4 Structured Data

In this chapter, we show methods and techniques that learn models for structured
data in resource-aware environments. In practice, data models can often be structured
as a graph where different data points are represented as nodes and the relationship
between data points is captured by edges. Graphs occur in many applications because
they serve well to represent objects of the physical world as compositions of parts.
Molecules, for instance, can be described by a graph where the atoms are represented
by nodes and their bonds by the edges. Another example are mathematical formulas,
whose composition is semantically well modeled by graphs (see Section 4.5). Moreovetr,
interactions between nodes of a graph can even be structured over time leading to
spatio-temporal probabilistic graphs (see Section 4.1).

Once a particular type of a graph model is determined the models can be trained to
do machine learning tasks such as classifying graphs or, when we interpret a graph as
a transitional system, predicting the probability of a change from one state to another.
The learning methods we use in this chapter can be divided mainly into discriminative
Graph Neural Networks (GNNs) and generative Random Fields. GNNs use a learning
approach that is derived from Convolutional Neural Networks (CNNs) by aggregating
information of the neighborhood of each node through a message passing function
(see Sections 4.2, 4.3, 4.5). Random Fields are a probabilistic model that captures the
dependencies between multiple random variables and is trained to answer queries
for a probability of event A under the condition that event B already happened (see
Section 4.1). GNNs and Random Fields are different methods but both can be used to
express the same kind of problems. For example, to infer conditional probabilities for
each event we can use multiple GNNs in a layered approach [376]. However, the way in
which they take care of the computational resources is rather different.

Here is an overview of this chapter. In Section 4.1, a new model is proposed to train
spatio-temporal networks with Random Fields called the Spatio-Temporal Random Field.
This model reduces the memory consumption without loss of the accuracy through a
theoretically well based universal reparameterization. In Section 4.2, the Weisfeiler-
Leman algorithm is explained with a focus on theoretical runtimes and the scalability
of the algorithm. Then, the connection between the Weisfeiler-Leman algorithm and
learning methods using graph kernels and GNNs, is surveyed. In Section 4.3, a unified
framework for differentiable message passing in GNNs is introduced, and techniques
for increasing its scalability are proposed. Section 4.4 proposes a framework to compute
cuts in directed graphs with high quality, which scales well in shared memory and
can be used in semi-supervised learning as well as in data compression. Section 4.5
presents a new technique to search for scientific papers, which uses mathematical
formulas instead of words. A GNN is trained on a huge dataset extracted from arXiv
and it is shown that the model scales well in practice.

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
8 Open A © he author(s), published by De Gruyter. [(c) AN This work is li d under th

Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-004

100 —— 4 Structured Data

4.1 Spatio-Temporal Random Fields

Nico Piatkowski
Katharina Morik

Abstract: Parameter sharing is a key technique in various state-of-the-art machine
learning approaches. The underlying idea is simple yet effective. Given a highly over-
parametrized model whose input data obeys some repetitive structure, multiple subsets
of parameters are tied together. On the one hand, this reduces the number of parameters,
which simplifies the corresponding estimation problem. On the other hand, informa-
tion is transferred from one part of the data space to another, thus allowing the model
to learn patterns that never explicitly occurred in the training data. In the context of
resource constrained data analysis, the primary interest lies in the reduced memory re-
quirements, induced by the lower parameter space dimension and a presumably lower
sample complexity. In this contribution, the concept that underlies parameter sharing
is transferred to the spatio-temporal domain. More precisely, a re-parametrization of
undirected probabilistic graphical models, known as Markov Random Fields (MRFs) is
proposed for non-stationary time series of finite length. MRFs are equivalent to deep
latent variable models [568] but obey an easier-to-interpret structure. Data for such
spatio-temporal models arises naturally in distributed sensor networks. The corre-
sponding machine learning models are, however, far too large to be processed directly
at the sensor level. Re-parametrized probabilistic models exhibit a very sparse parame-
ter space that facilitates probabilistic inference directly from a compressed model. This
section studies different variants of the underlying re-parametrization and compares
them in numerical experiments on benchmark data. Furthermore, we propose how
the learning procedure can be embedded directly into a sensor network: proximal
optimization is applied in a distributed setting. It turns out that the parameter opti-
mization is purely local and that communication between sensor nodes is required
only for the gradient computation. Different real-world applications, including traffic
models and sensor network models underpin the practical relevance of compressed
Spatio-Temporal Random Fields (STRF).

4.1.1 Introduction

Spatio-temporal sensor data is an archetypical instance of structured data. Inherent
dependencies that span over space and time constitute demanding challenges when
aiming for reliable models with reasonable resource requirements. Here, we consider
the task of spatio-temporal state prediction, where the spatio-temporal structure is
represented by an undirected graph G = (V, E) that is either known or inferred from

4.1 Spatio-Temporal Random Fields = 101

data. Nodes within the network represent locations at different points in time ¢ from
a finite time horizon T. Based on a set of N partially observed joint realizations, a
generative model Py is learned, where 0 is the trainable parameter. This task arises
frequently in the analysis of sensor networks e.g., communication networks [577] or
satellite image data [229]. For the sake of clarity, modeling the traffic in a highway
network will serve as our running example. That is, the model must answer queries for
all parts of the network and all points in time. Examples of such predictions are:

— Given the traffic densities of all roads in a street network at discrete time points
t1, ty, t3 (e.g., 8 o’clock on Monday, Tuesday, Wednesday): indicate the probabilities
of traffic levels on a particular road A at some other time point, not necessarily
following the given ones (e.g., 7 o’clock on Thursday).

— Given a traffic jam at place A at time ts: output other places with a probability
higher than 0.7 for the state “jam” in the time interval of ts < t < t;.

One particular interest lies in learning probabilistic models for answering such queries
in resource-constrained environments. This addresses huge amounts of data on fast
computing facilities moderate data volume on embedded or ubiquitous devices. Results
and methods that are presented in this contribution are based on [566] and [567].

4.1.2 Previous Work

In this section, an overview of previous contributions to spatio-temporal modeling is
given. The task of traffic forecasting is often solved by simulations [467]. This presup-
poses a model instead of learning it. In the course of urban traffic control, events are
merely propagated that are already observed, e.g., a jam at a particular highway section
results in a jam at another highway section, or the prediction is based on a physical
rule that predicts a traffic jam based on a particular congestion pattern [287]. Many
approaches apply statistical time series methods such as auto-regression and moving
average models [705]. They do not take into account spatial relations but restrict them-
selves to the prediction of the state at one location given a series of observations at this
particular location. An early approach, that of Whittaker, Garside, and Lindveld [703],
relies on the street network topology for deriving spatial relations. The training is done
via Kalman filters, which imply a strictly linear conditional independence structure,
that is not expressive enough for answering queries like the ones stated above. A statis-
tical relational learning approach to traffic forecasting uses explicit rules for modeling
spatio-temporal dependencies [441]. Here, training is done by a Markov Logic Network
delivering conditional probabilities of congestion classes. The discriminative model is
restricted to binary classification tasks and the spatial dependencies need to be given
by hand-tailored rules. Moreover, the model is not sparse and training is not scalable.
Even for a small number of sensors, training takes hours of computation. When the
estimation of models for spatio-temporal data on ubiquitous devices is considered,

102 —— 4 Structured Data

such as when learning to predict smartphone usage patterns based on time and visited
places, minutes are the order of magnitude in demand. Hence, even this advanced
approach does not yet meet the demands of the spatio-temporal prediction task in
resource-constrained environments.

Some geographically weighted regression or non-parametric k-Nearest Neighbor
(kNN) methods model a task similar to spatio-temporal state prediction [263, 477, 743].
The regression expresses the temporal dynamics and the weights express spatial dis-
tances. Another way to introduce the spatial relations into the regression is to encode
the spatial network into a kernel function [440]. The kNN method by [409] models
correlations in spatio-temporal data not only by their spatial but also by their temporal
distance. As stated for the spatio-temporal state prediction task, the particular place
and time in question need not be known in advance, because the lazy learner kNN
determines the prediction at query time. However, this approach does not deliver prob-
abilities along with the predictions, either. For some applications, traffic prognoses
for car drivers, a probabilistic assertion is not necessary. However, in applications of
disaster management, the additional information regarding likelihood is desirable.

As is easily seen, generative Markov models fit the task of spatio-temporal state pre-
diction. For notational convenience, let us assume only one variable X. Any generative

probabilistic model represents the joint P(X, Y) and allows us to derive P(Y|X) = Pg&;')
as well as P(X]Y) = PX.Y) In contrast, discriminative probabilistic models represent

P(Y)
P(Y|X) directly and must be trained specifically for each Y—this property is inherent

since each realization of Y requires a different normalization constant. In our example
a distinct model would need to be trained for each place. Hence, a huge set of discrimi-
native models would be necessary to express one generative model. A discussion of
discriminative versus generative models can be found in a study by [531]. Here, we refer
to the capability of interpolation (e.g., between points in time) of generative models
and their informativeness in delivering probability estimates instead of merely binary
decisions.

Spatial relations are naturally expressed by graphical models. For instance, dis-
criminative graphical models such as Conditional Random Fields (CRFs) have been
used for object recognition over time [182], while generative graphical models such
as Markov Random Fields (MRFs) have been applied to video or image data [322, 723].
The number of training instances does not influence the model complexity of MRFs.
However, the number of parameters can easily exceed millions. In particular when
using MRFs for spatio-temporal state prediction, the numerous spatial and temporal
relations soon lead to inefficiency.

We have argued in favor of using generative graphical models that model both,
spatial and temporal dependencies, at the same time. However, some problems have
until now prohibited this:

— The original parametrization is not well suited for producing sparse models.
— Trained models tend to overfit to the training data.

4.1 Spatio-Temporal Random Fields =—— 103

— Training high-dimensional models is not feasible.

In the following, we shall review existing work on graphical models (Section 4.1.3) and
regularization methods (Section 4.1.4) so that we can then introduce a new method for
spatio-temporal state prediction that does not suffer from the listed disadvantages.

4.1.3 Graphical Models

The formalism of probabilistic graphical models provides a unifying framework for
capturing complex dependencies among random variables, and building large-scale
multivariate statistical models [692]. Let G = (V, E) be an undirected graph with the
set of vertices V and the set of edges E C V x V. Note that the subset relation is strict,
since self-edges are not allowed. Moreover, we represent undirected edges as sets (as
opposed to ordered tuples). For each node (or vertex) v € V, let X, be arandom variable,
taking values x, in some space X,. The concatenation of all n = |V| variables yields a
multivariate random variable X with state space X = X1 xX; x- - - x Xp,. Training delivers
a full probability distribution over the random variable X. Let ¢b be an indicator function
or sufficient statistic that indicates if a configuration x obeys a certain event { X4 = Xa}
with a C V. We use the short-hand notation {x,} to denote the event {X4 = x4}. The
functions of x defined in the following can be also considered as functions of X. We
replace x by X when it makes their meaning clearer. Restricting a to vertices and edges,!
one gets

1 if (v, xw) = (x,¥)
0 otherwise

1 ifxy=x

vy () = { P (w)-ty) = {

0 otherwise,

with x € X, xy, € Xy and y € Xw. Let us now define vectors for collections of those
indicator functions:

Pyv(x) := [¢{v:x}(")]xexv ’
b wx) = [¢{(v,w)=(x,)’)}(x)} Y)EX XXy
P00 = [Py(x), Pe(x) : v € V, Ve € E] .

The vectors are constructed for fixed but arbitrary orderings of V, E and X. The di-
mension of ¢p(x) isthus d =37y, [Xv| + 3, e [Xv| % [Xul. Now, consider a dataset

D={x1,x2,...,xN

(4.1)

with instances x'. Each x' consists of an assignment to every
node in the graph. It defines a full joint state of the random variable X.

1 In general, one may consider indicator functions not only for nodes and edges, but for all cliques
(fully connected subgraphs) in G. Our description still applies to higher order models, since we can
convert them into models using only nodes and edges [692, Appendix E].

104 — 4 Structured Data

The quantities

N N
N 1 i oA 1 i
By = 3 2 P 0 By = § 2o Prom-em @) 42)
i=1 i=1
are known as empirical moments and they reflect the empirical frequency estimates of
the corresponding events. We say that a given probability density function p with base
measure? v and expectations Ep [¢ {xa} (x)] is locally consistent with data D if and only
if p satisfies the moment matching condition

Ep [P (x) (X)) = i, V2 € VUE,
i.e. the density p is consistent with the data w.r.t. the empirical moments.

This problem is underdetermined in that there are many densities p that are consis-
tent with the data, so that we need a principle for choosing among them. The principle
of maximum entropy is to choose, among the densities consistent with the data, the
densities p* whose Shannon entropy H(p) is maximal. K is given by

H(p) = / P9 1og, (p(x)) dv(x).

X

This is turned into the constrained optimization problem

max H(p) subjectto Ep [Py, (X)] =iy, Vae VUE.

It can be shown that the optimal solution p* takes the form of an exponential family of
densities

pe(X = x) = exp[(8, p(x)) - A(0)],
parametrized by a vector @ € RZ. Note that the parameter vector 8 and the sufficient
statistics vector ¢p(x) have the same length d. The term

A(®) i= 108 [expl(6, () ldv(v
X
is called log partition function. It is defined with respect to a reference measure v such
thatP(X € S) = fs Dpe(x)dv(x) for any measurable set S. Expanding ¢p(x) by means of
Equation 4.1 reveals the usual density of pairwise undirected graphical models, also
known as pairwise MRFs

1
Pe(X=x)= m EEXPKOV’ ¢v(x))] (Vl‘;)IEE eXp[<0(v,w)’ ¢(v,w)(x)>]

- g 1190 T] om0
veV

(v,w)eE

2 Notice that when the underlying state space X is discrete, then v is the counting measure and we
may identify the density p with the measure P.

4.1 Spatio-Temporal Random Fields = 105

Here, ¥ = exp A is the cumulant-generating function of pgy, and)« refers to the poten-
tial functions.

Inference, that is, computing the marginal probabilities or maximum a-posteriori
states of each vertex, can be carried out by message propagation algorithms [404,
560, 690], variational methods [692], or quadrature-based methods [572, 573]. In order
to fit the model on some dataset, the model parameters have to be estimated. If the
dataset contains only fully observed instances, the parameters may be estimated by the
maximum likelihood principle. The estimation of parameters in the case of partially
unobserved data is a challenging topic on its own. Here, we assume that the dataset D
contains only fully observed instances. The likelihood £ and the average log-likelihood
¢ of parameters 0 given a set of i.i.d. data D are defined as

N

N
£(8;D) :=gpe(xf) and (8;D) :=}Viz_ljlogpo(xf)=<o,ﬁ>—A(e). 3)

The latter is usually maximized due to numerical inconveniences of £. The most fre-
quently applied optimization methods are iterative proportional fitting [160], gradient
descent and quasi-newton methods such as L-BFGS or the conjugate gradient [538].
Section 4.1.5 will show how to model spatio-temporal dependencies within this formal-
ism.

4.1.4 Regularization

As we can see, the number of parameters in @ grows quite rapidly as we consider more
complex graphical models. A large number of parameters is generally not preferable,
since it may lead to overfitting, and it resists the implementation of a memory-efficient
predictor. Therefore, some regularization is necessary to achieve a sparse and robust
model.

Popular choices of regularizers are the l; and I, norms of the parameter vector,
|0]]1 and ||@||,. By minimizing the L, norm, we coerce the values for less informative
parameters to zero (similar to LASSO [660]), and by the I, norm we find smooth func-
tions parametrized by 0 (similar to the penalized splines [559]). Using both together is
often referred to as the elastic net [748]. For graphical models, elastic nets appeared
in the context of structure learning (estimating the neighborhoods) [156] in a manner
similar to the approach of [484]. For the state prediction task, there exist two short
workshop papers [569, 571] using the elastic net. However, their analytical and empirical
validation of such an approach is rather limited.

106 —— 4 Structured Data

(a)

Fig. 4.1: A spatio-temporal model consisting of multiple snapshot graphs G; fort =1,2,...,T.The
spatial and temporal edges are represented by solid and dotted lines, respectively. (a) A layer L; is
shown as the shaded region with simple temporal edges (L; does not include the elements of G¢.1),
along with the corresponding sufficient statistic and parameter subvectors ¢h(t, X) and 6(t). (b) An
extended model with “crossing” temporal edges between consecutive snapshots. This extended
model is adopted in our experiments.

4.1.5 From Linear Chains to Spatio-Temporal Models

Sequential undirected graphical models, also known as linear chains, are a popular
method in the natural language processing community [407, 654]. There, consecutive
words or corresponding word features are connected to a sequence of labels that reflects
an underlying domain of interest like entities or part of speech tags. If we consider
a sensor network G that generates measurements over space such as a word, then it
would be appealing to think of the instances of G at different time points, like words in a
sentence, to form a temporal chain G, -G, - - -—G. We will now present a formalization
of this idea followed by some obvious drawbacks. Hereafter, we will discuss how to
tackle those drawbacks and derive a tractable class of generative graphical models for
the spatio-temporal state prediction task.

We first define the part of the graph corresponding to the time step ¢ as the snapshot
graph G = (V¢ Ey), fort = 1,2,..., T. Each snapshot graph G; replicates a given
spatial graph Gy = (Vy, Ep), which represents the underlying physical placement of
sensors, i.e., the spatial structure of random variables that does not change over time.
We also define the set of spatio-temporal edges Et_1;; C Vi1 x Ve fort=2,..., T and
Eo.1 = 0, that represent dependencies between adjacent snapshot graphs G;_; and G,
assuming a Markov property among snapshots, so that E.;,, = § whenever h > 1 for
any t. Note that the actual time gap between any two time frames ¢t and ¢ + 1 can be
chosen arbitrarily.

The entire graph, denoted by G, consists of the snapshot graphs G; stacked in
the order of time frames t = 1, 2,..., T and the temporal edges connecting them:
G :=(V,E)for V:=UL,V,and E := UL, {E; U E¢_1,}. We sketch the structure of G in
Figure 4.1.

4.1 Spatio-Temporal Random Fields =— 107

o(t)
= J

ot —1)
[J

R@allz ations of v

Spatic 11 gr 1ph : 0
Fig. 4.2: An example of indexing for a node and state pair over time. A sensor modeled by the node

v in the spatial graph G, shows its measurements v;_; and v; at time frames t — 1 and t, respectively.
The pairs v¢-1 = s and v¢ = g are located at the same index j in the subvectors 8(t — 1) and 0(t).

For the sake of a simple description, we define a layer L, as the partial subgraph of G
containing all vertices of V; and all edges of E; UE,¢.1,fort =1, 2,..., T. For instance,
alayer L; is depicted as a shaded region in Figure 4.1. Let a € Xy and b € Xy and define
the subvectors of ¢p(X) and 6 that correspond to a layer L; as follows:

¢(ta X) = (¢v=a(Xv)’ ¢(V,w):(a,b)(XVy XW) | Ve Lt’ (V’ W) S Lt,))

(4.4)
0(t) = (Ov:a, 0(v,w)=(a,b) | Ve L[, (V, W) S L[)

By construction, the layers Ly, L, ..., L7 define a non-overlapping partitioning of a
graph G, which allows us to write

T
(P(X),0) = > ($(t, X), 6(0)).
t=1

The subvectors ¢b(t, X) and 6(t) have the same length d' := d/T forallt=1,2,..., T.
Note that the subvectors should be “aligned”, in the sense that the jth elements in all
subvectors must point to the same node:state or edge:states pair over time. We illustrate
this in Figure 4.2.

The spatial graph G and the sizes of the vertex state spaces X, determine the
number of model parameters d. In order to compute this quantity, we consider the
construction of G (as shown in Figure 4.1 (b)) from G,. First, all vertices v and all edges
(u, v) from G, are copied exactly T times and added to G = (V, E), whereas each copy
is indexed by time step t, i.e.v € Vo = v € V¢, 1 < t < T and likewise for the edges.
Then, for each vertex v; € V with t < T - 1, a temporal edge (v¢, v¢,1) is added to G.
Finally, for each edge (v¢, u;) € Ewith t < T -1, the two spatio-temporal edges (v¢, us41)
and (v41, u¢) are also added to G. The number of parameters per vertex v is |Xy| and

108 —— 4 Structured Data

accordingly |Xy||Xy| per edge (v, u). Thus, the total number of model parameters is

T T-1
d=3 S 10)+ S0 S 100 X+ ST [%ur X

veVp t=1 veV, t=1 (u,v)€EEq

. (4.5)
+ Z Z (|th| |x“t+1| + |:x:Vr+1‘ ‘xﬂtl + |th| |x”t|) .
(u,v)€E, t=1

If we assume that all vertices v,u € V share a common state space and that state
spaces do not change over time, i.e. Xy, = xu, Yv,ueV,1<t,t <T,the expression
simplifies to

d = T|Vol|Xy| + [(T-1)(|Vo|+3|Eo|)+|Eol]|Xv|*
—_——
of vertex parameters # of edge parameters

with some arbitrary but fixed vertex v;. Note that the last two assumptions are only
needed to simplify the computation of dimension d; the spatio-temporal random field
that is described in the following section is not restricted by any of these assumptions.

This model now truly expresses temporal and spatial relations between all locations
and points in time for all features. However, the memory requirements of such models
are quite high due to the large problem dimension. Even loading or sending models
may cause issues when mobile devices are the platform. Furthermore, the training does
not scale well because of step-size adaption techniques that are based on sequential
(i.e., non-parallel) algorithms.

4.1.6 Spatio-Temporal Random Fields

Now we describe how we modify the naive spatio-temporal graphical model discussed
above. We have two goals in mind: (i) to achieve compact models retaining the same
prediction power, and (ii) to find the best of such models via scalable distributed
optimization.

4.1.6.1 Towards Better Sparsification
The memory consumption of MRFs is dominated by the size of its parameter vector:
the graph G can be stored within O(]V| + |E|) space (temporal edges do not have to be
constructed explicitly), and the size of intermediate variables required for inference is
O(2|E||Xv|). That is, if |Xy| = 2 for all v, the dimension d in Equation 4.5 and therefore
the memory consumption of the parameter vector are always a dominant factor. Also,
since each parameter is usually accessed multiple times during inference, it is desirable
to have them in a fast storage, e.g. a cache memory.

An important observation on the parameter subvector 0(t) is that it is unlikely
to be a zero vector when it models an informative distribution. For example, if the

4.1 Spatio-Temporal Random Fields = 109

nodes can have one of the two states {high, low}, suppose that the corresponding
parameters at time t satisfy [6(t)], = O for all v and equally for all edge weights. Then
it implies P(X, = high) = P(X, = low), a uniform marginal distribution. The closer
the parameters of a classical MRF tend towards 0, the closer are the corresponding
marginals to the uniform distribution.

When all consecutive layers are sufficiently close in time, the transition of distribu-
tions over the layers will be smooth in many real-world applications. But the optimal
0 is likely to be a dense vector, and it will require a large memory and possibly a long
time to make predictions with it as we deal with large graphical models. This creates
the necessity for a different parametrization.

4.1.6.2 Reparametrization
In our reparametrization, we consider a piecewise linear representation of 6(t) with
new parameter vectors A.; € RY fori = 1,2,...,T,

t
1
0([’)=E mA.i, t=1,2,...,T. (4.6)
i-1

Our motivation is best shown by the differences in @ between two consecutive layers,
Ag_qy = 0(6)-0(t-1) = A~ Zg mA'i' That is, the difference (slope) is mostly
captured by the first term A.¢, and by the remainder terms A.(,_; with quadratically
decaying weights in O@G2),fori=1,2,...,t. Wenote thata simpler alternative might
be setting 6(t) = Zle A.;, but our approach leads to better conditions in optimization
which allow for faster convergence.

With the new parameters, if the changes between two consecutive layers are near
zero, that is, 0(t) = 0(t — 1), then we expect A.; =~ 0. This is a novel property of the
new parametrization, since with the classical parameters 6 the condition does not
necessarily entail 8(t) ~ 0. In other words, A.; = 0 implies no changes in the distribution
from t - 1 to t, but 8(t) = 0 implies the distribution at t suddenly becoming a uniform
distribution, regardless of the previous state at layer t — 1. An example is illustrated in
Figure 4.3.

Since we have defined 0 as a concatenation of vectors 0(1), 60(2), ..., 8(T), the
reparametrization reads as follows:

0(1) A4

002) 1A, +A, o |
. = . 5 A= A.1 A.z e A.T

. . ‘
T
om] [SL, aas
For convenience, we define the slope matrix A RAxT as above, which contains A.1,
A, ..., A7 asits columns. In the following we sometimes use the notations 6(A) and
6(t, A), whenever it is necessary to emphasize the fact that 6 and 6(t) are functions of

110 = 4 Structured Data

O(t)]; A

00, =Zn+Zp [03); =25+ Zjn+ Zss

O] = Zp [I

Fig. 4.3: A simplified example of the reparametrization of [8(£)];, the jth element in the subvector
0(t), over the timeframes t = 1, 2, 3, 4. We store slopes Aj; instead of the actual values of the
piecewise linear function [0(£)]; between two consecutive timeframes t — 1 and t (except for A;; which
works as an intercept). Near-zero slopes A;; = 0 (Aj3 = 0 above) can be removed from computation
and memory.

A under the new parametrization. Finally, another property of our reparametrization is
that it is linear. Therefore an important property for optimization carries over: A(6(A))
is convex in A as A(0) is convex in 0 [692].

We note that due to the summation in Equation 4.6 our reparametrization with
A introduces some additional overhead compared with the classical parametrization
with 0. In particular, whenever an algorithm has to read a value from 0, it has do
be decompressed instantly, which adds asymptotic complexity O(T) to every access.
However, if we obtain a sparse representation with A, then it can be stored in small
memory (possibly even in CPU cache memory) and therefore the chances for cache
misses or memory swapping will be reduced. This becomes an important factor when,
say, we deploy a learned model to applications running on mobile devices. Chapter 7
presents approaches to memory-aware learning in other classes of learning methods.

4.1.6.3 Analysis
We define the l; and [, regularizers for the slope matrix A as follows,
d d
Al == 4501, 1AIE =D 1415, 4.7)

j=1 j=1

The two regularizers induce sparsity and smoothness respectively, as we have discussed
in Section 4.1.4. The difference is that due to the reparametrization, now differences
between parameters 6(t — 1) and 6(t) are penalized, not the actual values they contain,
which are unlikely to be zero.

The proposed reparametrizations can result in large improvements regarding a
model’s memory consumption. Clearly, the amount of reduction depends on the specific

4.1 Spatio-Temporal Random Fields = 111

dataset. It is hence even more astonishing that the reparametrization itself can be
applied without any harm—it can represent any natural parameter. Let us consider a
proper definition of our former intuition. For the sake of generality, let C be any clique
(e.g., an edge) of the underlying graph.

Definition 4 (Piecewise Linear Reparametrization [567]). Let G be a spatio-tem-poral
graph of length T, and let D(h) € [0; 1]™" be a lower unitriangular® matrix. Any MRF
with graph G and piecewise linear clique-wise reparametrization

Oc_x = Npm)(Acyx) = D(NAc_y (4.8)

where h = T — (max{t | v(t) € C} - min{t | v(t) e C}) is called a spatio-temporal
random field.

Based on that definition, we can derive some useful properties.

Lemma 5 (Universality of the Reparametrization). The spatio-temporal repara-metrization
is universal. That is, the piecewise linear reparametrization is a bijection.

Proof Indeed, any A € RY can be mapped to some 8 € R? by multiplication with D
according to Definition 4. To see that the converse also holds, note that for each t € [T],
detD(h) = H$=1 D(h); ; = 1, due to unitriangularity. Each D(h) is thus invertible and so
is the block diagonal matrix D°. So for any given natural parameter 6, we can find
the corresponding reparametrization via A¢-y = D‘lec:y. That is, np is bijective and
hence universal. |

Since np is universal, any natural parameter can be represented via some A. More-
over, np is a linear function of A. The convexity of a function is preserved by composing
it with a linear function. Hence, the reparametrized negative average log-likelihood
4(np(A); D) = A(np(A)) - (np(A), j1) is a convex function of A.

Up to now, we have not saved any memory since A and 6 have the same dimension.
By imposing I;- and I,-regularization on the reparametrized objective, we arrive at the
problem

. - A
min A(np(A)) - (np(A), ji) + Z2 | A7 + 11| A1 (4.9)
AeRd 2

57(A;D)

The following theorem shows that the intuition that we used to design our reparametriza-
tion has indeed the desired effect—it allows us to convert redundancy into sparsity

by detecting negligible changes in consecutive natural parameters. Moreover, a
polynomial number of samples suffices to achieve a small estimation error with high
probability.

3 An unitriangular matrix is triangular and all entries on its main diagonal are 1.

112 — 4 Structured Data

Theorem 6 (STRF Consistency). Consider a random variable X with exponential family
density, parameter @ ¢ RY whose reparametrization has minimal norm among all
equivalent parameters, and a generalized sequence structure of length T. We are given a
dataset D with N = |D| samples from X. Suppose |[V>A(0") || < k and ||A|| < y, and
set Ay = 4T+/log(d)/N and A, = y*A1. If N = 324x*d*? log(d)/(T — d?)?, then, for an
arbitrary decay matrix D:

- the distance between the true parameter 0" and the estimate n D(ﬁ) is bounded, i.e.,

Inp(A) - 0 || < 3xd*A; ,

— any sparsity in the estimate implies some redundancy in the true parameter, i.e.,
3C=Xl(t) =0 =

‘GE:xr(t -1)- 92=x'(t)|
3N (g (naaix B)] +

<
T

3d2K/‘1
T b

for any clique C and time-point t. Both statements hold with probability at least 1 - (2/d).

A proof for this statement can be found in [567].

4.1.7 Experimental

We evaluate the performance of our suggested method on two real-world datasets,
where each set is described by a spatial graph Go = (Vy, Eo) with a set of sensors
Vo and connections Ej, and a set of historical sensor readings D. We evaluate two
approaches: MRFs with the original parametrization (MRF) and the spatio-temporal
random fields* (STRF) presented in this section.

First we discuss the model training. We investigate the prediction quality and
sparsity of resulting models with respect to regularization parameters. We also present
the impact of separable optimization on training time. Next, the quality of prediction
on test sets is discussed, regarding the sparsity (and thereby the size in memory) of
trained models. Finally, we discuss the qualitative results regarding the interpretability
of the STRF model.

Throughout the experiments, our STRF algorithm has produced solutions satisfying
our target optimality of < 10~> within ten iterations. A description of the traffic and
temperature datasets as well as the quality measures (accuracy Acc and number-of-
non-zero-ratio NNZ) used for this evaluation can be found in [566].

4 An implementation is part of the Python package pxpy which is available at https://pypi.org/project/
pXpy.

https://pypi.org/project/pxpy
https://pypi.org/project/pxpy

4.1 Spatio-Temporal Random Fields = 113

NNZ Ratio

Temperature

200000

I I
005 01 0.

I I I I
15 02 025 03 035 04 045

5000

4000

3000

2000

1000 |

L L L L L L
005 01 015 02 025 03 035 04 045

0.005

0.01

0.015

0.02

0.025

/11 Al

Fig. 4.4: The effect of regularization on models for varying sparsity parameter A, (left: traffic data,
right: temperature data, top: NNZ ratio, bottom: negative log-likelihood). All measurements were
obtained after ten iterations, which was enough for STRF to reach the target optimality.

4.1.8 Regularized Training of Spatio-Temporal Random Fields

In our model, the I, regularizer imposes “smoothness” on the dynamics of parameters
over time, providing a controllable way to avoid overfitting noisy observations. The
degree of smoothness is controlled by A,, whereas the compression ratio is controlled
by A;. Positive values of A, help in our method, since the curvature estimation becomes
better conditioned.

4.1.8.1 Sparsity of Trained Models and Their Training Accuracy

Figure 4.4 shows the performance of STRF (our method) and MRF (classical parametriza-
tion) in terms of the negative log-likelihood and the NNZ ratio for a range of values
for A;. The parameter A, was fixed to 107! (the characteristics were almost identical
for various A, values we tried in the range of [0, 1]). For MRF, we augmented the ob-
jective with the 1; and [, regularizers discussed in Section 4.1.4, and then applied a
subgradient descent method with fixed step size (1 = 1072). Our results show that (i)
the subgradient method does not properly perform regularization for MRF, regardless
of the choices of (A1, A,); (ii) the negative log-likelihood decreases as A; is increased,
which is expected because at the strongest [, regularization will force all marginals to
be uniform distributions; (iii) our method STRF identifies sparse models accordingly to
given regularization strength, while retaining similar likelihood values to MRF. More

114 =— 4 Structured Data

precisely, focusing on the curves for STRF, likelihood keeps improving until A; reaches
0.47. Beyond this value, the model is compressed too much, losing its prediction power.
Overall, the pair (11, A,) = (0.4655, 1.0) with NNZ ratio 0.101573 has been identified
as a good choice for the traffic data, and the pair (11, A;) = (0.0255, 1.0) with NNZ
ratio 0.248136 has been identified as a good choice for the temperature data, since both
lead to sparse models with reasonable likelihood values. We use these values in the
following experiments.

Since the number of edge parameters is a dominant factor in the dimension d of
the parameter space, it would be desirable that STRF sufficiently compresses edge
parameters. Considering the NNZ ratio of vertex and edge parameters separately, it
turns out that STRF has such a property: with the good parameter values above, the
NNZ ratio of vertices is about 0.95, whereas that of the edges is about 0.09.

4.1.9 Prediction on Test Sets

Here we investigate (i) the test-set performance of the sparse models, obtained with
the good parameter values of A; and A, found in training, and (ii) how the sparsity of
trained models affect the testing time.

The test-set accuracy of the models, obtained by the regularization parameters
described in Section 4.1.8.1, is presented in Figure 4.5. Here our method STRF, the
classical MRF, the kNN algorithm with several values of k, and the random guessing
method, are compared. The prediction quality of the models produced by STRF is almost
identical to that of MRF, although the STRF models are much smaller in size (10.2 %
and 24.8 % of the MRF models in size, for traffic and temperature, respectively). The
kNN algorithm sometimes performs better than STRF and MRF, but remember that kNN
cannot capture probabilistic relations and requires access to full training data, which
is not the case for STRF and MRF.

4.1.10 Conclusion

In this contribution, we presented an improved graphical model designed for the
efficient probabilistic modeling of spatio-temporal data. It is based on a combination of
parametrization and regularization, such that the estimated parameters are sparse and
the estimated marginal probabilities are smooth without losing prediction accuracy.
We investigated the sparsity, smoothness, prediction accuracy, and scalability of the
model on real-world datasets. The experiments showed that often around 10 % of the
original model size suffices to achieve almost the same prediction accuracy. Moreover,
the method is amenable to parallelization and scales well with an increasing number
of CPUs.

None observed

T

Test Accuracy
(Traffic)

T
09 Hl
0.8

07

06

05

0.4

0.3

0.2

T T

STRF MRF 4NN

0.4 T T T

3NN 2NN

1NN RAND

035 [
03

0.25

02 =i
015
0.1
0.05
0

Test Accuracy
(Temperature)

STRF MRF 4NN

3NN 2NN

Few observed

T T T
09 Il | |
08
07
06
05

(Traffic)

0.4

Test Accuracy

0.3

0.2

T T

STRF MRF 4NN

0.4

3NN 2NN

1NN RAND

0.35
0.3
0.25

0.2
0.15
0.1
0.05
0

Test Accuracy
(Temperature)

STRF MRF 4NN

3NN 2NN

1NN RAND

4.1 Spatio-Temporal Random Fields =— 115

Random observed

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

OI

T

T T

STRF

MRF

4NN

3NN 2NN

1NN RAND

STRF

MRF

4NN

3NN 2NN

Many observed

1NN RAND

0.9
0.8
0.7
0.6
0.5
0.4
0.3

0.2

0.4
0.35
0.3
0.25
0.2
0.15
0.1

0.05

OI

STRF

MRF

4NN

3NN 2NN

1NN RAND

STRF

MRF

4NN

3NN 2NN

1NN RAND

Fig. 4.5: Test accuracy of STRF, MRF, and k-nearest neighbor algorithm on the traffic dataset for four
scenarios: unconditioned (first column, first two rows), random observed layers (second column, first
two rows), conditioned on Monday (first column, last two rows), conditioned on Monday to Saturday
(first column, last two rows).

116 —— 4 Structured Data

4.2 The Weisfeiler-Leman Method for Machine Learning with
Graphs

Nils Kriege
Christopher Morris

Abstract: The Weisfeiler-Leman method is a classic heuristic for graph isomorphism
testing, which iteratively encodes vertex neighborhoods of increasing radius by vertex
colors. Two graphs whose vertex colors do not match are called non-isomorphic. The
method is fundamental for recent advances in machine learning with graphs, e.g., graph
kernels and graph neural networks. This contribution overviews the development of
graph kernels based on the Weisfeiler-Leman algorithm, which are among the most
successful graph kernels today. We describe the Weisfeiler-Leman heuristic for graph
isomorphism testing, from which the classical Weisfeiler-Leman subtree kernel directly
follows. Further, we summarize the theory of optimal assignment kernels and present
the Weisfeiler-Leman optimal assignment kernel for graphs and the related Wasserstein
Weisfeiler-Leman graph kernel. We discuss kernel functions based on the k-dimensional
Weisfeiler-Leman algorithm, a strict generalization of the Weisfeiler-Leman heuristic.
We show that a local, sparsity-aware variant of this algorithm can lead to scalable
and expressive kernels. Moreover, we survey other kernels based on the principle of
Weisfeiler-Leman refinement. Finally, we shed some light on the connection between
Weisfeiler-Leman-based kernels and neural architectures for graph-structured input.

4.2.1 Introduction

Graph-structured data is ubiquitous across application domains ranging from chemo-
and bioinformatics [40, 647] to image [633] and social network analysis [193]. In drug
discovery, molecules are represented as graphs [379] and the search for promising drug
candidates that bind to a specific target protein can be greatly accelerated by machine
learning methods suitable for graph data. Moreover, proteins themselves [64] as well
as their interactions and complexes [646] (also see 2.6 in Volume 3) can be adequately
modeled as graphs. The increasing amount of data in these areas offers enormous
potential in studying diseases and their cures. However, due to the size and complexity
of the data, automated methods for their analysis are required.

To develop successful machine learning models in these domains, we need tech-
niques that can exploit the rich information inherent in the graph structure and the
feature information contained within vertices and edges. In recent years, numerous
approaches have been proposed for machine learning with graphs—most notably,
methods based on graph kernels [398] and graph neural networks (GNN) [122, 252, 272].

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs = 117

Here, graph kernels based on the 1-dimensional Weisfeiler-Leman algorithm (1-WL) [28,
271], and corresponding GNNs [509, 714] have recently advanced the state of the art in
supervised node and graph learning.

The 1-WL was introduced as a heuristic for the graph isomorphism problem and
is widely used as a subroutine in graph isomorphism and canonization algorithms
following the individualization-refinement paradigm [480]. It allows recognizing two
graphs as non-isomorphic. More precisely, 1-WL assigns colors to the nodes of two
graphs in an iterative process, such that isomorphic graphs are assigned matching
node colors. Whenever two graphs obtain different colorings, they are guaranteed
to be non-isomorphic. However, two graphs with matching colors may still be non-
isomorphic. The abilities and limitations of the 1-WL for this task have been studied
for decades and are well understood [271]. In machine learning with graph-structured
data, the goal is less clear, and a general objective is to compute a meaningful similarity
between graphs. Two graphs that are non-isomorphic but differ only by one edge, say,
should still be considered highly similar. In practical applications, it has been observed
that the Weisfeiler-Leman technique is often suitable to approximate computationally
demanding graph similarity measures based on the minimum number of edit operations
required to transform one graph into the other [397, 646]. (See 2.6 in Volume 3 for
details.) Moreover, Weisfeiler-Leman type algorithms are remarkably successful in
machine learning tasks. However, their abilities and limitations in these applications
are not well understood and are the subject of current research.

Here, we give an overview of the recent progress of graph kernels based on the
Weisfeiler-Leman paradigm. That is, we review the 1-WL and its more expressive gener-
alization, the k-WL. Starting from the Weisfeiler-Leman subtree kernel [627], a simple
graph kernel based on the 1-WL, we survey the area with a focus on assignment-based
kernels and an extension based on the k-WL. Moreover, we overview the connections
between the Weisfeiler-Leman algorithm and graph neural networks.

4.2.2 Preliminaries

In the following, we introduce notation and give the necessary background on graph s.
Asusual, let [n] = {1,...,n} C Nforn = 1, and let {...} denote a multiset.

4.2.2.1 Graphs

A graph G is a pair (V, E) with a finite set of vertices V and a set of edges E C {{u, v} C
V | u # v}. We denote the set of vertices and the set of edges of G by V(G) and E(G),
respectively. For ease of notation, we denote the edge {u, v} in E(G) by (u, v) or (v, u).
In the case of directed graphs the order of the nodes is distinguished and E C {(u, v) €
VxV | u # v}.Alabeled graph Gis atriple (V, E, l) with alabel function l: V(G)UE(G) >
X, where X is some finite alphabet. Then I(v) is the label of v in V(G) U E(G). The

118 = 4 Structured Data

$o(G)=(1,1,3) $1(G)=(,1,2,1)

Fig. 4.6: Illustration of the coloring scheme of the 1-WL.

neighborhood of v in V(G) is denoted by 6(v) = N(v) = {u € V(G) | (v, u) € E(G)}. Let
S C V(G) then G[S] = (S, Es) with Eg = {(u, v) € E(G) | u, v € S} is the subgraph of G
induced by S. A tree is a connected graph without cycles. A rooted tree is a tree with a
designated vertex called root in which the edges are directed such that they point away
from the root. Let p be a vertex in a rooted tree; we call its out-neighbors children with
parent p.

We say that two graphs G and H are isomorphic if there exists a bijection ¢ : V(G) >
V(H) that preserves the edges, i.e., (u, v) is in E(G) if and only if (¢(u), ¢(v)) is in E(H)
for all u and v in V(G). If G and H are isomorphic, we write G ~ H and call ¢ an
isomorphism between G and H. Moreover, we call the equivalence classes induced
by ~ isomorphism types. In the case of labeled graphs, we additionally require that
I(v) = l(p(v)) for all v in V(G) and I((u, v)) = l((¢(w), @(v))) for all (u, v) in E(G).

4.2.2.2 Kernels

A kernel on a non-empty set X is a symmetric, positive semidefinite function k: X xX >
R. Equivalently, a function k is a kernel if there is a feature map ¢ : X > 3, where H is
a Hilbert space endowed with the inner product (-, -), such that k(x, y) = (¢(x), d(y))
for all x and y in X. Let G be the set of all graphs, then a kernel on § is called a graph
kernel.

4.2.3 The Weisfeiler-Leman Algorithm

The 1-WL is a classical heuristic for the graph isomorphism problem [28, 273, 700]. Here,
we formally introduce the 1-WL and its generalization, the k-WL, which form the basis
for the graph kernels described in the following sections.

4.2.3.1 The 1-dimensional Weisfeiler-Leman Algorithm

Intuitively, the 1-WL aims to capture the structure of a graph by iteratively aggregating
labels or colors of adjacent vertices. Two equally colored vertices get a different color if
their neighborhood is colored differently. See Figure 4.6 for an illustration.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs =—— 119

Fig. 4.7: Two graphs that cannot be distinguished by the 1-WL.

Formally, let (G, I) be a labeled graph. In each iteration i > 0, the algorithm computes a
coloring C ,1 : V(G) > S, where S is some arbitrary codomain. In the first iteration, we
color the vertices according to the labeling 1, i.e., C3(v) = I(v) for v in V(G). For i > 0,
C},, is defined by

C.1(v) = RELABEL (C,-l(v), {Ctw) |we 6(v)}}>.

Here, RELABEL is an injection that maps the pair consisting of the current color and the
multiset of colors of adjacent vertices to a new color. Hence, two vertices with the same
color in iteration i get a different color in the next iteration if the number of neighbors
colored with a certain color is different. Observe that it is straightforward to extend the
1-WL to labeled, directed graphs. We run the algorithm until convergence, i.e.,

CiW) = CiW) <= Cia() = Cia(w),

holds for all v and w in V(G). We call the partition of V(G) induced by C} the stable
partition. For such i, we define CL,(v) = C}(v) for v in V(G). For two graphs G and H, we
run the algorithm in “parallel” on both graphs. Then the 1-WL distinguishes between
them if

[V(6) N (€)1 # [V(H) n (Cx) (),

for some color ¢ in the codomain of CL. If the 1-WL distinguishes two graphs, the graphs
are not isomorphic.

4.2.3.2 k-dimensional Weisfeiler-Leman Algorithm

The 1-WL is not able to distinguish between all pairs of non-isomorphic graphs. See
Figure 4.7 for such a pair. The k-WL is a natural generalization of the 1-WL, which gets
more powerful by coloring k-tuples defined over the set of vertices.

Formally, let G be a graph, and let k = 2. Moreover, let v be a tuple in V(G)k , then
G|v] is the subgraph induced by the components of v, where the vertices are labeled
with integers from {1, ..., k} corresponding to indices of v. In each iteration i = 0, the
algorithm computes a coloring C{f: V(G)k - S, where S is some arbitrary codomain.
In the first iteration (i = 0), two tuples v and w in V(G)¥ get the same color if the map
v; » w; is an isomorphism between G[v] and G[w]. Now, fori > 0, Cf.‘+1 is defined by

CK.1(v) = RELABEL(CK(v), M;(V)),

120 —— 4 Structured Data

where the multiset

M) = ({CK(p1(v, W) |w € V(B)}, ...,
{Cl v, W) | w € V(G)}), (4.10)

and
j ’ = 1seees Vj-1» s Vitls e e e V).

That is, ¢;(v, w) replaces the j-th component of the tuple v with the vertex w. We run
the algorithm until convergence, i.e.,

Ckw) = ckw) = ¢k = chaw),

for all v and w in V(G)* holds, and call the partition of V(G)* induced by Cl’-‘ the stable
partition. For such i, we define CX,(v) = Cf-‘(v) for v in V(G)X. The procedure of deter-
mining if two graphs are non-isomorphic is the same as for the 1-WL. With increasing k
the algorithm gets more and more powerful [117]. That is, for each k > 2 there exists a
pair of graphs that the k-WL cannot distinguish but the (k + 1)-WL can.

Let A and B be two heuristics for the graph isomorphism problem, e.g., the k-WL,
then we write A C B (A C B, A = B), if algorithm A is more powerful (strictly more
powerful, equally powerful) than B in terms of distinguishing non-isomorphic graphs.
Using this notation we write

(k+1)-WL C k-WL,

for k > 2, to state the result mentioned in the last paragraph.

4.2.4 Kernels Based on the Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm forms the basis for some of the most successful graph
kernels. Here, we give an overview on kernels based on the 1-WL, followed by kernels
based on the k-WL. Moreover, we survey other kernels related to the Weisfeiler-Leman
paradigm.

4.2.4.1 Weisfeiler-Leman Subtree Kernel

The idea of the Weisfeiler-Leman subtree graph kernel [627] is to compute the 1-WL for
h = 0 iterations resulting in a label function C,-lz V(G) - S; for each iteration 0 < i < h.
Now after each iteration, we compute a feature vector ¢;(G) in RIS for each graph G.
Each component ¢;(G). counts the number of occurrences of vertices labeled with ¢
in S;. The overall feature vector ¢y (G) is defined as the concatenation of the feature
vectors of all h iterations, i.e.,

dwL(G) = [po(G), ..., dn(G)].

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs = 121

The Weisfeiler-Leman subtree kernel for h iterations is then computed as

kwi(G, H) = (¢pw1L(G), pwL(H)),

where (-, -) denotes the standard inner product. The running time for a single feature
vector computation is in ©(hm) and O(Nhm + N> hn) for the computation of the gram
matrix for a set of N graphs [627], where n and m denote the maximum number of
vertices and edges over all N graphs, respectively.

4.2.4.2 Weisfeiler-Leman Optimal Assignment Kernels

The Weisfeiler-Leman subtree kernel counts pairs of vertices with the same label. A
different approach is to assign each vertex of G to a vertex of H. Constructing an as-
signment that maximizes the structural overlap and agreement of vertex attributes is
a general concept for comparing graphs and also forms the basis of graph matching
or network alignment. This principle was proposed to obtain graph kernels, where the
similarity between two vertices is determined by an arbitrary base kernel [236]. However,
it was soon observed that the resulting similarity measure is in general not positive
semidefinite [685]. Subsequent research has identified a specific class of base kernels,
for which the similarity derived from optimal assignments is guaranteed to be a valid
kernel, i.e., positive semidefinite [395]. We summarize the theory of valid assignment
kernels and then describe how a suitable base kernel can be obtained from the 1-WL.

Valid Optimal Assignment Kernels We consider the general setting, where the
elements of two sets are to be assigned to each other. Let [X]" denote the set of all
n-element subsets of a set X and B(X, Y) the set of all bijections between X and Y in
[X]™ for n in N. The optimal assignment kernel Kk% on [X]" is defined as

K5(X,Y)= max k(x, y), 4.11
»(X,Y) pax > k(x,y) (4.11)
(x,y)eB

where k is a base kernel on X. For the application to sets of different cardinality, the
smaller set can be augmented by dummy elements d with k(d,) = 0.

Similar to the concept of an ultrametric, which must satisfy the strong triangle
inequality, the so-called strong kernel was introduced as a kernel satisfying k(x, y) =
min{k(x, z), k(z, y)} for all x, y, z in X. It was shown that the function K% is a valid
kernel if k is a strong kernel [395]. Strong kernels are equivalent to kernels obtained
from a hierarchical partition of their domain. Formally, let T be a rooted tree such that
the leaves of T are the elements of X and w: V(T) - R, a weight function. We refer to
the tuple (T, w) as a hierarchy. A hierarchy on X induces a similarity k(x, y) for x and y
in X as follows. For v in V(T) let P(v) C V(T) denote the set of vertices in T on the path
from v to the root r. Then the similarity between x and y in X is

ko)=Y o).

veP(x)NP(y)

122 — 4 Structured Data

For every strong kernel k there is a hierarchy that induces k and, vice versa, every
hierarchy induces a strong kernel [395].

The optimal assignment kernel of Equation 4.11 can be computed in linear time
from the hierarchy (T, w) of the base kernel k by histogram intersection. For a node v
in V(T) and a set X C X, let X, denote the subset of X that is contained in the subtree
rooted at v. Then the optimal assignment kernel is

K5 (X, Y) = > min{|X,, |¥y[} - 0(v), (4.12)
veV(T)

which can be seen as the histogram intersection kernel for appropriately defined his-
tograms representing the sets X and Y under the strong base kernel k [395].

Optimal Assignment Kernels from the 1-WL The 1-WL produces a hierarchy on the
vertices of a (set of) graphs, where the ith level consists of nodes S;,; with an artificial
root at level 0. The parent-child relationships are given by the color refinement process,
where the root has children S;. This hierarchy with a uniform weight function induces
the strong base kernel

h .

1 ifx=

k) = S k(€ CHV), kolx, y) = g (413)
o 0 otherwise

on the vertices. The kernel counts the number of iterations required to assign different
colors to the vertices and reflects the extent to which the vertices have a structurally
similar neighborhood. The optimal assignment kernel with this base kernel is referred
to as Weisfeiler-Leman optimal assignment kernel and was shown to achieve better
accuracy results in many classification experiments than the Weisfeiler-Leman subtree
kernel. Moreover, the weights of the hierarchy associated with a strong base kernel can
be optimized via multiple kernel learning [396].

4.2.4.3 Wasserstein Weisfeiler-Leman Graph Kernels
Related to assignment kernels are techniques based on the Wasserstein distance. Given
two vectors a and b in R} with entries that sum to the same value and a ground cost
matrix D in RT*", the Wasserstein distance (or earth mover’s distance, optimal transport
distance)® is

W(a,b)= min (T,D), I(a,b)= {T ERP:T1=a,T'1= b} . (414)

Tel(a,b)

where I'(a, b) is the set of so-called transport plans and (-, -) denotes the Frobenius dot
product. Although I'(a, b) allows doubly stochastic matrices, the Wasserstein distance

5 Depending on the context, slightly different definitions are used in the literature. Often, they require
that a and b be distributions.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs = 123

is a generalization of the min-version of Equation 4.11. The ground cost matrix, providing
the dissimilarity between entries of a and b, has a role analogous to the base kernel.

The Wasserstein distance can be applied to the vertices of two graphs using ground
costs obtained by 1-WL [663]. The entries of D are given by

0 ifx=y

h
A, V) = 1 Sop(CHw), G, ply) - { (415)
i=0

1 otherwise.

Equation 4.15 is closely related to Equation 4.13 and can be regarded as its associ-
ated normalized distance. The Wasserstein distance W(a, b) of Equation 4.14 is then
combined with a distance-based kernel [283], specifically a variant of the Laplacian
kernel. The resulting function was shown to be positive semidefinite. The authors also
proposed extending the 1-WL to continuous attributes replacing discrete colors with
real-valued vectors. Then, the ground costs of the Wasserstein distance are obtained
from the Euclidean distance between these vectors. However, in this case, it is not
guaranteed that the resulting function is positive semidefinite.

The Weisfeiler-Leman assignment kernel and the Wasserstein Weisfeiler-Leman
kernel employ the 1-WL and improve the classification accuracy observed in practice
on many datasets over the Weisfeiler-Leman subtree kernel. However, they are not more
powerful in distinguishing non-isomorphic graphs. One approach to obtain kernels
more expressive in this sense is to use the k-WL.

4.2.4.4 Kernels Based on the k-WL
The k-WL was also used to derive graph kernels [504, 506]. Essentially, the kernel
computation works the same way as in the 1-dimensional case, i.e., a feature vector is
computed for each graph based on color counts. To make the algorithm more scalable,
the authors of [506] resorted to color all subgraphs on k vertices instead of all k-tuples,
resulting in a less expressive algorithm. Moreover, the authors proposed that only a
subset of the original neighbors be considered to exploit the sparsity of the underlying
graph. Further, they offered a sampling-based approximation algorithm to speed up the
kernel computation for a large graph, showing that the kernel can be approximated in
constant time, i.e., independent of the number of vertices and edges, with an additive
approximation error. Finally, they showed empirically that the proposed kernel beats
the Weisfeiler-Leman subtree kernel on a subset of tested benchmark datasets.
Similarly, Morris, Rattan, and Mutzel [504] proposed graph kernels based on the k-
WL. Again they proposed a local variant of the k-WL, named 6-k-LWL, that only considers
a subset of the original neighborhood. However, they considered k-tuples and proved
that a variant of their method is slightly more powerful than the original k-WL while
taking the original graph’s sparsity into account. That is, instead of Equation 4.10, the
6-k-LWL uses

MI(W) = ({CEO(p1(v,) | w € 80D, ..., {CEO(pr(v, W) | w € 8(v)}).

124 =— 4 Structured Data

Hence, the labeling function is defined by

C*3(v) = RELABEL(CF (v), MO (V). (4.16)

i+1

Empirically, they show that one of their variants of the k-WL achieves a new state of the
art across many standard benchmark datasets while being several orders of magnitude
faster than the k-WL.

4.2.4.5 Other Kernels Based on the Weisfeiler-Leman Algorithm
In the following, we survey other graph kernels that build on the Weisfeiler-Leman
paradigm.

Weisfeiler-Leman Kernel Framework A general technique to modify and strengthen
graph kernels is to modify their labels such that additional information is encoded.
This can be achieved by computing the first h = 0 colors C3, . .., C}. of the 1-WL [627].
Then, given an arbitrary graph kernel used as base kernel, the corresponding Weisfeiler-
Leman kernel is the sum of the base kernel applied to pairs of graphs with the label
Ci1 foriin {0, ..., h}. The Weisfeiler-Leman subtree kernel described in Section 4.2.4.1
is obtained for a base kernel counting common vertex labels. Another instance of the
approach commonly used is obtained by using the shortest-path kernel [65].

Hash Graph Kernel Framework In chem- or bioinformatics, edges and vertices
of graphs are often annotated with real-valued information, e.g., physical measure-
ments [508]. Previous graph kernels that can take these attributes into account are
relatively slow and employ the kernel trick [65, 222, 394]. Therefore, these approaches
do not scale to large graphs and datasets. Moreover, kernels such as the Weisfeiler-
Leman subtree kernel cannot adequately deal with such continuous information due
to its discrete nature. To overcome this, the hash graph kernel framework was intro-
duced [507]. The idea is to iteratively turn the continuous attributes into discrete labels
using randomized hash functions. This allows the application of fast, explicit graph
feature maps, e.g., the Weisfeiler-Leman subtree kernel, which are limited to discrete
annotations. In each iteration, the algorithm samples new hash functions and computes
the feature map. Finally, the feature maps of all iterations are combined into one feature
map. In order to obtain a meaningful similarity between attributes in R?, one requires
that the probability of collision Pr[h;(x) = h,(y)] of two independently chosen random
hash functions h;, h, : R? > N equals an adequate kernel on R?. Equipped with such
a hash function, approximation results were derived for several state-of-the-art kernels
that can handle continuous information [507]. In particular, we derived a variant of the
Weisfeiler-Leman subtree kernel, which can handle continuous attributes. The exten-
sive experimental study showed that instances of the hash kernel framework achieve
state-of-the-art classification accuracies while being orders of magnitudes faster than
kernels that were specifically designed to handle continuous information.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs = 125

Neighborhood Aggregation in Graph Kernels The idea of neighborhood aggrega-
tion is widely used, and there are often subtle differences in definition. For completeness,
we mention several graph kernels following this general idea. The neighborhood hash
kernel [314] is similar in spirit to the Weisfeiler-Leman subtree kernel, but represents
simple labels by bit-vectors and uses logical operations and hashing to encode the direct
neighborhood for efficiency. Propagation kernels proposed in [528] provide a generic
framework to define kernels on graphs based on an information propagation scheme
for labels and attributes. Propagation, e.g., based on random walks, is performed
individually on the two input graphs and a kernel is obtained by comparing label dis-
tributions after every propagation step. In the case of continuous (multi-dimensional)
attributes, a single hash function is used to obtain a discrete label. In [537] a general
message passing framework for kernels was proposed, where the concept of optimal
assignments (see Section 4.2.4.2) was introduced in the neighborhood aggregation step.
Persistent Weisfeiler-Leman kernels [597] combine 1-WL with persistent homology to
extract topological features such as cycles. Recent theoretical results that link 1-WL
to graph homomorphisms [167] were used to define graph kernels that have the same
expressive power as the 1-WL, but a different feature space [533].

4.2.5 Graph Neural Networks and Their Connection to the Weisfeiler-Leman Algorithm

GNNs emerged as an alternative to graph kernels for graph classification and other
machine learning tasks on graphs such as node classification or regression. Standard
GNNs can be viewed as a neural version of the 1-WL, where colors are replaced by
continuous feature vectors and neural networks are used to aggregate over node neigh-
borhoods [252, 292, 375]. In effect, the GNN framework can be viewed as implementing
a continuous form of graph-based “message passing”, where local neighborhood infor-
mation is aggregated and passed on to the neighbors [252]. By deploying a trainable
neural network to aggregate information in local node neighborhoods, GNNs can be
trained in an end-to-end fashion together with the parameters of the classification or re-
gression algorithm, possibly allowing for greater adaptability and better generalization
compared with the kernel counterpart of the classical 1-WL.

A GNN model consists of a stack of neural network layers, where each layer aggre-
gates local neighborhood information, i.e., features of neighbors, around each node
and then passes this aggregated information on to the next layer. See Figure 4.8 for an
illustration of the architecture.

In the following, we formally define GNNs and outline their connection to the
Weisfeiler-Leman algorithm. Let G = (V, E, I) be a labeled graph with an initial node
coloring f@: V(G) > R'™ that is consistent with I. This means that each node v is
annotated with a feature f©(v) in R™? such that f© (u) = f@(v) ifand only if I(u) = I(v).
Alternatively, f©(v) can be an arbitrary real-valued feature vector associated with v.
Examples include continuous atomic properties in chemoinformatic applications or

126 —— 4 Structured Data

te
)
)
78

Fig. 4.8: Illustration of the feature aggregation scheme of GNNs. The new feature of the node v, is
computed from its old feature and the features of its neighbors v, and vs.

vector representations of text in social network applications. A basic GNN model can
be implemented as follows [292]. In each layer t > 0, we compute a new feature

FOW =o(F 00 W+ 37 F) - wi) (417)

weN(v)

in R1*€ for v, where W(f) and Wg) are parameter matrices from R%¢ , and o denotes a
component-wise non-linear function, e.g., a sigmoid or a ReLU.®

One may also replace the sum defined over the neighborhood in the above equation
by different permutation-invariant, differentiable functions, e.g., mean or max, and
one may substitute the outer sum by, say, a column-wise vector concatenation [252].
Thus, in full generality a new feature f(t)(v) is computed as

rrvl/;elrge (f(t 1)(V) faggr ({{f(til)(w) |we N(V)})) , (4.18)

where faggr aggregates over the set of neighborhood features and fn"}’grge merges the
node’s representations from step (t — 1) with the computed neighborhood features. Both
fggvér and fnﬁ‘;lrge may be arbitrary differentiable functions, e.g., neural networks, and, by
analogy to Equation 4.17, we denote their parameters as W, and W, respectively.

A vector representation fyy over the whole graph can be computed by aggregating
the vector representations computed for all nodes, e.g.,

fow@) = Y fPw),
veV(G)

where T > 0 denotes the last layer. More refined approaches use differential pooling
operators based on sorting [736] or soft assignments [724]. To adapt the parameters
W, and W, of Equations 4.17 and 4.18 to a given data distribution, they are optimized
in an end-to-end fashion (usually via stochastic gradient descent) together with the
parameters of a neural network used for classification or regression. Efficient GPU-
based implementations of many GNN architectures can be found in [225] and [696]. See
also Section 4.3.

6 For clarity of presentation we omit biases.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs = 127

4.2.5.1 Connections to the Weisfeiler-Leman Algorithm
A recent line of work [468, 509, 714] connects the power or expressivity of GNNs to that
of the Weisfeiler-Leman algorithm. The results show that GNN architectures generally
do not have more power to distinguish between non-isomorphic (sub)graphs than the
1-WL. o

Formally, let (G, I) be a labeled graph, and let W® = (Wgt), Wg)) v, denote the
GNN parameters given by Equations 4.17 and 4.18 up to iteration t. We encode the initial
labels I(v) by vectors f(o)(v) in R1xd using a 1-hot encoding. The first theoretical result
shown in [509] states that the GNN architectures do not have more power to distinguish
between non-isomorphic (sub-)graphs than the 1-WL. More formally, let flﬂ/elrge and favgér
be any two functions chosen in Equation 4.18. For every encoding of the labels I(v) as
vectors f (0)(v), and for every choice of W(t), the coloring Ci1 of the 1-WL always refines
the coloring f® induced by a GNN parameterized by W,

Theorem 7. Let (G, 1) be a labeled graph. Then for all t > 0 and for all choices of initial
colorings f(O) consistent with 1, and weights W(t),

o0 ¢ O

The second result of [509] states that there exists a sequence of parameter matrices
W® such that GNNs have the same power in terms of distinguishing non-isomorphic
(sub-)graphs as the 1-WL. This even holds for the simple architecture Equation 4.17,
provided we choose the encoding of the initial labeling ! in such a way that linearly
independent vectors encode different labels.

Theorem 8. Let (G, I) be a labeled graph. Then for all t > O there exists a sequence of
weights W9, and a 1-GNN architecture such that

o0 = 0

Hence, in the light of the above results, GNNs may be viewed as an extension of the
1-WL, which in principle have the same power but are more flexible in their ability to
adapt to the learning task at hand and can handle continuous node features.

4.2.5.2 Higher-order Graph Neural Networks
The above results also have been lifted to the k-dimensional case. For example, Maron,
Ben-Hamu, Serviansky, and Lipman [468] devised an architecture based on simple
matrix operations that has the same power as the 3-WL. In a recent work, Morris, Rattan,
and Mutzel [504] devised neural architectures, denoted §-k-LGNN, that resemble the
construction for GNNs.

Formally, given a labeled graph G, let each tuple v in V(G)¥ be annotated with an
initial feature f©(v) determined by the isomorphism type of G[v]. In each layer ¢ > 0,

128 —— 4 Structured Data

we compute a new feature fO(v) as

e (FW), S (V@1 W) [w € 80}
{0 @elv, w) [w e 80})),

in R for a tuple v, where WY) and Wg) are learnable parameter matrices from R%*¢.7
Moreover, f,ﬂ'@rge and the permutation-invariant avlg’é can be arbitrary differentiable
functions, responsible for merging and aggregating the relevant feature information,
respectively. Note that one can naturally handle discrete node and edge labels as well
as directed graphs. The following result shown in [504] demonstrates the expressive
power of the 6-k-LGNN in terms of distinguishing non-isomorphic graphs.

Theorem 9. Let (G, l) be a labeled graph. Then for all t > O there exists a sequence of
weights WO such that

o) = CPow) = fOw) = FOw).
Hence, for all graphs, the following holds for all k = 1:

6-k-LGNN = 6-k-LWL.

4.2.6 Conclusion and Future Work

The Weisfeiler-Leman method has been studied for decades in graph theory and recently
turned out to be an essential technique in machine learning with graphs [505], achieving
high accuracy on many real-world datasets [508]. While the Weisfeiler-Leman algo-
rithm’s expressivity limits machine learning methods to distinguishing non-isomorphic
graphs, the generalization abilities of such methods are understood to a lesser extent,
indicating an avenue for future research. Moreover, heterogeneous networks with differ-
ent edge types or graphs annotated with temporal information will become increasingly
important. The adaption of the Weisfeiler-Leman paradigm to such settings has only
recently been considered, e.g., for temporal graphs [544], and the development of new
suitable learning methods has only just begun.

7 For clarity of presentation we omit biases.

4.3 Deep Graph Representation Learning = 129

4.3 Deep Graph Representation Learning

Matthias Fey
Frank Weichert

Abstract: Learning with graph-structured data such as molecules, social, biological,
and financial networks, requires effective representations that successfully capture their
rich structural properties. In recent years, numerous approaches have been proposed
for machine learning on graphs — most notably, approaches based on graph kernels
and Graph Neural Networks (GNNs). Graph neural networks exploit relational inductive
biases of the underlying data by following a differentiable neural message passing
scheme, and show-case promising performance on a variety of different tasks due to
their expressive power in capturing different graph structures. However, despite the
indisputable potential of GNNs in learning such representations, one of the challenges
that have so far precluded their wide adoption in industrial and social applications is
the difficulty to scale them to large graphs. In particular, the embedding of a given node
depends recursively on all its neighbor’s embeddings, leading to high inter-dependency
between nodes that grows exponentially with respect to the number of layers.

Here, we demonstrate the generality of message passing through a unified frame-
work that is suitable for a wide range of operators and learning tasks. This generality
of message passing led to the development of PyTorch Geometric, a well-known deep
learning library for implementing and working with graph-based neural network build-
ing blocks. Furthermore, we discuss scalable approaches for applying graph neural
networks to large-scale graphs. In particular, we show that scalable approaches based
on sub-sampling of edges or non-trainable propagations weaken the expressive power
of message passing. In order to overcome this restriction, we present GNN AutoScale,
a framework for scaling arbitrary message passing neural networks to large graphs.
GNN AutoScale prunes entire sub-trees of the computation graph by utilizing historical
node embeddings from prior training iterations while provably being able to maintain
the expressive power of the original architecture.

4.3.1 Introduction

Graphs are widely used for abstracting complex systems of interacting objects, such as
social networks, knowledge graphs, molecular graphs, and biological networks, as well
as for modeling 3D objects, manifolds, and source code [320]. To develop successful
machine learning models in these domains, we need techniques that can exploit the
rich information inherent in the graph structure, as well as the feature information
contained within a graph’s nodes and edges. Recently, graph neural networks emerged

130 —— 4 Structured Data

as a powerful approach and the de facto standard for representation learning on graphs.
GNNs are able to capture local graph structure and feature information in a trainable
fashion to derive powerful node representations suitable for a given task at hand [291,
455]. To achieve this, they follow a simple neighborhood aggregation procedure or neu-
ral message passing scheme motivated by two major perspectives: The generalization of
classical CNNs to irregular domains, and their strong relations to the Weisfeiler-Lehman
algorithm [226, 509, 715] (see Section 4.2.5).

The recent work in the fields of geometric deep learning and relational representation
learning provides a large number of graph-based operators, which allows for precise
control of the properties of extracted graph-based features [134, 225, 252, 292, 375, 378,
588, 683, 697, 714, 715]. Nonetheless, all those recent operators can be described by a
simple message passing formulation, leading to a unified framework suitable across a
wide range of operators and learning tasks [252]. The generality of message passing led
to the development of the PyTorch Geometric library, a deep learning framework for
implementing and working with graph-based neural networks [225].

While GNNs have become better understood and models have become more sophis-
ticated, advancements in this field should be more noticeable with access to increasing
data. However, applying mini-batch training of GNNs is challenging since the embed-
ding of a given node depends recursively on all its neighbor’s embeddings, leading
to high inter-dependency between nodes that grows exponentially with respect to
the number of layers [455]. Several recent works address this problem via different
sampling techniques (leading to sub-sampling of edges) [455, 600], or by decoupling
propagations from predictions [234, 321, 378, 710, 726]. Although empirical results
suggest that the aforementioned methods can scale GNN training to large graphs, these
techniques are either restricted to shallow networks, non-exchangeable operators, or
reduced expressivity. In particular, existing approaches consider only specific GNN
operators and it is not yet well known whether these techniques can be successfully
applied to the wide range of GNN architectures available.

In the next sections, we will discuss and introduce the aforementioned general
neural message passing framework, and show how common GNN operators fit into this
scheme. We proceed by introducing the PyTorch Geometric library [225], which makes
it easy to implement those GNN operators in practice. Furthermore, we present our
GNN AutoScale frameworKk for scaling arbitrary message passing GNNs to large-scale
graphs [224].

4.3.2 Representation Learning on Graphs via Neural Message Passing

We begin by refining the general neural message passing scheme from Section 4.2.5 that
is utilized in state-of-the-art graph neural networks and, along the way, introduce the
necessary notation and background. Let § = (V, &) or A € {0, 1}W|X‘VI denote a graph
with node feature vectors x, for all v € V and (optional) edge features ey, in case

4.3 Deep Graph Representation Learning = 131

Y

Fig. 4.9: Message passing flow in a GNN layer. Each direct neighbor of a node crafts a message that
is sent along the given edge. Each node aggregates their incoming messages to update its current
node representation.

(v, w) € &€ C VxV. Here, we are mostly interested in learning final node representations
h, € RP forall v € V in an end-to-end fashion that are suitable for a given downstream
task (such as node, link, or graph classification). In node classification, each node
v € Vis associated with a label yy, and the goal is to learn a representation h, from
which yy can be easily predicted. In link prediction, we want to find the missing links
in an incomplete graph, and we can directly use h, and hy, v, w, € V, for predicting
the existence of an edge between the given node pair. In graph classification, each
individual graph is associated with a label y, and we can use {hy: v € V}} alltogether
to predict the label y in a permutation-invariant fashion.

Graph neural networks operate on graph-structured data G by following a neural
message passing scheme, where a representation of a node is iteratively updated by
aggregating representations of its neighbors [252]. After L iterations of aggregation, the
representation of a node captures both structural and feature information within its
L-hop neighborhood. Formally, the (¢ + 1)-th layer of a GNN is defined as

R = 10 (B, L (n, 1, €l)): w e Nw }) (4.19)
= Uppatey ™ [A, P Messacey ™V (RS, h?), e),) (4.20)
weN(©w)

where hg) represents the feature vector of node v obtained in layer ¢ and N(v) =
{w: (w, v) € &} defines the neighborhood set of v. We initialize hg,o) = Xv. Since differ-
ent nodes can have identical feature vectors, a GNN operates on multisets {. . .}, defined
as a2-tuple X = (P4, ¢), where P4 denotes the underlying set of X and c: pd > N1
counts its multiplicity. A general illustration of this message passing flow is given in
Figure 4.9. Most recent GNN operators fée) can be decomposed into differentiable and
parametrized MESSAGE(GO and UPDATEE;) functions parametrized by weights 0, as well
as permutation-invariant aggregation functions €p, e.g., taking the sum, mean or maxi-
mum of features [225]. MESSAGE and UPDATE can be chosen in different ways, depending
on the task at hand. For example, MESSAGE functions can transform incoming features

132 — 4 Structured Data

either linearly or non-linearly [252, 588, 697]; aggregative functions can model static
[714], structure-dependent [375], or data-dependent aggregations [683]; and UPDATE
is typically used to preserve central node information via skip-connections [292] or
residuals [134, 378].

Ideally, a maximally powerful GNN could distinguish non-isomorphic graph struc-
tures by mapping them to different representations in the embedding space. In recent
studies [509, 714], it has been shown that the representational power of GNNs is bounded
by the capacity of the Weisfeiler-Leman (WL) graph isomorphism test [701], (see Sec-
tion 4.2.3), which uniquely refines the coloring of a node c1(,0 : V > X based on the
colors of their neighbors. In fact, a GNN’s expressiveness is equivalent to the WL test if
all its layers ‘(f) are injective, i.e., if they never map two different neighborhoods to the
same representation. As a result, numerous GNN operators have been proposed that are
equally powerful as the WL test [155, 714], as well as higher-order variants to increase
their representational power even further [67, 227, 468, 504, 509, 519] (see Section 4.2).
We now briefly review how current state-of-the-art GNN operators fit into the given
neural message passing scheme (omitting final non-linearities due to simplicity).

Graph Neural Networks (GNN) [375] can be considered as one of the pioneers of
graph-structured deep learning methods, and they are motivated by a first-order ap-
proximation of spectral graph convolutions. Its underlying GNN operator uses a sym-
metrically normalized mean aggregation of linearly transformed neighboring node

representations

UPDATE(:H)

sy _ 1 ® 1 ®
h —?"/Whv + Z — Wh?, (4.21)

where cy,y = v/deg(w) + 1,/deg(v) + 1 with deg(-) denoting node degree, and W being
a trainable weight matrix.

Graph Attention Networks (GAT) [683] builds upon the idea of GCNs where the
structure-dependent normalization coefficients are replaced by an anisotropic, learn-
able aggregation guided by attention

Uppatey "V
hs,ngl) = av,th‘(/Z) + Z aw,v h%), (4.22)
\WGN(V), MEssaGE] ™
&)

where attention coefficients are computed via

exp (LeakyReLU (a” [Wh(, Wh{)|))

(4.23)

Aw,y =

D keNwU{v} EXP (LeakyReLU (aT {thf)’ Wh(f)})) ’

4.3 Deep Graph Representation Learning = 133

with additional trainable parameters a.

Spline-Based Convolutional Neural Networks [226] utilize edge information ey,
to learn a data-dependent filter matrix

UPDATEEf*”
KV - Wh? + 3" gglew,)h) (4.24)
WENW) o (6+1)
A , MESSAGE|
D

via a parametrized and continuous B-Spline kernel function gg(-).

Graph Isomorphism Networks (GIN) [714] make use of sum aggregation and MLPs
to obtain a maximally powerful GNN operator

Uppatey ™V
R+ = MLP, ((1 voh+ S hY) (4.25)
—
WENW) MEsSAGE| ")
D

where € is a trainable scalar in order to distinguish neighbors from central nodes.

Principal Neighborhood Aggregation (PNA) [155] networks leverage mulitple ag-
gregators combined with degree-scalers to better capture graph structural properties

Uppatey ™Y
W w0, @ wh [0], -
WEN(Y) S—"—~—"
MESSAGE; ")

where W, and W, denote trainable weight matrices, and

1 mean
@ =| s(deg(v),1) | ® | min |, (4.27)
s(deg(v), -1) max
—_—

Scalers Aggregators
with ® being the tensor product and

log(d + 1) ’
. .28
s(d, a) <wl7| > ey log(deg(v) + 1)> o

denoting degree-based scalers. Having introduced the basic concepts of message pass-
ing within GNNs, we now look more closely at their practical implementation (Sec-
tion 4.3.3) and resource efficiency (Section 4.3.4).

134 =— 4 Structured Data

gather (I)

i)

, scatter_{_

UPDATE,

Fig. 4.10: Computation scheme of a GNN layer by leveraging gather and scatter methods based on
edge indices I, hence alternating between node parallel space and edge parallel space.

4.3.3 PyTorch Geometric: Implementing Graph Neural Networks

The practical implementation of graph neural networks is challenging, as high GPU
throughput needs to be achieved on highly sparse and irregular data of varying size.
Here, we introduce and discuss the PyTorch Geometric library [225], a library for deep
learning on irregularly structured data, built upon PyTorch [555]. In addition to gen-
eral graph data structures and processing methods, it contains a variety of recently
published methods from the domains of relational learning and 3D data processing. Py-
Torch Geometric achieves high data throughput by leveraging sparse GPU acceleration,
by providing dedicated CUDA kernels, and by introducing efficient mini-batch handling
for input examples of different sizes. All implemented methods support both CPU and
GPU computations and follow an immutable data flow paradigm that enables dynamic
changes in graph structures through time. PyTorch Geometric is released under the
MIT license and is available on GitHub.? It is thoroughly documented and provides
accompanying tutorials and examples as a first starting point.®

In PyTorch Geometric, we represent a graph G = (X, (I, E)) by a node feature matrix
X e RM¥ of N nodes holding F features, and a sparse adjacency tuple (I, E) of E
edges, where I € N?*F encodes edge indices in COOrdinate (COO) format and E € RE*P
(optionally) holds D-dimensional edge features. All user-facing APIs, e.g., data-loading
routines, multi-GPU support, data augmentation, and model instantiations are heavily
inspired by PyTorch to keep them as familiar as possible.

In practice, the realization of Equation 4.20 can be achieved by gathering and scat-
tering node features and a vectorized elementwise computation of MESSAGE and UPDATE
functions, as visualized in Figure 4.10. Although working on irregularly structured in-
put, this scheme can be heavily accelerated by the GPU. In contrast to implementations
via sparse matrix multiplications, the usage of gather and scatter proves to be advanta-
geous for low-degree graphs and non-coalesced input, and allows for the integration
of central node and multi-dimensional edge information directly while aggregating.

8 GitHub repository: https://github.com/rustyls/pytorch_geometric.
9 Documentation: https://pytorch-geometric.readthedocs.io.

https://github.com/rusty1s/pytorch_geometric
https://pytorch-geometric.readthedocs.io

4.3 Deep Graph Representation Learning = 135

We implement different reductions for the scattering of neighboring node features via
dedicated CUDA kernels, although execution on other hardware is applicable as well.
For more, see Chapter 6.

We provide the user with a general MessagePassing interface to allow for rapid and
clean prototyping of new research ideas. In order to use the interface, users only need
to define the methods MESSAGEy, i.e., message, and UPDATEy, i.e., update, and choose
an aggregation scheme 0. For implementing message, node features are automatically
mapped to the respective source and target nodes. Almost all recently proposed neigh-
borhood aggregation functions can be lifted to this interface, including (but not limited
to) the methods already integrated in PyTorch Geometric. Overall, PyTorch Geometric
currently bundles over 40 different GNN operators proposed in literature, as well as
over 15 complete models.

(Hierarchical) Pooling PyTorch Geometric also supports graph-level outputs as op-
posed to node-level outputs by providing a variety of graph-level pooling functions [435,
687, 736]. To further extract hierarchical information and to allow deeper GNN mod-
els, various pooling approaches can be applied in a deterministic or data-dependent
manner [118, 175, 205, 241, 588, 633, 697, 724].

Mini-Batch Handling Our framework supports batches of multiple graph instances
(of potentially different size) by automatically creating a single (sparse) block-diagonal
adjacency matrix and concatenating feature matrices in the node dimension. Therefore,
neighborhood aggregation methods can be applied without any modifications, since no
messages are exchanged between disconnected graphs. In addition, an automatically
generated assignment vector ensures that node-level information is not aggregated
across graphs as when executing global aggregation operators.

Processing of Datasets We provide a consistent data format and an easy-to-use
interface for the creation and processing of datasets, both for large datasets and for
datasets that can be kept in memory during training. In order to create new datasets,
users just need to read/download their data and convert it to the PyTorch Geometric
data format via the respective process method. In addition, datasets can be modified by
the use of transforms, which take in separate graphs and transform them, say, for data
augmentation, for enhancing node features with synthetic structural graph properties,
in order to automatically generate graphs from point clouds or to sample point clouds
from meshes.

Empirical Evaluation We evaluated the correctness of the implemented methods by
performing a comprehensive comparative study in homogeneous evaluation scenarios,
reaching state-of-the-art performance on several graph benchmark tasks. For example,
experiments for the semi-supervised node classification performance of common GNN

136 —— 4 Structured Data

Tab. 4.1: Performance (accuracy and standard deviation) of semi-supervised node classification
experiments for fixed and random splits across 100 runs.

Cora CiteSeer PubMed

Method Fixed Random Fixed Random Fixed Random

Cheby [164] 81.4:0.7 77.8:2.2 70.2:1.0 67.7:1.7 78.4:0.4 75.8+2.2

GCN [375] 81.5:0.6 79.4:1.9 71.1:0.7 68.1:1.7 79.0:0.6 77.4:2.4
GAT [683] 83.1:0.4 81.0:1.4 70.8:0.5 69.2:1.9 79.0:0.3 77.5+2.3
SGC[710] 81.7:0.1 80.2:1.6 71.3:0.2 68.7:1.6 78.9:0.1 76.5:2.4

ARMA [52] 82.8:0.6 80.7:1.4 72.3:1.1 68.9:1.6 78.8:0.3 77.7:2.6
APPNP [378] 83.3:0.5 82.2:1.5 71.8:0.5 70.0:1.4 80.1:0.2 79.4:2.2

architectures are easily finished within 1-2 seconds per run, either using fixed or random
training splits. Table 4.1 presents the results of state-of-the-art GNNs on several citation
datasets [621, 718]. Notably, all experiments show a high reproducibility of the reported
results.

4.3.4 Scalable and Expressive Graph Neural Networks

While the full-gradient in GNNs is straightforward to compute since we have access to
all hidden node representations of all layers, this is not feasible in large-scale graphs
due to memory limitations and slow convergence [455]. Therefore, given a loss function
¢, it is desirable to approximate its full-batch gradient stochastically

1 1
VL= 2o VO =g 30 Vel y), (4.29)
veV vVEBCYV

which considers only a mini-batch B C 'V of nodes for loss computation. However, this
stochastic gradient is still expensive to compute due to the exponentially increasing
dependencies of node representations over layers, a phenomenon known as neighbor
explosion [292]. Specifically, the representation of a given node depends recursively on
allits neighbor’s representations, and the number of dependencies grows exponentially
with respect to the number of layers.

Recent works try to alleviate this problem by proposing various different sampling
techniques [455], which can be broadly categorized as node-wise, layer-wise, and
subgraph sampling strategies. In general, these techniques can all be viewed as different
variants of dropping edges [600]. Node-wise sampling [126, 292] recursively samples a
fixed number k of 1-hop neighbors, leading to an overall bounded L-hop neighborhood
of O(k) for each node. In contrast to tracking down inter-layer connections, layer-
wise sampling techniques independently sample nodes for each layer, leading to a
constant sampled size in each layer [126, 323, 747]. Here, variance is further reduced via
importance sampling or adaptive sampling techniques. In subgraph sampling [137, 731,

4.3 Deep Graph Representation Learning = 137

732], a full GNN is run on an entire subgraph §[B] induced by a sampled batch of nodes
B C V. Notably, most of these sampling approaches eliminate the neighbor explosion
problem, but there are challenges to preserving the edges that present a meaningful
topological structure.

Another line of work is based on the idea of decoupling propagations from predic-
tions [234, 378, 710, 726]. Here, input node features are first enhanced by performing
several rounds of propagation via, say, the normalized Laplacian matrix or the person-
alized matrix, before they are inputted into an Multilayer Perceptron (MLP) to perform
the final prediction. While this scheme enjoys fast training and inference time, it cannot
be applied to any GNN, especially because the propagation is non-trainable. Recently,
Huang, He, Singh, Lim, and Benson [321] proposed a simple post-processing step to
correct and smooth the predictions of a simple graph-agnostic model via label propaga-
tion. While this step is orthogonal to recent GNN advancements, it can only be applied
in transductive learning scenarios.

It is well known that the most powerful GNNs adhere to the same representational
power as the WL test [701] in distinguishing non-isomorphic structures [509, 714], i.e.,
hf,L) # hfﬂf) in case c,(,L) # c%), where c(VL) denotes a node’s coloring after L rounds of
color refinement. However, in order to leverage such expressiveness, a GNN needs to
be able to reason about structural differences across neighborhoods directly during
training. It has been shown that GNNs that scale by sub-sampling edges are not capable
of doing so [224]:

Proposition 10. Let f‘gL): V > R? be a L-layered GNN as expressive as the WL test
in distinguishing the L-hop neighborhood around each node v € V. Then there exists
a graph A € {0, 1}W|XW| for which f‘(,” operating on a sampled variant A, @y =

NW[s N
Bk ifwe N(©)

o, otherwise

, produces a non-equivalent coloring, i.e., l~11(,L) # fl%) while c‘(,L) =
(L)
¢y’ fornodesv,w e V.

Therefore, a special interest lies in the question if there exist scalable GNN variants
that are as expressive as their full-batch counterpart.

4.3.4.1 Scaling Graph Neural Networks via Historical Embeddings
We now introduce the GNNAutoScale (GAS) framework [224], which scales graph neural
networks by pruning entire sub-trees of the computation graph and filling the missing
information by utilizing historical embeddings acquired in previous training iterations
[126, 153], leading to constant GPU memory consumption with respect to input node
size without dropping any data. Since GNNAutoScale accounts for all data, it provably
is able to maintain the expressive power of the underlying graph neural network.

Let hf,z) denote the node embedding in layer ¢ of a node v € B in a mini-batch
B C V. For the general message scheme given in Equation 4.20, the execution of f‘(f“)

138 = 4 Structured Data

Mini-batch B
® 1-hop neighborhood |J N(v)\ B
@ veB

‘@ @‘@@

Fig. 4.11: Mini-batch processing of GNNs with historical embeddings. M denotes the nodes in the
current mini-batch and M represents their direct 1-hop neighbors. For a given mini-batch (left),

GPU memory and computation costs increase exponentially with GNN depth (middle). The usage of
historical embeddings avoids this problem as it prunes entire sub-trees of the computation graph,
which leads to constant GPU memory consumption with respect to input node size (right). Here,
nodes in the current mini-batch push their updated embeddings to the history H®, while their direct
neighbors pull their most recent historical embeddings from H® for further processing.

can be formulated as:
R = 0 (1, {nD: wenm })
=fg+1)(h,(,@, {h%): weNWV)N B} U {h%): weNW)\ B})

- D (hff), {h%): weN(W) mB} U {ftff): we N(v)\ﬁ})

(1) Local embeddings (2) Historical embeddings

Here, we separate the neighborhood information of the multiset into two parts: (1) the
local information of neighbors N(v) that are part of the current mini-batch B, and (2)
the information of neighbors that are not included in the current mini-batch. We then
approximate the embeddings of out-of-mini-batch nodes with their historical embed-
dings denoted as I_tf,f). After each step of training, the newly computed embeddings
h(f”) are pushed to the history and serve as historical embeddings 1_155”) in future
iterations.

A high-level illustration of its computation flow is visualized in Figure 4.11. It can
be seen that in the original data flow without historical embeddings the required GPU
memory increases as the model gets deeper. After a few layers, embeddings for the
entire input graph need to be stored, even if only a mini-batch of nodes is considered for
loss computation. By contrast, historical embeddings eliminate this problem by approx-
imating entire sub-trees of the computation graph. The required historical embeddings
are pulled from an offline storage, instead of being re-computed in each iteration, which
keeps the required information for each batch local. For a single batch B C V, the GPU
memory footprint for one training step is given by O(| |, N(v) U {v}| - L) and thus
only scales linearly with the number of layers L. The vast majority of data (the histories)
can be stored in RAM or hard drive storage rather than GPU memory.

4.3 Deep Graph Representation Learning = 139

In contrast to existing scaling solutions based on the sub-sampling edges, GAS provides

the following advantages:

1. GAS trains over all the data: In GAS, a GNN will make use of all available graph
information, i.e., no edges are dropped, which results in lower variance and more
accurate estimations. Nonetheless, for a single epoch and layer, each edge will be
only processed once, putting its time complexity O(|€|) on par with its full-batch
counterpart. Notably, more accurate estimations will further strengthen gradient
estimation during backpropagation. Specifically, the model parameters will be
updated based on the node embeddings of all neighbors since ah(f*l)/ao also
depends on {i{?: w € N(v) \ B}.

2. GAS enables constant inference time complexity: The time complexity of model
inference is reduced to a constant factor, since we can directly use the historical
embeddings of the last layer to derive predictions for test nodes.

3. GAS is simple to implement: Our scheme does not need to maintain recursive
layer-wise computation graphs, which makes its overall implementation straightfor-
ward and comparable to full-batch training. Only minor modifications are required
to pull information from and push information to the histories.

4. GAS provides theoretical guarantees: In particular, if the model weights are kept
fixed, ’-IE,Z) eventually equals hS,Z) after a fixed amount of iterations [126].

While sampling strategies loose expressive power due to the sub-sampling of edges,
scalable GNNs based on historical embeddings leverage all edges during neighborhood
aggregation. Therefore, a special interest lies in the question if history-based GNNs are
as expressive as their full-batch counterpart. Here, a maximally powerful and scalable
GNN needs to fulfill the following two requirements: (1) it needs to be as expressive as
the WL test in distinguishing non-isomorphic structures, and (2) it needs to account for
the approximation error || ﬁl(f’l) - hs,e’l) || induced by the usage of historical embeddings.
Since it is known that there exists a wide range of maximally powerful GNNs [155, 509,
714], we can restrict our analysis to the latter question.

Theorem 11. Let f‘(,L) be an L-layered GNN. If the historical embeddings do not run too
stale, i.e., ||I_1$,Z’1) - hff’l)H < €, then there exist MESSAGE(GZ) and UPDATEg) functions,
¢ e {1,...,L}, such that there exists a map ¢: R > ¥ so that ¢(fz,(,L)) = cf,L) for all
veV.

Informally, Theorem 11 (proof in Fey et al. [224]) indicates that scalable GNNs using
historical embeddings are able to distinguish non-isomorphic structures (that are
distinguishable by the WL test) directly during training, which is what makes reasoning
about structural properties possible.

Nonetheless, to allow for high expressiveness, we need to tighten the upper bound
of the approximation error induced by the usage of historical embeddings. As denoted

before, the output embeddings of f((f”) are exact if | UVE93 NWw)u {v}| =|B|,i.e.,all

140 =— 4 Structured Data

neighbors of nodes in B are also part of B. However, in practice, this can only be
guaranteed for full-batch GNNs. Motivated by this observation, we aim to minimize
the inter-connectivity between sampled mini-batches, i.e., min | UW693 N() \ B|, which
minimizes history accesses and therefore reduces overall staleness in return.

We make use of graph partitioning methods such as METIS [175, 361] to achieve
this goal. It aims to construct partitions over the nodes in a graph such that intra-links
within clusters occur much more frequently than inter-links between different clusters.
Intuitively, this results in a high chance that neighbors of a node are located in the
same cluster. Notably, modern graph clustering methods are both fast and scalable
with time complexities given by O(|€|), and only need to be applied once, which leads
to an insignificant computational overhead in the pre-processing stage. However, this
approach leads to the acceleration of training, since the number of neighbors outside of
B is heavily reduced, and pushing information to histories leads to contiguous memory
transfers.

4.3.4.2 Fast Historical Embeddings

Our approach accesses histories to account for any data outside the current mini-batch,
which requires frequent data transfers to and from the GPU. Therefore, a special interest
lies in the optimization of pulling from and pushing to the histories. We achieve that
by making use of non-blocking device transfers. Specifically, we immediately start
pulling historical embeddings for each layer asynchronously at the beginning of each
optimization step, which ensures that GPUs do not run idle while waiting for memory
transfers to complete. A separate worker thread gathers historical information into
one of multiple pinned CPU memory buffers (denoted by PuLL), from where it can
be transfered to the GPU via the usage of CUDA streams without blocking any CPU
or CUDA execution. Synchronization is done by synchronizing the respective CUDA
stream before inputting the transferred data into the GNN layer. The same strategy is
applied for pushing information to the history. Considering that the device transfer
of HY is faster than the execution of f(e), this scheme does not lead to any runtime
overhead when leveraging historical embeddings and can be twice as fast as its serial
non-overlapping counterpart, (cf. Figure 4.12). We have implemented our non-blocking
transfer scheme with custom C++/CUDA code to avoid Python’s global interpreter lock.

4.3.4.3 Experimental Evaluation

For training large-scale GNNs, GPU memory consumption directly dictates the scalabil-
ity of the given approach. In Fey et al. [224], we confirmed that GNNs trained via GAS are
able to learn expressive node representations, closely resemble the performance of their
non-scaling counterparts, and reach state-of-the-art performance on large-scale graphs.
Here, we show how GAS maintains a low GPU memory footprint while, in contrast to
other scalability approaches, accounting for all information present in the data. We
directly compare the memory usage of GCN+GAS training with the memory usage of

4.3 Deep Graph Representation Learning = 141

Time

H2D

Kernel

Main
H2D

Kernel

D2H

‘Worker

H2D . 2x performance

improvement

Kernel

D2H

(c) Concurrent mini-batch execution

Fig. 4.12: |llustrative runtime performances of a serial and concurrent mini-batch execution com-
pared with a full-batch GNN execution. In the full-batch approach (a), all necessary data is first
transferred to the device via the HosT2DEvICE (H2D) engine, before GNN layers are executed in serial
inside the kernel engine. As depicted in (b), a serial mini-batch execution suffers from an 1/0 bot-
tleneck, in particular because each kernel engine has to wait for memory transfers to complete. The
concurrent mini-batch execution (c) avoids this problem by leveraging an additional worker thread
and overlapping data transfers, leading to a two times performance improvements compared with a
serial execution, which is on par with the standard full-batch approach.

full-batch GCN [375], mini-batch GRAPHSAGE [292], and CLUSTER-GCN [137] training
on three large-scale datasets [320, 731] (Table 4.2). Notably, GAS is easily able to fit
the required data on the GPU, while the memory consumption only increases linearly
with the number of layers. Although CLUSTER-GCN maintains an overall lower memory
footprint than GAS, it will only utilize a fraction of the available information, i.e., about
23 % on average.

We now analyze how GAS enables large-scale training due to fast mini-batch exe-
cution. Specifically, we are interested in how our concurrent memory transfer scheme
reduces the overhead induced by accessing historical embeddings from the offline stor-
age. For this, we evaluate running times of a 4-layer GIN model on synthetic graph data,
which allows fine-grained control over the ratio between inter- and intraconnected
nodes (Figure 4.13). Here, a given mini-batch consists of exactly 4000 nodes, which are
randomly intraconnected to 60 other nodes. We vary the number of inter-connections
(connections to nodes outside of the batch) by adding out-of-batch nodes that are

142 — 4 Structured Data

Tab. 4.2: GPU memory consumption (in GB) and the amount of data used (%) across different GNN
execution techniques. GAS consumes low memory while making use of all the data.

#nodes 717K 169K 2.4M
edges 7.9M 1.2M 61.9M
Method YELP ogb',‘_ ogbn-
arxiv products
= Full-batch 9.44GB/ 100% 2.11GB/ 100% 31.53GB/ 100%
% GRAPHSAGE 2.19GB/ 14% 0.93GB/ 33% 4.34GB/ 5%
: CLUSTER-GCN 0.23GB/ 13% 0.22GB/ 40% 0.23GB/ 16%
GAS 0.79GB/ 100% 0.34GB/ 100% 0.59GB/ 100%
= Full-batch 12.24GB/ 100% 2.77GB/ 100% 41.10GB/ 100%
% GRAPHSAGE 4.31GB/ 19% 1.55GB/ 37% 11.23GB/ 8%
% CLUsTER-GCN 0.30GB/ 13% 0.29GB/ 40% 0.29GB/ 16%
GAS 1.07GB/ 100% 0.46GB/ 100% 0.82GB/ 100%
=== Serial Access === Concurrent Access
Computational Overhead I/O Overhead
g 400
?é 300
E
3 200
g
.= 100
=
]
faed
0 2 4 6

Inter- /Intra-connectivity Ratio

Fig. 4.13: Runtime overhead between serial and concurrent history access patterns in relation to
the inter-/intraconnectivity ratio of mini-batches. The overall runtime overhead is further separated
into computational overhead (overhead of aggregating additional messages) and 1/0 overhead
(overhead of pulling from and pushing to histories). Our concurrent memory transfer scheme reduces
historical-caused overhead by a wide margin.

randomly connected to 60 nodes inside the batch. Notably, the naive serial memory
transfer increases runtimes up to 250 %, which indicates that frequent history accesses
can cause major I/O bottlenecks. By contrast, our concurrent access pattern shows
no I/0 overhead at all, and the overhead in execution time is solely explained by the
computational overhead of aggregating far more messages during message propaga-
tion. Considering the increased amount of additional data available, this overhead
is marginal, in particular because most real-world datasets come with inter-/intra-
connectivity ratios between 0.1 and 2.5 [224]. Further, the additional overhead of
computing METIS partitions in the pre-processing stage is negligible. Computing the
partitioning of a graph with 2M nodes takes only about 20-50 seconds (depending on
the number of clusters).

4.3 Deep Graph Representation Learning = 143

4.3.5 Conclusion

We introduced graph neural networks for graph machine learning based on deep learn-
ing techniques. We demonstrated that graph neural networks follow a general message
passing scheme, which is suitable for a wide range of operators and learning tasks. The
generality of message passing is show-cased in the PyTorch Geometric library, a well-
known deep learning library for implementing and working with graph-based neural
networks. Furthermore, we discussed scalable approaches for applying graph neural
networks to large-scale graphs. In particular, we showed that scalable approaches
based on the sub-sampling of edges or non-trainable propagations weaken the ex-
pressive power of message passing. By contrast, our proposed framework, AutoScale,
overcomes this restriction by utilizing historical node embeddings while being both
fast and memory-efficient to train. While this scheme allows scalable graph machine
learning on single or multiple GPUs on the same machine, additional considerations
need to be taken into account when data is laid out in a distributed fashion (Section 8.2).

144 =— 4 Structured Data

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for
Shared Memory

Nico Bertram
Jonas Ellert
Johannes Fischer

Abstract: We engineer parallel algorithms for approximating the maximum cut in a large
directed graph. Our general approach is to first partition the graph into p parts, where
p denotes the number of processing elements. The individual processors then indepen-
dently compute an approximation to their local part of the graph using high-quality
sequential approximation algorithms. In a final step, a single MAX-DicUT instance of
size O(p?), capturing the interprocessor edges, is defined and solved exactly, using
fast parallel Integer Program solvers or slow approximation algorithms that compute
a good approximation. By partitioning the input graph into p’ > p parts, we get a
smooth trade-off between cut quality and running time. We also show applications of
our algorithm in parallel grammar-based text compression.

4.4.1 Introduction

Data that occurs in real-world applications can often be structured as graphs where data
points are represented as nodes and relationships between different data points are cap-
tured by edges. Graphs occur in many applications, e.g., road networks, relationships
in social networks [193], and bioinformatics [40].

The problem of finding a partitioning of a directed graph into two subsets S and T
such that the sum of the edge-weights between the two subsets is maximized is one
of the classical NP-complete problems. We denote this problem with MAX-DicUT. It is
closely related to its counterpart in undirected graphs, MAX-CUT, which was shown to be
NP-complete by Karp [359]. In fact, MAX-DicUT seems much harder than MAxX-CUT since
every instance of MAX-CUT can be easily transformed into an instance of MAX-DicuUT. It
can be shown that this transformation also defines a reduction from a MAx-CUT instance
to a MAx-DicuT instance which shows the NP-hardness of Max-DicuT. That means that
there is probably no polynomial time algorithm to compute an optimal solution for
Max-Dicur.

One common approach in theory and practice is to solve such hard problems by
using approximation algorithms. These algorithms allow for a multiplicative error a
with 0 < a < 1 so that the computed cut is in the worst case by a factor of a worse than
the optimal cut. We call this factor a the performance guarantee of an algorithm.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory = 145

One simple randomized algorithm assigns each node with probability % either to S
or T, which leads to a solution with an expected performance guarantee of % This
algorithm can be derandomized with the method of conditional expectations [590, 643].
Buchbinder et al. described a linear time algorithm with a performance guarantee of %
[90] that can also be randomized to achieve an expected performance guarantee of %

Currently, the best-known performance guarantee of 0.874 uses a formulation
of MAX-DIcUT as an Integer Program that is then relaxed into a Semidefinite Program
and achieves a performance guarantee of 0.79607 [256]. This algorithm can be de-
randomized as well [459]. The performance guarantee was later further improved to
0.859 [750]. The best-known performance guarantee of 0.874 was achieved by further
improving this approach [426]. In case that the Unique Games Conjecture [372] is true,
the performance guarantee can be improved up to 0.878.

There are also attempts to solve MAX-CUT by using a machine learning approach. Gu
and Yang described a deep neural network combined with learning strategies such as
supervised learning and reinforcement learning [275]. Yao et al. [719] used Graph Neural
Networks [291] to solve MAX-CUT and compared it with the algorithm by Goemans for
undirected graphs [256] and a local search procedure [59]. The results for both machine
learning approaches are promising. However, they were only evaluated for small graphs;
how to apply these approaches for directed graphs remains open.

Max-CUT can also be used in a graph-based semi-supervised learning approach.
Wang et al. [695] showed that a bivariate cost function can be reduced to a constrained
MAx-Cut formulation. Since this formulation has a number of linear constraints on the
nodes and the edge weights can be negative, most approximation algorithms cannot be
used directly. The authors propose using a greedy gradient MAX-CUT algorithm, instead.

To our knowledge, no algorithm exists that produces a MAX-DicuT with high quality
and performs well in shared memory. One approach to developing such algorithms
is to use a graph partitioner [100] to partition a graph into k parts of roughly equal
size in terms of node balancing or edge balancing. On each of the k parts we can run
a sequential algorithm to compute a local solution with high quality that we have to
merge in a final step. In this contribution, we first describe some elementary algorithms
to compute a MAX-DICUT in a graph. Then, we engineer a framework that computes a
Max-Dicut with high quality in shared memory that uses the pattern described above.
We also show how we can use a parallel MAX-DicuT with high quality in grammar-based
string compression to improve the compression ratio.

Parts of this work have already been published in [49].

4.4.2 Preliminaries

First, we define cuts in directed graphs. Then, we describe some important approxima-
tion algorithms for MAX-DICUT.

146 —— 4 Structured Data

@ (b)

Fig. 4.14: A graph with two example cuts. The nodes that are in S are colored in white and the nodes
thatarein T are colored in gray. The edges that are not counted for the cut are dashed. The cut in (a)
has the value 4. The cut in (b) has the value 16, which is the optimal value.

4.4.2.1 Notations
Here, we define the necessary notations for graphs and cuts in directed graphs. A
directed and weighted graph G is a tuple (V, E, w) where V = {1, ..., n} is the set of
vertices, E C V? is the set of edges with |E| = m and w: E > R, defines the non-
negative weights of each edge.

A cut in a directed and weighted graph G = (V, E, w) is a partitioning of V into
the subsets S and T so that the sum of the edge-weights for edges with origin in S
and target in T is maximized. The value of a cut with respect to S and T is defined by
CS, T)=3¢ sjeT w(i, j). We omit S and T in case they are clear by the context. The
maximum cut is then defined by Cmax = maxg, 1 C(S, T). We call an edge (u, v) with
u € Sand v € T a cutting edge. In Figure 4.14 we see examples of cuts in a directed
graph.

4.4.2.2 Algorithms

In the following, we will describe the algorithms we implemented in our framework.
First, we describe a naive random approximation and its derandomization. Then, we
describe the algorithm by Goemans and Williamson.

Random Partitioning One simple algorithm to produce a partitioning of a graph G
is to decide for each node v independently with probability % whether we assign v to
S or T. This algorithm calculates a cut with an expected performance guarantee % in
linear time.

Theorem 12. The described algorithm calculates a cut with an expected performance
guarantee of } in O(n) time.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory = 147

Proof. Since we assign each node in constant time either to S or T, the running time is
O(n). Now, we have to show the performance guarantee. Let G = (V, E, w) be a directed
graph. Let W =3 jev Wij- First, we observe that

Cmax < W. (4.30)

Next, let e = (u, v) € E be an arbitrary edge. This edge is a cutting edge only if u € S
and v € T. Since we assigned each node randomly with probability 1 to either side of
the partition, the probability that e is a cutting edge is exactly % So in expectation our
calculated cut has the value E[C] = %W. By Equation 4.30 it follows that %W > %C max
and lastly %ﬂ 2 ;. O
Derandomization The random algorithm described above can be derandomized so
it deterministically produces a cut with a performance guarantee of 1. This can be done
with the method of conditional expectations [590, 643]. Suppose we already placed
nodes 1,...,i- 1into either S or T. We denote as E[C| 1, ..., i - 1] the expected value
of the cut when we place nodes i, ..., n at random into each partition. Now, we want to
assign node i to either S or T. Let us assume that the value E[C|1,...,i-1] 2 %Cmax
(when i = 0 this assumption is trivially satisfied). Intuitively, we try to put i into the
partition that results in the best expected outcome. Since E[C|1,...,i- 1] 2 } Cmax,
at least one of both decisions has to result in an expected value of the cut of %C max- We
can calculate the expected increase for each decision for node i as follows:

A= Z wi; + % Z Wij (431)

j<i j>i
jeT
1
B3 w3 S @32
j<i j>i
jes

Equation 4.31 describes the expected increase of the cut when we place i into S and
Equation 4.32 describes the expected increase of the cut when we place i into T. In
both sums the first term refers to the already calculated partitioning of 1,...,i- 1. The
second term refers to the expected value when we assigni+1, ..., n at random to either
S or T. When we choose the maximum of A and B, we have E[C| 1,...,i] = %Cmax and,
when we assigned all nodes, E[C] > %C max-

Theorem 13. The described algorithm calculates a cut with a performance guarantee of
% in O(m) time.

Goemans and Williamson Algorithm In the following, we describe the Goemans
and Williamson algorithm [256] that in its original description had a performance
guarantee of 0.79607 but was further improved up to 0.874 [426]. To illustrate the

148 =— 4 Structured Data

algorithm, we describe the algorithm for undirected graphs that has a performance
guarantee of 0.878 and show at the end how to modify the algorithm for directed
graphs.

First, we need some additional notation. By Prob[A] we denote the probability that
event A happens. The function sgn(x) denotes the sign function that is defined as

1 x>0
sgn(x)=40 x=0
-1 x<O0.

The general idea of the algorithm is to solve a relaxed formulation of MAX-CUT as an
integer quadratic program (IQP) and then assign each node to either S or T depending
on the computed solution. The interesting part about this algorithm is that we relaxed
our formulation to a semidefinite program. This method, first introduced by Goemans
and Williamson, leads to improved performance guarantees for other problems as well
such as MAX-2-SAT [256].

Let G = (V, E, w) be a directed graph. We start with the following formulation of
Max-Curt as IQP:

- 1
maximize Z wi;(1 - X;x;)
i<j (4.33)
subjectto x; € {-1,1} Vie{l,...,n}

Each node i is represented by a variable x; that has value —1 when i is placed into S and
1wheniis placed into T. When we look at the term (1-x;x;), we can see that it evaluates
to 2 if nodes i and j are in different partitions and 0 otherwise. Hence, each cutting
edge is counted twice, which is why we normalize the calculated value by % Solving
Equation 4.33 is still NP-hard but now we examine the properties of this formulation
when we relax its variables to vectors of dimension n. Let S, be the n-dimensional unit
sphere. In Equation 4.34 we see the relaxed formulation.

. 1
maximize 5 Z wi;(1 - vvj)
i<j (4.34)
subjectto |vijl€Sn Vie{l,...,n}

Note, that the optimal solution of Equation 4.34 is an upper bound of the optimal
solution of Equation 4.33 because every solution of Equation 4.33 is also a solution of
Equation 4.34 (we can transform x; to a vector v; by setting the first element to x; and
every other value to 0). In Figure 4.15a we see five vectors that for simplicity’s sake are
embedded in the unit circle. At first glance, it is hard to see how we should divide the
vectors into the partitions S and T. Intuitively, v, and v, are relatively similar to each
other so it should be more likely that they are placed in the same partition as v, and
v4. This similarity can be expressed by the scalar product of vectors u and v, which is
defined by u - v = |u| - |v| - cos(a) = cos(a) where a is the angle between u and v.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory =— 149

(a) (b)

Fig. 4.15: An example for how to assign nodes to either S or T. In (a) we see a solution to Equa-
tion 4.34. In (b) we see a random vector r that defines a partitioning of the nodes. Since vy, v, and
vs lie on the same side of r, we set S = {1,4,5} and T = {2, 3}. For simplicity, all vectors are
embedded in the 2-dimensional unit circle.

To compute an optimal partitioning is still hard but we can compute a partitioning
that results in a good solution with high probability. We choose a random vector r
uniformly distributed over S,. With r we can define a partitioning by putting all vectors
v; that lie on the same side of r into Si.e., S = {i|v; - r = 0} and all other vectors into
Tie. T ={i|v;-r<0}. This partitioning is visualized in Figure 4.15b. Intuitively, it is
more likely that with this partitioning similar vectors are placed in the same partition,
which should result in a good solution. This intuition can be formalized in the following
lemma.

Lemma 14. Let v; and v; be vectors that are optimal solutions of Equation 4.34 and
r € Sn be a random vector drawn uniformly from the n-dimensional unit sphere. Then

Prob[sgn(v; - r) # sgn(v; - 1)] = %arccos(v,- V).
By Lemma 14 our calculated Cut has an expected value of

1
ElC] = = Z w; arccos(v; - vj).
9]
From the fact that %ﬁ/zv})
theorem:

2 a3(1 - v;v;) with a > 0.878 we can derive the following

Theorem 15. Let v; and v; be vectors that are optimal solutions of Equation 4.34. Then

1
E[C] = as Z wii(1 - viv;) 2 aCmax.

i<j

150 — 4 Structured Data

Now, we still have to show how to get an optimal solution for Equation 4.34. We can
transform this formulation into a semidefinite program (SDP). First, we have to define
positive semidefinite matrices.

Definition 16. Let M € R™" be a symmetric matrix. M is called positive semidefinite
if all of its eigenvalues are non-negative. If M is positive semidefinite, we denote this by
M > 0.

The following important property holds.

Lemma 17 ([257, 410]). Let M € R™" be a positive semidefinite matrix. There exists a
matrix B € R™™ such that M = BT B. We can calculate B in O(n®) time with a Cholesky
Decomposition.

A semidefinite program has the following form where A4, ..., Am, B1, ...Bm € R™" are
constant matrices and b1, ..., bm € R. The variable matrices X; € R™" have the con-
straint that they should be positive semidefinite matrices. To multiply matrices, we use
the Frobenius inner product defined by: A+ B = Zi,]’ AjiBj;.

maximize A;+Xi+...+Am+Xnm
subjectto X; =0 Vie{1,...,m} (4.35)
Bi'Xizbi ViE{l,...,m}

Optimal solutions for a SDP can be computed in O(n¢ log(%)) time for some ¢ > 0 by
using interior point methods [343] where € > 0 is an error parameter.

To convert Equation 4.34 into an SDP in the form of Equation 4.35, we set y;; = v; - v;.
We observe that y;; describes the cosine of the angle between vectors v; and v; and
Yij = Yji- So the matrix

Y11 Y11 ... Yin

Y21 Y22 ... Yon
Y=1. . .

Yni Yn2 ... VYnn

is a symmetric matrix that describes the cosine of the angles between every vector. The
element y;; describes the length of vector v;. Since every vector lies on the unit sphere
Sn, we add the condition that y;; = 1 for everyi € {1,..., n}. So the formulation of
MAX-CuT as SDP is as follows.

maximize %W ((Dnxn - Y)
subjectto Y >0 (4.36)
yii=1 vie{l,...,n}

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory = 151

Here W is defined as the weight matrix of G and (1)nxn is the matrix that contains 1
in each component. By Lemma 17 we can obtain an optimal set of vectors v; with a
Cholesky Decomposition in time O(n?).

Now, we show how to modify our formulations to get an approximation algorithm
that results in a cut with a performance guarantee of 0.79607 for MAX-DicuT. We start
again with the formulation of MAX-DicuT as IQP:

maximize % Z wi;(1 + XoX; — XoX;j — XX;)
i<j (4.37)
subjectto x; € {-1,1} Vie{1,...,n}

Here, we introduce an additional variable xq that marks which side lies in S. More
precisely, if x is equal to —1 all other nodes i with x; = —1 should be assigned to S and
to T otherwise. The term (1 + xoX; — XoX; — X;X;) evaluates to 4 if x; is assigned to Sand 0
otherwise. That is why we have to normalize with the value % Similar to the undirected
Max-CuT, we relax the variables in Equation 4.37 so that they are n dimensional vectors.

maximize % Z wi;(1 + vov; = vovj - Vv))
i<j (4.38)
subjectto |vijl € Sn Vie{1,...,n}

For its formulation as a SDP we use the matrices X € R™ ™1 and Y, Z € R™™" that are
defined as follows:

Yoo Yo1 ... Yon Yiu Yir ... Yin Yio Yo ... Y10

Yio Yir ... VYin Y21 Y22 ... Yon Y20 Y20 ... Y20
X={. . . |r=1. . fz=. . _

Yno Yn1 ... Ynn Yn1 Yn2 ... VYnn Yno Yno ... Yno

Then MAX-DI1cUT can be formulated as SDP as follows:
maximize %W (D +Z-2T-Y)

subjectto X > 0 (4.39)
vi=1 Vvie{0o,...,n}

When we compute a solution for Equation 4.39, we choose a random vector vector r
uniformly distributed over Sy. Since vy marks the side for the partition S, we assign all
nodes i where v; and v lie on the same side to S. More precisely, we set S = {i|sgn(v; -
r)=sgn(vo-r)}and T = {i|sgn(v; - r) # sgn(vy - r)}.

By analyzing the algorithm similarly to the undirected Max-CuT, we find that our
algorithm has a performance guarantee of 0.79607. The following theorem summarizes
our results.

Theorem 18. The described algorithm calculates a cut with a performance guarantee of
0.79607 in polynomial time.

152 — 4 Structured Data

(a) (b)

Fig. 4.16: The input graph in (a) is partitioned into 4 subgraphs, which can be seen in (b), so that the
sum of the edge-weights between the subgraphs is minimized.

4.4.3 Framework

In this section we introduce a parallel framework that computes a MAX-DicuT with high
quality in shared memory. First, we give an overview of the whole framework before
we introduce each step individually.

Our approach is to partition an input graph G into k subgraphs G; of roughly equal
size so that the dependency between the subgraphs is minimized i.e. the edge-weights
between the subgraphs are minimized. Then on each computed subgraph, we run in
parallel a sequential MAX-D1cuUT algorithm to compute several local cuts. In a final step,
we have to merge the locally computed cuts. We achieve this by defining a new graph
on which Max-DicuT is solved where each node represents a partition computed by
the local Max-DIcuUT algorithms.

4.4.3.1 Graph Partitioning

The first step of our framework is to partition the input graph G = (V, E, w) into k
subgraphs so that we can run a MAX-DicuT algorithm on each subgraph independently.
Our goal is to include as much edge information as possible into each subgraph to
improve the quality of the computed MAX-DicUT. We achieve this by maximizing the sum
of the edge-weights in each subgraph or, vice versa, by minimizing the sum of the edge-
weights between the subgraphs. That is to say, we want to minimize > ;c ;o Ej
where Ej; is the sum of the edge-weights between subgraph G; and G;. To compute a well
balanced graph partitioning in shared memory, there already exist several approaches.
In our framework we use the graph partitioner KaHIP [13], which partitions G into the
subgraphs G; = (V;, E;,w),i € {1, ..., k} so that each subgraph has roughly equal
size, i.e. we allow for a multiplicative error € so that |V;| < (1 + €) [%W . We also use a
partitioning algorithm that naively divides either the nodes or edges into k chunks of
equal size. We could also use METIS, as in Section 4.3. However, KaHIP outperforms
METIS and is better suited for our application. In Figure 4.16 we see an exemplary input
graph that is partitioned into 4 subgraphs.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory = 153

Fig. 4.17: On each computed subgraph in Fig. 4.16 we compute a Max-Dicut. The nodes that are in S;
are colored in white and the nodes that are in T; are colored in gray.

4.4.3.2 Compute Local Solutions

After partitioning the input graph into multiple subgraphs, we run in parallel a sequen-
tial MAx-DicuT algorithm on each subgraph to compute a local cut for each subgraph.
We can compute cuts with higher quality when we use algorithms with better perfor-
mance guarantees. Since these algorithms are also slower, we have to consider which
algorithm achieves the best trade-off between the quality of the cut and the runtime of
the framework.

We have implemented the randomized algorithm with an expected performance
guarantee of % and its derandomized variant, the algorithm with a performance guar-
antee of % that was introduced by Buchbinder [90], and the algorithm with an expected
performance guarantee of 0.79607 by Goemans and Williamson [256]. As an example,
we show in Figure 4.17 the optimal Max-DicuT for all subgraphs that were computed in
Figure 4.16.

4.4.3.3 Merging

In a final step, we have to merge the computed local cuts into a global cut. A naive
approach is to define S = | J; S; and T = | J; T; as the trivial cut. The problem with this
approach is that it does not consider the edges between the subgraphs. It might be
possible that it is more advantageous to swap the subsets S; and T; in the global graph
or even to put S; and T; into the same partition. To consider each possible combination
of merging the cuts, we reduce the problem of merging the local solutions to another
Max-DicuT instance. We build a complete graph H with 2k nodes in which each node
represents a locally computed partition S; or T;. Let X and Y be two nodes of H. We
add an edge (X, Y) to H with weight), X,jey w(i, j). Then, we can run a MAX-DICUT
algorithm on H. Since the graph has only 2k nodes, we can use an expensive algorithm
to compute an exact solution. In our framework we implemented a simple brute-force
algorithm and an algorithm that solves the formulation of MAX-DICUT as an Integer
Program. We can also use the approximation algorithm with a performance guarantee
of 0.79607 by Goemans and Williamson. In Figure 4.18 we see how the local cuts that
were computed in Figure 4.17 are merged into a new MAX-DICUT instance. Then, we
compute the global solution on this instance.

154 =— 4 Structured Data

(a) (b)

Fig. 4.18: We compute a new Max-Dicut instance with 8 nodes (Fig. 4.18a) by merging the nodes
that are in the same partition after Fig. 4.17. We run an exact Max-Dicut algorithm on this instance
and compute the global Max-Dicut in Fig. 4.18b. The nodes that are in S are colored in white and the
nodes that are in T are colored in gray.

Tab. 4.3: A summary of our used input graphs.

Graph V] |E|
recomp_dnalGB_5 28245 1439986
road-luxembourg-osm 114600 239332
rt-retweet-crawl 1112703 4557704

4.4.4 Evaluation

In this section we evaluate our framework. We conducted our experiments on the LiDO3-
Cluster of the Technical University of Dortmund?® on a node with an Intel Xeon CPU
E5-2640 processor (20 cores, 2.4 GHz, L1 32K, L2 256K, L3 256M) with 64 GB of RAM. The
code was written in C++ and compiled using GCC 8.4 using OpenMP for parallelization.

We evaluate our framework on the input graphs that are summarized in Table 4.3.
The graph recomp_dnal1GB_5 was generated from a recompression tool [342] by using
the 1GiB prefix of the text dna. txt from the Pizza & Chili text corpus.!* Here, the nodes
represent the characters from the alphabet and we have an edge (a, b) if the pair ab
appears in the text. The weight of the edge represents the number of occurrences
of the pair ab. The graphs road-luxembourg-osm and rt-retweet-crawl were taken
from Network Repository [604]. The graph road-luxembourg-osm is a road network of
Luxembourg and the graph rt-retweet-crawl is a Retweet graph of Twitter where each
node represents a Twitter user and we have an edge between two users when one user
retweets a tweet from the other user.

10 https://www.lido.tu-dortmund.de/cms/de/LiD0O3/index.html, accessed June 9, 2022.
11 http://pizzachili.dcc.uchile.cl/, accessed June 9, 2022.

https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
http://pizzachili.dcc.uchile.cl/

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory =— 155

4.4.4.1 Experiments

For our experiments, we evaluate each part of our framework separately. First, we com-
pare our partitioning algorithms KaHIP, NodeSlice, and EdgeSlice. Then, we compare
our local MAX-DicuT algorithms Derandomization, Buchbinder, and Goemans. For the
Goemans algorithm, we compare two variants: one solves the SDP exactly, which we
call Goemans, the other solves the SDP with a small error where we set € = 0.01, which
we will call Goemans(e = 0.01). For our merging algorithms, we compare the Buch-
binder algorithm, the two Goemans variants described above, and an exact algorithm
that solves an integer linear program (ILP). When we evaluate the algorithms of one
part of our framework, all other parts are fixed, i.e. for the partitioning we use KaHIP,
as the local MAX-D1cUT algorithm we use Buchbinder, and as merging algorithm we
use Goemans (e = 0.01). We conducted all of our experiments five times and took the
average of each result for the computed cut as well as the runtime for each step in the
framework. We divide the graphs into as many as 2048 parts. Up until 16 parts, we use
the same amount of cores as the number of parts. For more than 16 parts, we constantly
use 16 cores.

road-luxembourg-osm rt-retweet-crawl recomp_dnalGB_5

1

Value
100000

Cut [

Time [s]

A Tl e ol o N O e M B B [
2 4 8 64 2048 2 4 8 64 2048 2 4 8 64 2048

Number of Subgraphs Number of Subgraphs Number of Subgraphs

—e— KaHIP = NodeSlice = —e— EdgeSlice

Fig. 4.19: The computed cut and the runtime for our partitioning algorithms while the other steps of
the framework are fixed algorithms. Missing data points indicate either that the runtime of the whole
framework exceeded the time limit or that the memory exceeded the RAM.

In Figure 4.19, we can see our results for our partitioning algorithms. We see that
using KaHIP as a partitioner results in an almost constant cut quality for each number
of subgraphs for the graph road-luxembourg-osm and rt-retweet-crawl while the

156 —— 4 Structured Data

cut quality when using the naive partitioning algorithms NodeSlice and Edgeslice
gets worse when we partition the graph into more subgraphs. However, on the graph
recomp_dnalGB_5 the cut quality when using NodeSlice and EdgeSlice scales better
than KaHIP. The runtime of KaHIP is on all inputs significantly slower than NodeSlice
and EdgeSlice and does not scale as well as the naive algorithms.

road-luxembourg-osm rt-retweet-crawl recomp_dnalGB_5

Value
Cut (156000

1,000

Time [s]

0.001 [m-m—-f-u0-2-0-0-u u
ol ol ol SR e ol ol
2 4 8 64 2048
Number of Subgraphs Number of Subgraphs Number of Subgraphs
—e— Buchbinder #— Derandomization = —e— Goemans

—+— Goemans (e = 0.01)

Fig. 4.20: The computed cut and the runtime for our local MAx-DicuT algorithms while the other
steps of the framework are fixed algorithms. Missing data points indicate either that the running
time of the whole framework exceeded the time limit or the memory exceeded the RAM.

In Figure 4.20, we can see our results for the local MAX-DicUT algorithms. We can see
that by using the variants of the Goemans algorithm our framework produces the overall
best cut quality. However, these algorithms only compute a solution when we partition
the graph into a large number of subgraphs or when we have smaller subgraphs. For
larger subgraphs, the Goemans algorithm either takes too long or consumes too much
memory. The runtime of the Goemans algorithms is significantly larger than the linear-
time algorithms but it gets faster the smaller the subgraphs get.

In Figure 4.21, we can see our results for the merging algorithms. Note that, since
our framework uses some random variables, the computed quality may vary between
different configurations. Overall, the merging has only a small effect on the cut quality.
As one would expect, the exact algorithm that solves an ILP gives the best solution most
of the times, closely followed by the exact Goemans algorithm. Using Goemans (€ =
0.01), our framework produces a good cut quality most of the times,as well. However,
for 128 parts or more the cut quality gets significantly worse on road-1luxembourg-osm.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory =— 157

road-luxembourg-osm rt-retweet-crawl recomp_dnalGB_5
102»"'!..'.... 20.5
92
E
>0
iy 20
Y 0.98 |-
O
0.96 |- 19.5
1,000
100
=
& 1
& 1
0.001
0.01

Number of Subgraphs Number of Subgraphs Number of Subgraphs

—e— Goemans (e = 0.01) = Buchbinder =~ —e—ILP
—+— Goemans

Fig. 4.21: The computed cut and the runtime for our merging algorithms; the other steps of the
framework are fixed algorithms. Missing data points indicate either that the runtime of the whole
framework exceeded the time limit or that the memory exceeded the RAM.

The runtime of ILP is overall the slowest and on rt-retweet-crawl becomes too slow
for 128 and more parts. The Goemans variants are faster than IPL but are still slower
than Buchbinder. We can see that ILP and the Goemans variants slow the larger the
Graph H becomes.

4.4.5 Application in String Compression

Max-DICUT is used in building a succinct data structure over strings to answer Longest
Common Extension (LCE) queries efficiently. An LCE query over a string S asks for two
positions i and j for the longest common prefix of the suffixes starting at position i and
j.

To answer such queries efficiently, one can use the recompression technique that
was described by Jez [342]. With this technique, a string S is compressed into a context-
free grammar that generates exactly S. Then, we build an LCE data structure [330] on
top of the grammar. The memory usage is O(zlog(2)) and the query time is O(log(n))
where z is the size of the Lempel-Ziv 77 factorization [746] and n is the size of S.

During the compression of S into a context-free grammar, we try to find pairs ab
and build a rule X - ab so that as many pairs are covered by a rule. To do that, we
build a directed graph G in which each node represents a character of S and we insert

158 =— 4 Structured Data

Tab. 4.4: The results of different recompression algorithms. We compare the running time in seconds
and the compression ratio (compressed text length divided by original text length) for 8 cores on
different texts taken from the Pizza & Chili text corpus. In all experiments we use 200 MiB prefix for
each text. We mark in bold text the best result on the respective text. Additionally, we provide the
size of and the alphabet size o for each text.

max-dicut_recomp lp_recomp

Text o Time[s] ratio Time[s] ratio
cere 5 290.75 4.9% 21 4.91%
dna 16 286.2 42.42% 26 42.29%
einstein.en 139 211.75 0.17 % 26 0.17%
english 239 277.4 41.23% 36 42.72%
para 5 256.6 6.81% 22 6.82 %
sources 230 288.2 37.79% 33 39.91%

an edge from a to b if the pair ab appears in S. Then, a cut in G represents a partition
of the characters into two subsets X; and X, so that we can compress as many pairs ab
with a € X1 and b € X, as possible without overlapping pairs. Accordingly, there is a
direct correlation between the quality of the computed cut and the compression ratio
of S.

We integrated our framework for computing a MAX-DICUT in a tool that computes
the compression with recompression in shared memory. We compare the algorithm
max-dicut_recomp that uses our MAX-DICUT framework with the algorithm 1p_recomp
that computes first a naive MAX-CUT (S, T) and then compares C(S, T) and C(T, S) in
the directed graph and takes the largest value. Additionally, 1p_recomp tries to take the
solution that produces lesser production rules.

Again, we conducted our experiments on the LiDO3-Cluster of the Technical Univer-
sity Dortmund on a node with an Intel Xeon CPU E5-2640 processor (20 cores, 2.4 GHz,
L1 32K, L2 256K, L3 256M) with 64 GB of RAM. We compared the compression ratio and
runtime for 8 cores of our algorithms on a number of texts taken from the Pizza & Chili
text corpus.’? We repeated our experiments five times and took the average as the final
result.

Table 4.4 shows our results. We can see that max-dicut_recomp achieves on almost
all texts a similar or better compression ratio than 1p_recomp. On english and sources
the compression ratio increases by 1-2 %. However, to increase the compression ratio
for max-dicut_recomp we need around 10 times more runtime than 1p_recomp on all
texts on 8.

12 http://pizzachili.dcc.uchile.cl/, accessed June 9, 2022.

http://pizzachili.dcc.uchile.cl/

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory = 159

4.4.6 Conclusion

In this section we described a framework that calculates a high quality MAX-DICUT in
shared-memory that is also easily extendable. We implemented our framework and
evaluated it in shared-memory on real-world graphs. The experiments showed that
our graph partitioning algorithm KaHIP does not scale well in shared-memory so we
plan to use other partitioning algorithms in the future. The best configuration of our
framework is to partition our graph into small graphs and use Goemans as our local
Max-DicuT algorithm.

We also integrated our framework into a software that calculates a grammar-based
compression. By using our framework, we achieve in most cases better compression
rates. However, our new algorithm is much slower than other compression algorithms.

160 —— 4 Structured Data

4.5 Millions of Formulas

Lukas Pfahler

Abstract: Amid the increase in the number of research publications, the search for
relevant papers has become tedious. In particular, searches across disciplines or schools
of thinking are not supported. This is mainly due to the retrieval in terms of keyword
queries, as technical terms differ in different sciences and at different times. Relevant
articles might better be identified by their mathematical problem descriptions. Just
looking at the equations in a paper already gives a hint to whether the paper is relevant.
Hence, we propose a new approach for the retrieval of mathematical expressions based
on machine learning. We design an unsupervised representation learning task that
combines embedding learning, contrastive learning, and self-supervised learning. We
want our learned representation to allow the automatic identification of related, relevant
mathematical expressions. Using graph convolutional neural networks we embed
mathematical expressions in low-dimensional vector spaces that allow efficient nearest-
neighbor queries. To train our models, we collect a huge dataset with over 29 million
mathematical expressions from over 900 000 publications on arXiv.org. The math is
converted into an XML format, which we view as graph data. In this data, we are able
to automatically identify equalities and inequalities that we can use for training and
testing of our models. Furthermore, our empirical evaluations involve a dataset of
manually annotated search queries show the benefits of using embedding models for
mathematical retrieval. This contribution is based on a conference paper [563] and
more details can be found in [562].

4.5.1 Introduction

Machine learning has contributed to many a search engine success story. Unfortunately,
the search is most often based on words or text. Technical terms in different disciplines,
however, may have different meanings or the same meaning may be referred to by
different terms. For instance, various usages of Bayes’ law occur in different scientific
fields and can be found under different names. For instance in astrophysics, it is known
as information field theory [200]. Without a knowledge of physics or the use of the
name Bayes, the law is easily recognized by the formula P(d|s) = P(d, s)/P(s) in any
paper. Another example is a 1925 paper by Ising in the physics journal under the
title Ferromagnetismus. Today, the Ising model is also popular in machine learning,
but it is referred to first as the Hopfield network and later as the Boltzmann machine.
This illustrates the aspect of time: words for particular topics change over time. The
language of Ising’s paper is German; the paper introducing Jensen’s inequality in 1906

4.5 Millions of Formulas =—— 161

is written in French. Again, the inequality f((a + b)/2) < f(a)/2 + f(b)/2 can be easily
understood, in both cases. We conclude that the most compact and comprehensive
way to transport the main ideas of scientific manuscripts in disciplines like computer
science or physics are the equations used. Thus it should also be the way we formulate
our search queries when searching for scientific manuscripts. In order to judge the
relevance of mathematical expressions for a search query, a system has to generalize
between different notations and match the parts of equations, that describe the same
concepts, even if they appear in a different form. A human reader resorts to domain
knowledge acquired over years of training in his field to judge relevance. We wonder
how machine learning models with access to vast amounts of mathematical content
can help to automatize this process.

In this work, we propose using graph neural networks to learn a representation of
mathematical expressions that captures semantic relatedness. To this end, we design
two unsupervised learning tasks, one classic embedding learning task based on con-
textual similarity and one self-supervised learning task inspired by masked-language
models. We curate a dataset of over 28.9 million equations from over 900 000 papers on
arXiv.org and represent the equations as graphs with one-hot encoded features. Then
we train our models on this large collection of equations. We compile an evaluation
dataset with annotated search queries from several different disciplines and show-
case the usefulness of our approach for deploying a search engine for mathematical
expressions.

4.5.2 Math Search and KDD

Mining and indexing mathematical expressions in document collections is a challeng-
ing task, mostly tackled in the information retrieval community [277, 745]. We outline
how the problem of math search is treated with the tools from Knowledge Discovery in
Data and data mining and present related work on the machine learning methods we
chose for our approach.

Representation The first question we have to consider is how to represent mathe-
matical expressions. Approaches can be divided into two categories: those for visual
representation and those for semantic representation. The former category is focused on
the layout of an expression. The most prominent choices are LaTex, a Turing-complete
language used in the publications on arXiv.org, and Presentation MathML3, an XML
dialect for displaying math on the web that we chose in this work. The latter category
includes Content MathML and OpenMath, two similar XML dialects that focus on se-
mantics rather than layout, and domain-specific languages for symbolic math solvers

13 https://www.w3.org/TR/MathML3/.

https://www.w3.org/TR/MathML3/

162 —— 4 Structured Data

like Mathematica that also allow the manipulation and transformation of formulas. To
the best of our knowledge, no large, public collection of semantic math expressions
exists and, unfortunately, converting math from a display-representation, where data
is available in large quantities, to a semantic representation, which seems more ap-
propriate for searching, is a non-trivial task. Available solutions either use rules and
heuristics, e.g. the converter m12om that translates LaTeX to OpenMath[661], or also ap-
ply machine learning [693]. We chose to apply machine learning methods directly on the
Presentation MathML representation. The bottom line of the representation question
is that math is expressed in trees, either XML or other parse trees. Our previous work
[564] may be the notable exception to this: we chose to represent equations as fixed-size
bitmaps. While one could argue that this is an unsuitable choice, the multitude of
machine learning or computer-vision approaches that successfully transform images of
typeset [170] or hand-written [15, 460] math back to tree-based representations suggests
that bitmap representations preserve all required information of tree-based approaches.

Similarity Measure The second question is how we compute similarity between
formulas. Zanibbi et al. distinguish text-based, tree-based, and spectral approaches
[729]. Text-based approaches transform tree-structured math into a sequence by pre-
order traversal, say, and then estimate the similarity using methods for sequences
such as cosine similarities of bags-of-words or the length of the largest common sub-
string. Tree-based approaches focus on matching trees or subtrees. Typically computing
similarities using sub-structures, either sub-sequences or sub-trees, involves solving
dynamic-programming problems. Spectral approaches work on paths or partial sub-
trees in the trees. An example is the work by Zhong and Zanibbi [745], which indexes
root-leaf paths of operator trees. From matches of the root-leaf paths, they compute
the largest common subexpression to score the similarity of two equations. To convert
math from LaTeX to the semantic representation of operator trees, the authors use ca.
100 grammar rules created by domain experts.

A new trend is to use machine learning to learn a similarity measure. A machine
learning model maps an equation to a dense, low-dimensional vector. The similarity
between these so-called embeddings can be computed via their inner product, which
enables fast indexing using a variety of index structures, including faiss and annoy,
designed for efficiently handling millions of these dense, low-dimensional vectors.
Mansouri et al. [464] propose that equations be embedded using fastText, a method
originally designed for computing word embeddings, while in our previous work [564]
we compute embeddings with a similar embedding learning task and convolutional
neural networks (see Section 4.2).

Graph Convolutional Neural Networks We have proposed an embedding model
based on Graph Neural Networks (GNN) [563] introduced in this contribution. They are
an appealing model choice for this task, as like classic Convolutional Neural Networks

4.5 Millions of Formulas =—— 163

(CNNs) for image processing, they compute feature maps based on local neighborhoods
and thus can work on relations between symbols in formulas. While in CNNs we have
features associated with each pixel in the pixel grid and neighborhoods are defined
by this grid, in GNNs we have features associated with each node of the graph and
neighborhoods are defined by the edges in the graph. We define graph structures
x = (X, E) as a tuple of node-features X and edges E. Let | x| denote the number of nodes
in x. We assume that X € R*I*? where X; are the features of the i-th node. A GNN maps
an input graph to an output with transformed feature vectors in a d -dimensional output
space but with identical edge structure. We use the graph network to compute a vector-
valued embedding for mathematical expressions by an average-pooling operation that
aggregates all node-embeddings of a graph into a single graph-embedding.

Additionally we investigate the use of transformer architectures [681], more specif-
ically of Bidirectional Encoder Representations (BER)T models [173], for the task of
embedding mathematical expressions into vector spaces. Transformers can be viewed
as GNNs on a fully connected graph where each layer aggregates neighborhoods using
self-attention [681].

Self-Supervised Learning We further draw inspiration from a recently proposed
class of representation learning tasks called self-supervised learning. Self-supervised
learning tasks are unsupervised learning tasks, where parts of the inputs are used to
construct proxy tasks. The representations learned in these proxy-tasks can then be
used in downstream tasks. For instance, we can rotate images and train a model to
predict the rotation angle, as proposed by Gidaris et al. [251]. Using massive amounts
of unlabeled data readily available, we can fit models that solve a task like this.

We are particularly interested in , where parts of the input are hidden from a model
and the model’s task is to predict the hidden parts. This was made popular by the BERT
model for pretraining natural language representations [173] and has since then been
adopted to other inputs such as pretraining for image classification with convolutional
neural networks [669]. We construct a masking task for mathematical expressions and
use graph convolutional neural networks to predict the masked parts.

4.5.3 The Data

We outline how we gather data from arxiv.org and transform it to graph structured data
for our graph convolutional neural network.

4.5.3.1 Dataset
We are working on data obtained from arxiv.org, a service where scientists can upload
their manuscripts or pre-prints without reviewing process. We have downloaded all the

164 —— 4 Structured Data

-10°
2
51.5 -
s 1
0.5 H H
0 DDDDDmmmmﬁ.ﬁ.&;LL
S&C %ﬁé@«@qng“ %@\;QQ,&@?& QQQ,& é‘\ﬁ’ﬁ & S
O SR FE Ly K & &
Q§°Qo° \QQO‘:’%\Q N S IS ¥

Subject Area

Fig. 4.22: Number of papers per subject area in our sample.

LaTeX sources of publications up to April 2019 from the official bulk data repositories.**
This way we have obtained 934,287 papers. As we can see in Figure 4.22, the large
majority of these papers are from disciplines where mathematical expressions are an
important part of the publications. The most prominent subject areas are astrophysics,
condensed-matter physics, high energy physics, computer science, and mathematics.

From all publications, we extract mathematical expressions by using regular ex-
pressions for the most common math-environments such as ’equation’, ’align’, etc. We
do not use inline math snippets but focus on expressions that stand on their own, as
they tend to describe more important concepts. Furthermore we extract user-defined
commands and macros. Using the library Katex®® we compile the raw LaTeX-equations
to the XML-based MathML format. Out of all papers downloaded, 760 041 papers contain
at least one equation that we were able to convert to MathML. In total we have a dataset
of 28 973 591 MathML equations. Furthermore we have used regular expressions to find
arXiv-ids in the bibliographies of the paper to build a citation graph. In total, 540 892
papers have an outgoing edge, with a total number of edges of 4 553 297. Since we only
detect those references that use an arXiv-id in, say, an texttturl, our citation graph is
only a subgraph of the true citation graph.

To ensure reproducibility we provide the scripts used for processing the public
arXiv data dump, extracting the mathematical expressions and converting them to
MathML as well as collecting meta-data and citations at https://github.com/Whadup/
arxiv_library?e.

14 https://arxiv.org/help/bulk_data_s3.

15 http://katex.org.

16 You can find the datasets used in this study at http://github.com/Whadup/arxiv-learning. We also
share our citation graph, which might be interesting in other applications.

https://github.com/Whadup/arxiv_library
https://github.com/Whadup/arxiv_library
https://arxiv.org/help/bulk_data_s3
http://katex.org
http://github.com/Whadup/arxiv-learning

4.5 Millions of Formulas =—— 165

107

Frequency
oo o

)(21,-+=i0nxtk|ds . marpe3jc’lf][u4RgTyzNAqoRYbp
Character

Fig. 4.23: The 50 most frequent characters in math environments.

4.5.3.2 Data Representation
In order to feed the MathML to a graph convolutional neural network, we have to convert
it to a graph with vectorial node features. The MathML standard defines around 30
different XML-tags such as <mi> for math identifiers or <mo> for math operators. Some
of these tags use attributes, to change font or spacing, say. Leaf nodes contain text such
numbers, parenthesis, or letters (Greek, Latin, etc...). We view the XML structure as a
tree and use its nodes and edges and derive features based on tags, attributes, and text.
For each node we use one-hot encoded feature vectors of dimensionality 256. First, we
represent each node as a single token, where the token is derived by concatenating tag,
attributes and text and use the 256 most frequent tokens that capture the majority of
tokens in the data. Attribute values often contain numbers, e.g., for changing the font-
size. We round these numbers to one decimal place to reduce the number of possible
values. In addition to the one-hot encoded features, we store the position of the node
among its sibling nodes.

Then, for the use with transformer models, we compute a sequential representation
of our tree-structured data by a pre-order traversal of the tree.

4.5.4 Learning to Find Related Equations

In this section we will introduce the graph convolutional neural network used for
computing embeddings and present two unsupervised learning tasks used for training
the network. indexsubsubsectionModel for Embedding Formulas

Graph Neural Network We define a graph convolutional neural network for the task
of embedding mathematical expressions into a low-dimensional vector space. The raw
MathML is converted to graphs with vectorial features as described in Section 4.5.3.2. We
propose using a special first layer that combines the one-hot encoded information at a
node with the decimal position attribute. Following Vaswani et al. [681], we encode the
position of the i-th node p; € N using positional embeddings. We use fixed sinusoid
embeddings [681] denoted by E(p;), but in order to still allow the model to control the

166 —— 4 Structured Data

influence of the positional embeddings, we introduce a learnable scaling coefficient a
initialized to 1.

xgl) = ReLU Z W(l)xj + aE(p;) + pW
jeEN@)UI
The first layer is followed by 3 fully-connected graph convolution layers of width 512,
where the [-th layer is defined by

() =ReLU | 37 WOV 4 p®
jEN@UI

which linearly transforms all nodes using a weight matrix w®, adds a bias term
b¥, aggregates by computing the sum over all neighbors N(i) and applies the ReLU
activation component-wise. All graph convolution layers output feature maps with 512
dimensions. In our tree-structured data we assume all edges are bi-directional; hence
the set of neighbors consists of the parent node and all child nodes. We apply batch-
normalization before the first and third graph convolution layer. For the remainder of
this paper, let ¢(x) € RIX*512 denote the output of the last graph convolution layer
given the input x. To obtain a single embedding for an input graph, we compute the
mean of all node features. This mean is transformed in another linear layer to reduce
the dimensionality to 64. For the remainder of this paper, let ¢(x) € R®* denote this
embedding of x.

When scoring similarities between embeddings with margin losses, we need to con-
trol the norm of the embeddings, otherwise the notion of adherence to a margin becomes
meaningless. Ding et al. [179] and others have proposed normalizing all embeddings to
unit length. We propose a softer normalization inspired by batch normalization[335]
that also allows us to obtain embeddings with norms smaller than 1. For every training
batch of graphs, we compute the mean of the norm as well as its standard deviation.
Then we inversely scale each embedding by the mean plus the standard deviation. This
way, most embeddings have a norm smaller than 1. We keep a running average of the
means and standard deviations. At inference time, we use these running averages for
scaling.

Transformer The original transformer model — as proposed by Vaswani et al. [681] —
is slightly modified in BERT [173], which only uses encoder layers. In our work we use
the same transformer model architecture as BERT — including the same encoder layers,
activation functions, optimization algorithms, and learning rate schedules. The trans-
former architecture introduces the multi-head-attention layers as the key mechanism
for learning the relations between each pair of tokens in the input sequence. This is ap-
plicable on mathematical formulas too, because understanding the relations between
the symbols of a mathematical formula is crucial for understanding the meaning of
the formula. We also extend the vocabulary by the special classification, separation,

4.5 Millions of Formulas =—— 167

masking, and unknown token—as did [173]—in order to predict masked tokens and
thereby integrate in the model the ability to correct mathematical expressions.

We explore three differently-sized variants of the BERT architectures for embedding
mathematical expressions. While BERT has a hidden-size-dependent number of atten-
tion heads, we keep them constant. We set the number of different multi-head-attention
heads D to 4. By doing so the hidden size H has the largest impact on the performance
of the multihead attention. As for the intermediate projection size, we kept this always
bigger than the hidden size so that we can have a linear projection on a higher space.
The resulting models are summarized in Table 4.5.

Tab. 4.5: Math-BERT model configurations.

Model L H | D Params GFLOP
SMALL 4 128 768 4 1.2m 0.7
BASE 8 256 768 4 6.0m 3.6
LARGE 12 512 768 4 25.0m 15

4.5.4.1 Representation Learning Tasks
We propose that our embeddings are trained using two self-supervised learning tasks
simultaneously by adding their respective losses.

Contextual Similarity For learning relations between equations, we rely on the
established contextual similarity task that was first made popular by word embeddings
[493] and has hence been used in many representation learning approaches, including
our approach [564] for learning similarities between equations. The main idea is that
objects that frequently appear in shared contexts are related. We define the context of
mathematical expressions as the paper containing the equation and conjecture that
two equations are related if they appear in the same paper, as originally proposed in
[564]. We extend this approach and further define two equations as related if one paper
references the other using a citation graph. This way we hope to connect equations
that describe the same context but use different notation. In addition, we discriminate
between sampling expressions from the same paper and from the same section. We
hope that within sections, equations are more related to each other. For obtaining
positive examples of related equations, we
1. sample a paper uniformly at random and select an expression from this paper
uniformly at random;
2. randomly select whether we sample from the same section, same paper or along a
citation;
3. sample a positive example using that method; when we cannot find a positive
example using that method, we jump back to (1).

168 —— 4 Structured Data

For learning similarities we also require negative examples. To obtain these, we sample
a paper uniformly at random and select an expression from this paper uniformly at
random. The random process that generates these weak labels for similarity learning
introduces a lot of noise, as many equations we claim to be related are in fact unrelated
and some of the pairs we say are unrelated are related. We leave the investigation of
more advanced sampling schemes to future work.

Using the sampled equations x with positive x* and negative partners x~, we apply
similarity learning. We have to choose a suitable loss function and investigate two
different losses: Triplet and Histogram. The triplet loss [38] that we have previously
used [564], contrasts the similarity between a positive pair of examples and a negative
pair of examples and demands that the similar pair has a higher similarity by a user-
defined margin A, usually set to 1.

Le(x, x*, x7) = max(0, A - (p(x), p(x*)) + (p(x), p(x7))) (4.40)

We have proposed using the histogram loss as first published by Ustinova and Lem-
pitsky[676]. It does not work on a triplet of equations, but on a mini-batch of size m
positive pairs X* and a batch of negative pairs X~ with respect to anchor examples X.
We collect all similarities between positive pairs in a vector s* = ((¢(x;), ¢(x}))iz1,...m
and of all negative pairs in s~. We divide the interval [-1, 1] into R - 1 equally-sized bins
with boundaries -1 = tq, t,, ..., tg = 1 and width A = 2/(R - 1) and build histograms
for the positive similarities and the negative similarities. Now we demand that the
positive histogram leans more toward the +1 similarity than the negative histogram.
We formalize this intuition as

R r m m
ty(s*,s7) = % > <Z 6r[s{]> (Z 8, [s{']) (4.41)
r=1 i=1

r=1 \i=1

where instead of hard assignments, we use the triangular kernel

(S - tr—l)/A ifS S [tr—1, tr]
6rls] = (t,-1—-9)/Aifs e [tr, tr+1]

0 otherwise

to put similarities into bins. This way we obtain a differentiable loss function. We hope
that histogram loss is more robust with regard to the massive noise in our labels as
each positive example is contrasted with all negative examples.

Masking Task We propose extending the contextual similarity task by another task
and optimizing the sum of both tasks for training our embedding models. The main
idea of our second task is, that the symbols in mathematical expressions do not appear
independent from each other, but have strong dependencies. Thus if we hide a fraction

4.5 Millions of Formulas —— 169

of the symbols in an equation, we should be able to approximately reconstruct the hid-
den symbols from the remaining symbols. This task is reminiscent of masked language
modeling tasks made popular by BERT [173] for natural language processing. In order
to successfully solve this task, a model has to learn about the frequencies of symbols
and their dependencies from the data, as is illustrated in Figure 4.24.

Fig. 4.24: Example of the masking task with fictional values.

More formally, we proceed as follows. For each input graph x with features X, we
randomly set the feature vector of 15 % of the nodes to all zero obtaining the graph xg.
Then we compute ¢p(xg) € RIXI*512 Now for each masked node, we solve a classification
task: given ¢;(xg), predict the right token, i.e. the combination of XML-tag, XML-
attributes, and character. This classification task is solved using a single linear layer of
dimensionality 256 with softmax-activation and cross-entropy-loss.

¢; = ((softmax(W)¢;(xm) + b, X;)

The loss is only evaluated for the masked tokens and we compute the mean over all
masked tokens to obtain a loss value for xg.

Adding this task to the contextual similarity task has the additional advantage that
we now learn a representation that not only captures context information, but also
preserves information about the raw input symbols.

4.5.4.2 Data Augmentation

Data augmentation eases the generalization of machine learning models and is particu-
larly popular for image classification tasks where we can augment images by randomly
rotating, scaling, padding, etc. For mathematical expressions, we propose the following
random data augmentation. Since we know that a renaming of symbols in equations

170 =— 4 Structured Data

rarely changes the semantic, we propose randomly permuting the character features of
all nodes that correspond to a math identifier, encoded in <mi> tags according to the
MathML standard. For each equation we process, we sample a number of flips from a
Poisson distribution with an expected value of 32. Then starting with the identity per-
mutation that does not change the order of our 192 features, we construct a permutation
with the desired number of flips by incrementally exchanging two random characters.

4.5.5 Experimental Results

In this section we perform an experimental evaluation of our embedding model. In
particular, we focus on the use-case of a search engine for mathematical expressions.
We begin by investigating the effects of the individual components of our model on a
small, closed subset of the data. Then we investigate the effectiveness of our method
on all 29.9 million equations.

4.5.5.1 Analysis on the Machine Learning Subset

We begin our analysis only on arXiv publications where the primary subject classifica-
tion is machine learning (cs.LG). This is a natural choice, as we have some expertise to
judge the quality of our results, a task which we are in no way equipped for across all
subject fields.

Of these 9936 publications, we sample two subsets, train and test sizes of 7949 and
1987, respectively, and a total number of equations of 237 335 and 54 767, respectively. We
use the train-set for building our embedding models and use the test-set to investigate
generalization properties.

For training, we sample 1 million triplets (x, x*, x7). Of these triples, 45.9 % have a
positive pair from the same section, 42.2 % from the same paper, and 13.9 % along an
edge in the citation graph. We sample 100k triplets for testing with similarly distributed
positive examples.

We perform an ablation study on our proposed embedding model and compare
it with prior work. This section investigates the influence of our design choices. We
decided (a) to use the histogram loss instead of the triplet loss, and (b) to add a masking
task, (c) to data augmentation.

We measure the ranking score, i.e. the fraction of all triples in the training data
where same-class pairs of equations have higher similarities than across-class pairs. As
we see in Table 4.6, our evaluations indicate that all of our design choices contribute
favorably to the overall performance on hold-out data, as deactivating any component
decreases the score. We note that the biggest gain is achieved by switching from triplet-
loss to histogram-loss. We believe that this is due to the massive noise in our labels.

We also compare with our previous model [564] and see that we beat it by a small
margin. However, this comparison is not entirely fair, as their model was trained on a

4.5 Millions of Formulas = 171

Tab. 4.6: Ablation Study.

Influence factor Ranking Ranking Accuracy
hold-out eval eval
Full model 76.5(x0.0) 57.7 (+0.0) 60.6 (£0.0)
No histogram loss 72.5(-4.0) 49.6(-8.1) 30.9(-29.7)
No masking 75.2 (-1.3) 54.3 (-3.4) 50.0 (-10.6)
No augmentation 75.3(-1.2) 53.6(-4.1) 50.0(-10.6)

Bitmap CNN original[564] 76.2(-0.3) 71.9 (+14.2) 68.3 (+7.7)
Bitmap CNN retrained 70.0(-6.5) 50.0(-7.7) 52.9 (-7.7)

larger dataset of around 25 000 papers, probably including some of the papers in our
test set. We use their code to re-train on our subset of equations and yield a substantial
margin of 6.5 percentage points.

We also use our previous evaluation data [564]. It consists of 103 equations labeled
into 13 categories related to machine learning including k-means, LSTMs, empirical
risk minimization, etc. Since only bitmaps are available, we transcribe the equations
manually. There are three issues with this evaluation set. First, it is too small to produce
significant numbers. Second, some equations in the dataset appear in the training data.
This is not only the case for our subset, but also for the training data used in [564].
Third, many equations within a category are obviously from the same paper, hence we
have seen some of the pairs in our training data. Nevertheless we use the evaluation
data. Indeed in our use-case of search engines, the crawled equations will always be
in the training data and only the user queries will be unseen equations. In a way, we
simulate this with the evaluation data.

Following the original experimental protocol, we measure the 1-nearest-neighbor
accuracy obtained in leave-one-out validation (named Accuracy) as well as the above
Ranking score. In Table 4.6, we again see that our model is only surpassed by the
pre-trained model that uses a larger training dataset. This motivates the use of a much
larger dataset.

4.5.5.2 Large-Scale Experiments

For training on all the papers in our dataset, we sample two different sets of training
triplets, one with 5 million triplets and one with 20 million triplets. We train our models
on a Nvidia GTX1080 GPU with 8 GB memory, which allows us to process mini-batches
of 128 triplets, or 384 equations. During training, we process around 1300 triplets per
second, not counting the time for reading data from hard disk. In total, one of the 20
epochs of training on 20 million triplets takes 6:30h on our system. We use annoy to
construct an index for approximate nearest neighbor retrieval. In total, our index uses
13 GB of hard disk storage to manage all mathematical expressions in our dataset.

172 =— 4 Structured Data

Tab. 4.7: Evaluation Scores.

Dataset Ranking Accuracy

eval eval
1mio ML-subset triplets 57.7 60.6
5mio full ArXiv triplets 76.2 80.9
20mio full ArXiv triplets 75.3 84.0
Bitmap CNN original[564] 71.9 68.3

Before we evaluate our models in a search engine study, we again check the performance
on the aforementioned evaluation data. The results in Table 4.7 indicate the power of
using large amounts of training data, although it is unclear if using 20 million training
triplets is an advantage over using only 5 million. Our large-scale models beat all the
models trained on smaller amounts of data. Even though the smaller models were
trained on only machine learning-related data, we obtain better scores on the machine
learning evaluation data by training on all disciplines.

Let us now inspect two example search queries. In Figures 4.25 and 4.26 we see the
two examples from the introduction, Bayes law and Ising models, and their respective
nearest neighbors under our model trained on 5 million triplets. We see that we can find
other definitions of Bayes’ law as well as the related law of total probability. When we
perform a query for the Ising model and look at the first 20 results, we find papers where
the model is called the Boltzmann machine as well as papers that refer to the Ising
model. This illustrates the power of querying for mathematical expressions instead of
using keywords.

4.5.5.3 Search Engine Study

Finally we want to study the usefulness of our embedding approach for a search engine
application more systematically. Traditionally, validating search engines using the
measures precision or recall requires relevance scores for each result for each evalu-
ation query. We see that this requires much manual annotation work since we have
to manually identify each relevant equation for each query. Unfortunately, we were
not able to find available evaluation data. The best fit is the NTCIR-12 task evaluation
data [729] consisting of 37 annotated queries. But this is not appropriate for our ap-

Query: P(d|s) = 22
1st result: P(s | d) = 7P(d,‘,f,),l;(s)

4thresult: P(d) = [P(d | s)P(s)ds

Fig. 4.25: Example: Bayes’ law. We report the first result and the first result that does not show
Bayes’ law, but, in this case, the related law of total probability. The first result is from: R. H. Leike, T.
A. EnB3lin, Charting nearby dust clouds using Gaia data only, 2019.

4.5 Millions of Formulas = 173

Query: ij W;/'S,‘S/‘+Zi 9,’5[
‘Boltzmann’ Result: ~ E=-3",b;s; = >, wjsis;.
’Ising’ Result: H= _Ziq' CijJijoio0; - Z,- hio;

Fig. 4.26: Example: Ising model. We find equations related to both Ising models and Boltzmann
machines. First result is from: Weinstein, Learning the Einstein-Podolsky-Rosen correlations on a
Restricted Boltzmann Machine, 2017. Second result is from: Ferrari et al., Finite size corrections to
disordered systems on Erd6s—Rényi random graphs, 2013.

proach, as most queries are a combination of math as well as keywords. When we
ignore the keywords, the remaining query becomes very generic, for instance x + y,
which makes it very unlikely that we accurately find the articles labeled as relevant. In
addition, the overall focus of the NTCIR-12 task is recovery of exact matches, whereas
our focus is on retrieving related expressions.

Consequently, we curate and publish our own evaluation dataset. To reduce the
manual annotation labour, we want to apply a heuristic for the relevance judgement.
To this end, we have asked our colleagues, many from disciplines other than computer
science and data science, to provide us with equations that we should query. For each
equation, they provide a set of keywords or keyphrases that should appear in the section
around the result. If one of the keywords is present, we count the result as correct. In
this way, we can evaluate our search result without manually checking result lists. If
a keyword has more than 10 characters, we also count it, if we find a substring that
has a Levenshtein distance less than 2. In total, we have 53 evaluation queries publicly
available and editable online.'”

We inspect two different information retrieval metrics that do not require the num-
ber of relevant documents in advance: Precision@k and unnormalized Mean Average
Precision. Precision@k is defined as the fraction of relevant documents within the first
k results. We report it for lists of 10, 100, and 1000 results and compute its mean over
our evaluation queries.

Unnormalized Mean Average Precision is derived from the standard mean average
precision metric. Since we do not now the number of relevant documents in advance, we
omit this term, limit the search to a maximum of 1000 results, and obtain the following

definition
1000

uMAP =~ P(k)4,
k=1
where P(k) is Precision@k and A, specifies if the k-th result is relevant. Again we
compute the mean over all evaluation queries. Compared with Precision@k, uMAP

17 Crowd-sourced evaluation data can be accessed and edited here: https://www.overleaf.com/
8721648589nrjxgwmtzfvm.

https://www.overleaf.com/8721648589nrjxgwmtzfvm
https://www.overleaf.com/8721648589nrjxgwmtzfvm

174 =— 4 Structured Data

Tab. 4.8: Search Engine Performance

P@10 P@100 P@1000 uMAP

BoW 0.4567 0.3170 0.2083 106.17
5Mio 0.5038 0.3817 0.2984 165.04
20Mio 0.4547 0.3709 0.2897 156.51

considers the order of the search results and rewards relevant results early in the result
lists.

For reference, we include retrieval based on a bag-of-words (BoW) representation.
To this end, we use our data representation as in Section 4.5.3.2, but compute the sum
over all nodes in the graph to obtain a single 256-dimensional vector of the whole tree.
We retrieve the nearest neighbors using cosine similarity.

In Table 4.8, we see that our approach beats the bag-of-words margin, in particular
for larger values of k. We see for Precision@10, the performance between BoW and our
embedding model is very similar. This is because for many queries the top-10 results
are mostly near-perfect matches that are easily identified. However when looking at
more results, we are able to find almost 50 % more relevant equations.

4.5.5.4 Retrieval of Equalities and Inequalities

We have extracted equalities and inequalities in the test set of our data using regular
expressions. Using a simple heuristic, we filter the resulting (in-)equalities, such that
left-hand-side (LHS) and right-hand-side (RHS) do not differ in length dramatically,
thereby eliminating formulas such as definitions, where the LHS is only a single symbol.
We derive three different datasets, one with only equalities (LHS and RHS split at "="),
one with inequalities (split at < and <) and one with mixed relations (split at =<>< and 2).
This data allows us to use the LHS of the (in-)equalities as queries in hopes of retrieving
RHS. We have made our finetuning-data available at https://whadup.github.io/arxiv_
learning/ as well.

Following other machine learning-based approaches for mathematical retrieval
[464, 563, 564], we use our models to encode formulas into a dense vector space and
retrieve results using approximate nearest neighbor search [48]. In the case of our BERT
models, we use output embedding of the CLS token as the representation for the whole
formula and finetune the model to output meaningful embeddings for this first token.
We finetune our models on half of the available data and test on the remaining half.

Finetuning Task We propose using contrastive learning to learn to identify the RHS
given the LHS. The learning task in contrastive learning is identifying the right partner
for each input in a minibatch of datapoints. Hence the representation learning problem
is formulated as a classification problem. Let X!, X" € R™? contain the output embed-
dings of a minibatch of LHSs and RHSs. We normalize each embedding to unit length

https://whadup.github.io/arxiv_learning/
https://whadup.github.io/arxiv_learning/

4.5 Millions of Formulas = 175

and denote the normalized embeddings by X! and X”. We use the InfoNCE loss[547],
i.e. the negative log-likelihood of softmax probabilities parameterized by the pairwise
cosine similarities between the LHSs and RHSs:

-1 Zl exp((X}, XD_/T)

5 expU(XL X0/)
where T > 0 is a hyperparameter that controls the temperature of the output probability
distribution, which we set to 1072, The contrastive learning task is more difficult for
larger batchsizes m, as there are more candidate RHSs to chose from and thus the
underlying classification problem becomes more difficult. But it has been shown that the
utility of the model increases for larger batchsizes [134, 496], which we also investigate
in our application.

(X, X = (4.42)

Baseline Models In addition to our models we include several baseline models:

- First, we test a simple bag-of-words (BoW) model that is trained on a bag of MathML
tree nodes. This model does not use a pre-training phase, but is only tuned on
the finetuning data. The BoW model maps the sparse BoW representation to a
d-dimensional vectorial embedding though a single matrix multiplication. In com-
parison with our BERT models, we do not restrict the vocabulary size of the inputs.
The representation is trained using the same contrastive learning task with InfoNCE
loss. We test d € {64, 128,256} and report the best result after varying learning
rates and number of training epochs in a grid search.

— Second we evaluate a pretraining approach based on the BoW model. The word-
embedding-based approach fastText by Joulin et al.[350] is trained by predicting
which tokens appear in the contexts together. Mansoury et al. use it for learning
embeddings of formulae by serializing a MathML layout tree similar to the one
we use in this work [464], hence we include it in our comparison. We finetune
these embeddings by learning a linear mapping into a d-dimensional vector space,
d € {64,128, 256} using the same contrastive learning task.

We begin by training our models and the baseline models with a minibatch-size of 1024.
Then we also investigate the effect of varying the batch size. Our implementations of
all methods is available at http://github.com/Whadup/arxiv-learning.

Results For testing, we compute embeddings for all LHSs and RHSs in the test data
and store them in an index structure. We use annoy [48], an indexing method for an
approximate nearest-neighbor search based on an ensemble of random projection trees.
We use an ensemble of 16 trees with default hyperparameters, but we found that the
results were very insensitive to our particular parameter choices.

Then we query the k-nearest neighbors, k € {1, 10, 100}, for each formula from
the test set and check if the corresponding other side of the (in-)equality is in the result
set. This way we can compute recall values to measure the quality of our embeddings.

http://github.com/Whadup/arxiv-learning

176 —— 4 Structured Data

Tab. 4.9: Results of the mathematical retrieval experiment. We report recall@K for K € {1, 10, 100}.

Equalities (36864) Relations (40960) Inequalities (13312)

Model R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100
SMALL-PRE 0.379 0.577 0.714 0.432 0.626 0.749 0.397 0.661 0.795
SMALL-NO-PRE 0.400 0.584 0.700 0.405 0.632 0.769 0.371 0.632 0.769
BASE-PRE 0511 0.71 0.805 0.503 0.697 0.791 0.484 0.765 0.86
BASE-NO-PRE 0.434 0.623 0.729 0.446 0.63 0.734 0.409 0.682 0.797
LARGE-PRE 0.507 0.704 0.799 0.496 0.683 0.777 0.489 0.765 0.864
LARGE-NO-PRE 0.452 0.637 0.737 0.46 0.640 0.736 0.427 0.703 0.817
BOW 0.483 0.653 0.739 0.491 0.658 0.743 0.503 0.738 0.821
FASTTEXT [350] 0.480 0.650 0.739 0.488 0.651 0.742 0.488 0.713 0.810
GNN [563] 0.507 0.833 0.884 0.512 0.834 0.883 0.504 0.870 0.922

We summarize our findings in Table 4.9. Our BERT approach substantially outperforms
both the BoW approaches, without (BOW) and with pretraining (FASTTEXT). This
suggests that our model is capable of matching formulas based on characteristics that
go beyond merely counting the number of matching tokens. However, the graph neural
network GNN outperforms the sequential models in most scenarios, sometimes even
substantially. It is, however, noteworthy that of the transformer models, the mid-size
model is most useful.

For the mid-size and large models we observe the benefit of pretraining, as models
that were trained from scratch perform worse than their pretrained counterparts. For
the small models we do not consistently see this effect.

Overall, the recall at 10 for our approaches is already pretty high, which indicates
that our representation learning on structured data is useful in search engine applica-
tions where users generally want to inspect only a small number of results.

4.5.6 Conclusion

Finding relevant literature across disciplines is essential for research. The search results
should contain papers that are both relevant and stimulating. Very often, a look at
the formulas in a paper gives a compact description of the problems and solutions it
discusses. Hence, the goal is to find related papers based on the mathematical expres-
sions. This task is different from mathematical information retrieval, but it shares the
problem of determining the right representation of mathematical expressions.

In order to handle the large amounts of data that are common in search engine
applications, we need models that allow efficient computation of the vector represen-
tations. Our approach based on graph-neural networks is a good fit for this demand
as it makes use of the sparsely connected input graphs. As such it is much more com-

4.5 Millions of Formulas = 177

putationally efficient than the other transformer models that we considered in this
contribution.

We have demonstrated that representation learning on structured input is a useful
approach for mathematical retrieval. Self-supervised and embedding learning suc-
cessfully learned real-valued representations of tree-structures that allow efficient
nearest-neighbor searches.

