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Preface

The present volume comprises topics about the theory of harmonic analysis and its applications. We hope that it is a worthy addition to the references on orthogonal polynomials, homogenous polynomials, and wavelet spheroidal analysis.

All scientific work involves an armada of people. First, we wish to thank our professor, Samir Ben Ammou, professor of mathematics in the Department of Mathematics in the Faculty of Sciences at Monastir University, Tunisia, who supported this work by accepting us as members of his laboratory, The Computational Mathematics Laboratory He also provided funding for participation in scientific conferences where discussions with specialists occurred and thus improved the work.

We would also like to thank Professor Slaiem Ben Farah, the dean of the Faculty of Sciences at Monastir University, for his unforgotten help with providing funding for us to participate in scientific conferences, especially the International Colloquium on Harmonic Analysis, Probability Theory and Their Interactions held in Hammamet, Tunisia, December 15–19, 2014, the International Colloquium on Random Matrices and Orthogonal Polynomials held in Hammamet, Tunisia, March 22–27, 2015, and the Fourth Tunisian–Japanese Conference on Geometric and Harmonic Analysis on Homogenous Spaces and Applications held at Monastir, Tunisia, 18–23 December, 2015.

We also wish to thank the staff at De Gruyter, especially the executive board members, Dr. Anke Beck, the editorial director for mathematics, physics, and engineering, Dr. Konrad Kieling, and also the project editor, Dr. Astrid Seifert. We thank all of them for their hospitality, co-operation, collaboration, and for the time they spent on our project.

The present book stems from lectures and papers on the topics developed and are gathered, re-developed, improved, and sometimes completed when there are missing developments. However, naturally, it is not exhaustive and may be critiqued, corrected, and improved by readers. So, we welcome comments and suggestions.

We also want to stress the fact that originally we planned to present more applications, especially applications of spheroidal wavelets. We regret their absence, which was due to the time constraints of the editor. We hope that what is presented in this volume will allow readers to become acquainted with the topics presented.



1Introduction

The present work provides the scientific community with a unified collection of developments in applied mathematical problems and as mathematical theory. First, we wish to acknowledge that this book is the result of the work of two doctoral students, Sabrine Arfaoui and Imen Rezgui, who were supervised by the third author until October 2014. These studies took place at the Computational Mathematics Laboratory UR11ES51 headed by Professor Samir Ben Ammou, a recent student of École Nationale des Ponts et Chaussées de Paris. The work focused on a special class of wavelets and their applications. It is proposed to develop special wavelet bases that are related to special functions in one part and adapted to spherical geometry in another.

Since their appearance, and especially over the last decades, wavelets have proved to be powerful bases for many domains, such as numerical analysis, signal/image processing, physics, biomaths, medicine, and data analysis. Their power stems from the fact that they do not require a large number of coefficients to accurately represent general functions and large data sets. This allows compression and efficient computations. Wavelets also offer both theoretical characterization of smoothness, insights into the structure of functions and operators, and practical numerical tools that lead to faster computational algorithms. Classical constructions have been limited to simple domains, such as intervals, cubes, Cartesian representations, tensor products, etc. So, one main challenge may be the construction of wavelets on general domains as they appear in graphics applications. In the present context, we aim to present wavelet constructions for functions defined on the sphere. We aim to show that using special functions, such as orthogonal polynomials, homogenous polynomials, and Bessel functions and their relatives, can be sources for well-adapted wavelets. Readers will notice that the constructed schemes lead to extremely easily implemented bases and allow fully adaptive algorithms.

In [14], a polynomial wavelet-type system adapted to the sphere is presented in order to expand continuous functions into wavelet series on the sphere. The method is characterized by an optimum order of growth of the degrees of polynomials. However, and as the authors themselves have already noticed and declared, the wavelet-type system presented is not suitable for implementations as no explicit formulas for coefficient functionals have been provided and the fact remains that the growth of the degrees of polynomials is too rapid.

In [142], a simple technique for constructing biorthogonal wavelets on the sphere with customized properties is developed. The construction is an incidence of a fairly general scheme compared to [152] and [153]. The authors mentioned an important task about wavelets on the sphere showing that efficient wavelet algorithms have practical applications since many computational problems are naturally stated on the sphere.

The first notion developed in this book is orthogonal polynomials. These are well-known because of their link to many mathematical, physical, engineering and computer sciences topics, such as scattering theory, automatic control, signal analysis, potential theory, approximation theory, and numerical analysis. Orthogonal polynomials are special as they are orthogonal with respect to some special weights allowing them to satisfy some properties that are not fulfilled with other polynomials. Such properties have made them useful candidates to resolve enormous problems in physics, probability, statistics, and other fields. In the present work, we aim to review orthogonal polynomials by recalling the original definitions, reproduce their properties, and develop some cases related to the most well-known method to reproduce some classes of them.

Next, as a natural extension of orthogonal polynomials, we present a review of homogenous polynomials and their interactions withh armonic analysis on the sphere. Specifically, we study the constructions of the spherical harmonics and develop the main results of the theory of harmonic analysis on the sphere, such as the addition theorem and the Fourier transformation. The link with some special features, such as ultra-spherical polynomials and Bessel functions are also reviewed.

As in all research studies where the track is unpredictable, this work uses many notions. As mentioned, we are exploring special wavelets. These are naturally related to special functions. That is why we immediately plunged into the context of special functions, that is, some particular mathematical functions that have more or less established names and notations due to their importance in mathematical analysis, functional analysis, physics, or other applications. A detailed study of the most well-known types of these functions has been conducted. We detail the definitions, properties, and characterizations of Bessel, Hankel, and zonal functions. Proofs have been developed, sometimes in detail, relative to the base references and sometimes originally developed in the case of a lack of references. Graphic illustrations and some examples of applications are sometimes mentioned, such as differential equations, integro-differential equations, and time series.

Special functions are indispensable in many topics ranging from pure mathemat-ics to applied fields. Thus, it is important to study their properties. Although many properties and characteristics of such functions appear in many mathematical documents, there is no unified treatment of the topic. With this book, we are filling this hole in the literature.

The last topic is spherical wavelets, which may be considered as a class of special functions. We made use of zonal, spherical harmonics, homogenous, as well as orthogonal polynomials. Recall that the spherical harmonics form the basis of the Hilbert space L2(Sn), where Sn is the unit sphere of Rn, n ∈ ℕ. Harmonic analysis on the sphere is the natural extension of Fourier series, which studies the expressibility of functions and generalized functions as sums of the fundamental exponential functions. The exponential functions are simpler functions, and are both eigenfunctions of the translation-invariant differential operator and group homomorphisms. Here also, spherical harmonics are simple and eigenfunctions of some differential operators.



2Review of orthogonal polynomials

2.1Introduction

Developments and interests in orthogonal polynomials have seen continuous and great progress since their appearance. Orthogonal polynomials are connected with many mathematical, physical, engineering, and computer sciences topics, such as trigonometry, hypergeometric series, special and elliptic functions, continued fractions, interpolation, quantum mechanics, partial differential equations. They are also be found in scattering theory, automatic control, signal analysis, potential theory, approximation theory, and numerical analysis.

Orthogonal polynomials are special polynomials that are orthogonal with respect to some special weights allowing them to satisfy some properties that are not generally fulfilled with other polynomials or functions. Such properties have made them well-known candidates to resolve enormous problems in physics, probability, statistics and other fields.

Since their origin in the early 19th century, orthogonal polynomials have formed a somehow classical topic related to Legendre polynomials, Stieltjes’ continued fractions, and the work of Gauss, Jacobi, and Christoffel, which has been generalized by Chebyshev, Heine, Szegö, Markov, and others. The most popular orthogonal polynomials are Jacobi, Laguerre, Hermite polynomials, and their special relatives, such as Gegenbauer, Chebyshev, and Legendre polynomials. An extending family has been developed from the work of Wilson, inducing a special set of orthogonal polynomials known by his name, which generalizes the Jacobi class. This new family has given rise to other previously unknown sets of orthogonal polynomials, including Meixner Pollaczek, Hahn, and Askey polynomials.

Orthogonal polynomials may also be classified according to the measure applied to define the orthogonality. In this context, we cite the class of discrete orthogonal polynomials that form a special case based on some discrete measure. The most common are Racah polynomials, Hahn polynomials, and their dual class, which in turn include Meixner, Krawtchouk, and Charlier polynomials.

Already with the classification of orthogonal polynomials, one can distinguish circular and generally spherical orthogonal polynomials, which consists of some special sets related to measures supported by the circle or the sphere. One well-known class is composed of Rogers–Szegö polynomials on the unit circle and Zernike polynomials, which are related to the unit disk.

Orthogonal polynomials, and especially classical ones, can generally be introduced by three principal methods. A first method is based on the Rodrigues formula which consists of introducing orthogonal polynomials as outputs of a derivation. The second method consists of introducing orthogonal polynomials as eigenvectors of Sturm–Liouville operators, or equivalently, solutions of second-order differential equations. The last method is based on a three-level recurrence formula.

In this chapter, we aim to review orthogonal polynomials by recalling the original definitions, reproduce their properties, and develop some cases related to the most known method to reproduce some classes of them.

2.2Generalities

This section reviews basic definitions as well as properties of orthogonal polynomials. To do this, we first restrict ourselves to the field ℝ, and when it is necessary we recall that the development remains valid on the complex field ℂ.


Definition 1. A Hilbert space is a vector space equipped with a scalar product, which makes it a complete space relative to the scalar product induced norm.




Definition 2. A polynomial P of degree n on ℝ is formally defined by the expression

		   P(X)=       ∑         k=0    n               a     k             X     k          ,[image: ]

where X is the variable and aks, 0 ≤ k ≤ n, are elements of ℝ called scalars and known as the polynomial coefficient such that an ≠ 0.




Remark 3. The polynomial function associated with the polynomial P, which will also be denoted by P, is the function defined on the whole space ℝ by P(x) = 		      ∑                     k=0     n             a     k             x     k        .  [image: ] We denote by ℝ[X] the set of all polynomials on ℝ. Of course, it is well known that ℝ[X] is a vector space on ℝ with infinite dimension and that for any n ∈ ℕ, the set ℝn[X] of polynomials on ℝ with degree at most n is a vector space with dimension n + 1 on ℝ.




Definition 4. A set of polynomials 𝓑 = (P0, P1, . . . , Pn, . . .) in ℝ[X] is said to be staggered with the degrees iff deg(Pi) = i, ∀i.



The following result shows one important property of staggered degrees polynomials confirming the ability of such polynomials to be good candidates for polynomial spaces bases.


Proposition 5. Any finite set 𝓑 = (P0, P1, . . . , Pn) of staggered degrees polynomials in ℝn[X] is linearly independent.



Proof. Let (α0, α1, . . . , αn) be scalars in ℝ such that 	
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 This means that for all 	
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 By considering the nth-order derivative on x, we obtain 	
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 Consequently, αn = 0. Next, proceeding by induction on n, we prove that all the coefficients αi are null. Hence, 𝓑 is a free set in E. Observe next that the dimension of E (dim E = n + 1) coincides with the cardinality of 𝓑. Therefore, 𝓑 is a basis of E.

	
	



 □


[image: ]




Theorem 6 (GRAM–SCHMIDT). Let {fn}n≥0 be a countable system of linearly independent elements in a prehilbertian space. Then, there exists an orthonormal system {gn}n≥0 such that for any n, Vect{g0, g1, . . . , gn} = Vect{f0, f1, . . . , fn}.



Proof. We proceed by induction to construct the system {gn}n≥0. Let g0 = f0. Then element g1 will be defined by

g1 = f1 − αg0 .

As we want g0 and g1 to be orthogonal, we obtain

⟨g0, g1⟩ = ⟨g0, f1⟩ − α⟨g0, g0⟩ = 0 .

So that, 	
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 Otherwise, we subtract from f1 its orthogonal projection on g0, i.e.,
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Hence, clearly we have Vect{0, g1} = Vect{f0, f1}.

Next, g2 is defined analogously by subtracting from f2 its orthogonal projections on (g0, g1). In other words,
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It is straightforward that g2 is orthogonal to g0 and g1. Assume next that gn is well known. gn+1 will be obtained as follows:
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We check easily that for all k ≤ n,
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Obviously, the elements gn are not normalized. To do this, we divide each one by its norm. The equality Vect{g0, g1, . . . , gn} = Vect{f0, f1, . . . , fn} is straightforward.

	
	



 □
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Definition 7. Let I be an interval in ℝ nonreduced to a point and let ω be a positive continuous function on I. ω is said to be a weight function iff

		               ∫     I             |x      |      d          ω(x)dx<∞,             ∀d∈ℕ.[image: ]



We denote by the next 𝓒ω(I) the vector space of continuous functions on the interval I, satisfying
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It results from hypothesis 7 that the polynomials are elements of 𝓒ω(I). On this space of functions, a scalar product can be defined by
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The integration interval I will be called the orthogonality interval.


Definition 8. A set of polynomials (Pi)i≥0 is said to be orthogonal iff it satisfies

(1)Degree(Pi) = i; ∀i ∈ ℕ.

(2)⟨Pi , Pj⟩ = 0; ∀(i, j) ∈ ℕ2; i ≠ j.



The following result shows some generic properties of orthogonal polynomials, as they are special cases of staggered degree polynomials and consequently they also form good candidates for polynomial spaces orthogonal bases.


Proposition 9. Let (Pi)i≥0 be a set of orthogonal polynomials. Then

(1)∀n ∈ ℕ; (P0, P1, . . . , Pn) is an orthogonal basis of ℝn[X].

(2)∀(n, p) ∈ℕ2; n ≥ p + 1 ⟹ Pn ∈ (ℝp[X])⊥.



Proof. The first assertion is a consequence of Proposition 5 and the orthogonality of the set (P0, P1, . . . , Pn). (We can also use the second point in Definition 8 to prove the independence of the Pjs, j = 0, . . . , n). Next, as ℝp[X] is generated by the set (P0, P1, . . . , Pp) and n ≥ p + 1, which means that Pn ⊥ Pj, for all j = 0, . . . , p, so it is orthogonal to ℝp[X].

	
	



 □
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Remark 10. Sometimes we need to use unitary orthogonal polynomials Pn. Thus, we need to multiply them by constants so that λnPn becomes unitary or not. So, in the following, we will not differentiate between the two notions and will use the notation (Pn)n and λnPn depending on the context.




Properties 11. The unitary orthogonal polynomials satisfy the following assertions:

(1)P0(x) = 1.

(2)Degree(Pn) = n, ∀n ∈ ℕ.

(3)		               ∫     I                   P      n          (x)Q(x)w(x)   d(x)=0,        [image: ] ∀Q ∈ ℝ[X] such that Degree(Q) < n.

(4)ℝn(X) = Vect(P0, . . . , Pn), ∀n ∈ ℕ.



Proof. (1) P0 is a unitary constant polynomial. So, it is equal to 1.

(2)It follows from the first assertion in Definition 8.

(3)As Degree(Q) > n so Q ∈ ℝn[X]⊥. Thus, assertion (3).

(4)Holds from Proposition 9.

	
	



 □
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Lemma 12. Let (P0, . . . , Pn) be a unitary orthogonal polynomial set. Hence,

(1)(P0, . . . , Pn) is a basis of ℝn[X].

(2)Pn is orthogonal to ℝn−1[X].



Indeed, Firstly, we know that dim ℝn[X] = n + 1 = card(P0, . . . , Pn). On the other hand, (P0, . . . , Pn) is orthogonal; hence, it is linearly independent. Thus, it consists of a basis in ℝn[X].

The second point follows from the fact that Pn is orthogonal to (P0, . . . , Pn−1), which means that it is orthogonal to ℝn−1(X) = Vect(P0, . . . , Pn−1).

2.3Orthogonal polynomials via a three-level recurrence


Theorem 13 (Recurrence rule). Let (Pi)i≥0 be a set of orthogonal polynomials. There exist scalars (an)n, (bn)n, and (cn)n such that

Pn+1 = (anX + bn)Pn + cnPn−1; ∀n ∈ ℕ∗ .

More precisely,

		      a   n    =            k           n+1                    k     n            ,        b   n    =−   a   n           〈      X      P      n          ,      P      n           〉       ||     p     n        |     |     2                 and        c   n    =−            a     n                    a           n−1                   〈            P      n          ,      P      n           〉       〈            P             n−1          ,      P             n−1           〉    [image: ]

where kn is the coefficient of Xn in Pn(X).



Proof. Without loss of generality, we can assume that (Pi)i≥0 is orthonormal. Let 𝓑 = (XPn, Pn, Pn−1, . . . , P0) be a set of staggered degree polynomials in ℝn+1[X]. So, it is linearly independent in ℝn+1[X]. Consequently, it forms a basis of ℝn+1[X]. Consequently, there exist then scalars an, bn, cn and αi, 0 ≤ i ≤ n − 2 such that
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Next, using the orthogonality property of (Pi)i≥0, we obtain

⟨Pn+1, Pi⟩ = an⟨XPn , Pi⟩ + αi‖Pi‖2 = 0, ∀0 ≤ i ≤ n − 2 .

On the other hand,

⟨XPn, Pi⟩ = ⟨Pn, XPi⟩ .

Since XPi ∈ ℝn−1[X], we obtain

⟨XPn, Pi⟩ = 0 .

Consequently,

αi = 0, ∀0 ≤ i ≤ n − 2 .

Hence,

	
	



 
  
   P
   
    n+1
  
  =(
   a
   n
  
  X+
   b
   n
  
  )
   P
   n
  
  +
   c
   n
  
  
   P
   
    n−1
  
  


[image: ]



We now evaluate the coefficients an, bn, and cn. Recall that Pn can be written as

Pn(X) = knXn + kn−1Xn−1 + ⋅⋅⋅ + k0 .

By identification of the higher degree monomials in (2.3), we obtain
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Next, the inner product of (2.3) with Pn gives

⟨Pn+1, Pn⟩ = an⟨XPn, Pn⟩ + bn⟨Pn, Pn⟩ + cn⟨Pn−1, Pn⟩ .

Using the orthogonality of the set, we get

an⟨XPn, Pn⟩ + bn⟨Pn, Pn⟩ = 0 .

Hence,
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Next, using the inner product with Pn−1 and using again the orthogonality of the set, we obtain

an⟨XPn, Pn−1⟩ + cn⟨Pn−1, Pn−1⟩ = 0 .

Hence,
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Next, denote 	
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 as the decomposition of XPn−1 in the basis of polynomials (Pi)0≤i≤n. By observing the higher degree monomials in the decomposition, we get
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On the other hand,
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Consequently,
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Hence,

Pn+1 = anXPn + bnPn + cnPn−1 ,

where
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In the case where (P0, . . . , Pn) is orthonormal, we obtain
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Favard presented the converse of Theorem 13, which states that under suitable conditions, a sequence of polynomials satisfying the three-level equation stated there can be orthogonal relative to a suitable weight function.


Theorem 14 (Favard’s theorem). Let 		          {     C     n        }       n=0   ∞    [image: ] and 		          {     λ     n        }       n=0   ∞    [image: ] be sequences in ℝ, and 		          {     p     n        }       n=0   ∞    ,[image: ] a set of polynomials satisfying

Pn(x) = (x − cn)Pn−1(x) − λnPn−2(x), ∀n ∈ ℕ∗ ,

where P0(x) = 1 and P1(x) = x − c1. Then, there exists a unique linear form φ on ℝn(X) for which φ(PkPm) = 0 whenever k ≠ m.



Proof. We proceed by steps.

Step 1. We claim that Degree(Pn) = n, ∀n ∈ ℕ. Indeed, for n = 0, P0(x) = 1. Hence, Degree(P0) = 0. For n = 1, P1(x) = x − c, so it is of degree 1. Assume next that Degree(Pn) = n and prove the same for Pn+1. The three-level relation above yields that

Degree(Pn+1) = Degree((x − cn+1)Pn(x)) = 1 + n .

Hence, we proved by recurrence on n that Degree(Pn) = n, ∀n ∈ ℕ.

Step 2. Consider the space ℝn[X] of polynomials on ℝ with degrees at most n. It results from Step 1 that the set 𝓑n = (P0, . . . , Pn), satisfying that the three-level relation is a degree-straggled set of polynomials. Henceforth, it is a basis of ℝn[X]. Let φ: ℝn[X] →ℝ be the continuous linear form defined on such a basis by

φ(P0) = 1, φ(P1) = ⋅⋅⋅ = φ(Pn) = 0 .

It holds from the Riez–Fréchet theorem that there exists a function ω such that
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We now prove that

φ(PkPm) = 0, ∀0 ≤ k ≠ m ≤ n .

For k < m, denote 	
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 We get

	
	



 
  φ(
   P
   k
  
  
   P
   m
  
  )=
   
    ∑
    
     S=0
    k
   
   
    
     α
     s
    
    
  (k)φ(
   x
   s
  
  
   P
   m
  
  ).


[image: ]



On the other hand, xsPm can be written as
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Hence,
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 □
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2.4Darboux–Christoffel rule

Recall that an element P in a vector space equipped with an orthonormal basis (P̃0 . . . , P̃n) can be written as
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In the case of 𝓒ω(I), this means that
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where we denoted
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Definition 15. Kn(x, y) is called the Darboux–Christoffel kernel.



We now state the famous Darboux–Christoffel theorem, which characterizes orthogonal polynomial sequences [98].


Theorem 16. Let {Pn}n≥O be a set of orthogonal polynomials. Then the following assertions hold:

(1)		      k   n    (x,y)=            k     n                    k           n+1             h     n                        p           n+1        (x)     p     n        (y)−     p     n        (x)     p           n+1        (y)       x−y    ;x≠y.[image: ]

(2)		      k   n    (x,x)=            k     n                    k           n+1             h     n            (p   '       n+1    (x)   p   n    (x)−p   '   n    (x)   p       n+1    (x)).[image: ]

where hn = ‖Pn‖2.








Proof. Without loss of generality, we can assume that the system {Pn}n≥0 is orthonormal. So that hn = 1 for all n. For the first point, we proceed by induction on n. Let x ≠ y. When n = 0, the left-hand side term becomes

K0(x, y) = P0(x)P0(y) = 1 .

The right-hand side term becomes
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Hence for n = 0, assume next that the property is true for n − 1. This means that
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and we check the validity for n. To do this, recall that the three-level induction rule in Theorem 13 implies that

Pn+1 = (anX + bn)Pn + cnPn−1 .

Thus,
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Using the induction hypothesis (2.4), we obtain
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Consequently,
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The next assertion is obtained from 1 by letting y → x.

	
	



 □
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Example 2.1. We set here some examples of induction relations for the most known orthogonal polynomials.

(1)Legendre polynomials

		      P       n+1    =       2n+1       n+1    X   P   n    −   n       n+1       p       n−1    ,     ∀n∈   ℕ   *    .[image: ]

(2)Chebyshev polynomials

Pn+1 = 2XPn − Pn−1, ∀n ∈ ℕ∗ .

(3)Hermite polynomials

Pn+1 = 2XPn − 2nPn−1, ∀n ∈ ℕ∗ .




Proposition 17 (Existence of real zeros). Let (Pn)n≥0 be a set of orthogonal polynomials. Then, for all n ≥ 0, Pn has n distinct real zeros in the integration interval.



Proof. Let a1, . . . , am be the real zeros of Pn in the orthogonality interval, each one used just one time. It is straightforward that Pn is sign changing on the orthogonality interval. Pn(X) can be written in the form
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where Q is a nonsign changing polynomial on the orthogonality interval. We shall prove that m = n. For this, let S(X) = Π1≤i≤m(X − ai). It consists of an mˊˊ degree polynomial that is sign changing at each point ai, 1 ≤ i ≤ m. S(X)Pn(X) is then not sign changing on the orthogonality interval and hence for S(X)Pn(X)ω(X), where ω is a weight. Thus, ⟨Pn, S⟩ ≠ 0. On the other hand, Lemma 12 yields that Pn is orthogonal to all polynomials with lower degrees. Hence ⟨Pn , S⟩ = 0 which is a contradiction. So, it results that m = n, and thus, Pn has n zeros in the orthogonality interval which are simple.

	
	



 □
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2.5Continued fractions

In this section, we emphasize the relation between continued fractions and orthogonal polynomials.


Definition 18. A continued fraction is a formal expression

		   F=   b   0                a     1                    b     1        +                  a       2                       ⋯+                        a         n                                        b         n                +…                        [image: ]

with either finite or infinite stages.




Remark 19.

(a)When ∀x ∈ ℝ, there exists a continued fraction representing it, with a0 ∈ ℤ and aj ∈ ℕ, ∀j ≥ 0, and bj = 1, ∀j ≥ 0.

(b)Some functions can also be presented with continued fractions.



Notations. Let 	
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 and 	
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 be in ℝ. We will apply the following notation for the continued fraction F:
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We also denote 	
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 to designate the fraction obtained by the truncation of F of the order n:
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The following results have been proved in [98].


Proposition 20. Let (Rn)n and (Sn)n be defined by

R0 = b0, S0 = 1 ,

R1 = b0b1 + a1, S1 = b1 ,

Rn = bnRn−1 + anRn−2, Sn = bnSn−1 + anSn−2    forn ≥ 2 .

Then,

		      F   n    =            R     n                    S     n            .[image: ]



Proof. Define the function
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and remark firstly that
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We claim that
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The proposition is obtained by setting x = 0. We now proceed by recurrence. For n = 1, we have
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So, the proposition is valid for n = 1. Assume next that it remains valid for n ≤ k. We check it for n = k + 1.
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Setting x = 0, we get
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Definition 21. Rn and Sn are called, respectively, the partial nth numerator and the partial nth denominator of Fn.




Corollary 22. It holds that

RnSn−1 − Rn−1Sn = (−1)n+1a1, . . . , an, ∀n ≥ 1 .



Proof. By induction on n. For n = 1, we have

R1S0 − S1R0 = (b0b1 + a1)1 − b1(b0) = a1 .

So, assume that the result is valid for n, i.e.,

RkSk−1 − Rk−1Sk = (−1)k+1a1, . . . , ak , ∀1 ≤ k ≤ n .

Then,
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The induction hypothesis yields that

Rn+1Sn − Sn+1Rn = −an+1 [(−1)n+1a1, . . . , an] = (−1)n+2a1, . . . , an+1 .

	
	



 □
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Recall that in Proposition 20, we have

Rn = bnRn−1 + anRn−2 and Sn = bnSn−1 + anSn−2 .

By setting

b0 = 0, bn = x − cn, a1 = λ1 ≠ 0, an+1 = −λn+1 ≠ 0 ∀n ≥ 2 ,

we obtain Rn = (x−cn)Rn−1−λnRn−2. And thus, we obtain the orthogonal polynomials recurrence formula

Pn+1(x) = (x − cn+1)Pn(x) − λn+1Pn−1(x) .


2.6Orthogonal polynomials via Rodrigues rule

A literature review of orthogonal polynomials reveals that there are many methods to obtain such polynomials. One is explicit and based on the Rodrigues rule, which applies derivation. Let
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where S is a polynomial in x, ω is a weight function, and kn is a constant. We have precisely the following result.


Theorem 23 ([98]). Let I = [a, b[⊂ ℝ and ω is a weight function on I and (ϕn)n∈ℕ be a set of real functions on I satisfying

(1)ϕn is Cn on ]a, b[ for all n.

(2)		      ϕ   n       (k)    (   a   +    )=   ϕ   n       (k)    (   b   −    )=0[image: ] for all k, 0 ≤ k ≤ n − 1.

(3)		      T   n    =   1            k     n        ω           (ω     ϕ     n        )       (n)    [image: ] is a polynomial of degree n, (kn is a normalization constant).

Then, (Tn)n∈ℕ is orthogonal. The converse is true iff ω is C∞.



Proof. It suffices to prove the orthogonality. For n < m, we have
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The fourth equality is a consequence of Hypothesis (2) and the integration by the parts rule. The last equality is a consequence of Hypothesis (3).
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2.7Orthogonal polynomials via differential equations

A large class of orthogonal polynomials is obtained from first-order linear differential equations of the type
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where a is a polynomial of degree 2, and b is a polynomial of degree 1, where both are independent of the integer parameter n, and finally, λn are scalars. y is the unknown function. By introducing the operator T : ℝ[X] → ℝ[X] such that T(y) = ayˊˊ + byˊ, the solution y appears as an eigenvector of T associated with the eigenvalue λn. We introduce next a resolvent function ω > 0, which permits us to express the operator T on the form 	
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 The equality 	
	



 
  T(y)=ay"+a'y'+
   
    aw"
   w
  
  y'


[image: ]

 shows that ω is a solution of the differential equation aωˊ + (aˊ − b)ω = 0. So, it is of the form ω = eA, where A is a primitive of 	
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 Recall now that
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Iff the weight ω vanishes on the frontier of the integration interval I, we obtain
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This means that the operator T is symmetric.

Denote for the next Tn : ℝn[X] → ℝn[X] the restriction of T on ℝn[X]. It is straightforward that ℝn[X] is invariant under the action of Tn since the degrees of a and b are less than 2 and 1, respectively. So, we can arrange the pairs (λ, y) into a sequence (λk , yk), where we re-obtain the eigenpairs of the operator Tn for k = 0, . . . , n. Next, observing that a(x) = a2X2 + a1X + a0 and b(x) = b1X + b0, it results that Tn is an endomorphism on ℝn[X]. Thus, there exists a T-eigenvector’s orthonormal basis of such a space. In particular, there exists at least an eigenvector Pn of degree n, which may be assumed to be unitary and satisfying

	 




 
  a
   
    P
    ″
   
   
   n
  
  +b
   
    P
    ′
   
   
   n
  
  =
   λ
   n
  
  
   P
   n
  
  .


[image: ]



This means that for n ≠ m, we obtain λn ≠ λm and thus the polynomials Pn are orthogonal.


2.8Some classical orthogonal polynomials

In the previous sections, we reviewed the three most well-known schemes to obtain orthogonal polynomials. The first one is based on the explicit Rodrigues derivation rule, which states that the nth element of the set of orthogonal polynomials, which is also of degree n, is obtained by
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where S is a suitable polynomial in x.

The next method is based on an induction rule as in (2.3) and eventually necessitates that the first and the second elements of the desired set of orthogonal polynomials be known. It states that
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where an, bn, and cn are known scalars.

Finally, the last scheme consists of introducing orthogonal polynomials as the solutions of ordinary differential equations (ODEs) of the form

a(x)yˊˊ + b(x)y − λny = 0 ,

where a is a 2-degree polynomial and b is a polynomial with degree 1 and λn are scalars. The idea consists of developing polynomial solutions of the ODEs. According to the coefficients of each equation, we obtain the desired class of polynomials, such as Legendre and Laguerre.

In this section, we propose to revisit some classical classes of orthogonal polynomials and show their construction with the three schemes.


2.8.1Legendre polynomials

From Rodrigues rule

Legendre polynomials consist of polynomials defined on the orthogonality interval I = ]−1, 1[ relative to the weight function ω ≡ 1, the polynomial S(x) = (x2 − 1), and the constant kn = 2nn!. The nth Legendre polynomial, usually denoted in the literature by Ln, is obtained by

	 




 
  
   L
   n
  
  (x)=
   
    
     d
     n
    
    
   
    d
     x
     n
    
    
  
  [ 
   
    
     
      
       (
        x
        2
       
       −1)
      n
     
     
    
     
      2
      n
     
     n!
   
    ].


[image: ]



Using the Leibniz rule of derivation, Ln(x) can be explicitly computed. We have
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For example,
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From the induction rule

Legendre polynomials can also be introduced via the induction rule
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with initial data L0(x) = 1 and L1(x) = x. It yields, for n = 1, that
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For n = 2, it yields that
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Applying the same procedure, we obtain
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From ODEs

Legendre polynomials are obtained as the polynomial solutions of the following ODE:

	 




 
  (1−
   x
   2
  
  )y"−2xy'+n(n+1)y=0,x∈I=]−1,1[.


[image: ]



Using the notations of Section 2.7, this means that a(x) = 1 − x2, b(x) = −2x and λn = −n(n + 1). In the sense of the linear operator T, the polynomials Ln can be introduced via the operator

T(y) = (1 − x2)yˊˊ − 2xyˊ = ((1 − x2)yˊ)ˊ ,

which corresponds to the weight function ω(x) = 1 and a(x)ω(x) = 1 − x 2. Note that aω vanishes at the frontiers ±1 of the orthogonality interval I. Furthermore, in terms of eigenvalues as in equation (2.7), if we suppose that the same eigenvalue λn is associated with at least two eigenvectors Pn and Pm, we obtain (n − m)(n + m − 1) = 0, which has no integer solutions except n = m. This confirms that the eigenvalues and eigenvectors are one to one, which means that the eigenvectors (polynomials) are orthogonal. Figure 2.1 illustrates the graphs of the first Legendre polynomials.

For clarity and convenience, we will develop the polynomial solutions. So, denote P(x) = apxp +ap−1xp−1+⋅ ⋅ ⋅+a1x+a0 as a polynomial solution of degree p of equation (2.8). We obtain the following system:
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Hence, p = n and
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For example, for n = 0, we obtain

P(x) = a0 .

For n = 1, we get

P(x) = a1x .

For n = 2, we obtain

P(x) = −a0(3x2 − 1) .

For n = 3,
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For n = 4, we have
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Fig. 2.1: Legendre polynomials.
Next, for n = 5, we obtain
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Now, using the orthogonality of these polynomials on [−1, 1], we obtain the same polynomials.


2.8.1.1Commentaries

One important question is how to choose the polynomial S in Rodrigues rule to be equivalent with the same outputs of the recurrence rule and the ODE scheme.

Firstly, the degree of S is fixed in an obvious way as deg Pn = n, ∀n.

Hence, for example, in the Legendre case, S should be of degree 2, that is,

S(x) = a + bx + cx2, c ≠ 0 .

Thus,
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Consequently, from the induction rule of Legendre polynomials we obtain, for n = 2,
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As a result,
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Hence, we obtain

c = 1, b = 0, a = −1 .

Or equivalently,

S(x) = x2 − 1 .

2.8.2Laguerre polynomials

From the Rodrigues rule

These polynomials are obtained via the Rodrigues rulewith ω(x) = e−x, S (x) = x and the constant kn = n! by
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The first polynomials are then
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      −200
       x
       3
      
      +600
       x
       2
      
      −600x+120).
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It holds clearly from simple calculus that these polynomials are orthogonal in the interval [0, ∞[ relative to the weight function ω(x) = e−x.


From the induction rule

Laguerre polynomials are solutions of the following recurrent relation:

(n + 1)𝓛n+1(x) + (x − 2n − 1)𝓛n(x) + n𝓛n−1(x) = 0

with the first and second elements 𝓛0(x) = 1 and 𝓛1(x) = 1 − x. For n = 1, we get

2𝓛2(x) + (x − 3)𝓛1(x) + 𝓛0(x) = 0,

which implies that

	 




 
  
   L
   2
  
  (x)=
   1
   2
  
  (3−x)(1−x)+
   1
   2
  
  =
   1
   2
  
  (
   x
   2
  
  −4x+2).
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Next, for n = 2, we obtain

3𝓛3(x) + (x − 5)𝓛2(x) + 2𝓛1(x) = 0,

which means that

	 




 
  
   L
   3
  
  (x)=
   1
   6
  
  (−
   x
   3
  
  +9
   x
   2
  
  −18x+6).
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Similarly, we can obtain
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   4
  
  (x)=
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    24
  
  (−
   x
   4
  
  −16
   x
   3
  
  +72
   x
   2
  
  −96x+24)
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and

	 




 
  
   L
   5
  
  (x)=
   1
   
    120
  
  (−
   x
   5
  
  +25
   x
   4
  
  −200
   x
   3
  
  +600
   x
   2
  
  −600x+120).
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From ODEs

To apply the ODE procedure, we set I =]0, ∞[ as the orthogonality interval, a(x) = x, b(x) = 1 − x, ω(x) = e−x and consequently, the operator T will be T(y) = xyˊˊ − (1 − x)yˊ. We observe immediately that a(x)ω(x) = xe−x is null at 0 and has the limit 0 at +∞. Furthermore, P(x)ω(x) is integrable on I for all polynomial P. In the present case, equation (2.7) becomes (n + m)(n − m) = 0 and the eigenvalues are λn = −n. The associated ODE is

xyˊˊ − (1 − x)yˊ + ny = 0 .

It is straightforward that for all n, the polynomial 𝓛n is a solution of this differential equation. Figure 2.2 illustrates the graphs of some examples of Laguerre polynomials.




2.8.3Hermite polynomials

From Rodrigues rule

Hermite polynomials are related to the orthogonality interval I = ℝ with the weight function 	 




 
  ω(x)=
   e
   
    −
     x
     2
    
    
  
  .


[image: ]

 Denote Hn as the nth element, i.e., a Hermite polynomial of degree n. H n is explicitly expressed via Rodrigues rule as follows:

	 




 
  
   H
   n
  
  (x)=
   
    (−1)
   n
  
  
   e
   
    
     x
     2
    
    
  
  
   
    
     d
     n
    
    
   
    d
     x
     n
    
    
  
  (
   
    
     e
     
      −
       x
       2
      
      
    
    
  ).
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As examples, we get

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2 ,

H3(x) = 8x3 − 12x, and H4(x) = 16x4 − 48x2 + 12 .


From the induction rule

Hermite polynomials H n can be obtained by means of the induction rule

Hn+1 = 2XHn − 2nHn−1, ∀n ∈ ℕ∗ ,


[image: ]
Fig. 2.2: Laguerre polynomials.

with the initial data H0(X) = 1 and H1(X) = 2X. So, for n = 1, 2, 3, 4, 5 we obtain as examples

H2(X) = 4X2 − 2, H3(X) = 8X3 − 12X, H4(X) = 16X4 − 48X2 + 12 ,

H5(X) = X5 − 10X3 + 15X, H6(X) = X6 − 15X4 + 45X2 − 15 .


From ODEs

Hermite polynomials are also solutions of a second-order ODE in the interval I = ℝ. Using the notations of Section 2.7 this means that a(x) = 1, b(x) = −2x, and 	 




 
  ω(x)=
   e
   
    −
     x
     2
    
    
  
  


[image: ]

 as a weight function. It is immediate that 	 




 
  a(x)ω(x)=
   e
   
    −
     x
     2
    
    
  
  ,


[image: ]

 which has 0 limits at the boundaries of the interval I. Furthermore, P(x)ω(x) is integrable on I for all polynomials P. By means of the eigenvalues of the linear operator T, Hermite polynomials are eigenvectors of T(y) = yˊˊ − 2xyˊ associated with eigenvalues λn = −2n. The corresponding ODE is

y˝ − 2xyˊ + 2ny = 0 .

Some examples of Hermite polynomials are illustrated in figure 2.3.


[image: ]
Fig. 2.3: Hermite polynomials.




2.8.4Chebyshev polynomials

From Rodrigues rule

Chebyshev polynomials are related to the orthogonality interval I = ]−1, 1[ and the weight function ω(x) = (1 − x2)−1/2. Denoted usually by Tn for the Chebyshev polynomial of degree n, these are explicitly expressed via the Rodrigues rule as
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where 	 




 
  Γ(x)=
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     dt
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 is Euler’s well-known function. It is immediately seen (by recurrence for example) that

	 




 
  Γ(
   
    n+
     1
     2
    
    
  )=
   
    (2n)!
     π
    
    
   
    
     2
     
      2n
    
    n!
  
  , ∀n∈ℕ,
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and hence, the first Chebyshev polynomials can be obtained as

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x, T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x .


From the induction rule

Chebyshev polynomials are solutions of the induction formula

Tn+1 = 2xTn − Tn−1, ∀n ∈ ℕ∗ ,

with initial data, T0(x) = 1 and T1(x) = x. Let, 	 
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 then
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We obtain the following system:

	 




 
  { 
   
    
     
      a
      0
      
       n+1
     
     +
      a
      0
      
       n−1
     
     =0
    
   
   
    
     
      a
      n
      
       n+1
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      a
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      n
     
     .
    
   
   
    
     
      a
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      n
     
     
    
   
   
    
     
      a
      k
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      a
      
       k−1
      n
     
     −
      a
      k
      
       n−1
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[image: ]



We have

	 




 
  
   T
   0
  
  (x)=1⇔
   a
   0
   0
  
  =1
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and
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   1
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   1
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   1
   1
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Hence,
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   a
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From the above system, we obtain






 
  { 
   
    
     
      a
      0
      2
     
     =−
      a
      0
      0
     
     =−1.
    
   
   
    
     
      a
      1
      2
     
     =2
      a
      0
      1
     
     =0.
    
   
   
    
     
      a
      2
      2
     
     =2
      a
      1
      1
     
     −
      a
      2
      0
     
     =2,
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which means that

T2(x) = 2x2 − 1 .

Now, replacing n by 2 in the system we obtain

	 




 
  { 
   
    
     
      a
      0
      3
     
     =−
      a
      0
      1
     
     =0.
    
   
   
    
     
      a
      2
      3
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      a
      1
      2
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      3
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      1
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      3
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      2
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      3
      1
     
     =4.
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Therefore,

T3(x) = 4x3 − 3x .

Next, for n = 3, the system becomes

	 




 
  { 
   
    
     
      a
      0
      4
     
     =−
      a
      0
      2
     
     =1
    
   
   
    
     
      a
      3
      4
     
     =2
      a
      2
      3
     
     =0.
    
   
   
    
     
      a
      1
      4
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      a
      0
      3
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      1
      2
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      a
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      a
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      3
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      2
      2
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      4
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      a
      3
      3
     
     −
      a
      4
      2
     
     =8.
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Thus,

T4(x) = 8x4 − 8x2 + 1 .

Now, by replacing n with 4, the system yields

	 




 
  { 
   
    
     
      a
      0
      5
     
     =−
      a
      0
      3
     
     =0.
    
   
   
    
     
      a
      4
      5
     
     =2
      a
      3
      4
     
     =0.
    
   
   
    
     
      a
      1
      5
     
     =2
      a
      0
      4
     
     −
      a
      1
      3
     
     =5.
    
   
   
    
     
      a
      2
      5
     
     =2
      a
      1
      4
     
     −
      a
      2
      3
     
     =0.
    
   
   
    
     
      a
      3
      5
     
     =2
      a
      2
      4
     
     −
      a
      3
      3
     
     =−20.
    
   
   
    
     
      a
      5
      5
     
     =2
      a
      4
      4
     
     −
      a
      5
      3
     
     =16.
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Hence,

T5(x) = 16x5 − 20x3 + 5x .

So, we obtain the same Techebythev polynomials as for the Rodrigues and ODE rules.


From ODEs

We set I = ]−1, 1[, a(x) = 1 − x2, b(x) = −x and ω(x) = (1 − x2)−1/2. The linear operator T is then given by

T(y) = (1 − x2)yˊˊ − xyˊ .

It is straightforward that 	 




 
  a(x)ω(x)=
   
    1−
     x
     2
    
    
  
  


[image: ]

 vanishes at ±1 and the eigenvalues λn = −n2 give rise to eigenvectors (polynomials), Tns. This yields that the Tns are the corresponding solutions of the ODE

(1 − x2)yˊˊ − xyˊ + n2y = 0 .


Remark 24. Chebyshev polynomials Tn can be explicitly defined on [−1,1] by

Tn(x) = cos(nArc cos(x)) .



Indeed, by considering Moivre’s rule (cos θ+i sin θ)n = cos nθ+i sin nθ, and by setting for θ ∈ [0, π], x = cos θ, we obtain 	 




 
  sinθ
   
    1−
     x
     2
    
    
  
  .
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 This implies that

	 




 
  cos(nθ)=cos(narccos(x))=
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     m
    
    
     x
     
      n−2m
    
    
     
      (1−
       x
       2
      
      )
     m
    
    ,   n∈ℕ.
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Next, we observe that

cos((n + 1)θ) + cos((n − 1)θ) = 2cos θ cos(nθ) .

Henceforth, we obtain explicit Tns as above. Figure 2.4 illustrates the graphs of the first Chebyshev polynomials.


Remark 25. It holds that a second kind of Chebyshev polynomial already exists. It is defined by means of the Rodrigues rule as

	       U   n    (x)=                  (−1)     n        (n+1)     π                    2           n+1        Γ(n+     3     2        )           (1−       x       2            )                  1       2                                    d     n               d     x     n            (                  (1−       x       2            )           n+       1       2                      ),   x∈[−1,1][image: ]

or by means of trigonometric functions as

	       U   n    (cos θ)=       sin(n+1)θ       sinθ    ,  ∀n∈   ℕ   *    .[image: ]

These polynomials satisfy the same induction rule as the previous but with different initial data U0(x) = 1 and U1(x) = 2x. Finally, similar to other classes of orthogonal polynomials, they satisfy the ODE

	    ∀x∈ℝ,  (1−   x   2    )   U   n   "    (x)−3x   U   n   '    (x)+n(n+2)   u   n    (x)=0.[image: ]






2.8.5Gegenbauer polynomials

From Rodrigues rule

Gegenbauer polynomials, also called ultraspherical polynomials, are defined relative to the weight function ω(x) = (1 − x2)p−1/2, where p is a real parameter, and to the orthogonality interval I = ]−1, 1[. From the Rodrigues rule, these are defined as
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Hence, by applying the Leibniz derivation rule, we obtain
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[image: ]
Fig. 2.4: Chebyshev polynomials.

where
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  =
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    m!Γ(p)
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From the induction rule

Gegenbauer polynomials 	 
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   m
   p
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 can also be introduced via the induction rule stated for 	 




 
  p≥
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   2
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 by
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already with
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   0
   p
  
  (x)=1      and     
   G
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   p
  
  (x)=2p(1−x).


[image: ]



This gives, for example,
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and
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   4
   3
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     2p+4
   
   x ].


[image: ]



Furthermore, we notice that 	 




 
  
   G
   m
   p
  
  


[image: ]

 is composed of monomials having the same parity of the index m.


Remark 26. The following assertions hold:

– 	       G   m   p    (−x)=       (−1)   m       G   m   p    (x).[image: ]

– 	       G       2m+1   p    (0)=0.[image: ]

– 	       G       2m   p    (0)=                  (−1)     m        Γ(p+m)       Γ(p)Γ(m+1)    .[image: ]




From ODEs

Gegenbauer polynomials 	 
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   m
   p
  
  


[image: ]

 are solutions of the ODE

(1 − x2)yˊˊ − (2p + 1)xyˊ + m(m + 2p)y = 0 ,

in the interval I = ]−1, 1[ with coefficients a(x) = 1 − x2, b(x) = −(2p + 1)x and c(x) = m(m + 2p). These polynomials can be introduced as the eigenvectors of the linear Sturm–Liouville-type operator T defined by

T(y) = (1 − x2)yˊˊ − (2p + 1)xyˊ .

By choosing 	 




 
  ω(x)=
   
    (1−
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     2
    
    )
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     1
     2
    
    
  
  ,
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 we observe that 	 




 
  a(x)ω(x)=
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    p+
     1
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[image: ]

 vanishes at the boundary points ±1. The eigenvalues are λm = −m(m + 2p).



2.9Conclusion

In this chapter, we outlined the concepts and the main properties and characteristics of orthogonal polynomials. Some basic notions concerning orthogonal polynomials are recalled that are related to weight functions, integration theory, linear algebra theory of vector spaces, their basis, and orthogonal systems and their relation to orthogonal polynomials. Next, the three main methods for introducing orthogonal polynomials were reviewed. The first method uses Rodrigues formula and it yields orthogonal polynomials as outputs of a higher order derivatives of some special functions. The second is based on recurrence relations, which yield orthogonal polynomials as sequences of functions defined by a three-level induction rule. We recalled and redeveloped Favard’s results on orthogonal polynomials as well as its reciprocals. The last method consists of orthogonal polynomials as solutions to ordinary differential equations or equivalently as eigenfunctions of Sturm–Liouville operators. Some concluding and illustrating examples are provided to enlighten theoretical developments.



3Homogenous polynomials and spherical harmonics

3.1Introduction

In this chapter, we present a review of homogenous polynomials and their interactions with harmonic analysis on the sphere. Specifically, we will study constructions of spherical harmonics and develop the main results of the theory of harmonic analysis on the sphere, such as the addition theorem and the Fourier transformation. We will prove the link with some special features, such as ultraspherical polynomials and Bessel functions.

Spherical harmonics are initially derived from the Laplace equation on the sphere. They are found in many scientific fields, starting with pure mathematics, where they appear as an extension of Fourier analysis of spherical domains. In physics, spherical harmonics have been used as basic solutions or modes of well-known equations, such as the Laplace, Poisson, Schrödinger, diffusion, and wave equations. Spherical harmonics also appear in acoustics, geophysics, computer graphics, crystallography, and recently in 3D image processing, where they are used to model complex phenomena and therefore provide models or approximations of the solutions to the equations governing them.

Because of their relationships and interactions with all these areas, spherical harmonics have been the subject of numerous classical and modern mathematical works. A first theory related to the basic constructions of spherical harmonics is the concept of homogenous polynomials. These polynomials are the combinations of monomials 	 
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[image: ]

 where |α| = Σ αi is a fixed integer that acts as a degree as for single-variable polynomials. This will partly be relevant to the development of homogenous polynomial theory.

As a first step, we will recall the exact solution of the Laplace equation in spherical coordinates in the three-dimensional Euclidean space as a concrete example of construction and proof of the existence of spherical harmonics. Next, homogenous polynomial theory will be developed. We will show especially that the homogenous and harmonic polynomials may serve as generator systems and bases in the Hilbert space of square integrable functions on the sphere. This marks the starting point for the basic construction of spherical harmonics. Such bases, when projected orthogonally with respect to some elements of the sphere, reproduces some kernels known as zonal harmonics, which will be revisited and explained. Recall that zonal functions are widely applied in harmonic analysis and approximation theory, where they have a central role.

The first section of this chapter will be devoted to the development of some differential operators on the sphere, mainly the Laplace operator. A spherical coordinates solution will be provided in Section 3 in order to show examples of spherical harmonics. Section 4 will cover homogenous polynomials. Basic properties will be revisited and applied next for harmonic polynomials in Section 5. Later in this section, harmonic homogenous polynomials will be proved to have a central role for providing orthonormal bases in L2(Sn−1). Fourier transforms, and thus convolution operators, will be presented in Section 6. Hecke and Bochner–Hecke theorems will be proved to show the strong relation with special functions, especially Bessel functions. Finally, the theory of zonal functions will be developed in Section 7, where we revisit the famous addition theorem.


3.2Spherical Laplace operator

In this section, we review some basic concepts of spherical analysis, such as differential operators and especially the Laplacian. Recall that the n-sphere is
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Recall also that the polar representation on ℝn is defined by
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The parameter 	 
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 is the Euclidian distance to the origin O, θi ∈ [0, π[ and φ ∈ [0, 2π[.

For example, on the real space ℝ3, we obtain the spherical coordinates’ system
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where r > 0 is always the Euclidian distance to O, θ ∈ [0, π] is the polar distance, and φ ∈ [0, 2π[ is the longitude. The orthonormal vector system is locally composed of
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and
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By setting t = cos θ, we obtain the explicit gradient on ℝ3 in spherical coordinates
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∇∗ is said to be the surface gradient. We can also define the rotational operator, also called the curl, for all 𝓒1-functions F as
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Already on ℝ3, the curl is expressed by means of spherical coordinates as
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Definition 27 (Laplace operator [162]). The Laplace operator, also called the Laplacian and denoted by ∇2 or Δ, is the second-order differential operator defined explicitly on second-order differentiable functions by means of Cartesian coordinates as follows:

	    Δ=       ∑         k=1    n                            ∂       2                       ∂       x       k       2                      .[image: ]



It is related to many problems in both mathematics and physics and it appears in quasi-differential equations found in natural phenomena. We recall as an example the famous Dirichlet problem.


Definition 28 (Spherical Laplacian [162]). Let u be a C2 function on ℝn and denote 	       f   ˜    (x)=f(            x           ‖ x ‖          ).[image: ] The spherical Laplacian known also as Laplace–Beltrami operator of u is defined by

ΔSn−1 f = (Δf̃)/Sfn−1 ,

where Δ is the Laplace operator on ℝn.




Remark 29. ΔSn−1 can be defined equivalently by means of the following relation:

	    Δu=   1            r           n−1            [        ∂         ∂r      (               r             n−1                       ∂u             ∂r             )+    Δ               S             n−1                u ].[image: ]




Lemma 30. For all f , that is C2 on the sphere and all ρ ∈ SO(n), it holds that

ΔSn−1 (f ∘ ρ) = (ΔSn−1 f) ∘ ρ .



Let M ∈ Mn(ℝ) and f : ℝn → ℝ and denote fM the function defined on ℝn by fM(x) = f(Mx). Then, for all x ∈ ℝn, we have
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where Li are the rows of M and ⟨Li , Lk⟩ is their natural inner product ℝn. Consequently, for M = ρ, this leads to ⟨Li , Lk⟩ = δik the Kronecker product. Hence,

Δ(f ∘ ρ)(x) = (Δf) ∘ ρ(x) .

For x ∈ Sn−1, this yields that

ΔSn−1 (f ∘ ρ) = (ΔSn−1 f) ∘ ρ .

The following lemma shows that ΔSn−1 is also symmetric.


Lemma 31. Let f and g be C2 on the sphere Sn−1. Then,

⟨ΔSn−1 f, g⟩ = ⟨f, ΔSn−1 g⟩ .



The proof is a simple application of the Green–Ostrogradsky formula.


3.3Some direct computations on S2

The purpose of this section is to provide some examples of spherical harmonics by means of the resolution of the Laplace equation ΔP = 0 on the sphere S2 and an introduction to spherical harmonics. The general definition and general properties will be introduced later. In the spherical coordinate system, the Laplace equation is
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For a solution P with separated variables, P(r, θ, φ) = R(r)Θ(θ)Φ(φ), this yields that
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Multiplying with r2, this becomes
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Or equivalently,
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The left-hand side part is independent of (θ, φ); however, the right-hand side part is independent of the variable r. Hence, these are constant, which means that
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and
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for some constant K. The elementary solutions of (3.6) are of the form

R(r) = K(rl + r−(l+1)) .

Equation (3.7) yields that
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Using analogous arguments and by seeking Fourier modes solutions, we obtain

Φ(φ) = Keimφ ,

where m is an appropriate constant. Now, the first part of (3.8) becomes
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Denoting x = cos θ, we obtain
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Consequently, (3.9) becomes
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The polynomial solutions of such equation are the well-known Legendre polynomials. Such polynomials are defined for l ∈ ℕand m ∈ [−l, l] ∩ℤ. Explicitly, these are expressed as
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Hence, the Laplace equation solutions are finally the so-called spherical harmonics defined by
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On the sphere (r=constant), these functions become
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where 	 
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 is a normalization constant given by
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The system (Yl,m)−l≤m≤l is orthonormal in the vector space L2(S ∗ n − 1). Here, we list some explicit expressions of these spherical harmonics.

– l = 0:
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– l = 1:
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– l = 2:
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– l = 3:
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3.4Homogenous polynomials


Definition 32. Let E and F be the ℝ-vector spaces and f : E → F be a function. f is said to be homogenous with degree k iff

∀λ ∈ ℝ, ∀x ∈ E, f(λx) = λk f(x) .

We say that f is positively homogenous with degree k iff

∀t ≥ 0, ∀x ∈ E, f(tx) = tk f(x) .




Definition 33. A polynomial P on ℝn, n ∈ ℕ, is said to be homogenous with degree k ∈ ℕ∗, if it is of the form

	    P(x)=       ∑         | α |=k               C     α             x     α        ,      ∀x∈     ℝ     n          ,[image: ]

where 	    α=(   α   1    ,...,   α   n    )∈   ℕ   *   n    ,| α |=       ∑         i=1    n               α     i        .     x     α          =     ∏     i=1  n       x   i            α     i            ,x∈   ℝ   n    [image: ] and Cα are real numbers called the coefficients of P.




Corollary 34. The polynomial function associated with a homogenous polynomial P is homogenous with the same degree.



The following result shows the first characterizations of the space of homogenous polynomials [162].


Theorem 35. For all k, denote 𝓟k(ℝn) the vector space of all homogenous polynomials with degree k on ℝn and 	      d   k   n    [image: ] its dimension. It holds that

(1)	       d   k   n    =dim   P   k    (   ℝ   n    )=   C       n+k−1   k    .[image: ]

(2)𝓟k(ℝn) is invariant by means of O(n).



To prove this theorem, we need the following preliminary result.


Lemma 36. Let 	       Γ   n   k    [image: ] be the number of possible choices of n elements (not necessarily different) from {0,1, . . . , k} with their sum equal to k. Then,

(1)	       Γ   n   1    =n.[image: ]

(2)	    k   Γ   n   k    =(n+k−1)   Γ   n       k−1    .[image: ]

(3)	       Γ   n   k    =   C       n+k−1   k    .[image: ]



Proof. (1) The set of choices is composed of an n-tuple where all the components are zero except one of them, which should be equal to 1. Thus, a total number of n combinations.

(2)Consider the alphabet 𝓐n = {x1, x2, . . . , xn}. It consists of combining words with k letters from 𝓐n. A word is a series of characters 	 
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 Two situations are possible. The word a is of the form 	 
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 or it did not start with the letter x1. In the first case, the total number is the same as the words composed of k−1 letters from the alphabet 𝓐n, and since the choice of the xis is the same for all of them, we obtain a total number 	 
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 In the second case, where the word a did not start with xi, we obtain k − 1 possibilities to fix its first letter. Next, complete the word a with k − 1 letters from 𝓐n. Thus, a total number of 	 
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 Finally, since the order of the letters in a is the same for all the alphabets An, we obtain
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Hence,
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(3)It reposes an iteration procedure of the previous relation. We get
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[image: ]

Proof of Theorem 35. The first assertion is a consequence of Lemma 36. We proceed to proving the second. Let ρ ∈ O(n) and P ∈ 𝓟k(ℝn). It is straightforward that P ∘ ρ(λx) = P(λρ(x)) = λkP(ρ(x)), hence, a homogenous polynomial with degree k.

[image: ]


Example 3.1.

dim 𝓟k(ℝ2) = k +1 and 	    dim   p   k    (   ℝ   3    )=       (k+1)(k+2)   2    .[image: ]



This may be checked directly. Indeed, a basis of 𝓟k(ℝ2) is formed with all products XiYk−i, i = 0, . . . , k+1. Similarly, a natural basis of 𝓟k(ℝ3) is formed with all products XiYjZk−i−j, i, j = 0, . . . , k + 1. For example, for i = 0, we get k + 1 couples (j, k − j), j = 0, . . . , k. For i = 1, we get k couples (j, k − 1 − j), j = 0, . . . , k − 1. And so on. We get a sum 	 




 
  k+1+k+k−1+⋅⋅⋅1=
   
    (k+1)(k+2)
   2
  
  .
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Definition 37. A polynomial P is said to be harmonic iff its Laplacian is zero, i.e., ΔP = 0. The space of all harmonic homogenous polynomials of degree k on ℝn will be denoted 𝓟k(ℝn) and 	       s   k   n    [image: ] its dimension.




Theorem 38. For all k, it holds that

𝓟k(ℝn) = 𝓟𝓗k(ℝn)⊕ |x|2𝓟k−2(ℝn) .

For k = 2p even,

	 	       P       2p    (   ℝ   n    )=            ⊕     p               j=0    |x   |       2p−2j    P   H       2j    (   ℝ   n    ).[image: ]

For k = 2p + 1 odd,

	       P       2p+1    (   ℝ   n    )=            ⊕     p               j=0    |x   |       2p−2j    P   H       2j+1    (   ℝ   n    ).[image: ]

Furthermore, for all 	    k,   s   k   n    =dimP   H   k    (   ℝ   n    )=   d   k   n    −   d       k−2   n    .[image: ]



Proof. Consider the inner product ⟨., .⟩, which corresponds to (xα, xβ) the quantity

⟨xα, xβ⟩ = α!β! if α = β and 0 else,

and also consider the mapping

Φ: 𝓟k−2(ℝn) →𝓟k(ℝn)

P ⟼ Φ(P) = |x|2P.

It is straightforward that Φ is injective. Consequently, 𝓟k−2(ℝn) is isomorphic to Φ(𝓟k−2(ℝn)) = |x|2𝓟k−2(ℝn). Now, consider similarly the mapping




φ: 𝓟k(ℝn) ⟼𝓟k−2(ℝn)

P ⟼ φ(P) = ΔP ,

which is surjective with kernel

ker(φ) = 𝓟𝓗k(ℝn) .

Hence,

dim 𝓟k(ℝn) = dim 𝓟k−2(ℝn) + dim 𝓟𝓗k(ℝn) .

Furthermore,

𝓟k(ℝn) = |x|2𝓟k−2(ℝn)⊕ 𝓟𝓗k(ℝn) .

[image: ]


Proposition 39. Let P ∈ 𝓟k(ℝn). There exists Q ∈ 𝓟𝓗(ℝn) such that

P/Sn−1 = Q/Sn−1 .



Proof. We divide the proof into two cases.

– k = 2p. Theorem 38 implies that

	 




 
  P(x)=
   
    ∑
    
     j=0
    p
   
   
    
     C
     j
    
    |x
     |
     
      2p−2j
    
    
     P
     
      2j+1
    
    (x),      or
    
   P
   
    2j+1
  
  ∈R
   H
   
    2j+1
  
  .


[image: ]



So, consider the polynomial 	 




 
  Q(x)=
   ∑ 
    
     
     
      j=0
     p
    
    
     C
     j
    
    
     P
     
      2j+1
    
    (x).
  


[image: ]

 It is obvious that Q is harmonic, not necessarily homogenous, and it satisfies

	 
	 




 
  P(u)=
   
    ∑
    
     j=0
    p
   
   
    
     C
     j
    
    
     P
     
      2j
    
    (u)=Q(u);        ∀u∈
     S
     
      n−1
    
    .
  


[image: ]



– k = 2p + 1. Again, Theorem 38 implies that

	 




 
  P(x)=
   
    ∑
    
     j=0
    p
   
   
    
     C
     j
    
    |x
     |
     
      2p−2j
    
    
     P
     
      2j
    
    (x),   or
     
   P
   
    2j
  
  ∈P
   H
   
    2j
  
  .


[image: ]



Consider analogously 	 




 
  Q(x)=
   ∑ 
    
     
     
      j=0
     p
    
    
     C
     j
    
    
     P
     
      2j
    
    (x),
  


[image: ]

 which is also harmonic, not necessarily homogenous, and also satisfies

	 
	 




 
  P(u)=
   
    ∑
    
     j=0
    p
   
   
    
     C
     j
    
    
     P
     
      2j+1
    
    (u)=Q(u);        ∀u∈
     S
     
      n−1
    
    .
  


[image: ]



	 




 □


[image: ]



3.5Spherical harmonics


Definition 40. A function f defined on the sphere Sn−1 is said to be a spherical harmonic iff it is the restriction of a harmonic homogenous polynomial P on Sn−1, that is, ∃P ∈ 𝓟𝓗(ℝn) such that

f(u) = P(u), ∀u ∈ Sn−1 .

The degree of f is that of P. The space of all spherical harmonics on ℝn with degree k will be denoted by 𝓗𝓢k(Sn−1).



The following proposition is proved in [162].


Proposition 41.

(1)dim 𝓗𝓢k(Sn−1) = dim 𝓟𝓗k(ℝn).

(2)𝓗𝓢m(Sn−1)⊥𝓗𝓢n(Sn−1), ∀m ≠ n.

(3)	       L   2    (   S       n−1    )=   ⊕       k=0       +∞    H   S   k    (   S       n−1    ).[image: ]

(4)∀f ∈ 𝓗𝓢k, ΔS f = −k(k + n − 2)f .



Proof. (1) Consider the linear mapping

L : 𝓟𝓗k(ℝn) ⟶𝓗𝓢k(Sn−1)

P \⟼ L(P) = P/Sn−1 .

Observing the definition of 𝓗𝓢k(Sn−1), we deduce that L is surjective. Next, let P be such that L(P) = 0, then, for all x ∈ ℝn \ {0}, we obtain

	 




 
  P(x)=P(
   
    | x |
     x
     
      | x |
    
    
  )=|x
   |
   k
  
  P(
   
    
     x
     
      | x |
    
    
  )=
   
    | x |
   k
  
  L(P)(x)=0.


[image: ]



So, L is also injective. Consequently, 𝓗𝓢k(Sn−1) and 𝓟𝓗k(ℝn) are isomorphic, thus, with the same dimension.

(2)Let P ∈ 𝓗𝓢k(Sn−1) and Q ∈ 𝓗𝓢l(Sn−1), n ≠ m in ℕ. We claim that

⟨P, Q⟩L2(Sn−1) = 0 .

Indeed, P and Q are restrictions of harmonic homogenous polynomials P̃ ∈ 𝓗𝓢n(ℝn) and Q̃ ∈ 𝓗𝓢m(ℝn) on Sn−1. So, it results from Green’s formula that

	 




 
  
   ∫
   
    B(0,1)
  
  
   P
   ˜
  
  (x)
   
    
     Δ
      P
      ˜
     
     (x)
    ︸
   
   
    =0
  
  −
   Q
   ˜
  
  (x)
   
    
     Δ
      Q
      ˜
     
     (x)
    ︸
   
   
    =0
  
  =
   ∫
   
    
     S
     
      n−1
    
    
  
  P(ξ)
   
    ∂P
   
    ∂v
  
  (ξ)−Q(ξ)
   
    ∂Q
   
    ∂v
  
  (ξ)dσ(ξ)=0,


[image: ]



where ν is the outward normal vector of Sn−1. Observing next that for a homogenous polynomial P of degree s that

	 




 
  
   
    ∂P
   
    ∂v
  
  =sP,


[image: ]



we obtain

	 




 
  
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     P(ξ)Q(ξ)dσ(ξ)(m−n)=0,
   
   
  


[image: ]



which yields the orthogonality of 𝓗𝓢m(Sn−1) and 𝓗𝓢n(Sn−1).

(3)Observe firstly that on the Sn−1, the quadratic elementary polynomial

	 
	 




 
  Q(x)=
   x
   1
   2
  
  +
   x
   2
   2
  
  +⋯+
   x
   n
   2
  
  =1.


[image: ]



Otherwise, from Theorem 38, the sum of the spaces 𝓗𝓢k(Sn−1) gives the space of restrictions on Sn−1 of all homogenous polynomials. So, it results from the compactness of Sn−1 and the well-known Stone–Weierstrass theorem that such a sum is dense in the space of continuous functions on Sn−1 relative to the uniform topology and hence relative to that of L2. Thus,

	 
	 




 
  
   L
   2
  
  (
   
    
     S
     
      n−1
    
    ,dσ
  )=
   
    
     
      
       ⊕
       
        k=0
      
      
     
      +∞
    
    H
     S
     k
    
    
   ¯
  
  (
   S
   
    n−1
  
  ).


[image: ]



(4)Let f ∈ 𝓗𝓢k(Sn−1), restriction of P ∈ 𝓟𝓗k(ℝn), and denote

	 




 
  
   f
   ˜
  
  (x)=
   1
   
    ||x|
     |
     k
    
    
  
  P(x).


[image: ]



Obviously, for x ∈ Sn−1, we have f(x) = (x) = P(x). By applying the Leibniz law, we obtain

	 




 
  
   
    Δ
     f
     ˜
    
    =Δ(
     
      
       1
       
        ||x|
         |
         k
        
        
      
      
    )P+2〈 
     ∇
      1
      
       ||x|
        |
        k
       
       
     
     ,∇P 〉+
     1
     
      ||x|
       |
       k
      
      
    
    ΔP
   
  
  
   
           =k(k−n+2)
     1
     
      ||x|
       |
       
        k+2
      
      
    
    P−2
     k
     2
    
    
     1
     
      ||x|
       |
       
        k+2
      
      
    
    ΔP.
   
  
 
 


[image: ]



Observing that on the sphere ‖x‖ = 1, we obtain

ΔS f = −k(k + n − 2)f.

	 




 □


[image: ]




Lemma 42. There exists an orthonormal basis 	           {            Y             n,j           }       1≤j≤     s     k     n            [image: ] of 𝓗𝓢k(Sn−1) composed of spherical harmonics of degree k so that any spherical harmonics Y in 𝓗𝓢k(Sn−1) is written in a unique way as

	    Y=       ∑         j=1               s      k      n                         C           n,j             Y           n,j          .[image: ]



Proof. 𝓗𝓢k(Sn−1) is a finite-dimensional vector space with the canonic basis formed by the restriction of (xα)|α|=k on the sphere Sn−1. So, the Gram–Schmidt procedure yields an orthonormal basis.

The following result is known as the addition theorem of spherical harmonics. It is a basic result in harmonic analysis of homogenous polynomials that relates the theory of spherical harmonics to the theory of orthogonal polynomials. For more details on such relationships and a proof in a special case, refer to [162].

[image: ]


Theorem 43. Consider an orthonormal basis 	           {     Y           n,j        }       1≤j≤     s     k     n            of    P   k    (   S       n−1    ).[image: ] The following assertion holds:

	           ∑         j=1               s      k      n                         Y           k,j          (ξ)   Y       k,j    (η)=            s     k     n                    ω           n−1               P       k,n    (ξ.η),      ∀ξ,η∈   S       n−1    ,[image: ]

where Pk,n is the Legendre polynomial defined by

	       P       k,n    (t)=k!Γ(                  n−1     2          )       ∑         j=0         [k/2]                     (−1)     j                            (1−       t       2            )     j             t           k−2j                    4     j        j!(k−2j)!Γ(j+           n−1     2        )    .[image: ]



Proof. Denote F (ξ, η) the left-hand term in the addition rule above, i.e.,

	 




 
  F(ξ,η)=
   
    ∑
    
     j=1
    
     
      s
      k
      n
     
     
   
   
    
     Y
     
      k,j
    
    (ξ)
     Y
     
      k,j
    
    (η)
  ,          ξ,η∈
   S
   
    n−1
  
  .


[image: ]



We claim that F is invariant under the action of O(n). Indeed, let A ∈ O(n) and H k,j ∈ 𝓟k(ℝn) be such that

Hk,j|Sn−1 = Yk,j, ∀j .

It is straightforward that the function x ⟼ H n,j(Ax) is also a harmonic homogenous polynomial on ℝn of degree k. Consequently, 	 




 
  ξ↦
   Y
   
    k,j
  
  (Aξ),j=1,…,
   s
   k
   n
  
  


[image: ]

 is a spherical harmonic of degree k. Hence, it can be written as

	 




 
  
   Y
   
    n,j
  
  (Aξ)=
   
    ∑
    
     m=1
    
     
      s
      k
      n
     
     
   
   
    
     α
     m
     
      (j)
    
    
     Y
     
      k,m
    
    (ξ)      ∀ξ∈
     S
     
      n−1
    
    .
  


[image: ]



Next, observing that A is orthogonal, we get

	 




 
  
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      Y
      
       k,m
     
     
   
   
  (Aξ)
   Y
   
    k,l
  
  (Aξ)dω(ξ)=
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      Y
      
       k,m
     
     
   
   
  (ξ)
   Y
   
    k,l
  
  (ξ)dω(ξ)=
   δ
   
    ml
  
  .


[image: ]



Hence,

	 




 
  
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      Y
      
       k,m
     
     
   
   
  (Aξ)
   Y
   
    k,l
  
  (Aξ)dω(ξ)=
   
    ∑
    
     i,m=1
    
     
      s
      k
      n
     
     
   
   
    
     b
     i
     
      (j)
    
    
     b
     m
     
      (l)
    
    
     δ
     
      im
    
    
  .


[image: ]



Or equivalently,

	 




 
  
   δ
   
    ml
  
  =
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      Y
      
       k,m
     
     
   
   
  (Aξ)
   Y
   
    k,l
  
  (Aξ)dω(ξ)=
   
    ∑
    
     m=1
    
     
      s
      k
      n
     
     
   
   
    
     b
     m
     
      (j)
    
    
     b
     m
     
      (l)
    
    
  ,       ∀m,l∈{1,…,
   s
   k
   n
  
  }.


[image: ]



This means that the matrix 	 




 
  B=
   
    (
     b
     m
     
      (j)
    
    )
   
    m,j=1,…,
     s
     k
     n
    
    
  
  


[image: ]

 is orthogonal. Consequently, ∀ξ, η ∈ Sn−1

	 




 
  
   
    F(Aξ,Aη)=
     
      ∑
      
       j=1
      
       
        s
        k
        n
       
       
     
     
      
       Y
       
        k,j
      
      (Aξ)
       Y
       
        k,j
      
      (Aη)
    
   
  
  
   
                             =
     
      ∑
      
       j=1
      
       
        s
        k
        n
       
       
     
     
      
       
        ∑
        
         m,l=1
        
         
          s
          k
          n
         
         
       
       
        
         b
         m
         
          (j)
        
        
         b
         l
         
          (j)
        
        
         Y
         
          k,m
        
        (ξ)
         Y
         
          k,l
        
        (η)
      
    
   
  
  
   
                             =
     
      ∑
      
       m=1
      
       
        s
        k
        n
       
       
     
     
      
       Y
       
        k,m
      
      (ξ)
       Y
       
        k,m
      
      (η)
    
   
  
  
   
                             =F(ξ,η).
   
  
 
 


[image: ]



Hence, F is invariant under the action of orthogonal transformations. It follows (see [16, 54, 59, 143, 162]) that

F(ξ, η) = F(ξ, ξ)Pk,n(ξη) and F(ξ, η) = F(η, η)Pk,n(ξη), ∀ξ, η ∈ Sn−1

and that Pk,n is the Legendre polynomial of degree k defined precisely in Theorem 43. This means in particular that F (ξ, ξ) = F (η, η) and thus constant on Sn−1. Otherwise, observing that

	 




 
  F(ξ,ξ)=
   
    ∑
    
     j=1
    
     
      s
      k
      n
     
     
   
   
    |
     Y
     
      k,j
    
    (ξ)
     |
     2
    
    
  ,


[image: ]



we obtain by means of the integration on the whole sphere Sn−1 that

	 




 
  F(ξ,ξ)
   ω
   
    n−1
  
  =
   s
   k
   n
  
  .


[image: ]



[image: ]


Remark 44. Let f : Sn−1 ⟶ ℝ. Then, it can be written as a linear combination of spherical harmonics

	    f(η)=       ∑         k=0    ∞                     ∑             m=1                     s        k        n                                     K               m,n                     Y           k,n        (η)  ,[image: ]

where Km,n are called the spherical harmonic coefficients or spherical harmonic transforms of f at the order (m, n), and are obtained from the inner products ⟨f, Yk,n⟩.




3.6Fourier transform of spherical harmonics

Let P be a homogenous polynomial on ℝn. Denote

	 




 
  
   L
   P
   2
  
  (
   ℝ
   n
  
  )={f∈
   L
   2
  
  (
   ℝ
   n
  
  );   ∃
   f
   0
  
  :
   ℝ
   +
  
  →ℝ such that f(x)=
   f
   0
  
  (|x|)P(x)}


[image: ]



and for λ ∈ ℝ, we denote

	 




 
  
   H
   λ
  
  (
   ℝ
   n
  
  )={ 
   f:
    ℝ
    +
   
   →ℝ such that 
    
     
      ∫
      
       
        ℝ
        +
       
       
     
     
      |f(x)
       |
       2
      
      
       x
       λ
      
      dx<+∞
    
    
    }.


[image: ]



It holds that for λ = n + 2k − 1, 𝓗λ(ℝn) is the adherence of 	 




 
  Σ=(
   E
   
    −πα
     r
     r
    
    
  
  ;α>0).


[image: ]

 We can consider Σ⊥ in 𝓗λ(ℝn) and prove that Σ⊥ = {0}.


Definition 45. Let f : ℝn ⟶ ℝ. The profile of f is defined by: ℝ+ ⟶ ℝ such that f(x) =(|x|).




Definition 46. Let f : ℝn ⟶ ℝ. The radial transform of f is f̄ : ℝn ⟶ ℝ defined by

	       f   ¯    (x)=   1            ω           n−1                        ∫                  S               n−1                         f(|x|u)dσ(u)        ,[image: ]

where ωn−1 is the volume of the sphere Sn−1 and dσ is the Lebesgue measure on Sn−1.




Lemma 47. Let dσ be the Lebesgue measure on Sn−1. We have

	       σ   ^    (t)=2π|t   |       1−n/2       J            n     2        −1    (2π|t|),[image: ]

where for λ ∈ ℝ, Jλ is the Bessel function

	       J   λ    (x)=   1       2π           ∫         −π    π               e           −i(λt−x  sint)             dt.[image: ]



Proof. Recall that the Fourier transform of σ is defined by

	 




 
  
   σ
   ^
  
  (t)=
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      e
      
       −2iπtξ
     
     
   
   
  dσ(ξ).


[image: ]



As the measure dσ is invariant under rotations, we can assume without loss of the generality that t = (|t|, 0, . . . , 0). We obtain

	 




 
  
   σ
   ^
  
  (t)=
   
    
     ∫
     
      
       S
       
        n−1
      
      
    
    
     
      e
      
       −2iπ|t|cosθ
     
     
   
   
  dσ(ξ),


[image: ]



where θ is the angle (t, e1), with en = (1, 0, . . . , 0). In spherical coordinates, this means that

	 




 
  
   σ
   ^
  
  (t)=
   ω
   
    n−2
  
  
   
    ∫
    0
    π
   
   
    
     e
     
      −2iπ|t|cosθ
    
    
  
  
 
  
   sin
  
   n−2
 
 θdθ.


[image: ]



Denote next r = cos θ. We obtain

	 




 
  
   σ
   ^
  
  (t)=
   ω
   
    n−2
  
  
   
    ∫
    
     −1
    1
   
   
    
     e
     
      −2iπ|t|r
    
    
  
  
 
  
   (1−
    r
    2
   
   )
  
   (n−3)/2
 
 dr.


[image: ]



Observe next that

	 




 
  
   ω
   
    n−2
  
  =
   
    
     π
     
      
       
        n−3
       2
      
      
    
    
   
    Γ(
     
      
       
        n−1
       2
      
      
    )
  
  


[image: ]



and on the other hand,

	 




 
  
   J
   λ
  
  (2π|t|)=
   
    |πt
     |
     λ
    
    
   
    
     π
     
      1/2
    
    Γ(λ+1/2)
  
  
   
    ∫
    
     −1
    1
   
   
    
     e
     
      −2iπ|t|r
    
    
  
  
 
  
   (1−
    r
    2
   
   )
  
   λ−1/2
 
 dr,


[image: ]



so we obtain the desired result.

[image: ]


Lemma 48. Let f : ℝn ⟶ ℝ be a radial function with profile f̃. Then,

	           f    ^         ˜    (r)=2π   r       1−n/2           ∫    0         +∞               f     ˜        (s)     J                  n       2            −1             (2πrs)  s     n/2  ds=     ∫   0       +∞           f    ˜      (s)    σ    ^      (rs)   s   n−1ds.[image: ]



Indeed, for x = rξ ∈ ℝn, (ξ ∈ Sn-1), we have

	 




 
  
   
    
     f
     ^
    
    (x)=
     
      
       ∫
       
        
         ℝ
         n
        
        
      
      
       f(ζ)
        e
        
         −2iπxζ
       
       
     
     
    dζ
   
  
  
   
               =
     
      ∫
      0
      
       +∞
     
     
      
       
       
        
         S
         
          n−1
        
        
      
      f(s)
    
    
   
    e
    
     −2iπrsξη
   
   
    s
    
     n−1
   
   dsdσ(η)
  
 
 
  
             =
    
     ∫
     0
     
      +∞
    
    
     
      f
      ˜
     
     (s)
   
   
  
   σ
   ^
  
  (rs)
   s
   
    n−1
  
  ds.
 




[image: ]



Hence, Lemma 48.


Theorem 49. Let f be a function of the form 	    f(x)=   e       −π|x     |     2            P(x),[image: ] where P ∈ 𝓟k(ℝn). Then,

f̂(x) = i−k f(x) .



Proof. It suffices to show that 	 




 
  f(x)=
   e
   
    −π|x
     |
     2
    
    
  
  
   x
   α
  
  ,


[image: ]

 with |α| = k. For this choice, we have

	 




 
  
   
    
     f
     ^
    
    (x)=
     
      
       ∫
       
        
         ℝ
         n
        
        
      
      
       
        e
        
         −π|y
          |
          2
         
         
       
       
        y
        α
       
       
        e
        
         −2iπxy
       
       dy
     
     
    
   
  
  
   
               =
     
      ∏
      
       m=1
      n
     
     
      
       
        
         ∫
         ℝ
        
        
         
          e
          
           −π
            y
            m
            2
           
           
         
         
          y
          m
          
           
            α
            m
           
           
         
         
          e
          
           −2iπ
            x
            
             m,
           
           
            y
            m
           
           
         
         d
          y
          m
         
         
       
       
      
    
   
  
  
   
               = 
     
      ∏
      
       m=1
      n
     
     
      
       e
       
        −π
         x
         m
         2
        
        
      
      
    
     (−i
      x
      m
     
     )
     
      
       α
       m
      
      
    
    
   
  
  
   
               =
     i
     
      −k
    
    
     e
     
      −π|x
       |
       2
      
      
    
    
     x
     α
    
    .
   
  
 
 


[image: ]





The following theorem is known as the Bochner–Hecke theorem.

[image: ]


Theorem 50. Let n ≥ 2, k ≥ 0, P ∈ 𝓟k(ℝn) and f0 be measurable on [0,+∞[ such that

	           ∫    0         +∞          |     f     0        (r)     |     2             r           n+2k−1        dr<+∞.     [image: ]

Then,

F(x) = f0(|x|)P(x) ∈ L2(ℝn) and F̂(x) = g0(|x|)P(x) ,

where g0 is measurable on [0,+∞[ such that 	                ∫     0           +∞             |      g      0          (r)      |      2                     r       n+2k−1    dr<+∞.[image: ] More precisely,

	       g   0    (r)=       2π            i     k             r     λ                   ∫    0         +∞               f     0        (t)     J     λ        (2πrt)     t           λ+1        dt,       with      λ=     n+2k−2  2  .[image: ]



Proof. The first part is trivial as we have
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The second part follows from Lemma 48 and Theorem 49.

	 




 □
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3.7Zonal functions

In this section, we review the basic concepts of zonal functions. We revisit their Fourier transforms and reproduce the proof of the well-known Bochner–Hecke theorem. We first recall a result on the existence of zonal function sites (see [48, 65, 162]).


Theorem 51. For all u ∈ Sn−1, there exists 	       Z   u   k    ∈H   S   k    (   S       n−1    )[image: ] such that

	    Y(u)=            ∫                  S               n−1                         Y(v)      Z      u      k          (v)dσ(v).        [image: ]

Furthermore, 	       Z   u   k    [image: ] satisfies the following assertions:

(1)	       Z   u   k    (v)=   Σ   l                Y     l        (u)   ¯       Y   l    (v);[image: ] for all orthonormal basis (Yl)l of 𝓗𝓢k and ∀u, v ∈ Sn−1.

(2)	       Z       ρu   k    (ρv)=   Z   u   k    (v),∀ρ∈SO(n)[image: ] and ∀u, v ∈ Sn−1.

(3)	       Z   u   k    (u)=            d     k                    w           r−1            ,∀u∈   S       n−1    .[image: ]



Proof. Let Y ∈ 𝓗𝓢k(Sn−1) and ∀(Yl)l be an orthonormal basis of 𝓗𝓢k. Then, Y is of the form
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Consequently, for u ∈ Sn−1, we obtain
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Hence, Y(u) and (1) hold.

(2)For ρ ∈ SO(n) and u, v ∈ Sn−1, we have
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Recall that the right-hand side part is invariant under the action of O(n). Thus,
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(3)For u ∈ Sn−1, we have
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Definition 52. 	       Z   u   k    [image: ] defined in Theorem 51 is called the zonal function of degree k and the pole u.




Proposition 53. Let v ∈ Sn−1. Then there exists 	       φ   u   k    [image: ] such that

	       φ   u   k    (uv)=   Z   u   k    (v)      ∀u∈   S       n−1    .[image: ]



Indeed, it follows from Theorem 51 that 	 
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 is invariant under orthogonal transformations. Thus, it depends only on the angle (u, v). Consequently, there exists 	 
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 defined on [−1, 1] such that
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This result allows us to link with the definition of the zonal function based on L2[−1, 1].


Definition 54. Let ξ ∈ Sn−1 and G : [−1, 1] ⟶ℝ be a function. The function

	                G     ξ        :Ω→ℝ                       η↦     G     ξ        (η)=G(ξ.η)       [image: ]

is called the ξ-zonal function on Ω.



These definitions confirm that it suffices to define zonal functions relative to one of the vectors in a coordinate system to cover the entire sphere.


Proposition 55. Let en = (0, . . . , 0, 1) be one pole of the sphere Sn−1. The following assertions hold.

(1)For all u ∈ Sn−1, there exists ρ ∈ SO(n) such that ρen = u.

(2)	       Z   u   k    (v)=   Z            e     n           k    (   l       −1    v);[image: ] ∀u, v ∈ Sn−1.

(3)	       φ   u   k    (uv)=   φ            e     n           k    (uv);[image: ] ∀u, v ∈ Sn−1.



Proof. If u = en, it suffices to take ρ − Id. If not, we consider the rotation ρ centered at O and transforming en to u. Hence, (1).

(2)We have
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(3)We have
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This means that to compute the zonal function 	 
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 it suffices to evaluate 	 
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 for t ∈ [−1, 1]. So, let v ∈ ℝn, v = rη with r > 0 and η ∈ Sn−1. Let r cos θ = env. Hence,

	 




 
  
   φ
   
    
     e
     n
    
    
   k
  
  (
   e
   n
  
  v)=
   r
   k
  
  
   P
   k
  
  (cosθ),


[image: ]



where Pk is a polynomial of degree k. Since 	 




 
  
   Z
   u
   k
  
  


[image: ]

 is harmonic, it holds that
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This leads to the following characterization of zonal functions.


Theorem 56. Let n ≥ 3, k ≥ 0, and u ∈ Sn−1. Then,

	       Z   u   k    (v)=            s     n     k                    w           n−1               P   k                  n−2     2            (uv),[image: ]

where 	       P   k   λ    [image: ] is the unique polynomial of degree k associated with λ, i.e., a polynomial solution of

	    {             (1−      t      2          )             P       ′                  ′          −(2λ+1)t      P      ′          +k(2λ+k)P=0,                                         P(1)=1.            [image: ]




3.8Conclusion

In this chapter, the basic concepts and properties of the spherical Laplace operator and homogenous harmonic polynomials were reviewed. In addition, spherical harmonics as well as their Fourier transforms were studied. Finally, zonal functions as special cases of spherical harmonics have been revisited. Basic theorems, such as the addition theorem, Hecke theorem, and Bochner–Hecke theorem have been presented with more detail. As we have seen in this chapter, spherical harmonics are strongly related to orthogonal polynomials, such as Gegenbauer polynomials, which are linked to the well-known Bessel function, which is a particular case of a wider class of function known as special functions. These will be the subject of a forthcoming work.



4Review of special functions

4.1Introduction

The main motivation behind this chapter about special functions is that these functions are applied in the quasi-field of mathematical physics and that there is no literature dedicated on them and their basic properties with efficient proofs and original references.

Special functions are, as their name indicates, special in their definitions, applications, proofs as well as their interactions with other fields. It is thus important to understand their basic properties.

They appear in the treatment of differential equations, such as heat and Schrödinger equations, quantum mechanics, approximation theory, communication systems, wave propagation, probability theory, and number theory.

Special functions are also related to orthogonal polynomials, as both of them are generated by second-order ordinary differential equations. We cite mainly Legendre, Gegenbauer, and Jacobi polynomials. They are also associated with infinite series, improper integrals, and Fourier transforms, yielding special transforms, such as Bessel, Jakobi, Hankel, and Dunkl transforms of functions.

Historically, special functions differ from elementary ones, such as powers, roots, trigonometric, and their inverses, mainly with the limitations that these latter classes have known. Many fundamental problems such as orbital motion, simultaneous oscillatory chains, and spherical body gravitational potential were not best described using elementary functions. This makes it necessary to extend elementary function classes to more general ones that may describe unresolved problems.

In the present chapter, we aim to recall special functions most frequently applied in scientific fields, such as Bessel functions, Mathieu functions, the Gamma function, the Beta function, and Jacobi functions.


4.2Classical special functions

4.2.1Euler’s Γ function

Euler’s Gamma function was introduced by Bernoulli and Christian Goldbach in the 17th century by extending the factorial to nonintegers. But the problem remained unsolved until the work of Leonhard Euler, who was the first to point out a rigorous formulation based on infinite products. Next, Euler’s Gamma function has been applied in numerous contexts in both mathematics and physics, such as integration theory, number theory, probability, group theory, and partial differential equations (PDEs), and has also been extended to the meromorphic function on the whole complex plane.


Definition 57. Euler’s Γ function is defined by the following integral expression known sometimes as the second-kind Euler integral, defined for 	    x∈   ℝ   +   *    [image: ] by

	    Γ(x)=       ∫    0    ∞               t           x−1             e           −t        dt     .[image: ]




Proposition 58.

(1)Euler’s Γ integral converges for all x > 0.

(2)The function Γ is C∞ on ]0,+∞[ and we have

	       Γ       (k)    (x)=       ∫    0         +∞               e           −t                   (ln t)     k             t           x−1        dt,          ∀x>0, ∀k∈ℕ.[image: ]

(3)Euler’s Γ function can be extended on the half-plane Re(z) > 0.



Proof. (1) For x > 0, denote f(t, x) = tx−1e−t. First note that f(t, x) > 0 for all t ∈ (0,+∞). When t → 0, f(t, x) ∼ tx−1 and
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is convergent. So

	 




 
  
   
    ∫
    0
    1
   
   
    f(t,x)dt
  
  
 


[image: ]



is also convergent. Now, note that there exist A, M > 0 constants such that t2f(t, x) < M whenever t > A and thus
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The last integral is convergent. So
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is also convergent. Finally, the integral Γ(x) is convergent for all x > 0.

(2) Let a, b ∈ ℝ with 0 < a < b and ϕ: [a, b]×]0,+∞[⟶ ℝ such that ϕ(x, t) = tx−1e−t. It consists of a C∞ function that satisfies
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which is also continuous on [a, b]×]0,+∞[. In addition, for k ∈ ℕ∗, we have

–∀x ∈ [a, b], the function 	 
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 is continuous on ]0,+∞[.

–∀t ∈]0,+∞[, the function 	 
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 is continuous on [a, b].

–∀(x, t) ∈ [a, b]×]0,+∞[, we have
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Hence, the function Γ is 𝓒∞ on ]0,+∞[ and ∀k ∈ ℕ∗, ∀x > 0,
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Hence (3.3).

(3)We will prove by recurrence the proposal

Pm: Γ can be extended on −m + 1 > Re(z) > −m, ∀m ∈ ℕ.

Indeed, P0 holds because Γ is analytic on {Re(z) > 0}. Therefore, it is analytic on {1 > Re(z) > 0}. Next, for 0 > Re(z) > −1, we have 1 > Re(z + 1) > 0. Hence, Γ(z + 1) is analytic. In addition, 	 
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 Thus, Γ is holomorphic on {0 > Re(z) > −1} with 0 being a simple pole corresponding to the residues 1. So, Γ can be extended to a meromorphic function {Re(z) > −1} with a simple pole at 0. Hence, the property P1. Next, applying the recurrence rule, we obtain
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Properties 59. The following assertions are satisfied.

(1)Γ(x + 1) = xΓ(x); ∀x > 0.

(2)Γ(n + 1) = n!, ∀n ∈ ℕ.

(3)	    Γ(            1     2          )=   π    .[image: ]

(4)		    Γ(       n+     1     2          )=       (2n)!     π                    2           2n        n!    ,∀n∈ℕ.[image: ]



Proof. (1) An integration by parts gives
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(2) Putting x = n ∈ ℕ∗ in assertion (1), we get

Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = n!Γ(1)= n! .

Hence the appointment of generalized factorial function for Γ.

(3) We have
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Putting 	 
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 we get
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Hence,
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Now, using the polar coordinates system, x = r cos θ and y = r sin θ, with r ∈ (0, ∞) and 	 
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 we get
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Therefore, 	 
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(4)By recurrence on n. For n = 0, we have 	 
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 on the left and 	 
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 on the right. So, the assertion is true for n = 0. Assume next that it is true for n. We shall then check it for n + 1.
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The next result shows some asymptotic behaviors of Euler’s Γ function.


Theorem 60. Euler’s Γ function satisfies the so-called Stirling formula,

	    Γ(x+1)~       2πx           (                  x       e                )   x         as     x→+∞.[image: ]



Proof. Recall that
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By setting 	 
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 we obtain
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Now, it suffices to prove that the last integral tends to 	 
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 Denote Γ1(x) as this integral and let
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We get
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For fixed u ∈ ℝ, we have
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       2
      
      
    ).
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On the other hand, if 	 




 
  u∈]−
   x
  
  ,0],


[image: ]

 as 	 




 
  
   
    |u|
   
    
     x
    
    
  
  <1,


[image: ]

 we obtain

	 




 
  f(x,u)≤exp(
   
    −
     
      
       u
       2
      
      
     2
    
    
  ).


[image: ]



Finally, for u ∈]0,+∞[, f(x, u) is a decreasing function of x on ]0,+∞[. We deduce for u > 0 and x ∈ [1,+∞[ that

f(x, u) ≤ f(1, u) = (1 + u)e−u .

So, for all u ∈ ℝ and all x ∈ [1,+∞[, we have 0 ≤ f(x, u) ≤ g(u), where g is the integrable function defined by

	 




 
  g(u)={ 
   
    
     
      e
      
       −
        
         
          u
          2
         
         
        2
       
       
     
     ,                   if u≤0
    
   
   
    
     (1+u)
      e
      
       −u
     
     ,        if not  u≥0.
    
   
  
   


[image: ]



By the dominated convergence theorem, we obtain

	 




 
  
   Γ
   1
  
  (x)→
   
    ∫
    
     −∞
    
     +∞
   
   
    
     e
     
      
       
        −
         u
         2
        
        
       2
      
      
    
    
  
  
 du=
  
   2π
 
 ,            as   x→+∞.


[image: ]



Now, by setting 	 




 
  t=
   
    
     x
    
    
   u
  
  ,


[image: ]

 we get f(x, u) = eh(t,u), where

	 




 
  h(t,u)=
   u
   2
  
  
   t
   2
  
  (
   
    −
     1
     t
    
    +ln(
     
      1+
       1
       t
      
      
    )
  ),


[image: ]



which is decreasing in t.

[image: ]


Proposition 61. Euler’s Γ function satisfies the so-called Gauss formula for all x > 0,

	       1       Γ(x)    =       lim       n→+∞           x(x+1)⋯(x+n)       n!     n     x            .[image: ]



Proof. Applying the recurrence relation n times, we obtain

Γ(x)x(x + 1) ⋅⋅⋅ (x + n) = Γ(x + n + 1) .

Therefore,

	 




 
  
   
    
     
      x(x+1)⋯(x+n)
     
      n!
       n
       x
      
      
    
    =
     
      Γ(x+n+1)
     
      Γ(x)n!
       n
       x
      
      
    
    
   
  
  
   
                                         ~
     
      
       2
      
      π
       
        (x+n+1)
       
        x+n+
         1
         2
        
        
      
      
       e
       
        −(x+n+1)
      
      
     
      Γ(x)
       2
      
      π
       
        (n+1)
       
        n+
         1
         2
        
        
      
      
       e
       
        −n−1
      
      
       n
       x
      
      
    
    
   
  
  
   
                                         ~
     1
     
      Γ(x)
    
    
     (
      
       
        
         x+n+1
        n
       
       
     )
     x
    
    
     (
      
       
        
         x+n+1
        
         n+1
       
       
     )
     
      n+1
    
    
     e
     
      −x
    
    
     (
      
       1+
        x
        n
       
       
     )
     n
    
    
   
  
  
   
                                         =
     1
     
      Γ(x)
    
    .
   
  
 
 


[image: ]
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Proposition 62.

(1)The infinite product 	       ∏                     k=1           +∞        (           1+       z       k                )     e           −       z       k                      [image: ] is normally convergent on every compact of ℂ and therefore defines an analytic function of z.

(2)Euler’s Γ function satisfies the so-called Gauss–Weierstrass formula for z ∉ −ℕ,

	                1           Γ(z)        =           lim           n→+∞                   z(z+1)(z+2)⋯(z+n)           n!       n       z                                             =z     e           yz                   lim           n→+∞                   ∏             k=1      n                (               1+         z         k                      )       e               −         z         k                            ,           [image: ]

where γ is the Euler–Mascheroni constant given by

	    y=       lim       n→+∞    (                  ∑             k=1             n−1                       1       k            −ln n      ).[image: ]



Proof. (1) Put 	 




 
  
   u
   k
  
  (z)=(
   
    1+
     z
     k
    
    
  )
   e
   
    −
     z
     k
    
    
  
  −1.


[image: ]

 A simple Taylor development gives

	 




 
  |
   u
   k
  
  (z)| ≤
   
    |z
     |
     2
    
    
   
    
     n
     2
    
    
  
  


[image: ]



whenever 	 




 
  
   
    |z|
   n
  
  


[image: ]

 is bounded independent of n and z. Hence, the infinite product converges uniformly on every compact set in ℂ to an analytic function.

(2)Observe that

	 




 
  Γ(z)=
   
    ∫
    0
    
     +∞
   
   
    
     t
     
      z−1
    
    
     e
     
      −t
    
    dt=
     
      lim
     
      n→+∞
    
    
     
      ∫
      0
      n
     
     
      
       t
       
        z−1
      
      
       
        (
         
          1−
           t
           n
          
          
        )
       n
      
      dt.
    
    
   
 
 



[image: ]



This is a consequence of the application of the dominated convergence theorem. So, next, integrating by parts, we obtain

	 




 
  Γ(z)=
   
    lim
   
    n→+∞
  
  
   
    n!
     n
     z
    
    
   
    z(z+1)(z+2)⋯(z+n)
  
  


[image: ]



whenever z ∉ −ℕ. So the first part is proved. Next, observe that

	 




 
  
   
    z(z+1)(z+2)⋯(z+n)
   
    n!
     n
     z
    
    
  
  =z
   n
   
    −z
  
  
   
    ∏
    
     k=1
    n
   
   
    
     
      z+k
     k
    
    =z
     e
     
      z(
       y
       n
      
      −logn)
    
    
     
      ∏
      
       k=1
      n
     
     
      
       e
       
        −
         z
         k
        
        
      
      
    
     
      ∏
      
       k=1
      n
     
     
      (
       
        1+
         z
         k
        
        
      )
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where 	 




 
  
   y
   n
  
  =
   ∑ 
    
     
     
      k=1
     
      n−1
    
    
     1
     k
    
    .
  


[image: ]

 Next, we obtain

	 




 
  
   
    z(z+1)(z+2)⋯(z+n)
   
    n!
     n
     z
    
    
  
  =z
   e
   
    z(
     y
     n
    
    −logn)
  
  
   
    ∏
    
     k=1
    n
   
   
    
     e
     
      −
       z
       k
      
      
    
    
  (
   
    1+
     z
     k
    
    
  ),


[image: ]



which implies by the limit on n that

	 




 
  
   1
   
    Γ(z)
  
  =
   
    lim
   
    n→+∞
  
  
   
    z(z+1)(z+2)⋯(z+n)
   
    n!
     n
     z
    
    
  
  =z
   e
   
    yz
  
  
   
    lim
   
    n→+∞
  
  
   
    ∏
    
     k=1
    n
   
   
    (
     
      1+
       z
       k
      
      
    )
     e
     
      −
       z
       k
      
      
    
    
  .
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Proposition 63. For z ∈ ℂ\ℤ,

	    Γ(z)Γ(1−z)=   π       sin(πz)    .[image: ]



The proof is based on the following lemma, which canbe obtained by simple application of Fourier series theory on the function f(t) = cos(st), where s ∈ ℂ. The result may also be established by direct methods based on the simple relation ez = 	 




 
  
   
    lim
   
    k→+∞
  
  
   
    (
     
      1+
       z
       k
      
      
    )
   k
  
  .


[image: ]

 Thus, the proof of this lemma is left to the reader.


Lemma 64. ∀z ∈ ℂ, we have

	    sin(πz)=πz       ∏         n≥1          (           1−                        z         2                                        n         2                                ).  [image: ]



Proof of Proposition 63. Let

	 




 
  
   a
   n
  
  (z)=
   
    z(z+1)(z+2)⋯(z+n)
   
    n!
     n
     z
    
    
  
  .


[image: ]



Proceeding as in the proof of Proposition 62, we obtain

	 




 
  
   a
   n
  
  (z)
   a
   n
  
  (1−z)=z(
   
    1+
     
      1−z
     n
    
    
  )
   
    ∏
    
     k=1
    n
   
   
    (
     
      1−
       
        
         z
         2
        
        
       
        
         k
         2
        
        
      
      
    ).
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The limit on n gives

	 




 
  
   1
   
    Γ(z)Γ(1−z)
  
  =
   
    lim
   
    n→+∞
  
  
   a
   n
  
  (z)
   a
   n
  
  (1−z)=z
   
    ∏
    
     k≥1
   
   
    (
     
      1−
       z
       
        
         k
         2
        
        
      
      
    )
  =
   
    sin(πz)
   
    πz
  
  .


[image: ]



Consequently,

	 




 
  Γ(z)Γ(1−z)=
   π
   
    sin(πz)
  
  .


[image: ]



[image: ]


Remark 65. The meromorphic function Γ has no roots on ℂ.




Proposition 66.

–Convexity of Γ: Γ is strictly convex on ]0,+∞[.

–Asymptotic behavior of Γ at∞: limx⟶+∞ Γ(x) = +∞.

–Asymptotic behavior of Γ at∞: 	           lim       x→+∞           Γ(x)   x    =+∞.[image: ]

–Asymptotic behavior of Γ at 0+: limx⟶0+ Γ(x) = +∞.







Proof. (1) Recall that the function Γ is twice differentiable on ]0,+∞[ and ∀x > 0, so we have

	 




 
 
  Γ′′(x)=
   ∫
   0
   
    +∞
  
  
   
    (1n t)
   2
  
  
   t
   
    x−1
  
  
   e
   
    −t
  
  dt>0.



[image: ]



Hence, it is convex.

(2) Since the function Γ is increasing on )0,+∞[, for x big enough, we have

Γ(x) = (x − 1)Γ(x − 1) ≥ (x − 1)Γ(1)= x − 1 .

We deduce that limx⟶+∞ Γ(x) = +∞.

(3)For x > 1, we have

	 




 
  
   
    Γ(x)
   x
  
  =
   
    (x−1)
   x
  
  Γ(x−1)→∞   as  x→∞.


[image: ]



We deduce that the graph of the function Γ has at +∞ a vertical asymptotic direction.

(4)For 	 




 
  x>0,Γ(x)=
   
    Γ(x+1)
   x
  
  →
   
    Γ(1)
   
    
     0
     +
    
    
  
  =+∞


[image: ]

 when x ⟶ 0+.

So limx⟶0+ Γ(x) = +∞. In addition, we have precisely, 	 




 
  Γ(x)~
   1
   x
  
    as  x→
   0
   +
  
  .


[image: ]



[image: ]

4.2.2Euler’s beta function

The origin of Euler’s beta function goes back to differential calculus and integrals. It was introduced in the Arithmetica Infinitorum published by Wallis. Newton next discovered the binomial formula and introduced Euler’s beta function, which was then developed for other versions, such as the incomplete and the corrected versions. The beta function is given by Euler in the following form:

	 




 
  β(p,q)=
   
    ∫
    0
    1
   
   
    
     t
     p
    
    
     
      (1−t)
     q
    
    dt
  
  
 


[image: ]



and is known as the first-kind Euler integral. But since Legendre’s work, it appears in a slightly modified form

	 




 
  β(p,q)=
   
    ∫
    0
    1
   
   
    
     x
     
      p−1
    
    
     
      (1−x)
     
      q−1
    
    
  
  
 dx,     p>0,q>0.


[image: ]



It is apparent that such a function is symmetrical in (p, q), i.e.,

β(p, q) = β(q, p) .

The beta function also has another integral representation. Indeed, by setting 	 




 
  t=
   y
   a
  
  ,


[image: ]

 a > 0, it becomes

	 




 
  β(p,q)=
   1
   
    
     a
     
      p+q−1
    
    
  
  
   
    
     
      ∫
      0
      a
     
     
      
       y
       
        p−1
      
      (a−y)
    
    
   
  
   q−1
 
 dy.


[image: ]



Again, setting t = sin2 θ, we get a trigonometric form

	 




 
  β(p,q)=2
   
    ∫
    0
    
     
      π
      2
     
     
   
   
    
     
      (sinθ)
     
      2p−1
    
    
  
  
 
  
   (cosθ)
  
   2p−1
 
   dθ.


[image: ]



Finally, with the variable change 	 




 
  t=
   y
   
    (1+y)
  
  ,


[image: ]

 we get

	 




 
  β(p,q)=
   
    ∫
    0
    
     +∞
   
   
    
     
      
       y
       
        p−1
      
      
     
      
       
        (1+y)
       
        p+q
      
      
    
    
  
  
 dy.


[image: ]



In the following, wewill apply one of these representations without mentioning it each time. The form applied will be understood from the development.


Proposition 67.

(1)The beta integral converges whenever x, y > 0.

(2)The beta integral is continuous on ]0,+∞[×]0,+∞[.

(3)The beta integral remains valid on the quarter complex plane Re(x), Re(y) > 0.



Proof. (1) Whenever p, q > 0 we have

tp(1 − t)q ∼ tp , t → 0+ and tp(1 − t)q ∼ (1 − t)q , t → 1− .

Hence, the integral is convergent.

(2)On ]0,+∞[×]0,+∞[, the function (p, q) ⟼ ft(p, q) = tp(1−t)q is continuous for all t ∈ (0, 1). Furthermore, tp(1 − t)q ≤ 1, ∀t, p, q. Thus, the integral is uniformly convergent to a continuous function on ]0,+∞[×]0,+∞[. Next, by recurrence on k ∈ ℕ, we can prove that beta is k-times differentiable according to p and q. We can also prove that

	 




 
  
   
    
     
      
       ∂
       k
      
      β
     
      ∂
       p
       k
      
      
    
    (p,q)=
     
      ∫
      0
      1
     
     
      
       
        (log t)
       k
      
      
       t
       p
      
      
       
        (1−t)
       q
      
      dt
    
    
   ,
  
 
 
  
   
    
     
      ∂
      k
     
     β
    
     ∂
      q
      k
     
     
   
   (p,q)=
    
     ∫
     0
     1
    
    
     
      
       (log (1−t))
      k
     
     
      t
      p
     
     
      
       (1−t)
      q
     
     dt
   
   
  
 




[image: ]



and for n + m = k,

	 




 
  
   
    
     ∂
     k
    
    β
   
    ∂
     p
     n
    
    
     q
     m
    
    
  
  (p,q)=
   
    ∫
    0
    1
   
   
    
     
      (logt)
     n
    
    
     
      (log(1−t))
     m
    
    
     t
     p
    
    
     
      (1−t)
     q
    
    dt.
  
  
 


[image: ]



(3)For p, q ∈ ℂ, we have

|tp(1 − t)q| = tRe(p)(1 − t)Re(q), ∀t ∈ (0, 1) .

	 




 □


[image: ]




Properties 68.

(1)pβ(p, q + 1) = qβ(p + 1, q), ∀p, q ≥ 0.

(2)	    β(p,1)=   1   p    .[image: ]

(3)	    β(   1   2    ,   1   2    )=π.[image: ]

(4)∀n ∈ ℕand ∀p > 0, 	    β(p,n)=       n−1   p    β(p+1,n−1).[image: ]

(5)∀n ∈ ℕand ∀p > 0, 	    β(p,n)=       (n−1)(n−2)⋅⋅⋅2⋅1       p(p+1)⋅⋅⋅(p+n−1)    .[image: ]

(6)∀m, n ∈ ℕ, 	    β(m,n)=       (m−1)!(n−1)!       (m+n−1)!    .[image: ]

(7)∀p, q > 0, 	    β(p,q)=            ∫     0     1                                  y                 p−1              +        y                 q−1                                            (1+y)                 p+q                                dy.[image: ]

(8)∀p, 0 < p < 1, 	    β(p,1−p)=            ∫     0     1                                  y                 p−1              +        y                 −p                           (1+y)                  dy.[image: ]

(9)∀p, 0 < p < 1, 	    β(p,1−p)=   π       sinπp    .[image: ]

(10)∀p, q > 0, 	    β(p,q)=       Γ(p)Γ(q)       Γ(p+q)    .[image: ]



Proof. (1) Integrating by parts, we get

	 




 
  β(p,q+1)=
   
    ∫
    0
    1
   
   
    
     q
     p
    
    
  
  
 
  x
  p
 
 
  
   (1−x)
  
   q−1
 
 dx=
  q
  p
 
 β(p+1,q).


[image: ]



(2)We have

	 




 
  β(p,q)=
   
    ∫
    0
    1
   
   
    
     x
     
      p−1
    
    
     
      (1−x)
     
      q−1
    
    dx.
  
  
 


[image: ]



So,

	 




 
  β(p,1)=
   
    ∫
    0
    1
   
   
    
     x
     
      p−1
    
    dx=
     1
     p
    
    .
  
  
 


[image: ]



(3)Taking q + 1 = n ∈ ℕ, we get

	 




 
  β(p,n)=
   
    n−1
   p
  
  β(p+1,n−1).


[image: ]



(4)Observing that 	 




 
  β(p,1)=
   1
   p
  
  ,


[image: ]

 we get by iteration

	 




 
  β(p,n)=
   
    1⋅2⋅⋅⋅(n−1)
   
    p(p+1)⋅⋅⋅(p+n−1)
  
  .


[image: ]



(5)If we take p = m ∈ ℕin the previous equation, we obtain

	 




 
  β(m,n)=
   
    (m−1)(n−1)!
   
    (m+n−1)!
  
  .


[image: ]



(6)

	 




 
  
   
    
     
      β(
       
        
         1
         2
        
        ,
         1
         2
        
        
      )=
       ∫
       0
       1
      
      
       x
       
        −
         1
         2
        
        
      
      
       
        (1−x)
       
        −
         1
         2
        
        
      
      dx    (x=
       u
       2
      
      )
    
   
   
    
     
                        =2
       ∫
       0
       1
      
      
       
        du
       
        
         
          1−
           u
           2
          
          
        
        
      
      
    
   
   
    
     
                       =π.
    
   
   
  




[image: ]



(7) We have

	 




 
  
   
    β(p,q)=
     
      ∫
      0
      
       +∞
     
     
      
       
        
         y
         
          p−1
        
        
       
        
         
          (1+y)
         
          p+q
        
        
      
      dy
    
    
   
  
 
 
  
                    =
    
     ∫
     0
     1
    
    
     
      
       
        y
        
         p−1
       
       
      
       
        
         (1+y)
        
         p+q
       
       
     
     dy+
   
   
  
   
    
     
      
       ∫
       1
       
        +∞
      
      
       
        
         
          y
          
           p−1
         
         
        
         
          
           (1+y)
          
           p+q
         
         
       
       dy
     
     
    
   ︸
  
  1
 
 (
  
   y with 
    1
    y
   
   in I
 )



 
                  =
   
    ∫
    0
    1
   
   
    
     
      
       y
       
        p−1
      
      +
       y
       
        q−1
      
      
     
      
       
        (1+y)
       
        p+q
      
      
    
    dy
  
  
   .





[image: ]



(8)For 0 < p < 1, we get

	 




 
  
   
    β(p,1−p)=
     
      ∫
      0
      ∞
     
     
      
       
        
         y
         
          p−1
        
        
       
        (1+y)
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     0
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        y
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       (1+y)
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    1
    ∞
   
   
    
     
      
       y
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      (1+y)
    
    dy
  
  
 



 
                         =
   
    ∫
    0
    1
   
   
    
     
      
       y
       
        p−1
      
      +
       y
       
        −p
      
      
     
      (1+y)
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(9)Recall that 	 




 
  
   1
   
    1+y
  
  =
   
    ∑
    
     n=0
    ∞
   
   
    
     
      (−1)
     n
    
    
     y
     n
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 whenever 0 < y < 1. Hence,

	 




 
  
   
    ∫
    0
    1
   
   
    
     
      
       y
       
        p−1
      
      
     
      1+y
    
    
  
  
 dy=
  
   ∑
   
    n=0
   ∞
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     p+n
   
   
 .
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Similarly, we have

	 




 
  
   
    ∫
    0
    1
   
   
    
     
      
       y
       
        −p
      
      
     
      1+y
    
    dy
  
  
 =
  
   ∑
   
    n=1
   ∞
  
  
   
    
     
      
       (−1)
      n
     
     
    
     p−n
   
   
 .
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Therefore,

	 




 
  β(p,1−p)=
   
    ∑
    
     n∈ℤ
   
   
    
     
      
       
        (−1)
       n
      
      
     
      p−n
    
    =
     π
     
      sinπp
    
    
  .
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(10) By setting t = y2 in the Γ integral, we obtain

	 




 
  Γ(p)=2
   
    ∫
    0
    
     +∞
   
   
    
     y
     
      2p−1
    
    
     e
     
      −
       y
       2
      
      
    
    dy.
  
  
 


[image: ]



Thus,

	 




 
  Γ(p)Γ(q)=4
   
    ∫
    0
    
     +∞
   
   
    
     
      ∫
      0
      
       +∞
     
     
      
       x
       
        2q−1
      
      
       y
       
        2p−1
      
      
       e
       
        −(
         x
         2
        
        +
         y
         2
        
        )
      
      
    
    
   dxdy.
 
 



[image: ]



Next, applying polar coordinates x = r cos θ and y = r sin θ, this yields that

	 




 
  
   
    Γ(p)Γ(q)=4
     
      ∫
      0
      
       +∞
     
     
      
       
        ∫
        0
        
         
          π
          2
         
         
       
       
        
         
          (r cosθ)
         
          2q−1
        
        
         
          (r sinθ)
         
          2p−1
        
        
      
      
     
   
   
  
   e
   
    −
     r
     2
    
    
  
  drdθ
 


 
                       =4
   
    ∫
    0
    
     +∞
   
   
    
     r
     
      2(p+q−1)
    
    
     e
     
      −
       r
       2
      
      
    
    dr
  
  
 
  
   ∫
   0
   
    +
     π
     2
    
    
  
  
   
    
     (cosθ)
    
     2q−1
   
   
    
     ( sinθ)
    
     2p−1
   
   
 
 
dθ



 
                       =4
   1
   2
  
  Γ(p+q)
   1
   2
  
  β(p,q)
 


 
                      =Γ(p+q)β(p,q).
 




[image: ]



[image: ]

The following result relates the differentiability of beta to Euler’s Γ function. The proof is an immediate consequence of the last property above.


Proposition 69. The function beta is differentiable and we have

	       ∂       ∂p    β(p,q)=β(p,q)(                  Γ′(p)           Γ(p)        −           Γ′(p+q)           Γ(p+q)          )=β(p,q)(ψ(p)−ψ(p+q)),[image: ]

where ψ is the so-called di- Gamma function defined by 	    ψ(p)=       Γ(p)       Γ(p)    .[image: ]



In the following, we introduce the complete and incomplete beta functions.


Definition 70. The complete Beta function is defined for a, b > 0 by

	    β(p;a,b)=       ∫    0    p               t           α−1                   (1−t)           b−1        dt.     [image: ]

The incomplete (regularized) beta function is

	       I   p    (a,b)=       β(p;a,b)       β(a,b)    ;     a,b>0.[image: ]




[image: ]
Fig. 4.1: Representations of the beta function.

Figure 4.1 illustrates the graph of the beta function.


4.2.3Theta function

The theta function appears in many areas, such as manifolds, quadratic forms, soliton theory, and quantum theory.


Definition 71. The function θ is defined for (z, τ) ∈ ℂ2 such that Im(τ) > 0, by

	    θ(z,τ)=       ∑         n∈ℤ               e           iπ       n       2            τ             e       2inπz    .[image: ]




Proposition 72. We have

(1)∀τ such that Im(τ) > 0, θ(., τ) is a holomorphic function on ℂ.

(2)θ(z + 1, τ) = θ(z, τ), ∀τ such that Im(τ) > 0.

(3)θ(z + τ, τ) = e−iπτe−2iπzθ(z, r).



Proof. (1) For all τ, the function 	 




 
  z↦
   e
   
    iπ
     n
     2
    
    τ
  
  
   e
   
    2iπnz
  
  


[image: ]

 is holomorphic on ℂ. Moreover, for all compact K ⊂ ℂ, we have

	 




 
  
   
    sup
   
    z∈K
  
  |
   e
   
    iπ
     n
     2
    
    τ
  
  
   e
   
    2iπnz
  
  |  ≤
   e
   
    −π
     n
     2
    
      Im(τ)
  
  
   e
   
    2πRn
  
  ,


[image: ]



with R such that K ⊂ D(0, R). Hence, the series 	 




 
  
   
    ∑
    n
   
   
    
     e
     
      −π
       n
       2
      
      Im(τ)
    
    
     e
     
      Rn
    
    
  


[image: ]

 is convergent, which yields that 	 




 
  
   
    ∑
    n
   
   
    
     e
     
      iπ
       n
       2
      
      τ
    
    
     e
     
      2iπnz
    
    
  


[image: ]

 is holomorphic.

(2)∀z, τ, we have

	 




 
  
   
    θ(z+1,τ)=
     
      ∑
      
       n∈ℤ
     
     
      
       e
       
        iπ
         n
         2
        
        τ
      
      
       e
       
        2iπn(z+1)
      
      
    
   
  
  
   
                         =
     
      ∑
      
       n∈ℤ
     
     
      
       e
       
        iπ
         n
         2
        
        τ
      
      
       e
       
        2iπnz
      
      
       
        (
         e
         
          2iπ
        
        )
       n
      
      
    
   
  
  
   
                        =
     
      ∑
      
       n∈ℤ
     
     
      
       e
       
        iπ
         n
         2
        
        τ
      
      
       e
       
        2iπnz
      
      
    
   
  
  
   
                       =θ(z,τ).
   
  
  
   
                        
   
  
 
 


[image: ]



(3)∀z, τ, we have

	 




 
  
   
    
     
      θ(z+τ,τ)=
       ∑
       
        n∈ℤ
      
      
       e
       
        iπ
         n
         2
        
        τ
      
      
       e
       
        2iπn(z+τ)
      
      
    
   
   
    
     
      
       
                             =
         ∑
         
          n∈ℤ
        
        
         e
         
          iπ
           n
           2
          
          τ
        
        
         e
         
          2iπnz
        
        
         (
          e
          
           2iπ
         
         )
         n
        
        
       
      
      
       
                            =
         ∑
         
          n∈ℤ
        
        
         e
         
          iπ(
           n
           2
          
          +2n)τ
        
        
         e
         
          2iπnz
        
        
       
      
     
     
    
   
   
    
     
      
       
                            =
         ∑
         
          n∈ℤ
        
        
         e
         
          iπ(
           
            (n+1)
           2
          
          −1)τ
        
        
         e
         
          2iπnz
        
        
       
      
      
       
                           =
         e
         
          −iπτ
        
        
         
          ∑
          
           n∈ℤ
         
         
          
           e
           
            iπ(
             
              (n+1)
             2
            
            −1)τ
          
          
           e
           
            2iπnz
          
          
        
       
      
      
       
                           =
         e
         
          −iπτ
        
        
         
          ∑
          
           n∈ℤ
         
         
          
           e
           
            iπ
             n
             2
            
            τ
          
          
           e
           
            2iπ(n−1)z
          
          
        
       
      
     
     
    
   
   
    
     
                         =
       e
       
        −iπτ
      
      
       e
       
        −2iπz
      
      θ(z,τ).
    
   
   
    
     
                          
    
   
   
  


[image: ]



[image: ]


Proposition 73.

(1)For all τ such that Im(τ) > 0, we have

	                τ     i            θ(z,τ)=   e                  −iπ       z       2                 τ        θ    (            z     τ        ,           −1     τ          ).[image: ]

(2)For t > 0, let Θ(t) = θ(0, it). Then,

	       t    Θ(t)=Θ(            1     t          ).[image: ]



Proof. Denote for 	 




 
  x∈ℝ,f(x)=
   e
   
    iπ
     x
     2
    
    τ
  
  
   e
   
    2iπxz
  
  .


[image: ]

 From the well-known Poisson summation formula, we obtain

	 




 
  θ(z,τ)=
   
    ∑
    
     n∈ℤ
   
   
    f(n)
  =
   
    ∑
    
     n∈ℤ
   
   
    
     f
     ^
    
    (n)
  .


[image: ]



On the other hand, note that

	 




 
  f(x)=
   G
   α
  
  (
   
    x+
     z
     τ
    
    
  )
   e
   
    
     
      −iπ
       z
       2
      
      
     r
    
    
  
    with  α=−2iπτ   and   
   G
   α
  
  (t)=
   e
   
    −
     
      α
       t
       2
      
      
     2
    
    
  
  .


[image: ]





Therefore,

	 




 
  
   
    
     f
     ^
    
    (ω)=
     
      
       G
       α
      
      
     ^
    
    (
     
      .+
       z
       τ
      
      
    )(ω)
     e
     
      
       
        −iπ
         z
         2
        
        
       τ
      
      
    
    
   
  
  
   
               =
     e
     
      2iπ
       z
       τ
      
      ω
    
    e
     
      −2
       π
       2
      
      
       ω
       2
      
      
     α
    
    
     
      
       
        2π
       α
      
      
    
    
     e
     
      
       
        −iπ
         z
         2
        
        
       τ
      
      
    
    
   
  
  
   
               =
     e
     
      2iπ
       z
       τ
      
      ω
    
    
     e
     
      
       
        π
         ω
         2
        
        
       
        iτ
      
      
    
    
     
      
       i
       
        −iτ
      
      
    
    
     e
     
      
       
        −iπ
         z
         2
        
        
       τ
      
      
    
    
   
  
  
   
               =
     e
     
      2iπ
       z
       τ
      
      ω
    
    
     e
     
      
       
        −iπ
         ω
         2
        
        
       
        iτ
      
      
    
    
     
      
       i
       τ
      
      
    
    
     e
     
      
       
        −iπ
         z
         2
        
        
       τ
      
      
    
    .
   
  
 
 


[image: ]



Hence,

	 




 
  
   
    ∑
    
     n∈ℤ
   
   
    
     f
     ^
    
    (n)=
     
      
       i
       τ
      
      
    
    
     e
     
      
       
        −iπ
         z
         2
        
        
       τ
      
      
    
    
  
   
    ∑
    
     n∈ℤ
   
   
    
     e
     
      2iπ
       z
       τ
      
      n
    
    
     e
     
      
       
        −iπ
         n
         2
        
        
       τ
      
      
    
    
  =
   
    
     i
     τ
    
    
  
  
   e
   
    
     
      −iπ
       z
       2
      
      
     τ
    
    
  
  θ(
   
    
     z
     τ
    
    ,
     
      −1
     τ
    
    
  ).


[image: ]



Consequently,

	 




 
  θ(z,τ)=
   
    
     i
     τ
    
    
  
  
   e
   
    
     
      −iπ
       z
       2
      
      
     τ
    
    
  
  θ(
   
    
     z
     τ
    
    ,
     
      −1
     τ
    
    
  ),


[image: ]



or equivalently,

	 




 
  
   
    
     τ
     i
    
    
  
  θ(z,τ)=
   e
   
    
     
      −iπ
       z
       2
      
      
     τ
    
    
  
  θ(
   
    
     z
     τ
    
    ,
     
      −1
     τ
    
    
  ).


[image: ]



[image: ]

4.2.4Riemann zeta function

The Riemann zeta function is often known in number theory and in particular in the study of the distribution of prime numbers.


Definition 74. The Riemann zeta function is defined for x > 1 by

	    ς(x)=       ∑         n=1         +∞               1                  n       x                      .[image: ]




Remark 75. The definition may be extended to complex numbers x = a + ib with a > 1.




Proposition 76. The ζ Riemann’s function satisfies the so-called Euler’s multiplication

	    ς(x)=       ∏         p∈P               1           (1−       p               −x            )          ,      ∀x>1,[image: ]

where 𝓟 is the set of prime numbers.



Proof. For x > 1, we have

	 




 
  ς(x)=1+
   1
   
    
     2
     x
    
    
  
  +
   1
   
    
     3
     x
    
    
  
  +
   1
   
    
     4
     x
    
    
  
  +
   1
   
    
     5
     x
    
    
  
  +⋅⋅⋅


[image: ]



Thus,

	 




 
  
   1
   
    
     2
     x
    
    
  
  ς(x)=
   1
   
    
     2
     x
    
    
  
  +
   1
   
    
     4
     x
    
    
  
  +
   1
   
    
     6
     x
    
    
  
  +
   1
   
    
     8
     x
    
    
  
  +
   1
   
    
     
      10
     x
    
    
  
  +⋅⋅⋅


[image: ]



Or equivalently,

	 




 
  (
   
    1−
     1
     
      
       2
       x
      
      
    
    
  )ς(x)=1+
   1
   
    
     3
     x
    
    
  
  +
   1
   
    
     5
     x
    
    
  
  +
   1
   
    
     7
     x
    
    
  
  +
   1
   
    
     9
     x
    
    
  
  +⋅⋅⋅


[image: ]



Multiplying again by 	 




 
  
   1
   
    
     3
     x
    
    
  
  ,


[image: ]

 we get

	 




 
  
   1
   
    
     3
     x
    
    
  
  (
   
    1−
     1
     
      
       2
       x
      
      
    
    
  )ς(x)=
   1
   
    
     3
     x
    
    
  
  +
   1
   
    
     9
     x
    
    
  
  +
   1
   
    
     
      15
     x
    
    
  
  +
   1
   
    
     
      21
     x
    
    
  
  +
   1
   
    
     
      27
     x
    
    
  
  +⋅⋅⋅


[image: ]



Hence,

	 




 
  (
   
    1−
     1
     
      
       3
       x
      
      
    
    
  )(
   
    1−
     1
     
      
       2
       x
      
      
    
    
  )ς(x)=1+
   1
   
    
     5
     x
    
    
  
  +
   1
   
    
     7
     x
    
    
  
  +⋅⋅⋅


[image: ]



Next, by following the same process we get for p ∈ 𝓟,

	 




 
  (
   
    1−
     1
     
      
       p
       x
      
      
    
    
  )⋅⋅⋅(
   
    1−
     1
     
      
       
        11
       x
      
      
    
    
  )(
   
    1−
     1
     
      
       7
       x
      
      
    
    
  )(
   
    1−
     1
     
      
       5
       x
      
      
    
    
  )(
   
    1−
     1
     
      
       3
       x
      
      
    
    
  )(
   
    1−
     1
     
      
       2
       x
      
      
    
    
  )ς(x)=1+
   
    ∑
    
     n>p
   
   
    
     1
     
      
       n
       x
      
      
    
    
  .


[image: ]



Next, note that the last summation goes to 0 as p →∞. Therefore,

	 




 
  ς(x)
   
    ∏
    
     p∈P
   
   
    (1−
     p
     x
    
    )
  =1.


[image: ]



Hence,

	 




 
  ς(x)=
   
    ∏
    
     p∈P
   
   
    
     1
     
      (1−
       p
       
        −x
      
      )
    
    
  .


[image: ]



[image: ]


Proposition 77.

(1)ζ is continuous, nonincreasing, and convex on ]1,+∞[.

(2)ζ is 𝓒∞ on ]1,+∞[ and

	       ς       (k)    (x)=       (−1)   k            ∑         n=2    ∞                                    (1n n)       k                              n       x                      ;   ∀k∈ℕ and x>1.[image: ]



Proof. (1) Let a > 1. For n ∈ ℕ∗, the function 	 




 
  x↦
   1
   
    
     n
     x
    
    
  
  


[image: ]

 is continuous on [a,+∞[. Moreover, ∀x ∈ [a,+∞[,

	 




 
  |
   1
   
    
     n
     x
    
    
  
  |=
   1
   
    
     n
     x
    
    
  
  ≤
   1
   
    
     n
     a
    
    
  
  .


[image: ]



Thus, the series 	 




 
  
   
    ∑
    n
   
   
    
     1
     
      
       n
       a
      
      
    
    
  


[image: ]

 is normally convergent. Hence, the sum ζ is continuous on [a,+∞[. This being true for all real a ∈]1,+∞[. Henceforth, ζ is continuous on ]1,+∞[.

Next, the monotony of ζ follows from the fact that for all n ∈ ℕ, the functions 	 




 
  x↦
   1
   
    
     n
     x
    
    
  
  


[image: ]

 is nonincreasing on ]1,+∞[.

Finally, to prove the convexity of the function ζ , recall that for all n ∈ ℕ, the functions 	 




 
  x↦
   1
   
    
     n
     x
    
    
  
  


[image: ]

 is convex on ]1,+∞[. So, ζ is convex on ]1,+∞[ as a sum of convex functions ]1,+∞[.

(2)Let a > 1. For all n ∈ ℕ, the function 	 




 
  
   f
   n
  
  :x↦
   1
   
    
     n
     x
    
    
  
  ,


[image: ]

 is 𝓒∞ on [a,+∞[ and for x ≥ a and k ≥ 1, we have

	 




 
  |
   f
   n
   k
  
  (x)|=| 
   
    
     (−1)
    k
   
   
    
     
      
       (1n n)
      k
     
     
    
     
      n
      a
     
     
   
    |≤
   
    
     
      (1n n)
     k
    
    
   
    
     n
     a
    
    
  
  .


[image: ]



Note that 	 




 
  
   
    ∑
    n
   
   
    
     
      
       
        (1n n)
       k
      
      
     
      
       n
       α
      
      
    
    
  


[image: ]

 converges by the Bertrand rule of numerical series. So, we deduce that for k ≥ 1, the series 	 




 
  
   
    ∑
    n
   
   
    
     f
     n
     
      (k)
    
    
  


[image: ]

 is normally convergent on [a,+∞[. As a result, ζ is 𝓒k on [a,+∞[ for all k. Hence, it is 𝓒∞ on [a,+∞[ for all a > 1. So, it is 𝓒∞ on ]1,+∞[ and the derivatives are obtained as stated above.

[image: ]


Proposition 78. The ζ function satisfies

–lim→+∞ ζ(x) = 1.

–lim→1+ ζ(x) = +∞.



Proof. (1) Note first that the series 	 




 
  
   
    ∑
    
     n≥1
   
   
    
     1
     
      
       n
       2
      
      
    
    
  


[image: ]

 converges. Henceforth, the series ζ(x) is uniformly convergent on the interval [2,+∞[. Furthermore,

	 




 
  
   
    lim
   
    x→+∞
  
  
   1
   
    
     n
     x
    
    
  
  ={ 
   
    
     1,          for  n=1,
    
   
   
    
     0,         for n>1.
    
   
  
   


[image: ]



So, by applying the limit on ζ(x) at infinity we get

	 




 
  
   
    lim
   
    x→+∞
  
  ς(x)=1+
   
    ∑
    
     n≥2
   
   
    0=1.
  


[image: ]



(2)holds from the fact that ζ is nonincreasing on ]1,+∞[ and that 	 




 
  
   
    ∑
    
     n≥1
   
   
    
     1
     n
    
    
  =+∞.


[image: ]



[image: ]


Proposition 79. The ζ function can be extended on the band Ω = {z ∈ ℂ; Re(s) > 1} in a holomorphic function. With higher derivative ζ(k), k ∈ ℕ is given by

	       ς       (k)    (z)=       ∑         n=1         +∞                                    (−1)       k            1       n       k            n                  n       z                      .[image: ]



Proof. (1) The function 	 




 
  
   f
   n
  
  (z)=
   1
   
    
     n
     z
    
    
  
  ,n≥1


[image: ]

 is holomorphic, and the series Σn fn is uniformly convergent on all sets of the form Ωa = {z ∈ ℂ; Re(z) > a} for all a > 1. So the sum ζ is holomorphic on Re(z) > 1.

(2)For k ∈ ℕ, we have 	 




 
  
   f
   n
   
    (k)
  
  (z)=
   
    
     
      (−1)
     k
    
    1
     n
     k
    
    n
   
    
     n
     z
    
    
  
  .


[image: ]

 On any set Ωa, the series 	 




 
  
   
    ∑
    n
   
   
    
     f
     n
     
      (k)
    
    
  


[image: ]

 is uniformly convergent. Hence, ζ is 𝓒k and its derivative of order k is given by (4.7).

	 




 □


[image: ]




Proposition 80. The function ζ has a meromorphic extension on ℂ, with a single pole in 1 which is simple.



To prove this result, we need to recall that the well-known Bernoulli numbers, denoted by Bn, form a sequence of rational numbers. These numbers were first studied by Jacques Bernoulli in the context of computing summations of the form Sm(n) = 	 




 
  
   
    ∑
    
     k=0
    
     n−1
   
   
    
     k
     m
    
    
  


[image: ]

 for different integer values m. It holds that these quantities are polynomials of the variable n with degree m + 1. Hence, we can write them in the form

	 




 
  
   S
   m
  
  (n)=
   1
   
    m+1
  
  
   
    ∑
    
     k=0
    m
   
   
    
     C
     
      m+1
     k
    
    
  
   B
   k
  
  
   n
   
    m+1−k
  
  .


[image: ]



The numbers Bk are called the Bernoulli numbers. These numbers may also be defined by means of a generator function as

	 




 
  
   x
   
    
     e
     x
    
    −1
  
  =
   
    ∑
    
     k=0
    ∞
   
   
    
     
      
       B
       k
      
      
     
      k!
    
    
  
   x
   k
  
  .


[image: ]



Generally, these numbers may be extended to polynomials. The well-known Bernoulli polynomials are obtained from the following relation:

	 




 
  
   
    z
     e
     
      xz
    
    
   
    
     e
     z
    
    −1
  
  =
   
    ∑
    
     k=0
    ∞
   
   
    
     
      
       B
       k
      
      (x)
     
      k!
    
    
  
   x
   k
  
  .


[image: ]



It yields a sequence of polynomials of degree k in x. For more details, refer to [67]. These are applied in numerous fields. We recall here one application that will be used later. It consists of the well-known Euler–Maclaurin summation rule for functions.


Proposition 81. Let f be 𝓒2k function on [p, q], p, q ∈ ℤ and k ∈ ℕ. It holds that

	                      f(p)+f(q)     2        +           ∑             i=p+1             q−1                f(i)=               ∑             j=1      k                                        B                   2j                               (2j!)                (                  f               (2j−1)            (q)−       f               (2j−1)            (p)    )                                                                     +           ∫      p      q                f(x)dx+       R               p,q       k                       ,   [image: ]

where 	       R       p,q   k    [image: ] is the rest

		      R       p,q   k    =−   1       (2k)!           ∫    p    q               f           (2k)        (x)     B           2k        (x−[x])dx     [image: ]

where B2k(.) is the Bernoulli polynomial of degree 2k.



Proof of Proposition 80. By applying Euler–Maclaurin summation to the function 	
	



 
  f(x)=
   1
   
    
     
      (1+x)
     z
    
    
  
  


[image: ]

 on the interval [0, n], we get

	
	



 
  
   
    1+
     
      (1+n)
     
      −z
    
    
   2
  
  +
   
    ∑
    
     i=1
    
     n−1
   
   
    f(i)=
     
      ∫
      0
      n
     
     
      f(x)dx+
    
    
   
 
  
   ∑
   
    j=1
   k
  
  
   
    
     
      b
      
       2j
     
     
    
     (2j)!
   
   (
    f
    
     (2j−1)
   
   (n)−
    f
    
     (2j−1)
   
   (0))+
    R
    k
   
   
 


[image: ]



Letting n tend to +∞, we will have

	
	



 
  
   1
   2
  
  +
   
    
     
      
       ∫
       0
       
        +∞
      
      
       
        
         (1+t)
        
         −z
       
       dt
     
     
    
   ︸
  
  
   
    
     (z−1)
    
     −1
   
   
 
 −
  
   ∑
   
    l=1
   p
  
  
   
    
     
      b
      
       2l
     
     
    
     2l!
   
   
    f
    
     (2l−1)
   
   (0)−
    
     ∫
     0
     ∞
    
    
     
      
       
        B
        
         2p
       
       (t)
      
       (2p)!
     
     
      f
      
       (2p)
     
     (t)
   
   
  dt,



[image: ]



where

	
	



 
  
   f
   
    (k)
  
  (x)=
   
    −z(−z−1)⋯(−z−k+1)
   
    
     
      (1+x)
     
      z+k
    
    
  
  =
   
    (−1)
   k
  
  
   
    z(z+1)⋯(z+k−1)
   
    
     
      (1+x)
     
      z+k
    
    
  
  .


[image: ]



So for Re(z) > 1,

	
	



 
  ζ(z)=
   
    
     
      1
      2
     
     +
      1
      
       z−1
     
     
    ︸
   
   
    meromorphic
  
  +
   
    
     
      
       ∑
       
        l=1
       p
      
      
       
        
         
          b
          
           2l
         
         
        
         (2l)!
       
       z…(z+2l−2)
     
    ︸
   
   
    holomorphic function
  
  +
   I
   p
  
  


[image: ]



with

	
	



 
  
   I
   p
  
  (z)=−
   
    ∫
    0
    
     +∞
   
   
    
     
      z⋯(z+2p−1)
     
      
       
        (1+t)
       
        z+2p
      
      
    
    
     B
     
      2p
    
    (t)dt.
  
  
 


[image: ]



Now, the function 	
	



 
  z↦
   
    z⋯(z+2p−1)
   
    
     
      (1+t)
     
      z+2p
    
    
  
  
   B
   
    2p
  
  (t)


[image: ]

 is holomorphic and we have for all δ > 0 and all z; Re(z) ≥ 1 − 2p + δ,

	
	



 
  | 
   
    
     z⋯(z+2p−1)
    
     
      
       (1+t)
      
       z+2p
     
     
   
   
    B
    
     2p
   
   (t) |≤
   
    |
     b
     
      2p
    
    |z⋯(z+2p−1)
   
    
     
      (1+t)
     
      1+δ
    
    
  
  .


[image: ]



So, Ip is holomorphic on Re(z) > 1 − 2p.

[image: ]


Proposition 82. The function ζ can be expressed in the integral form as follows.

		 
 
  ζ(z)
   1
   
    Γ(z)
  
  =
   ∫
   1
   0
  
  
   
    
     
      (−1n u)
     
      z−1
    
    
   
    1−u
  
  du=
   1
   
    Γ(z)
  
  
   ∫
   0
   
    +∞
  
  
   
    
     t
     
      z−1
    
    
   
    
     e
     t
    
    −1
  
  dt,     Re(z)>1,

[image: ]

where Γ is the Euler function.



Proof. We have

	
	



 
  ζ(z)Γ(z)=
   
    ∑
    
     n≥1
   
   
    
     
      Γ(z)
     
      
       n
       z
      
      
    
    =
  
   
    ∑
    
     n≥1
   
   
    
     
      ∫
      0
      
       +∞
     
     
      
       e
       
        −u
      
      
    
    
   
    
     (
      
       
        u
        n
       
       
     )
    
     z−1
   
   
    
     du
    n
   
   .
 


[image: ]



By setting u = nt, we obtain

	
	



 
  
   
    ∫
    0
    
     +∞
   
   
    
     e
     
      −u
    
    
  
  
 
  
   (
    
     
      u
      n
     
     
   )
  
   z−1
 
 
  
   du
  n
 
 =
  
   ∫
   0
   
    +∞
  
  
   
    e
    
     −nt
   
   
    t
    
     z−1
   
   dt
 
 
.


[image: ]



Hence, using the monotone convergence theorem, we obtain

	
	



 
  ζ(z)Γ(z)=
   
    ∑
    
     n≥1
   
   
    
     
      ∫
      0
      
       +∞
     
     
      
       e
       
        −nt
      
      
       t
       
        z−1
      
      dt
    
    
   =
    
     ∫
     0
     
      +∞
    
    
     
      e
      
       −t
     
     
      1
      
       1−
        e
        
         −t
       
       
     
     
      t
      
       z−1
     
     dt
   
   
  =
   
    ∫
    0
    
     +∞
   
   
    
     
      
       t
       
        z−1
      
      
     
      
       e
       t
      
      −1
    
    dt.
  
  
 



[image: ]



[image: ]


Proposition 83. The function ζ satisfies the following quasi-induction rule:

		   ζ(x)=   2   x       π       x−1    sin(                  πx     2          )Γ(1−x)ζ(1−x);     ∀x  ∈ℂ\{0,1}.[image: ]



Proof. Let ε be such that 0 < ε < π and n ∈ ℕ. Consider the path 	
	



 
  
   C
   ε
   n
  
  


[image: ]

 represented in Figure 4.2 and the function

	
	



 
  
   f
   s
  
  (z)=
   
    
     
      (−z)
     
      s−1
    
    
   
    
     e
     z
    
    −1
  
  


[image: ]



with s being fixed. So, applying the residue theorem and letting R → +∞, ε → 0, and next n → +∞, we get

	
	



 
  2iπ
   
    (2π)
   
    s−1
  
  ζ(1−s)2sin(
   
    
     
      πx
     2
    
    
  )=Γ(s)ζ(s)2isin(sπ).


[image: ]



Next, using Proposition 63, we get

	
	



 
  
   
    (2π)
   
    s−1
  
  ζ(1−s)2sin(
   
    
     
      πx
     2
    
    
  )=ζ(s)
   1
   
    Γ(1−s)
  
  .


[image: ]



Or equivalently

	
	



 
  ζ(s)=
   2
   s
  
  
   π
   
    s−1
  
  sin(
   
    
     
      πx
     2
    
    
  )ζ(1−s)Γ(1−s).


[image: ]



[image: ]


[image: ]
Fig. 4.2: The path 	
	



 
  
   C
   ε
   n
  
  .


[image: ]



Finally, Figure 4.3 graphically illustrates the ζ function.


4.2.5Hypergeometric function

The origin of hypergeometric functions goes back to the early 19th century, when Gauss studied the second-order ordinary differential equation

	
	



 
  x(1−x)
   y
   "
  
  +[c−(a+b+1)x]y'−aby=0


[image: ]



with some constants a, b, and c in ℝ. Next, by developing a solution of (4.11) on a series of form Σn αnxx, we obtain for c, a − b, and c − a − b not integers, a general solution given by

	
	



 
  y=F(a,b,c,x)+B
   x
   
    1
     −
     c
    
    
  
  F(a−c+1,b−c+1,2−c,x)


[image: ]



where F is the series

	
	



 
  F(a,b,c,x)=
   
    Γ(c)
   
    Γ(a)Γ(b)
  
  
   
    ∑
    
     n=0
    ∞
   
   
    
     
      Γ(a+n)Γ(b+n)
     
      Γ(c+n)
    
    
     
      
       x
       n
      
      
     
      n!
    
    ,
  


[image: ]




[image: ]
Fig. 4.3: General shape of the zeta function for (−10) to +10.

which is often denoted by 2F1(a, b, c, x), converges uniformly inside the unit disk and is known as the hypergeometric function.

When a, b, and c are integers, the hypergeometric function can be reduced to a transcendental function such as

2F1(1, 1; 2; x) = −x−1 ln(1 − x) .


Theorem 84. F is differentiable with respect to x and

		          ∂F       ∂x    (a,b,c,x)=       ab   c    F(a+1,b+1,c+1,x).[image: ]





Proof. Write

	
	



 
  F(a,b,c,x)=
   
    ∑
    
     n=0
    ∞
   
   
    
     α
     n
    
    (a,b,c)
     x
     n
    
    ,
  


[image: ]



where

	
	



 
  
   α
   n
  
  =
   
    Γ(c)
   
    Γ(a)Γ(b)
  
  
   
    Γ(a+n)Γ(b+n)
   
    Γ(c+n)Γ(n+1)
  
  .


[image: ]



Inside its convergence domain, we have

	
	



 
  
   
    ∂F
   
    ∂x
  
  =
   
    ∑
    
     n=0
    ∞
   
   
    (n+1)
     α
     n
    
    +
     1
     
      
       x
       n
      
      
    
    
  .


[image: ]



Observe next that

	
	



 
  
   
    
     
      (n+1)
       α
       
        n+1
      
      (a,b,c)=
       
        a(a+1)⋯(a+n)b(b+1)⋯(b+n)
       
        n!c(c+1)⋯(c+n)
      
      
    
   
   
    
     
                                            =
       
        ab
       c
      
      
       α
       n
      
      (a+1,b+1,c+1).
    
   
   
  



[image: ]



Hence,

	
	



 
  
   
    ∂F
   
    ∂x
  
  =
   
    ab
   c
  
  
   
    ∑
    
     n=0
    ∞
   
   
    (a+1,b+1,c+1)
     x
     n
    
    
     
      ab
     c
    
    F(a+1,b+1,c+1,x).
  


[image: ]



[image: ]


Theorem 85. For 0 < Re b < Re c, Re a < Re c − Re b, and |x| ≤ 1, it holds that

	                  Γ(B)Γ(c−b)       Γ(c)    F(a,b;c;x)=       ∫    0    1               t           b−1                   (1−t)           c−b−1                  (1−tx)     −a  dt.[image: ]



Proof. Let, for |x| < 1,

	
	



 
  I=
   
    ∫
    0
    1
   
   
    
     t
     
      b−1
    
    
  
  
 
  
   (1−t)
  
   c−b−1
 
 
  
   (1−tx)
  
   −a
 
 dt.


[image: ]



It is straightforward that I is a convergent integral. Next, we have

	
 
       



 
  
   
    
     (1−tx)
     
      −a
    
    =
     
      ∑
      
       n=0
      ∞
     
     
      
       
        (−a)(−a−1)⋯(−a−n−1)
       
        n!
      
      
    
     (tx)
     n
    
    
   
  
  
   
                      =
     
      ∑
      
       n=0
      ∞
     
     
      
       
        (a)(a+1)⋯(a+n−1)
       
        n!
      
      
    
    (tx)
     n
    
    
   
  
  
   
                     =
     
      ∑
      
       n=0
      ∞
     
     
      
       
        Γ(a+n)
       
        Γ(a)Γ(n+1)
      
      
    
     t
     n
    
    
     x
     n
    
    .
   
  
 
 


[image: ]



Hence,

	
	



 
  
   
    I=
     
      ∑
      
       n=0
      ∞
     
     
      
       
        Γ(a+n)
       
        Γ(a)Γ(n+1)
      
      
       x
       n
      
      
       
        ∫
        0
        1
       
       
        
         t
         
          b+n−1
        
        
      
      
     
      
       (1−t)
      
       c−b−1
     dt
     
   
  
 
 
  
          =
    
     ∑
     
      n=0
     ∞
    
    
     
      
       Γ(a+n)
      
       Γ(a)Γ(n+1)
     
     
      x
      n
     
     
      
       Γ(b+n)Γ(c−b)
      
       Γ(c+n)
     
     
   
  
 
 
  
          =
    
     Γ(c−b)Γ(b)
    
     Γ(a)
   
   
    
     ∑
     
      n=0
     ∞
    
    
     
      
       Γ(b+n)Γ(c−b)
      
       Γ(c+n)Γ(n+1)Γ(b)
     
     
      x
      n
     
     
   
  
 
 
  
          =
    
     Γ(c−b)Γ(b)
    
     Γ(a)
   
   F(a,b;c;x).
  
 



[image: ]



[image: ]


Theorem 86.

		   F(a,b,c,1)=       Γ(c)Γ(c−a−b)       Γ(c−a)Γ(c−b)    .[image: ]



Proof. Taking x = 1 in the integral expression of the hypergeometric function in Theorem 85, one obtains

	
	



 
  
   
    Γ(b)Γ(c−b)
   
    Γ(c)
  
  F(a,b;c;1)=
   
    ∫
    0
    1
   
   
    
     t
     
      b−1
    
    
     
      (1−t)
     
      c−a−b−1
    
    
  
  
 dt=
  
   Γ(b)Γ(c−a−b)
  
   Γ(c−a)
 
 .


[image: ]



Therefore,

	
	



 
  f(a,b,c,1)=
   
    Γ(c)Γ(c−a−b)
   
    Γ(c−a)Γ(c−b)
  
  .


[image: ]



	
	



 □


[image: ]




Proposition 87. We have

(1)F(n, 1, 1, x) = (1 − x)−n.

(2)xF(1, 1, 2, x) = −log(1 − x).

(3)		          lim       β↔∞    F(1,β,1   x   β    )=   e   x    .[image: ]

(4)		          lim       β→∞    xF(α,β,   3   2    ,       −     x     2               4αβ    )=sinx.[image: ]

(5)		          lim       β→∞    xF(α,β,   1   2    ,       −     x     2               4αβ    )=cosx.[image: ]

(6)		   xF(   1   2    ,   1   2    ,   1   3    ,   x   2    )=arcsinx.[image: ]

(7)		   xF(   1   2    ,1,   3   2    ,−   x   2    )arccosx.[image: ]



Proof. (1) Denote y(x) = (1 − x)−n. It is straightforward that y is a solution of (4.11) for a = n, and b = c = 1, and with y(0)= 1. So, (4.12) says that

y(x) = F(n, 1, 1, x) + Bx1−1F(n − 1 + 1, 1 − 1 + 1, 2 − 1, x) = CF(n, 1, 1, x)

with B and thus C being constants. Observing next that F (n, 1, 1, 0) = 1, we get C = 1 or equivalently B = 0.

(2)Again the function y(x) = −x−1 log(1 − x) is a solution of (4.11) for a = b = 1, and c = 2. Hence, it is of the form

y(x) = F(1, 1, 2, x) + Bx1−2F(0, 0, 0, x) ,

or equivalently,

− log(1 − x) = xF(1, 1, 2, x) + Bex ,

which by setting x = 0 gives B = 0.

(3)Recall firstly that

	
	



 
  F(
   
    1,β,1,
     x
     β
    
    
  )=
   
    Γ(1)
   
    Γ(1)Γ(β)
  
  
   
    ∑
    
     n=0
    ∞
   
   
    
     
      Γ(1+n)Γ(β+n)
     
      Γ(1+n)
    
    
  
   
    
     x
     n
    
    
   
    
     β
     n
    
    n!
  
  ,


[image: ]



which means that

	
	



 
  F(
   
    1,β,1,
     x
     β
    
    
  )=
   
    ∑
    
     n=0
    ∞
   
   
    
     
      Γ(β+n)
     
      
       β
       n
      
      Γ(β)
    
    
     
      
       x
       n
      
      
     
      n!
    
    .
  


[image: ]



So, let K ∈ ℕ be fixed such that 2|x| ≤ K and denote

	
	



 
  
   u
   n
  
  (β)=
   
    Γ(β+n)
   
    
     β
     n
    
    Γ(β)
  
  
   
    
     x
     n
    
    
   
    n!
  
  .


[image: ]



It is straightforward that for β ≥ K, we have

	
	



 
  |
   u
   n
  
  (β)|     ≤     
   v
   n
  
  =|
   u
   n
  
  (K)|=
   
    Γ(K+n)
   
    
     K
     n
    
    Γ(K)
  
  
   
    |x
     |
     n
    
    
   
    n!
  
  .


[image: ]



Next, observe that

	
	



 
  
   
    lim
   
    n→+∞
  
  
   
    
     v
     n
    
    +1
   
    
     v
     n
    
    
  
  =
   
    |x|
   K
  
  <1.


[image: ]



Hence, the D’Alembert rule affirms that the series 	
	



 
  F(1,β,1,
   x
   β
  
  )


[image: ]

 converges uniformly in β in the interval [K,+∞[. Observing now that

	
	



 
  
   
    lim
   
    β→+∞
  
       
   u
   n
  
  (β)=1,


[image: ]



we get

	
	



 
  
   
    lim
   
    β→+∞
  
  F(
   
    1,β,1,
     x
     β
    
    
  )=
   
    ∑
    
     n=0
    ∞
   
   
    
     
      
       x
       n
      
      
     
      n!
    
    =
     e
     x
    
    .
  


[image: ]



(4) Recall that

	
	



 
  F(
   
    α,β,
     3
     2
    
    ,
     
      −
       x
       2
      
      
     
      4αβ
    
    
  )=
   
    Γ(
     3
     2
    
    )
   
    Γ(α)Γ(β)
  
  
   
    ∑
    
     n=0
    ∞
   
   
    
     
      Γ(α+n)Γ(β+n)
     
      Γ(
       3
       2
      
      +n)
    
    
  
   
    
     
      (−1)
     n
    
    
     x
     
      2n
    
    
   
    
     4
     n
    
    
     α
     n
    
    
     β
     n
    
    n!
  
  .


[image: ]



Denote

	
	



 
  
   σ
   n
  
  (α)=
   
    Γ(α+n)
   
    
     α
     n
    
    Γ(α)
  
  
   
    
     x
     n
    
    
   
    n!
  
  .


[image: ]



We get

	
	



 
  F(
   
    α,β,
     3
     2
    
    ,
     
      −
       x
       2
      
      
     
      4αβ
    
    
  )=
   
    ∑
    
     n=0
    ∞
   
   
    
     σ
     n
    
    (α)
     α
     n
    
    (β)
     
      Γ(
       3
       2
      
      )
     
      Γ(
       3
       2
      
      +n)
    
    
     
      
       
        (−1)
       n
      
      
       x
       
        2n
      
      
     
      
       4
       n
      
      n!
    
    
  .


[image: ]



Using similar arguments as for (3) above and the properties of Euler’s Γ function, we get

	
	



 
  
   
    lim
   
    α,β→+∞
  
  F(
   
    α,β,
     3
     2
    
    ,
     
      −
       x
       2
      
      
     
      4αβ
    
    
  )=
   
    ∑
    
     n=0
    ∞
   
   
    
     
      
       
        (−1)
       n
      
      
       x
       
        2n
      
      
     
      (2n+1)!
    
    =
     
      sinx
     x
    
    .
  


[image: ]



(5)Follows by quite the same techniques as the previous assertion.

(6)Observe that

	
	



 
  F(
   
    
     1
     2
    
    ,
     1
     2
    
    ,
     3
     2
    
    ,
     x
     2
    
    
  )=
   1
   
    2Γ(
     1
     2
    
    )
  
  
   
    ∑
    
     n=0
    ∞
   
   
    
     
      Γ(
       1
       2
      
      +n)
     
      
       1
       2
      
      +n
    
    
     
      
       x
       
        2n
      
      
     
      n!
    
    .
  


[image: ]



Next, using the well-known relation Γ(x + 1) = xΓ(x), for x > 0, we obtain

	
	



 
  F(
   
    
     1
     2
    
    ,
     1
     2
    
    ,
     3
     2
    
    ,
     x
     2
    
    
  )=
   
    ∑
    
     n=0
    ∞
   
   
    
     
      (2n)!
     
      
       2
       
        n+1
      
      (2n+1)
       
        (n!)
       2
      
      
    
    
     x
     
      2n
    
    
  =
   
    arcsinx
   x
  
  .


[image: ]



(7)Follows by the same arguments as assertion (6).

[image: ]


Definition 88. The hypergeometric function may be generalized for a = (a1, . . . , ap) and b = (b1, . . . , bq), p, q ∈ ℕ by

		      p   F    q(a1,...,   a   p    ;   b   1    ,...,   b   q    ,x)=       ∑         n=0    ∞               α     n             x     n        ,  [image: ]

where

		      α   0    =1   and               α           n+1                    α     n            =       (n+     a     1        )(n+     a     2        )⋯(n+     a     p        )       (n+     b     1        )(n+     b     2        )⋯(n+     b     q        )       1       n+1    ,[image: ]

or differently by

		         p       F   q    (   a   1    ,...,   a   p    ;   b   1    ,...,   b   q    ;x)=       ∑         n=0    ∞                                    (         a         1                )       n                           (         a         2                )       n            ⋯               (         a         p                )       n                                      (         b         1                )       k                           (         b         2                )       n            ⋯               (         b         q                )       n                                      x       n                       n!        ,  [image: ]

where (a)n is the increasing factorial or the Pochhammer symbol given by

		          (a)   n    =       (a+n−1)!       (a−1)!    =       Γ(a+n)       Γ(a)    =a(a+1)(a+2)⋯(a+n−1).[image: ]



4.2.6Legendre function

Legendre functions are fundamental solutions of the Laplace equation on the sphere. There are two classes of solutions that are related to the parameters λ and μ, which will be explained later. In the following, we denote the first kind by Pλ and the second kind by Qλ. The associated Legendre functions corresponding to Pλ and Qλ are denoted by 	
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 and 	
	



 
  
   Q
   λ
   μ
  
  ,


[image: ]

 respectively. These are respective generalizations of Legendre polynomials Pℓ(x) and associated Legendre polynomials 	
	



 
  
   P
   l
   m
  
  (x),


[image: ]

 to noninteger values of ℓ and m.


Definition 89. The Legendre functions are solutions of the general Legendre equation

		   (1−   x   2    )y"−2xy'+[    λ(λ+1)−               μ      2                   1−      x      2                 ]y=0,[image: ]

where λ and μ are generally complex numbers called, respectively, the degree and the order of the associated Legendre function.



The case of Legendre functions corresponding to μ = 0 and λ ∈ ℕ reduces to orthogonal Legendre polynomials.


Proposition 90.

(1)For μ = 0, the following integral form is a Legendre function:


		      F   λ    (z)=   1       2πi                ∫     C                                           (          t          2                  −1)        λ                                   2        λ                               (t−z)                 λ+1                        dt,        [image: ]

for |z − 1| < 2 where 𝓒 is a circle surrounding the points 1 and z and not −1.

(2)For λ ∈ ℂ and |x| > 1, x ∈ ℝ, we get


		               F     λ        (x)=     1           2π                   ∫             −π      π                               (                   x+                                    x             2                        −1                    cosθ        )       λ            d           θ                     =    1    π                     ∫      0      1                (               x+                              x           2                    −1                (2t−1)      )              λ           dt                  t(1−t)            . [image: ]



Proof. (1) Applying the derivatives of F λ, we get
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So, F λ satisfies the Legendre equation.

(2)Consider for the integral form the circle 𝓒 centered at x with radius 	
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 We first obtain
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As a result,
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Next, setting 	
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 we obtain
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[image: ]


Proposition 91. The following are Legendre functions:

–The first-kind function 		      P   λ   μ    [image: ] defined for |1 − z| < 2 by

		      P   λ   μ    (z)=   1       Γ(1−μ)           [                   1+z             1−z           ]       μ/2       2   F    1(       −λ,λ+1;1−μ;           1−z     2          ),[image: ]

where Γ is Euler’s Gamma function.

–The second-kind function 		      Q   λ   μ    (z)[image: ] defined for |z| > 1 by

		      Q   λ   μ    (z)=   C   μ   λ                      (       z       2            −1)           μ/2                    z           λ+μ+1               2   F    1(                  λ+μ+1     2        ,           λ+μ+2     2        ;λ+     3     2        ;     1                  z       2                      ),[image: ]

where 		      C   μ   λ    =            π        Γ(λ+μ+1)            2           λ+1        Γ(λ+3/2)       e       iμπ    ,[image: ] and 2F1 is the hypergeometric function.



Proof. It suffices to show that the functions
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and for |z| > 1,
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are solutions of the general Legendre Definition 89. We will develop the first part. The second follows by similar techniques. So, for simplicity denote
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and 	
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 Standard calculus yields that
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Fˊ(z) = μA(z)B(z)H(z) + B(z)Hˊ(z) ,

and

Fˊˊ(z) = μ(μ + 2z)A2(z)B(z)H(z) + 2μA(z)B(z)Hˊ (z) + B(z)Hˊˊ (z) .

[image: ]

Now, recall the Legendre equation
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Replacing y by F and taking into account equation (4.13), we show that F is a Legendre function.


Proposition 92. The Legendre function F λ satisfies the following three-level induction rule:

(λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + λFλ−1(z) = 0 .



Proof. Let C be the contour as above. We have
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Classical arguments show that F λ is holomorphic and
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On the other hand,
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Hence,
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Consequently,
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Differentiating with respect to z, we obtain
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Thus,
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Finally using (4.14), we deduce that

0 = (λ + 1)[Fλ+1(z) − zFλ(z)] + 2λFλ−1(z) − λzFλ (z)

= (λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + 2λFλ−1(z) .

[image: ]

4.2.7Bessel function

Bessel functions form an important class of special functions and are applied almost everywhere in mathematical physics. They are also known as cylindrical functions, or cylindrical harmonics, because they are part of the solutions of the Laplace equation in cylindrical coordinates met in heat propagation along a cylinder. In pure mathematics, Bessel functions can be introduced in three ways: as solutions of second-order differential equations, through a recurrent procedure as solutions of a three-level recurrent functional equation, and via the Rodrigues derivation formula.


Definition 93. The Bessel equation is a linear differential equation of second order written in the form

		   y"+   1   x    y'+(       1−                  v       2                              x       2                      )y=0,[image: ]

where v is a positive constant.




Remark 94.

(1)Any solution of Bessel’s equation is called the Bessel function.

(2)Given two linearly independent solutions y1 and y2 of Bessel’s differential equation, the general solution is expressed as a linear combination

y = C1y1 + C2y2 ,

where C1 and C2 are two constants.




Theorem and Definition 95. Bessel’s differential equation has a solution of the form

		      J   v    (x)=       (     x     2        )   v           ∑         k≥0                                    (−1)       k                       k!Γ(v+k+1)                   (                        x         2                      )           2k          .[image: ]

The function Jv is called the Bessel function of the first kind of the order v.



Proof of the Theorem. We will search a nontrivial solution of the form
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where p is a real parameter. By replacing y and its derivatives in Definition 93, we get
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Or equivalently,
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which means that

	
	



 
  
   
    ∑
    
     i≥0
   
   
    [ 
     
      
       (i+p)
      2
     
     −
      v
      2
     
      ]
  
   a
   i
  
  
   x
   
    i+p
  
  +
   
    ∑
    
     j≥2
   
   
    
     a
     
      j−2
    
    
     x
     
      j+p
    
    
  =0.


[image: ]



Therefore,

a0(p2 − v2) = a1((p + 1)2 − v2) = 0

and

ai((i + v)2 − v2) + ai−2 = 0, ∀i ≥ 2 .

For p = v, we get a1 = 0 and

i(i + 2v)ai = −ai−2, ∀i ≥ 2 .

Thus,
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Hence, the coefficients a2k+1, and
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Taking 	
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 and observing that

Γ(v + k + 1) = (v + k)(v + k − 1) ⋅⋅⋅ (v + 1)Γ(v + 1) ,

we get
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As a result, the solution of the equation will be
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[image: ]


Remark 96.

(1)For p = −v, the solution of Bessel’s equation in Definition 93 is called Bessel’s function of the first kind with the order −v and is denoted by J−v(x) with

		      J       −v    (x)=       (                  x       2                )       −v           ∑         k≥0                                    (−1)       k                       k!Γ(k−v+1)                   (                        x         2                      )           2k          .[image: ]

(2)For v, noninteger Jv and J−v are linearly independent and therefore the general solution of the Bessel equation is of the form

y(x) = C1Jv(x) + C2J−v(x) .

(3)The same solution can be obtained by choosing p + 1 = v in the proof of Theorem 95.




Proposition 97. For v = n ∈ ℕ, we have

Jn = (−1)nJ−n .



Proof. We have
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[image: ]


Example 4.1. For v = 0,

		      J   0    (x)=       ∑         k≥0                                    (−1)       k                       k!Γ(k+1)                   (                        x         2                      )           2k          =       ∑         k≥0                                    (−1)       k                                      (k!)       2                               (                        x         2                      )           2k        ,  [image: ]

which is an even function. Else, J0(0)= 1. For v = 1, we obtain
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which is an odd function and satisfies J1(0)= 0.




Definition 98. The Bessel function of the second kind of the order α denoted usually by Yα and is given by

		      Y   α    (x)={                          cos(πα)        J        α              (x)−        J                 −α              (x)             sin(πα)          ,                          for α∉ℤ                         lim             v→α                       cos(πv)        J        v              (x)−        J                 −v              (x)             sin(πv)          ,            for α∈ℤ.            [image: ]




Proposition 99. For α ∈ ℤ, Yα is a solution of Bessel’s differential equation, singular at 0 and satisfying precisely limx→0 Y0(x) = ∞.



Proof. For α ∉ ℤ, Yα is a linear combination of Jα and J−α. Hence it is a solution of the Bessel’s differential equation. We now prove this for α ∈ ℤ. It holds for all v ∉ ℤ and all x that
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Letting v → α ∈ ℤ, we obtain
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Next, we show that limx⟶0 Yα(x) = +∞. Indeed, for α ∉ ℤ, Yα is a linear combination of Jα and J−α. So it is a solution of Bessel’s differential equation. Next, substituting Yv for v ∉ ℤ in the differential equation and letting v tend to α we get a solution Yα for α ∈ ℤ. Yα is singular at 0 because of the powers 	 
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 and 	 
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 We now prove the remaining part. Recall that
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We have for v = α, sin(πv) = 0, cos(πv) = (−1)α, (−1)αJα(x) = J−α(x). By applying L’Hôpital’s rule, we obtain
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where C is Euler’s constant. For α = 0, we obtain
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Thus limx⟶0 Y0(x) = +∞.

[image: ]


Definition 100. The Bessel generating function of the first kind is given by

	    u(x,t)=       ∑         n=−∞         +∞               J     n        (x)     t     n          .[image: ]




Lemma 101. For all x ∈ ℝ and t ∈ ℝ∗, we have

	    u(x,t)=   e            x     2            (       t−     1     t          ).[image: ]



Proof. We have
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Setting k = m + n, we get

	 




 
  
   
    
     e
     
      
       x
       2
      
      (
       
        t−
         1
         t
        
        
      )
    
    =
     
      ∑
      
       m≥0
     
     
      
       
        ∑
        
         n+m≥0
       
       
        
         
          (−1)
         m
        
        
         
          
           t
           n
          
          
         
          m!(n+m)!
        
        
      
    
     (
      
       
        x
        2
       
       
     )
     
      2m+n
    
    
   
  
  
   
                 =
     
      ∑
      
       m≥0
     
     
      
       
        ∑
        
         n≥−m
       
       
        
         
          (−1)
         m
        
        
      
    
     
      
       t
       n
      
      
     
      m!Γ(n+m+1)
    
    
     (
      
       
        x
        2
       
       
     )
     
      2m+n
    
    
   
  
  
   
                 =
     
      ∑
      
       m≥0
     
     
      
       
        ∑
        
         n=−∞
        
         +∞
       
       
        
         
          (−1)
         m
        
        
         
          
           
            (
             
              
               x
               2
              
              
            )
           
            2m+n
          
          
         
          m!Γ(n+m+1)
        
        
      
    
     t
     n
    
    
   
  
  
   
                 =
     
      ∑
      
       n=−∞
      
       +∞
     
     
      
       
        ∑
        
         m≥0
       
       
        
         
          (−1)
         m
        
        
      
    
     
      
       
        (
         
          
           x
           2
          
          
        )
       
        2m+n
      
      
     
      m!Γ(n+m+1)
    
    
     t
     n
    
    
   
  
  
   
                 =
     
      ∑
      
       n=−∞
      
       +∞
     
     
      
       J
       n
      
      (x)
       t
       n
      
      
    
   
  
  
   
                 =u(x,t).
   
  
 
 


[image: ]



[image: ]


Theorem 102. The Bessel function Jn satisfies

	       J       n+1    (x)=       2n   x       J   n    (x)−   J       n−1    (x),       ∀n∈ℕ.[image: ]



Proof. Differentiating the generating function u with respect to the variable t we obtain
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On the other hand, we have
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By identification, we obtain
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Therefore
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Theorem 103. The Bessel function Jn is differentiable and its derivative satisfies

	    J   ′   n    (x)=   1   2    [        J         n−1      (x)−    J         n+1      (x) ]   .[image: ]



Proof. Differentiating the generating function u with respect to x, we obtain
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On the other hand,
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Consequently
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Remark 104. In the particular case n = 0, we obtain

	    J   ′   0    (x)=−   J   1    (x).[image: ]




Theorem 105. The first-kind Bessel function can be expressed by the integral form

	       J   n    (x)=   1       2π           ∫    0         2π          cos(x sinφ−nφ)dφ.     [image: ]

In particular, for n = 0, we have

	       J   0    (x)=   2   π           ∫    0               π      2                    cos(xsinφ)dφ.     [image: ]



Proof. Recall that
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Setting t = eiφ, we get
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which is the Fourier series of the 2π-periodic function f(φ) = eix sin φ. Therefore,
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In particular, for n = 0, we have
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Proposition 106. Let λ and μ be two different roots of the Bessel function Jv(x). The Bessel functions Jv(x) satisfy the following orthogonality property:

	           ∫    0    1          x     J     v        (λx)     J     v        (μx)dx=0.     [image: ]



Proof. Denote

yv,λ(x) = Jv(λx) and yv,μ(x) = Jv(μx) .

Then, yv,λ and yv,μ are solutions of the following Bessel-type differential equations:
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Multiplying the first one by yv,μ and the second by yv,λ and integrating on (0, 1), we get
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Therefore, since λ ≠ μ, we get
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Figures 4.4 and 4.5 illustrate the graphs of the first and second kind Bessel functions.

4.2.8Hankel function

Hankel functions are applied as physical solutions for incoming or outgoing waves in cylindrical geometry. These are linearly independent solutions of the complex-parameter Bessel equation
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where α is an arbitrary complex number.


[image: ]
Fig. 4.4: Graphs of the first three first-kind Bessel functions.


[image: ]
Fig. 4.5: Graphs of the first three second-kind Bessel functions.


Definition 107. Hankel functions of the first and second kind are defined, respectively, by

	       H   α   1    (x)=   J   α    (x)+i   Y   α    (x)    and       H   α   2    (x)=   J   a    (x)−i   Y   α    (x),   [image: ]

where Jα and Yα are the Bessel functions of the first and second kind, respectively.




Proposition 108. The following assertions are true.

(1)	       H   α   1    (x)=            J           −α        (x)−     e           −iαπ             J     α        (x)       isin(απ)    .[image: ]

(2)	       H   α   2    (x)=            J           −α        (x)−     e           iαπ             J     α        (x)       −isin(απ)    .[image: ]

(3)	       H       −α   1    (x)=   e       iαx       H   α   1    (x).[image: ]

(4)	       H       −α   2    (x)=   e       −iαx       H   α   2    (x).[image: ]



Proof. (1) Recall that the second-kind Bessel function is
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Therefore,
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(2)Similarly to (1), we have
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(3)It follows from (1) that
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(4)Similarly to (3), we have
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Proposition 109. The first-kind Hankel function 	       H   n   1    ,[image: ] n ∈ ℤ can be expressed in the integral form as

	       H   n   1    (x)=   1       iπ           ∫    0    1                            e                        x         2                (                   t−           1           t                            )                              t               n+1                    dt.     [image: ]



Proof. It follows from Proposition 97 and Definition 93 that
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On the other hand, from Theorem 105, equation (4.16), we have that
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Now, standard computations as in Theorem 105 yield that

	 




 
  
   
    ∫
    0
    1
   
   
    
     
      
       e
       
        
         x
         2
        
        (
         
          t−
           1
           t
          
          
        )
      
      
     
      
       t
       
        n+1
      
      
    
    
  
  
 dt=J
  ′
  n
 
 (x).


[image: ]



Hence,
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Theorem 110. Hankel functions 	       H   α   i    [image: ] are differentiable and we have

	       d       dz       H   α   i    (z)=   1   2    (            H           α−1     i        (z)−     H           α+1     i        (z)  ),      i=1,2,[image: ]

and

	           2α   z       H   α   i    (z)=   H       α−1   i    (z)+   H       α+1   i    (z),      i=1,2.[image: ]



Proof. We have

	
	



 
  
   H
   n
   1
  
  (z)=
   1
   
    iπ
  
  
   J
   n
   '
  
  (t)=
   1
   2
  
  [ 
   
    1
    
     iπ
   
   
    J
    
     n−1
   
   (x)−
    1
    
     iπ
   
   
    J
    
     n+1
   
   (x) ]


[image: ]



Hence,
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We now prove the next part. To do this, we recall the explicit form of Bessel function Jv from (4.15), which states that
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Now, for i = 1, we get
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Next, it suffices to evaluate the quantities in the numerator. We evaluate one quantity and leave The others for readers. Using the above expression, we get
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Using the same techniques and next substituting into the equality above, we get the desired result.
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[image: ]
Fig. 4.6: Hankel function.


4.2.9Mathieu function

Mathieu functions were originally introduced as solutions of the Mathieu differential equation
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It is a special case of the general Hill equation given by
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where f is a periodic function.

The Mathieu differential equation has in fact many variants. One variant may be obtained by a scaling modification by setting y(t) = x(2t), which therefore satisfies the equation
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where a and q are constant coefficients. By setting u = it in (4.23), we get the Mathieu modified differential equation
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By setting x = cos(t), we obtain a second Mathieu modified differential equation
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As in the theory of the Schrödinger equation, we can guess stationary solutions of the form

	 




 
  F(a,q,x)=
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    iμx
  
  P(a,q,x),
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where μ is a complex number called the Mathieu exponent and P is a periodic complex valued function. The following graph is illustrated with a = 1, 	 




 
  q=
   1
   5
  
  ,


[image: ]

 and μ = 1 + 0.0995i.


Definition 111. For fixed a, q we define

–The Mathieu cosine C(a, q, x) by

	    C(a,q,x)=       F(a,q,x)+F(a,q,−x)       2F(a,q,0)    .[image: ]

–The Mathieu sine S(a, q, x) by

	    S(a,q,x)=       F(a,q,x)−F(a,q,−x)       2     F     ′        (a,q,0)    .[image: ]




[image: ]
Fig. 4.7: Mathieu function: Real part and imaginary part, a = μ = 1 and q = 0.2.


Properties 112. The following assertions hold:

(1)C(a, q, 0) = 1 and S(a, q, 0) = 0.

(2)C⟶(a, q, 0) = 0 and S⟶(a, q, 0) = 1.

(3)C(a, q, −x) = C(a, q, x): The Mathieu cosine is an even function.

(4)S(a, q, −x) = −S(a, q, x): The Mathieu sine is an odd function.

(5)C(a, 0, x) = 	    cos(   a    x) and S(a,0,x)=       sin(     a        x)            a            .[image: ]



Proof. (1) We have
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Similarly, for the sine function, we have
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(2) We have
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and similarly,
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(3) We have
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Then, the Mathieu cosine is an even function.

(4) Similarly,
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Then, the Mathieu sine is an odd function.

(5) Follows from the fact that S (a, 0, .) and C(a, 0, .) are solutions of the Mathieu equation
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and the assertions (1) and (2).

[image: ]


Remark 113.

–The general solution of the Mathieu equation (for fixed a and q) is a linear combination of the Mathieu cosine and sine.

–In general, the Mathieu cosine and sine are not periodic. However, for small values of q we have

	   C(a,q,x)~cos(   a    x)    and   S(a,q,x)~       sin(     a        x)            a            .[image: ]

The Mathieu cosine is illustrated graphically in Figure 4.8.



4.2.10 Airy function

The Airy function was introduced by the astronomer George Biddell Airy in optical calculations. These are solutions of the second-order differential equation known as the Airy differential equation

	 




 
  
   y
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  −xy=0.


[image: ]



One idea to resolve such an equation is to use the well-known Fourier Transform, which leads formally to a set of solutions called Airy functions based on the following integral representation:


[image: ]
Fig. 4.8: Mathieu cosine: C(0.3;0.1;x) (Grey).
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which is in fact a divergent integral. In fact, the integral is a semi-convergent integral. Indeed, for 0 < a < L < +∞, an integration by parts yields that
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As the integral 	 
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 is absolutely convergent, the desired result follows.


Definition 114. For η > 0, we define the Airy function Ai by means of the following integral:

	    Ai(x)=   1       2π                ∫           ℝ+iη                   e             iξx                e             i                           ξ          3                          3                        dξ.        [image: ]



Furthermore, applying classical techniques of parameter-depending integrals, we can prove that

(1)Ai is continuous on ℝ.

(2)limx→+∞ Ai(x) = 0.

Indeed, note that Ai(x) may be written in the form
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Next, as for η > 0, we get
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the last integral is then absolutely convergent. Furthermore, it is uniformly convergent on any compact set in ℝ. So, since the function 	 
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 is continuous for all η and ξ, the function Ai is then continuous on ℝ. In fact, we may prove that Ai is 𝓒∞ and that for all k ∈ ℕ,
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We prove further that Ai is independent of the parameter η. Indeed,
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as the function
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is in the Schwartz class.


Properties 115. The following properties of the Airy function Ai hold:

(1)The function Ai satisfies the Airy differential equation (4.26).

(2)Ai(j.) is a solution of the Airy differential equation (4.26), whenever j3 = 1.

(3)The function Ai is an entire function of x.

(4)For all x ∈ ℝ, Ai(x) ∈ ℝ.

(5)	       A   i    (0)=   1            3                  2       3                    Γ(     2     3        )    [image: ] and 	           A    ′         i    (0)=       −1       3     1     3        Γ(     1     3        )    .[image: ]



Proof. (1) As noted above, the Airy function Ai is twice differentiable and
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(2) Let 	 
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 We have
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(3) The function fη defined by 	 
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 is analytic as a function of x for all ξ. Furthermore, for all R > 0 and |x| ≤ R, we have
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The last function is integrable according to ξ. So, Ai is analytic.

(4) For x ∈ ℝ we have
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(5)As Ai is independent of η > 0, and Ai(0) is real, we can write
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Denote I as the last integral and 	 
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 Simple computations yield that
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which means that
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Next, for R > 0 large enough consider the points O(z0 = 0), A(zA = R), B = (zB = 	 
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 C(zC = i + zB), and D = (zD = i) and the contours γR composed of the juxtaposition of the segment [o, A], the arc (AB) and the segment BO in the positive sense, and δR the parallelogram contour OBCDO countered also in the positive sense. So, applying the residues theory on the function 	 
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 and the contour γR, we get
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where KR is the integral given by
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Now, applying again the residues theory with the function 	 
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 on the parallelogram contour OBCDO, we obtain
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Hence,
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which means that
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Analogous techniques may be applied to obtain Aiˊ(0).

[image: ]

Now, we introduce the second-kind Airy function ([18]).


Definition 116. The second-kind Airy function is defined by

	    Bi(x)=   e       iπ/6    Ai(jx)+   e       iπ/6    Ai(   j   2    x),[image: ]

where j = ei2π/3.




Proposition 117. The second-kind Airy function Bi is a solution of the Airy differential equation (4.26) and satisfies

	    Bi(0)=   1            3                  1       3                    Γ(                  2       3                )       and          B    ′         i    (0)=            3                  1       3                           Γ(                  1       3                )    .[image: ]

Furthermore, Bi is real on the real axis ℝ.



Proof. We have
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Hence, Bi satisfies (4.26). Next,
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Now, observing that
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Fig. 4.9: Airy function Ai and Bi.


[image: ]
Fig. 4.10: The Airy function Bi and its approximation.

we get
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The same techniques yield Biˊ(0). Finally, for x ∈ ℝ, we have
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Airy functions Ai and Bi are illustrated in Figure 4.9. Furthermore, Figure 4.10 illustrates the Airy function Bi and its approximation.


4.3Hankel–Bessel transform

In this section, we focus on the most known transform associated with the special functions developed previously. We will review the Hankel–Bessel transform of functions. Readers are referred to [53] for more details. We denote the inner product in L2(ℝ+, dx) by

	 




 
  〈 
   f,g 〉=
   
    ∫
    0
    ∞
   
   
    f(x)
     g
     ¯
    
    (x)dx
  
  
 


[image: ]



and the associated norm by ‖.‖2. Similarly, we denote the inner product in L2(ℝ+, ξdξ) by
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and the associated norm by ‖.‖ξ,2.


Definition 118. Let f ∈ L2(ℝ+, dx). The Bessel transform of f is defined by

	    B(f)(ξ)=       ∫    0         +∞          f(x)     x             J     v        (xξ)dx,     ∀ξ>0,     [image: ]

where Jv is the Bessel function of first kind and index v.



We immediately have the following characteristics:


Proposition 119.

(1)For all f ∈ L2(ℝ+, dx), 𝓑(f) ∈ L2(ℝ+, ξdξ).

(2)The Bessel transform 𝓑 is invertible and its inverse is

	       B       −1    (g)(x)=       ∫    0         +∞          g(ξ)     x             J     v        (xξ)ξdξ,     ∀g∈     L     2        (     ℝ     +        ,ξdξ).     [image: ]



Proof. (1) Let f and g be in L2(ℝ+, dx). We have
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So, taking g = f, we get

‖𝓑(f)‖ξ,2 = ‖f‖2

which means that 𝓑 is an isometry.

(2)Denote 𝓑̃(f) the right-hand quantity. We will prove that 𝓑(𝓑̃(f)) = f . Indeed,
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Definition 120. The Hankel transform, also called Fourier–Bessel transform of the order v, is defined by

	    H(f)(ξ)=       ∫    0    ∞          f(x)       J  v  (xξ)xdx;    ∀f.[image: ]




Remark 121. Hankel transform 𝓗 and Bessel one 𝓑 are related via the equality

	    H(f)(ξ)=B(   .    f)(ξ).[image: ]




5Spheroidal-type wavelets

5.1Introduction

Wavelet analysis was introduced in the early 1980s in the context of signal analysis and exploration for petroleum to give a representation of signals and detect their characteristics. Several methods have been applied for the task; the most known is the Fourier transform. A major drawback of this method is its limitation to stationary and periodic signals. Furthermore, the description of signals is limited to the global behavior and cannot provide any detailed information. Also, in its numerical computer processing, Fourier analysis often yields nonfast algorithms.

Progress has been made by introducing the windowed Fourier transform (WFT) to address the problems of time-frequency localization. The WFT acts on signals by computing the classical Fourier transform of the signal multiplied by a time-localized function known as the window. However, the situation was not resolved, especially with the emergence of new problems, such as irregular signals or high-frequency variations.

The major drawback with the WFT is the fact that the shape of the window is fixed and may not be adapted to the fluctuations of nonstationary signals. Thus, the need for an analysis taking into account nonlinear algorithms, nonstationary signals, as well as nonperiodical and volatile ones has become a necessity for both theory and application. Wavelet analysis was introduced, developed, and has proved its power despite these obstacles. In this chapter, we review a special case of wavelet analysis adapted especially to spheroidal wavelets. We recall the strong relationship with orthogonal polynomials, homogenous polynomials, spherical harmonics, as well as special functions, and develop some details and examples.


5.2Wavelets on the real line

Wavelet analysis is primarily based on an effective representation for standard functions on the real line and a robustness to the specification models. It also permits a reduction in time computation algorithms compared to other methods. This is essentially due to the simplicity of the analysis and the ease of generalization and efficiency according to the dimension. It permits one to analyze functions from different horizons starting from one horizon, which is not possible with Fourier analysis, for example. There, the number of coefficients to be computed is the standard point behind any approximation. Finally, wavelet analysis permits one to relate time localization to frequency.

Mathematically speaking, a wavelet or an analyzing wavelet on the real line is a function ψ ∈ L2(ℝ), which satisfies some conditions, such as the admissibility condition, which somehow describes Fourier–Plancherel identity and which says that
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The function ψ has to also satisfy a number of vanishing moments, which is related in wavelet theory to its regularity order. It states that
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Sometimes, we say that ψ is 𝓒m on ℝ. The time-localization chart is a normalization form that is resumed in the identity
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To analyze a signal by wavelets, one passes via the so-called wavelet transforms. A wavelet transform is a representation of the signal by means of an integral form similar to Fourier in which the Fourier sine and/or cosine is replaced by the analyzing wavelet ψ. In Fourier transform, the complex exponential source function yields the copies eis. index by the indices s ∈ ℝ, which somehow represent frequencies. This transform is continuous in the sense that it is indexed by the whole line of indices s ∈ ℝ.

In wavelet theory, the situation is more unified. A continuous wavelet transform (CWT) is also well known. First, a frequency, scale, or a dilation/compression parameter s > 0 and a second one related to time or position u ∈ ℝ have to be fixed. The source function ψ, known as the analyzing wavelet, is next transformed to yield some copies (replacing the eis.)
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The CWT of a real valued function f defined on the real line at the position u and the scale s is defined by
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By varying the parameters s and u, we can completely cover the time-frequency plane. This gives a full and redundant representation of the whole signal to be analyzed (see [99]). This transform is called continuous because of the nature of the parameters s and u that can operate at all levels and positions.

So, wavelets operate according to two parameters: the parameter u which permits one to translate the graph of the source wavelet mother ψ and the parameter s which permits one to compress or to dilate the graph of ψ. Computing or evaluating the coefficients du, s means analyzing the function f with wavelets.


Properties 122. The wavelet transform ds,u(f) possesses some properties, such as

(1)the linearity, in the sense that

ds,u(αf + βg) = αds,u(f) + βds,u(g), ∀f, g ,

(2)the translation-invariance, in the sense that

ds,u(τt f) = ds,u−t(f), ∀f; and ∀u, s, t ,

and where

(τt f)(x) = f(x − t) ,

(3)the dilation-invariance, in the sense that


	       d       s,u    (   f   a    )=   1            a               d       as,au    (f),     ∀f;  and  ∀u,s,a,[image: ]

and where for a > 0,

(fa)(x) = f(ax) .



The proof of these properties is easy and readers can refer to [8] for a review.

It holds in wavelet theory, as in Fourier analysis theory, that the original function f can be reproduced via its CWT by an L2-identity.


Theorem 123. For all f ∈ L2(ℝ), we have the L2-equality

	    f(x)=   1            C     ψ               ∫               ∫                        d                   s,u                (f)ψ(                                          x−u           s                            )                   dsdu                              s           2                                                     .        [image: ]



The proof of this result is based on the following lemma.


Lemma 124. Under the hypothesis of Theorem 123, we have

	       ∫               ∫                        d                   s,u                (f)                              d                       s,u                    (g)         ¯                                                dsdu   s    =   C   ψ       ∫         f(x)             g(x)      ¯                  dx,    ∀f,g∈   L   2    (ℝ).[image: ]



Proof. We have

	 




 
  
   d
   
    s,u
  
  (f)=
   1
   s
  
  f*
   ψ
   s
  
  (u)=
   1
   s
  
  
   ∫
    
     f(x)ψ(
      
       
        
         x−u
        s
       
       
     )dx
   
   
  =
   1
   
    2π
  
  F(
   f
   ^
  
  (y)
   
    
     ψ
     ^
    
    (sy)
   ¯
  
  
   e
   
    −iuy
  
  ).


[image: ]



Consequently,
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By application of Fubini’s rule, we get
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Proof of Theorem 123. By applying the Riesz rule, we get
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Next, using Fubini’s rule, we observe that the last line is equal to
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which by Cauchy–Schwartz inequality is bounded by
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Now, Lemma 124 shows that the last quantity goes to 0 as R tends to +∞.

[image: ]

On the real line, the most well-known examples are Haar and Schauder wavelet, where explicit computations are always possible. The Haar example is the simplest example in the theory of wavelets. It is based on the wavelet mother expressed by

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x) .

The Schauder wavelet is based on the explicit wavelet mother
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Readers can refer to [8, 75, 95, 99] for more details and examples of original wavelet analysis on the real line and Euclidian spaces in general.


5.3Chebyshev wavelets

Chebyshev wavelets stem from one mother wavelet ψm depending on a parameter m, which represents the degree of Chebyshev polynomial of first kind associated with the wavelet. The source Chebyshev wavelet mother ψm is defined by

ψm(t) = T̃m(t), 0 ≤ t <1 and 0, else

where

	 




 
  
   
    T
    ˜
   
   
   m
  
  (t)=
   
    
     2
     π
    
    
  
  
   T
   m
  
  (t),    m=0,1,2,...,M−1.


[image: ]



Here Tm(t) are the Chebyshev polynomials of the first kind of degree m, given by

Tm(t) = cos(marccos t) .

Next, we perform the usual translation–dilation actions using parameters j ∈ ℕ for the level and a parameter n = 1,2, . . . ,2j−1 for the position. Thus, we obtain the dilation–translation copies of ψm explicitly expressed by
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      2
      
       
        j
        2
       
       
     
     
      
       T
       ˜
      
      
      m
     
     (
      2
      j
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[image: ]



The Chebyshev wavelets are orthonormal with respect to the weight function
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Denote next
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   ω
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     0
     1
    
    
     
      
       | 
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where 	 




 
  ω(x)=
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      x(1−x)
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[image: ]

 A function 	 
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[image: ]

 can be approximated in a series form as
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[image: ]



where


	       C       j,n   m    =       〈      f,      ψ             j,n      m           〉            ω     j            ,[image: ]

in which ⟨., .⟩ωj is the inner product in 	 
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     ω
     j
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  (
   
    [ 
     0,1 ]
  ).


[image: ]




5.4Gegenbauer wavelets

Gegenbauer wavelets (GW) depend on four parameters: j, n, m, p. The parameter j ∈ ℕ represents the level of resolution, n ∈ {1,2,3, . . . ,2j−1}, is related to the translation parameter, m = 0, 1, 2, . . . , M − 1, M > 0 is the degree of the Gegenbauer polynomial, and finally a real parameter 	 




 
  p>−
   1
   2
  
  .


[image: ]

 The mother Gegenbauer wavelet is defined on [0, 1) by 	 




 
  
   ψ
   
    m,p
  
  (x)=
   G
   m
   p
  
  (x),


[image: ]

 where 	 




 
  
   G
   m
   p
  
  


[image: ]

 is the well-known Gegenbauer polynomial defined in Chapter 1. Next, the translation–dilation copies of ψm,p are defined by
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[image: ]



Note here that the translation parameter takes only odd values.


Remark 125. For 	    p=   1   2    ,[image: ] we get Legendre wavelets. For p = 0 and p = 1, we obtain the Chebyshev wavelet of first and second kind, respectively.



To obtain the mutual orthogonality of Gegenbauer wavelets 	 
	 




 
  
   ψ
   
    j,n
   
    m,p
  
  ,


[image: ]

 the weight function associated with the Gegenbauer polynomials has to be dilated and translated as for the Gegenbauer wavelets. Thus, we obtain a translation–dilation copy of the weight ω as
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At a fixed level of resolution, we get
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According to such wavelets, a function f ∈ L2[0, 1) can be expressed in terms of the GW as
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where the coefficient 	 
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    j,
   
    m,p
  
  


[image: ]

 are the so-called wavelet coefficients given by
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For more details, refer to [124, 126, 135, 139].


5.5Hermite wavelets

Hermite wavelets are based on the well-known Hermite polynomials. Recall that such polynomials consist of a sequence of orthogonal polynomials with respect to the special weight function 	 




 
  ω(x)=
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    −
     x
     2
    
    
  
  


[image: ]

 and are explicitly given by
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The Hermite mother wavelet is given by
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where
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The translation–dilation copies of ψm are next defined by
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Note that such wavelets depend essentially on the parameter m, which is the degree of the m-Hermite polynomial Hm. Hermite wavelets are orthonormal with respect to the weight function
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Some propeties of Hermite wavelets are given in [1].


5.6Laguerre wavelets

Laguerre wavelets are orthogonal wavelets defined in the interval (0, 1) and stem from one source mother function
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   m
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     L
     m
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where Lm is the Laguerre polynomial of degree m. A wavelet basis is next expressed by
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For more details on these wavelets, see [79].


5.7Bessel wavelets

There are several approaches to introduce Bessel wavelets [126, 127].

In the present section, we will present the most known approach. For 1 ≤ p < ∞ and μ > 0, denote
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   σ
   p
  
  (
   ℝ
   +
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         ∞
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where 	 
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    )
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 Denote also
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  )
   x
   
    
     1
     2
    
    −μ
  
  
   J
   
    μ−
     1
     2
    
    
  
  (x),
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where 	 
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    μ−
     1
     2
    
    
  
  


[image: ]

 is the Bessel function of first kind and of order 	 




 
  μ−
   1
   2
  
  .
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 Denote next,

	 




 
  D(x,y,z)=
   
    ∫
    0
    ∞
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     μ
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     μ
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     μ
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and the translation

	 



 
  
   τ
   x
  
  f(y)=
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   ˜
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Next, for a two-variable function f, we define the dilation operator
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   a
  
  f(x,y)=
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     x
     a
    
    ,
     y
     a
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Definition 126. Let 	    Ψ∈   L   σ   p    (   ℝ   +    ).[image: ] The Bessel wavelet copy Ψa,b is defined by

	       Ψ       a,b    (x)=   D   a       τ   b    Ψ(x)=   a       −2μ−1           ∫    0    ∞          D(                  b       a            ,       x       a            ,z    )     Ψ(z)dσ(z);   ∀a,b≥0.[image: ]

The Bessel wavelet transform (BWT) of a function 	    f∈   L   σ   q    (   ℝ   +    ),[image: ] at the scale a and the position b is defined by

	    (BΨf)(a,b)=   a       −2σ−1           ∫    0    ∞                     ∫      0      ∞                f(t)       Ψ       ¯            (z)D(                        b         a                ,         t         a                ,z      )             dσ(z)sσ(t).[image: ]



The following result shows one of the BWT of functions.


Theorem 127. Let 	    f∈   L   σ   p    (   ℝ   +    ), Ψ∈   L   σ   q    (   ℝ   +    )[image: ] with 1 ≤ p, q < ∞such that 	       1   p    +   1   q    =1.[image: ] Then (Bψf) is continuous on 	       ℝ   +   2    .[image: ]



Proof. Let (a0, b0) be an arbitrary fixed point of 	 
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  .


[image: ]

 We have
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Now, observe that
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Moreover, using the dominated convergence theorem and the continuity of 	 
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[image: ]

 with respect to (a, b), we get
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which proves the continuity of the BWT on 	 




 
  
   ℝ
   +
   2
  
  .


[image: ]



[image: ]


Definition 128. Let 	    f,g∈   L   σ   p    (   ℝ   +    ).[image: ] We define the convolution product (usually known as the Hankel convolution) by

	    (f#g)(x)=       ∫    0    ∞               τ     x        f(y)g(y)dσ(y)     .[image: ]



The following result is a variant of Parseval/Plancherel rules for the case of BWT.


Theorem 129. Let 	    Ψ∈   L   σ   2    (   ℝ   +    )[image: ] and 	    f,g∈   L   σ   2    (   ℝ   +    ).[image: ] Then

	           ∫    0    ∞                     ∫      0      ∞                (       B       Ψ            f)(a,b)               (         B         Ψ                g)       ¯            (a,b)                dσ(a)      a       2μ+1    dσ(b)= C Ψ〈  f,g 〉,[image: ]

where

	       C   Ψ    =       ∫    0    ∞               t           −2μ−1                   |                Ψ        ^              (t) |     2        dt>0.     [image: ]



The proof follows similar techniques as for the case of real-line wavelets. Because of its importance, we reproduce it in detail.

Proof. Recall that
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Now observe that
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Hence,
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As a result
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5.8Cauchy wavelets

Cauchy wavelets are one step in the direction of introducing spherical wavelets as they aim to take into account the angular behavior of the analyzed signals. In the one-dimensional case, Cauchy wavelets are defined via their Fourier transform
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with m > 0. In 1D, the positive half-line is a convex cone. Thus a natural generalization to 2D will be a wavelet whose support in spatial frequency space is contained in a convex cone with an apex at the origin. Let C ≡ C (α, β) be the convex cone determined by the unit vectors eα, eβ, where α < β, β − α < π and for all θ, eθ ≡ (cos θ, sin θ). The axis of the cone is 	
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 In other words,
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The dual cone to C(α, β) is

C̃(α, β) = {k ∈ ℝ2, k.kˊ > 0, ∀kˊ ∈ C(α, β)} .

Note that C̃(α, β) may also be seen as

C̃(α, β) = C(α̂,β̂ ) ,

where 	
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 and eα.eα̂ = eβ.eβ̂ = 0. Thus the axis of C̃ is ξαβ.

The two-dimensional Cauchy wavelet is defined via its Fourier transform
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where η ∈  C̃ and l, m ∈ ℕ∗. Note that such a wavelet is also supported by C. It satisfies the admissibility condition
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The following result obtained by Antoine et al. is proved in [12] and yields an explicit form for the two-dimensional Cauchy wavelet.


Proposition 130. For even η ∈ C̃ and l, m ∈ ℕ∗. The 2D Cauchy wavelet         ψ       lm       c,n     (   x  )[image: ] with support in C belongs to L2(ℝ2, dx) and is given by
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We can, with analogous techniques, define multidimensional Cauchy wavelets. See [12] and the references therein for more details.


5.9Spherical wavelets

Spherical wavelets are adopted for understanding complicated functions defined or supported by the sphere. The classical spherical wavelets are essentially done by convolving the function against rotated and dilated versions of one fixed function ψ. To introduce a special wavelet analysis on the sphere related to zonals we first recall some useful topics. Let F ∈ L2[−1, 1] and Ln be the Legendre polynomial of degree n. The coefficients
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are called the Legendre coefficients or the Legendre transforms of F. It is proved in harmonic Fourier analysis that F can be expressed in a series form
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called the Legendre series of F.


Definition 131. A family {ϕj}j∈ℕ ⊂ L2[−1, 1] is called a spherical scaling function system if the following assertions hold.

(1)For all n, j ∈ ℕ, we have j(n) ≤ ϕ̂j+1(n). In other words, for all n ∈ ℕ the sequence (ϕ̂j(n))j∈ℕ is increasing

(2)limj⟶∞ϕ̂j(n) = 1 for all n ∈ ℕ

(3)ϕ̂j(n) ≥ 0 for all n, j ∈ ℕ,

where ϕ̂j(n) is the Legendre transform of ϕ̂j.



We will now investigate a way of constructing a scaling function [54].


Definition 132. A continuous function γ : ℝ+ ⟼ ℝ is said to be admissible if it satisfies the admissibility condition
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In this case, γ is called an admissible generator of the function ψ: [−1, 1] → ℝ given by

       ψ=        ∑         n=0    ∞                     2n +1           4π        γ(     n    )     L     n          [image: ]



We immediately obtain the following characteristics [162].


Proposition 133. The following assertions are true:

(1)If γ is an admissible generator, then the generated function ψ ∈ L2[−1, 1].

(2)For all n ∈ ℕ,(n) = γ(n).



Proof. (1) Since the Legendre polynomials form an orthogonal basis for L2[−1, 1] with 
   

 

 
  
   
    〈 
     
      L
      
       n, 
     
     
      L
      n
     
      〉
   
    
     L
     2
    
    [−1, 1]
  
   = 
   
    4π
   
    2n+1
  
  ,


[image: ]

 the admissibility condition imposed on γ yields that
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(2)is an immediate result from (5.16).
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We now investigate the idea to construct a whole family of admissible functions starting from one source admissible function.


Definition 134. The dilation operator is defined for γ : [0, ∞) → ℝ and a > 0 by

Daγ(x) = γ(ax) ∀x ∈ [0, ∞) .

For a = 2−j, j ∈ ℤ we denote γj = Djγ = D2−j γ.




Definition 135. An admissible function φ: [0, ∞) → ℝ is said to be a generator of a scaling function if it is monotonously decreasing, continuous at 0 and satisfies φ(0)= 1.

The system {ϕj}j∈ℕ ⊂ L2[−1, 1], defined by

          ϕ   j    =       ∑         n=0    ∞                     2n+1           4π             φ   j    (   n  )   L   n    [image: ]

is said to be the corresponding spherical scaling function associated with φ.



It holds sometimes that for all j, the sequence (̂ϕj(n))n is stationary with zero stationary value. In this case, the system {ϕj}j∈ℕ ⊂ L2[−1, 1] is called bandlimited. It holds that for bandlimited scaling functions, each ϕj is a 1D polynomial, and for all F ∈ L2(S2), ϕj ∗ F is a polynomial on S2. The following theorem affirms that scaling functions permit one to approximate L2 functions with polynomial approximates (see [162]).

Now, we show that such scaling functions are suitable candidates to approximate functions in L2 as it is needed in wavelet theory in general. Thus, they are suitable sources to define multiresolution analysis and/or a wavelet analysis on the sphere.


Theorem 136. Let {ϕj}j∈ℕ be a scaling function and F ∈ L2(S2). Then

              lim       j→∞           ‖      F−      ϕ      j             (        k       )          *F ‖            L     2        (                  s       2                )    =0[image: ]

for all levels of iterations k ∈ ℕ.



Here, for a function Φ ∈ L2, we designate by Φ(k) the k-times self-convolution of Φ with itself. The last approximation is called spherical approximate identity. The next theorem shows the role of spherical scaling functions in the construction of multiresolution analysis on the sphere.

Proof. First observe that
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Thus,
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which by applying the Parseval identity yields that

 




 
  
   
    ‖ 
     F
      ϕ
      j
      
       (
        K
       )
     
     *F ‖
   2
   2
  
  =
   
    ∑
    
     n=0
    
     +∞
   
   
    
     
      
       
        ∑
        
         j=1
        
         2n+1
       
       
        (
         
          1−
           
            
             Φ
             ^
            
            
           J
          
          (
           n
          )
        )
      
     2
    
    
  
   
    (
     
      
       F
       ^
      
      (
       
        n,j
      )
    )
   2
  
  


[image: ]



Now, observing that the last series is J-uniformly convergent and the fact that
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for all n, it results that
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Theorem 137. Let for j ∈ ℤ,

          V   j    ={   ϕ   j       (     2    )    * F|F∈   L   2    (            s     2          )}[image: ]

where {ϕj}j∈ℕ ⊂ L2[−1, 1] is a scaling function. Then, the sequence (Vj)j defines a multiresolution analysis on the sphere. That is,

(1)Vj ⊂ Vj+1 ⊂ L2(S2), ∀j ∈ ℕ.

(2)                         ∪             j=0      ∞                       V       j                   ¯    =   L   2    (            s     2          )[image: ]





For j ∈ ℤ, the spaces Vj represents the so-called scale or approximation space at the level j.

Proof. (1) As Φ ∈ L2 and also F, the convolution Φ ∗ F is also L2.

Consider next, for J ∈ ℤ, the function
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and 0 else, and define the function G by
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It is straightforward that G ∈ L2 and that Ĝ(n, j) = γj(n). Furthermore,
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Hence,  
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 Consequently, VJ ⊂ VJ+1.

(2)The density property is an immediate consequence of the spherical approximate identity proved in Theorem 136.
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Based on this multiresolution analysis of L2(S2), we can introduce spherical wavelets.


Definition 138. Let Φ = {ϕj}j∈ℕ ⊂ L2[−1, 1] be a scaling function and let Ψ = {ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃ j}j∈ℕ∪{−1} be in L2[−1, 1] satisfying the so-called refinement equation

                   ψ     ^           j    (   n  )   ψ   ^    (   n  )=(                         ϕ               j+1                 ^                   (       n      )     2          )−       (                                   ϕ         j                       ^            (       n      )    )   2       ∀n,j∈[0, +∞)[image: ]

Then,

(a)Ψ and Ψ̃ are called, respectively, (spherical) primal wavelet and (spherical) dual wavelet relative to Φ.

(b)The functions ψ0 and ψ̃ 0 are called the primal mother wavelet and the dual mother wavelets, respectively.

Here, we set ψ−1 = ψ̃ −1 = ϕ0.



The following result obtained by Volker in [162] shows the existence of primal and dual wavelets.


Theorem 139. Let φ0 be a generator of a scaling function and ψ0, ψ̃ 0 be admissible function such that

          ψ   0           ψ    ˜         o    (   x  )=       (                  φ       0            (                        x         2                      )    )   2    −       (                  φ       0            (       x      )    )   2       ∀x∈   ℝ   +    [image: ]

Then, ψ0 and ψ̃ 0 are generators of primal and dual mother wavelets, respectively.



Proof. We will prove precisely that the dilated copies {ψj}j∈ℕ∪{−1} , {ψ̃j}j∈ℕ∪{−1} ⊂ L2[−1, 1] defined via their Legendre coefficients by dilating ψ0 and ψ̃ 0(x) as
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and
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are a primal and dual wavelets, respectively. Indeed, considering these dilated copies we obtain for all n, j ∈ ℕ,
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A fundamental property of spherical wavelets is the scale-step property proved below, which prepares us to introduce detail spaces.


Theorem 140. Let Ψ = {ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃j}j∈ℕ∪{−1} be a primal and a dual wavelet corresponding to the scaling function {ϕj}j∈ℕ ⊂ L2[−1, 1]. The following assertions hold for all F ∈ L2(S2).

(i) 	       ϕ            J     2               (2)    *F=   ϕ            J     1               (2)    *F+       ∑         j=      J      1                         J      2          −1                     ψ      ˜               j        *     ψ     j        *F,∀     J     1        <     J     2        ∈ℕ.  [image: ]

(ii) 	    F=   ϕ   J       (2)    *F+       ∑         j=1    ∞                     ψ      ˜               j        *     ψ     j        *F,    ∀J∈ℕ,  [image: ]



Proof. (i) We will evaluate the last right-hand series term in the assertion. Using the definition of primal and dual wavelets, we obtain
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As a result,
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(ii) is an immediate consequence of assertion (i).
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Theorem 141. Denote for j ∈ ℤ,

Wj = {ψ̃j ∗ ψj ∗ F/F ∈ L2(S2)} .

Then, for all J ∈ ℤ,

VJ+1 = VJ + WJ .



Proof. The inclusion VJ ⊂ VJ−1 + WJ−1 is somehow easy and it is a consequence of Theorem 140. We will prove the opposite inclusion. So, let F1 ∈ VJ and F 2 ∈ WJ. We seek a function F ∈ L2 for which we have
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Since F1 ∈ VJ and F2 ∈ WJ, there exist G1 and G2 in L2 such that
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Now, consider the function γ defined by
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whenever ΦJ+1(n) ≠ 0 and 0 else, and define the function F by
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It is straightforward that F ∈ L2 and that F̂(n, j) = γ(n, j). Furthermore,
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Consequently, F1 + F 2 ∈ VJ+1.
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Definition 142. For j ∈ ℤ, the space Wj is called the detail space at the level j and the mapping

(SWT)j : L2(S2)→ L2(S2)

F ⟼ ψj ∗ F

is called the spherical wavelet transform at the scale j.



Based on this definition and the results above, any function F ∈ L2(S2) will be represented by means of an L2-convergent series
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6Some applications

6.1Introduction

This chapter presents some applications related to the previous theories developed. The results presented are not new but consist of some developments in the direct application of some types of wavelets related to orthogonal polynomials and spherical calculus. We aimed to present especially some applications on differential equations and their numerical treatment with wavelets, some integrodifferential equations, and image processing and time-series processing related to spherical domains.

The developments stem from lectures and papers that are listed here and can be consulted by readers for more details and for complete study of the problems presented [3, 4, 9, 24, 50, 87, 90–92, 94,	110, 137, 139, 158, 160, 167, 169].

Of course, these applications may not be the best ones for the topic but we tried to reproduce the simplest ones so that they can be easily understood and redeveloped by the interested reader and make him/her familiar with wavelet theory and its interaction with other fields. More complicated applications can be found in the literature on wavelet theory, which is growing every day.


6.2Wavelets for numerical solutions of PDEs

In this section, we propose to redevelop numerical solutions of the well-known Chebyshev and Hermite differential equations by applying the simplest Haar wavelets. The aim is to show explicit calculus based on wavelets and their interaction with the first chapter dealing with orthogonal polynomials. The Chebyshev differential equation is
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The Hermite differential equation is
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λ ∈ ℝ is a fixed parameter.

Recall that these equations already have exact polynomial solutions composed of the known classes of Chebyshev and Hermite polynomials. We propose in this section to reproduce some numerical studies based on Haar wavelets to compare wavelet results with the exact ones.

In this section, we reproduce the method developed in [136]. The crucial idea to develop here differs from classical ones in that instead of considering the development of the unknown solution y into a wavelet series
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where ψi is a suitable wavelet basis, we consider the development of the higher order derivative of y in the equation. So consider the Haar wavelet mother

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x)

and its copies

ψj,k(x) = 2j/2(χ[k2−j ,(k+1/2)2−j[(x) − χ[(k+1/2)2−j ,(k+1)2−j[(x)) .

Consider a level J of resolution and denote M = 2J. For j = 0,1, . . . , J denote mj = 2j and for k = 0, 1, . . . , mj−1, we consider the lexicographical index i = m j + k+ 1. Thus the index i lies in the grid 2,3, . . . ,2M = 2J+1. With this notation, the orthogonal set (ψj,k)j,k will be denoted by (ψi)i, i = 2, 3, . . . , 2M. For i = 1, we set as a convention ψ1 ≡ χ[0,1[, which means the Haar scaling function. So, the above series development is the approximation of y (or its derivatives) at the level J.

Now, denote
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We get, for example,
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and
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Now, write
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Hence,
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and
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where C1 and C2 are constants related to the boundary (and/or initial) conditions. Next, it remains to compute on the grid 	
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 l = 1, 2, . . . , 2mj, j = 0, 1, . . . , J to obtain a matrix system with unknown ais.

In [136], the numerical solution of (6.1) with Λ = 5 and J = 3 has been provided and compared with the exact solution
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and the initial conditions

y(0)= 0 and yˊ(0) = 1 .

Table 6.1 is obtained.

Table 6.1: Exact and Haar wavelet numerical solutions of (6.1).


	t/32
	Numerical solution
	Exact solution


	1
	0.0309
	0.0311


	3
	0.0898
	0.0905


	5
	0.1375
	0.1413


	7
	0.1750
	0.1758


	9
	0.1749
	0.1979


	11
	0.1782
	0.1966


	13
	0.1628
	0.1735


	15
	0.1306
	0.1292


	17
	0.0381
	0.0669


	19
	− 0.0110
	− 0.0074


	21
	− 0.0518
	− 0.0848


	23
	− 0.0837
	− 0.1527


	25
	− 0.0577
	− 0.1948


	27
	− 0.0471
	− 0.1905


	29
	− 0.0083
	− 0.1148


	31
	− 0.0472
	0.0624




In terms of error estimates, this gives an L 2-error

‖yexact − yapprox‖ = 6.63 × 10−2 .

In terms of graphic illustration, we obtained Figure 6.1.

Now, the same techniques are applied to the Hermite equation (6.2) with λ = 3, J = 3, to obtain the exact solution
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and the initial conditions

y(0)=0 and yˊ(0) = 1


[image: ]
Fig. 6.1: Exact and Haar wavelet numerical solutions of (6.1).

Table 6.2: Exact and Haar wavelet numerical solutions of (6.2).


	t/32
	Numerical solution
	Exact solution


	1
	0.0312
	0.0312


	3
	0.0931
	0.0932


	5
	0.1530
	0.1537


	7
	0.2111
	0.2118


	9
	0.2618
	0.2664


	11
	0.3127
	0.3167


	13
	0.3585
	0.3616


	15
	0.3993
	0.4001


	17
	0.4068
	0.4313


	19
	0.4362
	0.4542


	21
	0.4594
	0.4678


	23
	0.4768
	0.4712


	25
	0.4875
	0.4634


	27
	0.4928
	0.4433


	29
	0.4925
	0.4101


	31
	0.4867
	0.3627




yielded Table 6.2.

In terms of error estimates, this gives an L 2-error

‖yexact − yapprox‖ = 4.05 × 10−2 .

In terms of graphic illustration, we obtained Figure 6.2.


[image: ]
Fig. 6.2: Exact and Haar wavelet numerical solutions of (6.2).


6.3Wavelets for integrodifferential equations

In this section, we present some methods based on wavelets to solve integrodifferential equations. We review one famous work developed in [87] where the authors applied some spherical types of wavelets to develop numerical solutions of the n-order integrodifferential problem
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where k is an L2 smooth function and 2π-periodic according to the first variable, and y and g are also L2 2π-periodic. y is of course the unknown function to be approximated.

The basic idea is to apply trigonometric Hermite interpolation to obtain a periodic wavelet analysis. The authors in [87] noticed that one main difficulty in applying wavelets for the representation of integral operators is that the quadrature leads to potentially high cost with a sparse matrix. This was the starting point behind the application of a special type of wavelet bases to simplify the computation expense.

Next, trigonometric or circular wavelets were introduced based on Dirichlet kernels. For m ∈ ℕ, let
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Denote
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for the subdivision of the interval [0, 2π) with a dyadic grid. The scaling functions are defined as follows:

	



 
  
   
    
     
      
       Φ
       
        j,0
       0
      
      (
       x
      )=
       1
       
        
         2
         
          2j+1
        
        
      
      
       ∑
       
        k=0
       
        
         
         
          2j+1
        
        −1
      
      
       D
       k
      
      (
       x
      ),
    
   
   
    
     
      
       Φ
       
        j,0
       1
      
      (
       x
      )=
       1
       
        
         2
         
          2j+1
        
        
      
      (
       
        
         
          
           D
           ˜
          
          
         
          
           2
           
            j+1
          
          −1
        
        (
         x
        )+
         1
         2
        
        sin(
         
          
           2
           
            j+1
          
          x
        )
      ),
    
   
   
  




[image: ]



and for s = 0; 1 and m = 0, 1, . . . ; 2j+1 − 1,
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The approximation spaces Vj are defined as
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The associated wavelet functions are defined as follows:
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and for s = 0; 1 and m = 0, 1, . . . ; 2j+1 − 1,
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The approximation spaces Vj are defined as
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Next, the idea proceeds as usual to project the differential equation on an approximation space Vj in a given level j. So, the functions y(x), k(x, t), and g(x) are approximated using trigonometric scaling functions as
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where Φ(x) and Φ(t) are matrices depending on the scaling functions and the parameters of the integrodifferential equation (6.3), K and β are vectors obtained from the functions k(x, t) and g(x). Precisely, β is 2J+2 ×1 and K is 2J+2 ×2J+2. Finally, α is composed of the coordinates of the projection vector of y(x) on the space Vj. Substituting these approximations into the system (6.3) leads to a linear system of equations with 2J+2 unknowns and equations, which can be solved to find α and thus the unknown function y(x).

The following result is proved in [87] and shows the convergence and its rate of the approximation solution to the exact one. Under the hypothesis of problem (6.3), we have
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6.4Wavelets in image and signal processing

In this section, we explain some methods to construct wavelets adapted to image processing on the sphere. We aim to review the methods developed in [3] of constructing wavelets on the sphere. A first example is related to Haar wavelets. We introduce the so-called spherical Haar wavelets (SHW). For a resolution j and a pixel k on the sphere, we have one scaling function ϕj,k and three wavelet functions ψm,j,k; m = 1, 2, 3. Next, the sphere is subdivided according to the number Nside of pixels, Nside = 2j−1, which yields a number n j = 12×4j−1 of pixels for each surface μj. The scaling function and the three wavelets are defined by
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The kjs j = 0, 1, 2, 3 represent the four pixels at the resolution or the level j +1 obtained from the pixel k of the resolution level j. The scaling (approximation) coefficients at the level j and the position k are then evaluated using those of the j +1 level by means of a filter relation as
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The wavelet (detail) coefficients are also related by means of a similar filter,
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It holds that such a transformation is orthogonal and leads to an exact reconstruction of the function f analyzed. Let
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The main disadvantage of this type of transform is the fact that it depends on the image to be analyzed and thus is affected by rotations, for example.

To overcome this ambiguity, a transformation is introduced in [3] and dealt with using axisymmetric stereographic wavelets obtained from the previous transform. To guarantee a best transposition of plane functions on the sphere, it is possible to apply stereographic projection of radial wavelets. Indeed, consider the transformation π−1 : x → ω = π−1x = (θ(r), ϕ), where 	
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 A radial wavelet can be transformed into a spherical wavelet via one rotation ω0 = (θ0, ϕ0) according to the axis Oy and Oz, respectively.

Such transforms yield with a natural way a convolution product on the sphere. Let f(ω) be defined on the plane and ψ(θ) a radial wavelet. We can define the convolution as
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The constructed wavelets are next decomposed by means of spherical harmonics Yl,0. Thus the convolution of a function f decomposed as
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with an axisymmetric filter is evaluated as
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Consider next the dilation operator
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where 	
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 is a normalization factor defined by
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The dilation operator satisfies
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where θa(θ) is defined on θ ∈ [0, π[→ θa ∈ [0, π[ by
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The south pole of the sphere is invariant. Note that the dilation operator is somehow an extension of the classical dilation on the plane to the case of the sphere and it associates with a similar sphere.

In [3], some examples are developed to illustrate the efficiency of the method. A first example was based on the well-known Mexican hat wavelet. On the plane, the radial version of the Mexican hat is defined by
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where R is a scaling factor and r is the distance to the center of the wavelet.

Such a function is applied next to introduce a continuous transform adapted to spherical images. Applying the inverse stereographic projection, an extension to a spherical Mexican hat has been developed. Consider
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where R is always a scaling factor and N R is a normalization one,
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and δ is the distance to the tangent point associated with the polar angle θ of the inverse stereographic projection,
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The resulting wavelet is a zonal function, which permits one to evaluate spherical harmonics coefficients. It holds in fact that the radial Mexican hat may induce a privileged direction to yield a directional spherical wavelet. Let
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Here, N (σx , σy) is a normalization constant,
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6.5Wavelets for time-series processing

In [92], a well-adapted method to represent scattered spherical data by multiscale spherical wavelets has been developed yielding efficient algorithms for decomposition and reconstruction. The proposed method is illustrated by numerical examples employed to analyze and compress the surface air temperatures observed at a global network of weather stations.

The method has been applied on scattered data obtained from climatology. The earth is considered a sphere so that a meteorological variable T(η), representing the surface air temperature, can be treated as a spherical function. The variable η = (cos φ cos θ, cos φ sin θ, sin φ) denotes the unit vector that points to a location on the earth from the center of the sphere, with φ and θ being the latitude and longitude of the location. In practice, the function T(η) is of course observed at a finite number of observing sites, denoted by Tj = T(ηj) on some grid j = 1,2, . . . , J, which enables one to see it as a time series. We explain briefly the idea developed in [92] yielding a multiresolution analysis on the sphere. Let N1 = {ηj; j = 1, . . . , J} be the source spacial grid to represent T(η), and N2 = {ηj; j = 1, . . . , K} with some K < J being a smaller network obtained by removing the last J − K instants from N1. Consider next a representation of the function T by means of a spherical harmonics basis
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and similarly a representation
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This leads to approximation spaces

V1 = span{ψ(., ηj); ηj ∈ N1} and V2 = span{ψ(., ηj); ηj ∈ N2} .

As it is seen, T2 can be understood as the projection of T1 on V2. By denoting D1(η) = T1(η) − T2(η) and the collection of D1(η) by W1, we observe that V1 = V2⨁W1. The space W1 represents the details lost by using the smaller grid N2 instead of N1 for the description of the time series T1(ηj). This means in other words that any function T1(η) in V1 can be decomposed as
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where T2(η) ∈ V2 and D1(η) ∈ W1, which explains the multiresolution analysis.

The decomposition (6.19) above can be naturally generalized to a nested sequence N1 ⊃ N2 ⊃ ⋅⋅⋅ ⊃ N L and the corresponding spaces of spherical functions V1 ⊃ V2 ⊃ ⋅⋅⋅ ⊃ VL satisfying

Vl+1 = Vl⨁Wl

for all l, and consequently, T1(η) will be decomposed as
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for l = 2, . . . , L.

This decomposition leads to an efficient recursive algorithm. Indeed, let gl(η) be the vector formed by the spherical wavelets associated with Nl and let 	
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 be the vector or spherical wavelets coefficients of Tl(η). Then we have the following relations, which explain a decomposition/reconstruction algorithm concept:
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where
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Here, the sequence hl(η) is defined by the relation gl(η) = {gl+1(η), hl(η)}.

In [92], an application of such theory was developed based on a real data set of the average surface air temperatures observed during the period of December 1967 to February 1968. A multiscale spherical wavelets decomposition transformed the time series into multiscale components to discover local anomalies at different scales and a compression of the data was applied based on a subset of wavelet coefficients.
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