Contents

Preface — V

Cha	pter	1
CHA	ptci	

Chapter 1	
What Is D	Digital Twin? Digital Twin Concept and Architecture —— 1
1.1	Difference Between Digital Twin and Simulations —— 2
1.2	History of Digital Twin Technology —— 2
1.3	Various Types of Digital Twins —— 3
1.4	Pillars of Digital Twin Technology —— 4
1.5	Advantages of Digital Twins —— 6
1.5.1	Digital Twin Market and Industries —— 6
1.6	Applications —— 7
1.7	The Future of Digital Twin —— 9
1.7.1	Digital Twins Predict the Present and the Future —— 9
1.8	Example of Digital Twin: An Engineer's Point of View —— 10
1.9	Digital Twin Architecture —— 11
1.10	Digital Thread: A Link Between the Real World and the Virtual
	Worlds —— 13
	References —— 14
Chapter 2	2
Benefits (of Digital Twin Modelling —— 17
2.1	Industry 4.0 —— 17
2.2	Industry 4.0's Digital Twin —— 20
2.3	Advantages of a Digital Twin —— 20
2.4	Things to Think About Before Using Digital Twins —— 22
2.5	Challenges to Implement Digital Twin —— 23
2.5.1	Data Analytics Challenges —— 23
2.5.2	IOT/IIOT Challenges —— 24
2.5.3	Digital Twin Challenges —— 25
	References —— 26
Chapter 3	3
Modelling	g of Digital Twin —— 27
3.1	Introduction —— 27
3.2	Design and Implementation of Digital Twin —— 28
3.2.1	Design of Digital Twin —— 28
3.2.2	Data —— 29
3.2.3	Modelling —— 29
3.2.4	Linking —— 29
3.2.5	Digital Twin Architecture —— 30

3.2.5.1	The Physical Layer —— 30
3.2.5.2	The Network Layer —— 30
3.2.5.3	The Computing Layer —— 31
3.3	Hardware/Software Requirement —— 33
3.3.1	Hardware Components —— 33
3.3.2	Data Management Middleware —— 34
3.3.3	Software Components —— 34
3.3.4	Digital Thread —— 34
3.4	Use of Case Study —— 35
	References —— 37
Chapter 4	
	n and IoT —— 39
4.1	Contribution of IoT in Development of Digital Twin —— 39
4.2	Digital Twin Use Cases by Industry —— 41
4.2.1	Supply Chain —— 41
4.2.1.1	Construction Companies —— 43
4.2.1.2	Healthcare —— 43
4.2.1.3	Use in Manufacturing Industry —— 43
4.2.1.4	Aerospace —— 44
4.2.1.5	Automotive —— 44
4.2.1.6	Self-Driving Car Development —— 44
4.3	Insight of Digital Twins in IoT —— 44
4.4	Applications of Digital Twin in Healthcare: A Case Study —— 45
4.4.1	Digital Twin of Hospitals —— 45
4.4.2	Digital Twin of Human Body —— 46
4.4.2.1	Diagnosis at Personal Level —— 46
4.4.2.2	Efficient Treatment Planning —— 47
4.4.3	Digital Twins for Development of Medical Instruments and Drugs —— 47
4.5	Challenges of Digital Twin in Healthcare —— 47
4.5.1	Less Adoption —— 47
4.5.2	Quality of Data —— 48
4.5.3	Privacy of Data —— 48
	References —— 48
Chapter 5	
	earning, AI, and IoT to Construct Digital Twin —— 49
5.1	Introduction — 49
5.2	Big Data, Artificial Intelligence, and Machine Learning —— 50
5.3	Big Data, Artificial Intelligence, Machine Learning, IoT, and Digital
5.5	Twin: A Relationship —— 51
5.4	Deployment of Digital Twin Using Machine Learning and Big Data —— 52

5.4.1	Smart Manufacturing —— 52
5.5	Use of AI —— 53
5.5.1	Digital Twin in Aerospace —— 56
5.5.2	Application of AI in Autonomous Driving —— 56
5.5.3	IoT in Self-Driving Cars —— 57
5.5.4	Big Data in Product Life Management —— 57
	References —— 58
Chapter 6	
•	and Smart Manufacturing with AI Solution —— 61
6.1	Introduction —— 61
6.2	Twinning of Components —— 62
6.3	Twinning of Products or Assets —— 62
6.4	Twinning of Process and Production —— 63
6.5	Twinning of Systems —— 63
6.6	Examples — 63
6.6.1	Aviation Industry —— 63
6.6.2	Automobile Industry —— 64
6.6.3	Industry of Tyre Manufacturing —— 64
6.6.4	Power Generation —— 64
6.6.5	Supply Chain Simulation —— 65
6.6.6	Urban Planning —— 65
6.6.7	Artificial Intelligence and Industry 4.0 —— 65
6.6.8	Opportunities of Research in AI in Smart Industry — 66
6.6.9	AI in Electronic Industry —— 67
6.6.10	Agriculture and Artificial Intelligence —— 67
6.7	Conclusion —— 68
Chapter 7	
	n and Data Fusion for Decision-Making —— 71
7.1	Introduction —— 71
7.2	Data Source and Sensor Fusion —— 72
7.3	Job Localisation and Positioning of System —— 74
7.3.1	Magnetometer and LPF —— 75
7.3.2	Magnetometer and Gyro —— 75
7.4	Different Kinds of Data Fusion Techniques —— 78
7.4.1	Durrant-Whyte Classification — 78
7.4.1.1	Complementary Data — 78
7.4.1.2	Redundant Data —— 79
7.4.1.3	Cooperative Data —— 79
7.4.2	Dasarathy's Taxonomy —— 79
7.4.2.1	Data Input–Data Output (DAI–DAO) —— 79

7.4.2.2	Data Input–Feature Output (DAI–FEO) —— 79
7.4.2.3	Feature Input–Feature Output (FEI–FEO) —— 79
7.4.2.4	Feature Input–Decision Output (FEI–DEO) —— 79
7.4.2.5	Decision Input-Decision Output (DEI-DEO) —— 80
7.4.3	Abstraction Level Classification —— 80
7.4.3.1	Hybrid Fusion —— 81
7.4.3.2	Late Fusion —— 81
7.4.3.3	Hybrid Fusion —— 82
7.4.4	JDL Taxonomy —— 82
7.4.4.1	Source Pre-processing – Level 0 —— 82
7.4.4.2	Object Refinement – Level 1 —— 82
7.4.4.3	Situation Assessment – Level 2 —— 83
7.4.4.4	Impact Assessment – Level 3 —— 83
7.4.4.5	Process Refinement – Level 4 —— 83
7.4.5	Architecture Level Classification —— 84
7.4.5.1	Centralised Architecture —— 84
7.4.5.2	Decentralised Architecture —— 84
7.4.5.3	Distributed Architecture —— 84
7.5	Conclusion —— 85
	References —— 85
Chapter 8	
-	Use Cases and Industries —— 87
8.1	Introduction — 87
8.2	Aviation and Aircraft —— 89
8.3	Production — 91
8.4	Medicines and Universal Healthcare —— 95
8.5	Energy and Power Generation —— 97
8.6	Automotive —— 98
8.7	Refineries —— 99
8.8	Keen Town —— 100
8.9	Mining —— 102
8.10	Shipping and Maritime —— 103
8.11	Academia —— 105
8.12	Architecture — 105
8.13	Markets —— 106
8.14	Remarks —— 107
8.15	Supply Chain in Pharmaceutical Company —— 108

8.16	Smart Transportation System —— 109
8.17	Manufacturing System —— 113
	References — 113
Chamban 0	
Chapter 9	Dinital Turin 445
-	Digital Twin —— 115
9.1	Introduction —— 115
9.1.1	What Is a Digital Twin? —— 115 Internet of Things and Information Safety 116
9.1.2	Internet of Things and Information Safety —— 116 The Let Powers Digital Twin Technology
9.1.3	The IoT Powers Digital Twin Technology —— 117 Is There No. Longer a Divide Petroop Public and Private Data?
9.1.4	Is There No Longer a Divide Between Public and Private Data? —— 117
9.1.5	Challenges in Interoperability with Digital Twins — 118
9.1.6	Advanced Digital Transformation and Twins — 119 The Different Sides of Advanced Twin Security 110
9.1.7	The Different Sides of Advanced Twin Security —— 119
9.1.8	What Are the Threats? —— 119
9.1.9	Your Activity Focuses — 121
9.1.10	Security by Design —— 122
9.1.11	NIS/GDPR Compliance — 122
9.2	Network Safety by Solution —— 122
9.2.1	Network Protection Computerised Twin —— 122
9.2.2	Prescient Cyber Security — 122
9.2.3	Constant Assessment and Remediation — 123
9.2.4	Nonstop Cyber Risk Assessment — 123
9.2.5	Digital Protection Remediation and Countermeasures — 123
9.2.6	Network Safety Forensics — 123
9.2.7	Zero-Day Simulation and Defence —— 123
9.2.8	IT/OT Cyber Security —— 123
9.2.9	Network Protection Support —— 123
9.2.10	Overview —— 124
9.2.11	Framework Testing and Simulation —— 126
9.2.12	Recognising Misconfigurations —— 126
9.2.13	Entrance Testing —— 126
9.2.14	Framework 3 —— 127
9.3	Knowledge Input —— 127
9.3.1	Engineer Expertise —— 127
9.3.2	Field Information —— 130
9.4	DAF Twinning Framework —— 130
9.4.1	Creator —— 130
9.4.2	Computer-Generated Environment —— 131
9.4.3	Simulation and Replication —— 131

10.7.1

10.7.2

10.7.3

10.8

10.8.1

10.8.2 10.8.3

10.9

9.4.4	Monitoring —— 132
9.4.5	Device Testing —— 132
9.4.6	Security and Safety Analysis —— 133
9.4.7	Behaviour Learning and Analysis —— 133
9.5	Management Client —— 134
9.6	Proof of Concept —— 134
9.6.1	Scenario Specification —— 135
9.6.2	Security Rule —— 138
9.6.3	Virtual Environment Generation —— 138
9.6.4	Simulation and Results —— 140
9.6.3.1	Comparison of the Environment —— 140
9.7	Related Work —— 142
9.8	Conclusions —— 144
	References —— 145
Chapter 10	
Implementa	ation of Digital Twin —— 149
10.1	Introduction —— 149
10.2	Simulation of Physics —— 152
10.3	Digital Twin in Production —— 155
10.4	Research Gap —— 160
10.4.1	Modelling —— 161
10.4.2	Conditions —— 163
10.5	System Engineering —— 164
10.5.1	Interactions —— 167
10.6	Application —— 167
10.6.1	Actual Set-Up —— 167
10.6.2	Infrastructure for Communications —— 170
10.7	Digital Twin —— 172

Prognosis — 172
Perception — 174

Detection —— **175**

Use Cases — 175

Prognosis — 176

Observing — 177

Evaluates — 178

References — 179

Overview and Prospects —— 179

Chapter 11	
Digital Twi	n Simulator —— 185
11.1	Introduction —— 185
11.2	An Examination of Simulation Methods and Frameworks —— 186
11.2.1	Simulating a Continuous System —— 186
11.2.2	Simulation of Discrete Events —— 187
11.2.3	MDC Simulation or Mixed-Resolution Simulation —— 187
11.3	Framework —— 188
11.4	Proposed Structure —— 190
11.4.1	An Improved Time Advancement Plan —— 191
11.4.2	A Case Study —— 192
11.4.2.1	Advantages of the Suggested Framework —— 195
11.5	A Framework for the Formal Simulation Model Configuration —— 196
11.5.1	Model Library —— 197
11.5.2	Library of Scenarios —— 198
11.5.3	Library of Algorithms —— 199
11.6	Operational Modelling Integration —— 201
11.7	Example of an Educational Implementation —— 203
11.7.1	Structural Disintegration —— 204
11.7.2	Development or Selection of Product Parts —— 204
11.7.3	Identify Particular Information Need —— 204
11.7.4	Establish or Expand a Model Library —— 204
11.7.5	Specify the Simulation Scenario —— 205
11.7.6	Run the Scenario Model and Evaluate the Results of the
	Simulation —— 207
11.8	Conclusion —— 211
	References —— 212
Chapter 12	
	es: Smart Cities Based on Digital Twin —— 215
12.1	Introduction —— 216
12.2	Digital Transformation Is an Unavoidable Trend for Smart Cities —— 217
12.3	Cities and Their Digital Twins —— 217
12.4	Advanced Technology Used in Digital Twin Cities —— 218
12.5	Smart Cities and Digital Twins —— 219
12.5.1	Digital Twin-Based Features of Green Infrastructure —— 220
12.5.2	Utilisations of Digital Twins in Smart Cities —— 221
12.5.2.1	Smart City Management Brain — 221
12.6	Digital Twin Administrations for Savvy Matrix — 224
12.7	Public Epidemic Services in Smart Cities —— 226

XVI — Contents

12.8	Services for Flood Situation Observing —— 230
12.8.1	Smart Healthcare —— 231
12.8.2	Intelligent Transit —— 231
12.8.3	Intelligent Supply Chain —— 232
12.9	Digital Twin Cities Framework —— 232
12.10	Conclusion —— 233
	References —— 234

Index —— 237