3 Streaming Data, Small Devices

Big data often stem from sensors that stream their measurements continuously. Imagine

for instance an embedded system that acts upon certain sensor inputs. Data streams

naturally occur in the Internet of Things, embedded systems and cyber-physical systems.

In particular, we encounter them in all kinds of small devices that have strictly limited

resources like limited energy, communication bandwidth, memory, and computational

power.

To model those scenarios from an algorithmic perspective and to quantify the
trade-off between the required resources and the accuracy achievable by a learning
algorithm, the algorithmic community has introduced the streaming model [523]. A
data stream algorithm makes one pass! over the data, presented in N items one by
one. Hereby, it maintains a summary of the stream whose size is limited to a sublinear
amount, often polylogarithmic in N or even constant. We distinguish between different
streaming models with increasingly dynamic updates:

Insertion-only data stream New items are only added to the data stream. The algo-
rithm processes one item after another and views each item as a new instance.

Dynamic data stream Items can be added or deleted from the data stream. The algo-
rithm processes the insertion or deletion of an item one after another. New items
can be added to the stream or already processed items can be removed from the
stream.

Turnstile data stream Every single feature or coordinate of data items can be modified
by adding or subtracting values to update the current state. This is the most general
case in which an algorithm needs to process the insertion of new items and updates
to old items within the stream including their removal from the stream when
subsequent updates add up to zero.

This chapter shows general algorithmic approaches to process and summarize stream-
ing data and surveys recent research in this area, including several contributions of the
CRC 876. It also highlights the importance of these topics for teaching so that the next
generation of researchers and practitioners may tackle future challenges in this area.
Section 3.1 on summary extraction from streams presents an insertion-only data
stream algorithm to maximize submodular functions, which are very important and
have many applications. Prominent examples include maximizing entropy, and mutual
information of selected subsets of data. The section surveys several state-of-the-art al-
gorithms for the problem and gives an own technical contribution. It covers algorithmic
and analytical methods for data streams and relaxations of worst-case conditions to

1 The number of passes is often relaxed to a small constant or logarithmic amount for problems where
single pass algorithms are impossible to obtain or where a multi pass algorithm allows significantly
improved results over what is possible in a single pass.

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
8 Open A © he author(s), published by De Gruyter. [(c) AN This work is li d under th

Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-003

72 =—— 3 Streaming Data, Small Devices

model typical behavior via probabilistic assumptions. The section may serve as a basis
for one lecture.

Section 3.2, on coresets and sketches, introduces general concepts for summarizing
data streams with respect to specific computational problems such as regression, classi-
fication, and clustering. It covers a brief technical introduction to coresets and sketches
and highlights their importance for the design of data stream algorithms. It surveys
the state of the art with a focus on contributions within the CRC 876. Each subsection
introduces one of the main research directions and provides briefly the central ideas
behind the results. The section may serve as a basis for a seminar or short lecture series
on the topic.

3.1 Summary Extraction from Streams = 73

3.1 Summary Extraction from Streams

Sebastian Buschjdger
Katharina Morik

Abstract: As processing capabilities increase, more and more data is gathered every day
everywhere on earth. While machines are becoming more and more capable of dealing
with these large amounts of data, humans cannot keep up with the amount of data
generated every day. They need small and comprehensive representative samples of
data, which capture all the informative parts of the data, in other words: a data summary.
Formally, we formulate the data summarization problem as a function maximization
problem with a cardinality constraint in which we seek to maximize a utility function f
while selecting up to K elements in total.

Due to their compelling theoretical properties, submodular functions have been
widely adopted as a utility function for data summarization. Submodular functions are
set functions that reward adding a new element to a smaller set more than adding the
same element to a larger set and thereby naturally lead to small and comprehensive
summaries. This fits the restricted resources of small devices. We want to do a step
further and model the summarization as a streaming algorithm. Streaming algorithms
evaluate each data item once and decide immediately, on-the-fly with a limited memory
budget, if an item should be added to the summary or not. These algorithms can be
run on small, embedded devices while data is generated and thereby provide a data
summary anytime with minimal computational costs.

In this contribution, we discuss the framework of submodular functions in more
detail and survey the current state of the art for streaming submodular function maxi-
mization. We analyze each algorithm for performance guarantees as well as runtime
and memory consumption. We end the contribution with a comprehensive comparison
between algorithms for real-world summarization tasks over data streams with and
without concept drift.

3.1.1 Introduction

While computers can process terabytes of data within seconds, humans are often
overwhelmed with the sheer amount of information available. Humans can inspect and
interact well with small, representative samples of data. Such a data summary must
capture all the informative parts of the data while being small and comprehensive.

In recent years, submodular optimization has found its way into the toolbox of
machine learning and data mining. It offers a well-established mathematical framework
to select small and comprehensible summaries for a variety of different tasks. The field

74 =—— 3 Streaming Data, Small Devices

of online submodular optimization studies algorithms that view each item only once
and then either add it to the summary or discard it.

Exploiting submodular optimization for summarization faces algorithmic chal-
lenges right where it is needed most, namely, in the context of the Internet of Things
(IoT), particularly regarding sensor networks and distributed processing, that needs
to be communication-aware and energy saving. Most of the data is produced by small
embedded electronics with limited processing and limited storage capabilities. Thus,
a data summary should be captured on-the-fly while the data is being generated and
before storing it. Currently, the best performing online algorithms offer an O(% -£)
approximation ratio where ¢ also influences the memory consumption of the algorithm.
Even moderate choices for € quickly result in an unmanageable resource consumption.
Feldman et al. [220] showed that this approximation ratio is the best possible for data
stream algorithms and that any algorithm with a better worst-case approximation guar-
antee essentially stores all the elements of the stream (up to a polynomial factor in K,
where K is the summary size).

Existing algorithms are designed for the mathematical worst case and thereby have
a worst-case approximation guarantee. We argue, that most practical applications are
much more well-behaved. This insight allows us to move beyond the worst case and
design an algorithm that delivers a good data summary under moderate assumptions.
The resulting algorithm offers a probabilistic approximation ratio of (1-£)(1-1/ exp(1))
with high probability (1-a)X, where a is the desired user certainty and K is the summary
size. It performs O(1) function queries per item and requires O(K) memory. Note, that
this result does not contradict the upper bound of O(% —¢) from [220] since our algorithm
offers a better approximation quality with high probability, but not for the worst case.

In the next section we will discuss the framework of submodular function maxi-
mization. After that, we discuss existing algorithms, whereas Section 3.1.4 details the
novel ThreeSieves algorithm. Section 3.1.5 presents practical experiments and Sec-
tion 3.1.6 concludes the contribution. Parts of this text were previously published as a
conference paper in [109].

3.1.2 Submodular Function Maximization over Streams

In this contribution, we consider the problem of maximizing a submodular function
over a data stream and focus on the task of data summarization. More formally, we
consider the problem of selecting K representative elements from a ground set D into a
summary set S C D. To do so, we maximize a non-negative, monotone submodular set
function f: 22 > R, which assigns a utility score to each subset:

S" = argmaxf(S) (€R)]

SCD,|S|=K

For the empty set, we assume zero utility f(#) = 0. We denote the maximum of f with
OPT = f(S"). A set function can be associated with a marginal gain which represents

3.1 Summary Extraction from Streams = 75

the increase of f(S) when adding an element e € D to S:
Ar(elS) = f(SU {e}) - f(S)
We call f submodular iff forall A C B C D and e € D\ B it holds that
Ag(e|A) = As(e|B)

The function f is called monotone, iff for all e € D and for all S C D it holds that
In general, the maximization of a submodular set function is NP-hard [214], which
makes solving Equation 3.1 difficult. Therefore, a natural approach is to find an ap-
proximate solution. Nemhauser et al. [230] presented a simple (1 - (1/ exp(1))) = 63 %
greedy approximation algorithm (denoted as Greedy in this contribution) for solving
Equation (3.1) which runs in linear time and requires a fixed memory budget. Greedy
offers a constant approximation guarantee and only requires O(K) memory. The disad-
vantage is that it requires K iterations over the entire ground set, which is costly if the
ground set is very large. Moreover, multiple iterations are impossible for streaming data.
Several streaming algorithms have been proposed that read each item exactly once
(when D is stored on disk) or process it once on arrival (a ‘true’ streaming setting). An
overview of these algorithms and their theoretical properties can be found in Table 3.1.
It is noteworthy that the majority of these algorithms achieve a 1/2 - € approximation
guarantee, where ¢ is the desired approximation quality. A recent analysis by Feldman
et al. in [220] implies that this approximation ratio is the best possible in a streaming
setting and any algorithm with a better worst-case approximation guarantee essentially
stores all the elements of the stream (up to a polynomial factor in K). Unfortunately, for
all these algorithms the memory budget and the number of function evaluations per
item depend on €. Even a moderate choice of € turns memory and runtime requirements
unmanageable for small devices.

We recognize, that the worst case is often a pathological case whereas practical
applications are usually much more well-behaved. Therefore, some papers recently
proposed to ignore these pathological cases and develop algorithms with a better ap-
proximation guarantee in most cases, while using fewer function queries and less
memory [109, 485, 517]. The first algorithm for monotone submodular function max-
imization with cardinality constraints that ignores edge cases is the Three Sieves
algorithm proposed in [109]. It estimates the probability of finding a more informative
data item on-the-fly and only adds those items to the solution that are unlikely to be
‘out-valued’ in the future. The resulting algorithm offers a probabilistic approximation
ratio of (1 - £)(1 - 1/ exp(1)) > 1/2 - & with probability (1 — a)X, where a is the desired
user certainty. It performs O(1) function queries per item and requires O(K) memory.

76 —— 3 Streaming Data, Small Devices

Tab. 3.1: Algorithms for non-negative, monotone submodular function maximization with cardinality
constraint K. ThreeSieves offers the smallest memory consumption and the smallest number of
queries per element in a streaming-setting. Adapted from [109].

. Approx. .
Algorithm Ratio Memory Queries Stream Ref.
Greedy 1-1/exp(1) O(K) o) X [230]
StreamGreedy 1/2-¢ 0 (K) O(K) X [258]
Random 1/4 O (K) 0@ v [215]
PreemptionStreaming 1/4 0 (K) O(K) v [91]
IndependentSetimprovement 1/4 0 (K) 0@ v [121]
SieveStreaming 1/2-¢ O(K log(K)/e) O(log(K)/e) v [32]
SieveStreaming++ 1/2-¢ O(K/eg) O(log(K)/€) v [367]
Salsa 1/2-¢ O(K log(K)/e) O(log(K)/e) W) [540]

(1- €)1 -1/ exp(2)

ThreeSi
reesteves with prob. (1 - a)*

O(K) 0Q) v [109]

3.1.3 Related Work

For a general introduction to submodular function maximization, we refer interested
readers to [393] and for a more thorough introduction into the topic of streaming sub-
modular function maximization to [124]. Most relevant to this contribution are non-
negative, monotone submodular streaming algorithms with cardinality constraints. To
the best of our knowledge, there exist six different algorithms which we survey here.
The theoretical properties of each algorithm are summarized in Table 3.1.

While not a streaming algorithm, the Greedy algorithm [230] forms the basis of many
algorithms. It iterates K times over the entire dataset and greedily selects the element
with the largest marginal gain A¢(e|S) in each iteration. It offers a (1-(1/ exp(1))) ~ 63 %
approximation and stores K elements. StreamGreedy [258] is its adaption to streaming
data. It replaces an element in the current summary if it improves the current solution
by at least v. It offers an 1/2 - ¢ approximation with O(K) memory, where £ depends
on the submodular function and some user-specified parameters. The optimal approxi-
mation factor is only achieved if multiple passes over the data are allowed. Otherwise,
the performance of StreamGreedy degrades arbitrarily with K (see the Appendix of [32]
for an example). We therefore consider StreamGreedy not to be a real streaming algo-
rithm. Similar to StreamGreedy, PreemptionStreaming [91] compares each marginal
gain against a threshold v(8). Here, the threshold dynamically changes depending
on the current summary 8, which improves the overall performance. It uses constant
memory and offers an approximation guarantee of 1/4. Feige et al. show in [215] that
for any non-negative submodular function a uniformly chosen random set is a 1/4
approximation. A uniform random set over a data stream can be obtained via reservoir
sampling [688]. Also Chakrabarti and Kale proposed in [121] a streaming algorithm
with approximation guarantee of 1/4. Their algorithm stores the marginal gain of each

3.1 Summary Extraction from Streams = 77

element upon its arrival and uses this ‘weight’ to measure the importance of each item.
We call this algorithm IndependentSetImprovement. Norouzi-Fard et al. [540] propose
a meta-algorithm for submodular function maximization called Salsa, which uses
different algorithms for maximization as sub-procedures. The authors argue, that there
are different types of data streams and for each stream type, a different thresholding
rule is appropriate. Their algorithm offers a 1/2 - € approximation, but some of the
thresholding rules require additional information about the data stream such as its
length or density. Since this is unknown in a true streaming setting, this algorithm is
not completely streaming-capable.

The first real streaming algorithm with 1/2 - € approximation guarantee was pro-
posed by Badanidiyuru et al. [32] and is called SieveStreaming. SieveStreaming tries
to estimate the potential gain of a data item before observing it. Assuming one knows
the maximum function value OPT beforehand and let |S| < K, then an element e is
added to the summary S if the following holds:

OPT/2 - £(S)

AelS) s =g

(3.2
Since OPT is unknown beforehand one has to estimate it before running the algorithm.
Assuming one knows the maximum function value of a singleton set m = max.cp f({e})
beforehand, then the optimal function value for a set with K items can be estimated
by submodularity as m < OPT < K - m. The authors propose the management of
different summaries in parallel, each using one threshold from the set 0 = {(1 + &)’ |
icz,mz(1+¢e)i<K- m}, so that for at least one v € O it holds: (1 -€)OPT < v < OPT.
In a sense, this approach sieves out elements with marginal gains below the given
threshold — hence the authors name their approach SieveStreaming. Note, that this
algorithm requires the knowledge of m = max.cp f({e}) before running the algorithm.
The authors also present an algorithm to estimate m on-the-fly which does not alter the
theoretical performance of SieveStreaming. Recently, Kazemi et al. proposed in [367] an
extension of the SieveStreaming called SieveStreaming++. The authors point out, that
the currently best performing sieve S, = arg max,{f(Sv)} offers a better lower bound
for the function value and they propose to use [max, {f(Sv)}, K - m] as the interval for
sampling thresholds. This leads to an algorithm in which sieves are removed once they
are outperformed by other sieves and new sieves are introduced to leverage the better
estimation of OPT. SieveStreaming++ does not improve the approximation guarantee
of SieveStreaming, but only requires O(K/e) memory instead of O(K log K/¢).

3.1.4 Getting More by Doing Less
SieveStreaming and its extension offer a worst-case guarantee on their performance

and indeed they can be considered optimal, providing that there is an approximation
guarantee of 1/2 - € under polynomial memory constraints in € and K [220]. However,

78 =—— 3 Streaming Data, Small Devices

we also note that this worst case often includes pathological cases, whereas practical
applications are usually much more well-behaved. One common practical assumption
is, that the data is generated by the same source and thus it follows the same distribu-
tion, e.g. for a certain time frame. In this contribution, we want to investigate these
better behaving cases carefully. This allows us to present an algorithm that improves
the approximation guarantee, while reducing memory and runtime costs in these cases.
More formally, we will now assume that the items in the given sample (batch processing)
or in the data stream (stream processing) are independent and identically distributed
(iid). Note, that we do not assume any specific distribution. From a data streams per-
spective this assumption means, that we ignore concept drifts and assume that an
appropriate concept drift detection mechanism is in place, so that summaries are, e.g.,
re-selected periodically. For batch processing this means, that all items in the batch
should come from the same (yet unknown) distribution. Please note, that in this case
we do not assume that all possible samples come from the same distribution, but we
merely assume that the sample we are given is consistent in the sense that all items
come from the same distribution. This is true for all data samples, where data items are
independent from each other, as we could simply define the overall distribution as a
mixture of simpler distributions. We now use this assumption to derive an algorithm
with (1 - €)(1 - 1/ exp(1)) approximation guarantee of high probability.

SieveStreaming and its extension maintain O(log (K) / s) sieves in parallel, which
quickly becomes unmanageable even for moderate choices of K and €. Both algorithms
show the following behavior: many sieves in SieveStreaming quickly fill-up with unin-
teresting events if their novelty threshold is too small. SieveStreaming++ exploits this
observation by removing small thresholds early on and focuses on the most promising
sieves in the stream. If the novelty threshold is too large, both algorithms deliver sieves
that never include any item. Actually, there are only a few thresholds that produce
small and comprehensive summaries.

The management of many sieves, each with its own threshold might be un-
necessary. Instead of using many sieves with different thresholds we use only a single
summary and carefully calibrate the threshold: we start with a large threshold that
rejects most items, and then we gradually reduce this threshold until it accepts some —
hopefully the most informative — items.

As discussed, theset 0 = {(1+¢)' | i € Z,m < (1 + €)' < K - m} offers a sufficient
approximation of OPT. We start with the largest threshold in O and decide for each
item whether we want to add it to the summary or not. If we do not add any of these
items (the exact threshold T for this will be discussed later) to S we may lower the
threshold to the next smaller value in O and repeat the process until S is full.

The key question now becomes: How to choose the threshold T appropriately? If T
is too small, we will quickly fill up the summary before any interesting items arrive that
would have exceeded the original threshold. If T is too large, we may reject interesting
items. Certainly, we cannot determine with absolute certainty when to lower a threshold
without knowing the rest of the data stream or knowing the ground set entirely, but

3.1 Summary Extraction from Streams — 79

we can do so with a bounded probability. More formally, we aim at estimating the
probability p(e|f, S, v) of finding an item e which exceeds the novelty threshold v for a
given summary S and function f. Once p drops below a user-defined certainty margin
T,i.e.,

plelf,S,v) st

we can safely lower the threshold. Now, we have transformed the original problem
of choosing the right threshold of utility to that of choosing the right length of T and
arrive at the problem of estimating the probability of making the right choice. Moreover,
this probability must be estimated on-the-fly. Most of the time, we reject e so that S and
f(S) are unchanged and we keep estimating p(e|f, S, v) based on the negative outcome.
If, however, e exceeds the current novelty threshold we add it to S and f(S) changes.
In this case, we do not have any estimates for the new summary and must start the
estimation of p(elf, S, v) from scratch. Thus, with a growing number of rejected items
p(elf, S, v) tends to become close to 0 and the key question is how many observations
do we need to determine—with sufficient evidence—that p(e|f, S, v) will be 0.

The computation of confidence intervals for estimated probabilities is a well-known
problem in statistics. For example, the confidence interval of binominal distributions
can be approximated with normal distributions, Wilson score intervals, or Jeffreys
interval. Unfortunately, these methods usually fail for probabilities near O [81]. However,
there exists a more direct way of computing a confidence interval for heavily one-sided
binominal distribution with probabilities near zero [351] when the novelty of items is
independent and identically distributed (iid). Then, the probability of not adding one
item in T trials is:

a=(1-p(elf,S, v))T < In(a) = Tln (1 - p(elf, S, v))
A first order Taylor approximation of In(1 - p(e|f, S, v)) reveals that
ln (1 _p(e|fy S, V)) =~ _p(e|fy S; V)

and therefore In (a) = T(-p(e|f, S, v)) leading to:

-In(a) _ .
—7 =pllf,S,v) st

Hence, the confidence interval of p(e|f, S, v) after observing T events is {0, = h}(”‘) } . For

example, with 95 % certainty the confidence interval of p(e|f, S, v) is [0, —In(0.05)/T]
which is approximately [0, 3/ T] leading to the term Rule of Three for this estimate [351].
We can use the Rule of Three to quantify the certainty that with high probability there
will not be a novel item in the data stream after observing T items.

Note, that we can set a and the user-defined threshold t and then compute the
minimum of the required number of observations T with the above relationship. Al-
ternatively, we may directly specify the maximum number of observations T as a user
parameter instead of a and 7, thus removing one hyperparameter. We call our algorithm

80 —— 3 Streaming Data, Small Devices

ThreeSieves due to its usage of the Rule of Three. It is depicted in Algorithm 1 and
analyzed theoretically in Theorem 1.

Algorithm 1: ThreeSieves algorithm.
10€{1+8)|iecz,m<(1+¢e)l<K-m}

2 v < max(0); 0 <« 0\ {max(0)}
35<0;t<0

4 for next item e do

5 | ifAf(e]S) 2 V/I?j";(f) and |S| < K then
6 S« Su{e}

7 t<0

8 else

9 t<t+1
10 if t > T then

1 v ¢ max(0)

12 0 < 0\ {max(0)}

13 t< o0

Theorem 1. ThreeSieves has the following properties [109]:

— Givena fixed groundset D or an infinite data stream in which each item is independent
and identically distributed (iid),

— ThreeSieves outputs aset S such that |S| < K and with probability (1-a)X it holds for
a non-negative, monotone submodular function f: f(S) = (1 - €)(1 - 1/ exp(1))OPT.

— It does one pass over the data (truly streaming) and stores at most O (K) elements.

3.1.5 Experiments

We now experimentally evaluate the following four questions:

Q1 IsThreeSieves’ performance competitive against the other algorithms in its practi-
cal performance given its probabilistic guarantee?

Q2 If ThreeSieves is competitive, how does it relate to a uniform random selection of
summaries?

Q3 How does ThreeSieves behave for different T and different £?

Q4 How large is the resource consumption of ThreeSieves in comparison with the
other algorithms?

We ask each algorithm to select a summary with exactly K elements. Since most algo-
rithms can reject items, they may select a summary with fewer than K elements. This

3.1 Summary Extraction from Streams = 81

makes a comparison between different algorithms difficult, because it favors algorithms
with larger summaries (f is monotone and hence adding items to the summary always
increases the function value), but not necessarily better summaries. For a fair compari-
son we ensure that all algorithms select a summary of size K by re-iterating over the
entire dataset as often as required until K elements have been selected, but at most
K times. We compare the relative maximization performance of all algorithms to the
solution of Greedy. We also measure the runtime and memory consumption of each
algorithm. The runtime measurements include all re-runs, so that many re-runs over
the data-set result in larger runtimes.

We will focus on two real-world data-sets. First, the ForestCover [157] data-sets
contains 286 048 examples of different forest cover types. Forest cover is the amount
of land area that is covered by forest. This proportion is structured into classes. The
learning task for this data-set is to predict the class of each cover by using the 10
provided cartographic variables that are obtained via remote sensing. Second, the
Creditfraud [443] data-set contains 284 807 fraudulent and legal bank transactions. The
learning task for this data-set is to classify each transaction using their 29 features.
However, we are interested to see a data summary for a user’ manual inspection of the
data. Hence, in our experiments we ignore the class information and aim at selecting
a diverse set of examples based on the features. More experiments using the novel
ThreeSieves algorithm can be found in [109].

We extract summaries of varying sizes K € {5, 10, ..., 100} maximizing the log-
determinant

f(S) = % log det(J + aZXs). (3.3)

Zs = [k(e;, e;)];j is a kernel matrix containing all similarity pairs of all pointsin S, a € R+
is a scaling parameter, and J is the identity matrix. In [619], this function is shown to be
submodular. Its function value does not depend on the ground-set D, but only on the
summary S, which makes it an ideal candidate for summarizing data in a streaming
setting. In [111], it is proven that m = maX,cp f({e}) = 1+aK and that OPT < Klog(1+a)
for kernels with k(-, -) < 1. This property can be enforced for every positive definite
kernel with normalization [268]. In our experiments we set a = 1 and use the RBF kernel
k(e;, ej) = exp (-5 - [le; — j]|3) with 1 = ﬁ where d is the dimensionality of the data.
We vary € € {0.001, 0.005,0.01,0.05,0.1} and T € {500, 1000, 2500, 5000}. 2

We present two different sets of plots. Figure 3.1 contains plots for varying K with
a fixed € = 0.001 (top figure) and plots for varying € with fixed K = 50 (bottom plot).
Both figures show the relative performance, the runtime and the memory consumption
for different algorithms. Note, that we excluded Random, IndependentSetImprovement,
and Greedy for varying ¢ as their performance is independent of it.

2 The code for these experiments is available under https://github.com/sbuschjaeger/
SubmodularStreamingMaximization/.

https://github.com/sbuschjaeger/SubmodularStreamingMaximization/
https://github.com/sbuschjaeger/SubmodularStreamingMaximization/

82 — 3 Streaming Data, Small Devices

Performance over Different K ThreeSieves with T = 5000 and Salsa generally per-
form best with a very close performance to Greedy for K = 20. For smaller summaries
with K < 20 all algorithms seem to underperform, yet Salsa and SieveStreaming
performing best. Using T < 1000 for ThreeSieves seems to decrease the perfor-
mance, which is reflected by the weaker guarantee of the algorithm. On Creditfraud,
ThreeSieves performs better than Greedy with a relative performance above 100.
Note, that only ThreeSieves showed this behavior, whereas the other algorithms
never exceeded Greedy. As expected, a uniform random selection shows the weakest
performance. SieveStreaming and SieveStreaming++ show identical behavior.

Please, note the logarithmic scale of the runtime. Here, we see that ThreeSieves
and Random are by far the fastest methods. Using T = 1000 offers some performance
benefit, but it is hardly justified by the decrease in maximization performance, whereas
T = 5000 is only marginally slower but offers a much better maximization performance.
SieveStreaming and SieveStreaming++have very similar runtime, but are magnitudes
slower than Random and ThreeSieves. Last, Salsa is the slowest method.

Regarding the memory consumption, please note again the logarithmic scale. Here,
all versions of ThreeSieves use the least resources as our algorithm only stores a
single summary in all configurations. These curves are identical with Random so that
only 4 instead of 7 curves can be seen. SieveStreaming and their siblings use roughly
two magnitudes more memory since they keep track of multiple sieves in parallel. As
expected, SieveStreaming++ uses less memory than SieveStreaming which uses less
memory than Salsa.

Performance over Different ¢ The behavior of the algorithms for different approxi-
mation ratios shows a slightly different picture than before. For larger € > 0.05 the per-
formance of the non-probabilistic algorithms remain relatively stable, but ThreeSieves
performance starts to deteriorate. For small £ < 0.05 and larger T ThreeSieves and
Salsa again perform best in all cases. Again, SieveStreaming and SieveStreaming++
show identical behavior. Regarding runtime and memory consumption we see a similar
picture as before: ThreeSieves is by far the fastest method using the fewest resources
followed by SieveStreaming(++) and Salsa. Again, note, that ThreeSieves requires
the same amount of memory in all configurations and hence we find an overlap in plots.

We Conclude the Experiments Insummary, ThreeSieves is competitive to the other
algorithms and sometimes even outperforms them. The probabilistic guarantee of the
algorithm comes along with a competitive performance in many cases while using
fewer resources. In some cases ThreeSieves even outperforms the Greedy algorithm.
ThreeSieves works best for small € and large T. In contrast to the other algorithms,
the resource consumption and overall runtime of ThreeSieves does not suffer from
decreasing € or increasing T.

3.1 Summary Extraction from Streams

Forestcover Creditfraud
100-|
@
8
s o0
E
s
5 8o
o
2 70
s
£ 6o
T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
10k 10k
1000+ 10004
@
g 1007 100-|
S 109
4
1
0.1 T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
M M
°
<
S
£ 10k 10k
£
3
£
3
T 00 100
13 W W
5
z
T T
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 8 90 100
K K
Greedy —8— IndependentSetimprovement Random —+— Salsa
SieveStreaming —— SieveStreaming++ ThreeSieves T = 500 —— ThreeSieves T = 1000
ThreeSieves T = 2500 —e— ThreeSieves T = 5000
Forestcover Creditfraud
@
8
S 90
E
2
&
80-|
:
s
o}
[
T T T T T T
0 002 004 0.06 0.08 01 002 004 008
1000 1000
=
o 1004 100
E
15 104
z 104
1N
EN = N 14
T T T T T T T T T T T T
0 002 004 0.06 0.08 01 0 002 0.04 0.06 0.08 0.1
B
£ 100k 100k-|
B
2 10 10k
3
5
1000 1000
g
Z 1004 100-|
T T T T T T T T T T T T
0 002 004 0.06 0.08 01 0 002 0.04 0.06 008 01
€ €
—+— Salsa — T T=500 —— ThreeSieves T = 1000

ThreeSieves T = 2500 —#— ThreeSieves T = 5000

83

Fig. 3.1: Comparison of IndependentSetImprovement, SieveStreaming, SieveStreaming++, Salsa,

Random, and ThreeSieves for different K values with fixed € = 0.001 (top figure) and different &
with fixed K = 50 (bottom figure). The first row shows the relative performance to Greedy (larger is
better), the second row shows the total runtime in seconds (logarithmic scale, smaller is better), and
the third row shows the maximum memory consumption (logarithmic scale, smaller is better). Each
column represents one data-set.

84 — 3 Streaming Data, Small Devices

3.1.6 Conclusion

Data summarization is a valuable tool for humans to inspect and understand large
amounts of data at a quick glance. For complex and long running processes these sum-
maries must be selected online while the data generating process takes place. While
the quality of a summary can be highly subjective to the task and person, submodular
functions offer a well-established mathematical framework to produce small and com-
prehensible summaries for a variety of different tasks. In this Section, we discussed
submodular functions and their maximization for data summarization. We focused
on the task of stream summarization in which each item is evaluated only once and
it must be decided on-the-fly whether it should be added to the summary or not. We
reviewed existing algorithms and their theoretical properties in this realm. They are
optimized towards the worst-case, whereas practical problems are often much more
well-behaved, in particular the data inside the stream are most often independent and
identically distributed (iid). This allows the ThreeSieves algorithm to compute good
summaries with high probability. We experimentally showed that ThreeSieves not
only outperforms the current state of the art, but also uses fewer resources by an order
of magnitude. The algorithm is designed such that kernel functions can be chosen.
This enables a more interactive data exploration for the human user, by, say, reviewing
multiple summaries with different kernel functions in a very short period of time.

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =——— 85

3.2 Coresets and Sketches for Regression Problems on Data
Streams and Distributed Data

Alexander Munteanu

Abstract: Coresets and sketches are small data summaries for a given computational
problem such as regression or clustering. They preserve the cost function for any pos-
sible solution up to little distortion and thus serve as a proxy for the original massive
dataset during optimization or inference. They have strong aggregation properties such
as linearity or mergeability and thus facilitate their construction for data streams as
well as for distributed data. Once the data summary is computed, it can be analyzed
using a classical algorithm and the result will be provably close to an optimal solution.
In summary, this improves the efficiency and scalability and enables streaming and
distributed computation using standard offline algorithms.

We show how linear sketching enables streaming and distributed data processing
and show how even static off-line coreset constructions can be extended to those
flexible computational settings via the Merge & Reduce principle. Next we survey classic
sketching and coreset results for ordinary linear regression and show how those can be
extended to more sophisticated models, such as Bayesian regression, generalized linear
models, and dependency networks. We also show the limitations of data summarization
via complementing lower bounds and how natural assumptions and parameterized
beyond-worst-case analysis help to overcome those limitations.

3.2.1 Introduction

Developing highly efficient regression approaches is an important research direction
that aims at making modern statistical regression methods scalable to large and high-
dimensional data and also to settings where computational resources are scarce as
is often the case in the Internet of Things (IoT). We pursue this goal via modern data
reduction approaches: we have seen in Section 3.1 how direct sampling methods can
summarize the items presented in a data stream. Here we focus on two further methods
called sketches and coresets. Those three approaches are arguably the most promising
and widely used methods to facilitate the analysis of mass data with provable accuracy
guarantees. See [565] for an extensive survey. In recent years a new paradigm called
sketch-and-solve has been established for dealing with mass data. The idea behind
sketch-and-solve is to apply a simple and fast dimensionality reduction technique in a
first step to compress the data to a significantly smaller sketch of at most polylogarithmic
size. Next, as a second step, we feed the sketch as input to a standard solver for the
problem. The theoretical challenge is to prove an approximation guarantee for the

86 —— 3 Streaming Data, Small Devices

solution obtained from the sketch with respect to the original massively large dataset.
The general algorithmic principle is shown in the following scheme:

X —H-> x)
{ +
B0 = I,

The classical way of data analysis is indicated by the left path, where we would feed the
massive dataset X directly to the algorithm and perform the computationally demanding
data analysis or learning task indicated by f(8|X). This might not even be possible when
the data does not fit in main memory or we encounter other computational restrictions.
Instead, we follow the path to the right, where the massive dataset X is reduced via a
dimensionality reduction mapping II to obtain a significantly smaller data summary
II(X) that is simple to calculate. The latter now fits into main memory and can be
given as input to the classical algorithm for an efficient data analysis. The bottom line
indicates that the result from analyzing the massive data is close to the result obtained
from the sketch. A comprehensive example is given in [245] where 2 TB of data are
compressed to only 140 MB with a parameter estimation error of less than 4 x 107° for
a streamed Bayesian linear regression task.

In light of the sketch-and-solve paradigm, we focus on algorithmic approaches for
the data reduction IT that can be efficiently implemented in streaming settings as well
as in distributed environments. In particular, we develop methods to aggregate data
and to reduce the number of observations using sketches via random linear projections
and coresets obtained by importance sampling.

Sketching and coreset methods for regression on large-scale data are important
areas of research with many interesting open questions. Although basic models are
meanwhile well understood, research on more complex modern statistical and machine
learning methods has just begun.

3.2.1.1 Brief Introduction to Coresets

Coresets are small, possibly weighted datasets that are designed to approximate an input
dataset with respect to a computational problem. A survey on common techniques
for obtaining coresets is given in [516]. Coresets usually depend on the considered
objective function or on a broader class of objective functions. The first definitions were
only implicitly given or were restricted to specific problems such as shape fitting or
clustering [35, 295]. We give a more general definition.

Definition 2 (see [516]). Let X be a set of points from a universe U and let I be a set
of candidate solutions. Let f : U x I > R*® be a non-negative loss function. Then a set
C C Xis an g-coreset of X for f and some € = 0, if

vy el :|f(X,y)-f(C,y)l<e-f(X,y).

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data = 87

Final Coreset

/ﬂ
/ T~

B, Ce Cio

/\ /\ /\

Data | } f f f f
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

Bo

Bs

B,

Fig. 3.2: lllustration of the Merge & Reduce principle from [246].

Note that the original point set is a perfectly accurate O-coreset but has linear size. To be
auseful data reduction, a coreset is required to be of sublinear size, e.g., polylogarithmic
or even constant in the number of input points. The dependence on their dimension is
usually allowed to be a small polynomial.

Coresets have been studied extensively for nearly two decades as a data aggrega-
tion and reduction tool to address scalability issues for a plethora of computational
problems. Coresets have been developed for shape-fitting problems [6, 7, 33, 34, 218,
402], clustering [35, 216, 219, 453, 485], classification [294, 297, 594], ¢,-regression [147,
188, 189, 432], ¢, -regression [141, 142, 637], £p-regression [161, 709], M-estimators [144,
146], generalized linear models, [327, 501, 517, 594, 664], and other areas. We refer to
[565] for an extensive survey and to [516] for a technical introduction to coresets.

Aggregation Properties and Merge & Reduce Most coreset constructions have
strong aggregation properties as outlined in [295] for instance:

Definition 3. Coresets are called mergeable if they satisfy the following properties:

1. IfCy and C, are e-coresets for input sets P1 and P, respectively, then C; U C; is an
e-coreset for Py U P,.

2. IfCyis an e-coreset for C,, and C, is a 6-coreset for C3, then C1 is an (e + 6)-coreset
for Cs.

Given an off-line coreset construction that satisfies those properties, we can easily
process data streams and distributed (or parallel) data via Merge & Reduce as a black
box technique. Merge & Reduce was first introduced in [47] as a general method for

88 —— 3 Streaming Data, Small Devices

extending static data structures to handle insertions. More recently, it has been adapted
to work on coresets in the streaming setting [6, 295]. Nowadays, it is one of the main
tools in the design of efficient streaming and distributed algorithms for the analysis
of mass data. Though often only implicitly mentioned, Merge & Reduce has become a
standard technique in the coreset literature. The merge(C,, C,) operation simply takes
the union as in the first item of Definition 3 whereas the reduce(P) operation calls the
off-line coreset construction algorithm on the point set P which can be used recursively
to compute an e-coreset from an e-coreset etc. using the second item of the definition.
Hereby, the error accumulates to ek after k recursive applications so one should control
the value of k = O(log n) by, say, employing a binary tree construction as in Figure 3.2.

Figure 3.2 illustrates the principle of Merge & Reduce data stream algorithms. Note
that all coresets are numbered in the order in which they are generated in a sequential
data streaming application. First, Block 1 containing a fixed number of points is read
from the stream into memory and the coreset C; is calculated. The same process yields
coreset C, derived from the data contained in Block 2 of the stream. Since C;, C, are
siblings in the tree, they are combined into C3 := reduce(merge(C, C,)). At this point
C,, C, are not needed any more and are thus deleted from memory. The Merge & Reduce
operations are indicated by the arrows in Figure 3.2. Now we proceed with C, derived
from Block 3 and Cs derived from Block 4. Since C4, Cs are siblings in the tree, they
are combined into Cg4 := reduce(merge(C,4, Cs)) and deleted. Again we have siblings
C3, C¢ on the same level, which are combined to C; := reduce(merge(Cs, C¢)) and
deleted. The procedure is continued in the same manner until we reach the end of the
stream. Say this is the case after processing Block 6. Note that at this point Cg, C9 have
been merged and reduced into C1o and have been deleted. The current state of the data
structure is that it holds only coresets C;¢ in bucket B,, i.e., on level 2, and C7 in bucket
Bs, i.e., on level 3, respectively. The buckets By and B; are empty at this point and
there are no further levels above level 3. Now a postprocessing step implicitly merges
C11 = reduce(merge(C;, C1o)) via the working bucket By.

The construction can also be computed in a parallel or distributed setting. One
possible scheme to achieve this, is to compute all coresets on the same level in parallel,
starting with coresets Cq, C, C4, Cs, Cg, Co on level 1 and proceeding with parallel
computation of C3, Cg, C10 on level 2 followed by C; on level 3 and finally deriving the
final coreset Cq1 from C7 and Cqg.

Techniques that are similar to Merge & Reduce were employed in the area of physical
design for relational databases [88]. Another interesting variant of Merge & Reduce
directly combines statistical models rather than data summaries such as coresets [246].
We refer to Section 2.4.3 in Volume 3 of this book series for details.

3.2.1.2 Brief Introduction to Sketches
Sketching was introduced in the context of the theory of streaming algorithms. Popular
examples include the Count-Sketch [123] the CountMin-Sketch [154], and the Rademacher-

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =——— 89

Sketch [145]. Many contemporary sketches are variations or descendants of those basic
techniques; see [708] for a survey and technical introduction. Similar to a coreset, a
sketch is a succinct data summary, but it is not restricted to a subsample of the input or to
representative substitute data points. Instead, any data structure of sublinear size with
an efficient update procedure for processing new points may be regarded as a sketch.
Usually, one encounters linear mappings, i.e., sketching matrices in the literature.
Indeed, most known data stream algorithms are represented by linear sketches and
there is some evidence that linear sketches are nearly optimal for such algorithms under
certain conditions [429]. Linear sketches can be maintained dynamically in a data
stream. Also, they have strong aggregation properties, which allow the combination
of individual sketches—stemming from distributed data—to one single sketch for the
entirety of the data. Sketching methods are much better positioned than coresets for
handling high velocity streams, as well as highly unstructured massive databases [249,
628] and arbitrarily distributed data [648]. Linear sketches allow efficient applications
in single pass sequential streaming and in distributed environments, see. e.g., [145,
354, 709]. Both, streaming and distributed computational settings are fundamental in
the analysis of very large datasets and are very important for embedded systems and
cyber-physical systems.

Linear sketches can be updated in the most dynamic streaming setting, which is
commonly referred as the turnstile model, cf. [523]. In this model, we initialize a matrix X
to be the all-zero matrix. The stream consists of (key, value) updates of the form (i, j, v),
meaning that X;; will be updated to X;; + v. Any entry can be defined by a single update
or by a subsequence of not necessarily consecutive updates. For instance, the sequence
...,(,j,25),...,(,j,-7),... will result in X;; = 18. Deletions are possible by using
negative updates matching previous insertions. Due to linearity, linear sketches support
operations such as adding, subtracting, and scaling entire databases X; (i.e., matrices or
vectors) efficiently in the sketch space, since ITIX = IT Zi a;X; = Z]. o;I1X;. For instance,
if X;, and X, are balances of bank accounts at time steps t; < t,, then IIT = I1X;, - IIX;,
is a sketch of the transactions T within the period t € (t1, t>].

3.2.2 Our Contributions

Our research focused on developing streaming algorithms for frequentist and Bayesian
linear regression as well as for generalized linear regression models. A common theme
consists in developing data reduction techniques such as sketching via random linear
projections or coresets via importance subsampling, retaining the statistical informa-
tion up to little distortion. Hereby, we address resource restrictions such as memory
access, communication cost, and runtime. Some highlights developed in the CRC 876 in-
clude coresets for specific classes of generalized linear models [501, 513, 515, 517] as well
as graphical models [501]. We developed sketches for Bayesian linear regression mod-
els [245] and extended them towards hierarchical priors [247] and generalized normal

90 — 3 Streaming Data, Small Devices

distributions defined over ¢p-spaces [511, 513, 637]. We translated the Merge & Reduce
principle from data summaries to maintaining statistical summaries in the streaming
model [246] and introduced an asymptotic data stream model [303]. Another signifi-
cant contribution lies in a dimensionality reduction for high-dimensional Bayesian
optimization in sketching-based embeddings of low-dimensional subspaces [512]. An
interesting further research direction is the development of dimensionality reduction
techniques for reducing the width of neural networks and studying the limitations
thereof [514].

3.2.2.1 Streaming Algorithms for Generalized Linear Regression

Generalized linear models (GLMs) extend classical linear regression to more flexible
classes of generating distributions, cf. [479]. Usually, one assumes that the realizations
of the dependent variable are generated from a member of the exponential family of
distributions, based on the independent observations. Well-known examples of such
distributions include the normal, binomial, Poisson, and gamma distributions. The
expectation of the dependent target variable Y is connected to the linear predictor X
via a link function h,

h(E(Y)) = XB,

where X is the independent feature variable and S is the unknown parameter vector.

There is extensive work on sampling methods for approximating regression prob-
lems including ¢,-regression [188, 189] and ¢; -regression [141, 142, 637]. Those were
generalized to ¢p-regression for all p € [1, o) [161, 709]. More recent works studied
sampling methods for M-estimators [143, 144, 146] and generalized linear models [327].
We continued this line of research on coresets and sketches for logistic regression [515,
517] and p-generalized probit regression [513].

Logistic Regression Logistic regression is an important instance of a Generalized
Linear Model [479]. The aim of logistic regression is to estimate the parameter 8 implic-
itly defining Bernoulli distributions based on the observed data. An exemplary task
would be to assess the impact and interactions of variables in predicting the probability
of patients suffering from a certain disease, based on their personal, physiological,
and diagnostic data. This learning task is based on a fixed set of patient data X € R™?
and corresponding labels Y € {-1, +1}" indicating whether a patient is healthy or not.
Folding the labels into the data we define row-vectors Z; = Y;X; forall 1 < i < n.

Our first result in [517] shows the impossibility of compressing the data sublinearly
in the input size, which holds in the worst case for any data reduction technique. To get
around this limitation, we introduced a novel parameter that can be used to bound the
complexity of compressing a dataset Z for logistic regression. This parameter is defined
by

i 1ZB)" I
M= s N

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =—— 91

where (ZB)*, (ZB)~ comprise only the positive and negative entries of ZB, respectively.

We call a dataset u-complex if it satisfies u(Z) < p. If the data is y-complex for a small,
not necessarily constant y, then there exists an importance sampling and reweighting
scheme based on the sensitivity framework of [219, 416] that produces an -coreset of
sublinear size 0(e 2puyv/nd3'? 10g°™ (und)) with high probability. A more involved re-
cursive sampling scheme produces an e-coreset of size 0(e~* 3 d3 1og®® (und)), which
is beneficial if the data is well-behaved and the input size is particularly large. Those
are the first provably sublinear coreset constructions for logistic regression.

The parameter u(Z) has an intuitive statistical interpretation and might be of inde-
pendent interest as detailed in [517]. It is not uncommon in practice that u(Z) is small,
since otherwise logistic regression exhibits methodological weaknesses.

Our experimental evaluation in [517] on real-world benchmark data shows that
there is an efficient implementation based on a sketched QR-decomposition that is more
accurate than uniform random sampling and state-of-the-art heuristic approaches such
as described in [327] while being competitive in terms of runtime.

Meanwhile, the coreset size has been reduced to O(¢~2u?d) by replacing the lever-
age scores in the importance sampling distribution by ¢ -Lewis weights [462]. This has
also improved the accuracy in experiments slightly, albeit at the cost of an increased
runtime.

However, one limitation of known coreset constructions is that they require two
passes over the data, one for approximating the importance sampling distribution
and another for subsampling and collecting the data. The recursive improvement to
polylogarithmic size, or calculating Lewis weights, requires even O(log log n) passes.
The Merge & Reduce framework is no remedy here due to the assumption of a small
u(Z). One might argue that a random order stream satisfies this condition for every
batch of data, but in a worst-case setting we would have u(Z;) > o for some batch Z;,
even in cases where u(Z) = 1.

Sketching Logistic Regression Towards creating a single-pass turnstile streaming
algorithm for mild pu-complex data with all computational flexibilities, we developed
the first linear sketch for logistic regression. Our main result [515] is a distribution over
stacked sparse random matrices

N

S O(log n)
T

Here, at each level i, S; first subsamples a 27! fraction of the input points which are
then hashed into a small number of buckets, where collisions are handled by summing
the elements in the same bucket. The construction is complemented by a small uniform

92 — 3 Streaming Data, Small Devices

sampling matrix T. The resulting sketch reduces n input points in d dimensions to only
O(poly(ud log n))xd. We prove that I1Z can be calculated over a turnstile stream in input
sparsity time, i.e., O(1) is spent on each non-zero element of the input. Moreover, with
high probability over the random construction of I, we have for § € argming f(I1Zp)
that

f(ZPB) < 0(1) min f(Zp),
BeR4

where f denotes the logistic loss function [515]. The intuition behind this approach is
that coordinates are grouped according to weight classes of similar loss that can be
handled separately in the analysis. Weight classes with a small number of members
will be approximated well on sketching levels with a large number of elements since
roughly all members need to be subsampled to obtain a good estimate. Weight classes
with many members will be approximated well on levels with a smaller number of
subsamples. This is because if too many members survive the subsampling there will
also be too many collisions under the uniform hashing, which would either lead to
a large overestimate when those add up, or, due to asymmetry, would cancel each
other and lead to large underestimations. Dealing with the asymmetry of the logistic
loss was another issue that needed to be controlled. The error could not be bounded if
the sign of an element was confused, since the ratio ¢(x)/¢(-x) is unbounded for the
loss function £(-) of unconstrained logistic regression. Finally, there could be too many
small contributions near zero. Logistic regression, unlike norms, assigns a non-zero
constant loss to them. Their contribution can thus become significant. This is taken
care of by the small uniform sample T of size O(ud).

Poisson Regression Poisson regression is another instance of a GLM model, which
aims at modeling count variables [479, 706]. A prominent example within the CRC 876
can be found in Section 4.1 in Volume 3 of this book series, where Poisson models
are used to predict the number of vehicles per minute passing sensors of the highway
ring around the city of Cologne. The predictions for a single sensor location are made
based on the measurements at all other locations and the parameters learned from a
Poisson regression model [284, 286]. This can be formalized as a Poisson dependency
network (DN) [301]. Dependency networks are graphical models comprising a collection
of GLMs, where each element of a set of d variables is regressed on all other variables.
Dependency networks have several interesting applications surveyed in [501], such as
collaborative filtering and density estimation, phylogenetic analysis, genetic analysis,
network inference from sequencing data, and traffic modeling as well as topic modeling.

In our work [501], we have developed coresets for dependency networks. Assuming
all GLMs in the dependency network to be ordinary linear regression models, we can
subsample and reweight the input points as in [188] to construct a coreset. Surprisingly,
we do not need to construct a coreset for each of the d GLMs separately. Instead, we

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =—— 93

can exploit the common subspace structure of all GLMs to show that it is sufficient to
construct one single coreset of size O(e~%d log d).

With Poisson GLMs, the situation is different. Again, we can show that in the
worst case, any data reduction technique produces either a summary of linear size or
fails to approximate the objective function to within a large superconstant factor [501].
Reviewing the statistical modeling for count data, we note that the Poisson lognormal
model is a statistical relaxation of the ordinary Poisson model [706]. It introduces a
connection to linear ¢,-regression that we can exploit to show that a reweighted sample
of size O(¢~2d log? d) gives a good approximation of the consistent maximum likelihood
estimator in this model [501].

Our experimental evaluation [501] shows that the importance sampling scheme
outperforms uniform sampling for the normal GLMs. For the Poisson GLMs the result is
not as remarkable and the log-likelihood approximation seems worse for large sample
sizes at first glance. But as the subsample size drops below 20 %, our method captures
more structure of the data. A remarkable, yet non-intuitive feature is that the approxi-
mation is capable of making better predictions than the optimal model [501]. Similar
effects have been observed independently in the general setting of randomized linear
algebra algorithms [461] and was attributed to an implicit regularization effect, since
the distortion induced by the approximation prevents the model from overfitting the
original data.

3.2.2.2 Sketches and Coresets for Bayesian Regression

Let us now focus on theoretical aspects of data compression for Bayesian regression.
We point the interested reader to Section 2.4 in Volume 3 of this book series for more
methodological results and applications. Bayesian regression does not assume a fixed
optimal solution for a dataset as is required in the frequentist case. Instead, it introduces
a distribution over the parameter space. The likelihood function £(Y|X, B) models the
information that comes from the data. The prior distribution ppre () models problem-
specific prior knowledge. Our goal is now to explore and characterize the posterior
distribution ppost(8), which, as a consequence of Bayes’ theorem, is a compromise
between the information from observed data and from the prior knowledge that we
assume for the parameters?

ppost(ﬁ‘Xa Y) L(Y|X; B) ’ppre(ﬂ)-

Random Projections for Bayesian Regression Our work on random projections for
Bayesian regression [245] extends previous work on frequentist /, -regression [145] to the
Bayesian setting. Certain types of random projections studied in theoretical computer
science form a so-called e-subspace embedding. Those are linear sketches for ¢,-spaces,

3 Here, a < b means that there exists a constant ¢ > 0 such that a = cb.

94 —— 3 Streaming Data, Small Devices

which preserve the /,-norm of all vectors in a linear subspace with little distortion. The
guarantee we obtain is that there exists a distribution over sketching matrices IT with a
reduced target dimension O(d/¢) such that

VB e R : (1~ Va)|IXBll < |TTXB| < (1 + V&) | XB|»

holds with high probability over the random choice of I1. This implies that it preserves
the ¢,-regression error up to a factor of (1 + €) [145], i.e., if we solve the compressed
regression problem to obtain § € argming pa |IT(XB - Y)|| then B satisfies

IXB = Y]l = (1 + &) min ||X8 - Y]l,.
BeRd

For Bayesian regression we also apply an e-subspace embedding II to compress the
data matrix [X, Y] € R™@D to a sketch [IIX, ITY] € R*@*D for slightly larger k €
O(poly(d)/&?), whose dimensions notably do not depend on n. Our main finding is
that the results of a Bayesian analysis on the sketch and on the original dataset are
also similar up to little distortion, depending on the approximation parameter . More
specifically, if we denote by p = ppost(B|X, Y) and g = ppost(B|IIX, IIY) the posterior
distribution on the original data and on the sketch respectively, then p =¢ g, i.e., they
are close to each other. We can quantify the approximation via the Wasserstein distance
[245]. This choice is especially appealing, because it relates the distance of probability
measures to properties in the ¢,-space over which they are defined. For normal distri-
butions this entails that their location parameters as well as their covariances are close
to the original.

The aforementioned results were restricted to the most prominent case of Bayesian
linear regression, namely to the basic case of a likelihood based on Gaussian distribu-
tions and a multivariate normal distribution as a prior. The model class of the prior
includes the degenerate, but common non-informative choice of a uniform distribution
over R,

Hierarchical Models Hierarchical regression models offer an extension of the previ-
ous result to a broader class of prior distributions [247]. They present a modern statistical
approach that is especially useful when information on different levels is present, e.g.,
in a meta-analysis, where raw data is available for some studies, but only averages for
the others [699]. A hierarchical model is given by

ppost(ﬁr 6|Xr Y) X L(Y|X’ B) * ppIE(ﬁ‘e) * phyper(g)»

where the prior on 8 on the first level depends on a hyperparameter 0 that is again
modeled via a hyper-prior pyyper(6) on the second level of the hierarchy. Such models
can be naturally extended to model arbitrary, deep or broad hierarchies, and to model
numerous different populations.

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =—— 95

Generalized Normal Prior Distributions Generalized normal priors are another
modern statistical extension that we study [247, 511]. They result from generalizing the
inducing norm from ¢, to ¢p for p € [1, o). Their probability density function is given

by
_ D Cx-pP
f(")‘Zcr(l/p)e"p< &)

where y is a location parameter and ¢ is a scale parameter. The parameter p determines
the shape and heaviness of the tails. Special cases include the normal distribution for
p = 2, the Laplace distribution for p = 1, and the uniform distribution on [u - ¢, u + ¢]
for p > oo. Generalized normal distributions have been suggested and employed as a
robust alternative to model deviations from normality [438] and to model a Bayesian
analogue of LASSO regression [554]. Alternatively, they can also be employed to model
a higher sensitivity to outliers [513]. This is also important in the context of correcting
statistical models [518].

Generalized Normal Likelihood Distributions Generalized normal likelihoods can
also be treated with subspace embeddings. We note that the first such generalization
for ¢, was developed in the CRC 876 [637]. The case p € [1, oo) can be approximated in
a similar way as in the case of normal distributions via further generalized subspace
embedding techniques for ¢, [709]. However, this is technically more challenging
[511]. One complication is that the embedding sizes are much larger for p > 2 than
for p < 2. The other problem is that the distortion is as large as O((d log d)'/P) rather
than (1 £ £). We thus use the random projection only in a preprocessing step [511] to
obtain a so-called well-conditioned basis, which can be thought of as an ¢y-analogue
to an orthonormal basis for ¢,. From this we can derive sampling probabilities such
that by taking 0(d?"*3 log? d log(1/¢)e %) reweighted random samples, we achieve the
desired (1 + €) distortion. This is in line with [709] for p > 2 but is slightly weaker for
p € [1, 2]. However, our simpler unified algorithm applies universally to both cases.
Similar methods were recently developed for obtaining coresets for the p-generalized
probit model [513] and are currently being extended to the Bayesian setting.

3.2.2.3 Bayesian Optimization in Embedded Subspaces
Bayesian optimization (BO) has emerged as a powerful technique for the global op-
timization of black-box functions that are expensive to evaluate [80, 235, 624]. Here
‘black-box’ means that we may evaluate an unknown but fixed objective function f at
any point to observe its value, possibly with noise but without derivative information.
The goal is to find

x e argmin,ce f(x)

over a set G, the domain of optimization, which can represent constraints, such as a
box-constraint € = [-1, 1]° on a large D-dimensional domain, for instance.

96 —— 3 Streaming Data, Small Devices

The advantages of Bayesian optimization are sample efficiency, provable convergence to
a global optimum, and a low computational overhead. A critical limitation is the num-
ber of parameters that BO can optimize over. This is especially true for the most common
form of BO that uses Gaussian Process (GP) regression as a surrogate model for the objec-
tive function. Thus, it is not surprising that expanding BO to higher-dimensional search
spaces is widely acknowledged as one of the most important goals in the field [235].
Our work [512] advances the field, both, in the theory of high-dimensional Bayesian
optimization and in improving practical performance.
The idea of Bayesian optimization is to learn a Gaussian process surrogate model
on the previous evaluations in order to gain knowledge on where to evaluate next by a
simpler optimization of an acquisition criterion, e.g., the Expected Improvement (EI).
Under the assumption that the objective function depends essentially only on a low
d.-dimensional effective subspace of an ambient high-dimensional space, we used
a sparse subspace embedding matrix to perform the optimization in an intermediate
subspace of dimension 0(d2/e?). This solved several open problems in the area [512]:
1. It fixed the problem of large dilations that caused previous Gaussian embedding
matrices to project the evaluation points out of the feasible region of optimization.
2. We provided a rigorous proof that the underlying Gaussian process is well approxi-
mated in terms of its mean and variance functions, which indicates that the sample
efficiency is preserved.
3. We extended the result under mild assumptions to several highly non-linear kernel
spaces, which may be of independent interest.
4, Itis computationally much faster than previous and contemporary approaches due
to the sparse embedding.
5. It performs among the best algorithms in practice even when the low-dimensional
assumption is not satisfied, cf. [201].

We refer to Section 2.5 in Volume 3 for more research and applications using Bayesian
optimization.

3.2.3 Conclusion

We introduced the concepts of coresets and sketching, which are methods for sum-
marizing data in such a way that the reduced dataset retains provable approximation
guarantees for a given computational or statistical learning problem. This enables
analyzing data in resource-constrained environments such as data streams and dis-
tributed systems, sensor networks etc., which are common in embedded systems and
cyber-physical systems. By reducing the data before their aggregation or analysis, our
methods help to save computation time and memory requirements and support com-
munication awareness. Consequently, this also saves resources on a lower technical
level, for instance energy and bandwidth.

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data =—— 97

Originating from the theory of computing community in the early twenty-first century,
those methods have paved their way into the machine learning and statistical commu-
nities over the last decade ever since the Big Data hype. From there, they are anticipated
to spread into all kinds of technical and application domains in the near future. This
also underlines the importance of integrating them into contemporary undergraduate
and graduate training programs.

Research on data reduction techniques, such as coresets and sketching, is an
evergrowing field from theoretical and from applied perspectives. The limitations and
possibilities for relatively simple but important base problems like linear regression
are now well-understood. But it remains open and challenging in many cases to extend
research to more sophisticated and computationally more demanding methods such as
Bayesian statistics, and neural networks.

We anticipate great advances in the field of Bayesian statistics. The advantages of
those methods lie in their theoretical statistical foundation, the interpretability of their
models, and their built-in quantification of uncertainty. However, normally Bayesian
methods require horrendous amounts of resources. Our fundamental research has
shown initial approaches for making those methods scalable and resource-efficient,
and leaving still a lot of potential for future research.

