List of figures

Figure 1	An 8-faced dice: Three yes / no – decisions to determine a state of affairs —— 6					
Figure 2						
Figure 3	Noise, equivocation and total amount of information in a message —— 7 TCM with general context which includes local contexts —— 14					
Figure 4						
•	Flow of information in a <i>Garden Path</i> sentence —— 16					
Figure 5	Uniform information density in Slovenian and Latvian —— 17					
Figure 6	Dependency structure for the sentence <i>Ich esse einen Keks</i> 'I eat a cookie' —— 18					
Figure 7	Dependency structures of two sentences —— 18					
Figure 8	Distribution of information and UID in eight languages —— 19					
Figure 9	Ascending lexical information content in stacks intensifiers according to the					
	principle of <i>Uniform Information Density</i> (left) and violation of this principle					
	(right) —— 20					
Figure 10	Dependency structure of the sentence <i>Hans eats cookies</i> with the target word					
3	cookies and the probabilities prefprob and parse_target —— 21					
Figure 11	Dependency parse trees of an example sentence and calculation of <i>prefprob</i>					
	and parse_target —— 23					
Figure 12	Intensional contexts: Information of a signal differs from its meaning —— 32					
Figure 13	Set theoretic representation of digital information and semantic content of					
	propositions —— 33					
Figure 14	Different levels of information —— 34					
Figure 15	Green arrows represent synonym-relations, red arrows hypernym relations,					
	blue arrows location based-relations, violet arrows meronym / holonym					
	relations, brown arrows time based-relations and black arrows					
	co-occurrences relations —— 38					
Figure 16	Fictitious hierarchical structure of a word ontology with verbs —— 39					
Figure 17	Fragment of a graph from WordNet —— 40					
Figure 18	Meaning space as a $M(odels) \times P(ropositions)$ matrix — 42					
Figure 19	Meaning space of the two propositions as truth table —— 43					
Figure 20	Correlations between different types of surprisal of words and semantic					
	entropy reduction —— 45					
Figure 21	The number of extra bits of a text, given a set of background texts,					
	calculated by Pointwise Kullback-Leibler divergence —— 46					
Figure 22	Collocations v_1v_j in a collocation window, i.e., context window of the					
	target word —— 48					
Figure 23	SVD: Matrix decomposition —— 51					
Figure 24	Maximum informativeness of a semantic unit σ as a definite integral in					
	interval [0,1] —— 54					
Figure 25	Fuzzy sets of intensifiers —— 60					
Figure 26	Two stacks of intensifiers in expected linear order (left) and in unexpected					
	linear order (right) —— 62					
Figure 27	The correlation between length and surprisal of intensifiers —— 64					
Figure 28	The correlation between amount of surprisal and expressivity of					
	intensifiers —— 65					

Figure 29	The correlation between amount of surprisal and expressivity for some				
Figure 30	selected intensifiers —— 65 Transition probabilities of intensifiers as representation of use value —— 66				
Figure 31	Differing numbers of possible transitions with Dutch intensifiers zo 'so', echt				
rigure 31	'really', fucking 'fucking' and lekker lit. 'delicious' — 73				
Figure 32	IC _{TRANS} increases with the number of transitions — 74				
Figure 33	Transition probabilities for echt 'really' — 74				
Figure 34	A strong negative correlation between IC_{TRANS} and IC_{LOCAL} — 77				
Figure 35	Negative correlation IC_{TRANS} and IC_{LOCAL} in German Twitter data (blue), and				
riguic 55	combined data from Twitter and Claudi (2006) (yellow) —— 77				
Figure 36	Negative correlation between IIC_{TRANS} and IC_{LOCAL} in the Dutch data — 79				
Figure 37	Percentage of each intensifier's occurrences (pvariants) that are lengthened				
	or capitalised by intensifiers syllable length —— 80				
Figure 38	Density plot of two <i>UID_{LOCAL}</i> distributions: predicted order and				
	violations —— 83				
Figure 39	Difference of flow of information in two verses from the German Luther				
	bible and in a stack of intensifiers —— 85				
Figure 40	IC _{LOCAL} : almost identical increasing flow of information derived from				
	unigrams and bigrams in stacks of intensifiers —— 86				
Figure 41	IC _{TRANS} : decreasing flow of information —— 87				
Figure 42	Path of establishment of intensifiers from high expressivity (bottom right) to				
	high utility (top left) —— 88				
Figure 43	Derivation of the intensifiers-adjective-stack echt übelst doppelt lecker 'really				
_	worst double yummy' —— 89				
Figure 44	Strength of intensifiers as exponent in the membership function —— 90				
Figure 45	Three-dimensional separation of data points by the kernel function and				
	hyperplane — 93				
Figure 46	Performance of surprisal features in the classification tasks — 94				
Figure 47	Flow of the analysis in Bizzoni und Lapshinova-Koltunski (2021) — 96				
Figure 48	Word graph on the above text about President Obama's visit —— 99				
Figure 49	Workflow of the keyword extraction in the studies of Philipp et al. (2021; 2022) —— 102				
Figure 50	Graphical model of LDA in Hong (2018) based on Blei et al. (2003) —— 103				
Figure 51	Workflow of keyword extraction with a bidirectional GRU in Philipp et al.				
	(2022) —— 105				
Figure 52	Accuracy $a1 - a5$, precision, recall and F1 of NER —— 105				
Figure 53	Results of the TCM —— 107				
Figure 54	Performances of different models in the study of Philipp et al. (2022) —— 108				
Figure 55	Two probabilistic parse (sub) trees with emitted terminal symbols as base				
	information from the parser model —— 109				
Figure 56	Results of the parser model compared to other models in the study of Kö				
	et al. (2020) —— 110				
Figure 57	The term-sentence matrix U —— 112				
Figure 58	Results of the study of Philipp et al. (2022): SI from LDA is roughly quite as				
F1 = 0	suitable for keyword extraction as SI from LSA —— 113				
Figure 59	Workflow for determining and iteratively evaluating surprisal and the FoI				
	from complex contexts —— 115				

Figure 60	The size of the text variants with the number of paragraphs, tokens and unique lemmas —— 121				
Figure 61	Mann–Whitney-U-test for mean differences in UIDs and pvalues —— 122				
Figure 62	Comparison of means in information density and extent of scatter of density				
3	values in original texts and the texts with fake glosses —— 123				
Figure 63	Information density of meaningfully / fake enriched textsand original				
	texts —— 124				
Figure 64	Cullen and Frey graph for ALL LESK GLOSSES with fake and meaningful				
_	enrichment's and original text —— 125				
Figure 65	Coding asymmetries in Mandarin —— 128				
Figure 66	Coding asymmetry (tendency) for imperfective/perfective, atelic/telic verbs with				
3	default forms shaded in grey —— 129				
Figure 67	Decomposition of the Vendlerian aspect classes —— 130				
Figure 68	Decomposed structure of the extended Vendlerian typology —— 131				
Figure 69	Aspectual composition in an example sentence with coercion —— 134				
Figure 70	Morphologic aspectual coercion —— 134				
Figure 71	Workflow of the prediction of aspectual coding —— 137				
Figure 72	Representation of a sentence in the SynTagRus corpus —— 139				
Figure 73	Data, dependent variable, predictor and covariate in a LMM —— 141				
Figure 74	Dependency structure of the sentence schrecklichen Wikinger essen den sehr				
	leckeren Gurkensalat 'the terrible Vikings eat the very tasty cucumber				
	salad' —— 143				
Figure 75	Summary of the best LMM —— 144				
Figure 76	Effect of the three fixed effects FREQ, DEF and IC on verb's lengths —— 145				
Figure 77	Interaction of IC and FREQ as predictors of verbs' lengths —— 146				
Figure 78	Length (character number of verbs) as a function of DEFAULT (left)				
	and interaction of IC and FREQ for Ancient Greek —— 147				
Figure 79	Length (character number of verbs) as a function of DEFAULT (left) and				
	interaction of IC and FREQ for Russian —— 148				
Figure 80	Length (character number of verbs) as a function of DEFAULT (left)				
	and interaction of IC and FREQ for Basque —— 148				
Figure 81	Length (character number of verbs) as a function of DEFAULT (left)				
	and interaction of IC and FREQ for Hindi —— 149				
Figure 82	Length (character number of verbs) as a function of DEFAULT (left)				
	and interaction of IC and FREQ for Marathi —— 149				
Figure 83	Length (character number of verbs) as a function of DEFAULT (left)				
	and interaction of IC and FREQ for Polish —— 150				
Figure 84	Interaction of IC and FREQ as predictors of length in six languages —— 152				
Figure 85	Prediction of default and non-default aspectual coding by a n-gram model				
	and three TCM models with different number of topics —— 153				