhD thesis. Riemann stated the result for regions with a piecewise smooth boundary and gave a proof
that contained useful ideas but was later realized to be flawed. Later nineteenth-century mathematicians
worked hard to fill in the gaps in Riemann’s argument, with varying levels of success. The first proof con-
sidered to be fully correct by modern standards was given by Osgood in 1900. Osgood’s proof, like others
before it, relied on the “potential-theoretic” approach (related to Dirichlet’s principle and the study of
Laplace’s equation) advocated by Riemann rather than on ideas of a more conceptually complex-analytic
nature. This approach, while interesting, has since fallen out of fashion as an approach to proving the
Riemann mapping theorem because of various technical shortcomings it has.

The proof of the theoremwe present in Sections 3.8–3.9 is described inWalsh’s historical survey [72]
as the “standard modern proof.” You will find it described in most complex analysis textbooks, as it ap-
pears to be the simplest proof known today. For additional details on the interesting history of Riemann’s
famous theorem and the ideas developed out of it, see the historical reviews [33, 72].

The more difficult part of Theorem 3.14 is the existence claim. As we will see, the
key insight needed for the proof is that the problem of mapping Ω conformally to𝔻 can
be formulated as a maximization problem for a certain functional. Specifically, in the
classℱ consisting of all the injectivemaps from Ω into𝔻 that map z0 to 0 and for which
F′(z0) is a positive real number, we will see that the one map that is also surjective (and
thus establishes the required conformal equivalence of Ω to 𝔻) is the one for which
the number F′(z0) is maximal. This will be shown in a somewhat constructive way by
arguing that if F(z) is not surjective, then we can exploit the point that is “missing” from
the image to produce a new conformal map G : Ω → 𝔻 with a larger value of G′(z0).
Although the basic idea of how this is done is fairly simple (see Lemma 3.21), there are a
few technical issues that need to be addressed to turn it into a complete proof, namely
showing that the classℱ is nonempty, that the functional F 󳨃→ F′(z0) attains amaximum,
and so on. The details are given in the next two sections.

3.8 Proof of the Riemann mapping theorem, part I: technical
background

In this section, we prove a few auxiliary results needed for the proof of the Riemann
mapping theorem. Two of the results, Montel’s and Hurwitz’s theorems, are theorems
in complex analysis. The third, the Arzelà–Ascoli theorem, is a theorem in real analysis.

Let ℱ be a family of complex-valued continuous functions on a complex region Ω.
We say that ℱ is locally uniformly bounded if for any compact set K ⊂ Ω, we have

sup
f ∈ℱ , z∈K

󵄨󵄨󵄨󵄨f (z)
󵄨󵄨󵄨󵄨 < ∞. (3.12)

We say that ℱ is locally uniformly equicontinuous if for any compact K ⊂ Ω and any
ε > 0, there exists δ > 0 such that
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if z1, z2 ∈ K and |z1 − z2| < δ, then sup
f ∈ℱ

󵄨󵄨󵄨󵄨f (z1) − f (z2)
󵄨󵄨󵄨󵄨 < ε. (3.13)

The following is a version of the well-known Arzelà–Ascoli theorem, a staple of real
and functional analysis, slightly adapted to our setting.

Theorem 3.15 (Arzelà–Ascoli theorem). Let ℱ be a family of continuous complex-valued
functions on Ω. Assume that the family is locally uniformly equicontinuous and locally
uniformly bounded. Then any sequence (fn)

∞
n=1 of functions inℱ has a subsequence (fnk )

∞
k=1

that converges uniformly on compacts in Ω to some continuous function f .

Proof. Let Q = (zm)
∞
m=1 be a dense countable set of points in Ω (ordered as a sequence

according to some arbitrary enumeration). The sequence (fn(z1))
∞
n=1 is a sequence of

complex numbers taking values in a compact set {|z| ≤ M1}, where we denote M1 =
supf ∈ℱ |f (z1)| < ∞ (guaranteed to be finite by (3.12)). By compactness this sequence
therefore has a convergent sequence, which we denote by (f (1)n (z1))

∞
n=1 (instead of the

more traditional subsequence notation fnk (z1)). That is, f
(1)
n is the notation for the nth

function in the extracted subsequence of the original sequence of functions (fn(z))n.
Nowweextract a further subsequence of this subsequence, noting that the sequence

(f (1)n (z2))
∞
n=1 is a sequence of complex numbers taking values in a compact set {|z| ≤ M2},

where

M2 = sup
f ∈ℱ , z∈{z1 ,z2}

󵄨󵄨󵄨󵄨f (z)
󵄨󵄨󵄨󵄨.

(Again, the local uniform boundedness assumption guarantees that M2 < ∞.) So
again by compactness, this sequence has a convergent sequence, which we denote
by (f (2)n (z1))

∞
n=1.

Continuing in this way, we proceed to successively extract nested subsequences
(f (3)n )
∞
n=1, (f

(4)
n )
∞
n=1, . . . of the original sequence of functions, where each subsequence is

extracted as a further subsequence of the previous one. These subsequences have the
property that for each j ≥ 1, the jth sequence (f (j)n )∞n=1 is a subsequence of the original
sequence (fn)n for which f

(j)
n (zm) converges to a limit as n→∞ form = 1, 2, . . . , j.

Now consider the “diagonal” sequence in this nested sequence of subsequences:
we let gn = f

(n)
n . Then (gn)

∞
n=1 is a subsequence of (fn)n with the property that gn(zm)

converges to a limit as n→∞ for all m ≥ 1.
We claim that the sequence of functions (gn(z))

∞
n=1 converges uniformly on compacts

in Ω. Let K ⊂ Ω be compact, and let ε > 0. Let δ > 0 be a number, guaranteed to exist by
the assumption of local uniform equicontinuity, with the property that

if z1, z2 ∈ K and |z1 − z2| < δ, then sup
f ∈ℱ

󵄨󵄨󵄨󵄨f (z1) − f (z2)
󵄨󵄨󵄨󵄨 <

ε
3
.

(Compare with (3.13): we merely replaced ε there with ε/3, with the usual goal in
mind that some other bound later will end up smaller than ε.) The containment
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K ⊂ ∪ξ∈KDδ/2(ξ) gives an open covering of K , which by compactness has a finite sub-
covering (Dδ/2(ξj))

q
j=1. Select a point zνj of the countable dense set Q from each of the

subcovering discs Dδ/2(ξj). For any 1 ≤ j ≤ q, (gk(zνj ))
∞
k=1 is a convergent sequence or,

equivalently, is a Cauchy sequence; therefore there exists an index Nj ≥ 1 such that

󵄨󵄨󵄨󵄨gℓ(zνj ) − gk(zνj )
󵄨󵄨󵄨󵄨 <

ε
3

whenever k, ℓ ≥ Nj . Set N = max(N1,N2, . . . ,Nq). Then for any w ∈ K , we have that
w ∈ Dδ/2(ξj) ⊂ Dδ(zνj ) for some 1 ≤ j ≤ q. It follows that, for k, ℓ ≥ N ,

󵄨󵄨󵄨󵄨gℓ(w) − gk(w)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨gℓ(w) − gℓ(zνj )

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨gℓ(zνj ) − gk(zνj )

󵄨󵄨󵄨󵄨

+ 󵄨󵄨󵄨󵄨gk(zνj ) − gk(w)
󵄨󵄨󵄨󵄨 <

ε
3
+
ε
3
+
ε
3
= ε.

This establishes that (gk(z))
∞
k=1 is a Cauchy sequence uniformly on K and hence (by a

standard fact from real analysis) converges uniformly on K . The compact K was arbi-
trary, so we proved the existence of a subsequence that converges uniformly on com-
pacts; the fact that the limiting function must be continuous is standard, and the proof
of the theorem is complete.

Returning to the realm of complex analysis, we now introduce the concept of a nor-
mal family of functions. Let Ω be a complex region as before. A family ℱ of holomor-
phic functions on Ω is called normal, or a normal family, if every sequence (fn)

∞
n=1 in

the family has a subsequence (fnk )
∞
k=1 such that fnk converges uniformly on compacts to

a holomorphic function g.

Theorem 3.16 (Montel’s theorem). Letℱ be a family of holomorphic functions on a region
Ω that is locally uniformly bounded. Then ℱ is a normal family.

Proof. We claim that the added assumption of holomorphicity of the members of ℱ ,
together with local uniform boundedness, implies that the family is uniformly locally
equicontinuous. Once we show this, the Arzelà–Ascoli theorem will imply that every
sequence (Fn)

∞
n=1 of elements in the family has a subsequence Fnk that converges uni-

formly on compacts to a limiting function F . Then it would follow that F is holomorphic
by standard properties of uniform convergence on compacts (Theorem 1.39 on p. 45),
and we would be done.

We start by showing aweaker version of the required property that does not include
uniformity over compact subsets. Fix a point a ∈ Ω and a radius ρ > 0 such thatD2ρ(a) ⊂
Ω. Later we will need to emphasize the dependence of ρ on a, so we will then denote it
by ρ(a). If z1, z2 ∈ Dρ(a), then by Cauchy’s integral formula we have, uniformly over all
f ∈ ℱ ,

󵄨󵄨󵄨󵄨f (z1) − f (z2)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
2πi
∮
|w−a|=2ρ

f (w)( 1
w − z1
−

1
w − z2
) dw
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
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=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

z1 − z2
2πi

∮
|w−a|=2ρ

f (w)
(w − z1)(w − z2)

dw
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1
2π
|z1 − z2| ⋅ sup

|w−a|=2ρ

󵄨󵄨󵄨󵄨f (w)
󵄨󵄨󵄨󵄨 ⋅ 2π(2ρ)

1
ρ2
≤
2M
ρ
|z1 − z2|, (3.14)

where we denote M = supf ∈ℱ , |w−a|=2ρ |f (w)|, a finite number by the local uniform
boundedness assumption.

Now fix a number ε > 0. If we define the number

η = min(ρ, ρε
4M
) > 0,

then by (3.14) we have the property that

if z1, z2 ∈ Dη(a), then sup
f ∈ℱ

󵄨󵄨󵄨󵄨f (z1) − f (z2)
󵄨󵄨󵄨󵄨 < ε. (3.15)

This is the nonuniform local equicontinuity property alluded to above. Note that the
parameter η depends on the point a, so we will now redenote it by η(a) to emphasize
this dependence. (η also depends on ε, but the value of ε will remain fixed throughout
the discussion.)

Finally, we can derive the uniform-over-compacts version of local equicontinuity.
Let K ⊂ Ω be a compact set, and let ε > 0 be the same as above. Consider the covering of
K by open sets given by

K ⊂ ⋃
a∈K

Dη(a)/2(a).

By compactness there exists a finite subcovering

K ⊂
n
⋃
j=1

Dη(aj)/2(aj)

for some points a1, . . . , an ∈ K . Denote δ =
1
2 min(η(a1), . . . , η(an)). Then we claim that

for all z1, z2 ∈ K such that |z1 − z2| < δ,

sup
f ∈ℱ

󵄨󵄨󵄨󵄨f (z1) − f (z2)
󵄨󵄨󵄨󵄨 < ε. (3.16)

Indeed, z1 must belong to Dη(aj)/2(aj) for some 1 ≤ j ≤ n by the defining property of the
subcovering. This also implies that

|z2 − aj| ≤ |z2 − z1| + |z1 − aj| < δ +
η(aj)
2
≤
η(aj)
2
+
η(aj)
2
= η(aj),
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so altogether we see that both z1, z2 are in Dη(aj)(aj). Relation (3.16) therefore follows
from (3.15). To summarize, we proved that for any compact set K ⊂ Ω and ε > 0, (3.13)
is satisfied without choice of δ as defined above; this proves that the family ℱ is locally
uniformly equicontinuous and concludes the proof of the theorem.

Theorem 3.17 (Hurwitz’s theorem). Let Ω ⊂ ℂ be a region, and let (fn(z))
∞
n=1 and g(z) be

holomorphic functions onΩ such that fn(z) → g(z) uniformly on compacts inΩ as n→∞,
where g(z) is not the zero function. If z0 ∈ Ω is a zero of g(z) of order k ≥ 0, and Dr(z0) ⊂ Ω
is a disc centered at z0 such that the punctured closed disc D≤r(z0) \ {z0} contains no
zeros of g(z), then for any large enough n, fn(z) has precisely k zeros in Dr(z0) counting
multiplicities.

Proof. Recall that by the argument principle the order k of the zero of g(z) at z0 can be
expressed as the contour integral

k = 1
2πi
∮
|z−z0|=r

g′(z)
g(z)

dz. (3.17)

Denote by κn the number of zeros of fn(z) in Dr(z0) counting multiplicities. We wish to
express κn similarly as a contour integral over the same circle. This can be done but
requires first checking that fn(z) does not have any zeros on the circle, which is indeed
true for large n. Let M = inf|z−z0|=r |g(z)| and note that M > 0 by the assumption that
g(z) has no zeros in the punctured disc D≤r(z0) \ {z0} and, in particular, on the circle. By
the uniform convergence of fn(z) to g(z) on the circle there exists an index N ≥ 1 such
that for all n ≥ N , inf|z−z0|=r |fn(z)| ≥ M/2, so that, in particular, fn(z) also does not have
any zeros on the circle |z − z0| = r as we wanted to show. Thus we have the expression

κn =
1
2πi
∮
|z−z0|=r

f ′n (z)
fn(z)

dz (3.18)

for all n ≥ N .
Note also that on the circle |z−z0|wehave not only the uniform convergence fn(z) →

g(z), but also that of the derivatives f ′n (z) → g′(z) (recall Theorem 1.39). Combining those
facts, we deduce also that

f ′n (z)
fn(z)
󳨀󳨀󳨀󳨀󳨀→
n→∞

g′(z)
g(z)

uniformly on the circle |z − z0| = r. Finally, this, together with (3.17) and (3.18), implies
that

κn =
1
2πi
∮
|z−z0|=r

f ′n (z)
fn(z)

dz 󳨀󳨀󳨀󳨀󳨀→
n→∞

1
2πi
∮
|z−z0|=r

g′(z)
g(z)

dz = k

Since k and κn are all integers, it follows that κn = k for all sufficiently large n.



3.9 Proof of the Riemann mapping theorem, part II � 137

Corollary 3.18. LetΩ ⊂ ℂ be a region, and as in Hurwitz’s theorem, let (fn(z))
∞
n=1 and g(z)

be holomorphic functions on Ω such that fn(z) → g(z) uniformly on compacts in Ω. If the
functions fn(z) are all injective, then g(z) is either injective or a constant.

Proof. Assume by contradiction that g(z) is not injective and also not a constant func-
tion. Then there exist distinct points a, b, ∈ Ω for which g(a) = g(b). We have the con-
vergence fn(a) → g(a), and so, if we define functions ψ(z) and φn(z), n = 1, 2, . . . , by

ψ(z) = g(z) − g(a), φn(z) = fn(z) − fn(a),

then φn(z) → ψ(z) uniformly on compacts in Ω. Moreover, ψ(z) is not the zero func-
tion. Therefore we are in a position to apply Hurwitz’s theorem. Specifically, note that
ψ(b) = 0, and denote the order of the zero at b by k ≥ 1. Let r > 0 be such that the
punctured closed disc D≤r(b) \ {b} does not contain any other zeros of ψ(z) (so, in partic-
ular, it does not contain the point z = a). Applying Hurwitz’s theorem, we conclude that
for all sufficiently large n, φn(z) has at least one zero in the disc Dr(b). However, this is
impossible, since φn(z) already has one zero at z = a andwas assumed to be an injective
function. We have reached a contradiction, and the proof is complete.

Suggested exercises for Section 3.8. 3.5, 3.6.

3.9 Proof of the Riemann mapping theorem, part II: the main
construction

From now on, let Ω be a simply connected complex region with Ω ̸= ℂ and z0 ∈ Ω, as in
the statement of Theorem 3.14.

Lemma 3.19. There exists an injective holomorphic function G : Ω→ 𝔻.

Proof. We know that Ω is not the entire complex plane, so take some point α ∈ ℂ\Ω. The
function z 󳨃→ z − α has no zeros on Ω, so, since Ω is simply connected, by Theorem 1.53
there exists a branch of the logarithm function of z − α on it, that is, a holomorphic
function h(z) such that eh(z) = z − α for all z ∈ Ω.

Fix an arbitrary point β ∈ Ω, and define a function G : Ω→ ℂ by

G(z) = 1
h(z) − h(β) − 2πi

. (3.19)

We claim that G(z) is holomorphic, injective, and bounded on Ω; this would imply that
its scaled version F(z) = cG(z) is injective andmaps into𝔻 if c is a small enough positive
constant, which would prove the result.

To establish these properties ofG(z), note first thath(z) is injective, sinceh(z) = h(w)
implies z − α = eh(z) = eh(w) = w − α, so z = w. Clearly, G(z) = G(w) also implies
h(z) = h(w), so similarly implies z = w, which shows that G(z) is injective.
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Now the claim that G(z) is bounded is equivalent to the claim that

inf
z∈Ω
󵄨󵄨󵄨󵄨h(z) − (h(β) + 2πi)

󵄨󵄨󵄨󵄨 > 0.

Assume by contradiction that this is not true. Then there is a sequence (zn)
∞
n=1 of points

in Ω such that h(zn) 󳨀󳨀󳨀󳨀󳨀→n→∞
h(β) + 2πi. Exponentiating, we get that

zn − α = e
h(zn) 󳨀󳨀󳨀󳨀󳨀→

n→∞
eh(β)+2πi = eh(β) = β − α.

In other words, zn converges to β as n → ∞. However, then we would have that h(zn)
converges to h(β) and not to h(β) + 2πi. This gives a contradiction and finishes the proof.

Now define the family of functions

ℱ = {F : Ω→ 𝔻 : F(z) is holomorphic and injective, F(z0) = 0}.

The family ℱ is not empty: if G(z) is an injective holomorphic function G : Ω → 𝔻
guaranteed to exist by Lemma 3.19, then clearly F(z) = c(G(z) − G(z0)) is an element of
ℱ if c is a small enough positive number. Define the number λ ∈ [0,∞] by

λ = sup
F∈ℱ

󵄨󵄨󵄨󵄨F
′(z0)
󵄨󵄨󵄨󵄨.

Lemma 3.20. 0 < λ < ∞.

Proof. Let F ∈ ℱ . To bound |F′(z0)| from above, observe that, by the Cauchy integral
formula, if r > 0 is a number for which the closed disc D≤r(z0) is contained in Ω, then

󵄨󵄨󵄨󵄨F
′(z0)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1
2πi
∮
|w−z0|=r

F(w)
(w − z0)2

dw
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

1
2π
(2πr) 1

r2
sup
w∈Ω

󵄨󵄨󵄨󵄨F(w)
󵄨󵄨󵄨󵄨 ≤

1
r
,

since F maps into the unit disc. Since this is true for all F ∈ ℱ , we get that λ ≤ 1
r . On the

other hand,we claim that |F′(z0)| > 0,whichwould show that λ > 0. Indeed, if F′(z0) = 0,
then F(z) has a zero of order at least 2 in z0. By Corollary 1.58, F(z) is not locally injective
in any neighborhood of z0, in contradiction to the fact that F is injective. Thus |F′(z0)|
must be positive.

We now come to the most important lemma of this section, which contains the key
idea behind our proof of the Riemann mapping theorem.

Lemma 3.21. Given F ∈ ℱ , if F(Ω) ⊊ 𝔻 (that is, the image of Ω under F does not cover all
of𝔻), then there exists G ∈ ℱ for which |G′(z0)| > |F

′(z0)|.
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Proof. Take some w ∈ 𝔻 \ F(Ω), known to exist by the assumption. Since w is not in the
image of Ω under F , the point 0 is not in the image of the composedmap φw ∘F : Ω→ 𝔻,
where (recall from (3.6) and Lemma 3.9) φw(z) =

w−z
1−wz is the standard automorphism of

𝔻mapping 0 and w to each other. Since φw ∘ F does not take the value 0 and is defined
on a simply connected region, by the construction of nth root functions described in
Section 1.15 there exists a holomorphic branch of its square root, that is, a holomorphic
function S : Ω→ 𝔻 satisfying

S(z)2 = (φw ∘ F)(z). (3.20)

Now define G : Ω→ 𝔻 by the composition

G(z) = (φS(z0) ∘ S)(z). (3.21)

We claim that G(z) has the properties claimed by the lemma. First,

G(z0) = (φS(z0) ∘ S)(z0) = φS(z0)(S(z0)) = 0.

Second, note that S(z) is injective since its square is injective as a composition of two
injective maps. Therefore G(z) is also injective. Both of those facts together show that
G ∈ ℱ .

Third and crucially, we wish to show that |G′(z0)| > |F
′(z0)|. To this end, note that

by (3.20) and (3.21), F(z) can be represented in terms of G(z) as

F(z) = φw((φS(z0) ∘ G)(z)
2). (3.22)

(This is a key relation that deserves to be digested properly. Take a minute or two to
unwrap all the horrible notation and convince yourself that this relation is correct, and
see if you can find some deeper meaning here.) Alternatively, if we define the function
W : 𝔻 → 𝔻 by

W (z) = φw(φS(z0)(z)
2),

then (3.22) can be rewritten as

F(z) = (W ∘ G)(z). (3.23)

Note that

W (0) = φw(φS(z0)(0)
2) = φw(S(z0)

2) = φw(φw(F(0))) = F(0) = 0.

ThusW (z) satisfies the assumptions of Schwarz’s lemma, andwe conclude that |W ′(0)| ≤
1, and in fact the strict inequality |W ′(0)| < 1 holds, sinceW (z) is clearly not a rotation.
This is what we want, since by (3.23)
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󵄨󵄨󵄨󵄨F
′(z0)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨W
′(G(z0))G

′(z0)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨W
′(0)󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨G
′(z0)
󵄨󵄨󵄨󵄨,

which gives the desired conclusion that |G′(z0)| > |F
′(z0)|.

Lemma 3.22. The family ℱ is a normal family.

Proof. The functions inℱ all map into the unit disc, so they are uniformly bounded, and
a fortiriori locally uniformly bounded. By Montel’s theorem, ℱ is normal.

Lemma 3.23. There exists an element F ∈ ℱ for which |F′(z0)| = λ, that is, the functional
G 󳨃→ |G′(z0)| attains a maximum in the family ℱ .

Proof. Let (Fn)
∞
n=1 be a sequence of elements of ℱ such that we have the convergence

|F′n(z0)| → λ. By Lemma 3.22 there is a subsequence (Fnk )
∞
k=1 that converges uniformly on

compacts in Ω to some limiting function F : Ω→ ℂ, which moreover satisfies F(z0) = 0,
since Fn(z0) = 0 for all n. Since uniform convergence on compacts implies convergence
of the derivatives, we have that |F′(z0)| = λ. Since the Fn are all injective, by Hurwitz’s
theorem, F either is a constant function or is injective, but we know from Lemma 3.20
that |F′(z0)| = λ > 0, and hence F is not a constant and is therefore injective.

Let z ∈ Ω. We know that |F(z)| ≤ 1, since it is the limit of functions whose modulus
is bounded by 1. However, F is holomorphic, and hence by the open mapping theorem,
F(Ω) is an open set contained in the closed disc {z : |z| ≤ 1} and therefore is contained
in the open disc 𝔻. Thus we have shown that F is an element of ℱ , and the proof is
complete.

Proof of existence in Theorem 3.14. Take the element F ∈ ℱ , guaranteed to exist by
Lemma 3.23, for which |F′(z0)| = λ. By composing F with a rotation if necessary, we may
assume that F′(z0) is real and positive. By Lemma 3.21, F(z) must be surjective, which,
together with the positivity of F′(z0) and the properties implied by belonging toℱ , gives
that F(z) is the biholomorphism whose existence was claimed.

Summarizing, we proved the uniqueness claim from Theorem 3.14 in Section 3.7,
and the existence claim was proved above. This finishes the proof of the Riemann map-
ping theorem.

3.10 Annuli and doubly connected regions

The topic of conformal mapping does not end with the consideration of simply con-
nected regions, where the problem of classifying complex regions up to conformal
equivalence is now essentially settled (at least in principle) by the Riemann mapping
theorem. To conclude this chapter, we give a brief taste of some of the interesting phe-
nomena that arise when we try to classify conformal equivalence classes of regions
that are not simply connected, starting with the next simplest case of regions that are
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Figure 3.2: An annulus A(r1, r2).

doubly connected. A region Ω is called doubly connected if the complement ℂ \ Ω has
two connected components.3

One important class of doubly connected regions are the annuli. For 0 < r1 < r2, we
denote

A(r1, r2) = {z : r1 < |z| < r2},

an open annulus centered at 0 with internal radius r1 and external radius r2 (Fig. 3.2).
It turns out that unlike the situation for simply connected regions, these annuli are not
all in a single conformal equivalence class, despite being homeomorphic. The precise
classification is given in the next result, sometimes known as Schottky’s theorem.

Theorem 3.24 (Conformal classification of annuli). Let 0 < r1 < r2 and 0 < ρ1 < ρ2. The
annuli A(r1, r2) and A(ρ1, ρ2) are conformally equivalent if and only if

r1
r2
=
ρ1
ρ2
.

Proof. “If”: assume that r1r2 =
ρ1
ρ2
. Then themap z 󳨃→ ρ1

r1
z = ρ2

r2
z is a conformal equivalence

between A(r1, r2) and A(ρ1, ρ2).
“Only if”: this is the nontrivial direction. Assume that A(r1, r2) and A(ρ1, ρ2) are con-

formally equivalent. We start with a normalization that fixes the two inner radii at 1
to simplify things a bit: denote μ = r2/r1 and ν = ρ2/ρ1. Then A(1, μ) is conformally
equivalent to A(r1, r2) (by the scaling transformation mentioned in the “if” part), and

3 More generally, Ω is called k-connected ifℂ \Ω has k connected components and finitely connected
if it is k-connected for some k ≥ 1.
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similarly A(1, ν) is conformally equivalent to A(ρ1, ρ2). Therefore A(1, μ) and A(1, ν) are
conformally equivalent to each other. Let f : A(1, μ) → A(1, ν) be a conformal map. We
can assume without loss of generality that f maps the inner boundary circle |z| = 1 to
itself and maps the outer boundary circle |z| = μ of A(1, ν) to its counterpart |z| = ν in
A(1, ν); otherwise, f maps the inner circle of A(1, μ) to the outer circle of A(1, ν) and vice
versa, and in that case, we can get a conformal map that maps the inner circle to itself
by replacing f by f (μ/z) (the composition of f with the inversion z 󳨃→ μ/z, which is a
conformal automorphism of A(1, μ)).

For each 1 < r < μ, let γr denote the circular contour {|z| = r}, and let Γr = f ∘ γr de-
note its image under themap f . The curve Γr is a simple closed curve and hence encloses
a well-defined region (see Theorem 1.26 and the discussion following it in Section 1.8),
which we denote by Ωr . The area enclosed by γr is, of course, πr

2. The area of Ωr is a
continuous increasing function of r, which we denote α(r). Two important observations
about α(r) are that

λ− := limr↘1 α(r) = π and λ+ := limr↗μ α(r) = πν
2,

since λ− and λ+ are simply the areas enclosed by the inner and outer boundary circles
of A(1, ν), respectively.

Now we claim that

α(r) ≥ πr2 for all 1 < r < μ. (3.24)

This would imply, by taking the limit as r ↗ μ, that πν2 = λ+ ≥ πμ
2, so we would get that

ν ≥ μ. Reversing the roles of the two annuli would imply the reverse inequality ν ≤ μ,
and we would get that μ = ν, which is the claim we wanted, and the proof would be
done.

To prove (3.24), we note that α(r) can be evaluated as a contour integral using a
complex-analytic version of Green’s theorem from calculus. Specifically, appealing to
the result of Exercise 3.7, we see that

α(r) = 1
2i
∮
Γr

z dz = 1
2i

2π

∫
0

f (reit) d
dt
(f (reit)) dt = r

2

2π

∫
0

f (reit)f ′(reit)eit dt. (3.25)

Now let

f (z) =
∞

∑
n=−∞

cnz
n (3.26)

be the Laurent expansion of f , which converges uniformly on compacts in the annulus
1 < |z| < μ where f is holomorphic (see Theorem 1.65). Substituting (3.26) into (3.25), we
get that
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α(r) = 1
2

2π

∫
0

(∑
n
cnr

ne−int)(∑
m
mcmr

mei(m−1)t)reit dt

=
1
2
∑
n,m

mcmcnr
n+m

2π

∫
0

ei(m−n)t dt = π
∞

∑
n=−∞

n|cn|
2r2n.

Taking the limit as r ↘ 1 gives that

∞

∑
n=−∞

n|cn|
2 = 1.

Now it follows that

α(r) − πr2 = π
∞

∑
n=−∞

n|cn|
2r2n − π

∞

∑
n=−∞

n|cn|
2 = π

∞

∑
n=−∞

n|cn|
2(r2n − 1).

Since each summand in this last expression is nonnegative, we have that α(r) − πr2 ≥ 0,
as claimed.

Having classified the annuli up to conformal equivalence, we state without proof
an additional result that explains why the family of annuli plays a role in the theory of
conformal mapping of doubly connected regions that parallels the role of the unit disc
in the case of simply connected regions. For the proof, see [2, 6].

Theorem 3.25 (Conformal classification of doubly connected regions). The annuli A(1, ρ),
ρ > 1, form a complete set of conformal equivalence representatives for doubly connected
complex regions. That is, if Ω ⊂ ℂ is a doubly connected region, then Ω is conformally
equivalent to A(1,Λ) for precisely one value of Λ > 1.

The numbermΩ =
1
2π log(Λ), where Λ is the outer radius of the annulus to which Ω

maps, is called the conformal modulus of Ω. Theorem 3.24 guarantees that if such a
number exists, then it is unique, and the much stronger Theorem 3.25 guarantees that
it exists. ThusmΩ is an important example of what is known as a conformal invariant.
Muchmore can be said aboutmΩ, including amore directway to define it that is intrinsic
to Ω and does not rely on the idea of conformally mapping Ω to an annulus; consult the
references mentioned above for details.

The final component in the discussion of conformal equivalence classes of doubly
connected regions is the identification of the conformal automorphisms of such a region.

Theorem 3.26 (Conformal automorphisms of an annulus). The conformal automorphism
group of the annulus A(r1, r2) is

Aut(A(r1, r2)) = {z 󳨃→ eiθz : 0 ≤ θ < 2π} ∪ {z 󳨃→ eiθ r1r2
z
: 0 ≤ θ < 2π}.
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That is, the automorphisms consist of the rotations z 󳨃→ eiθz, together with the composi-
tions of the inversion map z 󳨃→ r1r2

z with a rotation.

Proof. Exercise 3.9.

Suggested exercises for Section 3.10. 3.7, 3.8, 3.9.
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Exercises for Chapter 3

3.1 If Ω and Ω′ are conformally equivalent with a conformal map g : Ω → Ω′, then
describe an explicit group isomorphism between Aut(Ω) and Aut(Ω′).

3.2 Let z1, z2, z3,w1,w2,w3 be elements of ℂ̂. Prove that there is a unique Möbius trans-
formation mapping zj to wj for j = 1, 2, 3.

3.3 Prove that besides the singleton conformal equivalence classes {ℂ} and {ℂ̂} de-
scribed above, any other conformal equivalence class 𝒦 is infinite and in fact con-
tains an infinity of regions any two of which are not images of each other under an
affine transformation z 󳨃→ az + b.

3.4 Prove Theorem 3.11.
3.5 Show that the assumption of holomorphicity in Montel’s theorem (Theorem 3.16)

cannot be removed; that is, the result properly belongs in complex analysis and
does not have a real analysis analogue (at least not an obvious one).

3.6 Show that the real analysis analogue of Hurwitz’s theorem is not true.
3.7 The complex-analytic version of Green’s formula frommultivariate calculus states

that if γ is a simple closed contour in the plane, then the area A enclosed inside γ is
given by

A = 1
2i
∮
γ

z dz.

Show that this follows from the usual Green’s theorem in real-variable calculus.
3.8 Prove that the statement of Theorem 3.24 is also correct under the relaxed assump-

tion 0 ≤ r1 < r2 and 0 ≤ ρ1 < ρ2, which addresses also the case of “degenerate”
annuli with an inner radius of 0 (that is, punctured discs).

3.9 Prove Theorem 3.26.


