Contents

Acknow	ledgment	— VII

Preface — IX

Part I: Foundations and examples of complex heterogeneous systems

1	Introduction and motivation —— 3
1.1	Notation, definitions, and dimensionless formulations —— 11
2	Fundamental building blocks for CHeSs —— 16
2.1	Thermodynamic principles as a systematic pillar —— 16
2.1.1	Key concepts: system, heat, work, energy, and entropy —— 16
2.1.2	Efficiency: heat engines and generalizations —— 26
2.1.3	Fluctuations —— 30
2.2	Complexity —— 33
2.2.1	McCabe's complexity: cyclomatic complexity —— 35
2.3	Algorithmic Information Content (AIC) —— 38
2.3.1	The Turing machine —— 38
2.3.2	Definition of AIC —— 39
2.4	Networks and graphs: from the theory of systems to CHeSs —— 41
2.5	From thermodynamics to information —— 44
2.5.1	Maxwell's demon —— 46
2.6	Percolation: criticality and phase transitions —— 48
2.7	Nonequilibrium CHeSs: GENERIC and Variational Principles —— 51
2.7.1	Attempts inspired by GENERIC: dilute solutions from minimal energy and maximum dissipation —— 52
2.8	Smart Interacting CHeSs: autonomy, decision, strategy, and learning —— 53
2.8.1	Learning interaction strategies: the fictitious play —— 74
2.8.2	Framework for decision dynamics: kinematic evolution and utility
	functions —— 82
3	Examples of CHeSs: toward reliable and systematic descriptions —— 88
3.1	Nonequilibrium CHeSs: transport in solids —— 88
3.1.1	Applications and limits of phase field formulations —— 92
3.2	Universal CHeSs: coarsening in heterogeneous media —— 93
3.2.1	Interfacial dynamics in heterogeneous media: coarsening rates — 93
3.3	Information/data processing systems as CHeSs: from PC over DC and HPC to QC —— 98

3.3.1	PC as a CHeS — 98
3.3.2	DC as a CHeS —— 100
3.3.3	HPC as a CHeS —— 102
3.3.4	QC as a CHeS —— 103
4	CHeSs and measurements: state and parameter estimation —— 105
4.1	CHeS identification and description: stochastic models and filters —— 105
4.1.1	CHeSs as stochastic input/output models —— 105
4.1.2	CHeSs as a filter —— 112
4.2	Concepts of parameter estimation —— 113
4.2.1	Least Squares Estimator (LSE) —— 114
4.2.2	Maximum Likelihood Estimator (MLE) —— 125
4.3	State prediction of CHeSs by measurements: Kalman filter —— 128
4.3.1	The Kalman filter problem formulation —— 129
4.3.2	The discrete-time Kalman filter algorithm —— 131
4.3.3	Derivation of the discrete-time Kalman filter —— 132
5	Reliability and degradation in CHeSs —— 134
5.1	Introduction —— 134
5.2	Fundamental concepts —— 135
5.3	Serial arrangement: <i>N</i> independent systems —— 136
5.4	Parallel arrangement: <i>N</i> independent systems —— 137
5.5	Reliability in CHeSs: serial and parallel combinations —— 138
5.5.1	Software reliability —— 139
6	Multiscale CHeSs: upscaling, effective properties, and macroscopic
	descriptions —— 142
6.1	Introduction —— 142
6.2	Network/graph-based upscaling: flow/circuit laws —— 142
6.3	Upscaling based on homogenization theory: asymptotic two-scale
	expansion —— 145
6.4	Properties of the effective conductivity tensor (6.22) — 148
6.4.1	(A) Symmetry and positive definiteness —— 148
6.4.2	(B) Simple upper and lower bounds —— 150
6.5	Upscaling for slowly varying microstructure —— 155
6.6	Hydraulic conductivity: Darcy's law —— 157
6.6.1	Stokes flow through deterministic pore spaces: formal derivation —— 157
6.7	Convection diffusion problems — 160
6.8	CHeSs showing fractal designs: theory and examples —— 162
6.8.1	Characterizations of fractals and generalizations to CHeSs —— 164
6.8.2	Investigating fractal CHeSs —— 172

6.8.3	Cross-shaped fractals: Surface areas, porosities, and capacities in CHeSs —— 172
7	Quantum algorithms describing CHeSs —— 177
7.1	Introduction —— 177
7.2	Mathematical framework for quantum systems —— 177
7.3	Solving multiscale problems on a quantum computer —— 178
7.3.1	Quantum algorithms required for multiscale problems —— 179
7.3.2	Multiscale problems' benefit from quantum computers —— 190
8	Electrochemical CHeSs —— 195
8.1	Energy storage and fuel cell systems —— 195
8.1.1	CHeSs describing energy storage systems —— 195
8.1.2	Fuel cell systems representing electrochemical CHeSs — 196
8.2	Optimal material design as interacting CHeSs — 199
8.3	Battery modeling —— 205
8.3.1	Thermodynamic consistency: nonequilibrium formulation for electrolytes —— 206
8.3.2	System (8.16) satisfies the principles of GENERIC —— 209
8.3.3	Examples belonging to system (8.16) —— 211
8.3.4	Charge transport formulations for Li-batteries —— 214
8.3.5	Fundamental and Self-consistent Battery Equations (FSBEs): binary and neutrally dilute electrolytes with active Li-hosts —— 218
8.3.6	Two-phase composite Li-battery —— 218
8.3.7	Current-driven FSBE: linearization and 1D analytic solutions —— 226
8.3.8	Nonlinear and self-consistent Li-transport in concentrated polymer solutions —— 231
Part I	i: Rigorous mathematical methods: CHeSs relevant applications
9	Electrochemical CHeSs: from well-posedness to battery failure/blow-up —— 239
9.1	Well-posedness of a binary electrolyte for $\mathbf{v} = 0$ — 239
9.1.1	Conditions for blow-up in finite time —— 243
10	Rigorous upscaling of CHeSs: the two-scale convergence method — 247
10.1	Introduction —— 247
10.2	The classical two-scale convergence method —— 248
10.2.1	Two-scale convergence of conductivity problems —— 250

11	CHeSs governed by interparticle forces —— 254
11.1	Introduction —— 254
11.2	Upscaling of a hard-sphere particle system —— 254
11.2.1	Main results: effective macroscopic transport in strongly heterogeneous materials —— 257
11.2.2	Proof of the main results —— 258
11.3	Locating obstacles in transport problems: forward and inverse
	problems —— 260
11.3.1	Forward problem \mathcal{F} — 261
11.3.2	Inverse problem \mathcal{I} —— 262
11.3.3	Data inferred barycenter: optimality constraints —— 263
11.4	Computational method: constrained gradient descent —— 266
Diblica	42mby 260

Bibliography —— 269

Index — 277