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Abstract: The past decade has seen unprecedented progress in the survival chances of
cancer patients as a consequence of new treatments targeting tumor-specific cellular
processes, which have been uncovered by molecular genetic analyses. From a data
analysis perspective, the main challenge is the high dimensionality and multimodality
of the genetic data relative to the small sample sizes (numbers of patients). From
a computational perspective, the analysis of high volumes of data (about 100GB of
sequencing data for an individual tumor genome) currently requires high-powered
computational resources and still remains challenging in the very short time frames
that are desired to start treatment immediately.

We discuss two avenues of progress. First, we presentmethods that are able to extract
most of the genetic variants froma sequenced tumor genome, but require only 2% to 5%
of the computational resources compared with the current state-of-the-art procedures.

Second, we discuss a versatile unified statistical model for distinguishing true vari-
ants from technical artifacts of the DNA sequencing process.

Using analyses of paired samples from primary and relapse neuroblastoma tumors,
we are able to extract patterns of tumor evolution that are correlated with cancer
progression and the escape of tumors from therapeutic intervention.

As a result, a novel risk classification of neuroblastoma has been established based
on genomic and mutational data.

2.3.1 Introduction

Cancer patients nowadays receive precise diagnosis and personalized therapy based
on their individual molecular genetic data.

Here, we report on the analysis of DNA data from patients with neuroblastoma, a
solid tumor typically occurring in children.

Diagnostics and prognoses are based on DNA sequencing, currently ranging from
a few hundred targeted genes to entire genomes requiring 100GB per patient in the
near future.

Identifying relevant variants in the DNA that serve as biomarkers to distinguish
between different risk classes, or primary tumors from relapses, or treatable versus
non-treatable tumors, is and remains challenging, but every step of progress in this
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Fig. 2.15: Left: Evolutionary tree derived from binary features (presence/absence of informative sin-
gle nucleotide variants) of a primary neuroblastoma tumor and several relapse samples taken from
different tissues and at different times from the same patient [583]. Right: Illustration of evolution of
tumor heterogeneity under therapy over time [588].

field helps to make better treatment decisions in the long run. The following molecular
features derived from genomic data are of primary interest: (1) single nucleotide muta-
tions (or variants, SNVs), (2) short insertions or deletions of DNA, (3) large structural
variants (e.g., chromosomal translocations), (4) copy number changes (gain or loss
of genetic material in tumor cells), (5) epigenetic changes, such as DNAmethylation
changes, and (6) differences in gene expression.

Over the past years, we have developed feature extraction workflows and data anal-
ysis processes for each type of feature mentioned above. For data analysis workflows in
general, but especially in medicine, reproducibility of derived data from raw data is of
utmost importance. The basis of each of these processes is our workflow management
system called Snakemake [345, 450], which is now widely used worldwide, as it guar-
antees reproducibility in particular for large-scale DNA sequence analysis workflows.
Furthermore, the Bioconda package repository [242] was founded by one of us (JK) and
now, with widespread community support, acts as a central repository for semantically
versioned bioinformatics software, which is made available in a reproducible way.

In the following, for simplicity, we focus on the first type of features (SNVs), but
these findings also translate to the other variant types, if appropriately adjusted. In
particular, we discuss whether we can determine genomic variants that distinguish
primary neuroblastomas from those that re-occur after therapy (referred to as relapses
or relapse samples). The latter are responsible for adverse disease courses and are
currently considered to be incurable. It was therefore highly encouraging that we were
able to identify several genes with recurrent mutations present only in relapse samples
[583]. Figure 2.15 summarizes some of our key findings on tumor heterogeneity after
relapse (left side) and illustrates the tumor evolution process (right side). It is mainly
this developing molecular heterogeneity of tumor cells under treatment that currently
prohibits effective long-term therapies.

The main resource constraints for this setting and similar situations are a limited
number n of samples (patients) versus an extremely high number p of potential features
(e.g., each potential variant in the genome observed in at least one sample).
So we face two challenges in particular:
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1. resource-efficient detection of candidates of variants (Section 2.3.2)
2. accurate classification of candidates in each sample (true variant vs. noise, techni-

cal artefact, etc.; Section 2.3.3)

2.3.2 Resource-Efficient Detection of Variant Candidates

Standard genetic mutation or variant analysis starts with an extremely compute-
intensive step: the localization of every single sequenced DNA fragment (or “read”;
there are literally millions of DNA reads in a single dataset) in the genome, and a
pairwise comparison between the fragment and the genomic sequence. Such pairwise
alignments are the basis of variant calling: many reads showing a certain difference
at the same position compared with the reference genome, this provides convincing
evidence that the sequenced genome contains a specific genetic variant at that position,
either in both inherited chromosome copies (homozygous variant) or in just one (het-
erogzygous variant). To be precise, complex statistical models and tests are necessary
to distinguish true variants from possible technical artifacts (see Section 2.3.3).

This first localization and comparison step is performed by so-called read mappers,
such as BWA-mem [391], bowtie2 [371], minimap2 [390], or PEANUT [344]. Extensive
parallelism on both multi-core systems and GPUs keep the (wall clock) time of this
step within a few hours. However, the overall CPU work consists of many CPU days or
months for a single dataset, consuming considerable energy.

It is therefore of high interest to develop more resource-frugal methods to achieve
the same task, or at least a large fraction of it. We explored alignment-free methods
as an alternative to the above mapping and alignment-based method. In particular,
we propose to use short DNA strings of length k (so-called k-mers) to directly detect
potential single-nucleotide variants, as we now describe.

2.3.2.1 Genome Preprocessing
We first preprocess the reference genome.
1. Select an appropriate value for k, such that most k-mers are unique in the reference

genome. Our studies indicate that 21 ≤ k ≤ 31 works well for the human genome
[517].

2. Build a (very large) hash table of k-mers in the human reference genome and the
number of times that they occur. We need to take into account that double-stranded
DNA is equivalent to its reverse complement.

3. Mark the unique k-mers; they point to a unique position in the genome.
4. Among the unique k-mers, mark those that are robustly unique against single

substitutions, i.e., those for which no Hamming-distance-1 neighbor also occurs in
the genome. The resulting robustly unique k-mers do not only point to a unique
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location in the genome; they also cannot easily be changed into k-mers that occur
at a different genomic location.

The alignment-free methods work either exclusively on the robustly unique k-mers or
on all unique k-mers, giving the information from the robustly unique k-mers a higher
weight. This pre-processing step has to be performed only once for any genome version.

We found that multi-way bucketed Cuckoo hash tables are ideally suited for the
task, as they allow relatively quick construction times and yield very fast lookup times
later. There are smooth trade-off options between lower memory usage and even faster
lookup times.

In a preliminary study [756], we designed and implemented these hash tables for
a simpler application than variant calling: xenograft sorting. Here, a human tumor is
engrafted into another organism (typically a mouse) to be able to study its evolution
and response to different therapies. When such a tumor is sequenced, one obtains a
mixture between human and mouse DNA reads, so that all reads have to be assigned to
the organism of origin before proceeding further. This assignment is called xenograft
sorting. Even though human andmouse are quite similar on a genetic level, they can be
sufficiently well distinguished on the k-mer level. We presented a classification method
based on k-mer hash tables, as outlined above, with extremely high accuracy, but using
much less CPU work than previous methods: less than 25% of comparable hash-based
methods and less than 5% of classical alignment-based methods [756]. We additionally
showed that the placement of keys in the hash table can be optimized to yield optimal
average look-up times (based on the number of randommemory accesses, i.e., likely
cache misses), saving 10% to 15% of CPU work for each sample (after a 48 CPU hour
optimization procedure that has to be run only once) [757].

2.3.2.2 Basic Alignment-Free Variant Calling
The underlying idea of this method is as follows:We count all the k-mers in a sequenced
sample and produce a histogram of the count values. A typical (unique) k-mer should
have a copy number of two (in a diploid genome) when no variant is present. We
therefore analyze the histogram of observed k-mer counts (Figure 2.16) from the sample.
The leftmost peak (counts near zero) can be explained by rare k-mers due to sequencing
errors or contamination; we can attempt to correct these, or ignore them entirely. We fit
a negative-binomial mixture model to the remaining peaks occurring at equidistant
counts. The main peak corresponds to a copy number of 2 in a diploid genome (from
k-mers present in both the maternal and paternal chromosome set).

The initial analysis is restricted to the robustly unique k-mers from the reference
genome. We expect that each such k-mer has a copy number of either 0 (homozygous
variant), 1 (heterozygous variant) or 2 (no variant) in the sample. Higher copy numbers
could be explained by segmental duplications, which we do not consider at this point.
If we suspect a variant, we look for isolated single nucleotide variants, i.e., k-mers with
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Fig. 2.16: Illustration of a k-mer count histogram, relating observed k-mer counts (x-axis) to their
frequency (y-axis; logarithmic). The leftmost peak (close to zero) represents noise and erroneous
k-mers, mostly due to sequencing errors. The main peak (near 80, approximately the sequencing
coverage of this example) corresponds to the standard copy number of 2. The shoulder (near 40)
then corresponds to a copy number of 1 and consists of k-mers that are part of heterozygous isolated
mutations. This histogram was created from a control sample; in a tumor sample, more irregularities,
especially additional peaks at higher copy numbers, can be expected.

a Hamming distance of 1 to the reference k-mer, among the k-mers in the sample. If
we find a unique one (with the expected copy number), we store the pair of reference
k-mer and modified k-mer as a candidate for a variant.

This process can be implemented very efficiently, and in addition, it can be trivially
parallelized. It yields candidates for Single Nucleotide Variants (SNVs) that then can
be checked by statistical methods (see next section). It can also reliably detect copy
number variants on long segments. However, it cannot easily detect more complex
variants, such as two SNVs in close proximity, short indels, or structural variants: Here
translating k-mer information into an exact variant is more difficult, but can resort to
alignment-based methods for the local regions around areas with suspicious k-mer
frequency structure.

Perspectives Alignment-free variant calling is still an active research area, and while
we made contributions to the underlying data structures (engineered Cuckoo hash
tables) and were successful in calling selected SNVs, further ideas are necessary to call
larger classes of variants reliably. Possible approaches include using locality sensitive
hashing, in particular min-hashing, instead of exact k-mer hashing, combined with
hybrid methods between alignment-free and alignment-based approaches. To assess the
potential of min-hashing-based methods, we conducted a detailed statistical feasibility
study, examining when it is useful to include known variants into a k-mer-based read
mapper (and when not; see [515]), paving the way for novel approaches.
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2.3.3 A Unified Statistical Model for Genomic Variant vs. Artifact Classification

We present an extension and generalization of a latent variable model originally pub-
lished by Köster, Dijkstra, Marschall, and Schönhuth [342].

For this, we consider a set S of samples. Samples can be related with each other in
three ways.
1. There can be clonal inheritance between two samples s1, s2 ∈ S: sample s1 inherits

all constitutive genetic variants of sample s2. In addition, the tissues of origin of
both samplesmayhavedeveloped their own somaticmutations during their lifetime
until sequencing.

2. There can be Mendelian inheritance [443] between samples s1, s2, s3 ∈ S: the indi-
vidual of origin of sample s1 inherits constitutive genetic variants of two parental
individuals (s2 and s3).

3. A sample s ∈ S can be contaminated with a fraction of another sample s′ ∈ S.

We represent the three relationships in a directed graph G = (S, Ic , Im , C) (the sample
graph) with edge types Ix ⊆ S × S for clonal (x = c) and Mendelian (x = m) inheritance
as well as C ⊆ S × S for contamination. The corresponding contamination fraction can
be obtained with c : C → [0, 1].

The above representation can be used to model the three classical cases of genomic
variant calling: single-sample or population calling (the graph has no edges) [171],
pedigree based family variant calling (Mendelian inheritance edges) [171], and calling
of tumor/normal sample combinations (clonal inheritance and contamination edges)
[342]. Importantly though, instead of being limited to these, it can reach beyond them
by combining the mechanisms into more complex scenarios.

2.3.3.1 Variables and Notation
Observed Variables For each potential genomic variant of interest, we observe se-
quencing read data Zs = (Zs1, ..., Zsk). If the read data consists of so-called paired-end
reads (each investigated DNA fragment is sequenced from both ends), each observation
in Zsi ∈ Zs is a tuple Zsi ∈ ({A,C,G,T}+, {A,C,G,T}+,N), with the first and the second
element denoting the nucleotide sequence of the read and the last element denoting
the so-called observed insert size, that is, the number of bases from the leftmost to
the rightmost covered base when aligning the read pair to the most likely position of
origin on the reference genome of the investigated species. If the read data consists of
so-called single-end reads (each investigated DNA fragment is sequenced just from one
end), each observation Zsi ∈ Z is simply the nucleotide sequence of the read, in other
words Zsi ∈ {A,C,G,T}+.

Latent Variables The central readout of our model is the allele frequency in each
sample s, denoted as latent variable θs ∈ [0, 1]. For each read observation i, there is



2.3 Cancer Diagnostics and Therapy from Molecular Data | 49

a binary latent variable ξ si with ξ si = 1 denoting that the observation originates from
the variant allele (i.e., from a genome copy hosting the variant under consideration)
and ξ si = 0 denoting that the read originates from the reference allele (i.e., from a
genome copy hosting exactly the same sequence as in the reference genome of the
corresponding species). In addition, a binary latent variable ωsi , denoting whether the
observation has been aligned to the correct (ωsi = 1) location of origin in the reference
genome, is used.

Extensions for Bias Estimation The model can be further extended in order to esti-
mate biases in additionally observed properties of the read data, that is, the strand, the
read position supporting the variant, the read orientation, and whether the alignment
against the reference genome covers the entire read. Biases from an equal distribution
in the observed values of variant supporting reads for any of these properties typically
indicate an artifact. For clarity and brevity, we omit the integration of these biases in
our model here. An integration of strand bias can be already found in [342].

2.3.3.2 Latent Variable Model
In the following, we briefly introduce the latent variable model used for calculating
allele frequency likelihoods that has been published recently [342], and then provide a
generalization of the method. When evaluating if a read deviates from the reference
genome, two types of uncertainty are to be considered. First, there is alignment uncer-
tainty: often, a read can be aligned at multiple loci in the reference genome (also see
Section 2.3.2).

Depending on their similarity, there is more or less certainty about the optimal
positioning of the read. Read mappers and alignment tools, such as BWA [391], report
this uncertainty as mapping quality (MAPQ), which can be translated into a probability
πsi associated with each read observation Zsi to be aligned to the correct locus. Second,
there is typing uncertainty: the observed read sequence is not a perfect representation of
the true DNA fragment that has been sequenced, but instead a measurement entailing
potential errors and artifacts. The DNA sequencing machine provides an estimate of
the certainty of each reported base as the so-called base quality, which can again be
translated into a probability of the reported base to be correct. In addition, depending
on the sequencing technology, there are known rates of false insertions or deletions
of bases in the reported read sequences, as remarked on for example by Schirmer,
D’Amore, Ijaz, Hall, and Quince [578].

We now model the relationships between our observed and latent variables, while
taking above mentioned uncertainties into account. For each observation Zsi in sample
s, we handle alignment uncertainty by defining the distribution of the latent variable
ωi as

ωsi ∼ Bernoulli(πsi ). (2.3)
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The distribution of the latent variable ξ si depends on the expected fraction of observa-
tions from the variant allele. If s is not contaminated by another sample, we define

ξ si ∼ Bernoulli(θsτ). (2.4)

Thereby, τ ∈ [0, 1] denotes a sampling bias that occurs because it is usually harder to
obtain observations from the variant allele: it is harder to align, and depending on the
size of the variant, harder to obtain reads that sufficiently cover it [342]. If, in contrast,
s is contaminated by a s′ (i.e., e = (s, s′) ∈ C) with fraction α = c(e) we define

ξ si ∼ Bernoulli(αθsτ + (1 − α)θs′τ). (2.5)

In other words, the expected fraction of observations from the variant allele becomes a
mixture of the allele frequencies in s and s′.

Then, typing uncertainty can be modeled as

Zsi | ξ si , ωsi ∼

⎧
⎪⎪⎨
⎪⎪⎩

pi if ξ si = 1, ωsi = 1
ai if ξ si = 0, ωsi = 1
oi if ξ si = 0, ωsi = 0.

(2.6)

Here, ai , pi , and oi are probability distributions modeling the case that the observation
comes from a genome copy where the variant is present (pi), absent (ai), or from a
different locus (oi). These can be computed using Pair Hidden Markov models, which
essentially realign the read sequence against the sequence of reference and alterna-
tive allele while statistically considering sequencing error rates, as shown in Köster,
Dijkstra, Marschall, and Schönhuth [342] for deletions and insertions. Since then, via
analogous approaches, our model has been extended to also support all other common
variant types ranging from small (SNV, MNV) to structural variants such as inversions,
duplications, and arbitrary chains of breakpoints.

By combining the above relations, themodel can be used to calculate the likelihood
of a given combination of allele frequencies of samples S = {s1, . . . , sn} as

Pr(Zs1 , . . . , Zsn | θs1 , . . . , θsn ) =
n∏︁

j=1

|Zsj |∏︁

i=1
Pr(Zsji | θs1 , . . . , θsn ) (2.7)

while assuming independence between the read observations. Note that the computa-
tion of the likelihood function is linear in the total number of read observations, as we
have shown previously [342].

2.3.3.3 Prior Distribution
The prior probability of a given allele frequency combination θs1 , . . . , θsn in our gener-
alized model can be computed by considering the dependencies between the samples
modeled by the sample graph G (see beginning of Section 2.3.3). In addition, we assume
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that for each sample s ∈ S, a ploidy ρs ∈ N (which may differ by chromosome, e.g.,
it may be sex-specific), a somatic effective mutation rate μs ∈ [0, 1], and a germline
mutation rate νs ∈ [0, 1] are known. For calculating a prior probability, the key is to
explain the total allele frequency θs by a germline allele frequency ιs and a somatic
allele frequency |θs − ιs|. Usually, one of the two will be zero, such that variants are
explained either by germline or by somaticmutation, but combinations thereof can also
happen in rare cases. From the known ploidy ρs of a sample sj ∈ S, we can calculate
the set of possible germline allele frequencies ζs ⊆ [0, 1]ρs+1. For example, for ρs, we
obtain ζs = {0, 0.5, 1}; in other words, any germline variants may occur either in no,
one allele (0.5 or 50%), or two alleles (1.0 or 100%). The prior probability can then
be calculated by recursively exploring all possible explanations of a given total allele
frequency combination.

For a combination of germline and somatic allele frequencies we can then distinguish
between the following cases:
1. All samples that are not direct descendants of other samples (have no incoming

edges in Ic and Im in the graph G) are considered a population and the prior proba-
bility of their combination of germline allele frequencies is calculated, as defined
by DePristo et al. [171], based on a so-called heterozygosity (i.e., the expected
proportion of heterozygous sites in the genome), which is usually known for the
investigated species.

2. For any sample s ∈ S that inherits clonally from another sample s′ ∈ S, we calculate
the prior probability for the somatic allele frequency f = |θs − ιs′ | according to the
method of Williams, Werner, Barnes, Graham, and Sottoriva [730], who report a
formula for the expected cumulative number of somatic mutations per frequency.
The latter can be translated into the corresponding density by normalizing with the
genome size g and taking the first derivative, resulting in h(f ) = μ

f 2·g for f > 0. In
order to also be able to calculate the probability for f = 0, we define a reasonably
small ϵ and define h(0) = 1 −

∫︀ 1
ϵ h(f )df .

3. For any sample s ∈ S that inherits in a Mendelian [443] way from two parents
s′ ∈ S and s′′ ∈ S, we first calculate the number of expected constitutive alternative
alleles in the child and the parents by multiplying the ploidy with the respective
germline allele frequency, i.e., ρs · ιs. We then sum over the probabilities of all
cases of inheriting chromosomes with or without the variant allele from the par-
ent samples that could explain the expected constitutive alternative alleles. The
individual probabilities can be calculated by modeling an urn drawing process
without replacement, yielding a hypergeometric distribution. Finally, additional
somatic variation, i.e., cases where θsj − ιsj ̸= 0, are handled by multiplying the
corresponding prior probability for the somatic allele frequency.

4. Finally, sometimes it might not be possible to formulate prior assumptions about
allele frequencies of a sample s ∈ S. In such cases we specify an allele frequency
universe Us ⊆ [0, 1] for a sample and assume a uniform distribution.
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By taking the product over the priors for individual or groups of samples derived from
distinguishing the above three cases, the prior probability for any combination of
germline and somatic allele frequencies can be obtained.

2.3.3.4 Variant Calling Grammar
The above model is implemented in the software Varlociraptor (https://varlociraptor.
github.io). Varlociraptor offers a variant calling grammar that allows to define a scenario
that configures all aspects of the model (prior parameters, sample graph) via a textual
representation in YAML format (YAML Ain’t Markup Language; https://yaml.org/). A
scenario consists of the following sections.

Species In this section, general prior knowledge about the investigated species is
defined, such as the heterozygosity (see Section 2.3.3.3) and the ploidy (number of
chromosome copies in a cell). The latter may be defined with sex-specific exceptions
(such as the X and Y chromosome distribution in humans).

Samples In this section, the samples and their dependencies (i.e., the sample graph)
are defined. For each sample, it is necessary to either define an allele frequency universe
(leading to a uniform prior across the defined frequencies) or the sex. In the latter case,
ploidy and heterozygosity are taken from the species definition and used to configure
the prior accordingly. Each sample may be annotated with a contamination by another
sample in a given fraction (this can be used to define the common case of having a
tumor sample that also contains healthy normal tissue). Finally, each sample may
define a type of inheritance (Mendelian or clonal), while referring to the corresponding
parental samples.

Events The heart of a scenario is formed by the definition of mutational events of
interest. These can be used to define any kind of Boolean logic expressions over allele
frequencies (discrete or intervals) in the given samples.

An example for a scenario modeling the calling of variants in a patient for which
a normal healthy blood sample, a tumor sample, and a relapse sample is used can
be seen in Figure 2.17. Here, for simplicity, we have initially not defined any prior
knowledge regarding mutation rates etc., thereby modeling a uniform distribution
over the defined allele frequency universes. An equivalent scenario including this kind
of prior knowledge is shown in Figure 2.18. Here, it can be seen that we are able to
define inheritance between the normal and the tumor sample. For the relapse sample,
although in principle it should inherit mutations from the tumor sample, it is unknown
to what extent this happens, because usually only one or a few subclones survive the
therapy. Hence, we refrain from specifying an inheritance between the tumor and the
relapse, and instead impose a uniform prior on the possible allele frequencies in the
relapse sample.

https://varlociraptor.github.io
https://varlociraptor.github.io
https://yaml.org/
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b

c

samples:

  normal:

    resolution: 5

    universe: "{0.0,0.5,1.0} | ]0.0,0.5["

  tumor:

    resolution: 100

    universe: "[0.0,1.0]"

    contamination:

      by: normal

      fraction: 0.25

  relapse:

    resolution: 100

    universe: "[0.0,1.0]"

    contamination:

      by: normal

      fraction: 0.53

events:

  germline:        "normal:{0.5,1.0}"

  somatic_normal:  "normal:]0.0,0.5["

  somatic_tumor:   "normal:0.0 & tumor:]0.0,1.0]"

  somatic_relapse: "normal:0.0 & tumor:0.0 & relapse:]0.0,1.0]"

a

Fig. 2.17: Example of a Varlociraptor scenario specification to distinguish between germline variants
and those occurring as somatic events in the primary or relapse sample. (a) Scenario definition
via Varlociraptors variant calling grammar. The first section defines the three involved samples
normal healthy blood, primary tumor, and relapse after therapy, along with their contaminations and
expected allele frequency universe. The second section defines the events of interest via Boolean
logic formulas. (b) The resulting structure of the latent variable model, automatically derived from
the scenario definition. (c) Visualization of the expected allele frequencies in the three samples for
each defined event.

2.3.4 Application and Results

It was previously shown that Varlociraptor is able to significantly improve the recall,
while precisely controlling the false discovery rate without the need to tune any tech-
nical filter parameters in the absence of a biological interpretation [342]. Here, we
illustrate the application of the model by re-analyzing the aforementioned previously
published neuroblastoma dataset [583]. In this manuscript, we analyzed genomic data
from 17 neuroblastomas, for which DNA was available from the primary tumor and
the tumor at relapse. Obtaining the sequence of the entire coding region of the hu-
man genome (usually referred to as the “exome”) was especially useful for modeling
intra-tumor heterogeneity and clonal tumor evolution.

We use the normal-tumor-relapse model formulation from Figure 2.18 and para-
metrize it as follows. The effective somatic mutation rate in the tumor sample is set
to 2.93 · 10−6. This roughly models the expectation of at most 100 de-novo somatic
mutations in typical neuroblastoma tumors found in our original study [583].

Since somaticmutation can also appear in the normal tissue, we set the correspond-
ing effective somatic mutation rate to 2.8 · 10−7, as reported by Oota [485]. Finally, the
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species:

 heterozygosity: 0.001

 genome-size: 3.1e9

 ploidy:

   female:

     all: 2

     X: 2

     Y: 0

   male:

     all: 2

     X: 1

     Y: 1

samples:

 normal:

   sex: female

   somatic-effective-mutation-rate: 2.8e-7

 tumor:

   sex: female

   somatic-effective-mutation-rate: 2.93e-6

   inheritance:

     clonal:

       from: normal

   contamination:

     by: normal

     fraction: 0.1

 relapse:

   resolution: 100

   universe: "[0.0,1.0]"

   contamination:

     by: normal

     fraction: 0.53

events:

 germline:        "normal:{0.5,1.0}"

 somatic_normal:  "normal:]0.0,0.5["

 somatic_tumor:   "normal:0.0 & tumor:]0.0,1.0]"

 somatic_relapse: "normal:0.0 & tumor:0.0 & relapse:]0.0,1.0]"

Fig. 2.18: Extension of the Varlociraptor scenario specification in Figure 2.17 to include prior knowl-
edge. We define the species (here Homo sapiens) in terms of genome size, heterozygosity (expected
fraction of heterozygous loci), and sex-specific ploidy (number of chromosome copies). In addition,
we model known somatic mutation rates, and define that the tumor inherits germline mutations from
the normal sample.

tumor and the relapse sample tissue is usually contaminated by healthy cells. We use
the amounts of contamination reported in the original study [583].

Workflow Analyzing sequencing data for genomic variants entails a variety of steps,
which we outline in Figure 2.19. The entire analysis is implemented as a Snakemake
workflow [343].

First, raw reads are processed by (a) trimming so-called sequencing adapters, (b)
mapping them to the reference genome of the corresponding species, (c) removing
putative duplicates from the Polymerase Chain Reaction (PCR), and (d) recalibrating
base qualities. Sequencing adapters (a) are non-biological artifacts of the sequencing
process. Since they are known beforehand, they can be removed from the reads by
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Fig. 2.19: Schematic representation of applied genomic variant calling workflow. Nodes represent
original or derived data (gray labels in the left column), arrows represent processing steps (black
labels in the left column).

performing an error-tolerant alignment between each read and the known sequence.
We use Cutadapt to perform this step [431]. By mapping reads to the reference genome
(b), we obtain the correct order and individual differences of each read compared with
the representative genome of the underlying species. The resulting read alignments
already contain all necessary observations for applying the Varlociraptor model. In
order to obtain a signal of sufficient strength, sequencing protocols often entail the
amplification of the DNA material via polymerase chain reaction [24]. The result is that
there can be multiple reads from the same DNA fragment. Since Varlociraptor assumes
each read to be an independent observation, it is important to remove such putative
PCR duplicates, which we achieved using Picard tools [500]. Finally, the sequencing
process sometimes causes artifacts to appear next to certain motifs [19]. In (d), we
therefore use the base recalibration process from the Genome Analysis ToolKit (GATK
[171]), which systematically investigates base alteration causing motifs and recalibrates
the per base confidence scores in each sequencing read to reflect the uncertainty about
whether an altered base is a true signal or a motif-induced artifact.

Second, the aligned reads are used to generate candidate variants. We use the tools
Freebayes [222] and Delly [523] for this purpose. While the former covers small variants
that can be covered by a single read (SNVs, MNVs, small insertions and deletions), the
latter covers large, structural variants (large insertions and deletion, inversion, and
duplications). Importantly, while both Freebayes and Delly provide their own statistical
models for calling variants, we utilize them to generate candidate hypotheses. Both
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Fig. 2.20:Mutational burden of patient 1 from Schramm et al. [583] in the primary tumor (left) and
relapse sample (right). The horizontal axis shows the minimum allele frequency, vertical axis shows
the mutational burden as number of coding somatic mutations (calculated as expected value over
the posterior probability for having a somatic mutation) per megabase of coding genome. The colors
represent different types of mutations (see legend).

models are designed only for specific cases and are not generic enough to handle the
composition of samples available in this dataset.

Third, we use Varlociraptor to (a) extract observations for each sample and each
candidate variant and (b) apply the model as defined in the corresponding scenario for
each patient in the study data.

Fourth, we (a) annotate the variant calls from Varlociraptor with their impact on
proteins via the VEP tool [440] and (b) filter them for those that are of interest. In this
case, we strive for three disjoint sets of variants
1. Variants that have been previously described as pathogenic or likely pathogenic in

other studies.
2. Variants with high impact on the protein but which have not been previously

described by other studies.
3. Variants with moderate impact on the protein but which have not been previously

described by other studies.

Finally, we separately control the local false discovery rate for somatic variants in either
the tumor or the relapse sample on each of the three sets.

Insights In the following,we summarize themost important insights from reanalyzing
the study data with this workflow.

Figure 2.20 shows the mutational burden as a curve over the minimum allele
frequency on an example patient. It can be seen that the burden for higher frequencies
in general increases in the relapse sample compared with the tumor sample. This
supports the hypothesis that the relapse sample originates from a subclone of the tumor
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sample, which has survived therapy. Thus, one can expect that resistance-inducing
mutations in the relapse sample becomemore abundant. Our findings contribute to the
emerging view of resistance to cancer therapies as an evolutionary process. Selection
of surviving clones results in mutational fingerprints that are specific for resistant or
recurrent tumors. A better understanding of these genetic fingerprints is a prerequisite
for identifying markers allowing early detection of resistance or tumor recurrence and
enabling timely adjustment of therapies to further improve the survival and cure of
cancer patients.

Future work entails the interpretation of individual recurrent deleterious gene and
pathway alterations across the analyzed samples. Moreover, we aim to further improve
the prior model of Varlociraptor such that assumptions about subclonal inheritance
patterns can be incorporated as well.

Finally, we will combine the statistical approach of Varlociraptor with alignment
free methods, as outlined in Section 2.3.2. Since Varlociraptor has to perform a realign-
ment of read sequences anyway (see Section 2.3.3.2), we may replace the initial read
alignment with an alignment free approach that yields a rough positioning of reads
on the reference genome so that they can be selected for validating a given candidate
variant with Varlociraptor. For this, it is necessary to accurately estimate the alignment
uncertainty from the k-mer hits via, say, the strategy proposed in our previous work on
PEANUT [344]. Finally, the detection of candidate variants with alignment free methods
has to be extended beyond single nucleotide variants. Here, a possible strategy might
be a hybrid approach where aberrations in k-mer counts are translated into an exact
variant call by (a) collecting the causing reads, (b) assembling them into one or more
consensus sequences [114], and (c) aligning these against the reference genome to
determine the nature of the variant.


