Contents

Preface — v

1	Introduction — 1
1.1	Colloidal dispersions — 1
1.2	Self-assembly systems —— 3
1.3	Interfacial phenomena —— 5
1.4	Outline of the book —— 6
2	Origin of charge at interfaces and structure
	of the electrical double layer —— 15
2.1	Introduction —— 15
2.2	Origin of charge on surfaces —— 15
2.2.1	Surface ions —— 15
2.2.2	Ionization of surface groups —— 16
2.2.3	Isomorphic substitution —— 17
2.2.4	Specific adsorption of ions —— 19
2.3	Structure of the electrical double layer —— 19
2.3.1	Diffuse double layer (Gouy and Chapman) —— 19
2.3.2	Stern–Grahame model of the double layer —— 24
2.3.3	Capacitance of the double layer —— 27
2.4	Double layer investigation —— 28
3	Electrokinetic phenomena and zeta potential —— 37
3.1	Introduction — 37
3.2	Charge separation at interfaces and various electrokinetic effects — 37
2 2 4	Electrophoresis — 39
3.2.1	Liectrophoresis — 39
3.2.1 3.2.2	Electro-osmosis — 39
	•
3.2.2	Electro-osmosis —— 39
3.2.2 3.2.3	Electro-osmosis —— 39 Streaming potential —— 40
3.2.2 3.2.3 3.2.4	Electro-osmosis —— 39 Streaming potential —— 40 Sedimentation potential (Dorn effect) —— 40
3.2.2 3.2.3 3.2.4 3.3	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40
3.2.2 3.2.3 3.2.4 3.3	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution
3.2.2 3.2.3 3.2.4 3.3 3.4	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41
3.2.2 3.2.3 3.2.4 3.3 3.4	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41 Calculation of zeta potential from particle mobility — 44
3.2.2 3.2.3 3.2.4 3.3 3.4 3.5 3.5.1	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41 Calculation of zeta potential from particle mobility — 44 Von Smoluchowski (classical) treatment — 44
3.2.2 3.2.3 3.2.4 3.3 3.4 3.5 3.5.1 3.5.2	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41 Calculation of zeta potential from particle mobility — 44 Von Smoluchowski (classical) treatment — 44 The Huckel equation — 47
3.2.2 3.2.3 3.2.4 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41 Calculation of zeta potential from particle mobility — 44 Von Smoluchowski (classical) treatment — 44 The Huckel equation — 47 Henry's treatment — 48
3.2.2 3.2.3 3.2.4 3.3 3.4 3.5 3.5.1 3.5.2 3.5.3 3.6	Electro-osmosis — 39 Streaming potential — 40 Sedimentation potential (Dorn effect) — 40 The surface of shear and the zeta potential — 40 Relationship between zeta potential and potential distribution across the interface — 41 Calculation of zeta potential from particle mobility — 44 Von Smoluchowski (classical) treatment — 44 The Huckel equation — 47 Henry's treatment — 48 Measurement of electrophoretic mobility and zeta potential — 49

4	Double layer repulsion —— 63
4.1	Introduction —— 63
4.2	General expression for electrostatic repulsion — 63
4.3	Interaction between similar and dissimilar flat plates —— 65
4.4	Calculation of electrostatic interaction
	using the Gibbs energy concept —— 67
4.5	Charge and potential distribution — 69
4.6	Interaction between spherical particles — 72
4.7	Effect of increasing electrolyte concentration, valency of counterions
	and Stern potential —— 75
4.8	Effect of particle concentration —— 77
5	Van der Waals attraction —— 81
5.1	Introduction —— 81
5.2	General expression for the interaction between two particles —— 81
5.3	Intermolecular attraction between atoms or molecules —— 82
5.3.1	Dipole-dipole interaction (Keesom-van der Waals interaction) —— 82
5.3.2	Dipole-induced dipole interaction (Debye-van der Waals
	interaction) —— 83
5.3.3	London-van der Waals interaction (dispersion interaction) —— 83
5.4	General approach for van der Waals attraction — 84
5.5	Hydrogen bonding —— 85
5.6	Hydrophobic (bonding) interaction —— 85
5.7	Van der Waals attraction of macroscopic bodies —— 86
5.7.1	The microscopic approach for van der Waals attraction — 86
5.7.2	Medium effect on van der Waals attraction —— 90
5.7.3	Macroscopic approach (Lifshitz theory of dispersion forces) —— 92
5.8	Retardation effect —— 94
5.9	Direct measurement of van der Waals attraction
	between macroscopic bodies —— 94
6	Theory of colloid stability —— 97
6.1	Introduction —— 97
6.2	Examples of potential energy curves and
	stability of charge stabilized systems as described by the DLVO theory
	for flat plates —— 98
6.3	Energy-distance curves for spherical particles
	according to DLVO theory —— 101
6.3.1	Large particles with thin double layers ($\kappa a \gg 1$) — 102
6.3.2	Small particles and extended double layers (κa is small) — 105
6.3.3	Total energy of interaction —— 108
6.4	Influence of particle number concentration —— 109

7	Flocculation of colloidal dispersions —— 117
7.1	Mechanism of aggregation —— 117
7.2	Kinetics of flocculation of dispersions —— 119
7.2.1	Diffusion limited aggregation (fast flocculation kinetics) —— 119
7.2.2	Potential limited aggregation (slow flocculation kinetics) —— 120
7.2.3	Weak (reversible) flocculation —— 121
7.2.4	Orthokinetic flocculation —— 122
7.2.5	Aggregate structure —— 126
8	Association colloids —— 129
8.1	Introduction —— 129
8.2	General classification of surfactants —— 129
8.2.1	Anionic surfactants —— 129
8.2.2	Cationic surfactants —— 134
8.2.3	Amphoteric (zwitterionic) surfactants —— 135
8.2.4	Nonionic surfactants —— 136
8.3	Aggregation of surfactants, self-assembly structures,
	liquid crystalline phases —— 141
8.4	Thermodynamics of micellization —— 148
8.4.1	Kinetic aspects —— 148
8.5	Equilibrium aspects: thermodynamics of micellization —— 149
8.6	Enthalpy and entropy of micellization —— 151
8.7	Driving force for micelle formation —— 152
8.8	Micellization in surfactant mixtures (mixed micelles) —— 153
8.9	Surfactant self-assembly —— 157
8.10	Structure of liquid crystalline phases —— 157
8.10.1	Hexagonal phase —— 158
8.10.2	Micellar cubic phase —— 158
8.10.3	Lamellar phase —— 158
8.10.4	Bicontinuous cubic phases —— 159
8.10.5	Reversed structures —— 159
8.11	Experimental studies of the phase behaviour of surfactants —— 159
9	Adsorption of surfactants at the liquid/liquid interface —— 163
9.1	Introduction —— 163
9.2	Surfactant adsorption —— 164
9.2.1	The Gibbs adsorption isotherm —— 165
9.2.2	Equation of state approach —— 168
9.2.3	The Langmuir, Szyszkowski and Frumkin equations —— 170
9.3	Effectiveness of surfactant adsorption
	at the liquid/liquid interface —— 171

9.4	Efficiency of adsorption of surfactant
	at the liquid/liquid interface —— 171
9.5	Adsorption from mixtures of two surfactants —— 173
9.6	Interfacial tension measurements —— 174
9.6.1	The Wilhelmy plate method —— 174
9.6.2	The pendent drop method —— 175
9.6.3	The du Nouy ring method —— 176
9.6.4	The drop volume (weight) method —— 176
9.6.5	The spinning drop method —— 177
9.7	Interfacial rheology —— 178
9.7.1	Interfacial shear viscosity —— 178
9.7.2	Measurement of interfacial viscosity —— 178
9.7.3	Interfacial dilational elasticity —— 179
9.7.4	Interfacial dilational viscosity —— 179
9.7.5	Non-Newtonian effects —— 180
9.8	Correlation of emulsion stability with interfacial rheology —— 180
9.8.1	Mixed surfactant films —— 180
9.8.2	Protein films —— 181
10	Adsorption of surfactants at the solid/liquid interface —— 185
10.1	Introduction —— 185
10.2	Adsorption of ionic surfactants on hydrophobic surfaces —— 187
10.3	Examples of adsorption isotherms for ionic surfactants
	on hydrophobic surfaces —— 191
10.4	Adsorption of ionic surfactants on polar surfaces —— 193
10.5	Adsorption of nonionic surfactants —— 194
10.6	Theoretical treatment of surfactant adsorption —— 197
10.7	Examples of typical adsorption isotherms of model nonionic surfactants
	on hydrophobic solids —— 199
11	Polymers and polymeric surfactants and their association — 203
11.1	Introduction — 203
11.2	General classification of polymers and polymeric surfactants — 203
11.2.1	Homopolymers —— 203
11.2.2	Random copolymers — 204
11.2.3	Block and graft copolymers —— 204
11.2.4	Polymeric surfactants based on polysaccharides — 206
11.2.5	Natural polymeric biosurfactants —— 210
11.2.6	Silicone surfactants — 211
11.2.7	Polymeric surfactants for nonaqueous dispersions — 212
11.2.8	Polymerizable surfactants —— 214

11.3	Solution properties of polymeric surfactants —— 215
11.3.1	Polymer conformation and structure —— 215
11.3.2	Free energy of mixing of polymer with solvent –
	the Flory–Huggins theory —— 220
11.3.3	Viscosity measurements for characterization
	of a polymer in solution —— 225
11.3.4	Phase separation of polymer solutions —— 227
11.3.5	Solubility parameter concept for selecting the right solvent
	for a polymer —— 228
12	Adsorption and conformation of polymeric surfactants at interfaces —— 231
12.1	Introduction —— 231
12.2	Polymers at interfaces —— 232
12.3	Theories of polymer adsorption —— 236
12.4	Scaling theory for polymer adsorption —— 244
12.5	Experimental techniques for studying
	polymeric surfactant adsorption —— 246
12.5.1	Measurement of the adsorption isotherm —— 246
12.5.2	Measurement of the fraction of segments p —— 247
12.5.3	Determination of the segment density distribution $ ho(z)$
	and adsorbed layer thickness δ_{h} —— 247
12.6	Examples of the adsorption isotherms
	of nonionic polymeric surfactants —— 251
12.7	Adsorbed layer thickness results —— 254
12.8	Kinetics of polymer adsorption —— 257
13	Steric stabilization —— 259
13.1	Introduction —— 259
13.2	Interaction between particles or droplets containing
	adsorbed polymer layers —— 259
13.2.1	Mixing interaction G_{mix} —— 260
13.2.2	Elastic interaction $G_{\rm el}$ — 262
13.2.3	Total energy of interaction —— 263
13.2.4	Criteria for effective steric stabilization —— 264
13.3	Measurement of steric repulsion between adsorbed layers
	of polymeric surfactants —— 264
13.3.1	Surface force methods —— 264
13.3.2	Atomic Force Microscopy (AFM) measurements —— 267
14	Flocculation of sterically stabilized dispersions —— 273
14.1	Introduction —— 273
14.2	weak (reversible) flocculation —— 273

xvi —	Contents
14.3	Incipient flocculation —— 277
14.4	Depletion flocculation —— 279
14.5	Bridging flocculation by polymers and polyelectrolytes — 280

Index — 285