1 Introduction

Katharina Morik
Jian-Jia Chen

Abstract: An enormous amount of data is constantly being produced around the world,
both in the form of large volume as in that of large velocity. Turning the data into
information requires many steps of data analysis: methods for filtering and cleaning
the data, joining heterogeneous sources, extracting and selecting features, summa-
rizing and aggregating the data, learning predictions, estimating the uncertainties
of the learned model and monitoring the model fitness in its deployment. All these
processes need to scale up, whether the long analysis workflows are integrated into
a deep learning architecture, or not. The data ecosystems no longer allow us to take
von Neumann architecture for granted where only compilers or application systems
address hardware issues. Specialized architectures for accelerating machine learning
have been developed, and machine learning algorithms have been tailored to novel
computer architectures. Both trends are aiming at efficiency, in particular the efficient
use of given resources: the real time of execution, the amount of energy, memory and
communication. In the struggle for sustainability resource restrictions are of utmost im-
portance. Energy consumption in particular receives considerable attention. We believe
that resource efficiency cannot be achieved by better machine learning algorithms or
by better hardware architectures alone. It demands the smart combination of hardware
and algorithms.

This chapter introduces the fundamentals of machine learning under resource con-
straints. Resource-aware machine learning is a new and important research field. It is
motivated by the following three issues.

— The resource constraints, regarding energy consumption, memory requirements,
real-time processing, and communication, are to be inspected and investigated
under a large diversity of scientific viewpoints.

— The trend towards the Internet of Things (IoT) and the many data producing de-
vices like cyber-physical systems or embedded systems pose a challenge to data
processing. It has led to the programming paradigms of distributed analysis and
federated analysis, with data summaries or compression as hot topics.

— The integration of machine learning and modern hardware has started to raise
international awareness and research efforts.

We want to describe the new field and highlight the contributions of the Collaborative
Research Center (CRC) 876 to creating it. The topical overview of machine learning

en Access. © 2023 the author(s), publishe e Gruyter. | A5 is work is licensed under the
8 Open A © he author(s), published by De Gruyter. [(c) AN This work is li d under th

Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-001

2 =—— 1 Introduction

under resource constraints is divided into three sections. First, we discuss research
on embedded systems and sustainability in Section 1.1. Then, we focus on machine
learning and its energy consumption (Section 1.2). Section 1.3 considers approaches to
reducing another important resource: the memory requirements of machine learning.
Finally, in Section 1.4, we give an overview of the chapters of this book, which follow
the steps of the data analysis process (Section 1.4).

1.1 Embedded Systems and Sustainability

Efficient and high-speed computing has always played a central role in the innovation
of information and communication technology (ICT). It is rooted in the widely circulated
document “First Draft of a Report on EDVAC” (Electronic Discrete Variable Automatic
Computer) by John von Neumann [527]. Over decades, the von Neumann architecture,
which consists of a processor unit, a control unit, a memory unit, and input/output
peripherals, has been used to efficiently execute programs.

Although ICT has enabled many applications with a high impact on human society,
more and more electricity is consumed worldwide. The growth of ICT also has a global
impact on the sustainability of the electricity and CO2 footprint worldwide. It is projected
that by 2030 ICT will account for 7 % and 20 % of global demand under the optimistic
and expected estimated scenarios, respectively [18]. Hence, hardware and software
researchers and engineers cannot simply ignore energy efficiency when evaluating their
systems and workloads. With Moore’s law and Dennard scaling, the improvement of
clock frequency of central processing units (CPUs) continued over decades until roughly
2005-2007. Nowadays, the transistor counts in integrated circuits are still growing, but
the frequency improvement has ceased as power consumption and thermal dissipation
have become the scaling bottleneck.

The discontinuation of Dennard scaling has resulted in the boosting of application-
specific hardware accelerators in modern computers to perform efficient and high-speed
computing. When Graphics Processing Units (GPUs) were introduced (in 1999 by Nvidia),
they were only designed to accelerate the rendering of graphics. Today, application-
specific GPUs have become general-purpose vector processors. For machine learning
algorithms, specific accelerators include Google’s Tensor Processing Units (TPUs) and
Apple’s Neural Engines. Until the late 1980s, information processing could only be
performed on large mainframe computers. Later, the innovation of system integration
and technology miniaturization enabled embedded systems, i.e., information processing
embedded in enclosing products.

Nowadays, embedded systems are pervasive in human society and are widely
used in cars, trains, planes, telecommunication, fabrication, ambient intelligence,
and decision making. Such embedded systems typically interact with the physical
environment to collect information and/or control/influence the physical environment.
They share certain common characteristics and have to adhere to certain resource

1.1 Embedded Systems and Sustainability =—— 3

constraints, independent of the application area. Embedded systems are the core of
many innovations, such as cyber-physical systems (CPS), Internet of Things (IoT), and
Industry 4.0.

The pervasiveness of embedded systems and sensors contributes to the big data
computing paradigm, in which data is collected and processed in the cloud. However,
transferring data to the cloud consumes time and energy and may not be feasible due
to privacy concerns. To address such issues, edge computing, in which embedded edge-
nodes process their data locally and potentially share an abstracted model among each
other, is an emerging computing paradigm. Such a paradigm shift is also motivated
by privacy and security concerns and pushed by governmental policies, such as the
California Consumer Privacy Act and the European Union’s General Data Protection
Regulation, GDPR, which disallow sending/storing sensitive user data to central servers.
For example, Gaia-X is an initiative to establish an ecosystem for the next generation of
data infrastructure complied with GDPR.

Such a paradigm shift is also driven by the advances of IoT and embedded devices.
The annual DataSphere and StorageSphere forecasts published by International Data
Corporation (IDC) in 2021 show that “IoT data (not including video surveillance cameras)
is the fastest-growing data segment, followed by social media.”* According to Statista,?
the number of IoT devices will reach 25.44 billion in 2030.

Embedded systems and IoT devices do not just imply that the computation power
is insufficient. Furthermore, they are typically subject to stringent resource constraints
due to the design optimization for resource efficiency without sacrificing dependability.
Specifically, their energy consumption needs to be particularly small. One study [282]
analyzes the tradeoff between performance, measured as MobileNet v1 throughput, and
the carbon footprint of mobile devices from Google, Huawei and Apple. They concluded
that “from 2017 to 2019, software and hardware optimizations primarily focused on
maximizing performance, overlooking the growth trend of carbon footprint.” [282]

Under resource constraints, memory can be critical both for the code size and the
run-time stack size since larger on-chip memory capacity generally leads to higher cost
and higher energy/power consumption. Nowadays, the speed of off-chip memories is
much slower than that of processors, resulting in the memory wall problem. In response,
memory hierarchy has been developed in the last decades to enable the illusion that
a large memory capacity can be created without significantly losing efficiency. Under
such a scheme, modern embedded processors may have either a hardware-managed
cache or a software-managed scratchpad memory (SPM), which can be utilized for
performance and energy improvement by exploiting temporal and spatial locality.

Under von Neumann architecture, data movement between the physically-
separating processing and memory units can be a performance bottleneck for both

1 https://www.idc.com/getdoc.jsp?containerld=prUS47560321.
2 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

4 =—— 1 Introduction

energy consumption and performance. Such a bottleneck can be avoided by consid-
ering hardware, that offers processing capabilities so that the data resides without
the need to move it. This includes Logic-in-Memory (LiM) and Processing-in-Memory
(PiM). LiM can be achieved by realizing Boolean logic (e.g., XNOR, NAND, etc.) using
both conventional CMOS [8] and emerging beyond-CMOS [535] technologies. PiM can
be achieved by exploiting the memory as a crossbar array for efficient vector-matrix
operations. For example, TSMC has recently demonstrated an application-specific
integrated circuit (ASIC) chip at the 22nm node, which offers an SRAM-based full-
precision PiM macro [138]. In January 2022, Samsung published a crossbar array of
spin-transfer-torque magnetoresistive random-access memory (MRAM) for in-memory
computing [352].3

In summary, edge computing is considered a key pillar to support artificial intelli-
gence and machine learning in pushing our societies to an unprecedented technological
revolution. In view of the above discussions, embedded system designers must un-
derstand how machine learning algorithms work and machine learning algorithm
designers must understand how the underlying hardware can be efficiently utilized for
executing machine learning algorithms.

In this book, we inspect cooperative work that aims at resource efficiency for a
sustainable future. Focusing on embedded systems, the contributions in Chapter 6
discuss hardware-aware machine learning, including learning on FPGAs in Section 6.1,
optimizing the learning on multicore systems in Sections 6.4 and 6.3 and processor-
specific transformations in Section 6.2. Furthermore, memory awareness is investigated
in Chapter 7, covering memory footprint reduction in Section 7.1, machine learning
based on emerging memories (potentially beyond the classic von Neumann architecture)
in Section 7.2, and cache-friendly machine learning in Section 7.3.

When devices are connected, communication, synchronization, and offloading are
essential. With this in mind, effective synchronization with resource sharing, communi-
cation with potential failures, and probabilistic timing information are investigated in
Section 8.1. Section 8.2 considers bandwidth limitations of different execution models
and coprocessor-accelerated optimization.

The next sections focus on machine learning and introduce the Chapters on energy-
and memory-saving machine learning methods.

1.2 The Energy Consumption of Machine Learning

Machine learning has always been a central part of Artificial Intelligence (AI). Already
Allen Turing argued that programming a computer cannot scale up to the performance

3 https://news.samsung.com/global/samsung-demonstrates- the-worlds-first-mram-based-in-memory-
computing.

https://news.samsung.com/global/samsung-demonstrates-the-worlds-first-mram-based-in-memory-computing.
https://news.samsung.com/global/samsung-demonstrates-the-worlds-first-mram-based-in-memory-computing.

1.2 The Energy Consumption of Machine Learning = 5

that a learning machine can achieve [673]. According to the Al index of Stanford
University in 2022, publications in pattern recognition and machine learning have more
than doubled since 2015. Other areas strongly influenced by deep learning, such as
computer vision, data mining, and natural language processing have seen smaller
increases.*

The classes of algorithms in machine learning are too many to be characterized,
here. The field of machine learning covers a wide range. A bird’s-eye view sees different
approaches: geometric (e.g., decision trees, support vector machines), probabilistic
(e.g., probabilistic graphical models, Bayesian models), combinatoric (k-means, fre-
quent sets), logic (e.g., inductive logic programming), reinforcement models (e.g.,
bandit models), and neural networks (deep learning).

At a more technical level, we see learning tasks that specify the formal basis of
machine learning methods, defining what is learned (classification, regression, proba-
bility density, cluster model), from what it is learned (real-valued vectors, time series,
categorical data, count data), under which constraints (quality criteria, streaming/on-
line, distributed). As is common in statistics, the term “model” is used not only for the
class of possible learning results given the types of input, output and quality criteria,
but also for a particular instance, the learning result.

Combining approaches and learning tasks, we see the areas of machine learning. All
of them are growing. Several algorithms have been developed within these areas. Many
of them use algorithms for underlying inner procedures or compose learning methods
using building blocks such as kernel functions, matrix factorization, optimization,
regularization, or sampling. Investigating machine learning at all levels, from the
models to hardware architectures, is the particular profile of the research that has been
undertaken by the Collaborative Research Center 876 (CRC 876).

Today, resource restrictions are of utmost importance. Energy consumption in
particular receives considerable attention. Machine learning is put to good use in
order to save energy for sustainability. Google considers the application of DeepMind’s
machine learning to its data centers to be its most important application. The energy
used for cooling could be reduced by up to 40 % through machine learning.> Machine
learning algorithms themselves are enhanced for low energy demands. One of the
invited talks at the International Conference on Machine learning (ICML) 2018—Max
Welling’s “Intelligence per Kilowatt-hour” supports our approach to joining embedded
systems and machine learning research. Its author said, “The next battleground in
Al might well be a race for the most energy efficient combination of hardware and
algorithms.” CRC 876 has contributed in exactly to this race. The results of its work
are reported here. In the following, we refer to the approaches described in this book
concerning machine learning and the resources of energy and memory.

4 aiindex.stanford.edu.
5 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

6 =—— 1 Introduction

In general, green computing and sustainable computing have received considerable
interest. On the one hand, machine learning decreases the ecological footprint of
processes in many applications (see, e.g., [418]). On the other hand, machine learning
itself might use tremendous amounts of energy. This is particularly true for big language
models such as GPT-3. A careful analysis by Patterson et al. [556] compares the CO,
footprint of different natural language learners. The relation of the run-time of training,
the number of processors and their average power consumption together with the
power usage efficiency of the particular computing center where the machine learning
algorithm is executed gives an estimated kWh. This, in turn, is used to calculate tons
of CO; equivalents: tCO,e = kWh x kgCO,e per kWh : 1000, where CO,e accounts
for carbon dioxide and other greenhouse gases, as opposed to CO, which only covers
dioxide. GPT-3 uses 552.1t of CO, for training its 175 billion parameters, when using the
V100 processor. The mere energy consumption is 1287 mWh for its 14.8 days of training.
In general, the ecological footprint of machine learning should be reported [305]. Tools
for estimating the energy consumption of particular machine learning algorithms have
been implemented for regular computing clusters [650].

In contrast to the research efforts regarding deep learning on large data-centers,
investigating the energy consumption of small devices has not yet received enough
attention. However, as we have shown above, the Internet of Things (IoT) connects
billions of small devices and produces extremely large amounts of data. Their energy
consumption needs to be particularly small. For an embedded system that is not plugged
into the grid, the availability of energy is a critical constraint for its lifetime. Even for an
embedded system plugged into the grid, the cost of energy due to increased computing
performance can be critical. Unnecessary energy consumption should also be avoided to
extend the lifetime of the embedded system. The power awareness and energy efficiency
of information processing on devices of the IoT are important for sustainable computing.
In this book, we focus primarily on small devices.

1.2.1 Measuring Energy Consumption

Investigating energy efficiency requires measuring energy consumption. Measuring
the true energy consumption directly is difficult because of noise sampling and the
need to use minimal resources for the sensing itself. The hardware-integrated sensing
instruments are often not precise enough for determining the energy consumed by
software running on an embedded system. An easy-to-use system for direct energy
sensing and an energy model for ARM processors based on linear regression have been
developed [105, 106]. Extremely restricted are the ultra-low-power devices that are used
in logistics, e.g., devices attached to a container. Based on reliable measurements,
the energy harvesting of devices with photovoltaic elements can be realized such that
the operating time is enhanced. Section 2.2 of this book shows the PhyNet testbed for
energy neutral sensor networks. A batteryless system, its indoor solar harvesting, and

1.2 The Energy Consumption of Machine Learning = 7

energy measurements are presented in Section 2.3. There, even the implementation of
a lightweight deep learning algorithm is included. Predicting the power consumption
in a communication network is particularly challenging. Section 9.2 presents methods
for modeling power consumption of embedded devices for different wireless commu-
nication technologies including a machine learning-based method for estimating the
transmit power from the available performance indicators, like strength and quality of
the received signal.

1.2.2 Different Processors

The energy consumption of different processors varies greatly. Using the example of
Quadratic Unconstrained Binary Optimization (QUBO), implemented by an evolution-
ary algorithm (EA), showed a stable order of magnitude of energy consumption over
diverse data-sets and parameter settings [510]. We indicate the numbers here because,
in general, such information needs to be given in scientific papers on machine learning.
Moreover, the Watt figures found in the QUBO experiments show the typical pattern of
magnitudes:

- Field Programmable Gate Arrays (FPGAs), 10°W,

~ CPU (Intel Core i7-9700K)10'W,

- GPU (Nvidia GEFORCE RTX 2080 Ti)10*W,

- QA (Quantum Annealer, IBM)10“W.

Our compute cluster consumes on average 6.25 kWh, or in the order of magnitude of
10°W. Of course, the particular energy consumption depends also on the number of
variables (here: 1024) and the parameters of the EA, e.g. the number of children in
each generation. However, the advantage of the FPGA can be estimated already on
the basis of these numbers. Since the compute cluster consumes 10> times as much
energy as does the FPGA, it would need to solve the learning problem in less time—here
in the order of 102 seconds—to use about the same energy, and this is not realistic.
Another example studies different implementations of applying a learned Decision
Tree (DT) model [110]. The classification is implemented in two different ways. One
implements the algorithm as is, the other unfolds the tree into if-else structures, aka
compilation. Energy consumption is then measured for FPGA (Xilinx Artix-7 Z-7020
FPGA with 53200 lookup tables, 106 400 Flip-Flops (FF) in total combined with 4.9 MB
block ram and 220 DSP units), and an ARM processor (Cortex-A9 with 666 MHz, 512 MB
DDR RAM and 512 kB cache). Each learned tree contains an average of 1349 nodes and
roughly 675 different paths from the root node to a leaf node. Throughput is measured
as elements per millisecond, energy consumption as nanoJoule per element. The native
implementation on FPGA uses 0.008 W or 6.84 nanoJoule per element to classify, on the
ARM processor 1.53 W or 105.5 nanoJoule per element to classify. The unfolded tree uses

8 = 1 Introduction

on FPGA 0.068 W or 45.95 nanoJoule per element to classify, and on the ARM processor
1.53 W or 52.76 nanoJoule per element to classify.

This general ranking of the order of energy consumption makes FPGAs attractive
for machine learning. In this book, Section 6.1 investigates reconfigurable multilayer
perceptron training on FPGAs and compares it with the PyTorch implementation. Fur-
thermore, Section 6.1 explores FPGA implementation of a Multilayer Perceptron (MLP),
a fundamental neural network structure for machine learning. FPGAs are especially
advantageous for deep learning because they support customized data types, where
GPUs support only a limited number of data types.

1.2.3 Reduced Run-Time and Real-time Processing

Many approaches to reducing the energy consumption of machine learning reduce the
run-time of a learning method. We take into account the execution of learning programs
and learned models not only regarding time complexity, but also regarding real-time
ability. Since many embedded systems are integrated into large products that interact
with the physical world, timeliness is an important issue. If the results are delivered
too late, they may have become useless. The computing of summaries “on the fly”, as
presented in Section 3.1, is designed to save memory and energy. In general, algorithms
for data streams require fast computing and memory reduction, as we discuss below.

The link between energy and memory reduction also becomes clear in the approach
to graph deep learning in Section 4.3, where a general message passing is scaled up
for arbitrarily large graphs. The remarkable speed-up of clustering run-time as demon-
strated in Section 5.1 certainly saves energy as well. Exploiting parallelism, even for
non-uniform workloads, is the key in Section 6.2 to reducing the run-time and increasing
the data throughput for database query execution. Section 6.3 describes extreme multi-
core computation, which exploits the independence of training for several thousand
labels. It trains each class versus all others using thousands of cores, each one learning
to predict one of the many classes. Along with the number of cores, the hardware-aware
parallel training solvers speed up until a saturation is reached and the speedup scales
only sublinearly.

Reducing run-time through an adaptive scheduling brings together the multi-core
computing architecture and machine learning. Section 6.4 examines the optimization
of the execution of diverse machine learning algorithms for parallel execution on a
multi-core architecture. The optimization itself also uses machine learning, namely, the
Bayesian model-based optimization . The Resource-aware Model Based Optimization
(RAMBO) framework saves energy through the run-time reduction.

1.3 Memory Demands of Machine Learning —— 9

1.2.4 Minimizing Energy Consumption of Machine Learning Processes

If minimizing the energy of machine learning processes builds upon the analysis of
the algorithms, statistical guarantees can be given. Exponential families are a model of
learning that covers many learning tasks, e.g., the estimation of probability density
as it is used by, say, topic models, or the prediction of the maximally likely state as
it is used by naive Bayes or conditional random fields. A careful analysis of learning
models may lead to running of very complex machine learning tasks on very limited and
even ultra-low energy devices. This book offers such an approach in Section 9.1, which
describes the Integer Markov Random Fields (IntMRF) along with their theoretical
foundations. Note that it is the underlying model class that is restricted to the integers;
it is not just a restriction of the state space to integers. Here, the state space may be a
random discrete space without any additional constraints. The reduced run-time and
energy savings are due to the cheaper operations. The novel bit-length propagation
algorithm (BL-Prop) allows computing using integers only, i.e. real numbers are not
quantized afterwards, but all the learning processing uses only integers. In addition to
previous work ([567]), Section 9.1 introduces the novel numerical optimization method
IntGD for convex objective functions. It is based on an accelerated proximal algorithm
for non-smooth and non-convex penalty terms. For integer gradients computed via
BL-Prop, IntGD is guaranteed to deliver a pure integer learning procedure in which the
final parameter vector as well as all intermediate results are integers. Integer Markov
random fields are almost as expressible as real-valued ones are, but can be executed
on an ultra-low-power device that does not offer floating-point operations [570].

As we have seen, there are multiple ways to reduce the energy consumption of
machine learning: developing algorithms for more energy efficient processors (FPGAs),
tailoring machine learning algorithms, optimizing their execution for a reduced run-
time, and even developing novel learning algorithms designed to save energy.

1.3 Memory Demands of Machine Learning
1.3.1 Deep Learning

Deep learning challenges the GPU memory due to its many hyperparameters, tensor
alignment, particular convolution algorithms, and operator scheduling. In a detailed
analysis of 4960 failed deep learning runs, Yanjie Gao and colleagues found 8.8 % of
them were caused by the exhaustion of GPU memory [242]. They then developed an
estimate for the GPU memory needs of deep learning models. In this book, the memory
demands of Graph Neural Networks (GNNs) are part of the work that is presented in
Sections 4.2 and 4.3. The usual mini-batch training becomes difficult in GNNs because
of the interdependency of neighboring nodes. The exponential growth of the graphs
has been shown in [455], which proposes sampling of edges. A more general solution

10 = 1 Introduction

for diverse GNN architecture is presented in Section 4.3. The novel GNN AutoScale
framework of message passing succeeds in making GNN applicable even in a streaming
setting, since for a single epoch and layer, each edge is processed just once.

The quantization of deep learning results in binary values of weights and activa-
tions, reducing the memory consumption drastically [325]. Binarized Neural Networks
(BNN) offer more lightweight processing. Combining machine learning and computer
architecture work has led to BNN on FPGAs for fast inference on very large streaming
data from astroparticle physics [112]. A further step towards the close interplay of algo-
rithms and hardware is to take into account modern memory technologies. Again, we
see the close relationship between energy consumption and memory architecture in the
case of approximate or non-volatile memories that reduce the energy consumption but
increase the bit error rate. For BNNs, bit flips in the weights or the activation values of
the network decrease the accuracy of the model. How many bit errors can be tolerated
at the hidden layers? The idea of max margin optimization, developed for Support
Vector Machines (SVM) [680], inspired a formulation of a bit error tolerance metric that
could be inserted into the BNN training [113]. Machine learning anticipates hardware
errors and thus produces a robust learned model for the energy-saving computing
architecture. Section 7.2 explains this approach of reducing the bit error rate within the
training of a BNN in more detail.

1.3.2 Summaries and Clustering

Data summary or aggregation is necessary in order to learn from distributed sensor
streams. Sketching or sampling has been theoretically investigated for clustering data
streams [70, 103]. Coresets and sketches summarize data such that they can be analyzed
by any learning algorithm and they can deliver approximately the same result as would
result from training on the full dataset [516]. Section 3.2 analyzes coresets and sketches
for distributed and streaming data. The analysis covers approaches to Bayesian and
generalized linear regression. A sparse subspace of the original high-dimensional data
space is proven to be sample-efficient. The data reduction saves not only memory but
also run-time and energy demand.

Summaries with a fixed memory size are often developed using submodular func-
tions. For video summarization, a submodular set function could be optimized subject
to privacy constraints [495]. In 3.1, sieve streaming with fixed-size memory is enhanced
for sampling the most informative observations “on the fly”. In addition to saving re-
sources, the novel ThreeSieves algorithm offers summaries for human interactive data
exploration.

Unsupervised learning partitions data in many different ways. This book presents
the clustering of graph data in Section 5.1 and of curves in Section 5.2. The scalability
of hierarchical agglomerative clustering is considerably enhanced by the BETULA
algorithm in Section 5.3.

1.3 Memory Demands of Machine Learning = 11

Some problems occur as building blocks of learning algorithms. Matrix factorization
is one of them. An approach of Binary and Boolean matrix factorization that is robust
with respect to noise is presented in Section 5.4. It uses proximal gradient descent
optimization and allows overlapping clusters.

Another one is the max dicut problem: partitioning of a directed graph into two
subsets such that the sum of the edge-weights between the two subsets is maximized.
Section 4.4 investigates this problem for parallel algorithms, that scale for very large
graphs.

1.3.3 Executing Machine Learning

On the level of programming languages and operating systems, smart resource utiliza-
tion reduces the memory footprint [388]. Moreover, the dynamic sharing of memory
can be optimized [596]. Section 7.1 presents a memory management layer between the
R interpreter and the operating system that reduces the memory footprint by allocating
memory only to pages in the memory that are required.

Decision trees (DTs), although one of the earliest machine learning algorithms, still
pose research challenges. Training several thousand DTs leads to millions of decision
nodes that must be stored in memory and processed in order to apply the learned model
to new data. Hence, inferences using DT ensembles demand a smart memory layout.
Cache memory moderates between the main memory and the processor. Preventing
cache misses requires a well-designed memory layout. Section 7.3 offers an imple-
mentation that optimizes the memory layout while preserving the original ensembles’
accuracy. A code generator automatically adapts to underlying architectures.

1.3.4 Regularization and Reparametrization

Regarding models of learning, the reduction of memory demand has been investigated
for the exponential families. The memory consumption of Markov Random Fields
(MRFs) is dominated by the size of its parameter vector. Since each parameter is usually
accessed multiple times during inference, they should be stored in a cache memory. The
key to compression is regularization and reparametrization, which exploit redundancies
in the true parameters. The general idea can be applied to discrete Markov random
fields and to multivariate Gaussian models [575]. Section 4.1 presents spatio-temporal
random fields. They model spatial networks as graphs and connected layers of these
graphs as temporal relations. A piecewise linear reparametrization of the parameters
of a clique (a part of the graph) is weighted by a decay vector, and the full model is
weighted by a corresponding decay matrix. In spatio-temporal random fields, it is
assumed that value changes at nodes do not change in sudden jumps over time. The

12 — 1 Introduction

reparametrization of spatio-temporal random fields based in this assumption is proven
to be universal, i.e. it is a bijection.

1.4 Structure of this Book

The book covers contributions from machine learning and embedded systems and
includes, in addition, algorithmic and database research that supports the overall goal
of resource-constrained data analysis. Its structure follows that of the workflow. It
starts with data of different kinds. Then it moves to executing machine learning and
the particular resource constraints, namely memory, communication, and energy. Each
chapter offers an introductory summary of its sections.

The book is organized as follows:

This book starts in Chapter 2 with the data collection of embedded system de-
ployments. Section 2.1 presents the system kCQL for collecting complex operating
system data. kCQL acquires and combines event streams and system states of oper-
ating systems while maintaining low overheads. A physical sensor network testbed
is presented in Section 2.2 that can be used for large-scale energy accounting, posi-
tion tracking, application testing, and system data collections. Modeling, analysis,
calibration, and evaluation of batteryless in-door energy harvesting systems are
presented in Section 2.3.

Chapter 3 considers data streams in resource-constrained embedded systems. Re-
garding summary extraction from streams, Section 3.1 presents an insertion-only
data stream learning algorithm based on maximizing submodular functions. Sec-
tion 3.2 covers a brief technical introduction to coresets and sketches and highlights
their importance for the design of data stream algorithms.

Chapter 4 presents methods and techniques to learning models for structured data
with resource-awareness. In Section 4.1, a probabilistic learning model of spatio-
temporal random fields is introduced, which reduces memory consumption with-
out loss of the accuracy through universal reparameterization. In Section 4.2, the
Weisfeiler-Leman algorithm is connected to learning methods such as graph ker-
nels and Graph Neural Networks (GNNs). In Section 4.3, a unified and scalable
framework for message passing in GNNs is proposed. Section 4.4 presents algo-
rithms to compute cuts in directed graphs with high quality, which scales well in
shared memory. Section 4.5 presents a new technique based on GNNs to search for
scientific papers, utilizing key mathematical formulas instead of key words.
Chapter 5 considers clustering in four complementary sections. Section 5.1 exploits
the sparseness of data for reducing memory requirements and run-time. Section 5.2
handles sequences of points using the Fréchet distance and details an approxima-
tion for their clustering. Section 5.3 characterizes methods for hierarchical cluster-
ing that are well suited for streaming data processing on edge devices with limited

1.4 Structure of this Book = 13

resources. Section 5.4 offers a novel optimization subject to binary constraints for
matrix factorization, a method that is entailed in many learning algorithms.

— Chapter 6 deals with the heterogeneity of execution platforms of embedded sys-
tems. Section 6.1 presents the acceleration of learning neural networks on Field-
Programmable Gate Arrays (FPGAs). Parallel executions utilizing graphics pro-
cessors (GPU) for efficient database query processing and multicore systems for
accelerating extreme multi-label classification are presented in Section 6.2 and Sec-
tion 6.3, respectively. The RAMBO framework that can efficiently optimize machine
learning models on heterogeneous distributed systems is discussed in Section 6.4.

— Chapter 7 presents optimizations of machine learning algorithms with respect to
memory. Section 7.1 demonstrates that the memory footprint can be effectively
reduced by leveraging application-specific knowledge. Section 7.3 proactively opti-
mizes the memory layout in the implementation of the machine learning model to
favor the underlying cache memories with a probabilistic perspective. Furthermore,
Section 7.2 presents how learning models can accurately process in environments
with unreliable memories if we take bit errors into account during machine learning
training.

— Chapter 8 considers embedded systems under communication constraints. It covers
synchronization with resource sharing, communication with potential failures,
and probabilistic timing information in Section 8.1, and discusses bandwidth limi-
tations of different execution models and coprocessor-accelerated optimization in
Section 8.2.

- Chapter 9 is about energy efficiency. Section 9.1 shows how to reduce the power
consumption of complex learning models such as Markov random fields through
integer-only operations. The novel Bit-Length Propagation (BL-Prop) and integer
gradient descent (IntGD) algorithms can be executed even on ultra-low-power
(ULP) micro-controllers. Section 9.2 uses machine learning in order to estimate the
power consumption of diverse communication technologies in wireless systems
unleashed from the power grid and light-weighted small wearables.

Each chapter and section is self-contained. You may select the chapter or section you
want to read by topic or by data flow of data analysis processes. You may want to read an
overall chapter or just some sections. Because we have written the book with teaching
in mind you can select a number of sections for specialized courses. Of course, we
also encourage readers seeking an in-depth understanding of the resource-efficient
combination of hardware and machine learning algorithms to read the entire book!

