Lehreinheiten

EINHEIT 1	Mathematische Grundlagen —— 1
EINHEIT 2	HISTORISCHE ATOMMODELLE —— 25
EINHEIT 3	Welle-Teilchen Dualismus —— 49
EINHEIT 4	Die Schrödinger-Gleichung —— 73
EINHEIT 5	Quantenmechanik molekularer Freiheitsgrade —— 97
EINHEIT 6	Quantenmechanik der elektronischen Zustände von Atomen —— 119
EINHEIT 7	Quantenmechanik der elektronischen Zustände von Molekülen —— 144
EINHEIT 8	Grenzorbitalkonzept der elektronischen Zustände von Molekülen —— 164
EINHEIT 9	Grundlagen der Spektroskopie —— 189
EINHEIT 10	Spektroskopie und Quantenmechanik —— 211
EINHEIT 11	IR-Spektroskopie: Rotations–Schwingungs Spektren —— 225
EINHEIT 12	Raman-Streuung —— 256
EINHEIT 13	UV/VIS-ABSORPTIONSSPEKTROSKOPIE —— 273
EINHEIT 14	GRUPPENTHEORIE UND OPTISCHE SPEKTROSKOPIE — 299
EINHEIT 15	FLUORESZENZSPEKTROSKOPIE —— 317
EINHEIT 16	NMR-Spektroskopie —— 338
EINHEIT 17	Ansatz der Statistischen Thermodynamik —— 357
EINHEIT 18	BOLTZMANN-VERTEILUNG —— 367
EINHEIT 19	Zustandssumme —— 380
EINHEIT 20	Zustandssumme und Zustandsfunktionen —— 391
EINHEIT 21	Zustandssumme und Quantenmechanik —— 401
FINHEIT 22	ANWENDLING DER STATISTISCHEN THERMODYNAMIK — 415