1. Design Principles for Organic Semiconductors
-
Julia A. Schneider
und Dmitrii F. Perepichka
Abstract
Designing organic semiconductors--whether polymers or small molecules--involves a myriad of synthetic choices. Every choice, from incorporating heteroatoms to substituents, effects the optoelectronic properties of the material, its morphology, and its ultimate device performance. This chapter presents the reader with current design strategies and known structure-property relationships. For context, this chapter also briefly discusses the history of the field, theories of charge transport, device applications, and concludes with a selection of reported organic semiconductors.
Abstract
Designing organic semiconductors--whether polymers or small molecules--involves a myriad of synthetic choices. Every choice, from incorporating heteroatoms to substituents, effects the optoelectronic properties of the material, its morphology, and its ultimate device performance. This chapter presents the reader with current design strategies and known structure-property relationships. For context, this chapter also briefly discusses the history of the field, theories of charge transport, device applications, and concludes with a selection of reported organic semiconductors.
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents IX
- List of Contributors XI
- 1. Design Principles for Organic Semiconductors 1
- 2. CO2-Controlled Polymer Self-Assembly and Application 51
- 3. Self-Healing Materials: Design and Applications 87
- 4. Redox-Responsive Self-Assembled Amphiphilic Materials: Review and Application to Biological Systems 113
- 5. Ultrafine Nanofiber Formation by Centrifugal Spinning 143
- 6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries 161
- 7. Toward the Assembly of Dynamic and Complex DNA Nanostructures 183
- 8. Alternating Copolymer Nanotubes 209
- 9. Molecular Glasses: Emerging Materials for the Next Generation 239
- 10. Production of Pluripotent Stem Cell-Derived Pancreatic Cells by Manipulating Cell-Surface Interactions 261
- 11. Phase Diagram of an Au–Pt Solid Core–Liquid Shell Nanoparticle 285
- 12. Directing the Self-Assembly of Nanoparticles for Advanced Materials 307
- 13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons 327
- 14. Modeling of Lithium-Ion Batteries 353
- Index 389
Kapitel in diesem Buch
- Frontmatter I
- Preface V
- Contents IX
- List of Contributors XI
- 1. Design Principles for Organic Semiconductors 1
- 2. CO2-Controlled Polymer Self-Assembly and Application 51
- 3. Self-Healing Materials: Design and Applications 87
- 4. Redox-Responsive Self-Assembled Amphiphilic Materials: Review and Application to Biological Systems 113
- 5. Ultrafine Nanofiber Formation by Centrifugal Spinning 143
- 6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries 161
- 7. Toward the Assembly of Dynamic and Complex DNA Nanostructures 183
- 8. Alternating Copolymer Nanotubes 209
- 9. Molecular Glasses: Emerging Materials for the Next Generation 239
- 10. Production of Pluripotent Stem Cell-Derived Pancreatic Cells by Manipulating Cell-Surface Interactions 261
- 11. Phase Diagram of an Au–Pt Solid Core–Liquid Shell Nanoparticle 285
- 12. Directing the Self-Assembly of Nanoparticles for Advanced Materials 307
- 13. Toward Well-Defined Carbon Nanotubes and Graphene Nanoribbons 327
- 14. Modeling of Lithium-Ion Batteries 353
- Index 389