Preface

The study of nonlocal operators of fractional type possesses a long tradition, moti-
vated both by mathematical curiosity and by real-world applications. Though this line
of research presents some similarities and analogies with the study of operators of in-
teger order, it also presents a number of remarkable differences, one of the greatest
being the recently discovered phenomenon that all functions are (locally) fractionally
harmonic (up to a small error). This feature is quite surprising, since it is in sharp con-
trast with the case of classical harmonic functions, and it reveals a genuinely nonlocal
peculiarity.

More precisely, it has been proved in [25] that given any C*-function f in a bounded
domain Q and given any € > 0O, there exists a function f, which is fractionally harmonic
in Q such that the C¥-distance in Q between f andf, isless than e.

Interestingly, this kind of results can be also applied at any scale, as shown in Fig-
ures 1, 2, and 3. Roughly speaking, given any function, without any special geomet-
ric prescription, in a given bounded domain (as in Figure 1), one can “complete” the
function outside the domain in such a way that the resulting object is fractionally har-
monic. That is, one can endow the function given in the bounded domain with a num-
ber of suitable oscillations outside the domain in order to make an integro-differential
operator of fractional type vanish. This idea is depicted in Figure 2. As a matter of fact,
Figure 2 must be considered just a “qualitative” picture of this method, and should not
be regarded “realistic.” However, even if Figure 2 does not provide a correct fractional
harmonic extension of the given function outside the given domain, the result can be
repeated at a larger scale, as in Figure 3, adding further remote oscillations in order to
obtain a fractional harmonic function.

Figure 1: All functions are fractional harmonic, at different scales (scale of the original function).
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Figure 2: All functions are fractional harmonic, at different scales (“first” scale of exterior oscilla-
tions).
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Figure 3: All functions are fractional harmonic, at different scales (“second” scale of exterior oscilla-
tions).

In this sense, this type of results really says that whatever graph we draw on a sheet
of paper, it is fractionally harmonic (more rigorously, it can be shadowed with an ar-
bitrary precision by another graph, which can be appropriately continued outside the
sheet of paper in a way which makes it fractionally harmonic).

This book contains a new result in this line of investigation, stating that every func-
tion lies in the kernel of every linear equation involving some fractional operator, up to
a small error. That is, any given function can be smoothly approximated by functions
lying in the kernel of a linear operator involving at least one fractional component. The
setting in which this result holds is very general, since it takes into account anomalous
diffusion, with possible fractional components in both space and time. The operators
taken into account comprise the case of the sum of classical and fractional Laplacians,
possibly of different orders, in the space variables, and classical or fractional deriva-
tives in the time variables. Namely, the equation can be of any order, it does not need
any structure (it needs no ellipticity or parabolicity conditions), and the fractional be-
havior is in time, space, or both.

In a sense, this type of approximation results reveals the true power of fractional
equations, independently of the structural “details” of the single equation under con-
sideration, and shows that space-fractional and time-fractional equations exhibit a va-
riety of solutions which is much richer and more abundant than in the case of classical
diffusion.
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Though space- and time-fractional diffusions can be seen as related aspects of
nonlocal phenomena, they arise in different contexts and present important struc-
tural differences. The paradigmatic example of space-fractional diffusion is embodied
by the fractional Laplacian, that is, a fractional root of the classical Laplace operator.
This setting often surfaces from stochastic processes presenting jumps and it exhibits
the classical spatial symmetries such as invariance under translations and rotations,
plus a scale invariance of the integral kernel defining the operator. Differently from
this, time-fractional diffusion is typically related to memory effects, and therefore it
distinguishes very strongly between the “past” and the “future,” and the arrow of time
plays a major role (in particular, since the past influences the future, but not viceversa,
time-fractional diffusion does not possess the same type of symmetries of the space-
fractional one). In these pages, we will be able to consider operators which arise as
superpositions of both space- and time-fractional diffusion, possibly taking into ac-
count classical derivatives as well (the cases of diffusion which is fractional just in
either space or time are comprised as special situations of our general framework).
Interestingly, we will also consider fractional operators of any order, showing, in a
sense, that some properties related to fractional diffusion persist also when higher or-
der operators come into play, differently from what happens in the classical case, in
which the theory available for the Laplacian operator presents significant differences
with respect to the case of polyharmonic operators.

To achieve the original result presented here, we develop a broad theory of some
fundamental facts about space- and time-fractional equations. Some of these addi-
tional results are known from the literature, at least in some particular cases, but some
other are new and interesting in themselves, and, in developing these auxiliary the-
ories, this monograph presents a completely self-contained approach to a number of
basic questions, such as:

— boundary behavior for the time-fractional eigenfunctions;

— boundary behavior for the time-fractional harmonic functions;

-  Green representation formulas;

- existence and regularity for the first eigenfunction of the (possibly higher order)
fractional Laplacian;

— boundary asymptotics of the first eigenfunctions of the (possibly higher order)
fractional Laplacian;

- boundary behavior of (possibly higher order) fractional harmonic functions.

We now dive into the technical details of this matter.






