

Contents

Acknowledgement — VII

Preface — IX

Part I: Continuous-time

1 Introduction to signals and systems — 3

- 1.1 Signals — 3
- 1.1.1 Signals and their characteristics — 3
- 1.1.2 Important signals in continuous-time — 5
- 1.1.3 Important signals in discrete-time — 7
- 1.1.4 Discrete signals vs. continuous signals — 8
- 1.1.5 Operations with signals: energy and power — 9
- 1.1.6 Operations with signals: convolutions — 11
- 1.2 Systems — 12
- 1.3 Characterisation of Linear Systems — 17

2 Continuous-time linear systems and the Laplace transform — 21

- 2.1 The impulse response and the properties of linear systems — 21
- 2.2 Exponentials and LTIS — 21
- 2.2.1 The Laplace transform — 22
- 2.2.2 Existence and main properties of the Laplace transform — 24
- 2.3 The differintegrator — 27
- 2.4 Impulse and step responses of causal LS — 30
- 2.4.1 The general initial value theorem — 30
- 2.4.2 The general final value theorem — 31
- 2.4.3 Transfer function series representation — 31
- 2.5 Transfer function series representation for commensurate LS — 35

3 Fractional commensurate linear systems: time responses — 39

- 3.1 Impulse and step responses: the Mittag-Leffler function — 39
- 3.1.1 In terms of the Mittag-Leffler function — 41
- 3.1.2 By integer/fractional decomposition — 41
- 3.2 Stability — 45
- 3.2.1 Knowing the pseudo-poles — 45
- 3.2.2 Routh-Hurwitz criterion for an integer TF — 46
- 3.2.3 Special cases of the Routh-Hurwitz criterion for an integer TF — 49
- 3.2.4 Routh-Hurwitz criterion for a fractional commensurate TF — 50

3.2.5	Special cases of the Routh-Hurwitz criterion for a fractional commensurate TF — 53
3.3	Causal periodic impulse response — 56
3.4	Initial conditions — 57
3.4.1	Special cases — 59
4	The fractional commensurate linear systems. Frequency responses — 61
4.1	Steady-state behaviour: the frequency response — 61
4.2	Bode diagrams of typical explicit systems — 64
4.2.1	The differintegrator — 64
4.2.2	One pseudo-pole or one pseudo-zero — 64
4.2.3	Complex conjugate pair of pseudo-poles or pseudo-zeroes — 67
4.3	Implicit systems — 69
4.3.1	Implicit fractional order zero or pole — 70
4.3.2	Fractional PID — 70
4.3.3	Fractional lead compensator — 72
4.3.4	Fractional lag compensator — 74
4.4	Approximations to transfer functions based upon a frequency response — 75
4.4.1	Oustaloup's CRONE approximation — 75
4.4.2	The Carlson's approximation — 76
4.4.3	The Matsuda's approximation — 76
4.5	System modelling and identification from a frequency response — 77
4.6	Filters — 79
4.6.1	Generalities. Ideal filters — 79
4.6.2	Prototypes of integer order filters — 82
4.6.3	Transformations of frequencies — 85
4.6.4	Fractional filters — 85
5	State-space representation — 87
5.1	General considerations — 87
5.2	Standard form of the equations — 88
5.3	State transition operator — 90
5.4	Canonical representations of SISO systems — 92
6	Feedback representation — 95
6.1	Why feedback? — 95
6.2	On controllers — 96
6.3	The Nyquist stability criterion — 98
6.3.1	Drawing the Nyquist diagram — 100
6.3.2	Gain and phase margins — 102

7	On fractional derivatives — 105
7.1	Introduction — 105
7.2	Some historical considerations — 105
7.2.1	Returning to the differintegrator — 106
7.3	Fractional incremental ratio approach — 108
7.3.1	The derivative operators and their inverses — 108
7.3.2	Fractional incremental ratio — 109
7.3.3	Some examples — 112
7.3.4	Classic Riemann-Liouville and Caputo derivatives — 113
7.4	On complex order derivatives — 113

Part II: Discrete-time

8	Discrete-time linear systems. Difference equations — 119
8.1	On time scales — 119
8.2	Systems on uniform time scales: difference equations — 120
8.3	Exponentials as eigenfunctions — 120
8.3.1	Determination of the impulse response from the difference equation — 122
8.3.2	From the impulse response to the difference equation — 123
8.4	The frequency response — 124
8.5	Classification of systems — 126
8.6	Singular systems — 128

9	Z transform. Transient responses — 131
9.1	Z transform — 131
9.1.1	Introduction — 131
9.1.2	Definition — 131
9.2	Main Properties of the ZT — 133
9.3	Signals whose transforms are simple fractions — 136
9.4	Inversion of the ZT — 137
9.4.1	Inversion Integral — 137
9.4.2	Inversion by decomposition into a polynomial and partial fractions — 138
9.4.3	Inversion by series expansion — 140
9.4.4	Step response — 141
9.4.5	Response to a causal sinusoid — 142
9.5	Stability and Jury criterion — 145
9.6	Initial Conditions — 148
9.7	Initial and final value theorems — 150
9.8	Continuous to discrete conversion ($s2z$) — 151
9.8.1	Some considerations — 151

9.8.2	Approximation of derivatives — 152
9.8.3	Tustin rule or bilinear transformation — 154
9.8.4	Direct conversion of poles and zeros into poles and zeros — 156
9.8.5	Invariant response s to z conversion — 157
9.8.6	Conversion from partial fraction decomposition — 159
10	Discrete-time derivatives and transforms — 163
10.1	Introduction: difference vs. differential — 163
10.2	Derivatives and inverses — 163
10.2.1	Nabla and delta derivatives — 163
10.2.2	Existence of fractional derivatives — 166
10.2.3	Properties — 166
10.2.4	The nabla and delta exponentials — 168
10.3	Suitable transforms — 172
10.3.1	The nabla transform — 172
10.3.2	Main properties of the NLT — 173
10.3.3	Examples — 174
10.3.4	Existence of NLT — 176
10.3.5	Unicity of the transform — 176
10.3.6	Initial value theorem — 177
10.3.7	Final value theorem — 177
10.3.8	The delta transform and the correlation — 178
10.3.9	Backward compatibility — 179
10.4	Discrete-time fractional linear systems — 180
10.4.1	Polynomial case — 181
10.4.2	Proper fraction case — 181
10.4.3	The anti-causal case — 185
10.4.4	Inversion without partial fractions — 185
10.4.5	Some stability issues — 188
10.4.6	A correspondence principle — 188
10.4.7	On initial conditions — 191
10.5	The Fourier transform and the frequency response — 192

Part III: Advanced topics

11	Fractional stochastic processes and two-sided derivatives — 197
11.1	Stochastic input — 197
11.2	Two-sided derivatives — 199
11.2.1	Derivative of white noise — 199
11.2.2	GL type two-sided derivative — 199
11.2.3	The general two-sided fractional derivative — 200
11.2.4	The integer order cases — 203

11.2.5	Other properties and regularisations — 203
11.2.6	Feller derivative — 205
11.3	The fractional Brownian motion — 206
11.3.1	Definition — 206
11.3.2	Properties — 208
12	Fractional delay discrete-time linear systems — 213
12.1	Introduction — 213
12.2	Fractional delays — 213
12.3	Impulse responses — 214
12.4	Scale conversion — 215
12.5	Linear prediction — 216
13	Fractional derivatives with variable orders — 221
13.1	Introduction — 221
13.2	Past proposals — 221
13.3	An approach to VO derivatives based on the GL derivative — 224
13.4	Variable order linear systems — 227
13.5	The VO Mittag-Leffler function — 228
13.6	Variable order two-sided derivatives — 230

Appendices

A	On distributions — 237
A.1	Introduction — 237
A.2	The axioms — 238
B	The Gamma function and binomial coefficients — 240
C	The continuous-Time Fourier Transform — 243
C.1	Definition — 243
C.2	Differentiation and integration in the context of FT — 244
D	The discrete-time Fourier Transform — 247
D.1	Definition — 247
D.2	Existence — 249
E	Partial fraction decomposition without derivations — 252
E.1	Simplification when there are no conjugate pairs of poles — 252
E.2	Simplification for conjugate pairs of poles on the imaginary axis — 254
E.3	Simplification for conjugate pairs of poles not on the imaginary axis — 256

F The Mittag-Leffler function — 258
F.1 Definition — 258
F.2 Computation of the MLF — 264

Bibliography — 267

Further Reading — 273

Index — 279

E1 Erratum to Chapter 7 — 283