
5 Spheroidal-type wavelets

5.1 Introduction

Wavelet analysis was introduced in the early 1980s in the context of signal analysis
and exploration for petroleum to give a representation of signals anddetect their char-
acteristics. Several methods have been applied for the task; the most known is the
Fourier transform. Amajor drawback of this method is its limitation to stationary and
periodic signals. Furthermore, the description of signals is limited to the global be-
havior and cannot provide any detailed information. Also, in its numerical computer
processing, Fourier analysis often yields nonfast algorithms.

Progress has been made by introducing the windowed Fourier transform (WFT)
to address the problems of time-frequency localization. The WFT acts on signals by
computing the classical Fourier transform of the signal multiplied by a time-localized
function known as the window. However, the situation was not resolved, especially
with the emergence of new problems, such as irregular signals or high-frequency vari-
ations.

Themajor drawbackwith theWFT is the fact that the shape of the window is fixed
and may not be adapted to the fluctuations of nonstationary signals. Thus, the need
for an analysis taking into account nonlinear algorithms, nonstationary signals, as
well as nonperiodical and volatile ones has become a necessity for both theory and
application. Wavelet analysis was introduced, developed, and has proved its power
despite these obstacles. In this chapter, we review a special case of wavelet analy-
sis adapted especially to spheroidal wavelets. We recall the strong relationship with
orthogonal polynomials, homogenous polynomials, spherical harmonics, as well as
special functions, and develop some details and examples.

5.2 Wavelets on the real line

Wavelet analysis is primarily based on an effective representation for standard func-
tions on the real line and a robustness to the specification models. It also permits a
reduction in time computation algorithms compared to other methods. This is essen-
tially due to the simplicity of the analysis and the ease of generalization and efficiency
according to thedimension. It permits one to analyze functions fromdifferenthorizons
starting from one horizon, which is not possible with Fourier analysis, for example.
There, the number of coefficients to be computed is the standard point behind any
approximation. Finally, wavelet analysis permits one to relate time localization to fre-
quency.

Mathematically speaking, a wavelet or an analyzing wavelet on the real line is a
function ψ ∈ L2(ℝ), which satisfies some conditions, such as the admissibility condi-
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tion, which somehow describes Fourier–Plancherel identity and which says that

∫
ℝ+
|ψ̂(ω)|2 dω|ω| = Cψ < ∞ . (5.1)

The function ψ has to also satisfy a number of vanishing moments, which is related
in wavelet theory to its regularity order. It states that

p = 0, . . . ,m − 1, ∫
ℝ
ψ(t)tpdt = 0 . (5.2)

Sometimes, we say that ψ is Cm on ℝ. The time-localization chart is a normalization
form that is resumed in the identity

+∞∫
−∞
|ψ(u)|2du = 1 . (5.3)

To analyze a signal by wavelets, one passes via the so-called wavelet transforms. A
wavelet transform is a representation of the signal bymeans of an integral form similar
to Fourier inwhich the Fourier sine and/or cosine is replaced by the analyzingwavelet
ψ. In Fourier transform, the complex exponential source function yields the copies eis.

index by the indices s ∈ ℝ, which somehow represent frequencies. This transform is
continuous in the sense that it is indexed by the whole line of indices s ∈ ℝ.

In wavelet theory, the situation is more unified. A continuous wavelet transform
(CWT) is also well known. First, a frequency, scale, or a dilation/compression param-
eter s > 0 and a second one related to time or position u ∈ ℝ have to be fixed. The
source function ψ, known as the analyzing wavelet, is next transformed to yield some
copies (replacing the eis.)

ψs,u(x) = 1√s ψ ( x − us ) . (5.4)

The CWT of a real valued function f defined on the real line at the position u and the
scale s is defined by

ds,u(f) = ∞∫
−∞

f(t)ψs,u(t)dt, ∀u, s . (5.5)

By varying the parameters s and u, we can completely cover the time-frequency plane.
This gives a full and redundant representation of the whole signal to be analyzed
(see [99]). This transform is called continuous because of the nature of the parame-
ters s and u that can operate at all levels and positions.

So, wavelets operate according to two parameters: the parameter uwhich permits
one to translate the graph of the source wavelet mother ψ and the parameter s which
permits one to compress or to dilate the graph of ψ. Computing or evaluating the co-
efficients du,s means analyzing the function f with wavelets.
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Properties 122. The wavelet transform ds,u(f) possesses some properties, such as
(1) the linearity, in the sense that

ds,u(αf + βg) = αds,u(f) + βds,u(g), ∀f, g ,
(2) the translation-invariance, in the sense that

ds,u(τtf) = ds,u−t(f), ∀f; and ∀u, s, t ,
and where (τtf)(x) = f(x − t) ,

(3) the dilation-invariance, in the sense that

ds,u(fa) = 1√a das,au(f), ∀f; and ∀u, s, a ,
and where for a > 0, (fa)(x) = f(ax) .

The proof of these properties is easy and readers can refer to [8] for a review.
It holds in wavelet theory, as in Fourier analysis theory, that the original function

f can be reproduced via its CWT by an L2-identity.

Theorem 123. For all f ∈ L2(ℝ), we have the L2-equality
f(x) = 1

Cψ
∫∫ ds,u(f)ψ ( x − us ) dsdus2 .

The proof of this result is based on the following lemma.

Lemma 124. Under the hypothesis of Theorem 123, we have

∫∫ ds,u(f)ds,u(g)dsdus = Cψ ∫ f(x)g(x)dx, ∀ f, g ∈ L2(ℝ) .
Proof. We have

ds,u(f) = 1s f ∗ ψs(u) = 1s ∫ f(x)ψ ( x − us ) dx = 1
2πF ( ̂f (y)ψ̂(sy)e−iuy) .
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Consequently, ∫
u

ds,u(f)ds,u(g)du = 1
2π ∫

y

f̂ (y)ĝ(y)|ψ̂(sy)|2dy .
By application of Fubini’s rule, we get∫

s>0
∫
u

ds,u(f)ds,u(g)dsdus = 1
2π ∫

s>0
∫
y

̂f (y)ĝ(y)|ψ̂(sy)|2 dsdys
= 1
2π
dψ ∫

y

̂f (y)ĝ(y)dy
= Cψ ∫

y

f(y)g(y)dy .
Proof of Theorem 123. By applying the Riesz rule, we get󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩F(x) − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)ψ ( x − ba ) dadba2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩L2
= sup
‖G‖=1
(∫ F(x) − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)ψ ( x − ba ) dadba2
) G(x)dx .

Next, using Fubini’s rule, we observe that the last line is equal to

= sup
‖G‖=1
(∫ F(x)G(x)dx − 1

Cψ
∫

1/A≤a≤A
∫
|b|≤B

Ca,b(F)Ca,b(G)dadba )
= sup
‖G‖=1

1
Cψ

∫
(a,b)∉[1/A,A]×[−B,B]

Ca,b(F)Ca,b(G)dadba ,

which by Cauchy–Schwartz inequality is bounded by

≤ 1
Cψ
[[[ ∫
(a,b)∉[1/A,A]×[−B,B]

|Ca,b(F)|2 dadba ]]]
1/2

[[[ sup‖G‖=1 ∫
(a,b)∉[1/A,A]×[−B,B]

|Ca,b(G)|2 dadba ]]]
1/2

.

Now, Lemma 124 shows that the last quantity goes to 0 as R tends to +∞.

On the real line, themostwell-knownexamples areHaar andSchauderwavelet,where
explicit computations are always possible. The Haar example is the simplest example
in the theory of wavelets. It is based on the wavelet mother expressed by

ψ(x) = χ[0,1/2[(x) − χ[1/2,1[(x) .
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The Schauder wavelet is based on the explicit wavelet mother

ψ(x) = 12 (1 − |2x|)χ[−1/2,1/2](x)− (1 − |2x − 1|)χ[0,1[(x)+ 12 (1 − |2x − 2|)χ[1/2,3/2](x) .
Readers can refer to [8, 75, 95, 99] for more details and examples of original wavelet
analysis on the real line and Euclidian spaces in general.

5.3 Chebyshev wavelets

Chebyshev wavelets stem from one mother wavelet ψm depending on a parameterm,
which represents the degree of Chebyshev polynomial of first kind associatedwith the
wavelet. The source Chebyshev wavelet mother ψm is defined by

ψm(t) = T̃m(t), 0 ≤ t < 1 and 0, else

where

T̃m(t) = √2π Tm(t), m = 0, 1, 2, . . . ,M − 1 . (5.6)

Here Tm(t) are the Chebyshev polynomials of the first kind of degree m, given by
Tm(t) = cos(m arccos t) .

Next, we perform the usual translation–dilation actions using parameters j ∈ ℕ for
the level and a parameter n = 1, 2, . . . , 2j−1 for the position. Thus, we obtain the
dilation–translation copies of ψm explicitly expressed by

ψmj,n(t) = {{{2
j
2 T̃m(2j t − 2n + 1), n−1

2j−1 ≤ t < n
2j−1

0, else .
(5.7)

The Chebyshev wavelets are orthonormal with respect to the weight function

ωj(t) = ωn,k(t) = ω(2j−1t − n + 1), n = 1, 2, . . . , 2k−1 and n − 1
2j−1
≤ t < n

2j−1
.

Denote next

L2ω([0, 1]) = {{{f,
1∫
0

|f(x)|2 ω(x)dx < ∞}}} ,

where ω(x) = 1
2√x(1−x) . A function f ∈ L2ω([0, 1]) can be approximated in a series form

as
f = ∞∑

n=1

∞∑
m=0

Cnmψmj,n ,
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where
Cmj,n = ⟨f, ψmj,n⟩ωj ,

in which ⟨., .⟩ωj is the inner product in L2ωj ([0, 1]).
5.4 Gegenbauer wavelets

Gegenbauer wavelets (GW) depend on four parameters: j, n,m, p. The parameter
j ∈ ℕ represents the level of resolution, n ∈ {1, 2, 3, . . . , 2j−1}, is related to the trans-
lation parameter, m = 0, 1, 2, . . . ,M − 1, M > 0 is the degree of the Gegenbauer
polynomial, and finally a real parameter p > − 12 . The mother Gegenbauer wavelet
is defined on [0, 1) by ψm,p(x) = Gpm(x), where Gpm is the well-known Gegenbauer
polynomial defined in Chapter 1. Next, the translation–dilation copies of ψm,p are
defined by

ψm,pj,n (x) = {{{{{
1
√Lpm

2
j
2Gpm(2jx − 2n + 1), 2n−2

2j ≤ t < 2n
2j ,

0, elsewhere .

Note here that the translation parameter takes only odd values.

Remark 125. For p = 1
2 , we get Legendre wavelets. For p = 0 and p = 1, we obtain

the Chebyshev wavelet of first and second kind, respectively.

To obtain themutual orthogonality of Gegenbauer wavelets ψm,pj,n , the weight function
associated with the Gegenbauer polynomials has to be dilated and translated as for
the Gegenbauer wavelets. Thus, we obtain a translation–dilation copy of the weight
ω as

ωj,n(x) = ω(2j x − 2n + 1) = (1 − (2jx − 2n + 1)2)p− 12 .
At a fixed level of resolution, we get

ωj,n(x) =
{{{{{{{{{{{{{{{{{{{{{

ωj,1(x), 0 ≤ x < 1
2j−1 ,

ωj,2(x), 1
2j−1 ≤ x < 2

2j−1 ,
ωj,3(x), 2

2j−1 ≤ x < 3
2j−1 ,

...
ωj,2j−1 (x), 2j−1−1

2j−1 ≤ x < 1 .
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According to such wavelets, a function f ∈ L2[0, 1) can be expressed in terms of the
GW as

f = ∞∑
j=1
∑
n∈ℤ

dm,pj,n ψ
m,p
j,n , (5.8)

where the coefficient dm,pj, are the so-called wavelet coefficients given by

dm,pj,n = ⟨f, ψm,pj,n ⟩ = 1∫
0

ωj,n(x)ψm,pj,n (x)f(x)dx .
For more details, refer to [124, 126, 135, 139].

5.5 Hermite wavelets

Hermite wavelets are based on the well-known Hermite polynomials. Recall that such
polynomials consist of a sequence of orthogonal polynomials with respect to the spe-
cial weight function ω(x) = e−x2 and are explicitly given by

Hm(x) = (−1)mex2 dmdxm (e−x2 ) .
The Hermite mother wavelet is given by

ψm(t) = {{{H̃m(2t), 0 ≤ t < 1 ,
0, else ,

(5.9)

where
H̃m = 1

2ml!√πHm .

The translation–dilation copies of ψm are next defined by

ψmk,n(t) = {{{2
k
2 H̃m(2k+1t − 2l + 1), l−1

2k ≤ t < n
2k

0, else .
(5.10)

Note that such wavelets depend essentially on the parameter m, which is the degree
of the m-Hermite polynomial Hm . Hermite wavelets are orthonormal with respect to
the weight function

ωl,k(t) = ω(2k−1t − l + 1), l = 0, 1, . . . , x, 2k, l − 1
2k
≤ t < n

2k
.

Some propeties of Hermite wavelets are given in [1].
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5.6 Laguerre wavelets

Laguerre wavelets are orthogonal wavelets defined in the interval (0, 1) and stem from
one source mother function

ψm(t) = L̃m(t)χ[0,1[(t) = 1
m!Lm(t)χ[0,1[(t) , (5.11)

where Lm is the Laguerre polynomial of degree m. A wavelet basis is next expressed
by

ψmk,n(t) = {{{2
k
2 L̃m(2kt − 2n + 1), n−1

2k−1 ≤ t < n
2k−1 ,

0, else .
(5.12)

For more details on these wavelets, see [79].

5.7 Bessel wavelets

There are several approaches to introduce Bessel wavelets [126, 127].
In the present section, we will present the most known approach. For 1 ≤ p < ∞

and μ > 0, denote
Lpσ(ℝ+) := {{{{{f such that ‖f‖p,σ = (

∞∫
0

|f(x)|pdσ(x)) 1
p < ∞}}}}} ,

where dσ(x) = x2μ

2μ−
1
2 Γ(μ+ 12 )

dx. Denote also

jμ(x) = 2μ− 12 Γ (μ + 12) x 1
2−μJμ− 12 (x) ,

where Jμ− 12 is the Bessel function of first kind and of order μ − 1
2 . Denote next,

D(x, y, z) = ∞∫
0

jμ(xt)jμ(yt)jμ(zt)dσ(t)
and the translation

τxf(y) = f̃ (x, y) = ∞∫
0

D(x, y, z)f(z)dσ(z), ∀0 < x, y < ∞ .

Next, for a two-variable function f , we define the dilation operator

Daf(x, y) = a−2μ−1f ( xa , ya) .



5.7 Bessel wavelets | 113

Definition 126. Let Ψ ∈ Lpσ(ℝ+). The Bessel wavelet copy Ψa,b is defined by
Ψa,b(x) = DaτbΨ(x) = a−2μ−1 ∞∫

0

D (ba , xa , z)Ψ(z)dσ(z); ∀a, b ≥ 0 .
The Bessel wavelet transform (BWT) of a function f ∈ Lqσ(ℝ+), at the scale a and the
position b is defined by

(BΨ f)(a, b) = a−2σ−1 ∞∫
0

∞∫
0

f(t)Ψ (z)D ( ba , ta , z) dσ(z)dσ(t) .
The following result shows one of the BWT of functions.

Theorem 127. Let f ∈ Lpσ(ℝ+), Ψ ∈ Lqσ(ℝ+) with 1 ≤ p, q < ∞ such that 1
p + 1

q = 1.
Then (Bψf) is continuous onℝ2+.
Proof. Let (a0, b0) be an arbitrary fixed point of ℝ2+. We have|(BΨ f)(a, b) − (BΨ f)(a0, b0)|

≤ a−2μ−1 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞∫
0

∞∫
0

f(t)Ψ(z) [D (ba , ta , z) − D (b0a0 , ta , z)] dσ(z)dσ(t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨≤ a−2μ−1 [[
∞∫
0

∞∫
0

|f(t)|p 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1p dσ(t)dσ(z)]]× [[

∞∫
0

∞∫
0

|ψ(z)|q 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1q dσ(t)dσ(z)]] .

Now, observe that 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨D (ba , ta , z) − D (b0a0 , t
a0, z
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 2 .

Moreover, using the dominated convergence theorem and the continuity of D( ba , ta , z)
with respect to (a, b), we get

lim
(a,b)→(a0,b0)

|(BΨ f)(a, b) − (BΨ f)(a0, b0)| = 0 ,
which proves the continuity of the BWT onℝ2+.
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Definition 128. Let f, g ∈ Lpσ(ℝ+). We define the convolution product (usually
known as the Hankel convolution) by

(f♯g)(x) = ∞∫
0

τxf(y)g(y)dσ(y) .
The following result is a variant of Parseval/Plancherel rules for the case of BWT.

Theorem 129. Let Ψ ∈ L2σ(ℝ+) and f, g ∈ L2σ(ℝ+). Then
∞∫
0

∞∫
0

(BΨ f)(a, b)(BΨ g)(a, b)dσ(a)a2μ+1
dσ(b) = CΨ ⟨f, g⟩ ,

where

CΨ = ∞∫
0

t−2μ−1|Ψ̂(t)|2dt > 0 .
The proof follows similar techniques as for the case of real-line wavelets. Because of
its importance, we reproduce it in detail.

Proof. Recall that(BΨ f)(a, b) = ∫
ℝ+

f(t)Ψa,b(t)dσ(t)
= 1
a2σ+1

∫
ℝ2+

f(t)Ψ(z)D ( ba , ta , z) dσ(z)dσ(t) .
Now observe that

D (ba , ta , z) = ∫
ℝ+

j (ba u) j ( ta u) j(zu)dσ(u) .
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Hence, (BΨ f)(a, b) = 1
a2σ+1

∫
ℝ3+

f(t)Ψ(z)j ( ba u) j ( ta u) j(zu)dσ(u)dσ(z)dσ(t)
= 1
a2σ+1

∫
ℝ2+

f̂ (ua)Ψ(z)j ( ba u) j(zu)dσ(u)dσ(z)
= 1
a2σ+1

∫
ℝ+

f̂ (ua) Ψ̂(u)j (ba u) dσ(u)
= ∫
ℝ+

f̂ (η)Ψ̂(aη)j(bη)dσ(η)
= (f̂ (η)Ψ̂(aη))⋀ (b) .

As a result ∫
ℝ2+

(BΨ f)(a, b)(BΨ g)(a, b)dσ(a)a2μ+1
dσ(b)

= ∫
ℝ2+

f̂ (η)Ψ̂(aη)ĝ(η)Ψ̂(aη)dσ(η)dσ(a)
a2μ+1

= ∫
ℝ+

f̂ (η)ĝ(η)(∫
ℝ+

|Ψ̂(aη)|2 dσ(a)
a2μ+1

) dσ(η)
= CΨ ∫
ℝ+

f̂ (η)ĝ(η)dσ(η)
= CΨ ⟨f̂ , ĝ⟩= CΨ ⟨f, g⟩ .

5.8 Cauchy wavelets

Cauchy wavelets are one step in the direction of introducing spherical wavelets as
they aim to take into account the angular behavior of the analyzed signals. In the
one-dimensional case, Cauchy wavelets are defined via their Fourier transform

ψ̂m(ω) = {{{0, for ω < 0
ωme−ω , for ω ≥ 0 ,

withm > 0. In 1D, the positive half-line is a convex cone. Thus a natural generalization
to 2D will be a wavelet whose support in spatial frequency space is contained in a
convex cone with an apex at the origin. Let C ≡ C(α, β) be the convex cone determined
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by the unit vectors eα , eβ, where α < β, β − α < π and for all θ, eθ ≡ (cos θ, sin θ). The
axis of the cone is ξαβ = e α+β

2
. In other words,

C(α, β) = {k ∈ ℝ2, α ≤ arg(k ≤ β)}= {k ∈ ℝ2, k.ξαβ ≥ eα .ξαβ = eβ .> 0} .
The dual cone to C(α, β) is

C̃(α, β) = {k ∈ ℝ2, k.k󸀠 > 0, ∀k󸀠 ∈ C(α, β)} .
Note that C̃(α, β)may also be seen as

C̃(α, β) = C(α̂, β̂) ,
where α̂ = β − π

2 , β̂ = α + π2 and eα .eα̂ = eβ .eβ̂ = 0. Thus the axis of C̃ is ξαβ.
The two-dimensional Cauchy wavelet is defined via its Fourier transform

ψ̂C ,ηlm = {{{(k.eα̃)l(k.eβ̃)me−k.η, k ∈ C(α, β) ,
0, otherwise ,

(5.13)

where η ∈ C̃ and l,m ∈ ℕ∗. Note that such awavelet is also supported by C. It satisfies
the admissibility condition

cψC,ηlm ≡ (2π)2 ∫ d2k|k|2 |ψ̂C ,ηlm (k)|2 < ∞ . (5.14)

The following result obtained by Antoine et al. is proved in [12] and yields an explicit
form for the two-dimensional Cauchy wavelet.

Proposition 130. For even η ∈ C̃ and l,m ∈ ℕ∗. The 2D Cauchy wavelet ψC ,ηlm (x)with
support in C belongs to L2(ℝ2, dx) and is given by

ψC ,ηlm (x) = il+m+22π
l!m! [sin(β − α)]l+m+1[(x + iη).eα]l+1[(x + iη).eβ]m+l . (5.15)

Wecan,with analogous techniques, definemultidimensional Cauchywavelets. See [12]
and the references therein for more details.

5.9 Spherical wavelets

Spherical wavelets are adopted for understanding complicated functions defined or
supported by the sphere. The classical spherical wavelets are essentially done by con-
volving the function against rotated and dilated versions of one fixed function ψ. To
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introduce a specialwavelet analysis on the sphere related to zonalswefirst recall some
useful topics. Let F ∈ L2[−1, 1] and Ln be the Legendre polynomial of degree n. The
coefficients

F̂(n) = 2π⟨F, Ln⟩ = 2π 1∫
−1
F(x)Ln(x)dx, n ∈ ℕ

are called the Legendre coefficients or the Legendre transforms of F. It is proved in har-
monic Fourier analysis that F can be expressed in a series form

F = ∞∑
n=0

F̂(n)2n + 14π Ln (5.16)

called the Legendre series of F.

Definition 131. A family {ϕj}j∈ℕ ⊂ L2[−1, 1] is called a spherical scaling function
system if the following assertions hold.
(1) For all n, j ∈ ℕ, we have ϕ̂j(n) ≤ ϕ̂j+1(n). In other words, for all n ∈ ℕ the

sequence (ϕ̂j(n))j∈ℕ is increasing
(2) limj󳨀→∞ ϕ̂j(n) = 1 for all n ∈ ℕ
(3) ϕ̂j(n) ≥ 0 for all n, j ∈ ℕ,
where ϕ̂j(n) is the Legendre transform of ϕ̂j.

We will now investigate a way of constructing a scaling function [54].

Definition 132. A continuous function γ : ℝ+ 󳨃󳨀→ ℝ is said to be admissible if it
satisfies the admissibility condition

∞∑
n=0

2n + 1
4π ( sup

x∈[n,n+1]
|γ(x)|)2 < +∞ . (5.17)

In this case, γ is called an admissible generator of the function ψ : [−1, 1] → ℝ
given by

ψ = ∞∑
n=0

2n + 1
4π γ(n)Ln . (5.18)

We immediately obtain the following characteristics [162].
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Proposition 133. The following assertions are true:
(1) If γ is an admissible generator, then the generated function ψ ∈ L2[−1, 1].
(2) For all n ∈ ℕ, ψ̂(n) = γ(n).
Proof. (1) Since the Legendre polynomials form an orthogonal basis for L2[−1, 1]with⟨Ln , Ln⟩L2[−1,1] = 4π

2n+1 , the admissibility condition imposed on γ yields that

‖ψ‖2L2[−1,1] = ∞∑
n=0

2n + 1
4π (γ0(n))2 ≤ ∞∑n=0 2n + 14π ( sup

x∈[n,n+1]
|γ0(x)|)2 < +∞

(2) is an immediate result from (5.16).

We now investigate the idea to construct a whole family of admissible functions start-
ing from one source admissible function.

Definition 134. The dilation operator is defined for γ : [0,∞) → ℝ and a > 0 by
Daγ(x) = γ(ax) ∀x ∈ [0,∞) .

For a = 2−j, j ∈ ℤ we denote γj = Djγ = D2−j γ.
Definition 135. An admissible function φ : [0,∞) → ℝ is said to be a generator of
a scaling function if it is monotonously decreasing, continuous at 0 and satisfies
φ(0) = 1.
The system {ϕj}j∈ℕ ⊂ L2[−1, 1], defined by

ϕj = ∞∑
n=0

2n + 1
4π φj(n)Ln

is said to be the corresponding spherical scaling function associated with φ.

It holds sometimes that for all j, the sequence (ϕ̂j(n))n is stationary with zero sta-
tionary value. In this case, the system {ϕj}j∈ℕ ⊂ L2[−1, 1] is called bandlimited. It
holds that for bandlimited scaling functions, each ϕj is a 1D polynomial, and for all
F ∈ L2(S2), ϕj ∗ F is a polynomial on S2. The following theorem affirms that scal-
ing functions permit one to approximate L2 functions with polynomial approximates
(see [162]).

Now, we show that such scaling functions are suitable candidates to approximate
functions in L2 as it is needed in wavelet theory in general. Thus, they are suitable
sources to define multiresolution analysis and/or a wavelet analysis on the sphere.
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Theorem 136. Let {ϕj}j∈ℕ be a scaling function and F ∈ L2(S2). Then
lim
j→∞
‖F − ϕ(k)j ∗ F‖L2(S2) = 0

for all levels of iterations k ∈ ℕ.
Here, for a function Φ ∈ L2, we designate by Φ(k) the k-times self-convolution of Φ
with itself. The last approximation is called spherical approximate identity. The next
theorem shows the role of spherical scaling functions in the construction of multires-
olution analysis on the sphere.

Proof. First observe that

ϕ(k)j ∗ F = +∞∑
n=0

2n+1∑
j=1

Φ̂J(n)F̂(n, j)Yn,j .
Thus,

F − ϕ(k)j ∗ F = +∞∑
n=0

2n+1∑
j=1
(1 − Φ̂J(n))F̂(n, j)Yn,j ,

which by applying the Parseval identity yields that

‖Fϕ(k)j ∗ F‖22 = +∞∑
n=0

2n+1∑
j=1
(1 − Φ̂J(n))2(F̂(n, j))2 .

Now, observing that the last series is J-uniformly convergent and the fact that

lim
J→+∞
(1 − Φ̂J(n)) = 0

for all n, it results that
lim
j→∞
‖F − ϕ(k)j ∗ F‖L2(S2) = 0 .

Theorem 137. Let for j ∈ ℤ,
Vj = {ϕ(2)j ∗ F|F ∈ L2(S2)} ,

where {ϕj}j∈ℕ ⊂ L2[−1, 1] is a scaling function. Then, the sequence (Vj)j defines a
multiresolution analysis on the sphere. That is,
(1) Vj ⊂ Vj+1 ⊂ L2(S2), ∀j ∈ ℕ.
(2) ⋃∞j=0 Vj = L2(S2).
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For j ∈ ℤ, the spaces Vj represents the so-called scale or approximation space at the
level j.

Proof. (1) As Φ ∈ L2 and also F, the convolution Φ ∗ F is also L2.
Consider next, for J ∈ ℤ, the function

γJ(n) = ( Φ̂J(n)
Φ̂J+1(n))2 F̂(n, j) if ΦJ+1(n) ̸= 0

and 0 else, and define the function G by

G = +∞∑
n=0

2n+1∑
j=1

γj(n)Yn,j .
It is straightforward that G ∈ L2 and that Ĝ(n, j) = γj(n). Furthermore,

ϕ(2)J+1 ∗ G = +∞∑
n=0

2n+1∑
j=1

Φ̂J+1(n)Ĝ(n, j)Yn,j
= +∞∑
n=0

2n+1∑
j=1

Φ̂J(n)F̂(n, j)Yn,j
= ϕ(2)J ∗ F .

Hence, ϕ(2)J ∗ F = ϕ(2)J+1 ∗ G ∈ VJ+1. Consequently, VJ ⊂ VJ+1.
(2) The density property is an immediate consequence of the spherical approximate
identity proved in Theorem 136.

Based on this multiresolution analysis of L2(S2), we can introduce spherical wavelets.
Definition 138. Let Φ = {ϕj}j∈ℕ ⊂ L2[−1, 1] be a scaling function and let Ψ ={ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃j}j∈ℕ∪{−1} be in L2[−1, 1] satisfying the so-called refinement
equation

ψ̂j(n) ∼̂ψj(n) = (ϕ̂j+1(n))2 − (ϕ̂j(n))2 ∀n, j ∈ [0, +∞) .
Then,
(a) Ψ and Ψ̃ are called, respectively, (spherical)primalwavelet and (spherical)dual

wavelet relative to Φ.
(b) The functions ψ0 and ψ̃0 are called the primal mother wavelet and the dual

mother wavelets, respectively.
Here, we set ψ−1 = ψ̃−1 = ϕ0.

The following result obtained byVolker in [162] shows the existence of primal anddual
wavelets.
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Theorem 139. Let φ0 be a generator of a scaling function and ψ0, ψ̃0 be admissible
function such that

ψ0ψ̃0(x) = (φ0 ( x2))2 − (φ0(x))2 ∀x ∈ ℝ+ .
Then, ψ0 and ψ̃0 are generators of primal and dual mother wavelets, respectively.

Proof. We will prove precisely that the dilated copies {ψj}j∈ℕ∪{−1}, {ψ̃j}j∈ℕ∪{−1} ⊂
L2[−1, 1] defined via their Legendre coefficients by dilating ψ0 and ψ̃0(x) as

ψ̂j(n) = ψj(n) = ψ0(2−jn), ∼̂

ψj(n) = ψ̃j(n) = ψ̃0(2−jn); ∀n, j ∈ ℕ .

and
ψ̂−1(n) = ∼̂

ψ−1(n) = φ0(n); ∀n ∈ ℕ
are a primal and dual wavelets, respectively. Indeed, considering these dilated copies
we obtain for all n, j ∈ ℕ,

ψ̂j(n) ∼̂ψj(n) = ψ0(2−jn)ψ̃0(2−jn)= (φ0(2−j−1n))2 − (φ0(2−jn))2= (ϕ̂j+1(n))2 − (ϕ̂j(n))2 .
A fundamental property of spherical wavelets is the scale-step property proved below,
which prepares us to introduce detail spaces.

Theorem 140. Let Ψ = {ψj}j∈ℕ∪{−1} and Ψ̃ = {ψ̃j}j∈ℕ∪{−1} be a primal and a dual
wavelet corresponding to the scaling function {ϕj}j∈ℕ ⊂ L2[−1, 1]. The following as-
sertions hold for all F ∈ L2(S2).
(i) ϕ(2)J2 ∗ F = ϕ(2)J1 ∗ F + ∑J2−1j=J1 ψ̃j ∗ ψj ∗ F, ∀J1 < J2 ∈ ℕ.
(ii) F = ϕ(2)J ∗ F + ∑∞j=J ψ̃j ∗ ψj ∗ F, ∀J ∈ ℕ.
Proof. (i) We will evaluate the last right-hand series term in the assertion. Using the
definition of primal and dual wavelets, we obtain

ψ̃j ∗ ψj ∗ F = +∞∑
n=0

2n+1∑
s=1

ψ̂j(n) ∼̂ψj(n)F̂(n, s)Yn,s
= +∞∑
n=0

2n+1∑
j=1
[(ϕ̂j+1(n))2 − (ϕ̂j(n))2] F̂(n, s)Yn,s

= ϕ(2)j+1 ∗ F − ϕ(2)j ∗ F .
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As a result,
J2−1∑
j=J1

ψ̃j ∗ ψj ∗ F = ϕ(2)J2 ∗ F − ϕ(2)J1 ∗ F .
(ii) is an immediate consequence of assertion (i).

Theorem 141. Denote for j ∈ ℤ,
Wj = {ψ̃j ∗ ψj ∗ F/F ∈ L2(S2)} .

Then, for all J ∈ ℤ,
VJ+1 = VJ +WJ .

Proof. The inclusion VJ ⊂ VJ−1 + WJ−1 is somehow easy and it is a consequence of
Theorem 140. We will prove the opposite inclusion. So, let F1 ∈ VJ and F2 ∈ WJ . We
seek a function F ∈ L2 for which we have

Φ(2)J+1 ∗ F = F1 + F2 .
Since F1 ∈ VJ and F2 ∈ WJ , there exist G1 and G2 in L2 such that

F1 = Φ(2)J ∗ G1 and F2 = Ψ̃J ∗ ΨJ ∗ G2 .
Now, consider the function γ defined by

γ(n, j) = ((Φ̂J(n))2 Ĝ1(n, j) + ((Φ̂J+1(n))2 − (Φ̂J (n))2)Ĝ2(n, j)
Φ̂J+1(n) )2 ,

whenever ΦJ+1(n) ̸= 0 and 0 else, and define the function F by
F = +∞∑

n=0

2n+1∑
j=1

γ(n, j)Yn,j .
It is straightforward that F ∈ L2 and that F̂(n, j) = γ(n, j). Furthermore,

Φ(2)J+1 ∗ F = +∞,∗∑
n=0

2n+1∑
j=1
(Φ̂J+1(n))2 F̂(n, j)Yn,j

= +∞∑
n=0

2n+1∑
j=1
(Φ̂J (n))2 Ĝ1(n, j)Yn,j

+ +∞∑
n=0

2n+1∑
j=1
((Φ̂J+1(n))2 − (Φ̂J(n))2)Ĝ2(n, j)Yn,j
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= +∞∑
n=0

2n+1∑
j=1
(Φ̂J(n))2 Ĝ1(n, j)Yn,j

+ +∞∑
n=0

2n+1∑
j=1

∼̂

ΨJ(n)Ψ̂J (n)Ĝ2(n, j)Yn,j
= ϕ(2)J ∗ G1 + Ψ̃J ∗ ΨJ ∗ G2= F1 + F2 .

Consequently, F1 + F2 ∈ VJ+1.
Definition 142. For j ∈ ℤ, the spaceWj is called the detail space at the level j and
the mapping (SWT)j : L2(S2) → L2(S2)

F 󳨃󳨀→ ψj ∗ F
is called the spherical wavelet transform at the scale j.

Based on this definition and the results above, any function F ∈ L2(S2) will be repre-
sented by means of an L2-convergent series

F = ∞∑
j=−1

ψ̃j ∗ (SWT)j (F) . (5.19)




