2.5 Survival Prediction and Model Selection =—— 71

2.5 Survival Prediction and Model Selection

Jorg Rahnenfiihrer
Michel Lang
Jakob Richter

Abstract: Survival analysis comprises statistical methods for time-to-event data. The
main prediction tasks include the estimation of the influence of prognostic factors
for, say, medical treatments, and the modelling and prediction of survival times using
regression models. In recent years, in molecular medicine, many omics technologies
have been developed, generating complex high-dimensional genetic data that can be
used as predictors.

For such complex tasks, the selection of the best prediction method out of a large set
of candidates, along with potential feature selection and hyperparameter optimization,
represents an optimization task under resource constraints. In this section, approaches
for tackling the model selection problem in survival analysis are presented, specifically
using Bayesian optimization and addressing feature selection for high-dimensional
data.

2.5.1 Introduction

In medicine, times to events are compared between groups to estimate the effect of prog-
nostic factors and medical treatments, and regression models are used to model and
predict survival times of cells, animals, or patients. For two decades, high-dimensional
genetic and genomic variables have been generated and analyzed as potential predic-
tive and prognostic factors in biological and medical scenarios. The very large number
of variables requires developing and using tailored methods to describe the complex
relationships. Popular modeling approaches are based on penalized regression meth-
ods, gradient boosting methods, survival trees, and survival forests, often combined
with suitable feature selection methods.

In recent years, machine learning approaches were used to find the best survival
method from a large set of candidates. Efficient approaches are required, since it is
crucial that runtimes especially in resampling scenarios with many repeated estimation
tasks be kept short, especially for complex high-dimensional predictor settings. In
CRC 876, we applied modern Bayesian optimization (BO) [303] techniques to efficiently
identify the best survival prediction method, by modeling the relationship between
the choice of the survival prediction method (as well as its hyperparameters) and its
performance or quality, using so-called surrogate functions. On several lung cancer
datasets the new approach was superior to established benchmark approaches [367,

72 =—— 2 Health / Medicine

369]. After a short introduction into the analysis of time-to-event data in Section 2.5.2,
model selection for survival analysis is discussed in Section 2.5.3. To solve this task,
various R packages were implemented both for the general candidate selection and for
parallelization, as presented in Section 2.5.6.

The same principle idea was used in a scenario, where survival predictions for a
specific cancer dataset are to be improved, by adding data from similar datasets. This is
a frequent situation in, say, cancer survival analysis, where patient numbers in clinical
trials are limited due to ethical, financial, and administrative reasons, but similar
treatments are applied, e.g., in other clinical centers. However, simply adding similar
datasets to the one of interest potentially deteriorates the predictions, due to structural
differences between the datasets. Instead, one can estimate dataset-specific weights
that determine how strong these datasets should be considered. In CRC 876, we applied
BO to determine such optimal weights for inclusion of the respective observations
in appropriate weighted likelihood-based modelling approaches [531], as shown in
Section 2.5.4 below. In two other projects related to feature selection, we developed
improved methods based on two-fold subsampling schemes [383] and benchmarked
filter methods against each other for high-dimensional data [95]. These analyses are
described in Section 2.5.5.

2.5.2 Analysis of Time-to-Event Data

Survival analysis, also called event-time analysis, deals with the analysis of times to
certain events and is used in many application fields. In medicine, the overall survival
(0S) of patients is often of direct interest. Alternatively, Progression-Free Survival (PFS)
is frequently analyzed, which includes Event-Free Survival (EFS) and recurrence-free
survival. An important property of survival data is that they are often not fully ob-
servable, such as when patients in a clinical trial have not yet experienced the event
of interest at the time the trial ends and the data is analyzed. This situation is called
right-censoring, since for patients without an observed event, the survival time must
be greater than or equal to the time until the end of the study. Depending on the type of
missing information, many other censoring mechanisms are defined and considered in
the analysis techniques.

Specialized statistical methods for analyzing survival data have been developed
and are widely used in literature and in practice. Most prominent are the Kaplan-
Meier estimator for estimating survival curves under right-censoring, the log-rank test
for comparing survival between patient groups, and the Cox proportional hazards
model [149] for estimating survival dependent on a number of explanatory variables,
such as tumor size or age in oncological studies.

In regard to the evaluation of performance, seemingly obvious approaches lead to
wrong interpretations of the results. For example, simply predicting the event indicator
that indicates if a patient has survived until the end of the study, neglects the different

2.5 Survival Prediction and Model Selection =—— 73

time intervals that have passed since the patients entered the study. By contrast, meth-
ods based on hazard rates that model the instantaneous failure rates at different time
points can cope with the censoring mechanisms. Alternatively, parametric likelihood
methods that consider the missing information can also be used.

For evaluating the prediction accuracy of survival models, several suitable mea-
sures have been developed. Concordance statistics, in particular Harrell’s C-index and
the area under the (time-dependent) ROC curve, are the most popular measures. How-
ever, they consider only the discrimination ability of a survival model and not the
calibration. This means that monotone transformations of predicted values of survival
outcomes do not change the concordance score, which limits the interpretability of the
score for clinicians. Alternatively, the Brier score is also widely used. It considers both
calibration and discrimination, but interpretation is also difficult. An advantage is that
it can be related to a time-specified horizon. A discussion of these important properties
and an adaptation of the Brier score can be found in Kattan and Gerds [313].

In preclinical and clinical studies, genetic factors are of interest, and modern high-
throughput technologies provide many thousand potential explanatory variables. Even
the popular but controversial rule of thumb that the number of events per variable
should be at least 10 cannot be used as a basis for sample size planning. Instead,
tailored statistical and machine learning approaches are required. Aspects to consider
for model selection in this scenario are discussed in the next subsection.

2.5.3 Model Selection for Survival Analysis

Model selection in survival analysis, compared with model selection in classical ma-
chine learning setups such as regression or classification, presents numerous additional
challenges.

First, instead of having to solve a learning task with many observations (e.g. pa-
tients) and comparatively few variables, in survival analysis we often face a low sample
size problem. Even worse, with the rise of omics technologies, thousands to hundreds
of thousands of genetic features need to be included in the analysis to be able to iden-
tify the most important genes. However, most machine learning or statistical learning
algorithms have been designed and heavily optimized for a large sample size n, and
usually have worse than quadratic runtime in the number of features p. For this reason
alone, we often face runtime issues in the n <« p scenario.

Second, a dual objective is often pursued, and the predictive performance of the
models is not the only target criterion. Instead, it is desired to identify the important
features (clinical covariates, genetic dispositions, or genes) in the given medical context.
A good predictive performance often ensures that the model describes the data in a
meaningful way, which is the prerequisite for extracting a set of important features. This
restricts the analysis to models that either come with an embedded feature selection or
models that still work reasonably well after a feature filter has been applied.

74 =—— 2 Health / Medicine

Third, all performance measures in survival analysis require a large enough test set to

yield performance values that lead to reliable statements. For example, the popular

C-index mentioned above assesses the ranking of the predictions for survival in the test

set by comparing it with the true, observed ranking of survival times (while correcting

for censoring). Obviously, having too few observations in the set results in a high
variance of the performance estimator. Since usually only a few hundred observations
are available in total per dataset, the number of repetitions must be increased during
resampling in order to account for the larger variance. Of course, this exacerbates the
runtime problems one is already facing.

These points taken together form a hard tuning problem with the following charac-
teristics:

1. The models form a black box from the perspective of the tuner, as there are no
known derivations. Therefore, the optimization problem itself is also called “black
box”.

2. To assess the predictive performance of a hyperparameter configuration 6 and its
resulting model, the data needs to be split into a training set and an independent
test set. This introduces stochastic components into our tuning problem at the
latest (some learners are non-deterministic either way).

3. The search space spanned by the hyperparameters to be tuned usually includes
both numerical and categorical variables. This precludes the use of many tuners
derived from discrete and steady optimization.

4. Each model fit is potentially resource demanding, in terms of computational time,
memory requirements, or communication costs. The key word here is “potentially”.
Some models, e.g., a simple Cox model augmented with an aggressive feature filter,
can easily be fitted in less than a minute even with n = 200 observations and p =
10° variables (features). Other learners, such as support vector machines, require
a complete day for the same task on the same hardware while simultaneously
consuming several orders of magnitude more memory. Obviously, the resource
requirements are very heterogeneous, which should be taken into account during
the mandatory parallelization.

5. Last but not least, during hyperparameter optimization, we generally have to deal
with an additional type of censoring (besides the censoring of the survival times):
It is not unusual that the learner implementations crash from time to time due,
say, to numerical problems. And since the tuning is usually distributed on larger
computation sites with shared and contested resources, computational jobs can hit
a wall time and be killed by a scheduler. In such a case, the missing performance
score must be imputed with a number to continue with the tuning, and it is unclear
which value to choose.

Over the last decade, special strategies addressing the difficulties of hyperparameter
optimization have emerged. An overview is given by Bischl et al. [68]. Roughly speaking,
hyperparameter optimization is about finding the configuration 6 of a model, which

2.5 Survival Prediction and Model Selection =—— 75

leads to the best predictive performance (evaluated on an independent test set). If
the evaluation of a single configuration is sufficiently expensive with regard to com-
putational resources like runtime, every evaluation counts, which also means that
rather wasteful optimization methods are not applicable. This applies, among others,
to Evolutionary Algorithms (EAs). EAs usually require many hundreds of configurations
before being able to make the first targeted decisions. Instead, a tuner that optimizes
more aggressively from the start is needed.

One tuner that addresses all the problems of the outlined expensive black-box
optimization problem is iterated F-racing [421]. The basic idea of F-racing is to race a
population of configurations against each other, and to eliminate in each iteration can-
didates that are underperforming based on a Friedman test. Iterated F-racing extends
this approach by assuming a probability distribution over the search space. This distri-
bution gets updated iteratively so as to be centered around some elite configurations.
We applied this tuning approach to a broad range of survival pipelines (consisting of
the feature filter and the survival model) [369]. The benchmark considers 12 different
datasets of four breast cancer cohorts where each dataset consists of clinical and/or
genetic variables (features). The architecture of the pipeline, i.e. the choice of filter
and the choice of model, is encoded as virtual hyperparameters passed to the tuner.
This way, dominated combinations of filters and models are getting fewer evaluations,
giving the tuner more opportunity to exploit hyperparameters of more promising com-
binations. As a baseline, four reasonable approaches that are popular in practice but
are arguably less computationally intensive have been evaluated. To the best of our
knowledge, this was the largest benchmark of survival models up to that point. In
comparison with the baseline approach, the tuning yields significantly better results
in terms of the C-index. The caveat is the effort to archive the results: with more than
10 000 hyperparameter evaluations, the tuning cannot be applied easily on new data
or cohorts.

Another tuner which perfectly fits the requirements of hyperparameter optimization
in survival analysis is Model-Based Optimization (MBO). Its performance has been
verified by Lang [367] where the benchmark study from Lang, Kotthaus, Marwedel,
Weihs, Rahnenfiihrer, and Bischl [369] has been extended, with more datasets, more
filters, more models, and more time budget.

Figure 2.24 visualizes the survival probability in the included cohorts. Although the
studies are all on lung cancer, and share the same set of clinical and genetic features,
they differ considerably with respect to survival times. This is a frequently observed
characteristic, and makes the careless merging of the datasets into a larger dataset with
more observations inappropriate. As a result, in this domain, it is usually not possible
to configure a single model to perform sufficiently well on all cohorts. Instead, for each
cohort, tuning starts from zero. One goal of the analysis was to thin out the portfolio
of methods to consider for a new tuning run. If, e.g., only two pipelines consisting
of a filter and a model have to be tried, the computational effort required for tuning
is significantly reduced, rendering the tuning for new cohorts on a single computer

76 =—— 2 Health / Medicine

100% -

()

75% - *
4»_',“‘ iy
&
e \l\t strata
e thL
ey 1* h i GSE14814
.
W 4 e GSE4573
+ ‘-i-" -
g GSE50081
50% - H
+‘3¢,‘+ GSE37745
LAY
S o — GSE31210
% ﬁﬁ% g GSE30219
‘“’H+++ s
W+ e Shedden
% - "++ =
++ .
25% - b + +

++

A

+4 o+

0%~

.
0 5 10 15 20
Years

Fig. 2.24: Plot of Kaplan-Meier estimators including confidence bounds for the survival time S(f),
stratified by the cohorts that are included in [367]. In the Kaplan-Meier plots, the time t is plotted
against the estimated proportion of patients still alive at . Lines represent survival curves of the
seven cohorts. A vertical drop in a curve indicates an event, and a plus on a curve means that an
observation was censored at this time.

possible and therefore applicable for practice. This has been systematically analyzed
by Lang [367]. Parts of the results are summarized in Figure 2.25. Additionally, the mean
ranks of filters and learners have been analyzed and revealed the following important
take-home messages in the context of the datasets analyzed:

If one base learner has to be chosen, random survival forests perform best on
average.

One of the most popular approaches due to its embedded feature selection—fitting
a Cox proportional hazards model with a LASSO penalty (L;)—performs the worst
on average.

Tuning over multiple base algorithms jointly with MBO results in the best perfor-
mance on average.

Tuning each pipeline individually and picking the best performing pipeline (ap-
proach BenchOpt in Figure 2.25) in a second step is not only a waste of computa-
tional resources; it also leads to overoptimistic performance estimates. As each
tuning run is stochastic, and the pipelines often perform comparably well, picking
the best configuration is determined by the stochastic noise to some degree. This

2.5 Survival Prediction and Model Selection =— 77

Algorithmus
(]
MBO
== BenchOpt
== CoxPH []
0.8- =o= CoxBoost T
s L1 '
°
o= 2
=8= mboost
== randomForest
x
]
206
[
(6]
0.4-

GSE14814 GSE4573 GSE50081 GSE37745 GSE31210 GSE30219 Shedden
Cohort

Fig. 2.25: Resulting average C-index on independent test sets of multiple algorithms, stratified

by cohort. All base algorithms are individually tuned together, jointly with the choice of filter and
the filter's hyperparameters. MBO tunes over all filters and algorithms simultaneously. BenchOpt
expresses the resulting performance on an independent test set after picking the best performing
base algorithm on the training data [367].

is in particular a very alarming result, as the described manual benchmarking is
common practice.

The heterogeneous runtimes (or more general, the heterogeneous resource demands)
have been addressed by Richter, Kotthaus, Bischl, Marwedel, Rahnenfiihrer, and Lang
[530] and Kotthaus et al. [346]. Instead of fitting only a single surrogate model, guiding
the optimization to areas with the best predictive performance, multiple surrogate
models are fitted in each iteration. On the one hand, the usual surrogate based on the
observed predicted performance is calculated. On the other, one or more surrogate
models for computational resources are fitted, e.g., one surrogate for the runtime and
one surrogate describing the memory consumption. As a result, we can query the
models for the estimated predictive performance and the estimated resource demands
for all hyperparameter configurations. All the information is fed into a scheduler that
selects a subset of the configurations and maps them to multiple CPUs or workers
based on their priority (as derived from the estimated predicted performance) while
minimizing the idle times (based on the estimated runtime).

78 =—— 2 Health / Medicine

2.5.4 Weighted Subgroup Selection for Survival Analysis

Obtaining a reliable prediction model for a specific cancer subgroup or cohort s™ is often
difficult due to a limited sample size and, in survival analysis, due to potentially high
censoring rates. Sometimes similar data from other patient subgroups is available, e.g.,
from other clinical centers. Simple pooling of all subgroups can decrease the variance
of the predicted parameters of the prediction models, but also increase the bias due to
heterogeneity between the cohorts.

Different approaches exist to improve the predictive quality by including data
from other patient subgroups in a weighted fashion. One possible way is to include
one further weighted subgroup, as proposed by Weyer and Binder [726]. Alternatively,
individual weights for each patient can be estimated from the training data, as described
by Bickel et al. [63]. The idea is that weights match the joint distribution of the combined
data to the distribution in each subgroup, such that a patient who is likely to belong to
the target subgroup receives a higher weight in the subgroup-specific model. Weights
correspond to the conditional probability of belonging to the target subgroup s given
the observed covariates and outcome divided by the prior probability for s*. The former
is estimated from the training data by multi-class classification, and the latter by the
relative frequency of s™.

The goal is to optimize the predictive performance of our model for the target
subgroup s”. Including data from additional subgroups in the training data should
increase the predictive performance of the target subgroup. Accordingly, this forms a
combinatorial optimization problem where additional subgroups must be chosen to
maximize the predictive performance.

However, completely abstaining from using certain subgroup data seems overly
drastic since there might be relevant information contained in each additional subgroup
data. Luckily, most machine learning methods and also those that can be used for
time-to-event data allow observational weights. This allows us to give a low weight to
observations that do not represent our problem. However, finding an optimal weight
for each observation is exceedingly complex. Instead, we introduce subgroup weights
as presented by Richter et al. [531]. The observation weight is then determined by
the subgroup membership of each observation. This enables the inclusion of certain
subgroups with a specific weight. Hence, including additional data in a weighted way
might lead to a better solution than the binary choice of including a subgroup with full
weight or not at all.

By introducing subgroup weights, we relaxed the combinatorial problem into a nu-
merical optimization problem. However, setting those subgroup weights in an optimal
way remains a difficult optimization problem. First, each additional subgroup leads to
a further weight parameter that has to be chosen optimally. Second, the evaluation of
a weight parameter combination can take fairly long, since the datasets themselves
tend to be rather large, especially when they include high-dimensional genetic mea-

2.5 Survival Prediction and Model Selection == 79

surements in the scenario of survival analysis. In this case, it becomes infeasible to try
out many weight parameter combinations in order to find an optimal one.

Therefore, we can apply state-of-the art optimization methods for expensive black-
box problems such as MBO (model-based optimization) in order to find the optimal
subgroup weights without the cost of having to evaluate hundreds of different weight
parameter combinations. For our evaluation, we optimize the subgroup-specific weights
w® in the weighted Cox model. Note that in Section 2.5.3 a study was reported where
random survival forests performed on average better than fitting a Cox proportional
hazards model with a LASSO penalty. However, here we use the much more frequently
used penalized regression approach to evaluate the potential improvement due to the
weighted analysis.

Weighted Cox Model Assume the observed data of the patient i consists of the tuples
(t;, 8;), the covariate vectors x; = (x;1, .. ., x,-p)' € R?, and the subgroup membership
s; € {1, ..., S} with S being the total number of available subgroups, andi=1,...,n.
t; denoting the observed time of patient i, the minimum of the event time, and the
censoring time. §; indicates whether a patient experienced an event (§; = 1) or was
(right-)censored (6; = 0). As mentioned above, one of the most popular regression
models in survival analysis is the Cox proportional hazards model [149]. It models the
hazard rate h(t|x;) of a patient at time t as

p
h(t]x;) = ho(t) - exp(B'x;) = ho(t) - exp [>~ Byxy; | ,
j=1

where hy(t) is the baseline hazard rate, and 8 = (81, .. ., Bp)' is the unknown parameter
vector. The parameters are estimated by maximizing the partial log-likelihood [326,
Chapter 8.3]. A version of the partial log-likelihood that uses observation weights is
introduced in [726]:

I(B) = i 6;w; ([f'x,- -1n {i 1(4,<t,) Wk €XD (ﬁ'xk) D . (2.18)
k=1

i=1

Instead of an individual weight for each patient, we introduce an individual weight
for each subgroup. Therefore, we assign the same weight to each patient of the same
subgroup:

1, ifs;=s"

w; =] . (2.19)
w8, ifs;=g,ge{1,...,S}\s

where w8 ¢ [0, 1] is the specific weight for the subgroup g, and s” is the subgroup for

which we want to obtain predictions. Patients for subgroup s” enter with full weight 1

in the prediction model.

80 —— 2 Health / Medicine

Standard subgroup analysis is based only on the patients in the subgroup of interest
(target subgroup s™), which corresponds to w; = 0 for all patients not belonging to s*. A
combined model that pools patients from all subgroups corresponds to w; = 1 for all
patients.

In high-dimensional settings where the number of covariates p is typically much
larger than the sample size n, standard maximum likelihood cannot be used for pa-
rameter estimation, since it does not result in a unique solution. Therefore, we add a
LASSO penalty [677] to the partial log-likelihood. Lasso regression performs feature
selection and yields a sparse model solution. The resulting maximization problem of
the penalized partial log-likelihood is given by

p
B = arg;;nax (p)-A- Z IBj]

j=1

The LASSO penalization parameter A is optimized through an internal 10-fold cross-
validation.

Evaluation We are interested in maximizing the predictive performance for a target
subgroup s”. The predictive performance of the weighted Cox model is evaluated using
the C-index. For the evaluation of the model for a given target subgroup s, a dataset
that contains S subgroups, and a subgroup weight vector w = (w(l), cees w(s‘l)), we
conduct a modified 10-fold cross-validation. The validation data should only contain
the target subgroup, because we are only interested in the predictive performance on the
target subgroup. In order to obtain the 10 necessary splits for the cross-validation, we
only divide the data of the target subgroup into 10 chunks. To obtain the prediction for
one chunk, all remaining 9 chunks plus all observations from the additional subgroups
are combined to the training dataset. By performing the modified cross-validation,
we obtain an estimation on the C-index for the given combination of dataset, target
subgroup and subgroup weight vector.

Now, the goal is to find the subgroup weight vector that maximizes the C-index.
This optimization problem can be solved with MBO, with a search space [0, 1]° that
directly maps to the weight vector. The acquisition function that selects the next weight
vector to be evaluated should take into consideration that results are not deterministic.
Therefore, we proposed the augmented expected improvement [288], which is well
suited for such scenarios. For the Gaussian process regression within the Bayesian
optimization, we proposed the Matern 3/2 kernel with an estimated nugget effect to
account for the noisy response of our objective.

The benefit of optimizing the subgroup weights is twofold: First, the resulting
optimal subgroup weight vector does not only maximize the C-index for the target
subgroup; it also allows drawing conclusions about the similarity of certain subgroups.
If a certain subgroup weight is small, it can be assumed that this subgroup does not
have a similar relationship between the explanatory variables and the event times as

2.5 Survival Prediction and Model Selection =—— 81

the target subgroup. Second, as shown by Richter et al. [531], the predictive performance
of the method does not deteriorate if additional subgroups are included that contain
inconsistent data.

Benefits could arise from using the penalization of the weights, which would allow
researchers to completely exclude data with weights close to zero. Then the model
becomes computationally cheaper and possibly more stable. Finally, the presented
approach can be used for any situation where data is pooled from different cohorts and
a machine learning method is used that supports observational weights.

2.5.5 Feature Selection for High Dimensional Data

The problem of feature selection is particularly important in the domain of high dimen-
sional data, as already described in detail in Section 2.5.3. One challenging problem
in this context is the stability of feature selection. Some learners can be restricted to
using only a small subset of the thousands of available features, and learners can be
combined with a feature filter to achieve the same in a generic fashion. However, the set
of selected features is often highly variable. For example, if a Cox proportional hazard
model is extended with an L; penalty A tuned to include only up to 20 features in a
3-fold cross-validation, the resulting three sets of selected features can be pairwise
disjoint. This has a simple reason: if two features x; and x, are highly correlated, they
are also comparably good predictors. If the model has to choose between x; and x;, a
few observations can tip the scales in one direction or the other. If the dataset is now
resampled and these observations are removed from the training set, the scale can
easily swing in the other direction. This is particularly annoying because in this way
no features can be reliably selected for a later analysis, such as a biological analysis.

Lee et al. [383] tackle this problem in two ways: First, a special extension to the
LASSO regression is used. The preconditioned LASSO [495] is a two-step procedure
designed to address the problems of high bias in LASSO estimates. Second, the pre-
conditioned LASSO is embedded in a two-fold subsampling procedure to improve the
stability of the feature selection via model averaging and extra shrinking of covariates
based on the selection probability in the inner subsampling.

The approach has been applied to datasets on neuroblastoma, lung adenocar-
cinoma, and breast cancer. Both predictive performance (measured by the C-index)
and stability (measured by the Jaccard index and the Kuncheva index) are improved.
However, the comparison with popular univariate selection methods does not provide
a clear picture.

Another take on this topic was presented by Bommert et al. [95], where more
than 20 filter methods are benchmarked against each other for high-dimensional data.
Although this work is based on classification data, there is no reason why the core
results should not be transferable to survival problems, and confirming this is currently
work in progress. One key result is shown in Figure 2.26. There are clear groups of

82 —— 2 Health / Medicine

variance

univariate.model.score

cforest.importance

impurity

permutation

MRMR

gain.ratio

oneR L Similarity

sym.uncert 1.0
chi.squared I

info.gain 0.5

sam 0.0

anova.test 05

auc
kruskal.test
CMIM

JMIM
DISR
NJMIM

BOTCHBELTECOCES QO D
BSEg8ES885=25528¢88
20 e 00gcESFERSIS5OS

g £3”g356:C838as

5 &8 Egg ® E.Eom‘g

g § "Z% & ETES

c @

x o » o S €E
= S
oL
]
ki)
=2

C
=}

Fig. 2.26: Rank correlations between the feature selection order, for all pairs of a large set of filter

methods, averaged across several datasets by the arithmetic mean. The filter methods are ordered
by average linkage hierarchical clustering using the mean rank correlation as a similarity measure

[95].

feature filters available. Filters from the same group are expected to give very similar
results across different datasets. Therefore, instead of including more than 20 filters
into the machine learning pipeline, it is sufficient to thin out this portfolio to a smaller
set. Additionally, the filters have been analyzed regarding performance and stability to
provide general recommendations for feature filtering in high-dimensional settings.

2.5.6 Software

Many machine learning frameworks exist that can be conveniently employed for model
selection or feature selection. However, most of these frameworks have a strong focus
on classification and regression. Support for survival analysis is often not existent or
insufficient. For proper evaluation, two frameworks have been extended to support
time-to-event data.

First, the R package m1r [69] has been extended with an object for survival tasks,
including the most common survival learners and survival measures. By building upon

2.5 Survival Prediction and Model Selection =——— 83

the existing infrastructure for resampling and tuning, survival learners can be tuned
with state-of-the-art tuners such as model-based optimization. For larger tasks, i.e. tasks
with thousands of features of genetic data, parallelization of the benchmark experi-
ments is mandatory. The package BatchJobs [67] and its successor batchtools [368]
provide the bridge between m1r and managed high-performance computing clusters,
allowing to compute comprehensive benchmarks on hundreds of CPUs simultaneously.
In this way they can define and execute exhaustive benchmark studies, such as those
from Lang, Kotthaus, Marwedel, Weihs, Rahnenfiihrer, and Bischl [369], Lang [367] and
Richter et al. [531].

The second framework extended for survival analysis is m1r3 [370], the successor of
mlr. The extension package mlr3proba [640] provides a general framework for proba-
bilistic regression. Compared with the survival capabilities of mlr, ml1r3proba connects
much more learners and, even more importantly, connects and implements much more
survival measures. Additionally, mlr3proba can be embedded in the infrastructure of
the mlr3pipelines [65] package, which provides a language to build complex machine
learning workflows as directed acyclic graphs. mlr3pipelines is also used to convert
and unify the many predict types of survival models: while some models return a linear
prediction vector, others return a continuous ranking, relative risks, or a complete
time-dependent distribution such as individual survival function estimates. mlr3proba
provides several pipeline operators for converting between predict types or even for
composing multiple types.

Thanks to the unified interface of m1r3 and mlr3proba, it is directly possible to
use state-of-the-art methods to optimize the hyperparameters of the survival meth-
ods via mlr3tuning. Especially in the survival context, data preprocessing is often
a crucial step. Decisions on how to configure the preprocessing should be included
in this optimization process to obtain an unbiased estimate of the predictive perfor-
mance. Modeling preprocessing through mlr3pipelines allows the building of a whole
pipeline that can be resampled and optimized. To obtain an unbiased estimate of the
performance of a pipeline identified through optimization, the whole optimization can
be resampled, resulting in a nested resampling setting. Multi-criteria optimization is
also supported, e.g. to tune for predictive performance, sparsity, and feature selection
stability simultaneously by connecting the stabm [94] package.

2.5.7 Conclusion

The analysis of survival data requires the use of adequate statistical methodology,
especially when it comes to accounting for missing information due to censoring.
Corresponding methods are available and established. However, for modern high-
dimensional data increasingly being generated today, omics data in particular, addi-
tional challenges emerge. Estimating prediction models often requires elaborate feature
selection and hyperparameter optimization. For this task, Bayesian optimization meth-

84 =— 2 Health / Medicine

ods provide a beneficial solution. They can efficiently identify models with competitive
prediction accuracy out of a large set of candidate models. Of great importance is the
availability and use of software frameworks for reproducible analysis pipelines. One
valuable example is the widely used R package m1r3, which provides efficient, object-
oriented programming on the building blocks of machine learning, together with its
extension package mlr3proba, which provides a general framework for probabilistic
regression, including many popular survival models and survival measures.

