
3 Key Concepts in Machine Learning and Data
Analysis

Katharina Morik
Mirko Bunse

Abstract: Throughout this book, machine learning is employed in order to enhance
the knowledge about the structure of our universe and the understanding of particle
interactions through large data-producing physical experiments. This chapter gives an
overview of the structure of machine learning as a scientific discipline. Since we cannot
detail the methods and their foundations, we add pointers to relevant textbooks and
survey papers. Our goal is to raise awareness about the theoretical basis of machine
learning so that the software that machine learning generously offers is always used
with the appropriate caution.

3.1 Overview of the Field of Machine Learning

Machine Learning (ML) is the field of Artificial Intelligence (AI) that builds or enhances
a model of some phenomenon. We will give a short overview here, which shows the
structure of this large field. The levels of machine learning and their related theories
that we discuss are:
– The learning tasks that are most often given by objective functions to be optimized

are also well-known in statistics, see Section 3.1.1.
– Algorithms and libraries follow paradigms of processing, see Section 3.1.2. They

define pipelines of steps in the overall learning as described in Section 3.1.3. The
particular step of feature selection is illustrated by the minimum redundancy and
maximum relevance method in Section 3.1.4.

– Optimization methods, in particular Newton-Raphson and Stochastic Gradient
Descent, are explained in Section 3.2.

The structural view is completed by pointing at the theoretical questions of machine
learning (in Section 3.3). For the classes of learning methods, we selected to present
tree models (including the ensemble of trees) in Section 3.4 and deep neural networks
in Section 3.5 because these are the most common methods in the analysis of physical
data.

Open Access. ©2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785968-003

52 | 3 Key Concepts in Machine Learning and Data Analysis

3.1.1 Learning Tasks

Many approaches to machine learning can be described as finding a predictive function
h : X → Ywhere the learning task is specified byX, the domain of the input data, Y, the
domain of the output or label, and the risk measure that quantifies the quality of the
prediction. Instantiating the general scheme of learning tasks gives us the definition of
the most important classes of learning tasks.

Definition 1. Unsupervised Learning
Given a set of observations DU = {x⃗i ∈ X : 1 ≤ i ≤ N}
and a function ext : C → 2X returning all objects x⃗ ∈ X that are mapped to c,
find concepts {cj ∈ C : 1 ≤ j ≤ k}
such that each x⃗i ∈ X is mapped to a concept cj ∈ C,
and such that some quality function is optimized through this mapping.

Definition 2. Supervised Learning
Given a set of labeled observations DL = {(x⃗i , yi) ∈ X × Y : 1 ≤ i ≤ N},
find a mapping h : X → y
such that a quality measure is optimized.

Where the scheme of learning tasks might look simple, if we elaborate on the three
parts of it, we see how broad the space is that it covers.
– First, the input is characterized, ranging from formulas, database records, value

series, sequences, images, and linguistic input, to graphs or even other models.
Often, the input data are a sample of vectors DU with X being a d-dimensional
random variable. Each component is a feature or attribute of a certain domain. If
all features are real numbers, x⃗ ∈ Rd. The vectors might be organized into some
matrix A or into a series over an index t0, t1, ...tT . For graphs, in addition to the
vectors for nodes, there are also edges and possibly even edge features.
Learning tasks with just these input data are called unsupervised learning. Cluster
analysis and matrix factorization are popular methods of unsupervised learning. A
clustering delivers a set of concepts c1, ..., ck where each concept covers a set of
data points.
A method for selecting the appropriate set of features will be described in Sec-
tion 3.1.4.

– Second, the target is specified. If a target value or label yi is given for every x⃗i,
we call the task supervised learning. Classification assigns a class to an example,
h : X → y, y ∈ {+1, −1}. Regression assigns a real number to an instance, i.e.,
y ∈ R. For time series data, the task is either a classification, i.e. the time series is
an instance of a class y, or a forecast, i.e. given a series x⃗t0 , x⃗t1 , ...x⃗tT find x⃗T+s for
a time span s.

3.1 Overview of the Field of Machine Learning | 53

It is possible to also have more complex output [370]. In speech recognition, for
instance, a value series of audio input has to be mapped to a series of words,
h : X → Y.
Since the acquisition of the labels yi for all given data DU might be costly, semi-
supervised learning uses a small set of observations x1, ..., xm together with their
labels y1, ..., ym in addition to a huge set of unlabeled observations xm+1, ..., xN .
It was introduced in the form of directing clustering through expert given advice
[127] and then became generalized for text data [340] and graphs [266].
Methods that actively determinewhich labeled data have the best utility for learning
are called active learning. They optimize theutility of labeling for learning regarding
its cost. Self-supervised learning goes even one step further in that no human
annotation is needed. Instead, the learner forms learning tasks on the basis of the
given data. A component of example vectors or some part of a value series is used as
the label that is to be predicted. Themodel is tested on exampleswith amask hiding
the label part. A more sophisticated approach is to distract the examples, train
models on the changed and the true data, and learn how to distinguish between
models [75].

– Third, a loss function, quality measure , or risk function is indicated, i.e., a
condition that must be valid for the learned model. RD : Rd → R. It is evaluated on
labeled or unlabeleddataDL orDU . This opens the floor for optimization techniques
[95, 293]. The broad field of optimization ranges from evolutionary algorithms [74]
to (stochastic) gradient descent [92].
In addition to minimizing the loss or maximizing the likelihood, the goal is to
minimize the model complexity and prevent it from overfitting the training data.
In general, regularization adds a penalty term to the loss function. This can also be
coined as multi-objective optimization [269]. Quality measures and optimization
will be described in Section 3.2.

Let us illustrate the three parts of a learning task by regression to see their interaction
more clearly. Learning a linear regression function is a simple but widespread task.
Regression functions appear in three notations: as a sum, as a matrix product, and as a
scalar product:

ŷ = hβ⃗(x⃗) =
d∑︁
i=1

βixi = x⃗T β⃗ = x⃗ · β⃗

We see that the parameter vector β⃗ affects the predictions by weighting the features xi
in a weighted sum.

To learn a model from the data set DL, we must decide on a risk measure. For linear
regression, a popular choice is the mean squared error between the predictions and

54 | 3 Key Concepts in Machine Learning and Data Analysis

the ground-truth values.

MSE(β⃗;DL) =
1
N

N∑︁
i=1

(yi − hβ⃗(x⃗i))
2

Due to the simplicity of the linear regression model, it is possible to find a parameter
vector β⃗* = (X⊤X)−1X⊤Y that is optimal in the sense of the MSE. In general, however,
finding a solution is not that easy. More complex models and loss functions require
numerical optimization techniques to select an optimal parameter vector.

The risk measure is typically defined as the average value over example-wise loss
values. These loss values are specified through a loss function ℓ : Y × Y → R, which
assigns a score to each individual prediction ŷ. Namely, the (empirical) risk RD, which
is to be minimized over β⃗, is defined as

RD(β⃗) =
1
N

N∑︁
i=1

ℓ(hβ⃗(xi), yi) (3.1)

For instance, the mean squared error for linear regression is based on the loss function
ℓMSE(ŷ, y) = (ŷ − y)2. A different choice is the zero-one loss with ℓ01(ŷ, y) = 0 if ŷ = y
and ℓ01(ŷ, y) = 1 otherwise. This latter choice results in RD estimating the probability
of misclassifications and is therefore a suitable measure for classification tasks. Other
choices of ℓ include the hinge loss, the Huber loss, and many others [327].

Independent of which particular loss function is employed, we want the resulting
risk to be as small as possible, so that the predictions ŷ are as close to the true outcomes
y as possible. However, we must keep in mind that the empirical risk RD is only a
substitute for a greater goal: a minimum expected risk R, which is valid for the entire
data distribution.

R =
∫︁

X×Y

P(x, y) · ℓ(fβ(x), y) dx dy (3.2)

This greater goal stems from the fact thatwewant to predict future data that is unlabeled.
In otherwords:we intend to learnprediction functions that generalize from theobserved
data DL to any data set from the same distribution. The difference between R and RD
becomes apparent when we split the data into training and validation sets: if the model
classH is powerful enough to memorize the training set, so that RD = 0, we typically
observe a validation error that is greater than zero.

One lesson from observing the difference between R and RD is that we typically
want to prevent our models from amere memorization of the training set D. To this end,
we can employ regularization techniques that impose additional constraints on the
model structure. The objective of a regularized optimization task, with a regularization
function r : Rd → R and a regularization strength λ ∈ R, is:

β⃗* = argmin
β⃗

RD(β⃗) + λr(β⃗) (3.3)

3.1 Overview of the Field of Machine Learning | 55

The function r typically does not depend on the training data D but on structural prop-
erties such as sparseness, that are desired in an anticipated solution. We substantiate
this discussion with two exemplary regularizers, namely the L1 and the L2 norms. The
L2 norm, also known as the Euclidean norm, is a popular penalty term that imposes
small parameter values. It has the additional benefit of facilitating optimization by
being strongly convex. In neural networks, the L2-norm regularization is also called
“weight decay”.

rL2(β⃗) =|| β⃗ ||2=

⎯⎸⎸⎷ d∑︁
i=1

β2i =
√︁
β⃗T β⃗ =

√︁
β⃗ · β⃗

Picking up the linear regression model, the L2-norm regularization leads to the popular
ridge regression technique:

min
β⃗

N∑︁
i=1

(yi −
d∑︁
j=1

xijβj)2 + λ
d∑︁
j=1

β2j

The L1 norm, also known as the Manhattan distance, promotes a different structure for
the solution. Instead of imposing small parameter values, it promotes some parameters
to be close to zero while leaving other parameters intact. In a linear model, L1-norm
regularization can thereby perform a selection of features simultaneous to learning the
prediction model.

rL1(β⃗) =|| β⃗ ||1=
d∑︁
i=1

βi = β⃗T 1⃗

Regarding linear regression models, L1-norm regularization leads to the popular LASSO
regression technique. For linear dynamical systems (LDS), L1 regularization has been
enhanced by a reparameterization approach based on an estimation of time-variant
dynamics [310].

Bayesian statistics realizes regularization through a given prior probability distri-
bution that decreases the complexity of the model. The SVM even selects the model
that minimizes the error and the model complexity at the same time [378, 381], as
measured by the VC dimension (see Section 3.3.1) [379]. Viewing machine learning
as data compression under minimum description length [325, 326] has further led to
frequent set mining in very large data volumes [384].

3.1.2 Processing Paradigms of Machine Learning

Data may be given as a large data set or may come in as a stream of data. The very large
data sets that do not fit into the memory of a single machine require distributed pro-
cessing. Computing on large distributed compute clusters has led to the programming
paradigm ofmap & reduce. A small example illustrates the idea. In the map step, a
function is applied to each element of a list, e.g., map(+1)[1, 2, 3] delivers [2, 3, 4]. In

56 | 3 Key Concepts in Machine Learning and Data Analysis

the reduce step, a function is applied to the overall list, e.g., reduce(+) then delivers
[2 + 3 + 4] [135].

Computing on streams does not allow the algorithm to look at a data point more
than once, in the extreme case. The potentially infinite stream moves through the
algorithm, which processes a data point and lets it go. A data structure to handle these
streams, however, needs to be finite like any other data structure. Therefore, it is often
necessary in practice to employ algorithms that only approximate the true properties
of the data stream, for instance, in approximate counting [259]. Novel algorithms for
learning from streaming data are proposed in Chapter 3 in Volume 1. An open-source
library of learning algorithms for massive data streams is MOA [83].

Astrophysical data are big data. The notion of big data indicates a very large volume
of data arriving with high velocity and in a large variety of types, which need to be
handled. Open-source software such as Apache Hadoop “allows for the distributed
processing of large data sets across clusters of computers using simple programming
models”.¹ The Hadoop Distributed File System (HDFS) offers a high throughput of data
via parallel and distributed data management. More generally, computer science has
developed architectures for big data. The lambda architecture combines the storage
of large data sets in a batch layer with a real-time component, the speed layer [261].
The kappa architecture stores the historical data in a way that processes them in a
data streaming manner [161]. Chapter 6 presents ways of storing large astroparticle
data in more detail. For a framework for learning from data streams see [87]. It has
been exploited for astroparticle analyses [88]. A study of big data management and
processing for the Cherenkov telescope FACT shows the overall pipeline of streaming
data analysis [278].

3.1.3 Machine Learning Pipelines

In general, a data science pipeline starts with the most demanding step, the mapping
from a scientific question to a learning task. Most often, the scientific question is split
into several ones, each with its own learning task. Chapter 1 describes the interplay of
theory development and data analysis in terms of epistemology.

Sampling from all observations the data to be analyzed follows the scientific con-
cern by, say, structuring the observations according to certain concepts. In neutrino
detection, for instance, we might be interested in muon, electron, or tau neutrinos and
thus form separate learning processes for these concepts. This is also true for simulated
data. If one class is dominating, we might change the given distribution. Section 5.2.2
shows how active class selection samples disproportionately from a skewed distribution
in order to achieve a sound classification.

1 http://hadoop.apache.org.

http://hadoop.apache.org

3.1 Overview of the Field of Machine Learning | 57

The given data format often needs to be transformed for learning. For instance, standard
representations of time-stamped data can be transformed in several ways to allow for
a successful training of specific learning tasks [277]. The overall process of learning
needs to be documented with all meta-parameters. Machine learning frameworks such
as RapidMiner² offer reproducible, adaptable, and easy-to-understand processes. A
complete learning pipeline for the successful learning of neutrino recognition in the
IceCube experiment has been developed with RapidMiner [331].

What is most important for successful machine learning is the features of the
observed items. Selecting the features that ease learning is a first step. There are three
types of feature selection. First, filter approaches like the t-test [168] or SAM-statistics
[372] compute a scoring function on features, disregarding feature interplay. Second,
wrapper approaches [230] train a learner with possible feature sets and evaluate each
feature set by the accuracy of the embedding learning. Each feature set evaluation
demands a cross-validated training of the used learning algorithm. Third, some learning
algorithms provide the user with an implicit feature ranking that can easily be exploited
for feature selection. Such embedded approaches use the weight vector of a linear SVM
[381], or the frequency of feature use of a Random Forest (RF) [97]. They are aware of
feature interplay and are faster than wrappers but depend on the learning algorithm
used. In Section 3.1.4, we describe a general and efficient method of feature selection.

Processes of extracting features from the raw data are often tailored to particular
scientific questions. Chapters 7 andSection 8.4.1 present this for particular astrophysical
data.

Unsupervised learning may deliver features for a succeeding supervised learning. Un-
supervised learning delivers pseudo-labels that are used to optimize an overall cost
function as in supervised learning. This approach has also been put forward for neural
networks [114].

Such a two-step procedure has been taken to the extreme of one-shot learning [249].
One-shot learning adapts given knowledge, which may have been learned before, to a
small set of examples. A Bayesian approach works especially well for image data since
there are regions of interest that could be interpreted as shapes and characteristics of
appearance, e.g., a set of textures. First, pictures of a set of categories are presented to
train a prior probability density function. The probabilities of shape and appearance
for categories are the given knowledge that forms the space of features. Then, only one
labeled example is needed to correctly classify all the instances that are close to it in
the learned feature space. This is one type of one-shot learning.

Extracting the features that allow classifier learning with high accuracy can be
automatized as a process, where the outer loop of learning and its evaluation with
respect to a quality measure embeds an inner loop that creates novel features on the
basis of given data. Autonomous feature extraction relies on a well-structured space

2 https://rapidminer.com.

https://rapidminer.com

58 | 3 Key Concepts in Machine Learning and Data Analysis

of possible features. Shape and texture have been structured image classification. For
value series, a structure over base transformations and shapes of curves has been
developed and used for autonomous feature extraction via an evolutionary algorithm
[270]. There, features are represented as trees of methods. The evolutionary algorithm
creates new features by adding methods to a tree or combining trees. It optimizes over
populations of method trees, and in that way performs feature selection.

Some learning algorithms provide the user with an implicit feature ranking that
can easily be exploited for feature selection. Such embedded approaches use the weight
vector of a linear Support Vector Machine (SVM) [381] or the frequency of feature use
of a Random Forest (RF) [97]. As has already been underlined by Tom Mitchell, the
hidden layers in a neural network discover useful intermediate representations [274].
This corresponds to autonomous feature extraction with evolutionary algorithms in
that the nested loop is the neural network’s backpropagation, the outer learning is
the last layer, and the hidden layers create possible representations. The supervised
training of feed-forward networks is considered representation learning because they
extract patterns from the data in the hidden layers and optimize them such that the
learned weights strengthen the relevant local patterns [183].

Finally, we might want to optimize the learned model itself. In contrast to the
terminology in physics, the termquantization inmachine learning refers to compressing
a model by turning real-valued numbers into binary or integer ones. Binarized Neural
Networks (BNN) quantize theweights now to binary values [207]. A quantization scheme
for Tensor Flow maps real numbers to a binary representation and uses integer-only
arithmetic during inference and floating-point arithmetic during training, again for
saving resources [214]. An approach that fully trains Markov Random Fields (MRFs)
using only integer values has been developed in order to save energy [308]. It allows
learning and inference on ultra-low power devices that use integer-only arithmetic.

3.1.4 Minimum Redundancy Maximum Relevance (MRMR)

The features span the space in which concepts can be learned. Too many features bring
with them the curse of high dimensionality. Having many features might slow down
learning. Hence, the goal of feature selection is to find a subset of features that allows
predicting the target concept well and has minimal redundancy. Correlation-based
feature selection (CFS) [190] iteratively adds the featurewhichhas the best ratio between
predictive relevance of the feature and its correlation with the already selected features.
Both, predictiveness and correlation, are measured by the entropy-based symmetrical
uncertainty:

SU(fi , fj) =
2 · IG(fi|fj)
H(fi) + H(fj)

(3.4)

3.2 Optimization | 59

where the information gain IG of feature fi with regard to feature fj is divided by the
sum of the entropies H of fi and fj. Ding and Peng [144] generalized CFS with the
capability for handling numerical variables calling itMinimum Redundancy Maximum
Relevance FS (MRMR). For numerical features, the F-test is used. It reflects the ratio
of the variance between classes and the average variance inside these classes. For a
continuous feature X and a nominal class variable y ∈ Y with C classes, both from a
data set with n examples, it is defined as

F(X, Y) =
(n − C)

∑︀
c
nc(X̄c − X̄)2

(C − 1)
∑︀
c
(nc − 1)σ2c

(3.5)

with per-class-variance σ2c and nc the number of examples in class c ∈ {1, .., C}. The
redundancy of a numerical feature set is measured by the absolute value of Pearson’s
correlation coefficient

R(X, Y) = Cov(X, Y)√︀
Var(X) · Var(Y)

(3.6)

or its estimate

r(X, Y) =

∑︀
i
(xi − x̄)(yi − ȳ)√︂∑︀

i
(xi − x̄)2

∑︀
i
(yi − ȳ)2

. (3.7)

In order to stabilize the feature selection method, its variance is reduced by bagging,
i.e., the feature selection algorithm is executed in parallel on different subsamples of
the data, thus delivering an ensemble of feature sets [96]. A fast implementation of
an ensemble of MRMR feature selection, which is well-suited for high-dimensional
data, has been created [344]. Features that are selected earlier and by many sets in the
ensemble are combined to become the one selected feature set.

3.2 Optimization

By now, we have expressed the task of learning a prediction model from data as the
task of minimizing an empirical risk function. In the following, we exemplify numerical
optimization by the two most popular methods, stochastic gradient descent and the
Newton-Raphson method. Both methods search for an optimal parameter vector β⃗*
by updating an intermediate estimate β⃗(k) over multiple iterations, as described in
Algorithm 3.1. The two algorithms differ in their choice of search directions p⃗ (k), see
line 3 in this algorithm.

60 | 3 Key Concepts in Machine Learning and Data Analysis

Algorithm 3.1: A canonical algorithm for numerical optimization.
Input: an initial guess β⃗(0) ∈ Rd and a risk function RD : Rd → R
Output: a minimizer β⃗ ∈ Rd of RD

1 k ← 1while a stopping criterion is not met do
2 Choose a search direction p⃗(k) ∈ Rd, using β⃗(k−1) and RD
3 Choose a step size α(k) ∈ R, using p⃗(k), β⃗(k−1) and RD
4 β⃗(k) ← β⃗(k−1) + α(k) · p⃗(k)

5 k ← k + 1
6 end
7 return β⃗(k−1)

3.2.1 Stochastic Gradient Descent

Machine learning tasks are typically characterized by large numbers of training exam-
ples that need to be handled with limited resources. This profile needs to be addressed
by the numerical optimization method, which takes out the learning according to Equa-
tion 3.3. Stochastic Gradient Descent (SGD) is a family of optimization methods that is
particularly suitable if N, the number of training examples, is large.
We consider the popularmini-batch variant of SGD,which chooses each searchdirection
p⃗(k) based on amini-batch of b ≪ N examples with random indices. Since each of these
mini-batches Ik = {1 ≤ ij ≤ N : 1 ≤ j ≤ b} is a random draw from the complete data set
D, it follows that the estimates {β⃗(k)} of the SGD algorithm are a stochastic (Markov)
process. This behavior is in contrast to complete-batch algorithms, which access all
instances of D in each iteration and therefore produce a deterministic sequence of
estimates. Another characteristic of SGD is that only the gradient∇RD of the objective
function is accessed, but not any higher-order derivative of RD. Therefore, the per-
iteration cost of the mini-batch SGD is very cheap, i.e., it depends linearly on b but
does not depend on N. The search direction of this variant is given by the following
equation, where all gradients are taken with respect to the parameter vector β⃗:

p⃗ (k)
SGD = −∇RIk (β⃗

(k)) = − 1N

b∑︁
j=1

∇ℓ(fβ⃗(k) (xij), yij) (3.8)

Accessing only b examples in each iteration causes a considerable amount of noise in
the parameter updates. This issue can be handled by appropriate choices for the step
sizes, e.g. by decaying values α(k) < α(k−1). However, since small step sizes can slow
down the learning process, there are several other techniques that address gradient
noise more directly.

For instance, momentum-based SGD variants alter the parameter update rule of
the canonical optimization algorithm presented above. Namely, these variants alter
line 5 of Algorithm 3.1 to the following assignment, introducing an additional step size

3.2 Optimization | 61

γ(k) ∈ R:
β⃗(k)momentum ← β⃗(k−1) + α(k) · p⃗(k) + γ(k) · (β⃗(k−1) − β⃗(k−2)) (3.9)

The additional step size γ(k) weights the contribution of another direction, which is the
difference between previous updates. Thereby, the parameter updates are “stabilized”
in the sense that they maintain earlier search directions to the degree that is configured
through the scalar sequence of step sizes {γ(k)}. Momentum-based techniques are
widely applied in practice. For instance, the famous optimization method Adam [227],
popular for learning deep neural networks, is based on two orders of momentum to
achieve even more stability.

The suitability of SGD for large N stems from the fact that the number of iterations
and the per-iteration cost do not depend on N [93]. This property is in contrast to full-
batch algorithms, where the per-iteration cost is indeed proportional to N. Since the
per-iteration cost of SGD is comparably cheap, it scales well with large data sets.

Beyond its desirable scaling behavior, SGD has two more advantages over full-
batch algorithms: first, it optimizes not only the empirical risk RD but also the expected
risk R directly. In this regard, SGD is better aligned with the actual goal of learning a
generalized predictionmodel. Second, SGD can optimize functions that are non-convex
if these functions are well-behaved in less strict terms [93].

3.2.2 Newton-Raphson Optimization

The Newton-Raphsonmethod [293] differs from SGD in two central aspects. First, it uses
not only gradient information but also the second derivative of the objective function
RD. Thereby, it is able to assess the curvature of the search space in exchange for a
cost that is quadratic in the number of parameters. Second, is the batch variant of
the Newton-Raphson algorithm, i.e., each iteration computes the full derivatives of
RD using all examples in D. Due to these differences, the per-iteration cost of Newton-
Raphson is considerably higher than the per-iteration cost of SGD. However, since
full derivatives capture considerably more information than an SGD update, fewer
iterations are typically needed. Newton-Raphson can therefore outperform SGD in
terms of the computational resources that it needs to find an accurate solution if the
number of training examples N and the number of parameters d are both sufficiently
small. Optimization tasks with a small N and a small d are not very typical in the
empirical risk minimization framework of Equation 3.1, but such tasks do have their
relevance in other aspects of data analysis such as in the deconvolution problem put
forward in Chapter 10.

Complying with the canonical optimization algorithm from Algorithm 3.1, the
Newton-Raphson method takes out multiple iterations, starting from some initial guess
β⃗(0). To find a search direction p⃗(k), the method evaluates a local second-order Taylor

62 | 3 Key Concepts in Machine Learning and Data Analysis

approximation ̂︀RD(k) of the actual objective function RD:̂︀R(k)D (β⃗) = 1
2 β⃗

⊤H β⃗ − β⃗⊤(H β⃗(k) − h⃗), (3.10)

where h⃗ = ∇ RD
(︀
β⃗(k)
)︀
is the full gradient and H = ∇2 RD

(︀
β⃗(k)
)︀
is the Hessian of the

actual objective RD at the latest estimate β⃗(k). The minimum of this local approximation
can be computed analytically. It defines the search direction of the Newton-Raphson
method:

p⃗ (k)
Newton-Raphson = −H−1h⃗ (3.11)

SGD and Newton-Raphson are examples of a broad research field that covers numerical
optimization algorithms. The interested reader can find additional information on batch
algorithms in reference [293]. Stochastic algorithms are covered in the survey by Bottou
and colleagues [93].

3.3 Theories of Machine Learning

Machine learning research aims at answering the following questions:
– Which guarantees can be given regarding the error? (Error bounds)
– Which model class is best suited for the problem? (Model selection)
– How many examples are needed? (Sample complexity)
– How does a model scale in terms of runtime, memory, and energy, if the number

of examples and the number of dimensions increase? (Resource bounds)

At the most abstract level, machine learning works on formulas like that of regularized
error minimization of a regression function from Equations 3.1 and 3.3 above. In terms
of these functions, the learning tasks are specified. Proving the error bounds of learning
models is the shared subject of machine learning and statistics. As has already been
stated, also the field of optimization also plays a role. Almost every paper at a machine
learning conference such as ICML or ECMLPKDDpresents or at least substantially bases
its results on a proof of error bounds. For an introduction, we recommend the books on
statistical and probabilistic approaches of machine learning [192, 284].³ Another school
of theory at this abstract level is the computational learning theory which investigates
learnability on the basis of the representations of the feature and the hypothesis space.
In Section 3.3.1 the main idea is shown with some hints for further reading.

Given a physical problem and experimental data, no class of learning theories
is a priori well suited. As the no free lunch theorem points out, every selection of a
learning method comes along with its requirements on the one hand and its theoretical
guarantees on the other [388, 389].

3 For a series of video lectures on foundations of machine learning, taught by Ulrike von Luxburg, see:
https://www.youtube.com/playlist?list=PL05umP7R6ij2XCvrRzLokX6EoHWaGA2cC.

https://www.youtube.com/playlist?list=PL05umP7R6ij2XCvrRzLokX6EoHWaGA2cC

3.3 Theories of Machine Learning | 63

Within a selected general class, there are criteria that help to select a particular method.
The most important characteristic of an algorithm is the distinction between batch and
online, or distributed and centralized processing. For the development of an application,
efficient algorithms are to be studied. Worst-case complexity and proven tight accuracy
bounds are known for diverse algorithms of the same model class. The competitions
of implementing frequent set mining, a task of finding all frequent co-occurrences
of database items [163], are well known. 12 varying levels of implementations were
reported with their different resource consumption, e.g., memory usage, runtime, and
the compression of the resulting model.

Today, we go even further to the level of implementation on particular hardware.
In earlier days, learning algorithms were tailored from CPU to GPU, as discussed in
[309]. Hardware is now particularly designed for the low-latency and high-throughput
computational demands of machine learning. The non-von Neumann architectures
In-Memory Computing (IMC)/ Processing-In-Memory (PIM) are being extensively re-
searched [78]. Currently, FPGAs are frequently used machine learning accelerators.
Different implementations of an algorithm for a von-Neumann architecture and for
FPGAs have been carefully explored [107]. Also, the optimization for a fast execution
on a particular architecture received interest [231], especially computing on multicore
architectures (see Section 6.4 in Volume 1). For convolutional neural networks in partic-
ular, their abstract description in terms of the Open Neural Network Exchange Format
(ONNX) allows them to synthesize an implementation on the high-level interface of
FPGAs and optimize it [176].

Recently, the connection of machine learning algorithms with hardware architec-
tures has become even closer in that a given learning algorithm is not only adjusted to a
given architecture; the learning algorithm itself takes care of possible hardware failures
within its training procedure. This is particularly relevant for hardware that trades in
accuracy for energy savings. In-memory computation, for instance, saves energy but
may deliver wrong results. A novel max-margin optimization binarized neural networks
succeeded in optimizing the bit-error tolerance [110].

The level of model classes with its ties to statistical learning theory is important,
but machine learning investigates more levels of abstraction in collaboration with other
fields of computer science. Algorithms for a model class for distributed or streaming
learning are based on theoretical computer science work as in [129, 130]. The level of
implementations on a specific hardware links machine learning with computational
architectures [260]. Particular hardware has even been designed especially for machine
learning [217]. Machine learning investigates and contributes to all the levels: from the
model class over the algorithms to implementations and even computer architectures.
Learning is orthogonal to the hierarchical levels of computer science.

64 | 3 Key Concepts in Machine Learning and Data Analysis

Tab. 3.1: An example of the concept class that consists of conjunctions of Boolean literals.

c1: rainy AND not play golf;
c2: rainy AND play golf;
c3: not rainy AND not play golf;
c4: not rainy AND play golf;
c5: sunny AND not play golf;
c6: sunny AND play golf;
c7: not sunny AND not play golf;
c8: not sunny AND play golf;
c9: rainy AND not sunny;
c10: rainy AND sunny;
c11: not rainy AND not sunny;
c12: not rainy AND sunny;

3.3.1 Computational Learning Theory

In addition to the statistical theory of machine learning, a distribution-independent
theory known as the Probably Approximately Correct (PAC) learning, offers bounds of
learnability [375]. It is based on the idea of hypothesis spaces. Which hypotheses can
be expressed in a particular formal system of representation? An easy concept class is
the conjunctions of Boolean literals. Literals include rainy, sunny, and play golf. The
hypothesis space C would then be the set of concepts c1 to c12.

Learning identifies within the hypothesis space those concepts that are consistent
with the examples, i.e., there is no logical contradiction between the true hypothesis
and all the examples. In other words, a concept is a hypothesis that is determined by the
set of instances that it covers. If there is an example in contradictionwith the hypothesis,
it is counted as an error. For all domains, we shall have different literals that define the
concepts. This is not what the learning theory cares about. The theory is to state whether
the class of all concepts that can be expressed in this representation is learnable from
examples. Learnability is defined with respect to the number of computing steps that
are necessary to identify the target concept in the worst case.

Definition 3. A concept class C is PAC-learnable by a learning algorithm A using hy-
pothesis spaceH, if for all c ∈ C, distributionsD over the instance space X, ϵ such that
0 < ϵ < 1/2, δ such that 0 < δ < 1/2, A will with probability at least (1 − δ) output a
hypothesis h ∈ H such that the errorD(h) ≤ ϵ, in time that is polynomial in 1/ϵ, 1/δ and
in the size of the instance space and in the size of the concepts space complexity.

PAC learning polynomially bounds the number of computation steps needed in the
worst case to learn a classifier for a class of concepts. A proof of PAC learnability usually
first shows that each target concept in C can be learned from a number of examples,
which is polynomially bounded by ϵ and δ. This lower polynomial bound of the number

3.3 Theories of Machine Learning | 65

L1

L2
L3

L4

x1

x2
x3

Fig. 3.1: There exists a set of three points {x1 , x2 , x3} for which any binary labeling can be separated
by a single, straight line L ∈ {L1 , L2 , L3 , L4}. Therefore, the VC dimension of straight lines is at least
three.

of examples is called the sample complexity of the learning algorithm [191, 349]. It
shows that the time for processing one example is also polynomially bounded. The
overall idea is described more elaborately in [273] and many proofs can be found in
[286].

PAC learning often measures the model complexity in terms of the Vapnik Cher-
vonenkis (VC) dimension [379]. A PAC learning algorithm is then required to learn a
concept class in time that is polynomial in the VC dimension of the hypothesis space.

Definition 4. A setH of hypotheses shatters a set D of examples if each subset ofH
could be separated by a h ∈ H. The VC-dimension of a set of hypothesesH equals the
maximum number d of examples in D that could be shattered byH.

We illustrate this by 2-dimensional data and the hypotheses in the form of separating
planes as shown in Figure 3.1. One set of three points could be shattered by straight
lines, but there is no set of four points that could be shattered by straight lines. Hence,
for the straight line hypothesis space, the VC-dimension is 3.

For the proof of the VC-dimension d the following has to be shown:
– There exists one set D with d points that could be shattered byH.

VCdim(H) ≥ d
– There does not exist a set D′ with d + 1 points that could be shattered by H.

VCdim(H) ≤ d

The VC-dimension denotes themodel complexity and hence allows us to select the least
complex model that still learns the target concept. It also gives a hint to the confidence
we can have in a learning result. A large VC-dimension indicates a large confidence.
There is even a learning method that exploits the VC-dimension by regularizing its
internal optimization such that it guarantees a unique and optimal learning result. This
method is the support vector machine [380].

66 | 3 Key Concepts in Machine Learning and Data Analysis

The VC-dimension allows us to write a lower bound on the sample complexity. The
theorem has been proven for all learners and concept classes [149]. It is given below
according to Mitchell [274].

Theorem 1. Lower bound on sample complexity. Consider any concept class C such
that VCdim(C) ≥ 2, any learnerA, and any 0 < ϵ < 1

8 , and 0 < δ < 1
100 . Then, there exists

a distributionD and target concept in C such that ifA observes fewer examples than

max
[︁

1
ϵ log(1/δ),

VCdim(C)−1
32ϵ

]︁
(3.12)

thenA outputs a hypothesis h having error errorD(h) > ϵ with probability at least δ.

The theorem states that with fewer examples, no learner can PAC-learn every target
concept in C. This very general bound for all learners is turned into more specific
bounds, when the VCdim is known for the model class.

PAC learning has investigated the learning of neural networks from its very begin-
ning [256] and succeeded in showing that neural networks are capable of approximating
arbitrary functions [224]. As is sketched in Section 3.5, the theoretical analysis that gives
us tight bounds and a deep understanding of deep learning is still an active research
area.

3.4 Tree Models

Decision trees are one of the most successful learning methods: often applied, based on
probabilistic theory, and easy to implement. They recursively divide the feature space
into smaller and smaller hyper-rectangles until there are only members of one class in
the hyper-rectangle, which makes it a leaf node, or until some other stopping criterion
is met [319]. While usually used for classification in supervised learning, decision
trees may also model regression tasks. Training a tree, where each node covers a set
of examples, is performed by selecting the best feature for splitting the current node,
creating sub-nodes for each feature value, and passing the examples to those fitting
their feature value until a node covers only examples of the same class or has a clear
majority of one class. The learned model classifies a previously unseen example by
passing it according to its feature values to its leaf.

Selecting the splitting feature Xj often follows the information gain criterium. The
probability p+ that an example belongs to class + is the entropy I:

I(p+, p−) = (−p+ log p+) + (−p− log p−)

A feature Xj with k values divides a set of examplesX into k subsetsX1, ...,Xk. For real-
valued features, the numerical values are partitioned into some intervals, so that these
intervals are handled along with the discrete features. Binary decision trees always

3.4 Tree Models | 67

split into a left and a right branch. For numerical values, a threshold t is used xj ≤ t.
The best feature Xj or the best threshold t is selected based on a quality criterion such
asinformation gain:

Information(Xj ,X) := −
k∑︁
i=1

|Xi|
|X| I(p+, p−)

The information gain is the difference between the entropy of the examples with and
without the segmentation by Xj. It is calculated with respect to the particular set of
examples at each sub-tree.

The higher the information gain, the closer a feature is to the root. In this sense, the
place in the tree seems to indicate feature importance. However, the order of selected
features is not a precise feature weighting algorithm. In particular, correlated features
along a path in the tree do not share the importance but add it. Hence, they violate the
condition that the sumofweights of alternative featuresmust be constant independently
of the actual number of alternative features used. This condition is important since it
guarantees that a set of alternative features is not more important than a single feature
[271].

Decision tree learners are not robust with respect to the order in which examples
arrive. Hence, in their original form, they are not applicable to data streams. For a
data stream setting, the VeryFastDecisionTree (VFDT) approach has been introduced
[146]. They are efficient in that the runtime is proportional to the number of features;
moreover, the examples of the stream are not stored but processed just once. In the
beginning, a sample of observations at a node is kept. For these, the split criterion is
evaluated. The difference between the top features is required to be larger than some ϵ.
Reading in additional examples and evaluating the split criterion is continued until the
Hoeffding bound is reached. From then on, only aggregated statistics are stored at a
node. The Hoeffding bound guarantees that a sum or difference of independent random
variables most likely will not deviate more than a constant from the expectation value.
Here, it states that with probability 1 − δ, after seeing n examples, the feature which
receives an evaluation (e.g., information gain) that is ϵ larger than that of the next best
feature is indeed the best split criterion also for future examples. ϵ can be calculated:

ϵ =
√︂
R2ln(1/δ)

2n
with R being the range of feature values, e.g., the log of the number of classes.

3.4.1 Ensemble Methods

The idea of training many decision trees in parallel and letting each tree vote for a
class, hence delivering the majority vote as result, is known famously as a Random
Forest (RF) [97]. The ensemble of many simple models achieves a higher robustness

68 | 3 Key Concepts in Machine Learning and Data Analysis

than a complex model that covers the same observations. Since ensembles are trained
in parallel, their runtime is also an advantage. The algorithm for training the random
forest is shown in Algorithm 3.2. The application of the random forest delivers the

Algorithm 3.2: The Random Forest algorithm.
Input: number of decision trees l and n examples and desired number of

features k
Output: h1...hl mapping X to Y

1 forall the i = 1...l decision trees in the forest do
2 Sample n examples without removal
3 choose k ≪ K features from the K given ones randomly,
4 split the set of examples at the node according to the best split, given by,

e.g., the information gain
5 if the resulting nodes have enough examples of the same class then
6 stop and output hi
7 else
8 go to line 3
9 end
10 end

classification

h(x) = sign
(︃
1
l

l∑︁
i=1

hi(x)
)︃

The procedure is a kind of a bootstrap aggregation—bagging for short. The statistical
bootstrapmethod draws samples and fitsmodels to each of them. The output of bagging
is the averaged output of all the models or the majority vote. In any case, the variance
of the prediction over the data is decreased. Among the many successful applications
of Random Forests are those in astrophysics, namely the IceCube experiment [16, 18,
331] and several Imaging Air Cherenkov Telescopes [48, 258, 294].

Another ensemble method is boosting, first introduced as AdaBoost [169]. Like the
Random Forest, it also consists of several learners and decreases the variance of the
learning result. In contrast to bagging, boosting is an incremental method that directs
the training to areas of the example space that are difficult to learn. It is based on PAC
learning, where it has been shown that it is sufficient to have hypotheses that are only
slightly better than pure random on the training data because these can be boosted
to become arbitrarily correct. The algorithm of AdaBoost is given in Algorithm 3.3. On
the one hand, the weak classifiers are weighted by α. On the other, the weights of
the examples wm are updated such that the ones misclassified by hm(x) receive more
impact by exp(αm). Hence, the next weak classifier hm+1(x) will fit the previously not

3.4 Tree Models | 69

Algorithm 3.3: The AdaBoost algorithm.
Input: N examples and the desired number of decision trees M
Output: a prediction rule h : X → Y

1 initialize example weights: w1,i ← 1/N ∀ i = 1, 2, . . . N
2 forall m = 1, 2, . . . M do
3 train a weak classifier hm(x) using the weighted examples
4 compute the error errorm on all data
5 αm ← log((1 − errorm)/errorm)
6 wm+1,i ← wm,i exp(−αmyihm(xi)) ∀ i = 1, 2, . . . N
7 end
8 return h(x) = sign

(︁∑︀M
m=1 αmhm(x)

)︁

well-covered areas of the example space. There are several applications of boosted
decision trees in physics. See Chapter 8.

3.4.2 Implementations and Hardware Considerations

Decision trees and their ensembles have a statistical or PAC learning description as
described above. This abstract level is complemented by algorithmic challenges and
their implementation on diverse hardware. The highest performance has been achieved
by gradient-boosted trees. The implementation XGBoost is a truly scalable algorithm
using external memory and processing the training in a parallel manner on GPUs,
exploiting gradient descent optimization (cf. Section 3.2.1) [119].

Other approaches optimize the application or evaluation of the learnedmodel. This
is particularly important if the training may be run on a large computing center, but the
learned model is to be applied in the wild of a physical experiment like the Cherenkov
Telescope Array (CTA) or IceCube. The execution of the model is then restricted in
runtime as well as in memory. Traversing a large ensemble of decision trees has been
developed for fast inference [242]. A probabilistic view of executing decision trees has
been developed in order to optimize the data layout and enhance the cache usage
[107]. The improvement is based on the systematic use of tree usage statistics. Two
different implementations of decision trees are investigated, namely, an optimized if-
then-else tree and an optimized path layout. These implementations exploit computing
architectures better and should be considered for real-time applications under resource
constraints. Section 7.3.3 in Volume 1) provides more information and explains how to
generate optimized code for specific computing architectures.

Machine learningmodels are often compressed or quantized to use fewer resources.
For decision trees, the pruning of sub-trees was put forward from the beginning on
[319]. Also, the selection of ensemble members has received attention, e.g. [371], but

70 | 3 Key Concepts in Machine Learning and Data Analysis

this is an active research field. Before deploying a tree model, it is worth determining
the appropriate pruning method.

3.5 Neural Networks

Neural networks have attracted attention from their inception. Here, we present the
structure of the field and indicate selected literature for further studies.

Neural networks are—most often acyclic—directed graphs with the nodes being
organized in layers. The input layer consists of nodes xi for the input features. The
output layer gives the result of the network y or has several so-called heads each
being a target in a multinomial neural network. Layers between input and output are
called hidden layers. A neural network with hidden layers is called a Deep Neural
Network (DNN) . Figure 3.2 shows a neuron with the weights of the incoming nodes
that are summed up and the non-linear activation function, here, the Rectified Linear
Unit, which computes ReLU(z) = max{0, z}. Other activation functions are sigmoid,
tanh, and softmax. Just one such neuron is also called a perceptron. Having layers
of several such perceptrons is then also called a Multilayer Perceptron (MLP). The
connections between the nodes in the following layers may be such that every node
of the preceding layer is connected with every node of the next layer, yielding fully
connected layers. There are also types of networks with fewer connections between
layers. Since the inference feeds the computed values from the incoming signals to
the next hidden layer(s) until the output layer is reached, it is a feedforward neural
network. If computation also includes feedback connections, the neural network is
called a recurrent network.

The term “neural network” originates from the idea that the combination of a
weighted sum and a non-linear activation function is reminiscent of a biological neuron
cell. In fact, the neuron cells of the human brain become activated when they receive a
sufficiently strong signal from their input neurons. However, a neuron cell is muchmore
complex than the simple mathematical function that we call “neuron” here. Also, a
brain is muchmore complex than a simple concatenation of neuron layers. Therefore, a
neural network should not be misunderstood as an appropriate model of the biological
brain.

Training a neural network is performed by optimizing the weights between the
nodes of succeeding layers. These parameters are to be determined such that for all
possible inputs, the respective true output value is returned. An output that does not
fit the true label starts a backpropagation of the error from the last to the first layer. We
consider the DNN a chain of functions. Hence, we can propagate the gradients of the
loss function using the chain rule. The derivative of f (g(x)) is

∂f (g(x))
∂x = f

∂g
∂g
∂x

3.5 Neural Networks | 71

x1

x2

…

xd

-10 10

10

!

wi1

wi2

wid

yi+1

Fig. 3.2: General picture of a neuron with incoming units xi, the activation function with the sum-
mation of the weighted incoming values, and the non-linear ReLU function together computing the
resulting unit yi+1.

The backpropagation algorithm stores the derivatives of f with respect to all variables
x = f (w), y = f (x), z = f (y). For x, it is

∂z
∂x = ∂z

∂y
∂y
∂x

For w it is
∂z
∂w = ∂z

∂y
∂y
∂x

∂x
∂w

As is seen, for the three multipliers, only one needs to be calculated in addition, the
others are already stored. This makes backpropagation very efficient.

Once the derivatives are calculated, the optimization uses them. Iteratively, the
parameter matrix is updated until a sufficiently good matrix is found. Most often,
stochastic gradient descent is used as the optimization method (cf. Section 3.2.1).

For the abstract description of neural network training with backpropagation of
errors and weight updates to optimize the network, see [192]. However, this is only a
small part of what DNNs are about and what makes them successful. It is the design
and development of algorithms and their implementation on diverse computing plat-
forms that produces their excellent performance. For a comprehensive description, it is
very much recommended to read the book Deep Learning by Goodfellow, Bengio, and
Courville [183].

3.5.1 Architectures of DNNs

A DNN consists of a series of layers, each of which can carry out different computations.
When we speak of an architecture, we mean a particular series of layers, leaving aside
the optimization algorithm or the data with which the architecture is trained.

72 | 3 Key Concepts in Machine Learning and Data Analysis

The most fundamental type of layer is called the dense layer; it multiplies a weight
matrixW to the full vector of incoming values h⃗ and possibly adds a bias term b ∈ R.
The weighted sum is then fed into a non-linear activation function u, such that the
output of the dense layer is u(W⊤h + b), as shown in Figure 3.2. The weight matrix is
then optimized during the learning process, and the non-linear function enables the
model to learn non-linear dependencies within the data. However, the dense weight
matrix W introduces many parameters into the model, the training of which can be
ineffective in terms of resource consumption.

Convolutional layers circumvent this problem by sharing parameters among pairs
of inputs and outputs. Namely, a kernel of parameters that is much smaller than the
input dimension, is moved over the input. The name of this type of layers stems from
the convolution of two functions, where an input function x(a) and a kernel function
w(a) of measurement a deliver a feature map

s(t) =
∫︁
x(a)w(a − t) da. (3.13)

The discrete convolution over integer values t is

s(t) =
∞∑︁

a=−∞
x(a)w(t − a). (3.14)

This re-use of parameters leads to fewer connections between the nodes of the preceding
and succeeding layers. Moreover, the computation is straightforward to parallelize.
Another important property of convolutional layers is their translational invariance.
For object recognition in an image, it is not important where exactly the object is.
Similarly, patterns in audio input may occur at different widths and heights but should
be recognized anyhow. A DNN architecture that uses convolutional layers is called a
convolutional neural network (CNN).

A more drastic decrease in the number of connections is achieved through the
dropout layer. This layer randomly ignores, at the succeeding layer, a certain percentage
of incoming values with their weights. Dropout can be seen as a regularization of the
model.

For image processing, the pooling layer is widely used. It summarizes the values in
a rectangular neighborhood of nodes by, say, the maximum value or by the average.

The batch normalization layer takes the incoming values z1, ..., zm and calculates
mean and variance.

μ = 1
m
∑︁
i
= 1mzi

σ =

⎯⎸⎸⎷ 1
m

m∑︁
i
= 1(zi − μ)2

How to combine these building blocks or define new ones is a matter of active research.
Several network architectures have been proposed. Starting from AlexNet [233] with

3.5 Neural Networks | 73

its tremendous success on ImageNet, which offers images labeled into 1000 object
categories, such as keyboard, mouse, pencil, andmany animals [143], the Oxford Visual
Geometry Group proposed a CNN of 19 layers named VGG-19 that is well suited for the
recognition of objects in images [350]. Residual networks structure a CNN into repeating
blocks of convolutional and batch normalization, where each block adds a shortcut
from the first to the last layer of the block. This allows enhancing the depth of the
network without difficulties in optimization [193].

EfficientNets scales, at the same time, a learned base model in width, depth, and
(image) resolution [363]. Experiments show good results for scaling two very different
network architectures, namely the deep ResNet and the energy-efficient MobileNet.
Bello et al. disentangle architecture and resolution again [81]. They scale the depth
and the width depending on the amount of overfitting and apply a slower resolution
increase than in EfficientNets. The race for better speed and accuracy in training neural
networks thus continue.

3.5.2 Robustness of DNNs

Neural networks are fragile in many respects. On the one hand, little changes in the
architecture may have large changes in predictive performance as a consequence. On
the other hand, little changes in the data may change the classification of the neural
network tremendously. Famous examples are the images that are imperceptibly changed
but output a completely different class [362]. Optimizing the least changes leading to
theworst accuracy has been called adversarial attack. Many types of perturbations have
been studied, not only on the data but also on the physical objects that are perceived.
In [154], some stickers were attached to a stop sign, and it was classified as “speed
limit 45”. Defense mechanisms were invented in order to make neural networks more
robust. Recently, guarantees have been developed that prove the robustness against
particular perturbations [132]. Finally, robustness might also refer to changes in the
data distributions [124].

3.5.3 Deep Learning Theory

Neural networks with a single hidden layer of n nodes have been proven to be universal
approximators of any measurable function, assuming activation functions Ψ : R →
[0, 1] that have countably many discontinuities [203]. The number of hidden nodes is
not known in general but depends on the function to be approximated. In the worst
case, one hidden node is needed for each configuration of the input, i.e., the number
of hidden nodes is exponential if we have just one hidden layer. Applying the VCdim
(see Section 3.3.1), bounds of the sample complexity of DNN were proven that depend
both on the depth and the width of the network. Deeper models require less hidden

74 | 3 Key Concepts in Machine Learning and Data Analysis

nodes in each layer. This is the advantage of deeper networks [364]. The complexity of
a DNN can be shown without referring to the width of the layers, but usually depends
on its depth. For ||⃗x|| ≤ B, d layers, and the matricesW1, ...,Wd, the complexity has
been shown with regard to the Frobenius norm at most MF(j) ofWj and m as seen in
examples from [181]:

O

(︃
B
√
d
∏︀d
j=1MF(j)√
m

)︃
(3.15)

The authors then convert depth-dependent bounds into depth-independent bounds,
which are based on some control over the norm of the parameter matrices.

Learning algorithms with a large capacity are capable of fitting randomly labelled
data. With increasing depth, neural networks have an increasing capacity of representa-
tion, i.e. they approximate increasingly complex functions. Hence, they are capable of
fitting pure noise. Does that contradict the statement that DNNs generalize? In general,
machine learning should not overfit the training data, or even memorize them, but
perform well on previously unseen data! Inspecting the optimization, it was found
that true patterns are learned before the overfitting occurs and that dropout and other
regularizations prevent the optimization frommemorizing [58]. Other approaches to
explaining the generalization of DNNs are the coherent gradients of similar examples
pointing in the same direction [118] and the stiffness of a network, which measures the
impact of the change in one example’s small parameters on in the gradient step in the
loss of another example. If the network’s weights based on one example help to better
classify another example, it generalizes well [167].

A way to characterize DNNs is by analogy with Bayesian models. It has been shown
that inference with dropout of a DNN approximates a Gaussian process and, hence, that
the Bayesian model uncertainty explains the dropout of DNNs [174]. Bayesian models
estimate the uncertainty of a DNN model. However, they do not scale well. Hence, a
Spectral-normalized Neural Gaussian Process (SNGP) has been proposed that replaces
the output layer with a Gaussian process and includes weight normalization in the
training [251].

3.5.4 Explanations

Explainable AI has been studied for black-box algorithms of all kinds [187]. Selecting
borderline examples or showing the feature importance according to the learnedmodel
explains the learned model without looking into the training process. If, however, the
explanation refers only to a surrogatemodel and not to the learned and deployedmodel
itself, they actually do not explain the learning result [177]. Themodel agnosticmethods
are complemented by methods for verifying and explaining DNNs. In particular, for
scientific data, where we want to model true processes, the modeling procedure itself
must be trustworthy.

3.5 Neural Networks | 75

A survey of verification and explaining DNNs has been framed theoretically [206]. There
exists a large variety of methods that explain DNNs [337]. A most prominent method
is the layer-wise relevance propagation and its visualization. It shows which areas of
an image have been used for classification by a trained model [275]. For image data,
this helps users to understand the learned model. Layer-wise weight change helps to
understand the training of DNNs [41]. The training process of DNNs can be inspected
at each layer—each intermediate representation—in order to find the most influential
examples and determine the classes that attributed most to the classification [305].

3.5.5 Hardware Considerations

AI accelerating hardware is a booming market. Many companies offer specialized chips,
which are built into phones, tablets, and many other devices. We address several of
these developments in Volume 1 of this book series.

Regarding DNNs in particular, a central aspect of accelerating hardware is energy
consumption. One example of a processor dedicated to DNNs has been designed by
Google for the TensorFlow software, especially for itsmatrixmultiplications. The Tensor
Processing Unit (TPU) delivers an order of magnitude better-optimized performance
per Watt for machine learning.⁴

Even when using TPUs, DNNs still demand large amounts of energy. In particular,
for edge computing and for the Internet of Things, using a Field-Programmable Gate
Array (FPGA) as a platform is advantageous. Automatic synthesis of FPGA programs for
CNNs has been developed, see, e.g., [176].

In general, Binarized Neural Networks (BNN), i.e., those that calculate with bina-
rized weights and activation function values, consume less energy and require less
memory. The use of approximate memory provides DNN training with even lower en-
ergy consumption. However, the saving comes at the price of the memory sometimes
flipping a bit. A novel approach to BNN training using approximate memory includes
robustness against bit errors in the optimization of BNN learning, thus combining the
advantages of approximate memory and BNN directly [110].

Examples of how neural networks leverage research in astroparticle and particle
physics are described in Chapter 9. Resource consumption of learning methods is a
central theme of all chapters.

4 https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-
learning-tasks-with-custom-chip/.

https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/
https://cloud.google.com/blog/products/ai-machine-learning/google-supercharges-machine-learning-tasks-with-custom-chip/

