

List of Figures

Figure 1.1: Map of Cucuteni-Trypillia distribution (by M. Nebbia) — 2

Figure 1.2: Timeline of Cucuteni-Trypillia group — 3

Figure 1.3: Cucuteni A pottery, Drăguşeni (by B. Gaydarska, based upon Crîşmaru 1977, Fig. 20) — 3

Figure 1.4: Trypillia BII – CI pottery, Bug-Dnieper Interfluve (by L. Woodard, based upon Ryzhov 2012, Figs. 6.4–6.5) — 4

Figure 1.5: Cucuteni-Trypillia figurines (by Y. Beadnell, based upon Monah D. 1997) — 6

Figure 1.6: Settlement model for Central and Eastern Europe: key – darker shades show higher densities of a site type, lighter shades lower densities (by C. Unwin) — 7

Figure 1.7: Early remote sensing of Yatranivka: (a) plot of air photograph; (b) geophysical plot (by L. Woodard, based upon Videiko 2013) — 10

Figure 1.8: Geophysical plan of the 2009 season overlain on satellite image of Nebelivka (by M. Nebbia, based on Hale et al. 2010) — 11

Figure 1.9: Two experimental ‘Trypillia’ houses in the process of construction (by S. Johnston) — 14

Figure 2.1: The ‘Maximalist’ model (by C. Unwin) — 33

Figure 2.2: The Trypillia ‘Big Other’ (by C. Unwin) — 38

Figure 2.3: Realistic and stylised figurines (by B. Gaydarska) — 43

Figure 2.4: The Scânteia vessel with multiple symmetries (source: Monah D & M 1997, Fig. 46) — 45

Figure 3.1: Coverage of CORONA imagery for the study area (by M. Nebbia; copyright: The Project) — 63

Figure 3.2: Coverage of the acquired WorldView-2 satellite images (8-band multispectral 1.85 m and panchromatic 0.46 m) for the Nebelivka micro-region (5 km radius) and panchromatic (0.46 m) satellite image for the Nebelivka macro-region (25 km radius) (by M. Nebbia; copyright: The Project) — 64

Figure 3.3: Distribution of anomalies mapped on the WorldView-2 satellite image, Nebelivka micro-region (by M. Nebbia; copyright: The Project) — 66

Figure 3.4: Distribution of anomalies interpreted as traces of a palaeo-channel network, the Nebelivka micro-region (by M. Nebbia; copyright: The Project) — 67

Figure 3.5: Anomalies mapped on the WorldView-2 pansharpened multispectral 8-band (0.46 m) satellite image, which have been interpreted as having anthropic origins (by M. Nebbia; copyright: The Project) — 68

Figure 3.6: Shallow depth of the top of the anthropogenic deposit on the North-Eastern part of Nebelivka, allowing a better visibility of the anomalies compared to the rest of the site (by M. Nebbia) — 70

Figure 3.7: Two views of the Trypillia site of Perehonivka (BII): clearly visible in crop-free field conditions (upper) and totally invisible when the field is cultivated (lower): WorldView-2 panchromatic images (0.46m resolution), acquired on April 2008 (upper) and September 2011 (lower) — 71

Figure 3.8: Comparison between two extreme examples of barrows as they appear on the WorldView-2 satellite image and on the ground (by M. Nebbia; copyright: The Project) — 72

Figure 3.9: Distribution of all the anomalies that can be interpreted as burial mounds mapped within the Nebelivka macro-region, with Trypillia sites by Phase (copyright: The Project) — 74

Figure 3.10: Upper: Interpretation of the geomagnetic survey, South-East corner of Nebelivka. Visible are parts of the two concentric circuits of houses (by J. Roe); Lower: sherd densities across the surveyed land units (by M. Nebbia) — 78

Figure 3.11: Interpolated contour plot of daub (upper) and pottery (lower) densities by number of fragments (by J. Roe) — 79

Figure 3.12: Fields surveyed with a non-site sampling strategy in 2009, 2012 and 2013, Nebelivka hinterland, to assess the definition of 'sites' from surface scatters (by M. Nebbia) — 82

Figure 3.13: Areas covered by the field survey in the 2012–2014 seasons (by M. Nebbia) — 84

Figure 3.14: Distribution map of all sites recovered during the 2012–2014 field survey seasons, including the locations of known Trypillia sites in the Nebelivka macro-region (by M. Nebbia) — 85

Figure 3.15: Surface material counts by site sampling transects at the newly discovered Trypillia settlement of Kutsa (20 km North-East of Nebelivka) (by M. Nebbia) — 87

Figure 3.16: Sampling transects on the Trypillia site of Volodymyrivka. The colours indicate the quantity of both pottery and burnt daub collected at each sample. The red line shows the actual limit of the built-up area (by M. Nebbia) — 89

Figure 3.17: Material counts of the 6 transects walked on the BII megasite of Volodymyrivka (by M. Nebbia) — 89

Figure 3.18: Upper: Boxplot of site areas reported in the Encyclopaedia by phase, showing the megasites sizes as outliers; Lower left: plot of GINI coefficients of Trypillia site sizes by phase; Lower right: plot of Trypillia megasites vs. smaller sites by phase (by M. Nebbia) — 91

Figure 3.19: Distribution of the 499 Trypillia sites used in the study, derived from the Encyclopaedia (Videiko 2004) (by M. Nebbia) — 98

Figure 3.20: Distribution map of known Trypillia settlements, highlighting the location of megasites in the Southern Bug-Dnieper interfluvium (by M. Nebbia) — 100

Figure 3.21: Histograms displaying Trypillia site sizes by phase. Phase A (N=33 sites); Phase B1 (N=46); Phase BII (N=176); Phase CI (N=234); Phase CII (N=85) (by M. Nebbia) — 102

Figure 3.22: Spatial distribution of Trypillia settlements by Phase: upper left – Phase A; upper right – Phase B1; middle left – Phase BII; middle right – Phase CI; lower left – Phase CII (by M. Nebbia) — 104

Figure 3.23: 5-km hinterlands of megasites in the Southern Bug-Dnieper interfluvium (by M. Nebbia) — 108

Figure 4.1: Pollen diagram, Nebelivka P1 core (by B. Albert) — 113

Figure 4.2: Human impact proxies, Nebelivka P1 core: pollen zone, pollen zone depth and human impact depth columns show darker shades with increased depth (by C. Unwin) — 116

Figure 4.3: Geophysical plan of Nebelivka showing magnetic gradient data (by J. Watson) — 124

Figure 4.4: Interpretative geophysical plan of Nebelivka (by J. Watson) — 125

Figure 4.5: Interpretative geophysical plan of Nebelivka, showing boundaries of Quarters (by Y. Beadnell on the basis of D. Hale's geophysical plan) — 126

Figure 4.6: Tightly-spaced and loosely-spaced houses, Nebelivka (by J. Watson) — 131

Figure 4.7: Upper & middle: gaps and kinks in house circuits; lower: converging inner radial streets, Nebelivka (by J. Watson) — 132

Figure 4.8: Assembly Houses 1–11, Nebelivka (by J. Watson) — 134

Figure 4.9: Assembly Houses 12–23, Nebelivka (by J. Watson) — 135

Figure 4.10: Squares and short inner radial streets, Nebelivka (by J. Watson) — 140

Figure 4.11: Upper: megasite entrances and the main palaeo-channel; lower: short inner radial streets and blocking structures, Nebelivka (by J. Watson) — 141

Figure 4.12: Upper: blocking streets; lower: poorly burnt dwelling houses and pits, Nebelivka (by J. Watson) — 143

Figure 4.13: Upper: linear pits and short inner radial streets; lower: strong anomalies possibly representing 'kilns', Nebelivka (by J. Watson) — 144

Figure 4.14: Upper: anomalies outside the Northern end of the megasite; lower: main palaeo-channel with kinks in house circuits, Nebelivka: numbers refer to Assembly Houses (by J. Watson) — 147

Figure 4.15: (1) bivariate plot of house sizes; (2) histogram of all house sizes; (3) house sizes by Outer Zone, Nebelivka (by J. Chapman) — 150

Figure 4.16: (1) house sizes outside the Outer Circuit; (2) house sizes in cross streets; (3) house sizes in Squares, Nebelivka (by J. Chapman) — 152

Figure 4.17: Maximum class sizes by Quarter; (1) Class 3 equal to, or fewer than, other size Classes; (2) Class 3 dominant, with Class 4 but no Class 5; (3) Class 3 dominant, with Classes 4 and 5, Nebelivka (by J. Chapman) — 156

Figure 4.18: (1) mean breadth of all house size classes; (2) spread of house size classes; (3) No. of houses vs. GINI House Size Co-efficient plot by Quarters, Nebelivka ((1) & (2) by J. Chapman; (3) by M. Nebbia) — 157

Figure 4.19: Visibility Graph Analysis of Quarter L: (1) Connectivity; (2) Point First Moment; (3) Point Second Moment; (4) Visual Entropy; (5) Visual Integration: HH; (6) Visual Integration: P-value; (7) Visual Integration: TEK; (8) Visual Mean Depth; (9) Visual Node Count; (10) Visual Relativised Entropy (by B. Buchanan). For explanation of these models, see Table 4.5 — 167

Figure 4.20: Connectivity analysis of all 10 Quarters: (1) B; (2) C; (3) D; (4) G; (5) H; (6) I; (7) L; (8) F; (9) N; (10) M (by B. Buchanan) — 168

Figure 4.21: (1) Average measurements of VGA analysis of entirety of structural evidence; (2) Average VGA measurements of Model A; (3) Average VGA measurements of Model B (by B. Buchanan) — 169

Figure 4.22: VGA Mean Depth analyses of all Stages of both Models, Quarter F, Nebelivka: (1) Distributed Governance Model (A), Stage 1; (2) Model A, Stage 2; (3) Model A, Stage 3; (4) Assembly Model (B), Stage 1; (5) Model B, Stage 2; (6) Model B, Stage 3 (see Table 4.9) (by B. Buchanan) — 176

Figure 4.23: VGA Integration-TEK analyses of all Stages of both Models, Quarter F, Nebelivka: (1) Distributed Governance Model (A), Stage 1; (2) Model A, Stage 2; (3) Model A, Stage 3; (4) Assembly Model (B), Stage 1; (5) Model B, Stage 2; (6) Model B, Stage 3 (see Table 4.10) (by B. Buchanan) — 178

Figure 4.24: VGA Mean Depth analyses of all Stages of both Models, Quarter L, Nebelivka: (1) Distributed Governance Model (A), Stage 1; (2) Model A, Stage 2; (3) Model A, Stage 3; (4) Assembly Model (B), Stage 1; (5) Model B, Stage 2; (6) Model B, Stage 3 (see Table 4.11) (by B. Buchanan) — 179

Figure 4.25: VGA Integration-TEK analyses of all Stages of both Models, Quarter L, Nebelivka: (1) Model (A), Stage 1; (2) Model A, Stage 2; (3) Model A, Stage 3; (4) Assembly Model (B), Stage 1; (5) Model B, Stage 2; (6) Model B, Stage 3 (see Table 4.12) (by B. Buchanan) — 180

Figure 4.26: Upper: Burnt house remains (*ploshchadka*), Mega-structure Context 55; lower: bone and ceramic scatter, Pit near House B17, Nebelivka (upper by J. Chapman; lower by M. Videiko) — 183

Figure 4.27: Upper: platform, Durham Experiment; lower: withy impressions, Nebelivka Experimental Burnt House Excavation (by S. Johnston) — 185

Figure 4.28: House collapse scenario 1 (1-storey houses) (by L. Woodard) — 187

Figure 4.29: House collapse scenario 2 (2-storey houses) (by L. Woodard) — 188

Figure 4.30: Upper: house panels falling inwards, Nebelivka House Burning Experiment; lower: house panel fallen outwards, Nebelivka Experimental Burnt House Excavation Contexts 425 & 426 (upper by M. Nebbia; lower by J. Chapman) — 189

Figure 4.31: Kite photo of Mega-structure, Nebelivka: North to Right side; burnt area 36m East-West (by M. Houshold) — 196

Figure 4.32: Digitised remains, Nebelivka Mega-structure; Phase 3 Lower (by M. Nebbia) — 197

Figure 4.33: Digitised remains, Nebelivka Mega-structure; Phase 3 Upper (by M. Nebbia) — 198

Figure 4.34: Digitised remains, Nebelivka Mega-structure; Phases 2 and 3 Lower & Upper (by M. Nebbia) — 200

Figure 4.35: Upper: digitised remains, Phase 2. Key to Context Numbers: Fired Clay Bin – 80; Platforms – 6, 46, 58, 89, 176 & 272; Podium – 29; Threshold – 120; Platform 257 was excavated on the last day of Week 7 and therefore not digitised; it is found in Grid Square C21–22; lower: fired clay slot, Nebelivka Mega-structure (upper by M. Nebbia; lower by J. Chapman) — 201

Figure 4.36: Burnt timber remains, Nebelivka Experimental Burnt House Excavation: upper: burnt timber fallen obliquely, Context 419; lower: timber void, Context 226 (by J. Chapman) — 202

Figure 4.37: Upper: long North-South section (the width of both walls reflects daub tumble out from the walls); lower: three sections across podium, Nebelivka Mega-structure (by C. Unwin) — 203

Figure 4.38: (1) Durham reconstruction; (2)–(5) Bayesian plots of AMS dates, Nebelivka Mega-structure (1 by C. Unwin; 2–5 by A. Millard) — 204

Figure 4.39: Upper: general view from East; lower: Stage 4 placement of vessel from North; Fired Clay Bin, Nebelivka Mega-structure (by J. Chapman) — 206

Figure 4.40: Platform 46 from East, Nebelivka Mega-structure (by J. Chapman) — 207

Figure 4.41: Plot of daub firing temperatures and vitrified daub, Nebelivka Mega-structure (by M. Nebbia based upon information from N. Shevchenko); Colour Key for daub firing temperatures: blue: 200–400°C; yellow: 400–900°C; orange: >900°C — 210

Figure 4.42: General view of Nebelivka barrow from South-West (by J. Chapman) — 213

Figure 4.43: Distribution of all excavated areas, Nebelivka (by M. Nebbia) — 215

Figure 4.44: Distribution of burnt houses, unburnt houses and Assembly Houses (by M. Nebbia) — 216

Figure 4.45: Typical Test Pit stratigraphy, Test Pit 26/6, Nebelivka (by C. Unwin) — 218

Figure 4.46: Sections across (1) Fired Clay Bin; (2) Contexts 215 & 310; (3) Platform 46; and (4) Contexts 210 and 310 (by C. Unwin) — 219

Figure 4.47: Depth of burnt houses in excavation units and Test Pits (by C. Unwin) — 220

Figure 4.48: Upper: section of thick pile of destruction daub, Test Pit 13/3; (a) South-facing; (b) East-facing; lower: sections of platform below destruction daub, Test Pit 15/2; (a) East-facing; (b) South-facing (by L. Woodard). Numbers in Figs. 4.48–4.50 refer to general pit stratigraphic sequence in Fig. 4.45 — 222

Figure 4.49: Upper: sections of two well-defined layers of destruction daub, Test Pit 33/1; (a) SSE-facing; (b) WSW-facing; lower: sections of two-storey house with platform above destruction daub, Test Pit 26/5: (a) West-facing; (b) North-facing (by L. Woodard) — 223

Figure 4.50: (1): West-facing section of unburnt house, Test Pit 1/4; (2): North-facing section of burnt house with platform daub with pit under floor, Test Pit 17/1; (3) SW-facing section of platform in Assembly House, Test Pit 27/3; (4) section of mound of burnt house debris, Test Pit 24/4; (a) ESE-facing; (b) NNE-facing (by L. Woodard) — 224

Figure 4.51: Distribution of Test Pits with *in-situ* vs. dispersed platform daub (by M. Nebbia) — 225

Figure 4.52: Distribution of number of layers of Destruction Daub by Test Pit (by M. Nebbia) — 227

Figure 4.53: Sections of Pit, Sondazh 1: (1) East-facing; (2) West-facing; (3) East-facing; (4) South-facing; (5) West-facing (by C. Unwin) — 229

Figure 4.54: Upper: plan of base of pit; Pit, Sondazh 1 (by L. Woodard); lower: proportion of burnt and 'unburnt' houses by Neighbourhood and Quarter (by J. Chapman) — 232

Figure 4.55: Upper: North Ditch profile from South-East; lower: Triple Ditch profiles 1–3 from East (by L. Woodard) — 235

Figure 4.56: Plan of House A9, Nebelivka (by L. Woodard) — 237

Figure 4.57: Upper: sections of House A9: B–B1 – South-facing; C–C1 – North-facing; A–A1 – East-facing (by L. Woodard) — 238

Figure 4.58: General view of Industrial feature, Nebelivka (by M. Videiko) — 242

Figure 4.59: Hungarian Mediaeval brick kilns as analogies for Nebelivka ‘industrial’ feature; (1) Békéscsaba–Mezőmegyer; (2) Debrecen–Józsa Pláza (by B. Gaydarska, based upon Jakab 2011) — 244

Figure 4.60: Corn-drying ovens, Keston Roman villa (internal width of South Oven – 4.15m) (by B. Gaydarska, adapted from Philp et al. 1991, Fig. 22) — 245

Figure 4.61: Site plan showing Test Pits with(out) AMS dates, Nebelivka (by M. Nebbia) — 249

Figure 4.62: Bayesian plots of AMS dates, Nebelivka: (1) all AMS dates plotted on calibration curve; (2) start and end dates for occupation at Nebelivka; (3) duration of occupation at Nebelivka (by A. Millard) — 251

Figure 4.63: Bayesian plots of AMS dates, Nebelivka: (1) start and end dates for circuits and streets modelled independently; (2) start and end dates for Quarters; (3) AMS dates from the Pit, Sondazh 1; (4) start and end dates for three megasites (by A. Millard) — 254

Figure 4.64: Building materials analysis: (1) finger action; (2) squared timber-impression; (3) withy-impression; (4) finger-impression; (5) vitrified daub; (6) thermal plot, daub, Context 117; (7) cross-section of daub showing clay layers, Nebelivka (by N. Shevchenko) — 259

Figure 5.1: Pottery types used in the Ovchinnikov ceramic system (by Ovchinnikov 2014, 80; see our Table 5.1) — 269

Figure 5.2: Taphonomy: (1) burnt sherd, Test Pit 20/1; (2) burnt sherd, Test Pit 33/1; (3) sherd with heavy wear, Test Pit 21/2; (4) sherd with heavy deposition, Test Pit 22/4; (5) sherd with moderate deposit, Test Pit 26/5; (6) vitrified sherd, Test Pit 24/3; (7) vitrified sherd, Mega-structure Context 208; (8) wear on base of sherd, Test Pit 1/3 (by K. Harding) — 272

Figure 5.3: Pottery production: (1) handle pushed in, interior, Test Pit 24/3; (2) handle pushed in, exterior, with potting lines, Test Pit 24/3; (3) sherd with grit temper, Mega-structure Context 35; (4) sherd with possible wheel-marks, Mega-structure, TsT 8958, Context 3; (5) sherd with grooved decoration, House A9; (6) base with mat impression, Mega-structure Tst 1905, Context 151; (7) sherd with shell temper, Mega-structure Context 143; (8) sherd with interior potting lines, barrow (by K. Harding) — 275

Figure 5.4: Sherd re-fits: (1) Type 1 re-fit, Test Pit 1/3; (2) Type 2 re-fit, Mega-structure Context 232; (3) Type 1 and 2 re-fits, Mega-structure Contexts 157 and 180; (4) Type 2 re-fit, Test Pit 1/3; (5) Type 3 re-fit, Mega-structure Contexts 157 and 4 (by K. Harding) — 278

Figure 5.5: (1) number, (2) weight (kg) and (3) mean sherd weight (g) of pottery groups by Excavation Unit (by J. Chapman) — 281

Figure 5.6: Density of pottery samples by weight (g), Test Pits (by M. Nebbia) — 283

Figure 5.7: Density of pottery samples from Test Pits placed in the centre of burnt houses (Zone 9) (by M. Nebbia) — 284

Figure 5.8: Fabric colours: (1) Fabric C; (2) Fabric A; (3) Fabric B; (4) Fabrics I–J; (5) Fabrics E–F; (6) Fabrics G–H; (7) Fabric D; (8) Fabrics O–P; (9) Fabrics K–L; (10) Fabrics M–N; (11) Fabrics Q–R (by K. Harding) — 286

Figure 5.9: Fabric distribution for (1) House A9; (2) Mega-structure; (3) Test Pits; and (4) Pit, Sondazh 1; Fabric by sherd number for (5) Quarter G; (6) Test Pit 24/3; (7) Test Pit 25/1; and (8) Test Pit 25/2 (by J. Chapman) — 289

Figure 5.10: Surface colour vs. vessel form for (1) bowls; (2) carinated vessels; (3) plates; and (4) dishes, House A9; distribution of rim types without Bases for (5) Pit, Sondazh 1; (6) Test Pits; (7) Mega-structure; (8) House A9 (by J. Chapman) — 290

Figure 5.11: (1) distribution of shape types, all Units; distribution of open & closed categories without Bases: (2) all Units; (3) Pit, Sondazh 1; (4) Test Pits; (5) Mega-structure; (6) House A9; (7) Pit, Sondazh 1 SU2; and (8) Pit, Sondazh 1 SU4 (by J. Chapman) — 291

Figure 5.12: (1) Minimum Number of Vessel estimates for Episodes and deposits outside Episodes, Pit, Sondazh 1; (2) Vessel sizes by excavation unit (by J. Chapman) — 294

Figure 5.13: Upper: distribution of decorated vs. undecorated sherds; lower: distribution of rims by weight, Mega-structure (by M. Nebbia) — 296

Figure 5.14: Distribution of (1) impressed sherds by weight; (2) plates, dishes and necked dishes; (3) bowls by weight; (4) pottery found on Living Floor (Phase 2) by weight, Mega-structure (by M. Nebbia) — 298

Figure 5.15: Coarse ware decorative motifs. Numbers (e.g., 3.1) refer to Motif Numbers. Key: T – Test Pits; M – Mega-structure; P – Pit, Sondazh 1; A – House A9 (by L. Woodard) — 300

Figure 5.16: Fine ware exterior painted motifs (by L. Woodard) — 301

Figure 5.17: Fine ware interior painted motifs (by L. Woodard) — 302

Figure 5.18: Fine ware exterior (rows 1–4) and interior (rows 5–6) painted motifs (by L. Woodard) — 303

Figure 5.19: Motif linkage plans for four most common motifs, megasite (by M. Nebbia) — 307

Figure 5.20: Motif linkage plan, Quarter B, megasite (by M. Nebbia) — 309

Figure 5.21: (1) Composition of burnt house assemblages by vessel shape; (2) ratio of open: closed vessels; Taljanki (T) and Majdanetske (M); (3) regression analysis of painted signs vs. sample size, Bug-Dnieper Interfluvial sites, based upon Tkachuk 2005 (by J. Chapman) — 318

Figure 5.22: Distribution of (upper) fine wares; (lower) painted wares, House A9 (by M. Nebbia) — 320

Figure 5.23: Distribution of (upper) coarse wares; (lower) sherds with impressed decoration, House A9 (by M. Nebbia) — 321

Figure 5.24: Distribution of (upper) bowls; (lower) dishes, House A9 (by M. Nebbia) — 322

Figure 5.25: Distribution of (upper) plates; (lower) summary diagram, House A9 (by M. Nebbia) — 323

Figure 5.26: (1) distribution of painted signs shared between houses, Majdanetske; (2) comparison of Nebelivka painted motifs with painted signs on other Trypillia sites; (3) comparison of painted signs on Bug-Dnieper Interfluvial sites (by J. Chapman, based upon information in T. Tkachuk 2005) — 325

Figure 5.27: Alternative pathways to making Trypillia figurines (by L. Woodard) — 328

Figure 5.28: Decorated anthropomorphic figurines from Pit, Sondazh 1: (1) SF 23 and (2) SF 28 + 43: (a) back, (b) front, Nebelivka (by K. Harding) — 329

Figure 5.29: Anthropomorphic figurines: (1) male, SF 3230; (2) non-gendered, Grid F12; Mega-structure, Nebelivka (by V. Pankowski) — 330

Figure 5.30: Figurine body parts by excavation unit: (1) House A9; (2) Mega-structure; (3) Pit, Sondazh 1; and (4) Test Pits; Key to figurine parts: H – head; HT – head-torso; HB – head-buttock; HL – head-leg; T – torso; TL – torso-leg; TF – torso-foot; B – buttock; BL – buttock-leg; L – leg; LF – leg-foot; F – foot; TZOO – torso of zoomorph. (5) gender characteristics of figurines; (6) condition of figurines by excavation unit (by J. Chapman) — 332

Figure 5.31: Upper: zoomomorphic figurine, Test Pit 16/1; lower: types of fired clay tokens (upper by K. Harding; lower by L. Woodard) — 334

Figure 5.32: Map of Ukrainian para-Neolithic sites with graphite-tempered pottery: Symbols: I – present-day industrial source of graphite; II – para-Neolithic site; III – LBK site of Kamiane-Zavallia; IV – Trypillia culture site of Nebelivka; **Buh-Dnister culture:** 1–Tătărăuca Nouă XV, 2–Soroka I (level 1a), 3–Soroka V, 4–Pechera I, 5–Samchyntsi I, 6–Samchyntsi II, 7–Shymanovske II, 8–Bazkiv Ostriv, 9–Shumyliv-Cherniatka, 10–Hayvoron-Polizhok, 11–Zavallia, 12–Zhakchik, 13–Melnychna Krucha, 14–Dobrianka 3, 15–Mykolyna Broiaka, 16–Kompaniiska Skelia, 17–Hrushivskyi Ostriv, 18–Semenivka, 19–Ustia Korabelnoi, 20–Puhach 1, 21–Puhach 2, 22–Klepana Balka, 23–Tashlyk 2, 24–Tashlyk 3, 25–Gard, 26–Gard 3, 27–Gard 4, 28–Lidyna Balka, 29–Novorozanivka; **Kyiv-Cherkasy culture:** 30–Buzky I, 31–Lysychyi Horb, 32–Uspenka 2; **Surskyi culture:** 33–Strilcha Skelia, 34–Kizlevyi V, 35–Vovchok; **Azov-Dnipro culture:** 36–Mykilske 2; **Surskyi or Azov-Dnipro culture:** 37–Kamiana Mohyla 1 (by D. Gaskevych) — 339

Figure 5.33: Map of East Balkan graphite painted ware complex: M: Maliq; N: Nebelivka
(by B. Gaydarska) — 342

Figure 5.34: Graphite painted analogies for the Nebelivka internally thickened rim dish (1): (2) Pietrele (after Hansen et al. 2007); (3) Tangâru (after Voinea 2005); and (4) tell Gumelnița (after Dumitrescu 1925) (by T. Ignat & C. Lazăr) — 344

Figure 5.35: Gas chromatograms of lipid extracts from Nebelivka miniature vessels: (1) Test Pit 2012/3; (2) Mega-structure MP 16; and (3) Mega-structure MP 29 (by O. Craig) — 348

Figure 5.36: Types of miniature vessel from outside the Mega-structure cluster: dishes – (1) Test Pit 16/1; (2) Test Pit 31/2 (by K. Harding); flasks – (3) Test Pit 1/4; (4) 33/1; (5) Test Pit 1/4; and (6) 1/1 (by B. Gaydarska) — 351

Figure 5.37: Lithics: Mega-structure: 5–7, 9–10, 14–15, 17; Pit, Sondazh 1: 2–4, 12–13; Test Pits: 1, 8, 11, 16 (by M. Gurova) — 355

Figure 5.38: Lithics: Pit, Sondazh 1: 1–2, 4–5; Test Pits: 3, 7; Fieldwalking: 6; scale 1:1 (by L. Woodard) — 356

Figure 5.39: Lithics: 2014 season: 1–12 (by D. Kiosak); 2009 season: 13–15 (by L. Woodard) — 357

Figure 5.40: Lithics: 2014 season: 1–11 (by D. Kiosak); intra-site gridded fieldwalking: 12–16; House A9: 17–18 (by L. Woodard) — 359

Figure 5.41: Worked bone tools: (1) tooth bead-pendant, Pit, S. 1 SF 47, with close-ups (b) and (c); (2) tooth bead-pendant, Mega-structure TsT 1461, Context 64; (3) bone imitation of tooth pendant, Mega-structure TsT 1827, Context 142 (by K. Harding based on photographs by Zs. Tóth) — 371

Figure 5.42: Worked bone tools: (1) fishbone point, Pit, S. 1, SF 48, with close-ups in (b) and (c); (2) broken bone awl with copper staining, Mega-structure, Grid Square D10 (by K. Harding based on photographs by Zs. Tóth) — 372

Figure 5.43: Worked bone tools: (1) ad hoc bone point, Test Pit 19/2, Context 3, SF 6, with close-up in (b); (2) red deer antler hoe model, Pit, S. 1 SF 71; (3) possible bone tool, Mega-structure Grid Square E6 (by K. Harding based on photographs by Zs. Tóth) — 373

Figure 5.44: Special Finds: (1) fragment of house model, Pit, Sondazh 1, SF 5727; (2)–(3) two fragments of (?) fired clay gaming board, unstratified; (4) fired clay ring, House A9; and (5) gold hair ornament, SF 1181, Mega-structure (by K. Harding) — 379

Figure 5.45: Special Finds distribution, megasite (by M. Nebbia) — 383

Figure 5.46: Distribution of figurines, megasite (by M. Nebbia) — 384

Figure 5.47: Distribution of lithics, megasite (by M. Nebbia) — 385

Figure 5.48: Special Finds distribution: (upper) figurines and tokens; (lower) lithics and Other finds, Mega-structure (by M. Nebbia) — 386

Figure 5.49: Upper: overall taxonomic distribution of faunal remains (NISP); lower: distribution of Log Standard Index (LSI) values for measurements on cattle bones (by D. Orton) — 395

Figure 5.50: Upper: Trypillia and Cucuteni sites with raw NISP available and used for comparison here. 1. Berezivka, 2. Bilshivtsy, 3. Cucuteni, 4. Dragușeni, 5. Fetești, 6. Ghelăiești, 7. Majdanetske, 8. Hoisești, 9. Ignatenkova Gora, 10. Konovka, 11. Kosenivka, 12. Liveni, 13. Grebenyukov Yar, 14. Mitoc, 15. Poduri-Dealul Ghindaru, 16. Santana de Mureș B, 17. Sarata-Munteoru, 18. Sverdlikove, 19. Taljaniki, 20. Târpești, 21. Trușești, 22. Valea Lupului, 23. Vasylivka, 24. Velika Slobidka, 25. Vesely Kut, 26. Zhvanets-Shovb, 27. Zhvanets, 28. Nebelivka; lower: main taxa identified at Nebelivka by excavation area (%NISP) (by D. Orton) — 399

Figure 5.51: Contributions of wild versus domestic taxa (1, 3 & 5) and breakdown of the main domesticates (2, 4 & 6) for Trypillia and Cucuteni sites in the Early (1–2), Middle (3–4), and Late (5–6) Phases as defined in the text (by D. Orton) — 400

Figure 5.52: (1) comparison of frequencies of major taxa between (a) analysts for the Mega-structure, and (b) areas recorded by Sekerskaya (%NISP); (2) comparison of frequencies of major taxa in areas studied by Sekerskaya (%NISP); (3) findspots of bones assigned to different phases

within the Mega-structure. NB. Each dot shows a total station record that can represent a single or multiple bone fragments (by D. Orton) — 403

Figure 5.53: (1) findspots of burnt bone within the Mega-structure. As above, single dots may represent multiple specimens; (2) spatial distribution of major taxa within the Mega-structure; (3) foetal/neonatal bones recovered from the living floor and destruction phases of the Mega-structure. Diameter of markers is proportional to number of specimens. Length of burnt part of Mega-structure — 36m. (by D. Orton) — 406

Figure 5.54: Isotopic collagen values, Nebelivka mammals (by A. Millard) — 408

Figure 6.1: Population estimates for the Majdanetske megasite. Horizontal bars show range of population estimates by author(s) (by J. Chapman) — 433

Figure 6.2: The Distributed Governance Model (by C. Unwin) — 436

Figure 6.3: The Assembly Model (by C. Unwin) — 438

Figure 6.4: The Pilgrimage Model (by C. Unwin) — 440

Figure 6.5: Distribution maps of (a) Forest Neolithic and Trypillia (b) Phase A; (c) Phase B1; and (d) BII (by M. Nebbia) — 446

Figure 6.6: Lengyel enclosures and *Rondels*, South-West Hungary (after G. Bertok & Cs. Gáti 2014, Fig. II.89) — 451

Figure 6.7: Magnetometer plan of Taljanki megasite (by R. Ohlrau in K. Rassmann et al. 2014, Fig. 9a) — 461

Figure 6.8: Magnetometer plan of Majdanetske megasite with Ohlrau's Quarter boundaries; numbers refer to Ohlrau Quarters; A – inset to be found in Fig. 6.9 (by L. Woodard, based on Müller & Videiko 2016, Fig. 2) — 463

Figure 6.9: Detail of Northern part of magnetometer plan, Majdanetske megasite (Area A in Fig. 6.8). Key – large numbers refer to Ohlrau's Quarters; small numbers refer to individual paths, house circuits and radial streets (by L. Woodard, based on Ohlrau 2015, Abb. 44A) — 464

Figure 6.10: Building sequence of Northern part of Majdanetske magnetometer plan (as shown as Box A in Fig. 6.9) (by L. Woodard) — 465

Figure 6.11: Geophysical plan of Grebeni site. Key: 1: excavated buildings; 2: test pits; 3: geomagnetic anomalies (by B. Gaydarska, based on Koshelev 2004, Ris. 4.14) — 484

Figure 6.12: Densities of people and structures per ha, urban and non-urban sites of low- and high-density (upper by L. Woodard; lower by J. Chapman) — 504