13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons
-
Cyril Aumaitre
, Anthony Jolly und Jean-François Morin
Abstract
Carbon nanomaterials, especially carbon nanotubes and graphene, have been among the most studied materials in the past fifteen years owing to their outstanding physcial properties. To obtain the desired properties, these nanomaterials need to be well-defined and as pure as possible, especially for electronic applications. In this chapter, we present the most promising strategies for the purification of singlewalled carbon nanotubes(SWNTs), with an emphasis on the sorting of semiconducting SWNTs using conjugated polymers, and the synthesis of graphene nanoribbons.
Abstract
Carbon nanomaterials, especially carbon nanotubes and graphene, have been among the most studied materials in the past fifteen years owing to their outstanding physcial properties. To obtain the desired properties, these nanomaterials need to be well-defined and as pure as possible, especially for electronic applications. In this chapter, we present the most promising strategies for the purification of singlewalled carbon nanotubes(SWNTs), with an emphasis on the sorting of semiconducting SWNTs using conjugated polymers, and the synthesis of graphene nanoribbons.
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents IX
- List of Contributors XI
- 1. Design Principles for Organic Semiconductors 1
- 2. CO2-Controlled Polymer Self-Assembly and Application 51
- 3. Self-Healing Materials: Design and Applications 87
- 4. Redox-Responsive Self-Assembled Amphiphilic Materials: Review and Application to Biological Systems 113
- 5. Ultrafine Nanofiber Formation by Centrifugal Spinning 143
- 6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries 161
- 7. Toward the Assembly of Dynamic and Complex DNA Nanostructures 183
- 8. Alternating Copolymer Nanotubes 209
- 9. Molecular Glasses: Emerging Materials for the Next Generation 239
- 10. Production of Pluripotent Stem Cell-Derived Pancreatic Cells by Manipulating Cell-Surface Interactions 261
- 11. Phase Diagram of an Au–Pt Solid Core–Liquid Shell Nanoparticle 285
- 12. Directing the Self-Assembly of Nanoparticles for Advanced Materials 307
- 13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons 327
- 14. Modeling of Lithium-Ion Batteries 353
- Index 389
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents IX
- List of Contributors XI
- 1. Design Principles for Organic Semiconductors 1
- 2. CO2-Controlled Polymer Self-Assembly and Application 51
- 3. Self-Healing Materials: Design and Applications 87
- 4. Redox-Responsive Self-Assembled Amphiphilic Materials: Review and Application to Biological Systems 113
- 5. Ultrafine Nanofiber Formation by Centrifugal Spinning 143
- 6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries 161
- 7. Toward the Assembly of Dynamic and Complex DNA Nanostructures 183
- 8. Alternating Copolymer Nanotubes 209
- 9. Molecular Glasses: Emerging Materials for the Next Generation 239
- 10. Production of Pluripotent Stem Cell-Derived Pancreatic Cells by Manipulating Cell-Surface Interactions 261
- 11. Phase Diagram of an Au–Pt Solid Core–Liquid Shell Nanoparticle 285
- 12. Directing the Self-Assembly of Nanoparticles for Advanced Materials 307
- 13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons 327
- 14. Modeling of Lithium-Ion Batteries 353
- Index 389