
1 Vectors

1.0 Introduction

We start with vectors as ordered sets in order to introduce various aspects of these
objects called vectors and the different properties enjoyed by them. After having dis-
cussed the basic ideas, a formal definition, as objects satisfying some general condi-
tions, will be introduced later on. Several examples from various disciplines will be
introduced to indicate the relevance of the concepts in various areas of study. As the
students may be familiar, a collection of well-defined objects is called a set. For ex-
ample {2,α,B} is a set of 3 objects, the objects being a number 2, a Greek letter α and
the capital letter B. Sets are usually denoted by curly brackets {list of objects}. Each
object in the set is called an element of the set. Let the above set be denoted by S, then
S = {2,α,B}. Then 2 is an element of S. It is usually written as 2 ∈ S (2 in S or 2 is an
element of S). Thus we have

S = {2,α,B}, 2 ∈ S, α ∈ S, B ∈ S, 7 ∉ S, −γ ∉ S (1.0.1)

where ∉ indicates “not in”. That is, 7 is not in S and −γ (gamma) is not an element of S.
For a set, the order in which the elements are written is unimportant. We could

have represented S equivalently as follows:

S = {2,α,B} = {2,B,α} = {α, 2,B}
= {α,B, 2} = {B, 2,α} = {B,α, 2} (1.0.2)

because all of these sets contain the same objects and hence they represent the same
set. Now, we consider ordered sets. In (1.0.2) there are 6 ordered arrangements of the
3 elements. Each permutation (rearrangement) of the objects gives a different ordered
set. With a set of n distinct objects we can have a total of n! = (1)(2)…(n) ordered sets.

1.1 Vectors as ordered sets

For the time being we will define a vector as an ordered set of objects. More rigorous
definitions will be given later on in our discussions. Vectors or these ordered sets will
be denoted by ordinary brackets (ordered list of elements) or by square brackets [or-
dered list of elements]. For example, if the ordered sequences are taken from (1.0.2)
then we have six vectors. If these are denoted by V1,V2,… ,V6 respectively, then we
have

V1 = (2,α,B), V2 = (2,B,α), V3 = (α, 2,B),
V4 = (α,B, 2), V5 = (B, 2,α), V6 = (B,α, 2).
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We could have also represented these by square brackets, that is,

V1 = [2,α,B], … , V6 = [B,α, 2]. (1.1.1)

As a convention, we will use either all ordinary brackets (⋅) or all square brackets [⋅]
when we discuss a given collection of vectors. The two notations will not be mixed up
in the same collection. We could have also written the ordered sequences as columns,
rather than as rows. For example,

U1 =
[[

[

2
α
B

]]

]

, …, U6 =
[[

[

B
α
2

]]

]

or U1 =(
2
α
B
), …, U6 =(

B
α
2
) (1.1.2)

also represent the same collection or ordered sets or vectors. In (1.1.1) they are written
as row vectors whereas in (1.1.2) they are written as column vectors.

Definition 1.1.1 (An n-vector). It is an ordered set of n objects written either as a row
(a row n-vector) or as a column (a column n-vector).

Example 1.1.1 (Stock market gains). A person has invested in 4 different stocks. Tak-
ing the January 1, 1998 as the base the person is watching the gain/loss, from this base
value, at the end of each week.

Stock 1 Stock 2 Stock 3 Stock 4

Week 1 100 150 −50 50
Week 2 50 −50 70 −50
Week 3 −150 −100 −20 0

The performance vector at the end ofweek 1 is then (100, 150, −50,50), a negative num-
ber indicating the loss and a positive number denoting a gain. The performance vector
of stock 1 over the threeweeks is [ 10050

−150
]. Observe thatwe could have alsowrittenweeks

as columns and stocks as rows instead of the above format. Note also that for each el-
ement the position where it appears is relevant, in other words, the elements above
are ordered.

Example 1.1.2 (Consumption profile). Suppose the following are the data on the food
consumption of a family in a certain week, where q denotes quantity (in kilograms)
and p denotes price per unit (per kilogram).

Beef Pork Chicken Vegetables cereals

q 10 15 20 10 5
p $2.00 $1.50 $0.50 $1.00 $3.45

The vector of quantities consumed is [10, 15, 20, 10,5] and the price vector is [2.00, 1.50,
0.50, 1.00,3.45].
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Example 1.1.3 (Discrete statistical distributions). If a discrete random variable takes
values x1,x2,… ,xn with probabilities p1,… ,pn respectively where pi > 0, i = 1,… ,n,
p1 +⋯+ pn = 1 then this distribution can be represented as follows:

x-values x1 x2 … xn
probabilities p1 p2 … pn

As an example, if x takes the values 0, 1, −1, (such as a gambler gains nothing, gains
onedollar, loses onedollar)with probabilities 1

2 ,
1
4 ,

1
4 respectively then the distribution

can be written as

x-values 0 1 −1
probabilities 1

2
1
4

1
4

Here the observation vector is (0, 1, −1) and the corresponding probability vector is
( 12 ,

1
4 ,

1
4 ). Note that when writing the elements of a vector, the elements may be sepa-

rated by sufficient spaces, or by commas if there is possibility of confusion. Any vector
(p1,… ,pn) such that pi > 0, i = 1,… ,n, p1 +⋯ + pn = 1 is called a discrete probability
distribution.

Example 1.1.4 (Transition probability vector). Suppose at El Paso, Texas, there are
only two possibilities for a September day. It can be either sunny and hot or cloudy
and hot. Let these be denoted by S (sunny) and C (cloudy). A sunny day can be fol-
lowed by either a sunny day or a cloudy day and similarly a cloudy day can follow
either a sunny or a cloudy day. Suppose that the chances (transition probabilities) are
the following:

S C

S 0.95 0.05
C 0.90 0.10

Then for a sunny day the transition probability vector is (0.95,0.05) to be followed by
a sunny and a cloudy day respectively. For a cloudy day the corresponding vector is
(0.90,0.10).

Example 1.1.5 (Error vector). Suppose that an automaticmachine is filling 5 kg bag of
potatoes. The machine is not allowed to cut or chop to make the weight exactly 5 kg.
Naturally, if one such bag is taken then the actual weight can be less than or greater
than or equal to 5 kg. Let ϵ denote the error = observed weight minus the expected
weight(5 kg). [One could have defined “error” as expected value minus the observed
value]. Suppose 4 such bags are selected and weighed. Suppose the observation vec-
tor, denoted by X, is

X = (5.01,5.10,4.98,4.92).
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Then the error vector, denoted by ϵ, is

ϵ = (0.01,0.10, −0.02, −0.08)
= (5.01 − 5.00,5.10 − 5.00,4.98 − 5.00,4.92 − 5.00).

Note that we could have written both X and ϵ as column vectors as well.

Example 1.1.6 (Position vector). Suppose a person walks on a straight path (horizon-
tal) for 4 miles and then along a perpendicular path to the left for another 6 miles. If
these distances are denoted by x and y respectively then her position vector is, taking
the starting points as the origin,

(x,y) = (4,6).

Example 1.1.7 (Vector of partial derivatives). Consider f (x1,… ,xn), a scalar function
of n real variables x1,… ,xn. As an example,

f (x1,x2,x3) = 3x21 + x22 + x23 − 2x1x2 + 5x1x3 − 2x1 + 7.

Here n = 3 and there are 3 variables in f . Consider the partial derivative operators
𝜕
𝜕x1
, 𝜕𝜕x2 ,

𝜕
𝜕x3

, that is, 𝜕𝜕x1 operating on f means to differentiate f with respect to x1 treat-
ing x2 and x3 as constants. For example, 𝜕𝜕x1 operating on the above f gives

𝜕f
𝜕x1
= 6x1 − 2x2 + 5x3 − 2.

Consider the partial differential operator

𝜕
𝜕X
= ( 𝜕
𝜕x1
,… , 𝜕
𝜕xn
).

Then 𝜕𝜕X operating on f gives the vector

𝜕f
𝜕X
= (
𝜕f
𝜕x1
,… ,
𝜕f
𝜕xn
).

For the above example,

𝜕f
𝜕X
= ( 𝜕f
𝜕x1
, 𝜕f
𝜕x2
, 𝜕f
𝜕x3
)

= (6x1 − 2x2 + 5x3 − 2, 2x2 − 2x1, 2x3 + 5x1).

Example 1.1.8 (Students’ grades). Suppose that Miss Gomez, a first year student
at UTEP, is taking 5 courses, Calculus I (course 1), Linear Algebra (course 2),…,
(course 5). Suppose that each course requires 2 class tests, a set of assignments to
be submitted and a final exam. Suppose that Miss Gomez’ performance profile is the
following (all grades in percentages):
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course 1 course 2 course 3 course 4 course 5

test 1 80 85 80 90 95
test 2 85 85 85 95 100

assignments 100 100 100 100 100
final exam 90 95 90 92 95

Then for example, her performance profiles on courses 1 and 4 are

[[[[

[

80
85
100
90

]]]]

]

and
[[[[

[

90
95
100
92

]]]]

]

respectively. Her performances on all courses is the vector (80,85,80,90,95) for test 1.

Example 1.1.9 (Fertility data). Fertility of women is often measured in terms of the
number of children produced. Suppose that the following data represent the average
number of children in a particular State according to age and racial groups:

group 1 group 2 group 3 group 4

≤ 16 1 0.8 1.5 0.5
16 to ≤ 18 1 1 0.8 0.9
18 to ≤ 35 4 2 3 2
35 to ≤ 50 1 0 2 0
> 50 0 0 1 0

The first row vector in the above table represents the performance of girls 16 years or
younger over the 4 racial groups. Column 2 represents the performance of racial group
2 over the age groups, and so on.

Example 1.1.10 (Geometric probability law). Suppose that a person is playing a game
of chance in a casino. Suppose that the chance of winning at each trial is 0.2 and that
of losing is 0.8. Suppose that the trials are independent of each other. Then the person
can win at the first trial, or lose at the first trial and win at the second trial, or lose at
the first two trials and win at the third trial, and so on. Then the chance of winning at
the x-th trial, x = 1, 2,3,… is given by the vector

[0.2, (0.8)(0.2), (0.8)2(0.2), (0.8)3(0.2),…].

It is an n-vector with n = +∞. Note that the number of ordered objects, representing a
vector, could be finite or infinitely many (countable, that is one can draw a one-to-one
correspondence to the natural numbers 1, 2,3,…).

In Example 1.1.1 suppose that the gains/loses were in US dollars and suppose that
the investor was a Canadian and she would like to convert the first week’s gain/loss
into Canadian dollar equivalent. Suppose that the exchange rate is US$ 1=CA$ 1.60.
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Then the first week’s performance is available bymultiplying each element in the vec-
tor by 1.6. That is,

1.6(100, 150, −50,50) = ((1.6)(100), (1.6)(150), (1.6)(−50), (1.6)(50))
= (160, 240, −80,80).

Another example of this type is that someone has a measurement vector in feet and
that is to be converted into inches, then each element is multiplied by 12 (one foot =
12 inches), and so on.

Definition 1.1.2 (Scalar multiplication of a vector). Let c be a scalar, a 1-vector, and
U = (u1,… ,un) an n-vector. Then the scalar multiple of U , namely cU , is defined as

cU = (cu1,… , cun). (1.1.3)

As a convention the scalar quantity c is written on the left of U and not on the right,
that is, not as Uc but as cU . As numerical illustrations we have

−3[[
[

1
−1
2

]]

]

= [[

[

−3
3
−6

]]

]

; 0(
1
−1
2
)=(

0
0
0
); 1

2
[[

[

1
−1
2

]]

]

= [[

[

1
2
− 12
1

]]

]

;

4(2, −1) = (8, −4).

In Example 1.1.1 if the total (combined) gain/loss at the end of the second week is
needed then the combined performance vector is given by

(100 + 50, 150 − 50, −50 + 70,50 − 50) = (150, 100, 20,0).

If the combined performance of the first three weeks is required then it is the above
vector added to the third week’s vector, that is,

(150, 100, 20,0) + (−150, −100, −20,0) = (0,0,0,0).

Definition 1.1.3 (Addition of vectors). Let a = (a1,… ,an) and b = (b1,… ,bn) be two
n-vectors. Then the sum is defined as

a + b = (a1 + b1,… ,an + bn), (1.1.4)

that is, the vector obtained by adding the corresponding elements.

Note that vector addition is defined only for vectors of the same category and or-
der. Either both are row vectors of the same order or both are column vectors of the
same order. In other words, if U is an n-vector and V is an m-vector then U + V is not
defined unlessm = n, and further, both are either row vectors or column vectors.
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Definition 1.1.4 (A null vector). A vector with all its elements zeros is called a null
vector and it is usually denoted by a big O.

In Example 1.1.1 the combined performance of the first 3 weeks is a null vector. In
other words, after the first 3 weeks the performance is back to the base level. From the
above definitions the following properties are evident. If U ,V ,W are three n-vectors
(either all row vectors or all column vectors) and if a,b, c are scalars then

U + V = V +U ; U + (V +W) = (U + V) +W
U − V = U + (−1)V ; U +O = O +U = U ; U −U = O;

a[bU + cV] = abU + acV = b(aU) + c(aV). (1.1.5)

Some numerical illustrations are the following:

2[[
[

1
0
−1

]]

]

− 3[[
[

0
1
−2

]]

]

+[[

[

0
0
0

]]

]

= [[

[

2
0
−2

]]

]

+[[

[

0
−3
6

]]

]

+[[

[

0
0
0

]]

]

= [[

[

2 + 0 + 0
0 − 3 + 0
−2 + 6 + 0

]]

]

= [[

[

2
−3
4

]]

]

;

(1, −7) + 6(0, −1) + (0,0) = (1, −7) + (0, −6) + (0,0)
= (1 + 0 + 0, −7 − 6 + 0) = (1, −13);

(1, 1, 2) − (1, 1, 2) = (1, 1, 2) + (−1, −1, −2)
= (1 − 1, 1 − 1, 2 − 2) = (0,0,0).

Definition 1.1.5 (Transpose of a vector). [Standard notations: U′ = transpose of U ,
UT = transpose of U .] If U is a row n-vector then U′ is the same written as a column
and vice versa.

Some numerical illustrations are the following, where “⇒” means “implies”:

U = [[
[

−3
0
1

]]

]

⇒ U′ = [−3,0, 1]

V = [1,5, −1] ⇒ V′ = [[
[

1
5
−1

]]

]

= VT .

Note that in the above illustration U +V is not defined but U +V′ is defined. Similarly
U′ +V is defined but U′ +V′ is not defined. Also observe that if z is a 1-vector (a scalar
quantity) then z′ = z, that is, the transpose is itself.
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In Example 1.1.6 the position vector is (x,y) = (4,6). Then the distance of this po-
sition from the starting point is obtained from Pythagoras’ rule as,

√x2 + y2 = √42 + 62 = √52.

This then is the straight distance from the starting point (0,0) to the final position
(4,6). We will formally define the length of a vector as follows, the idea will be clearer
when we consider the geometry of vectors later on:

Definition 1.1.6 (Length of a vector). Let U be a real n-vector (either a column vector
or a row vector). If the elements of U are u1,… ,un then the length of U , denoted by
‖U‖, is defined as

‖U‖ = √u21 +⋯+ u2n, (1.1.6)

when the elements are real numbers. When the elements are not real then the length
will be redefined later on. Some numerical illustrations are the following:

U = [[
[

1
−1
0

]]

]

⇒ ‖U‖ = √(1)2 + (−1)2 + (0)2 = √2;

V = (1, 1, −2) ⇒ ‖V‖ = √(1)2 + (1)2 + (−2)2 = √6;

O = [[
[

0
0
0

]]

]

⇒ ‖O‖ = 0; e1 = (1,0,0,0) ⇒ ‖e1‖ = 1;

Z = ( 1√2
, − 1
√2
) ⇒ ‖Z‖ = 1.

Note that the “length”, by definition, is a non-negative quantity. It is either zero or a
positive quantity and it cannot be negative. For a null vector the length is zero. The
length of a vector is zero iff (if and only if) the vector is a null vector.

Definition 1.1.7 (A unit vector). A vector whose length is unity is called a unit vector.

Some numerical illustrations are the following:

e4 = (0,0,0, 1) ⇒ ‖e4‖ = 1.

But U = (1, −2, 1) ⇒ ‖U‖ = √6, U is not a unit vector whereas

V = 1
‖U‖

U = 1
√6
(1, −2, 1) = ( 1

√6
, − 2
√6
, 1√6
) ⇒ ‖V‖ = 1,

that is, V is a unit vector. Observe the following: A null vector is not a unit vector. If
the length of any vector is non-zero (the only vector with length zero is the null vector)
then taking a scalar multiple, where the scalar is the reciprocal of the length, a unit
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vector can be created out of the given non-null vector. In general, if U = (u1,… ,un),
where u1,… ,un are real, then

‖U‖ = ‖U′‖ = √u21 +⋯+ u2n
and

V = 1
‖U‖

U ⇒ ‖V‖ = 1 (1.1.7)

when ‖U‖ ≠ 0.
From the definition of length itself the following properties are obvious. If U and

V are n-vectors of the same type and if a,b, c are scalars, then

‖cU‖ = |c| ‖U‖; ‖cU + cV‖ = |c| ‖U + V‖
‖U + V‖ ≤ ‖U‖ + ‖V‖;
‖aU + bV‖ ≤ |a| ‖U‖ + |b| ‖V‖ (1.1.8)

where, for example, |c| means the absolute value of c, that is, the magnitude of c,
ignoring the sign. For example,

‖−2(1, −1, 1)‖ = |−2| √(1)2 + (−1)2 + (1)2 = 2√3;

‖2(1, −1, 1)‖ = 2√3;

U = [[
[

1
−1
1

]]

]

, V = [[
[

1
2
−3

]]

]

⇒ U + V = [[
[

2
1
−2

]]

]

;

‖U‖ = √(1)2 + (−1)2 + (1)2 = √3;

‖U + V‖ = √(2)2 + (1)2 + (−2)2 = √9 = 3 < ‖U‖ + ‖V‖ = √3 +√14.

Now,wewill look at another concept. In Example 1.1.2 the family’s total expense of the
week on those food items is available by multiplying the quantities with unit prices
and then adding up. That is, if the quantity vector is denoted by Q and the per unit
price vector is denoted by P then

Q = (10, 15, 20, 10,5)

and

P = (2.00, 1.50,0.50, 1.00,3.45).

Thus the total expense of that family for that week on these 5 items is obtained by
multiplying and adding the corresponding elements in P and Q. That is,

(10)(2.00) + (15)(1.50) + (20)(0.50) + (10)(1.00) + (5)(3.45) = $79.75.

It is a scalar quantity (1-vector) and not a 5-vector, even though the vectorsQ and P are
5-vectors. For computing quantities such as the one above we define a concept called
the dot product or the inner product between two vectors.
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Definition 1.1.8 (Dot product or inner product). LetU andV be two real n-vectors (ei-
ther both row vectors or both column vectors or one row vector and the other column
vector). Then the dot product between U and V , denoted by U .V is defined as

U .V = u1v1 +⋯+ unvn

that is, the corresponding elements are multiplied and added, where u1,… ,un and
v1,… , vn are the elements (real) in U and V respectively. (Vectors in the complex field
will be considered in a later chapter.)

Somenumerical illustrations are the following: In the above example, the family’s
consumption for the week is Q.P = P.Q = 79.75.

U1 =(
0
1
2
), U2 =(

1
−1
1
) ⇒

U1.U2 = (0)(1) + (1)(−1) + (2)(1) = 1.
V1 = (3, 1, −1,5), V2 = (−1,0,0, 1) ⇒

V1.V2 = (3)(−1) + (1)(0) + (−1)(0) + (5)(1) = 2.

From the definition itself the following properties are evident:

U .O = 0, aU .V = (aU).V = U .(aV)

where a is a scalar.

U .V = V .U , (aU).(bV) = ab(U .V)

where a and b are scalars.

U .(V +W) = U .V +U .W = (W + V).U . (1.1.9)

The notation with a dot, U .V , is an awkward one. But unfortunately this is a widely
used notation. A proper notation in terms of transposes andmatrixmultiplicationwill
be introduced later. Also, further properties of dot products will be considered later,
after looking at the geometry of vectors as ordered sets.

Exercises 1.1
1.1.1. Are the following defined? Whichever is defined compute the answers.

(a) [[
[

0
−1
1

]]

]

+ [
2
3
] ; (b) [[

[

1
0
1

]]

]

− 3[[
[

2
0
0

]]

]

;

(c) (3, −1,4) − (2, 1); (d) 5(1,0) − 3(−2, −1).
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1.1.2. Compute the lengths of the following vectors. Normalize the vectors (create a
vector with unit length from the given vector) if possible:

(a) (0,0,0); (b) (1, 1, −1);

(c) [[
[

2
−1
1

]]

]

; (d) [[
[

5
0
−1

]]

]

; (e) 3[[
[

1
−1
1

]]

]

.

1.1.3. Convert the stock market performance vectors in Example 1.1.1 to the following:
First week’s performance into pound sterling (1 $ = 0.5 pounds sterling); the second
week’s performance into Italian lira (1 $ = 2 000 lira).

1.1.4. In Example 1.1.3 compute the expected value of the random variable. [The ex-
pected value of a discrete random variable is denoted as E(x) and defined as E(x) =
x1p1 +⋯+ xnpn if x takes the values x1,… ,xn with probabilities p1,… ,pn respectively.]
If it is a game of chance where the person wins $0, $1, $(−1) (loses a dollar) with prob-
abilities 1

2 ,
1
4 ,

1
4 respectively howmuch money can the person expect to win in a given

trial of the game?

1.1.5. In Example 1.1.3 if the expected value is denoted by μ = X.P (μ the Greek letter
mu), where X = (x1,… ,xn) and P = (p1,… ,pn) then the variance of the random vari-
able is defined as the dot product between ((x1 − μ)2,… , (xn − μ)2) and P. Compute the
variance of the random variable in Example 1.1.3. [Variance is the square of a measure
of scatter or spread in the random variable.]

1.1.6. In Example 1.1.5 compute the sum of squares of the errors [Hint: If ϵ is the error
vector then the sum of squares of the errors is available by taking the dot product ϵ.ϵ.]

1.1.7. In Example 1.1.8 suppose that for each course the distribution of the final grade
is the following: 20 points each for each test, 10 points for assignments and 50 points
for the final exam. Compute the vector of final grades of the student for the 5 courses
by using the various vectors and using scalar multiplications and sums.

1.1.8. From the chance vector in Example 1.1.10 compute the chance of ever winning
(sum of the elements) and the expected number of trials for the first win, E(x) (note
that x takes the values 1, 2,… with the corresponding probabilities).

1.1.9. Consider an n-vector of unities denoted by J = (1, 1,… , 1). If X = (x1,… ,xn) is any
n-vector then compute (a) X.J; (b) 1

nX.J.

1.1.10. For the quantities in Exercise 1.1.9 establish the following:

(a) (X − μ̃).J = 0 where μ̃ = ( 1
n
X.J,… , 1

n
X.J).

[This holds whatever be the values of x1,… ,xn. Verify by taking some numerical val-
ues.]
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(b) (X − μ̃).(X − μ̃) = X.X − n( 1
n
X.J)

2

= X.X − 1
n
(X.J)(X.J)

whatever be the values of x1,… ,xn.
(c) Show that the statement in (a) above is equivalent to the statement∑ni=1(xi− x̄) =

0 where x̄ = ∑ni
xi
n with ∑ denoting a sum.

(d) Show that the statement in (b) is equivalent to the statements
n
∑
i=1
(xi − x̄)2 =

n
∑
i=1

x2i − nx̄2

=
n
∑
i=1

x2i −
1
n
(

n
∑
i=1

xi)
2

.

A note on ∑ notation. This is a convenient notation to denote a sum.

n
∑
i=1

ai = a1 +⋯+ an,

that is, i is replaced by 1, 2,… ,n and the elements are added up.
n
∑
i=1

4 = 4 + 4 +⋯+ 4 = 4n;

n
∑
i=1

aibi = a1b1 +⋯+ anbn = a.b

where a = (a1,… ,an) and b = (b1,… ,bn).

n
∑
i=1

a2i = a21 +⋯+ a2n = a.a;

n
∑
i=1
(5ai) = 5a1 +⋯+ 5an = 5(a1 +⋯+ an) = 5

n
∑
i=1

ai ;

n
∑
i=1

m
∑
j=1

aibj =
n
∑
i=1

ai[
m
∑
j=1

bj]

=
n
∑
i=1

ai(b1 +⋯+ bm) = (a1 +⋯+ an)(b1 +⋯+ bm)

=
m
∑
j=1

n
∑
i=1

aibj ;

m
∑
i=1

n
∑
j=1

aij = a11 +⋯+ a1n

+ a21 +⋯+ a2n
⋮
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+ am1 +⋯+ amn =
n
∑
j=1

m
∑
i=1

aij ;

n
∑
i=1
(ai + 3bi) =

n
∑
i=1

ai + 3
n
∑
i=1

bi ;

x̄ =
n
∑
j=1

xj
n
= 1
n
(x1 +⋯+ xn) =

1
n
X.J

where

X = (x1,… ,xn) and J = (1, 1,… , 1);
n
∑
i=1
(xi − x̄) =

n
∑
i=1

xi −
n
∑
i=1

x̄

=
n
∑
i=1

xi − nx̄ =
n
∑
i=1

xi − n(
n
∑
i=1

xi
n
)

=
n
∑
i=1

xi −
n
∑
i=1

xi = 0

whatever be x1,… ,xn.

1.1.11. When searching for maxima/minima of a scalar function f of many real scalar
variables the critical points (the points where onemay find amaximum or aminimum
or a saddle point) are available by operating with 𝜕𝜕X , equating to a null vector and
then solving the resulting equations. For the function

f (x1,x2) = 3x21 + x22 − 2x1 + x2 + 5

evaluate the following: (a) the operator 𝜕𝜕X , (b)
𝜕f
𝜕X , (c)

𝜕f
𝜕X = O, (d) the critical points.

1.1.12. For the following vectors U ,V ,W compute the dot products U .V , U .W , V .W
where

U = (1, 1, 1), V = (1, −2, 1), W = (1,0, −1).

1.1.13. If V1,V2,V3 are n vectors, either n × 1 column vectors or 1 × n row vectors and
if ‖Vj‖ denotes the length of the vector Vj then show that the following results hold in
general:
(i) ‖V1 − V2‖ > 0 and ‖V1 − V2‖ = 0 iff V1 = V2;
(ii) ‖cV1‖ = |c| ‖V1‖ where c is a scalar;
(iii) ‖V1 − V2‖ + ‖V2 − V3‖ ≥ ‖V1 − V3‖.

1.1.14. Verify (i), (ii), (iii) of Exercise 1.1.13 for

V1 = (1,0, −1), V2 = (0,0, 2), V3 = (2, 1, −1).

1.1.15. Let U = (1, −1, 1, −1). Construct three non-null vectors V1,V2,V3 such that
U .V1 = 0, U .V2 = 0, U .V3 = 0, V1.V2 = 0, V1.V3 = 0, V2.V3 = 0.
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1.2 Geometry of vectors

From the position vector in Example 1.1.6 it is evident that (x,y) = (4,6) can be denoted
as a point in a 2-space (plane) with a rectangular coordinate system. In general, since
an n-vector of real numbers is an ordered set of real numbers it can be represented as
a point in a Euclidean n-space.

1.2.1 Geometry of scalar multiplication

If the position (4,6), which could also be written as ( xy ) = ( 46 ), is marked in a 2-space
then we have the following Figure 1.2.1. One can also think of this as an arrowhead
starting at (0,0) and going to (4,6). In this representation the vector has a length and
adirection. In general, ifU is anarrowhead from theorigin (0,0,… ,0) in n-space to the
point U = (u1,… ,un) then −U will represent an arrowhead with the same length but
going in the opposite direction. Then cU will be an arrowhead in the same direction
with length c‖U‖ if c > 0 and in the opposite directionwith length |c| ‖U‖ if c < 0,where
|c| denotes the absolute value or the magnitude of c, and it is the origin itself if c = 0.
In physics, chemistry and engineering areas it is customary to denote a vector with an
arrow on top such as U⃗ , meaning the vector U⃗ .

Figure 1.2.1: Geometry of vectors.

1.2.2 Geometry of addition of vectors

Scalar multiplication is interpreted geometrically as above. Then, what will be the
geometrical interpretation for a sum of two vectors? For simplicity, let us consider a
2-space. If U⃗ = ( u1u2 ) and V⃗ = (

v1
v2 ) then algebraically

U⃗ + V⃗ = (u1 + v1
u2 + v2
)
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which is the arrowhead representing the diagonal of the parallelogram as shown in
Figure 1.2.2. From thegeometry of vectors one cannotice that a vector, as anordered set
of real numbers, possesses two properties basically, namely, a length and a direction.
Hence we can give a coordinate-free definition as an arrowhead with a length and a
direction.

Figure 1.2.2: Sum of two vectors.

1.2.3 A coordinate-free definition of vectors

Definition 1.2.1 (A coordinate-free definition for a vector). It is defined as an arrow-
head with a given length and a given direction.

Figure 1.2.3: Coordinate-free definition of vectors.

In this definition, observe that all arrowheads with the same length and same di-
rection are taken to be one and the same vector as shown in Figure 1.2.3. We canmove
an arrowhead parallel to itself. All such arrowheads obtained by such displacements
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are takenas one and the samevector. If onehas a coordinate system thenmove the vec-
tor parallel to itself so that the tail-end (the other end to the arrow tip) coincides with
the origin of the coordinate system. Thus the position vectors are also included in this
general definition. In a coordinate-free definition one can construct U⃗ + V⃗ and U⃗ − V⃗
as follows:Move U⃗ or V⃗ parallel to itself until the tail-ends coincide. Complete the par-
allelogram. The leading diagonal gives U⃗ + V⃗ and the diagonal going from the head of
U⃗ to the head of V⃗ gives V⃗ − U⃗ and the one the other way around is −(V⃗ − U⃗) = U⃗ − V⃗ .

1.2.4 Geometry of dot products

Consider a Euclidean 2-space and represent the vectors U⃗ = (u1,u2) and V⃗ = (v1, v2) as
points in a rectangular coordinate system. Let the angles, the vectors U⃗ and V⃗ make
with the x-axis be denoted by θ1 and θ2 respectively. Let

θ = θ1 − θ2.

Then

cosθ1 =
u1
√u21 + u22

, cosθ2 =
v1
√v21 + v22

,

sinθ1 =
u2
√u21 + u22

, sinθ2 =
v2
√v21 + v22

.

But

cosθ = cos(θ1 − θ2) = cosθ1 cosθ2 + sinθ1 sinθ2

= u1v1 + u2v2
√u21 + u22√v21 + v22

= U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

(1.2.1)

whenever ‖U⃗‖ ≠ 0 and ‖V⃗‖ ≠ 0. Thus

U⃗ .V⃗ = ‖U⃗‖ ‖V⃗‖cosθ, ‖U⃗‖ ≠ 0, ‖V⃗‖ ≠ 0. (1.2.2)

The dot product is the product of the lengths multiplied by the cosine of the angle
between the vectors. This result remains the same whatever be the space. That is, it
holds in 2-space, 3-space, 4-space and soon. TheFigure 1.2.4 shows the situationwhen
0 ≤ θ1 ≤ π/2, 0 ≤ θ2 ≤ π/2, θ1 > θ2. The student may verify the result for all possible
cases of θ1 and θ2, as an exercise. From (1.2.1) we can obtain an interesting result.
Since cosθ, in absolute value, is less than or equal to 1 we have a result known as
Cauchy–Schwartz inequality:

|cosθ| = | U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

| ≤ 1 ⇒ |U⃗ .V⃗ | ≤ ‖U⃗‖ ‖V⃗‖.
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Figure 1.2.4: Geometry of the dot product.

1.2.5 Cauchy–Schwartz inequality

|U⃗ .V⃗ | ≤ ‖U⃗‖ ‖V⃗‖.

In other words, if U⃗ = (u1,… ,un) and V⃗ = (v1,… , vn) then for real u1,… ,un and
v1,… , vn,

|u1v1 +⋯+ unvn| ≤ √u21 +⋯+ u2n√v21 +⋯+ v2n. (1.2.3)

When the angle θ between the vectors U⃗ and V⃗ is zero or 2nπ, n = 0, 1,… then cosθ = 1
which means that the two vectors are scalar multiples of each other. Thus we have an
interesting result:

(i) When equality in the Cauchy–Schwartz inequality holds the two vectors are
scalar multiples of each other, that is, U⃗ = cV⃗ where c is a scalar quantity.

When θ = π/2 then cosθ = 0 which means U⃗ .V⃗ = 0. When the angle between the vec-
tors U⃗ and V⃗ is π/2, wemay say that the vectors are orthogonal to each other, then the
dot product is zero. Orthogonality will be taken up later.

Example 1.2.1. A girl is standing in a park and looking at a bird sitting on a tree.
Taking one corner of the park as the origin and the rectangular border roads as the
(x,y)-axes the positions of the girl and the tree are (1, 2) and (10, 15) respectively, all
measurements in feet. The girl is 5 feet tall to her eye level and the bird’s position
from the ground is 20 feet up. Compute the following items: (a) The vector from the
girl’s eyes to the bird and its length; (b) The vector from the foot of the tree to the girl’s
feet and its length; (c) When the girl is looking at the bird the angle this path makes
with the horizontal direction; (d) The angle this pathmakeswith the vertical direction.

Solution 1.2.1. The positions of the girl’s eyes and the bird are respectively U⃗ = (1, 2,5)
and V⃗ = (10, 15, 20).
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(a) The vector from the girl’s eyes to the bird is then

V⃗ − U⃗ = (10 − 1, 15 − 2, 20 − 5) = (9, 13, 15)

and its length is then

‖V⃗ − U⃗‖ = √(9)2 + (13)2 + (15)2 = √475.

(b) The foot of the tree is V⃗ 1 = (10, 15,0) and the position of the girl’s feet is U⃗ 1 =
(1, 2,0). The vector from the foot of the tree to the girl’s feet is then

U⃗ 1 − V⃗ 1 = (1, 2,0) − (10, 15,0) = (−9, −13,0)

and its length is

‖U⃗ 1 − V⃗ 1‖ = √(−9)2 + (−13)2 + (0)2 = √250.

(c) From the girl’s eyes the vector in the horizontal direction to the tree is

V⃗ 2 − U⃗2 = (10, 15,5) − (1, 2,5) = (10 − 1, 15 − 2,5 − 5) = (9, 13,0)

and its length is

‖V⃗ 2 − U⃗2‖ = √(9)2 + (13)2 + (0)2 = √250.

Let θ be the angle between the vectors V⃗ − U⃗ and V⃗ 2 − U⃗2. Then

cosθ = (V⃗ − U⃗).(V⃗2 − U⃗2)
‖V⃗ − U⃗‖ ‖V⃗2 − U⃗2‖

= (9, 13, 15).(9, 13,0)√475√250
=
√250
√475
= √ 10

19
.

Then the angle θ is given by

θ = cos−1√ 10
19
.

(d) The angle in the vertical direction is

π
2
− θ = π

2
− cos−1√ 10

19
.
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1.2.6 Orthogonal and orthonormal vectors

Definition 1.2.2 (Orthogonal vectors). Two real vectors U⃗ and V⃗ are said to be orthog-
onal to each other if the angle between them is π

2 = 90° or equivalently, if cosθ = 0 or
equivalently, if U⃗ .V⃗ = 0.

It follows, trivially, that every vector is orthogonal to a null vector since the dot
product is zero.

Definition 1.2.3 (Orthonormal system of vectors). A system of real vectors U⃗ 1,… , U⃗k
is said to be an orthonormal system if U⃗ i .U⃗ j = 0 for all i and j, i ≠ j (all different vectors
are orthogonal to each other or they forman orthogonal system) and in addition, ‖U⃗ j‖ =
1, j = 1, 2,… ,k (all vectors have unit length).

As an illustrative example, consider the vectors

U⃗ 1 = (1, 1, 1), U⃗2 = (1,0, −1), U⃗3 = (1, −2, 1).

Then

U⃗1.U⃗2 = (1)(1) + (1)(0) + (1)(−1) = 0;
U⃗1.U⃗3 = (1)(1) + (1)(−2) + (1)(1) = 0;
U⃗2.U⃗3 = (1)(1) + (0)(−2) + (−1)(1) = 0.

Thus U⃗ 1, U⃗2, U⃗3 form an orthogonal system. Let us normalize the vectors in order to
create an orthonormal system. Let us compute the lengths

‖U⃗ 1‖ = √(1)2 + (1)2 + (1)2 = √3, ‖U⃗2‖ = √2, ‖U⃗3‖ = √6.

Consider the vectors

V⃗ 1 =
1
‖U⃗1‖

U⃗1 =
1
√3
(1, 1, 1) = ( 1

√3
, 1√3
, 1√3
)

V⃗2 =
1
‖U⃗2‖

U⃗2 = (
1
√2
(1,0, −1))

V⃗3 =
1
‖U⃗3‖

U⃗3 = (
1
√6
(1, −2, 1)).

Then V⃗ 1, V⃗ 2, V⃗ 3 form an orthonormal system.
As another example, consider the vectors,

e1 = (1,0,… ,0), e2 = (0, 1,0,… ,0), … , en = (0,… ,0, 1).

Then evidently

ei .ej = 0, i ≠ j, ‖ei‖ = 1, i, j = 1,… ,n.

Hence e1,… ,en is an orthonormal system.
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Definition 1.2.4 (Basic unit vectors). The above vectors e1,… ,en are called the basic
unit vectors in n-space. [One could have written them as column vectors as well.]

Engineers often use the notation

⃗i = (1,0), ⃗j = (0, 1) or ⃗i = (1
0
) , ⃗j = (0

1
) (1.2.4)

to denote the basic unit vectors in 2-space and

⃗i = (1,0,0), ⃗j = (0, 1,0), k⃗ = (0,0, 1) or

⃗i = [[
[

1
0
0

]]

]

, ⃗j = [[
[

0
1
0

]]

]

, k⃗ = [[
[

0
0
1

]]

]

(1.2.5)

to denote the basic unit vectors in 3-space. One interesting property is the following:

(ii) Any n-vector can be written as a linear combination of the basic unit vectors
e1,… ,en.

For example, consider a general 2-vector U⃗ = (a,b). Then

a ⃗i + b ⃗j = a(1,0) + b(0, 1) = (a,0) + (0,b) = (a,b) = U⃗ . (1.2.6)

If V⃗ = (a,b, c) is a general 3-vector then

a ⃗i + b ⃗j + ck⃗ = a(1,0,0) + b(0, 1,0) + c(0,0, 1)
= (a,0,0) + (0,b,0) + (0,0, c) = (a,b, c) = V⃗ . (1.2.7)

Note that the same notation ⃗i and ⃗j are used for the unit vectors in 2-space as well as
in 3-space. There is no room for confusion since we will not be mixing 2-vectors and
3-vectors at any stage when these are used. In general, we can state a general result.
Let U⃗ be an n-vector with the elements (u1,… ,un) then

U⃗ = u1e1 +⋯+ unen. (1.2.8)

[Either all row vectors or all column vectors.]
The geometry of the above result can be illustrated as follows: We take a 2-space

for convenience.
The vector ⃗i is in the horizontal directionwith unit length. Then a ⃗iwill be of length

|a| and in the same direction if a > 0 and in the opposite direction if a < 0. Similarly ⃗j
is a unit vector in the vertical direction and b ⃗j is of length |b| and in the same direction
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Figure 1.2.5: Geometry of linear combinations.

if b > 0 and in the opposite direction if b < 0 as shown in Figure 1.2.5. Then the point
(a,b), as an arrowhead, is a ⃗i + b ⃗j. If the angle the vector

U⃗ = (a,b) = a ⃗i + b ⃗j

makes with the x-axis is θ then

cosθ = (a
⃗i + b ⃗j).(a ⃗i)
‖a ⃗i + b ⃗j‖ ‖a ⃗i‖

= (a)(a) + (b)(0)√a2 + b2√a2

= a
√a2 + b2

(1.2.9)

and

sinθ = √1 − cos2 θ = b
√a2 + b2

. (1.2.10)

Observe that (1.2.9) and (1.2.10) are consistent with the notions in ordinary trigono-
metrical calculations as well.

1.2.7 Projections

If U⃗ = (a,b) then the projection of U⃗ in the horizontal direction is

a = √a2 + b2 cosθ = ‖U⃗‖cosθ

which is the shadow on the x-axis if light beams come parallel to the y-axis and hit
the vector (arrowhead), and the projection in the vertical direction is

b = √a2 + b2 sinθ = ‖U⃗‖ sinθ

which is the shadow on the y-axis if light beams come parallel to the x-axis and hit
the vector. These results hold in n-space also. Consider a plane on which the vector
V⃗ in n-space lies. Consider a horizontal and a vertical direction in this plane with the
tail-end of the vector at the origin and let θ be the angle V⃗ makes with the horizontal
direction. Then

‖V⃗‖cosθ = projection of V⃗ in the horizontal direction (1.2.11)
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and

‖V⃗‖ sinθ = projection of V⃗ in the vertical direction. (1.2.12)

In practical terms one can explain the horizontal and vertical components of a
vector as follows: Suppose that a particle is sitting at the position (0,0). A wind with
a speed of 5 cos45° = 5

√2 units is blowing in the horizontal direction and a wind with a
speed of 5 sin45° = 5

√2 units is blowing in the vertical direction. Then the particle will
move at 45° angle to the x-axis and move at a speed of 5 units.

Figure 1.2.6:Movement of a particle.

Consider two arbitrary vectors U⃗ and V⃗ (coordinate-free definitions). What is the
projection of V⃗ in the direction of U⃗? We can move V⃗ parallel to itself so that the tail-
end of V⃗ coincides with the tail-end of U⃗ . Consider the plane where these two vectors
lie and let θ be the angle this displaced V⃗ makes with U⃗ . Then the projection of V⃗ onto
U⃗ is ‖V⃗‖cosθ as shown in Figure 1.2.6 (b). But

cosθ = U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

⇒

‖V⃗‖cosθ = U⃗ .V⃗
‖U⃗‖
= projection of V⃗ onto U⃗ . (1.2.13)

If U⃗ is a unit vector then ‖U⃗‖ = 1 and then the projection of V⃗ in the direction of U⃗
is the dot product between U⃗ and V⃗ .

Definition 1.2.5 (Projection vector of V⃗ in the direction of a unit vector U⃗ ). A vector
in the direction of U⃗ with a length equal to ‖V⃗‖cosθ, the projection of V⃗ onto U⃗ , is
called the projection vector of V⃗ in the direction of U⃗ .

Then the projection vector V⃗ in the direction of U⃗ is given by

(U⃗ .V⃗ )U⃗ if U⃗ is a unit vector

and

(U⃗ .V⃗) U⃗
‖U⃗‖2

if U⃗ is any non-null vector. (1.2.14)
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Example 1.2.2. Evaluate the projection vector V⃗ in the direction of U⃗ if

(a) V⃗ = 2 ⃗i + ⃗j − k⃗, U⃗ = 1
√3
( ⃗i + ⃗j + k⃗);

(b) V⃗ = ⃗i − ⃗j + k⃗, U⃗ = 2 ⃗i + ⃗j + k⃗;

(c) V⃗ = ⃗i + ⃗j + k⃗, U⃗ = ⃗i − k⃗.

Solution 1.2.2. (a) Here U⃗ is a unit vector and hence the required vector is

(U⃗ .V⃗)U⃗ = [(2, 1, −1).( 1
√3
, 1√3
, 1√3
)](
⃗i
√3
+
⃗j
√3
+ k⃗
√3
)

= 2
√3
(
⃗i
√3
+
⃗j
√3
+ k⃗
√3
) = 2

3
( ⃗i + ⃗j + k⃗).

(b) Here U⃗ is not a unit vector. Let us create a unit vector in the direction of U⃗ ,
namely

U⃗ 1 =
U⃗
‖U⃗‖
= 1
√6
(2 ⃗i + ⃗j + k⃗).

Now apply the formula on V⃗ and U⃗ 1. The required vector is the following:

(V⃗ .U⃗1)U⃗1 = [(1, −1, 1).(
2
√6
, 1√6
, 1√6
)]( 2
√6
⃗i + 1
√6
⃗j + 1
√6

k⃗)

= 2
√6
( 2
√6
⃗i + 1
√6
⃗j + 1
√6

k⃗)

= 2
6
(2 ⃗i + ⃗j + k⃗).

(c) Here V⃗ .U⃗ = (1, 1, 1).(1,0, −1) = 0. Hence the projection vector is the null vector.

Definition 1.2.6 (Velocity vector). In the language of engineers andphysicists, the ve-
locity is a vector with a certain direction and magnitude (length of the vector) and
speed is the magnitude of the velocity vector.

For example, if V⃗ = (a,b) is the velocity vector as in Figure 1.2.6 then the direction
of the vector is shown by the arrowhead there and the speed in this case is √a2 + b2 =
‖V⃗‖. If the velocity vector of a wind is V⃗ = 2 ⃗i + ⃗j + k⃗ in a 3-space then its speed is ‖V⃗‖ =
√(2)2 + (1)2 + (−1)2 = √6.

Example 1.2.3. A plane is flying straight East horizontally at a speed of 200 km/hour
and another plane is flying horizontally North-East at a speed of 600 km/hour. Draw
the velocity vectors for both the planes.
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Figure 1.2.7: Velocity vectors.

Solution 1.2.3. If the velocity vectors for the two planes are denoted by U⃗ and V⃗ re-
spectively, as shown in Figure 1.2.7 then the given information is that

‖U⃗‖ = 200 and ‖V⃗‖ = 600.

If the direction of U⃗ is taken as the x-axis on the plane where the two vectors lie (dis-
placed if necessary so that the tail-ends meet at (0,0)) then on this plane

U⃗ = 200 ⃗i and V⃗ = (600cos45°) ⃗i + (600sin45°) ⃗j

= 600√2
⃗i + 600√2
⃗j.

Example 1.2.4. A sail boat is steered to move straight East. There is a wind with a
velocity in the North-East direction andwith a speed of 50 km/hour.What is the speed
of the boat if (a) the only force acting on the boat is thewind, (b) in addition to thewind
the sail boat has a motor which is set for a speed of 20 km/hour.

Solution 1.2.4. (a) The only component here is the component of the wind velocity
vector in the direction of the boat which is ‖V⃗‖cosθ if V⃗ is the velocity vector and
θ is the angle V⃗ makes with the East direction (East direction is taken as the x-axis
direction). We are given ‖V⃗‖ = 50 and θ = 45°. Then the speed of the boat is ‖V⃗‖cosθ =
50
√2 and the velocity is U⃗ =

50
√2
⃗i.

(b) In this case the above component plus the speed set by the engine are there.
Then the combined speed is 50

√2 + 20 and the velocity vector is

U⃗ = ( 50√2
+ 20) ⃗i.

1.2.8 Work done

When a force of magnitude F is applied on an object and the object is moved in the
samedirection of the force for a distance d thenwe say that thework done is Fd (Fmul-
tiplied by d). For example if the force vector has the magnitude 20 units and the dis-
tance moved in the same direction of the force is 10 units then the work done is 200
units (force, distance and work are measured in different units such as force in new-
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Figure 1.2.8:Work done.

tons, distance in kilometers and work in joules). Suppose that the force vector is in
a certain direction and the distance moved is in another direction then what will be
the work done? Let F⃗ be the force vector and d⃗ the displacement vector as shown in
Figure 1.2.8.

Let the force vector F⃗ make an angle θ with the displacement vector d⃗. Then the
projection of F⃗ in the direction of d⃗ is ‖F⃗‖cosθ [and the projection vector is ‖F⃗‖(cosθ)U⃗
where U⃗ is a unit vector in the direction of d⃗. The component vector of F⃗ in the per-
pendicular direction to d⃗ is

‖F⃗‖ sinθ = F⃗ − ‖F⃗‖(cosθ)U⃗ .

This is not required in our computations]. Then the work done, denoted by w, is

w = ‖F⃗‖cosθ‖d⃗‖

= ‖F⃗‖ (F⃗.d⃗)
‖F⃗‖ ‖d⃗‖
‖d⃗‖ = F⃗.d⃗. (1.2.15)

Example 1.2.5. The ground force F⃗ = 5 ⃗i + 2 ⃗j of a wind moved a stone in the direction
of the displacement d⃗ = ⃗i+3 ⃗j. What is thework done by this wind inmoving the stone?

Solution 1.2.5. According to (1.2.15) the work done is

w = F⃗ .d⃗ = (5, 2).(1,3) = (5)(1) + (2)(6) = 11.

Example 1.2.6. Consider a triangle ABC with the angles denoted by A,B,C and the
lengths of the sides opposite to these angles by a,b, c, as shown in Figure 1.2.9. Then
show that

a2 = b2 + c2 − 2bc cosA.

Solution 1.2.6. Consider the vectors ⃗AB and ⃗AC, starting from A and going to B and
C respectively.

Then the vector ⃗BC = ⃗AC − ⃗AB. Therefore

‖ ⃗BC‖2 = ‖ ⃗AC − ⃗AB‖2

= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2‖ ⃗AC‖ ‖ ⃗AB‖cosA.
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Figure 1.2.9: A triangle.

That is, a2 = b2 +c2 −2bc cosA.Herewe have used the fact that the square of the length
is the dot product with itself:

a2 = ‖ ⃗AC − ⃗AB‖2

= ( ⃗AC − ⃗AB).( ⃗AC − ⃗AB)
= ( ⃗AC. ⃗AC) − ( ⃗AC).( ⃗AB) − ( ⃗AB. ⃗AC) + ( ⃗AB).( ⃗AB)
= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2( ⃗AC. ⃗AB)
= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2‖ ⃗AC‖ ‖ ⃗AB‖cosA
= b2 + c2 − 2bc cosA.

Exercises 1.2
1.2.1. Give geometric representation to the following vectors:

(a) U⃗ = 2 ⃗i − 3 ⃗j, (b) 2U⃗ , (c) − 2U⃗ ,

(d) V⃗ = ⃗i + ⃗j, (e) U⃗ + V⃗ ,
(f) U⃗ − V⃗ , (g) V⃗ − 2U⃗ , (h) 2U⃗ + 3V⃗ .

1.2.2. Compute the angle between the following vectors:

(a) U⃗ = ⃗i + ⃗j − k⃗, V⃗ = 2 ⃗i − ⃗j + 3k⃗;

(b) U⃗ = ⃗i + ⃗j + k⃗, V⃗ = ⃗i − 2 ⃗j + k⃗;
(c) U⃗ = (1, −1, 2,3,5, −1), V⃗ = (2,0,0, −1, 1, 2).

1.2.3. Verify Cauchy–Schwartz inequality for U⃗ and V⃗ in the three cases in Exer-
cise 1.2.2.

1.2.4. Normalize the following vector U⃗ , then construct two vectors which are orthog-
onal among themselves as well as both are orthonormal to U⃗ , where U⃗ = (1, 1, 1, 1).

1.2.5. Given the two vectors U⃗ 1 = (1, 1, 1, 1) and U⃗2 = (1, 2, −1, 1) construct two vectors
V⃗ 1 and V⃗ 2 such that V⃗ 1 is the normalized U⃗ 1, V⃗ 2 is a normalized vector orthogonal to
V⃗ 1 and both V⃗ 1 and V⃗ 2 are linear functions of U⃗ 1 and U⃗2.
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1.2.6. Let P = (x0,y0, z0) a fixed point in 3-space, Q = (x,y, z) an arbitrary point in
3-space. Construct the vector going from P toQ. Derive the equation to the planewhere
the vector ⃗PQ lies on the plane as well as another vector N⃗ = (a,b, c) is normal to this
plane (Normal to a plane means orthogonal to every vector lying on the plane).

1.2.7. If x − y + z = 7 is a plane, (i) is the point (1, 1, 1) on this plane? (ii) construct a
normal to this plane with length 5, (iii) construct a plane parallel to the given plane
and passing through the point (1, 1, 2), (iv) construct a plane orthogonal to the given
plane and passing through the point (1, −1,4).

1.2.8. Derive the equation to the plane passing through the points

(1, 1, −1), (2, 1, 2), (2, 1,0).

1.2.9. Find the area of the parallelogram formed by the vectors (by completing it as in
Figure 1.2.2 on the plane determined by the two vectors),

U⃗ = 2 ⃗i + ⃗j − k⃗ and V⃗ = ⃗i − ⃗j + 3k⃗.

1.2.10. Find thework done by the force F⃗ = 2 ⃗i− ⃗j+3k⃗ for the displacement d⃗ = 3 ⃗i+ ⃗j− k⃗.

1.2.11. A boat is trying to cross a river at a speed of 20 miles/hour straight across. The
river flow downstream is 10 miles/hour. Evaluate the eventual direction and speed of
the boat.

1.2.12. In Exercise 1.2.11 if the river flowspeed is the samewhat should be thedirection
and speed of the boat so that it can travel straight across the river?

1.2.13. Evaluate the area of the triangle whose vertices are (1,0, 1), (2, 1,5), (1, −1, 2) by
using vector method.

1.2.14. Find the angle between the planes (angle between the normals to the planes)

x + y − z = 7 and 2x + y − 3z = 5.

1.2.15. In some engineering problems of signal processing a concept called convolu-
tion of two vectors is defined. Let X = (x1,… ,xn) and Y = (y1,… ,yn) be two row vectors
of the same order. Then the convolution, denoted by X ∗ Y , is defined as follows: It is
again a 1 × n vector where the i-th element in X ∗ Y is given by

x1yi + x2yi−1 +⋯+ xiy1
+ xi+1yn + xi+2yn−1 +⋯+ xnyi+1.

For example, for n = 2

X ∗ Y = (x1,x2) ∗ (y1,y2) = (x1y1 + x2y2,x1y2 + x2y1)

(a) Write down the explicit expression for (x1,x2,x3) ∗ (y1,y2,y3).
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(b) Show that the operator ∗ is commutative as well as associative for a general n.
(c) Evaluate (1,0, −1, 2) ∗ (3,4,5, −2).

1.2.16. Find the angle between the planes

x − y + z = 2 and 2x + 3y − 4z = 8.

1.2.17. Evaluate the area of the triangle whose vertices are (1, 1, 1), (2,5,3), (1, −1, −1).

1.2.18. Evaluate the area of theparallelogramdeterminedby the vectorsU =(1, −1, 2,5)
and V = (1, 1, −1, −1).

1.3 Linear dependence and linear independence of vectors

Consider the vectors U1 = (1,0, −1) and U2 = (1, 1, 1). For arbitrary scalars a1 and a2 let
us try to solve the equation

a1U1 + a2U2 = O (1.3.1)

to see whether there exist nonzero a1 and a2 such that (1.3.1) is satisfied.

a1U1 + a2U2 = O ⇒
a1(1,0, −1) + a2(1, 1, 1) = O = (0,0,0).

That is,

(a1 + a2,a2, −a1 + a2) = (0,0,0) ⇒
a1 + a2 = 0, a2 = 0, −a1 + a2 = 0.

The only values of a1 and a2 satisfying the three equations a1 + a2 = 0, a2 = 0 and
−a1 + a2 = 0 are a1 = 0 and a2 = 0. This means that the only solution for a1 and a2
in (1.3.1) is a1 = 0 and a2 = 0. Observe that a1 = 0, a2 = 0 is always a solution to the
equation (1.3.1). But here we have seen that a1 = 0, a2 = 0 is the only solution. Now, let
us look at another situation. Consider the vectors

U1 = (1, 1, 1), U2 = (1, −1, 2), U3 = (2,0,3).

Solve the equation

a1U1 + a2U2 + a3U3 = O (1.3.2)

for a1,a2,a3. Then

a1U1 + a2U2 + a3U3 = O ⇒
a1(1, 1, 1) + a2(1, −1, 2) + a3(2,0,3) = (0,0,0).

That is,

(a1 + a2 + 2a3,a1 − a2,a1 + 2a2 + 3a3) = (0,0,0).
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This means,

a1 + a2 + 2a3 = 0, (i)
a1 − a2 = 0, (ii)

a1 + 2a2 + 3a3 = 0. (iii)

From (ii), a1 = a2; substituting in (i), a1 = a2 = −a3; substituting in (iii) the equation is
satisfied. Then there are infinitelymany non-zero a1,a2,a3 for which (1.3.2) is satisfied.
For example, a1 = 1 = a2,a3 = −1will satisfy (1.3.2). In the above considerationswehave
two systems of vectors. In one system the only possibility for the coefficient vector is
the null vector which means that no vector can be written as a linear function of the
other vectors. In the other case the coefficient vector is not null which means that at
least one of the vectors there can be written as a linear combination of others.

Definition 1.3.1 (Linear independence). Let U1,U2,… ,Uk be k given non-null
n-vectors, where k is finite. Consider the equation

a1U1 + a2U2 +⋯+ akUk = O (1.3.3)

where a1,… ,ak are scalars. If the only possibility for (1.3.3) to hold is when a1 =
0,… ,ak = 0 then the vectors U1,… ,Uk are called linearly independent. If there exists
at least one non-null vector (a1,… ,ak) such that (1.3.3) is satisfied then the system of
vectors U1,… ,Uk are linearly dependent.

If a non-null vector (a1,… ,ak) exists then at least one of the elements is nonzero.
Let a1 ≠ 0. Then from (1.3.3)

U1 = −
a2
a1
U2 −⋯−

ak
a1
Uk . (1.3.4)

That is, U1 can be written as a linear function of U2,… ,Uk . Note that not all a2,… ,ak
can be zeros. If they are all zeros then from (1.3.4) U1 is a null vector. But a null vector
is not included in our definition. Thus at least one of them can be written as a linear
function of the others if U1,… ,Uk are linearly dependent. If they are linearly indepen-
dent then none can be written as a linear function of the others.

(i) A null vector is counted among dependent vectors. A set consisting of one non-
null vector is counted as an independent system of vectors.

Example 1.3.1. Show that the basic unit vectors e1,… ,en are linearly independent.

Solution 1.3.1. Consider the equation

a1e1 +⋯+ anen = O ⇒
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a1(1,0,… ,0) +⋯+ an(0,… ,0, 1) = (0,… ,0) ⇒
(a1,… ,an) = (0,… ,0) ⇒

a1 = 0,… ,an = 0

is the only solution, which means that e1,… ,en are linearly independent.

Example 1.3.2. Show that a system of non-null mutually orthogonal vectors are lin-
early independent.

Solution 1.3.2. LetV1,… ,Vk be a systemofmutually orthogonal vectors. Consider the
equation

a1V1 +⋯+ akVk = O.

Take the dot product on both sides with respect to V1. Then we have

a1V1.V1 + a2V2.V1 +⋯+ akVk .V1 = O.V1 = O.

But Vj .V1 = 0 for j ≠ 1 and V1.V1 = ‖V1‖2 ≠ 0. This means that a1 = 0. Similarly a2 =
0,… ,ak = 0 which means that V1,… ,Vk are linearly independent. This is a very im-
portant result.

(ii) Every set of mutually orthogonal non-null vectors are linearly independent.
(iii) Anyfinite collectionof vectors containing thenull vector is counted as a linearly
dependent systemof vectors. If S1 and S are twofinite collections of vectorswhere S1
is a subset of S, that is, S1 ⊂ S, then the following hold: If S1 is a linearly dependent
system then S is also a linearly dependent system. If S is a linearly independent
system then S1 is also a linearly independent system.

Example 1.3.3. Check the linear dependence of the following sets of vectors:

(a) U1 = (1, 2, 1), U2 = (1, 1, 1);
(b) U1 = (1, −1, 2), U2 = (1, 1,0);
(c) U1 = (1, 2, 1), U2 = (1, −1, 1), U3 = (3,3,3).

Solution 1.3.3. (a) For two vectors to be dependent one has to be a non-zero scalar
multiple of the other. Hence U1 and U2 here are linearly independent.

(b) By inspection U1.U2 = 0 and hence they are orthogonal thereby linearly inde-
pendent.

(c) U1 and U2 are evidently linearly independent, being not multiples of each
other. By inspection U3 = 2U1 + U2 and hence the set {U1,U2,U3} is a linearly depen-
dent system.
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(iv) Linear dependence or independence in a system of vectors is not altered by
scalar multiplication of the vectors by non-zero scalars.

This result can be easily seen from the definition itself. Let the n-vectors U1,… ,Uk be
linearly independent. Then

a1U1 +⋯+ akUk = O ⇒ a1 = 0,… ,ak = 0.

Let c1,… , ck be non-zero scalars. If ai = 0 then aici = 0 and vice versa since ci ≠ 0,
i = 1, 2,… ,k. Thus

a1(c1U1) +⋯+ ak(ckUk) = O ⇒ a1 = 0,… ,ak = 0.

On the other hand, if U1,… ,Uk are linearly dependent then at least one of them can
be written as a linear function of the others. Let

U1 = b2U2 +⋯+ bkUk

where b2,… ,bk are some constants, at least one of them nonzero. Then for
c1 ≠ 0,… , ck ≠ 0

c1U1 =
c1b2
c2
(c2U2) +⋯+

c1bk
ck
(ckUk).

Thus c1U1,… , ckUk are linearly dependent.
We have another important result on linear independence.

(v) Linear independence or dependence in a system of vectors is not altered by
adding a scalar multiple of any vector in the system to any other vector in the sys-
tem.

This result is easy to establish. Let the system U1,… ,Uk of n-vectors be linearly inde-
pendent. Then

a1U1 +⋯+ akUk = O ⇒ a1 = 0,… ,ak = 0.

Now, consider a new system U1, c U1 +U2,… ,Uk . [That is, U2 is replaced by c U1 +U2,
c ≠ 0. In other words, c U1 is added to U2.] Consider the equation

a1U1 + a2(c U1 +U2) + a3U3 +⋯+ akUk = O.

That is,

(a1 + ca2)U1 + a2U2 +⋯+ akUk = O.

Then since U1,… ,Uk are linearly independent a1 + ca2 = 0, a2 = 0, …, ak = 0 which
means a1 = 0 also which establishes that the system of vectors U1, cU1 + U2,U3,… ,Uk
is linearly independent. A similar procedure establishes that if the original system is
linearly dependent then the new system is also linearly dependent.
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By combining the results (iii) and (iv) above we can have the following result:

(vi) Consider a finite collection of n-vectors. If any number of vectors in this collec-
tion aremultiplied by nonzero scalars or a linear function of any number of them is
added to any member in the set, linear independence or dependence in the system
is preserved. That is, if the original system is linearly independent then the new
system is also linearly independent and if the original system is dependent then
the new system is also linearly dependent.

Example 1.3.4. Check to see whether the following system of vectors is linearly inde-
pendent or dependent:

U1 = (1,0, 2, −1,5)
U2 = (−1, 1, 1, −1, 2)
U3 = (2, 1,7, −4, 17)

Solution 1.3.4. Since nonzero scalar multiplication and addition do not alter inde-
pendence or dependence let us create new systems of vectors. In what follows the
following standard notations will be used:

A few standard notations

“α(i) ⇒ ” means the i-th vector multiplied by α (1.3.5)

In this operation the i-th vector in the set is replaced by α (Greek letter alpha) times
the original i-th vector. For example “−3(1) ⇒” means that “the first vector multiplied
by −3 gives”, that is, the new first vector is the original first vector multiplied by −3.

“α(i) + (j) ⇒ ” means α times the i-th vector added to the j-th vector (1.3.6)

In this operation the original i-th vector remains the samewhereas the new j-th vector
is the original j-th vector plus α times the original i-th vector. Let us apply these types
of operations on U1,U2,U3, remembering that linear independence or dependence is
preserved.

(1) + (2) ⇒ U1 = (1,0, 2, −1,5)
V2 = (0, 1,3, −2,7)
U3 = (2, 1,7, −4, 17)

In the above operation the second vectorU2 is replaced byU2+U1 = V2. Let us continue
the operations.

−2(1) + (3) ⇒ U1 = (1,0, 2, −1,5)
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V2 = (0, 1,3, −2,7)
V3 = (0, 1,3, −2,7)

In the set U1,V2,V3 we will do the next operation.

−(2) + (3) ⇒ U1 = (1,0, 2, −1,5)
V2 = (0, 1,3, −2,7)
W3 = (0,0,0,0,0)

HereW3 is obtained by adding (−1) times V2 to V3 or replacing V3 by V3 −V2 =W3. By
the above sequence of operationsW3 has become a null vector which by definition is
dependent. Hence the original system U1,U2,U3 is a linearly dependent system.

Example 1.3.5. Check the linear dependence or independence of the following sys-
tem of vectors:

U1 = (2, −1, 1, 1,3,4)
U2 = (5, 2, 1, −1, 2, 1)
U3 = (1, −1, 1, 1, 1,4)

Solution 1.3.5. Since linear dependence or independence is not altered by the order
in which the vectors are selected we will write U3 first and write only the elements in
3 rows and 6 columns as follows, rather than naming them as U3,U1,U2:

1 −1 1 1 1 4
2 −1 1 1 3 4
5 2 1 −1 2 1

We have written them in the order U3,U1,U2 to bring a convenient number, namely
1, at the first row first column position. This does not alter linear independence or
dependence in the system. Now, we will carry out more than one operations at a time.
[We add (−2) times the first row to the second row and (−5) times the first row to the
third row. The first row remains the same. The result is the following:]

−2(1) + (2); −5(1) + (3) ⇒
1 −1 1 1 1 4
0 1 −1 −1 1 −4
0 7 −4 −6 −3 −19

[On the new configuration we add the second row to the first row and (−7) times the
second row to the third row. The second row remains the same. The net result is the
following:]

(2) + (1); −7(2) + (3) ⇒
1 0 0 0 2 0
0 1 −1 −1 1 −4
0 0 3 1 −10 9
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[The third row is divided by 3. The third row changes.]

1
3
(3) ⇒

1 0 0 0 2 0
0 1 −1 −1 1 −4
0 0 1 1

3 −
10
3 3

[This operation is done to bring a convenient number at the third column position on
the third row. Now we add the new third row to the second row. The new third row
remains the same.]

(3) + (2) ⇒
1 0 0 0 2 0
0 1 0 − 23 −

7
3 −1

0 0 1 1
3 −

10
3 3

The aim in the above sequences of operations is to bring a unity at all leading diagonal
(thediagonal from theupper left-end corner down) positions, if possible. Interchanges
of rows can be done if necessary to achieve the above aim, because interchanges do
not alter the linear independence or dependence. During such a process if any row be-
comes null then automatically the original system, represented by the starting rows,
is dependent. If no row becomes null during the process then at the end of the pro-
cess look at the final first, second, etc columns. In our example above look at the first
column. No non-zero linear combination of the second and third rows can create a 1
at the first position. Hence the first row cannot be written as a linear function of the
second and third rows. Now look at the second column. By the same argument above
the second row cannot be written as a linear function of the first and third rows. Now
look at the third column. By the same argument the third row cannot be written as a
linear combination of the first and second rows. Hence all the three rows are linearly
independent or the original system {U1,U2,U3} is a linearly independent system.

The above procedure is called a sweep-out procedure. Then the principles to re-
member in a sweep-out procedure are the following: Assume that the system consists
ofm vectors, each is an n-vector.

Principles in a sweep-out procedure

(1) Write the given vectors as rows, interchange if necessary to bring a convenient
nonzero number, 1 if available, at the first row first column position. Do not inter-
change columns, the vectors will be altered.

(2) Add suitable multiples of the first row to the second, third,…, m-th row to make the
first column elements, except the first element, zeros.

(3) Start with the second row. Interchange 2nd, …, m-th rows if necessary to bring a
convenient nonzero number at the second position on the second row.

(4) Add suitable multiples of the second row to the first row, third row,…, m-th row to
make all elements in the second column, except the second element, zeros.
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(5) Repeat the process with the third, fourth etc rows until all the leading diagonal ele-
ments are non-zeros, unities if possible.

(6) During the process if any row becomes null then shift it to the bottom position. If
at any stage a vector has become null then the system is dependent. If all the lead-
ing diagonal elements are non-zeros when all other elements in the corresponding
columns are wiped out (made zeros) by the above process then the system is linearly
independent.

(7) If the first r, for some r, leading diagonal elements are non-zeros, none of the rows
has become null so far and the (r + 1)th elements in all the remaining rows are zeros
then continue the process with the (r + 2)th element on the (r + 1)th row and so on. If
no row has become null by the end of the whole process then all the rows are linearly
independent.

(8) Division of a row by a non-zero scalar usually brings in fractions. Hence multiply
the rows with appropriate numbers to avoid fractions and to achieve the sweep-out
process.

The leading diagonal elements need not be brought to unities to check for linear de-
pendence or independence. Only nonzero elements are to be brought to the diagonal
positions, if possible. When doing the operations, try to bring the system to a triangu-
lar format by reducing all elements below the leading diagonal to zeros, if possible.
When the system is in a triangular format all elements above nonzero diagonal ele-
ments can be simply put as zeros because this can always be achieved by operating
with the last row first, wiping out all last column elements except the last column last
row element, then last but one column elements and so on. Thus all elements above
nonzerodiagonal elements canbe simply put as zeros once thematrix is in a triangular
format.
(9) If the vectors to be checked for linear independence or dependence are column vec-

tors then write them as rows before executing a sweep-out process. This is done only
for convenience because operations on rows are easier to visualize.

(10)When doing a sweep-out process always write first the row that you are operating
with because this row is not changing and others can change as a result of the op-
erations.

Example 1.3.6. Check for linear independence or dependence in the following system
of vectors:

U1 = (2,0, 1,5)
U2 = (1, −1, 1, 1)
U3 = (4, 2, 2,8)

Solution 1.3.6. For convenience write in the order U2,U1,U3 and write only the ele-
ments and continue with the sweep-out process.
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1 −1 1 1
2 0 1 5
4 2 2 8

− 2(1) + (2); −4(1) + (3) ⇒
1 −1 1 1
0 2 −1 3
0 6 −2 4

2(1) ⇒
2 −2 2 2
0 2 −1 3
0 6 −2 4

(2) + (1); −3(2) + (3) ⇒
2 0 1 5
0 2 −1 3
0 0 1 −5

(3) + (2); −(3) + (1) ⇒
2 0 0 10
0 2 0 −2
0 0 1 −5

The leading diagonal elements are 2, 2, 1 which are non-zeros and hence the system
is linearly independent. [During the process above the first row is multiplied by 2 in
order to avoid fractions in the rest of the operations.]

Note that in the above operations the row that you are operating with remains
the same and the other rows, to which constant multiples are added, change. In the
last form above, are all the four columns linearly independent? Evidently not. The last
column = 5 (column 1)−(column 2)−5(column 3).

If our aim is only to check for linear independence or dependence then we need
to bring the original set to a triangular type format. In the second step above the op-
eration 2(1) and in the third stage the operation (2) + (1) need not be done. That is,

1 −1 1 1
0 2 −1 3
0 6 −2 4

−3(2) + (3) ⇒
1 −1 1 1
0 2 −1 3
0 0 1 −5

Nowwehave the triangular type formatwith nonzero diagonal elements. Note that the
first row cannot be written as a linear function of the second and third rows. Similarly
no row can be written as a linear function of the other two. At this stage if we wish to
create a diagonal format for the first three columns then by using the third row one
can wipe out all other elements in the third column, then by using the second row we
can wipe out all other elements in the second column. In other words, we can simply
replace all those elements by zeros, then only the last column will change.

1 −1 1 1
0 2 −1 3
0 0 1 −5

→
1 −1 0 6
0 2 0 −2
0 0 1 −5

(operating with the third row)

→
1 0 0 5
0 2 0 −2
0 0 1 −5

(operating with the second row) →
1 0 0 5
0 1 0 −1
0 0 1 −5

dividing the second rowby 2. Thus, the first three columns aremadebasic unit vectors,
the same procedure if we wish to create unit vectors in the first r columns and if there
are r linearly independent rows.
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At a certain stage, say the rth stage, suppose that all elements in the (r + 1)th col-
umn below the rth row are zeros. Then start with a nonzero element in the remaining
configuration of the columns in the remaining row and proceed to create a triangular
format. For example, consider the following situation:

1 1 −1 1 −1 1 1
0 1 0 2 1 −1 1
0 0 0 0 2 0 1
0 0 0 0 0 0 1
0 0 0 1 0 0 −1

→

1 1 −1 1 −1 1 1
0 1 0 2 1 −1 1
0 0 0 1 0 0 −1
0 0 0 0 2 0 1
0 0 0 0 0 0 1

The first two rows are evidently linearly independent. Our procedure of triangulariza-
tion cannot proceed. Write the 5th row in the 3rd row position to get the matrix on
the right above. Now we see that the new 3rd, 4th and 5th rows form a triangular type
format. This shows that all the five rows are linearly independent. Note that by using
the last row one can wipe out all other elements in the 7th column. Then by using the
4th row we can wipe out all other elements in the 5th column. Then by using the 3rd
row we can wipe out all other elements in the 4th column. Then by using the second
row we can wipe out all other elements in the second column. Now, one can see lin-
ear independence of all the five rows clearly. In the light of the above examples and
discussions we can state the following result:

(vii) There cannot be more than nmutually orthogonal n-vectors and there cannot
be more than n linearly independent n-vectors.

It is not difficult to establish this result. Consider the n-vectors U1,… ,Un,Un+1, that is,
n + 1 vectors of n elements each. Write the n + 1 vectors as n + 1 rows and apply the
above sweep-out process. If the first n vectors are linearly independent then all the n
leading diagonal spots have nonzero entries with all elements in the corresponding
columns zeros. Thus automatically the (n+ 1)th row becomes null. Hence the (n+ 1)th
row depends on the other n rows or the maximum number of linearly independent
n-vectors possible is n.

If possible, letV1,… ,Vn+1 bemutually orthogonal n-vectors. Fromwhatweproved
just above not all these n + 1 vectors can be linearly independent. Then the (n + 1)th
can be written as a linear function of the other n vectors. Then there exists a non-null
vector b = (b1,… ,bn) such that

Vn+1 = b1V1 +⋯+ bnVn.

Take the dot product on both sides with respect to Vi . If all V1,… ,Vn+1 are mutually
orthogonal then we have

0 = 0 + bi‖Vi‖2 + 0 ⇒ bi = 0, i = 1,… ,n
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since ‖Vi‖ ≠ 0, i = 1,… ,n. This then contradicts the fact that b is a non-null vector.
Thus they cannot be allmutually orthogonal. Since the orthogonal vectors are linearly
independent, proved earlier, the maximum number of n-vectors which are mutually
orthogonal is n.

1.3.1 A vector subspace

The vectors in our discussion so far are ordered n-tuples of real numbers. The notions
of vector spaces, dimension etc will be introduced for such vectors. Then later we will
generalize these ideas to cover some general objects called vectors satisfying some
general postulates. Consider, for example, two given vectors

U1 = (1,0, −1) and U2 = (2,3, 1).

Evidently U1 and U2 are linearly independent. Two vectors being dependent means
one is a multiple of the other. Consider a collection S1 of vectors which are spanned
by U1 and U2 by the following process. Every scalar multiple of U1 as well as of U2 is
in S1. For example

3U1 = 3(1,0, −1) = (3,0, −3) ∈ S1
−2U2 = −2(2,3, 1) = (−4, −6, −1) ∈ S1
0U1 = (0,0,0) ∈ S1.

Every linear combination of U1 and U2 is also in S1. For example,

2U1 − 5U2 = (2,0, −2) + (−10, −15, −5) = (−8, −15, −7) ∈ S1
U1 +U2 = (1,0, −1) + (2,3, 1) = (3,3,0) ∈ S1

U1 + 0U2 = U1 ∈ S1.

Since a scalar multiplication and then addition will create a linear combination the
basic operations are scalar multiplication and addition. Then every element in S1, el-
ements are vectors, can be written as a linear combination of U1 and U2. In this case
we say that S1 is spanned or generated or created by U1 and U2. Then we say that the
collection {U1,U2} is a spanning set of S1.

Definition 1.3.2 (Vector subspace). Let S be a collection of vectors such that if V1 ∈ S
then cV1 ∈ S where c is any scalar, including zero, and if V1 ∈ S and V2 ∈ S then
V1 + V2 ∈ S. Then S is called a vector subspace.

Another way of defining S is that it is a collection which is closed under scalar
multiplication and addition. When the elements of S are n-vectors (ordered set of n
real numbers) then the operations “scalar multiplication” and “addition” are easily
defined and many properties such as commutativity,
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V1 + V2 = V2 + V1,

associativity

V1 + (V2 + V3) = (V1 + V2) + V3

and so on are easily established. But if the elements of S are some general objects
then the operations “scalar multiplication” and “addition” are to be redefined and
then all types of extra properties are to be double-checked before constructing such a
collection which is closed under “scalar multiplication” and “addition”. A more gen-
eral definition of S will be introduced later. For the time being the elements in our S
are all n-tuples of real numbers. The null vector is automatically an element of any
such S. That is, O ∈ S. If V ∈ S then V +O = V , −V ∈ S, V − V = O.

Definition 1.3.3 (A spanning set of a vector subspace). A collection of vectors which
span the whole of a given vector subspace is called a spanning set of that vector sub-
space.

Note that there can be a number of spanning sets for a given subspace S. In our il-
lustrative example C1 = {U1,U2}, where U1 = (1,0, −1), U2 = (2,3, 1), spans the subspace
S1. The same subspace could be spanned by C2 = {U1,U2,U1 +U2} or C3 = {U1,U2 + 3U1}
or C4 = {U2,U1 − U2, 2U1 + 5U2,U1} and so on. Thus, for a given subspace there can be
infinitely many spanning sets. In all the spanning sets, C1,… ,C4 above the smallest
number of linearly independent vectors which can span S1 or the maximum number
of linearly independent vectors in all those spanning sets is 2.

Definition 1.3.4 (A basis for a vector subspace). A set of all linearly independent vec-
tors in a spanning set of a vector subspace is called a basis for that vector subspace.
That is, a basis is a spanning set consisting of only linearly independent vectors.

As there can be many spanning sets for a given vector subspace there can be
infinitely many bases for a given vector subspace. In our illustrative example B1 =
{U1,U2} is a basis, B2 = {U1,U2 + 3U1} is another basis, B3 = {U2,U1 −U2} is a third basis,
but B4 = {U2,U1 −U2, 2U1 +U2} is not a basis because one vector, namely

2U1 +U2 = 2(U1 −U2) + 3U2,

is a linear function of the other two. B4 is a spanning set but not a basis. We are im-
posing two conditions for a basis of a vector subspace. (i) A basis is a spanning set for
that vector subspace; (ii) A basis consists of only linearly independent vectors.

Example 1.3.7. Construct 3 bases for the vector subspace spanned by the following
set of vectors:

U1 = (1, 1, 1), U2 = (1, −1, 2), U3 = (2,0,3).
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Solution 1.3.7. Our first step is to determine the number of linearly independent vec-
tors in the given set so that one set of the maximum number of linearly independent
vectors can be collected. Let us apply the sweep-out process, writing the vectors as
rows.

1 1 1
1 −1 2
2 0 3

−1(1) + (2); −2(1) + (3) ⇒
1 1 1
0 −2 1
0 −2 1

−1(2) + (3) ⇒
1 1 1
0 −2 1
0 0 0

Thus the whole vector subspace S, which is spanned by {U1,U2,U3}, can also be
spanned by {V1,V2} where

V1 = (1, 1, 1), and V2 = (0, −2, 1).

Hence one basis for S is B1 = {V1,V2}. Any set of 2 linearly independent vectors that
can be constructed by using V1 and V2 is also a basis for S. For example,

B2 = {2V1,3V2}, B3 = {V1,V2 + V1}

are two more bases for S. Infinitely many such bases can be constructed for the same
vector subspace S. This means that if we start with V1 only then we can span only a
part of S or a subset of S, say S1. This S1 consists of all scalar multiples of V1. Similarly
if we start with only V2 we can only span a part of S or a subset of S, say S2. This S2
consists of scalar multiples of V2. Note that the union of S1 and S2, S1 ∪ S2, is not S. All
linear functions of V1 and V2 are also in S. Hence S1 ∪ S2 is only a subset of S.

Definition 1.3.5 (Dimension of a vector subspace). Themaximumnumber of linearly
independent vectors in a spanning set of S or the smallest number of linearly indepen-
dent vectors which can span the whole of S or the number of vectors in a basis of S is
called the dimension of the subspace S.

In our illustrative Example 1.3.7 the dimension of S is 2. In general, observe that
for a given subspace S there cannot be two different bases B1 and B2 where in B1 the
number of linearly independent vectors is m1 whereas in B2 that number is m2 with
m1 ≠m2. If possible letm1 <m2. Then every vector in S is a linear function of thesem1
vectors and hence by definition there cannot be a vector in S which is linearly inde-
pendent of thesem1 vectors. That meansm1 must be equal tom2.

One more point is worth observing. Since every 3-vector can be written as a linear
function of the basic unit vectors, the vectors U1 = (1,0, −1) and U2 = (2,3, 1) in our
illustrative example can be written as linear functions of the basic unit vectors

e1 = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1).
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Note that

U1 = e1 − e3 and U2 = 2e1 + 3e2 + e3.

In the set B = {e1,e2,e3} there are 3 linearly independent vectors.We have already seen
that U1 and U2 can be written as linear functions of these unit vectors. Thus this set
B could have spanned not only S of our Example 1.3.7, call it S̃, the vector subspace
spanned by U1 and U2, but also a much larger space S where our S̃ is a subset or S̃ is
contained in S or S̃ ⊂ S or S̃ is a subspace there. This is why we used the phrase “sub-
space” in our definitions. Incidently, since S ⊂ S we can also call S itself a subspace.

Definition 1.3.6 (Orthogonal subspaces). Consider two subspaces, S and S∗ of
n-vectors such that for every vector U ∈ S and every vector V ∈ S∗, U .V = 0. That
is, vectors in S are orthogonal to the vectors in S∗ and vice versa. Then S and S∗ are
called subspaces orthogonal to each other.

Obviously, since the same vector cannot be orthogonal to itself (except the null
vector) the same non-null vector cannot be present in S as well as in S∗. For example,
if U1 = (1, 1, 1) is in S then V1 = (1, −2, 1) and V2 = (1,0, −1) are two possible vectors in S∗

since U1.V1 = 0 and U1.V2 = 0. But V1 or V2 or both need not be present in S∗.

Example 1.3.8. IfU = (1, 2, −1) ∈ S and if S is spanned byU itself thenwhat is themax-
imum possible number of linearly independent vectors in a subspace S∗ orthogonal
to S? Construct a basis for such an S∗.

Solution 1.3.8. Let X = (x1,x2,x3) be in S∗. Then

U .X = 0 ⇒ x1 + 2x2 − x3 = 0. (1.3.7)

Themaximumnumber of linearly independent 3-vectors possible is 3. Orthogonal vec-
tors are linearly independent. Hence themaximumnumber of linearly independent X
possible is 3−1 = 2. In order to construct a basiswe construct two linearly independent
X from equation (1.3.7). For example, X1 = (−2, 1,0) and X2 = (−1, 1, 1) are two linearly
independent solutions of (1.3.7). Hence {X1,X2} is a basis for the orthogonal space S∗.
There can be many such bases for S∗, each basis will consist of two linearly indepen-
dent solutions of (1.3.7). Note that the subspace spanned by X1 = (−2, 1,0) alonewill be
orthogonal to S aswell as the subspace spanned byX2 = (−1, 1, 1) alonewill be orthogo-
nal to S. But wewere looking for that orthogonal subspace consisting of themaximum
number of linearly independent solutions of (1.3.7).

Definition 1.3.7 (Orthogonal complement of a subspace). Let S be a vector subspace
and S∗ a subspace orthogonal to S. If all the maximum possible number of linearly
independent vectors, orthogonal to S, are in S∗ then S∗ is the orthogonal complement
of S and it is usually written as S∗ = S⟂.
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(viii) If the dimension of a vector subspace S of n-vectors is m < n and if S∗ is the
orthogonal complement of S then the dimension of S∗ is n−m. If the dimension of S
is n then the dimension of S∗ is zero which means S∗ contains only the null vector.

1.3.2 Gram–Schmidt orthogonalization process

From a given set U1,… ,Uk of k linearly independent n-vectors can we create another
set V1,… ,Vk of vectors which form an orthonormal system and each Vj is a linear
function of the Uj ’s? That is, Vi .Vj = 0, i ≠ j and ‖Vj‖ = 1, j = 1,… ,k. The answer to this
question is in the affirmative and the process by which we obtain the set V1,… ,Vk
from the set U1,… ,Uk is known as the Gram–Schmidt orthogonalization process. This
process can be described as follows: Take the normalized U1 as V1. Construct a V2
where

V2 =
W2
‖W2‖
, W2 = U2 + aV1

where a is a scalar quantity. Since we require V1 to be orthogonal to W2 we have
W2.V1 = 0 or U2.V1 + aV1.V1 = U2.V1 + a = 0 since V1.V1 = 1. Then a = −U2.V1. That is,
W2 = U2 − (U2.V1)V1 where U2.V1 is the dot product of U2 and V1. Note that

W2.V1 = U2.V1 − (U2.V1)V1.V1 = U2.V1 −U2.V1 = 0

since V1.V1 = ‖V1‖2 = 1. Thus V1 and V2 are orthogonal to each other and each one is a
normalized vector. Now, consider the general formula

Wj = Uj − (Uj .V1)V1 − (Uj .V2)V2
−⋯− (Uj .Vj−1)Vj−1 for j = 2,… ,k and (1.3.8)

Vj =
Wj

‖Wj‖
.

For example,

W3 = U3 − (U3.V1)V1 − (U3.V2)V2,

V3 =
W3
‖W3‖
.

Let us see whetherW3 is orthogonal to both V1 and V2. Take the dot product

W3.V1 = U3.V1 − (U3.V1)V1.V1 − (U3.V2)V2.V1.

It is already shown that V2.V1 = 0 and V1.V1 = ‖V1‖2 = 1. Hence

W3.V1 = U3.V1 − (U3.V1) = 0.
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Now take,

W3.V2 = U3.V2 − (U3.V1)V1.V2 − (U3.V2)V2.V2
= U3.V2 − 0 − (U3.V2) = 0

since V2.V2 = ‖V2‖2 = 1 and V2.V1 = 0.
The formula (1.3.8) is constructed by writing Wj as a linear function of Uj ,V1,… ,

Vj−1 and then solving for the coefficients by using the conditions that the dot products
ofWj with V1,… ,Vj−1 are all zeros. One interesting observation can bemade on (1.3.8).
Vj is a linear function of V1,… ,Vj−1 and Uj which implies that Vj is a linear function
of U1,… ,Uj only. That is, V1 is a function of U1 only, V2 is a function of U1 and U2 only
and so on, a triangular format.

Example 1.3.9. Given the vectors

U1 = (1, 1, −1), U2 = (1, 2, 1), U3 = (2,3,4)

construct an orthonormal system by using U1,U2 and U3, if possible.

Solution 1.3.9. Let

V1 =
U1
‖U1‖
, ‖U1‖ = √(1)2 + (1)2 + (−1)2 = √3 ⇒

V1 =
1
√3
(1, 1, −1).

Let

W2 = U2 − (U2.V1)V1

where

V1.U2 =
1
√3
(1, 1, −1).(1, 2, 1)

= 1
√3
[(1)(1) + (1)(2) + (−1)(1)] = 2

√3
.

W2 = U2 − (U2.V1)V1

= (1, 2, 1) − 2
√3

1
√3
(1, 1, −1) = ( 1

3
,
4
3
,
5
3
) =

1
3
(1,4,5),

‖W2‖ =
1
3
√(1)2 + (4)2 + (5)2 =

√42
3
⇒

V2 =
W2
‖W2‖
= 1
√42
(1,4,5).

Note that for any vectorU and for any nonzero scalar a, ‖aU‖ = |a| ‖U‖ and hence keep
the constants outside when computing the lengths. Consider

W3 = U3 − (U3.V1)V1 − (U3.V2)V2,
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where

V1.U3 =
1
√3
(1, 1, −1).(2,3,4) = 1

√3
,

(V1.U3)V1 =
1
3
(1, 1, −1),

V2.U3 =
1
√42
(1,4,5).(2,3,4) = 34

√42
,

(V2.U3)V2 =
34
42
(1,4,5).

Therefore

W3 = (2,3,4) −
1
3
(1, 1, −1) − 34

42
(1,4,5) = 1

7
(6, −4, 2)

with

‖W3‖ =
√56
7
⇒ V3 =

W3
‖W3‖
= 1
√56
(6, −4, 2).

Verification

V1.V2 = [
1
√3
(1, 1, −1)].[ 1

√42
(1,4,5)] = 0;

V1.V3 = [
1
√3
(1, 1, −1)].[ 1

√56
(6, −4, 2)] = 0;

V2.V3 = [
1
√42
(1,4,5)].[ 1

√56
(6, −4, 2)] = 0.

Thus V1,V2,V3 is the system of orthonormal vectors available from U1,U2,U3.

Example 1.3.10. Given the vectors

U1 = (1, 1, −1), U2 = (1, 2, 1), U3 = (2,3,0)

construct an orthonormal system by using U1,U2,U3, if possible.

Solution 1.3.10. Since U1 and U2 are the same as the ones in Example 1.3.9 we have

V1 =
1
√3
(1, 1, −1) and V2 =

1
√42
(1,4,5).

Now, consider the equation

W3 = U3 − (U3.V1)V1 − (U3.V2)V2

where

V1.U3 = [
1
√3
(1, 1, −1)].[2,3,0] = 5

√3
,
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(V1.U3)V1 =
5
3
(1, 1, −1)

V2.U3 = [
1
√42
(1,4,5)].[2,3,0] = 14

√42
,

(V2.U3)V2 =
14
42
(1,4,5).

Then

W3 = (2,3,0) −
5
3
(1, 1, −1) − 14

42
(1,4,5) = (0,0,0).

In this case the only orthogonal system possible is with a null vector and the non-null
vectors V1 and V2. Here V1 and V2 are orthonormal but a null vector is orthogonal but
not a normal vector. This situation arose because in the original set U1,U2,U3, not all
vectors are linearly independent. U3 could have been written as a linear function of
U1 and U2, in fact U3 = U1 +U2, and that is whyW3 became null.

(ix) If there arem1 dependent vectors andm2 linearly independent vectors in a given
system of m1 +m2 vectors of the same category then when the Gram–Schmidt or-
thogonalizationprocess is appliedon thesem1+m2 vectorsweget onlym2 orthonor-
mal vectors and the remainingm1 will be null vectors.

When we start with a given set of vectors U1,… ,Uk we do not know whether it is a
linearly independent or dependent system. Hence, start with the orthogonalization
process. If a Wj becomes null, ignore the corresponding Uj and proceed with the re-
maining to obtain a set of orthonormal vectors. This will be m2 in number if in the
original set U1,… ,Uk onlym2 were linearly independent.

Note. For a more rigorous definition of a vector space we will wait until after the dis-
cussion of matrices so that these objects can also be included as elements in such a
vector space.

Exercises 1.3
1.3.1. Check for linear dependence or independence in the following set of vectors:

(a) U1 =

[[[[[[

[

1
−1
0
1
2

]]]]]]

]

, U2 =

[[[[[[

[

2
0
−1
1
5

]]]]]]

]

, U3 =

[[[[[[

[

3
1
1
−1
1

]]]]]]

]

, U4 =

[[[[[[

[

1
−1
0
0
1

]]]]]]

]

;

(b) U1 = (2,0, 1, −1), U2 = (3,0, −1, 2), U3 = (5,0,0, 1);
(c) U1 = (3, 1, −1, 1, 2), U2 = (5, 1, 2, −1,0), U3 = (7, −1, 1, −1,0).
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1.3.2. For each case in Exercise 1.3.1 find a basis for the vector subspace spanned by
the vectors in the set.

1.3.3. For each of the subspaces spanned by the vectors in Exercise 1.3.1 construct a
basis for the orthogonal complement and compute the dimensions of each of these
orthogonal complements.

1.3.4. For each set of vectors in Exercise 1.3.1 construct a set of (i) mutually orthogonal
vectors as linear functions of the given set of vectors, (ii) a set of orthonormal system
of vectors as linear functions of the given set of vectors, if possible.

1.3.5. Let U1 and U2 be two linearly independent 2-vectors. Let V be an arbitrary
2-vector. Show that V can be written as a linear function of U1 and U2.

1.3.6. Illustrate the result in Exercise 1.3.5 geometrically.

1.3.7. Let U1,U2 and U3 be three linearly independent 3-vectors and let V be an arbi-
trary 3-vector. Show that V can be written as a linear function of U1,U2 and U3.

1.3.8. Treating vectors as arrowheads let U⃗ 1 = (1, 1, −1) = ⃗i+ ⃗j− k⃗ and U⃗2 = (2, 1,0) = 2 ⃗i+ ⃗j
give a geometric interpretation of a basis for the subspace orthogonal to the subspace
spanned by U⃗ 1 and U⃗2.

1.3.9. In the language of analytical geometry two lines in a plane are perpendicular
to each other if the product of their slopes is −1. Express this statement in terms of the
dot product of two vectors being zero.

1.3.10. Find all vectorswhich are orthogonal to bothU1 = (1, 1, 1, −1) andU2 = (2, 1,3, 2).

1.3.11. IfU1 = (1, 1, 1) andU2 = (1, 1, −1), are the following true? Prove your assertions by
using the definition of linear independence. (i)U1 and 2U1 −U2, (ii)U1 +U2 andU1 −U2,
(iii) U1 −U2 and 2U1 + 2U2, (iv) U1 +U2 and 2U1 − 2U2, are all linearly independent.

1.3.12. Consider a subspace spanned by the vectors U1 and U2 in Exercise 1.3.11. Is it
true that the sets in (i) to (iv) there, are bases for that subspace. Justify your answer.

1.3.13. Let S be the vector subspace spanned byU1 andU2 of Exercise 1.3.11. Construct
2 bases for the orthogonal complement S∗ of S. What are the dimensions of S and S∗?

1.3.14. Consider a 3-space and two planes passing through the origin. Consider the
normals to these planes. Construct 3 bases for the subspace spanned by these normals
if (1) the planes are parallel, (2) the planes are perpendicular to each other, (3) the
planes are neither parallel nor perpendicular to each other.

1.3.15. In Exercise 1.3.14 construct the orthogonal complements of the subspaces
spanned in the three cases and find 2 bases each for these orthogonal complements.

1.3.16. Let Vj ∈ S, j = 1, 2,… be n-vectors where S is a vector space of dimension n.
Show that any set of n linearly independent Vj ’s is a basis of S.
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1.3.17. Let Vj ∈ S, j = 1,… , r, 1 ≤ r ≤ n − 1 where the dimension of S is n and all Vj ’s are
n-vectors. If V1,… ,Vr are linearly independent then show that there exist n − r other
elements Vr+1,… ,Vn of S such that V1,… ,Vn is a basis of S.

1.3.18. Let S be the vector space of all 1 × 3 vectors. Let S1 be spanned by V1 = (1, 1, 1),
V2 = (1,0, −1), V3 = (2, 1,0) and S2 be spanned by U1 = (2, 1, 1), U2 = (3, 1, −1). Show that
(1) S1 ⊂ S, S2 ⊂ S, that is, S1 and S2 are subspaces in S. (2) S1 ∩ S2 ≠ O, that is, the in-
tersection is not empty. (3) Determine the dimensions of S1 and S2. (4) Construct the
subspace S3 such that ifW ∈ S3 thenW = V + U where V ∈ S1 and U ∈ S2. [This S3 ⊂ S
is called a simple sum of S1 and S2 and it is usually written as S3 = S1 + S2.]

1.3.19. Consider the same S as in Exercise 1.3.18. Let

e1 = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1).

Let S1 be spanned by e1 and e2 and S2 be spanned by e3. Show that (1) S1 ⊂ S and S2 ⊂ S.
(2) S1 ∩ S2 = O. (3) Construct S3 as in Exercise 1.3.18.

1.3.20. Direct sum of subspaces. Let S be a finite dimensional linear space (vector
space) and let S1 and S2 be subspaces of S. Then the simple sum of S1 and S2, denoted
by S1 + S2, is the set of all sums of the type U + V where U ∈ S1 and V ∈ S2. Note that
S1 + S2 is also a subspace of S. In addition, if S1 ∩ S2 = O, that is, the intersection of
S1 and S2 is null or empty then the simple sum is called a direct sum, and it will be
denoted by S1 +̂S2. Show that for the simple sums,

dim(S1 + S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2)

where dim(⋅) denotes the dimension of (⋅) and + the simple sum.

1.3.21. Let Sj, j = 1,… ,k be subspaces of a finite dimensional space S. Show that, for
the simple sums,

dim(S1 +⋯+ Sk) ≤
k
∑
i=1

dim(Si).

1.3.22. Let S1 and S2 be as in Exercise 1.3.20. Then show that every elementW ∈ (S1 +
S2) can be written asW = U +V , U ∈ S1, V ∈ S2 and that this decompositionW = U +V
is unique if and only if S1 ∩ S2 = O where Omeans a null set.

1.3.23. Let S0,S1,… ,Sk be subspaces of a finite dimensional linear space S. Show that
the subspace S0 can be written as a direct sum of the subspaces S1,… ,Sk if and only
if the union of the bases for S1,… ,Sk forms a basis for S0.

1.3.24. Let Sj ∈ S, j = 0, 1,… ,k where S is a finite dimensional linear space. Show that

S0 = S1 +̂⋯ +̂Sk



48 | 1 Vectors

if and only if

dim(S0) =
k
∑
j=1

dim(Sj).

1.3.25. Let Sj , j = 0, 1,… ,k be as in Exercise 1.3.24. Show that

S0 = S1 +̂⋯ +̂Sk

if and only if

Si ∩ (S1 +⋯+ Si−1) = O, i = 1,… ,k

where O is a null set.

1.3.26. By using vector methods prove that the segment joining the midpoints of two
sides of any triangle is parallel to the third side and half as long.

1.3.27. By using vector methods prove that the medians of a triangle (the line seg-
ments joining the vertices to the midpoints of opposite sides) intersect in a point of
trisection of each.

1.3.28. By using vector methods prove that the midpoints of the sides of any plane
convex quadrilateral are the vertices of a parallelogram.

1.3.29. By using vector methods prove that the lines from any vertex of a parallelo-
gram to the midpoints of the opposite sides trisect the diagonal they intersect.

1.3.30. If U1,… ,Uk is a finite collection of vectors and if ‖Uj‖ denotes the length of Uj
then show that

‖U1 +⋯+Uk‖ ≤ ‖U1‖ + ‖U2‖ +⋯+ ‖Uk‖.

1.4 Some applications

We will explore a few applications of vector methods in multivariable calculus, sta-
tistical problems, model building and other related areas. The students who are not
familiar with multivariable calculus may skip this section.

1.4.1 Partial differential operators

Consider a scalar function (as opposed to a vector function) of many real scalar (as
opposed to vector) variables, f (x1,… ,xn), where x1,… ,xn are functionally indepen-
dent (no variable can be written as a function of the other variables), or distinct, real
variables. For example,
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(i) f = 2x31 + x22 − 3x1x2 + x2 − 5x1 + 8
(ii) f = 3x21 + 2x22 − x1x2 − x2 − 2x1 + 10

are two such functions of two real scalar variables x1 and x2. Consider the vector of
partial differential operators. Let us use the following notations:

X =
[[[[

[

x1
x2
⋮
xn

]]]]

]

, 𝜕
𝜕X
=
[[[[[

[

𝜕
𝜕x1
𝜕
𝜕x2
⋮
𝜕
𝜕xn

]]]]]

]

, 𝜕
𝜕X

f = 𝜕f
𝜕X
=
[[[[[

[

𝜕f
𝜕x1
𝜕f
𝜕x2
⋮
𝜕f
𝜕xn

]]]]]

]

,

𝜕
𝜕X′
= ( 𝜕
𝜕x1
,… , 𝜕
𝜕xn
),

𝜕
𝜕X′

f = 𝜕f
𝜕X′
= ( 𝜕f
𝜕x1
,… , 𝜕f
𝜕xn
). (1.4.1)

For example, 𝜕f𝜕x1 means to differentiate f with respect to x1 partially which means as-
suming all other variables x2,… ,xn to be constants. In (ii) above 𝜕𝜕x1 operating on f
gives

𝜕f
𝜕x1
= 𝜕
𝜕x1
(3x21 + 2x22 − x1x2 − x2 − 2x1 + 10)

= 𝜕
𝜕x1
(3x21 ) +

𝜕
𝜕x1
(2x22) +

𝜕
𝜕x1
(−x1x2)

+ 𝜕
𝜕x1
(−x2) +

𝜕
𝜕x1
(−2x1) +

𝜕
𝜕x1
(10)

= 6x1 + 0 − x2 + 0 − 2 + 0
= 6x1 − x2 − 2.

Similarly 𝜕𝜕x2 operating on this f gives

𝜕f
𝜕x2
= 𝜕
𝜕x2
(3x21 + 2x22 − x1x2 − x2 − 2x1 + 10)

= 0 + 4x2 − x1 − 1 − 0 + 0
= 4x2 − x1 − 1.

Then 𝜕𝜕X operating on f is a column vector, namely,

𝜕
𝜕X

f = (
𝜕f
𝜕x1
𝜕f
𝜕x2

) = (
6x1 − x2 − 2
4x2 − x1 − 1

) .

The transpose of this vector is denoted by 𝜕f𝜕X′ (
𝜕
𝜕X′ operating on f ). That is,

𝜕f
𝜕X′
= (6x1 − x2 − 2, 4x2 − x1 − 1).
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1.4.2 Maxima/minima of a scalar function of many real scalar variables

When looking for points where the function may have local maximum or local mini-
mum we differentiate the function partially with respect to each variable, equate to
zero and solve the system of equations to determine the critical points or turning
points or points where the function may have local maximum or local minimum or
saddle points. These steps, in vector notation, are equivalent to solving the equation

𝜕f
𝜕X
= O (1.4.2)

where O denotes the null vector. In our illustrative example

𝜕f
𝜕X
= O ⇒ (6x1 − x2 − 2

4x2 − x1 − 1
) = (

0
0
) .

That is,
(a) 6x1 − x2 − 2 = 0,
(b) 4x2 − x1 − 1 = 0.

When solving 𝜕f𝜕X = O we need not write down the individual equations as in (a) and
(b) above. One can use matrix methods, which will be discussed in the next chapter,
and solve (1.4.2) directly. Solving (a) and (b) we have

(
x1
x2
) = (

9/23
8/23
) .

In our illustrative example there is only one critical point

(x1,x2) = (
9
23
, 8
23
).

This critical point may correspond to a maximum or a minimum or it may be a saddle
point. In order to check formaxima/minimawe look for thewhole configuration of the
matrix of second order partial derivatives and look for definiteness of matrices. This
aspect will be considered after introducing matrices in the next chapter.

1.4.3 Derivatives of linear and quadratic forms

Some obvious results when we use the operator 𝜕𝜕X on linear and quadratic forms will
be examined here. A linear form is available by taking a dot product of X with a con-
stant vector. For example if

X =(
x1
⋮
xn
), a =(

a1
⋮
an
)
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then

X.a = a.X = a1x1 +⋯+ anxn (1.4.3)

is a linear form. For example,

y1 = 2x1 − x2 + 3x3 + x4
y2 = x1 + x1 + x3 + x4 − 2x5 + 7x6

are two linear forms. In a linear form each term is of degree one and all terms are
of degree one each or a linear form is homogeneous of degree 1 in the variables. For
example, the degree of a term is determined as follows: 3x5 (degree 0+ 5 = 5), x51 + 3x52
(each term is of degree 5), 2x41 x2 (degree 0 + 4 + 1 = 5), 6x1 (degree 0 + 1 = 1, linear),
5 (degree 0, constant).

Whatwill be the result if a linear form is operatedwith the operator 𝜕𝜕X ? Let y = X.a
then

𝜕
𝜕X

y = 𝜕y
𝜕X
= [[[

[

𝜕y
𝜕x1
⋮
𝜕y
𝜕xn

]]]

]

= [[

[

a1
⋮
an

]]

]

= a.

Hence we have the following important result:

(i) Consider the operator 𝜕𝜕X and the linear form X.a where a is a constant vector.
Then

y = X.a = a.X ⇒ 𝜕
𝜕X

y = 𝜕y
𝜕X
= a

where a is the column vector of the coefficients in X.a.

Example 1.4.1. Evaluate 𝜕y𝜕X if

y = x1 − 5x2 + x3 − 2x4.

Solution 1.4.1.
𝜕y
𝜕x1
= 1, 𝜕y
𝜕x2
= −5, 𝜕y

𝜕x3
= 1, 𝜕y
𝜕x4
= −2

and hence

𝜕
𝜕X

y = 𝜕y
𝜕X
=
[[[[

[

1
−5
1
−2

]]]]

]

.

Now, let us examine a simple quadratic form. Consider the sum of squares of a
number of variables. Let
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X = [[
[

x1
⋮
xn

]]

]

then X.X = x21 + x22 +⋯+ x2n.

This is a special case of a quadratic form. In a quadratic form, every term is of degree
2 each or it is a homogeneous function of many variables of degree 2. For the time
being, we consider the above simple quadratic form. More general quadratic forms
will be considered after introducing matrices in the next chapter. What will happen
if a sum of squares is operated with the operator 𝜕𝜕X ? Proceeding as in the linear case
the result is the following:

(ii) Let y = X.X = x21 +⋯+ x2n then

y = X.X ⇒ 𝜕y
𝜕X
=(

2x1
⋮
2xn
)= 2X.

1.4.4 Model building

Suppose that a gardener suspects that the growth of a particular species of plant
(growthmeasured in terms of the height of the plant) is linearly related to the amount
of a certain fertilizer used. Let the amount of the fertilizer used be denoted by x and
the corresponding growth (height) be y. Then the gardener’s suspicion is that

y = a + bx

where a and b are some constants, that is, y and x are linearly related. What exactly is
this linear relationship? The gardener conducts an experiment to estimate the values
of a and b. Suppose that the gardener applies the amounts x1,… ,xn of the fertilizer x
on different plants of the same species, in a carefully planned experiment, and take
the corresponding measurements y1,… ,yn on y. Thus the gardener has the following
pairs of values (xi ,yi), i = 1,… ,n. For example, when one spoon of fertilizer (measured
in spoon units) is applied the growth (measured after a fixed time) noted is 3 inches
(growthmeasured in inches) then the corresponding pair is (x1,y1) = (1,3). If y = a+bx
is a mathematical relationship then every pair (x,y) should satisfy the equation y =
a + bx. Then we need only two pairs of values on (x,y) to exactly evaluate a and b
and then every other value on (x,y) must satisfy the relationship. But this is not the
situationhere. Thegardener is thinking that theremaybea relationshipbetween x and
y, that relationshipmay be a linear relationship and that she will be able to estimate y
at a preassigned value of x. Then the error in estimating y by using such a relationship
at a given value of x is y − (a + bx). Denoting the error in the i-th pair by ϵi we have

ϵi = yi − a − bxi .
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One way of estimating the unknown parameters a and b is to minimize the sum of
squares of the errors (error = observed value minus the modeled value, whatever be
the model, linear or not). Such a method of estimating the parameters in a model by
minimizing the error sumof squares is known as themethod of least squares. The error
vector and the error sum of squares in our linear model are given by

ϵ =(
ϵ1
⋮
ϵn
),

ϵ.ϵ = ϵ21 +⋯+ ϵ2n =
n
∑
i=1
(yi − a − bxi)2. (1.4.4)

Equation (1.4.4) can be written in a more elegant way as a quadratic form after dis-
cussingmatrices. Let the vector of unknowns be denoted by α = ( ab ). Then themethod
of least squares implies that ϵ.ϵ is minimized with respect to α. It is obvious that the
maximum of ϵ.ϵ, being a non-negative arbitrary quantity, is at +∞. Then theminimiz-
ing equations, often known as the normal equations in least square analysis, are the
following:

𝜕
𝜕α
(ϵ.ϵ) = O ⇒ (

𝜕
𝜕a
𝜕
𝜕b
)(ϵ.ϵ) = O ⇒

(
−2∑ni=1(yi − a − bxi)
−2∑ni=1 xi(yi − a − bxi)

) = (
0
0
) ⇒

n
∑
i=1
(yi − a − bxi) = 0 (a)

and
n
∑
i=1

xi(yi − a − bxi) = 0 (b)

since −2 ≠ 0. Opening up the sum we have, from (a) and (b),

(
n
∑
i=1

yi) − na − b(
n
∑
i=1

xi) = 0 (c)

and

(
n
∑
i=1

xiyi) − a(
n
∑
i=1

xi) − b(
n
∑
i=1

x2i ) = 0. (d)

Denoting

ȳ =
n
∑
i=1

yi
n

and x̄ =
n
∑
i=1

xi
n
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and solving (c) and (d) we get the values of a and b. Let us denote these estimates by
â and b̂ respectively. Then we have

b̂ =
∑ni=1(xi − x̄)(yi − ȳ)
∑ni=1(xi − x̄)2

=
(∑ni=1 xiyi) − n(x̄ȳ)
(∑ni=1 x2i ) − n(x̄)2

(1.4.5)

and

â = ȳ − b̂x̄. (1.4.6)

From (1.4.5) and (1.4.6) we have the estimates for a and b, and the estimated linear
model by using the method of least squares is then

y = â + b̂x. (1.4.7)

Example 1.4.2. In a feeding experiment with beef cattle the farmer suspects that the
increase in weight is linearly related to the quantity of a particular combination of
feed. The farmer has obtained the following data. Construct the estimating function
by the method of least squares and then estimate the weight if the quantity of feed is
2.2 kg.

Data: y = (gain in weight in kg) 0.5 0.8 1.5 2.0
x = (quantity of feed in kg) 1.2 1.5 2.0 2.5

Solution 1.4.2.

x̄ = 1.2 + 1.5 + 2.0 + 2.5
4

= 1.8, ȳ = 0.5 + 0.8 + 1.5 + 2.0
4

= 1.2.

For convenience of computations let us form the following table: [Use a calculator or
computer to compute â and b̂ directly.]

x y x − x̄ y − ȳ (x − x̄)2 (x − x̄)(y − ȳ)

1.2 0.5 −0.6 −.7 0.36 0.42
1.5 0.8 −0.3 −0.4 0.09 0.12
2.0 1.5 0.2 0.3 0.04 0.06
2.5 2.0 0.7 0.8 0.49 0.56

− − −− − − −−
0.98 1.16

b̂ = 1.16
0.98
≈ 1.1837, â = 1.2 − (1.16)

(0.98)
(1.8) ≈ −0.9306.

The estimated model is

y = −0.9306 + 1.1837x.

Then the predicted value of y at x = 2.2 is

ŷ = −0.9306 + 1.1837(2.2) ≈ 1.6735kg.
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Exercises 1.4
1.4.1. Find the critical points for the following functions and then check to see
whether these correspond to maxima or minima or something else:
(a) f = 2x21 + x22 − 3x2 + 5x1x2 − x1 + 5.
(b) f = x21 + x22 − 2x1x2 − 5x1 − 2x2 + 8.

1.4.2. Evaluate 𝜕f𝜕X and write the results in vector notations:
(a) f = 3x1 − x2 + 5x3 − x4 + 10.
(b) f = x21 + 2x1x2 + x1x3 − x22 + 3x23.
(c) f = 2x21 + x22 + x23 − 5x1x2 + x2x3.

1.4.3. Write the operator 𝜕𝜕X′ . Then on each element of this vector apply the operator
𝜕
𝜕X . Explain what you have in this configurations of n rows and n columns.

1.4.4. Apply the operator 𝜕𝜕X
𝜕
𝜕X′ on f in each of (a), (b), (c) in Exercise 1.4.2.

1.4.5. Fit linear models of the type y = a + bx for the following data:
(a) (x,y) = {(0, 2), (1,5), (2,6), (3,9)}.
(b) (x,y) = {(−1, 1), (−2, −2), (0,3), (1,6)}.

1.4.6. Fit a model of the type y = a + bx + cx2 to the following data:

(x,y) = {(−1, 2), (0, 1), (1,5), (2,7), (3, 21)}.

1.4.7. In statistical distribution theory themoment generating function of a real vector
X′ = (x1,… ,xk) randomvariable is denoted byM(T), T′ = (t1,… , tk)where T is a vector
of parameters. WhenM(T) is evaluated for the real multivariate Gaussian distribution
we obtain

M(T) = eϕ(T)

where

ϕ(T) = t1μ1 +⋯+ tkμk +
1
2
[

k
∑
i,j=1

σijtitj]

where μ1,… ,μk aswell as σij , i = 1,… ,k, j = 1,… ,k are constants, free of T .WhenM(T)
is available and differentiable, then the expected value of X or the first moment of X,
denoted by μ = E(X), is obtained as 𝜕𝜕TM(T)|T=O, that is the first derivative evaluated
at T = O, and the variance–covariance matrix is 𝜕𝜕T

𝜕
𝜕T′M(T)|T=O − μμ

′. Evaluate E(X)
and the variance–covariance matrix for the multivariate Gaussian distribution.

1.4.8. The exponential series is

ey = y0 + y
1!
+
y2

2!
+⋯, y0 = 1.
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Consider the operator D = d
dx . Then

exD = (xD)0 + xD
1!
+ x

2D2

2!
+⋯.

where, for example, Dr = DD…D stands for D operating repeatedly r times. Let exDf0
denote exD operating on f and then Dr f is evaluated at x = 0, r = 0, 1,…. Then

exDf0 = f (0) +
x
1!
( d
dx

f)
x=0
+ x

2

2!
( d

2

dx2
f)

x=0
+⋯.

This is Taylor series in one variable. Now consider a two variable case. Let

∇ = (
D1
D2
) , Di =

𝜕
𝜕xi
, i = 1, 2

and the increment vector at the point (a1,a2) is Δ′ = (x1 − a1,x2 − a2). Then the dot
product is given by

∇.Δ = (x1 − a1)D1 + (x2 − a2)D2.

As before, let e∇.Δf0 denote e∇.Δ operating on f where the various derivatives are eval-
uated at the point (a1,a2). Write down the Taylor series expansion for two variables
(x1,x2) at the point (a1,a2) explicitly up to the terms involving all the second order
derivatives.

1.4.9. By using the operator ∇ in Exercise 1.4.8 expand the following functions by us-
ing Taylor expansion, at the specified points:
(a) x21 + 2x1x22 + x32 + 5x1 − x2 + 7 at (1, −1).
(b) 2x21 + x22 − 3x1x2 + 8 at (−2, −3).
(c) x41 + x31 x2 + 3x42 − x1x2 + 4 at (2,0).

1.4.10. Extend the ideas in Exercise 1.4.8 to a scalar function f (x1,x2,x3) of 3 real vari-
ables x1,x2,x3, at the point (a1,a2,a3). In this case Di =

𝜕
𝜕xi
, i = 1, 2,3. Evaluate the first

few terms of the series explicitly up to the terms involving (∇.Δ)3.

1.4.11. Apply the result in Exercise 1.4.10 to expand the following function up to terms
involving (∇.Δ)3, and at the point (1,0, −1):

x21e−x1−x2−x3 + 5x31 x22x3 − e−2x1+3x2 .

1.4.12. For Exercise 1.4.5 (a) estimate y at (i) x = 2.7, (ii) x = 3.1. Is it reasonable to use
the model to estimate y at x = 10?

1.4.13. For Exercise 1.4.6 estimate y at (i) x = 0.8, (ii) x = 3.1. Is it reasonable to predict
y at (iii) x = −4, (iv) x = 8 by using the same model?
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1.4.14. Use the method of least squares to fit the model

y = a0 + a1x21 + a2x1x2 + a3x22

to the following data:

(x1,x2,y) = (0,0, 1), (0, 1,0), (0, 2, −2), (1, −1, −1), (2, 1,8), (1, 2,3).

1.4.15. Can the method of least squares, as minimizing the error sum of squares with
error defined as “observedminus the modeled value”, be used to fit the model y = abx

to the data

(x,y) = (x1,y1), (x2,y2),… , (xn,yn)

and if not what are the difficulties encountered?




