Contents

Preface — V

Acknowledgments — VII

1	Basic of cryptographic payments — 1	
1.1	Preliminaries on cryptographic signatures —— 1	
1.1.1	Binary and hexadecimal —— 1	
1.1.2	Hashing function —— 2	
1.1.3	Cryptographic signatures — 4	
1.1.4	Takeaway —— 6	
1.2	Blockchain protocols — 7	
1.2.1	Consensus — 7	
1.2.2	Proof of work —— 9	
1.2.3	Block difficulty adjustment —— 12	
1.2.4	Longest-chain/heaviest-chain rule —— 12	
1.2.5	Halving —— 13	
1.2.6	Blocksize —— 14	
1.2.7	Why is it called "proof of work"? —— 15	
1.2.8	Rise of ASICs —— 15	
1.2.9	Layer 2 networks —— 16	
1.2.10	Cursory analysis —— 16	
1.2.11	Proof of stake —— 17	
1.2.12	Nodes and miners —— 18	
1.2.13	Soft forks and hard forks —— 18	
1.3	What is Bitcoin and why does it work? —— 19	
1.4	More on mining —— 20	
1.4.1	UTXO —— 21	
1.4.2	Common assumptions in mining games —— 23	
2	Probability spaces —— 25	
2.1	Countably and uncountably infinite —— 26	
2.2	Partitions —— 27	
2.2.1	Conditional probability —— 28	
2.3	Random variables —— 29	
2.3.1	Expectation —— 29	
2.3.2	Conditional expectation —— 31	
2.4	Bernoulli processes and Bernoulli schemes —— 32	
2.4.1	The binomial distribution formula and the De Moivre-Laplace	
	theorem —— 35	
2.4.2	Probability-preserving isomorphisms and comparison of expectations — 37	

2.5	Win-Lose-Pay game —— 39					
2.6	Probability distribution functions —— 41					
2.6.1	Jensen's inequality —— 41					
2.7	Poisson processes — 42					
2.7.1	Naturally occurring chain splits —— 44					
3	Game theory basics —— 46					
3.1	Single-round games —— 46					
3.1.1	Payoff tables —— 47					
3.1.2	Preferences and utility function —— 47					
3.1.3	Matrix games —— 49					
3.1.4	N-player games and more terminology —— 50					
3.1.5	Dominant strategies —— 51					
3.1.6	Examples — 52					
3.1.7	Nash equilibria —— 53					
3.1.8	Examples —— 53					
3.1.9	Determining Nash equilibria by looking at a table —— 54					
3.2	Mixed strategies —— 55					
3.2.1	Mixed strategies in real life —— 55					
3.3	Extensive-form games —— 56					
3.3.1	State of a game —— 56					
3.3.2	Game trees — 58					
3.4	Schelling points —— 60					
4	Monopolizing pool —— 62					
4.1	Rough approach: Bernoulli's law of large numbers and Hoeffding's					
	bound — 62					
4.2	Binomial distribution and the De Moivre–Laplace theorem —— 66					
5	Basic double-spend game —— 69					
5.1	Simplest strategy: Charlie elects to mine his own chain when less than k					
	blocks behind —— 71					
5.1.1	Recursion formulas —— 71					
5.1.2	A method for computing winning probability —— 72					
5.1.3	Another method: difference equations —— 74					
5.1.4	Computing expected values —— 77					
5.2	Longer-duration attacks —— 83					
5.3	Stealth six-block double-spend —— 85					
5.3.1	Negative binomial distribution —— 86					
6	Censorship attacks —— 90					
6.1	Working example: two rational pools —— 91					

6.1.1	Consideration for this choice of function —— 94				
6.1.2	There are many strategies —— 94				
6.1.3	Case 1: Pool 1 and Pool 2 are both non-compliant —— 95				
6.1.4	Case 2: Pool 1 is non-compliant and Pool 2 is mildly compliant —— 99				
6.1.5	Case 3: both pools are mildly compliant —— 106				
6.1.6	Analysis: low-fee regime —— 107				
6.1.7	Higher-fee regime —— 110				
6.1.8	Conclusion —— 111				
7	Economics of mining —— 112				
7.1	Hashing as a market —— 112				
7.1.1	Cournot oligopoly model —— 112				
7.1.2	A model for the mining market —— 114				
7.1.3	Linear cost model —— 114				
7.1.4	Monopolist pricing and collusion —— 116				
7.1.5	Perfectly competitive markets —— 117				
7.1.6	Nash equilibrium in the mining market —— 118				
7.2	Market for ASICs — 120				
7.2.1	Nash equilibrium with Bertrand assumptions —— 120				
7.2.2	Four regimes —— 121				
8	Selfish mining —— 123				
8 8.1	Selfish mining —— 123 Exploiting the difficulty adjustment —— 124				
8.1	Exploiting the difficulty adjustment —— 124				
8.1 8.2	Exploiting the difficulty adjustment —— 124 Basic selfish mining —— 125 Market distortions —— 130 Markov chains —— 130				
8.1 8.2 8.3	Exploiting the difficulty adjustment —— 124 Basic selfish mining —— 125 Market distortions —— 130				
8.1 8.2 8.3 8.4	Exploiting the difficulty adjustment —— 124 Basic selfish mining —— 125 Market distortions —— 130 Markov chains —— 130				
8.1 8.2 8.3 8.4 8.5	Exploiting the difficulty adjustment —— 124 Basic selfish mining —— 125 Market distortions —— 130 Markov chains —— 130 Selfish mining analyzed via a Markov process with cuts —— 133				
8.1 8.2 8.3 8.4 8.5 8.6	Exploiting the difficulty adjustment —— 124 Basic selfish mining —— 125 Market distortions —— 130 Markov chains —— 130 Selfish mining analyzed via a Markov process with cuts —— 133 Selfish mining with partial cooperation —— 135				
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139				
8.1 8.2 8.3 8.4 8.5 8.6 8.7	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1 9.1.1	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1 9.1.1 9.1.2	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1 9.1.1 9.1.2 9.1.3	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141 Emergence of petty compliant miners — 141				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1 9.1.1 9.1.2 9.1.3 9.1.4	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141 Emergence of petty compliant miners — 141 Selfish mining as incentive to use petty compliant mining — 142 Measures against undercutting — 143 Other deviant mining strategies — 143				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141 Emergence of petty compliant miners — 141 Selfish mining as incentive to use petty compliant mining — 142 Measures against undercutting — 143				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1.1 9.1.2 9.1.3 9.1.4 9.1.5	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141 Emergence of petty compliant miners — 141 Selfish mining as incentive to use petty compliant mining — 142 Measures against undercutting — 143 Other deviant mining strategies — 143				
8.1 8.2 8.3 8.4 8.5 8.6 8.7 9 9.1 9.1.2 9.1.3 9.1.4 9.1.5 9.2 9.2.1	Exploiting the difficulty adjustment — 124 Basic selfish mining — 125 Market distortions — 130 Markov chains — 130 Selfish mining analyzed via a Markov process with cuts — 133 Selfish mining with partial cooperation — 135 Defense against selfish mining — 137 Strategic mining — 138 Petty compliant strategy and fee-undercutting — 139 Fee-undercutting — 139 Fee-sniping vs. fee-undercutting — 141 Emergence of petty compliant miners — 141 Selfish mining as incentive to use petty compliant mining — 142 Measures against undercutting — 143 Other deviant mining strategies — 143 Accepting bribes — 143				

9.2.5	Extended example —— 152			
9.2.6	Deferring to the alpha dog —— 156			
9.2.7	Responding to exogenous demand for hashrate —— 159			
9.2.8	·			
9.2.9	Merge-mining, layer 2, sidechains, and strategies playing out on other			
	blockchains — 162			
9.3	Will there be a transition from default compliant to a fully strategic regime? —— 163			
9.3.1	Block optimization and transaction selection —— 164			
9.3.2	Overpaying pools —— 165			
9.3.3	Direct signaling and optimizer training —— 165			
9.3.4	Purge pooling — 166			
9.3.5	Precedent: MEV in Ethereum —— 167			
10	What discourages strategic mining? —— 169			
10.1	Market fragility hypothesis —— 169			
10.2	Repeated games and institutional norms —— 169			
10.2.1	Mining that can be punished —— 172			
10.2.2	Problems with punishment —— 172			
11	Declining block subsidy —— 174			
11.1	Security budget —— 175			
11.2	The mining gap —— 177			
11.3	Problems with a mining gap —— 179			
11.4	Undercutting —— 180			
11.4.1	Private transaction brokering —— 181			
11.5	Summary —— 183			
12	The Flattening ASIC cost curve —— 184			
12.1	Hash deployment ratio —— 184			
12.2	Purge pools —— 185			
12.2.1	Protection against a purge attack when HDR is low —— 186			
12.3	The dynamical system determined by the difficulty adjustment —— 18			
12.3.1	, ,			
12.4	Financialization of hashrate markets —— 196			
13	Attacks —— 198			
13.1	Why have there been no attacks yet? —— 198			
13.2	Nation-state/authoritarian attacks — 199			
13.2.1	The empty-block attack —— 200			
13.2.2	Obvious criticism of the empty-block attack —— 200			
13.2.3	Layer 2s under an empty-block attack —— 202			

13.2.4	The seesaw attack —— 202				
13.2.5	Bribe-flooding attack —— 202				
13.2.6	Empty-block purge attack —— 203				
13.3	Checkpointing against a persistent 51 % attack —— 203				
13.4	Buyout attacks — 206				
13.5	Nuclear option: new proof-of-work algorithm —— 207				
13.6	Less-than-brute-force attacks —— 208				
13.6.1	Nudging towards a strategic regime —— 208				
13.6.2	FUD and social attacks —— 209				
13.6.3	Regulations —— 210				
13.7	Goldfinger attacks —— 211				
13.7.1	Slippery-slope attacks —— 212				
13.7.2	Selfish mining as a slippery-slope attack —— 213				
13.7.3	Low-probability attacks —— 214				
13.8	Soft-forkability: can the community suspend Nakamoto consensus? —— 216				
13.8.1	Additional security layers —— 218				
13.8.2	Example: purge exploit and the buyer beware response —— 220				
13.8.3	The government to the rescue —— 221				
13.8.4	Economic majority vs. mining majority —— 222				
13.8.5	A tetralemma —— 223				
14	Direct frontal takeovers —— 225				
14.1	Institutional response —— 226				
14.2	Creeping corporate takeover —— 227				
14.3	Alliances are beneficial —— 228				
14.4	ESG takeovers —— 228				
14.5	Government KYC takeovers —— 229				
14.6	Overexposed bagholder exploit —— 230				
14.7	Fee market and long-term viability —— 230				
14.8	How much is censorship resistance worth? —— 231				
14.9	A 67 % fiat attack —— 232				
14.10	Permissioned bypass —— 233				
15	Nash bargaining —— 234				
15.1	The bargaining problem —— 235				
15.1.1	Motivating real-world problems —— 235				
15.1.2	Motivating game theory games —— 236				
15.1.3	Dividing a surplus and the Nash bargaining solution —— 236				
15.1.4	Exogenous probability of breakdown —— 238				
15.1.5	What if players can determine the probability of breakdown? —— 240				
15.2	Creating commitment —— 242				
15.2.1	Enter blockchains? —— 243				

15.3 Mixed strategies and Schelling threats — 244 15.3.1 Jane's example, again — 246 15.4.1 Schelling attacks as an inexpensive way to destroy a network — 249 15.5 Wars of attrition — 249 16 Coalitional game theory — 251 16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 17 Stock, flow, and economic considerations — 273 17.1 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Physical as it matures — 284 18 Pitcein as it matures — 284	15.2.2	Commitment can backfire —— 244
15.4 Extortion and griefing — 246 15.4.1 Schelling attacks as an inexpensive way to destroy a network — 249 15.5 Wars of attrition — 249 16 Coalitional game theory — 251 16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 268 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on ℂ and ⅅ — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.5.5 Efficiency, security, and decentralization — 285 17.5.6 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	15.3	Mixed strategies and Schelling threats —— 244
15.4.1 Schelling attacks as an inexpensive way to destroy a network — 249 Wars of attrition — 249 16 Coalitional game theory — 251 16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 Beyond n = 3 — 270 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3.1 Determining the stock value of ASICs — 281 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.1 Stable regimes — 284 17.4.1 Stable regimes — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	15.3.1	Jane's example, again —— 245
16. Coalitional game theory — 251 16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	15.4	Extortion and griefing —— 246
16. Coalitional game theory — 251 16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 268 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 The oretical pushout and epsilon-attacks — 289	15.4.1	Schelling attacks as an inexpensive way to destroy a network —— 249
16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	15.5	Wars of attrition —— 249
16.1 Motivating examples — 251 16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	4.0	
16.2 Characteristic form and payoff configurations — 253 16.3 Standard coalitional game theory and the Bitcoin mining game — 254 16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency — 286 17.6 The order of the property of users — 285 17.5 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
Standard coalitional game theory and the Bitcoin mining game — 254 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 The conditional game theory and the Bitcoin mining game — 284 17.6 The condition mining game — 289 15.1 Efficiency — 286 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.5 Efficiency, security, and decentralization — 285 17.5 Efficiency — 286 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.6 The condition of community reorg, no major adversaries — 284 17.7 Efficiency, security, and decentralization — 285		-
16.4 Solution concepts — 255 16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 268 16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3 - 270$ 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency — 286 17.6 The oretical pushout and epsilon-attacks — 289		· · · · · · · · · · · · · · · · · · ·
16.4.1 The core — 256 16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3$ — 270 16.6.4 Notes on \mathcal{C} and \mathcal{D} — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
16.4.2 The stable set — 257 16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 268 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		•
16.4.3 The bargaining set — 259 16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on C and D — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
16.4.4 The kernel — 260 16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on ℂ and ⅅ — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4.4 Stable regimes — 284 17.4.5 Strong expectation of community reorg, no major adversaries — 284 17.4.1 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
16.4.5 The nucleolus — 261 16.5 Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond n = 3 — 270 16.6.4 Notes on ℂ and ⅅ — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 The oretical pushout and epsilon-attacks — 289		
Analysis of solution concepts for weighted majority games and CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3$ — 270 16.6.4 Notes on \mathcal{C} and \mathcal{D} — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
CBMGs — 261 16.6 The three-player case — 267 16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3$ — 270 16.6.4 Notes on \mathcal{C} and \mathcal{D} — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
16.6The three-player case — 26716.6.1Kernel — 26716.6.2Nucleolus — 26816.6.3Beyond $n = 3$ — 27016.6.4Notes on \mathcal{C} and \mathcal{D} — 27116.7Discussion — 27117Stock, flow, and economic considerations — 27317.1Double-spend exploits — 27517.1.1Finality — 27717.2Sabotage (Goldfinger) attack — 28017.3Determining the stock value of ASICs — 28117.3.1Moore's law — 28217.3.2Flow-based miner cost model — 28317.3.3Stock value of latent hashrate as a threat — 28417.4Stable regimes — 28417.4.1Strong expectation of community reorg, no major adversaries — 28417.4.2Attacks happen, but only affect a minority of users — 28517.5Efficiency, security, and decentralization — 28517.5.1Efficiency — 28617.6Theoretical pushout and epsilon-attacks — 289	16.5	
16.6.1 Kernel — 267 16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3$ — 270 16.6.4 Notes on \mathcal{C} and \mathcal{D} — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
16.6.2 Nucleolus — 268 16.6.3 Beyond $n = 3$ — 270 16.6.4 Notes on \mathcal{C} and \mathcal{D} — 271 16.7 Discussion — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		· ·
16.6.3Beyond $n = 3$ — 27016.6.4Notes on \mathcal{C} and \mathcal{D} — 27116.7Discussion — 27117Stock, flow, and economic considerations — 27317.1Double-spend exploits — 27517.1.1Finality — 27717.2Sabotage (Goldfinger) attack — 28017.3Determining the stock value of ASICs — 28117.3.1Moore's law — 28217.3.2Flow-based miner cost model — 28317.3.3Stock value of latent hashrate as a threat — 28417.4Stable regimes — 28417.4.1Strong expectation of community reorg, no major adversaries — 28417.4.2Attacks happen, but only affect a minority of users — 28517.5Efficiency, security, and decentralization — 28517.5.1Efficiency — 28617.6Theoretical pushout and epsilon-attacks — 289		
16.6.4 Notes on C and D — 271 17 Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
17. Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	16.6.3	
17. Stock, flow, and economic considerations — 273 17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	16.6.4	
17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	16.7	Discussion — 271
17.1 Double-spend exploits — 275 17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17	Stock, flow, and economic considerations — 273
17.1.1 Finality — 277 17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.1	
17.2 Sabotage (Goldfinger) attack — 280 17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.1.1	
17.3 Determining the stock value of ASICs — 281 17.3.1 Moore's law — 282 17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.2	
17.3.2 Flow-based miner cost model — 283 17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.3	
17.3.3 Stock value of latent hashrate as a threat — 284 17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.3.1	Moore's law —— 282
17.4 Stable regimes — 284 17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.3.2	Flow-based miner cost model —— 283
17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.3.3	Stock value of latent hashrate as a threat —— 284
17.4.1 Strong expectation of community reorg, no major adversaries — 284 17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289	17.4	Stable regimes —— 284
17.4.2 Attacks happen, but only affect a minority of users — 285 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
 17.5 Efficiency, security, and decentralization — 285 17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289 	17.4.2	
17.5.1 Efficiency — 286 17.6 Theoretical pushout and epsilon-attacks — 289		
17.6 Theoretical pushout and epsilon-attacks —— 289		
19 Pitesin as it matures 201		•
10 DITCOIL 42 IL III410162 — 731	18	Bitcoin as it matures —— 291

18.1	Hyperbitcoinization —— 291
18.1.1	Decentralized hyperbitcoinization —— 292
18.1.2	Centralized hyperbitcoinization —— 295
18.1.3	Sovereign currency will not die —— 297
18.2	Will nation-states support Bitcoin? —— 299
18.2.1	Reasons why a nation would support Bitcoin use (centralized or
	decentralized) —— 300
18.2.2	Reasons why a nation would oppose Bitcoin use (centralized or
	decentralized) —— 300
18.2.3	Reasons for a nation to maintain Bitcoin specifically as a decentralized
	network —— 301
18.2.4	Reasons for a nation to discourage use of decentralized Bitcoin —— 301
18.2.5	Indifference to centralization and the soft-forkability hypothesis —— 302
18.2.6	Bitcoin mining —— 303
18.3	Non-profitable mining —— 304
18.3.1	Will corporations protect their bags? —— 306
18.4	Geopolitical considerations in adversarial conditions —— 306
18.4.1	Nice and naughty nations —— 310
18.4.2	The free-rider problem with a finite supply currency —— 311
18.5	Can the supply be increased? —— 312
18.6	Limits as a decentralized store of value —— 313
18.6.1	Asymmetric risk premium —— 314
18.6.2	Failure as a functional store of value —— 315
18.7	Beasts in the jungle: centralization, capture, and collapse —— 316
18.7.1	Centralization —— 316
18.7.2	Capture —— 318
18.7.3	Collapse —— 319

Bibliography —— 321

Index — 325