Acronyms

IK	field of characteristic 0 (tipically $\mathbb R$ or $\mathbb C$)
$(b_i)_i$	numerical sequence of elements of \mathbb{K} with $b_0 = 0$ and
	$b_1 \neq 0$
$X_{\infty} \equiv X = (x_0, \dots, x_n, \dots)^T$	infinite column vector of entries x_i , $i = 0, 1,$
$X_n = (x_0, \dots, x^n)^T$	column vector of entries $x^i \in \mathbb{K}$, $i = 0, 1,, n$
\mathcal{P}	set of polynomials with coefficients in $\mathbb K$
\mathcal{P}_n	set of polynomials of coefficients in \mathbb{K} with $degree \leq n$
$\{p_n\}_n$	sequence of polynomials with degree $p_n = n$
$p_n(x)$	polynomial of <i>degree n</i> in the variable <i>x</i>
$f(x) := \sum_{i=1}^{\infty} b_i \frac{x^i}{i!}$	generating function of $(b_i)_i$, formal power series, δ -series
$(\hat{b}_i)_i$	conjugate sequence of $(b_i)_i$
$\overline{f}(x) := \sum_{i=1}^{\infty} \widehat{b}_i \frac{x^i}{i!}$	compositional inverse of $f(x)$, formal power series,
$\Delta l = 1 + l \cdot l!$	δ -series
$P:=(p_{i,j})$	infinite lower triangular Binomial-type matrix
$\widehat{P} := (\widehat{p}_{i,j})$	conjugate matrix of <i>P</i>
$(a_i)_i$	numerical sequence of elements of \mathbb{K} with $a_0 \neq 0$
$g(x) := \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}$	generating function of (a_i) , invertible power series
$(\widehat{a}_i)_i$	conjugate sequence of $(a_i)_i$
$\frac{1}{g(x)} = \sum_{i=0}^{\infty} \widehat{a}_i \frac{x^i}{i!}$	generating function of $(\hat{a}_i)_i$, reciprical power series of $g(x)$
$A := (a_{i,j})$	infinite lower triangular Appell-type matrix
$\widehat{A} := (\widehat{a}_{i,j})$	conjugate matrix of A
$A_n := (a_{i,j})$	matrix of order n
$S:=(s_{i,j})$	infinite lower triangular Sheffer-type matrix
S := (g(x), f(x))	exponential Riordan matrix
$\widehat{S} := (\widehat{s}_{i,j})$	conjugate matrix of S
$O:=(o_{i,j})$	infinite lower triangular odd Lidstone-type matrix
$E:=(e_{i,j})$	infinite lower triangular even Lidstone-type matrix
$(x)_n$	lower factorial polynomial of order <i>n</i>
S(n,k)	Stirling number of second kind
s(n,k)	Stirling number of first kind
$\phi_n(x)$	exponential polynomial of degree <i>n</i>
$ \begin{cases} L_n^{(\alpha)} \}_n \\ \{p_n := n! L_n^{(-1)} \}_n \end{cases} $	Laguerre polynomial sequence
$\{p_n := n! L_n^{(-1)}\}_n$	binomial Laguerre polynomial sequence
$\chi^{(n)}$	central factorial polynomial of degree <i>n</i>
$\{a_n\}_n$	Appell sequence
\mathcal{D}	derivation matrix
${\cal I}$	integration matrix
$P_n(f)(x)$	polynomial operator of order <i>n</i>
$\{B_n\}_n$	Bernoulli polynomial sequence

$\{\widehat{B}_n\}_n$	conjugate Bernoulli polynomial sequence
B_n	Bernoulli number
$\{E_n\}_n$	Euler polynomial sequence
$\{\widehat{E}_n\}_n$	conjugate Euler polynomial sequence
$\{H_n\}_n$	Hermite polynomial sequence
$\{S_n\}_n$	Sheffer sequence
$\{B_{n,h}^{\mathrm{II}}\}_n$	Bernoulli polynomial sequence of second kind
$\{\mathcal{B}_n\}_n$	generalized Boole polynomial sequence
$\{c_n\}_n$	Poisson-Charlier polynomial sequence
OLP(x)	set of odd Lidstone-type polynomial sequence
ELP(x)	set of even Lidstone-type polynomial sequence
$\{\Lambda_n\}_n$	Lidstone polynomial sequence of first type
$\{\mathcal{E}_n\}_n$	odd Lidstone–Euler polynomial sequence
$\{v_n\}_n$	Lidstone polynomial sequence of second type
$\{\mathcal{S}_n\}_n$	even Lidstone–Euler polynomial sequence
N	set of non negative integer