
4 Review of special functions

4.1 Introduction

The main motivation behind this chapter about special functions is that these func-
tions are applied in the quasi-field of mathematical physics and that there is no liter-
ature dedicated on them and their basic properties with efficient proofs and original
references.

Special functions are, as their name indicates, special in their definitions, appli-
cations, proofs as well as their interactions with other fields. It is thus important to
understand their basic properties.

They appear in the treatment of differential equations, such as heat and Schrö-
dinger equations, quantum mechanics, approximation theory, communication sys-
tems, wave propagation, probability theory, and number theory.

Special functions are also related to orthogonal polynomials, as both of them are
generated by second-order ordinary differential equations. We cite mainly Legendre,
Gegenbauer, and Jacobi polynomials. They are also associated with infinite series, im-
proper integrals, and Fourier transforms, yielding special transforms, such as Bessel,
Jakobi, Hankel, and Dunkl transforms of functions.

Historically, special functions differ from elementary ones, such as powers, roots,
trigonometric, and their inverses, mainly with the limitations that these latter classes
have known. Many fundamental problems such as orbital motion, simultaneous os-
cillatory chains, and spherical body gravitational potential were not best described
using elementary functions. This makes it necessary to extend elementary function
classes to more general ones that may describe unresolved problems.

In the present chapter, we aim to recall special functions most frequently applied
in scientific fields, such as Bessel functions, Mathieu functions, the Gamma function,
the Beta function, and Jacobi functions.

4.2 Classical special functions

4.2.1 Euler’s Γ function

Euler’s Gamma function was introduced by Bernoulli and Christian Goldbach in the
17th century by extending the factorial to nonintegers. But the problem remained un-
solved until the work of Leonhard Euler, who was the first to point out a rigorous for-
mulation based on infinite products. Next, Euler’s Gamma function has been applied
in numerous contexts in both mathematics and physics, such as integration theory,
number theory, probability, group theory, and partial differential equations (PDEs),
andhas also been extended to themeromorphic function on thewhole complex plane.
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Definition 57. Euler’s Γ function is defined by the following integral expression
known sometimes as the second-kind Euler integral, defined for x ∈ ℝ∗+ by

Γ(x) = ∞∫
0

tx−1e−tdt .

Proposition 58.
(1) Euler’s Γ integral converges for all x > 0.
(2) The function Γ is C∞ on ]0, +∞[ and we have

Γ(k)(x) = +∞∫
0

e−t(ln t)k tx−1dt, ∀x > 0, ∀k ∈ ℕ .

(3) Euler’s Γ function can be extended on the half-plane Re(z) > 0.
Proof. (1) For x > 0, denote f(t, x) = tx−1e−t. First note that f(t, x) > 0 for all t ∈(0, +∞). When t → 0, f(t, x) ∼ tx−1 and

1∫
0

tx−1dt = 1x
is convergent. So

1∫
0

f(t, x)dt
is also convergent. Now, note that there exist A,M > 0 constants such that t2f(t, x) <
M whenever t > A and thus

+∞∫
A

f(t, x)dt ≤ +∞∫
A

1
t2
dt .

The last integral is convergent. So

+∞∫
A

f(t, x)dt
is also convergent. Finally, the integral Γ(x) is convergent for all x > 0.
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(2) Let a, b ∈ ℝ with 0 < a < b and ϕ : [a, b]×]0, +∞[󳨀→ ℝ such that ϕ(x, t) =
tx−1e−t. It consists of a C∞ function that satisfies

∂(k)ϕ
∂xk
(x, t) = (ln t)ktx−1e−t ,

which is also continuous on [a, b]×]0, +∞[. In addition, for k ∈ ℕ∗, we have
– ∀x ∈ [a, b], the function t 󳨃→ ∂kϕ

∂xk (x, t) is continuous on ]0, +∞[.
– ∀t ∈]0, +∞[, the function x 󳨃→ ∂kϕ

∂xk (x, t) is continuous on [a, b].
– ∀(x, t) ∈ [a, b]×]0, +∞[, we have󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂kϕ∂xk (x, t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (ln t)kmax(ta−1, tb−1)e−t .
Hence, the function Γ is C∞ on ]0, +∞[ and ∀k ∈ ℕ∗, ∀x > 0,

Γ(k)(x) = +∞∫
0

(ln t)k tx−1e−tdt .
Hence (3.3).
(3) We will prove by recurrence the proposal

Pm: Γ can be extended on −m + 1 > Re(z) > −m, ∀m ∈ ℕ.
Indeed, P0 holds because Γ is analytic on {Re(z) > 0}. Therefore, it is analytic on{1 > Re(z) > 0}. Next, for 0 > Re(z) > −1, we have 1 > Re(z + 1) > 0. Hence, Γ(z + 1)
is analytic. In addition, Γ(z) = Γ(z+1)

z . Thus, Γ is holomorphic on {0 > Re(z) > −1}
with 0 being a simple pole corresponding to the residues 1. So, Γ can be extended to
a meromorphic function {Re(z) > −1}with a simple pole at 0. Hence, the property P1.
Next, applying the recurrence rule, we obtain

Γ(z) = Γ(z + n)∏n−1k=0(z + k) .
Properties 59. The following assertions are satisfied.
(1) Γ(x + 1) = xΓ(x); ∀x > 0.
(2) Γ(n + 1) = n!, ∀n ∈ ℕ.
(3) Γ( 12 ) = √π.
(4) Γ(n + 1

2 ) = (2n)!√π22nn! , ∀n ∈ ℕ.
Proof. (1) An integration by parts gives

Γ(x + 1) = +∞∫
0

txe−tdt = x +∞∫
0

tx−1e−tdt = xΓ(x) .
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(2) Putting x = n ∈ ℕ∗ in assertion (1), we get
Γ(n + 1) = nΓ(n) = n(n − 1)Γ(n − 1) = n!Γ(1) = n! .

Hence the appointment of generalized factorial function for Γ.
(3) We have

Γ(12 ) = ∞∫
0

1√t e−tdt .
Putting x = √t, we get

Γ (12) = 2 ∞∫
0

e−x2dx .

Hence, (Γ (12))2 = 4 ∞∫
0

∞∫
0

e−(x2+y2)dxdy .

Now, using the polar coordinates system, x = r cos θ and y = r sin θ, with r ∈ (0,∞)
and θ ∈ (0, π2 )we get

(Γ (12))2 = 4
π
2∫
0

∞∫
0

e−r2 rdrdθ = π .
Therefore, Γ(12 ) = √π.
(4) By recurrence on n. For n = 0, we have Γ(0 + 1

2 ) = Γ(12 ) on the left and √π on the
right. So, the assertion is true for n = 0. Assume next that it is true for n. We shall then
check it for n + 1.

Γ (n + 1 + 12) = (n + 12) Γ (n + 12)= (n + 12) (2n)!√π22nn!= (2n + 2)!√π
22n+2(n + 1)!= (2(n + 1))!√π
22(n+1)(n + 1)! .

The next result shows some asymptotic behaviors of Euler’s Γ function.

Theorem 60. Euler’s Γ function satisfies the so-called Stirling formula,

Γ(x + 1) ∼ √2πx ( xe)x as x 󳨀→ +∞ .
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Proof. Recall that

Γ(x + 1) = +∞∫
0

txe−tdt .

By setting t = x + √xu, we obtain
Γ(x + 1) = +∞∫

−√x

e−x−√xuex ln(x+√xu)√xdu
= ( xe)x√x +∞∫

−√x

e−√xu+x ln(1+
u
√x )du .

Now, it suffices to prove that the last integral tends to √2π as x → +∞. Denote Γ1(x)
as this integral and let

f(x, u) = {{{e
−√xu+x ln(1+ u

√x ) if u ≥ −√x
0 if not .

We get

Γ1(x) = +∞∫
−∞

f(x, u)du .
For fixed u ∈ ℝ, we have

lim
x󳨀→+∞ f(x, u) = lim

x󳨀→+∞ exp(−√xu + x ln(1 + u√x))= lim
x󳨀→+∞ exp(−√xu + x( u√x − 12 u2x + θ (1x )))= exp(−u22 ) .

On the other hand, if u ∈] − √x, 0], as |u|√x < 1, we obtain
f(x, u) ≤ exp(−u2

2
) .

Finally, for u ∈]0, +∞[, f(x, u) is a decreasing function of x on ]0, +∞[. We deduce for
u > 0 and x ∈ [1, +∞[ that

f(x, u) ≤ f(1, u) = (1 + u)e−u .
So, for all u ∈ ℝ and all x ∈ [1, +∞[, we have 0 ≤ f(x, u) ≤ g(u), where g is the
integrable function defined by

g(u) = {{{e−
u2
2 , if u ≤ 0(1 + u)e−u , if not u ≥ 0 .
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By the dominated convergence theorem, we obtain

Γ1(x) → +∞∫
−∞

e
−u2
2 du = √2π, as x → +∞ .

Now, by setting t = √xu , we get f(x, u) = eh(t,u), where
h(t, u) = u2t2 (−1t + ln (1 + 1t )) ,

which is decreasing in t.

Proposition 61. Euler’s Γ function satisfies the so-called Gauss formula for all x > 0,
1
Γ(x) = lim

n󳨀→+∞
x(x + 1) ⋅ ⋅ ⋅ (x + n)

n!nx .

Proof. Applying the recurrence relation n times, we obtain

Γ(x)x(x + 1) ⋅ ⋅ ⋅ (x + n) = Γ(x + n + 1) .
Therefore,

x(x + 1) ⋅ ⋅ ⋅ (x + n)
n!nx = Γ(x + n + 1)Γ(x)n!nx∼ √2π(x + n + 1)x+n+ 12 e−(x+n+1)

Γ(x)√2π(n + 1)n+ 12 e−n−1nx∼ 1
Γ(x) ( x + n + 1n )x ( x + n + 1n + 1 )n+1 e−x (1 + xn)n= 1
Γ(x) .

Proposition 62.
(1) The infinite product∏+∞k=1(1 + z

k )e −z
k is normally convergent on every compact ofℂ and therefore defines an analytic function of z.

(2) Euler’s Γ function satisfies the so-called Gauss–Weierstrass formula for z ∉ −ℕ,
1
Γ(z) = lim

n→+∞
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz= zeγz lim
n󳨀→+∞

n∏
k=1
(1 + zk) e −z

k ,
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where γ is the Euler–Mascheroni constant given by

γ = lim
n󳨀→+∞(n−1∑

k=1

1
k − ln n) .

Proof. (1) Put uk(z) = (1 + z
k )e −z

k − 1. A simple Taylor development gives

|uk(z)| ≤ |z|2n2
whenever |z|n is bounded independent of n and z. Hence, the infinite product converges
uniformly on every compact set in ℂ to an analytic function.
(2) Observe that

Γ(z) = +∞∫
0

tz−1e−tdt = lim
n→+∞

n∫
0

tz−1 (1 − tn)n dt .
This is a consequence of the application of the dominated convergence theorem. So,
next, integrating by parts, we obtain

Γ(z) = lim
n→+∞

n!nz
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

whenever z ∉ −ℕ. So the first part is proved. Next, observe that
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz
= zn−z n∏

k=1

z + k
k
= zez(γn−log n) n∏

k=1
e−

z
k

n∏
k=1
(1 + zk)

where γn = ∑n−1k=1
1
k . Next, we obtain

z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)
n!nz = zez(γn−log n) n∏

k=1
e−

z
k (1 + zk) ,

which implies by the limit on n that

1
Γ(z) = lim

n→+∞
z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)

n!nz = zeγz lim
n󳨀→+∞

n∏
k=1
(1 + zk) e −z

k .

Proposition 63. For z ∈ ℂ \ ℤ,
Γ(z)Γ(1 − z) = π

sin(πz) .



58 | 4 Review of special functions

The proof is based on the following lemma, which canbe obtained by simple appli-
cation of Fourier series theory on the function f(t) = cos(st), where s ∈ ℂ. The re-
sult may also be established by direct methods based on the simple relation ez =
limk→+∞(1 + z

k )k. Thus, the proof of this lemma is left to the reader.

Lemma 64. ∀z ∈ ℂ, we have
sin(πz) = πz∏

n≥1
(1 − z2

n2
) . (4.1)

Proof of Proposition 63. Let

an(z) = z(z + 1)(z + 2) ⋅ ⋅ ⋅ (z + n)n!nz .

Proceeding as in the proof of Proposition 62, we obtain

an(z)an(1 − z) = z (1 + 1 − zn ) n∏
k=1
(1 − z2

k2
) .

The limit on n gives
1

Γ(z)Γ(1 − z) = lim
n→+∞ an(z)an(1 − z) = z∏

k≥1
(1 − z2

k2
) = sin(πz)

πz
.

Consequently,
Γ(z)Γ(1 − z) = π

sin(πz) .
Remark 65. The meromorphic function Γ has no roots on ℂ.
Proposition 66.
– Convexity of Γ: Γ is strictly convex on ]0, +∞[.
– Asymptotic behavior of Γ at∞: limx󳨀→+∞ Γ(x) = +∞.
– Asymptotic behavior of Γ at∞: limx󳨀→+∞ Γ(x)

x = +∞.
– Asymptotic behavior of Γ at 0+: limx󳨀→0+ Γ(x) = +∞.
Proof. (1) Recall that the function Γ is twice differentiable on ]0, +∞[ and ∀x > 0, so
we have

Γ󸀠󸀠(x) = +∞∫
0

(ln t)2tx−1e−tdt > 0 .
Hence, it is convex.
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(2) Since the function Γ is increasing on )0, +∞[, for x big enough, we have
Γ(x) = (x − 1)Γ(x − 1) ≥ (x − 1)Γ(1) = x − 1 .

We deduce that limx󳨀→+∞ Γ(x) = +∞.
(3) For x > 1, we have

Γ(x)
x
= (x − 1)

x
Γ(x − 1) 󳨀→ +∞ as x 󳨀→ +∞ .

We deduce that the graph of the function Γ has at +∞ a vertical asymptotic direction.
(4) For x > 0, Γ(x) = Γ(x+1)

x → Γ(1)
0+ = +∞ when x 󳨀→ 0+.

So limx󳨀→0+ Γ(x) = +∞. In addition, we have precisely, Γ(x) ∼ 1
x as x → 0+.

4.2.2 Euler’s beta function

The origin of Euler’s beta function goes back to differential calculus and integrals. It
was introduced in the Arithmetica Infinitorum published by Wallis. Newton next dis-
covered the binomial formula and introduced Euler’s beta function, which was then
developed for other versions, such as the incomplete and the corrected versions. The
beta function is given by Euler in the following form:

β(p, q) = 1∫
0

tp(1 − t)qdt
and is known as the first-kind Euler integral. But since Legendre’s work, it appears in
a slightly modified form

β(p, q) = 1∫
0

xp−1(1 − x)q−1dx, p > 0, q > 0 .
It is apparent that such a function is symmetrical in (p, q), i.e.,

β(p, q) = β(q, p) .
The beta function also has another integral representation. Indeed, by setting t = y

a ,
a > 0, it becomes

β(p, q) = 1
ap+q−1

a∫
0

yp−1(a − y)q−1dy .
Again, setting t = sin2 θ, we get a trigonometric form

β(p, q) = 2 π
2∫
0

(sin θ)2p−1(cos θ)2q−1dθ .
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Finally, with the variable change t = y
(1+y) , we get

β(p, q) = +∞∫
0

yp−1(1 + y)p+q dy .
In the following,wewill apply oneof these representationswithoutmentioning it each
time. The form applied will be understood from the development.

Proposition 67.
(1) The beta integral converges whenever x, y > 0.
(2) The beta integral is continuous on ]0, +∞[×]0, +∞[.
(3) The beta integral remains valid on the quarter complex plane Re(x), Re(y) > 0.
Proof. (1) Whenever p, q > 0 we have

tp(1 − t)q ∼ tp , t → 0+ and tp(1 − t)q ∼ (1 − t)q , t → 1− .

Hence, the integral is convergent.
(2) On ]0, +∞[×]0, +∞[, the function (p, q) 󳨃→ ft(p, q) = tp(1− t)q is continuous for all
t ∈ (0, 1). Furthermore, tp(1 − t)q ≤ 1, ∀t, p, q. Thus, the integral is uniformly conver-
gent to a continuous function on ]0, +∞[×]0, +∞[. Next, by recurrence on k ∈ ℕ, we
can prove that beta is k-times differentiable according to p and q. We can also prove
that

∂kβ
∂pk
(p, q) = 1∫

0

(log t)k tp(1 − t)qdt ,
∂kβ
∂qk
(p, q) = 1∫

0

(log(1 − t))k tp(1 − t)qdt
and for n + m = k,

∂kβ
∂pnqm (p, q) = 1∫

0

(log t)n(log(1 − t))mtp(1 − t)qdt .
(3) For p, q ∈ ℂ, we have

|tp(1 − t)q | = tRe(p)(1 − t)Re(q), ∀t ∈ (0, 1) .
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Properties 68.
(1) pβ(p, q + 1) = qβ(p + 1, q), ∀p, q ≥ 0.
(2) β(p, 1) = 1

p .
(3) β(12 , 12 ) = π.
(4) ∀n ∈ ℕ and ∀p > 0, β(p, n) = n−1

p β(p + 1, n − 1).
(5) ∀n ∈ ℕ and ∀p > 0, β(p, n) = (n−1)(n−2)⋅⋅⋅2⋅1p(p+1)⋅⋅⋅(p+n−1) .
(6) ∀m, n ∈ ℕ, β(m, n) = (m−1)!(n−1)!(m+n−1)! .
(7) ∀p, q > 0, β(p, q) = ∫10 yp−1+yq−1

(1+y)p+q dy.
(8) ∀p, 0 < p < 1, β(p, 1 − p) = ∫10 yp−1+y−p

(1+y) dy.
(9) ∀p, 0 < p < 1, β(p, 1 − p) = π

sin πp .
(10)∀p, q > 0, β(p, q) = Γ(p)Γ(q)

Γ(p+q) .

Proof. (1) Integrating by parts, we get

β(p, q + 1) = 1∫
0

q
p
xp(1 − x)q−1dx = q

p
β(p + 1, q) .

(2) We have

β(p, q) = 1∫
0

xp−1(1 − x)q−1dx .
So,

β(p, 1) = 1∫
0

xp−1dx = 1
p .

(3) Taking q + 1 = n ∈ ℕ, we get
β(p, n) = n − 1

p
β(p + 1, n − 1) .

(4) Observing that β(p, 1) = 1
p , we get by iteration

β(p, n) = 1 ⋅ 2 ⋅ ⋅ ⋅ (n − 1)
p(p + 1) ⋅ ⋅ ⋅ (p + n − 1) .

(5) If we take p = m ∈ ℕ in the previous equation, we obtain

β(m, n) = (m − 1)!(n − 1)!(m + n − 1)! .
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(6)

β (12 , 12) = 1∫
0

x−
1
2 (1 − x)− 12 dx (x = u2)

= 2 1∫
0

du√1 − u2= π .
(7) We have

β(p, q) = +∞∫
0

yp−1(1 + y)p+q dy
= 1∫

0

yp−1(1 + y)p+q dy + +∞∫
1

yp−1(1 + y)p+q dy⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
I

(y with 1
y in I)

= 1∫
0

yp−1 + yq−1(1 + y)p+q dy .
(8) For 0 < p < 1, we get

β(p, 1 − p) = ∞∫
0

yp−1(1 + y)dy
= 1∫

0

yp−1(1 + y)dy + ∞∫
1

yp−1(1 + y)dy
= 1∫

0

yp−1 + y−p(1 + y) .

(9) Recall that 1
1+y = ∑∞n=0(−1)nyn whenever 0 < y < 1. Hence,

1∫
0

yp−1

1 + y dy = ∞∑n=0 (−1)np + n .

Similarly, we have
1∫
0

y−p

1 + y dy = ∞∑n=1 (−1)np − n .

Therefore,
β(p, 1 − p) = ∑

n∈ℤ

(−1)n
p − n = π

sin πp .
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(10) By setting t = y2 in the Γ integral, we obtain
Γ(p) = 2 +∞∫

0

y2p−1e−y2dy .

Thus,

Γ(p)Γ(q) = 4 +∞∫
0

+∞∫
0

x2q−1y2p−1e−(x2+y2)dxdy .

Next, applying polar coordinates x = r cos θ and y = r sin θ, this yields that
Γ(p)Γ(q) = 4 +∞∫

0

π
2∫
0

(r cos θ)2q−1(r sin θ)2p−1e−r2drdθ
= 4 +∞∫

0

r2(p+q−1)e−r2dr
+ π2∫
0

(cos θ)2q−1(sin θ)2p−1dθ
= 41

2
Γ(p + q)1

2
β(p, q)= Γ(p + q)β(p, q) .

The following result relates the differentiability of beta to Euler’s Γ function. The proof
is an immediate consequence of the last property above.

Proposition 69. The function beta is differentiable and we have

∂
∂p
β(p, q) = β(p, q) ( Γ󸀠(p)Γ(p) − Γ󸀠(p + q)Γ(p + q) ) = β(p, q) (ψ(p) − ψ(p + q)) ,

where ψ is the so-called di-Gamma function defined by ψ(p) = Γ󸀠(p)
Γ(p) .

In the following, we introduce the complete and incomplete beta functions.

Definition 70. The complete Beta function is defined for a, b > 0 by
β(p; a, b) = p∫

0

ta−1(1 − t)b−1dt . (4.2)

The incomplete (regularized) beta function is

Ip(a, b) = β(p; a, b)β(a, b) ; a, b > 0 . (4.3)
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Fig. 4.1: Representations of the beta function.

Figure 4.1 illustrates the graph of the beta function.

4.2.3 Theta function

The theta function appears inmany areas, such asmanifolds, quadratic forms, soliton
theory, and quantum theory.

Definition 71. The function θ is defined for (z, τ) ∈ ℂ2 such that Im(τ) > 0, by
θ(z, τ) = ∑

n∈ℤ
eiπn2τe2inπz . (4.4)

Proposition 72. We have
(1) ∀τ such that Im(τ) > 0, θ(., τ) is a holomorphic function on ℂ.
(2) θ(z + 1, τ) = θ(z, τ), ∀τ such that Im(τ) > 0.
(3) θ(z + τ, τ) = e−iπτe−2iπzθ(z, r).
Proof. (1) For all τ, the function z 󳨃→ eiπn2τe2iπnz is holomorphic on ℂ. Moreover, for
all compact K ⊂ ℂ, we have

sup
z∈K
|eiπn2τe2iπnz| ≤ e−πn2 Im(τ)e2πRn ,
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with R such that K ⊂ D(0, R). Hence, the series∑n e−πn2 Im(τ)eRn is convergent, which
yields that∑n eiπn2τe2iπnz is holomorphic.
(2) ∀z, τ, we have

θ(z + 1, τ) = ∑
n∈ℤ

eiπn2τe2iπn(z+1)

= ∑
n∈ℤ

eiπn2τe2iπnz(e2iπ)n
= ∑
n∈ℤ

eiπn2τe2iπnz

= θ(z, τ) .
(3) ∀z, τ, we have

θ(z + τ, τ) = ∑
n∈ℤ

eiπn2τe2iπn(z+τ)

= ∑
n∈ℤ

eiπn2τe2iπnz(e2iπ)n
= ∑
n∈ℤ

eiπ(n2+2n)τe2iπnz

= ∑
n∈ℤ

eiπ((n+1)2−1)τe2iπnz

= e−iπτ ∑
n∈ℤ

eiπ((n+1)2)τe2iπnz

= e−iπτ ∑
n∈ℤ

eiπn2τe2iπ(n−1)z

= e−iπτe−2iπzθ(z, r) .
Proposition 73.
(1) For all τ such that Im(τ) > 0, we have

√ τ
i θ(z, τ) = e −iπz2

τ θ ( zτ , −1τ ) . (4.5)

(2) For t > 0, let Θ(t) = θ(0, it). Then,√tΘ(t) = Θ (1t ) .
Proof. Denote for x ∈ ℝ, f(x) = eiπx2τe2iπxz. From the well-known Poisson summation
formula, we obtain

θ(z, τ) = ∑
n∈ℤ

f(n) = ∑
n∈ℤ

f̂ (n) .
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On the other hand, note that

f(x) = Gα (x + zτ) e −iπz2
r with α = −2iπτ and Gα(t) = e− αt22 .

Therefore,

f̂ (ω) = Ĝα (. + zτ) (ω)e −iπz2
τ

= e2iπ zτ ωe −2π2ω2
α √2π

α
e

−iπz2
τ

= e2iπ zτ ωe πω2iτ √ 1−iτ e −iπz2
τ

= e2iπ zτ ωe −iπω2
τ √ i

τ
e

−iπz2
τ .

Hence, ∑
n∈ℤ

f̂ (n) = √ iτ e −iπz2
τ ∑

n∈ℤ
e2iπ

z
τ ne

−iπn2
τ = √ iτ e −iπz2

τ θ ( zτ , −1τ ) .
Consequently,

θ(z, τ) = √ iτ e −iπz2
τ θ ( zτ , −1τ ) ,

or equivalently, √τ
i θ(z, τ) = e −iπz2

τ θ ( zτ , −1τ ) .
4.2.4 Riemann zeta function

The Riemann zeta function is often known in number theory and in particular in the
study of the distribution of prime numbers.

Definition 74. The Riemann zeta function is defined for x > 1 by
ζ(x) = +∞∑

n=1

1
nx . (4.6)

Remark 75. The definition may be extended to complex numbers x = a + ib with
a > 1.
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Proposition 76. The ζ Riemann’s function satisfies the so-called Euler’s multiplica-
tion

ζ(x) = ∏
p∈P

1(1 − p−x) , ∀x > 1 ,
where P is the set of prime numbers.

Proof. For x > 1, we have
ζ(x) = 1 + 1

2x
+ 1
3x
+ 1
4x
+ 1
5x
+ ⋅ ⋅ ⋅

Thus,
1
2x ζ(x) = 1

2x + 1
4x + 1

6x + 1
8x + 1

10x + ⋅ ⋅ ⋅
Or equivalently, (1 − 1

2x ) ζ(x) = 1 + 1
3x + 1

5x + 1
7x + 1

9x + ⋅ ⋅ ⋅
Multiplying again by 1

3x , we get

1
3x (1 − 1

2x ) ζ(x) = 1
3x + 1

9x + 1
15x + 1

21x + 1
27x + ⋅ ⋅ ⋅

Hence, (1 − 1
3x ) (1 − 1

2x ) ζ(x) = 1 + 1
5x + 1

7x + ⋅ ⋅ ⋅
Next, by following the same process we get for p ∈ P,(1 − 1

px ) ⋅ ⋅ ⋅ (1 − 1
11x ) (1 − 1

7x ) (1 − 1
5x )(1 − 1

3x ) (1 − 1
2x ) ζ(x) = 1 + ∑n>p 1

nx .

Next, note that the last summation goes to 0 as p →∞. Therefore,

ζ(x) ∏
p∈P
(1 − px) = 1 .

Hence,
ζ(x) = ∏

p∈P

1(1 − p−x) .
Proposition 77.
(1) ζ is continuous, nonincreasing, and convex on ]1, +∞[.
(2) ζ is C∞ on ]1, +∞[ and

ζ (k)(x) = (−1)k ∞∑
n=2

(ln n)k
nx ; ∀k ∈ ℕ and x > 1 .
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Proof. (1) Let a > 1. For n ∈ ℕ∗, the function x 󳨃→ 1
nx is continuous on [a, +∞[.

Moreover, ∀x ∈ [a, +∞[, | 1nx | = 1
nx ≤ 1

na .

Thus, the series ∑n 1
na is normally convergent. Hence, the sum ζ is continuous on[a, +∞[. This being true for all real a ∈]1, +∞[. Henceforth, ζ is continuous on]1, +∞[.

Next, the monotony of ζ follows from the fact that for all n ∈ ℕ, the functions
x 󳨃→ 1

nx is nonincreasing on ]1, +∞[.
Finally, to prove the convexity of the function ζ , recall that for all n ∈ ℕ, the func-

tions x 󳨃→ 1
nx is convex on ]1, +∞[. So, ζ is convex on ]1, +∞[ as a sum of convex

functions ]1, +∞[.
(2) Let a > 1. For all n ∈ ℕ, the function fn : x 󳨃→ 1

nx , is C
∞ on [a, +∞[ and for x ≥ a

and k ≥ 1, we have 󵄨󵄨󵄨󵄨󵄨f kn (x)󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(−1)k (ln n)kna
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ (ln n)kna .

Note that∑n (ln n)kna converges by the Bertrand rule of numerical series. So, we deduce
that for k ≥ 1, the series∑n f (k)n is normally convergent on [a, +∞[. As a result, ζ is Ck
on [a, +∞[ for all k. Hence, it is C∞ on [a, +∞[ for all a > 1. So, it is C∞ on ]1, +∞[
and the derivatives are obtained as stated above.

Proposition 78. The ζ function satisfies
– limx󳨀→+∞ ζ(x) = 1.
– limx󳨀→1+ ζ(x) = +∞.
Proof. (1) Note first that the series ∑n≥1 1

n2 converges. Henceforth, the series ζ(x) is
uniformly convergent on the interval [2, +∞[. Furthermore,

lim
x→+∞

1
nx
= {{{1, for n = 1 ,

0, for n > 1 .
So, by applying the limit on ζ(x) at infinity we get

lim
x󳨀→+∞ ζ(x) = 1 + ∑n≥2 0 = 1 .

(2) holds from the fact that ζ is nonincreasing on ]1, +∞[ and that∑n≥1 1
n = +∞.
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Proposition 79. The ζ function can be extended on the band Ω = {z ∈ ℂ; Re(s) > 1}
in a holomorphic function. With higher derivative ζ (k), k ∈ ℕ is given by

ζ (k)(z) = +∞∑
n=1

(−1)k lnk n
nz

. (4.7)

Proof. (1) The function fn(z) = 1
nz , n ≥ 1 is holomorphic, and the series ∑n fn is uni-

formly convergent on all sets of the form Ωa = {z ∈ ℂ; Re(z) > a} for all a > 1. So the
sum ζ is holomorphic on Re(z) > 1.
(2) For k ∈ ℕ, we have f (k)n (z) = (−1)k lnk nnz . On any set Ωa, the series∑n f (k)n is uniformly
convergent. Hence, ζ is Ck and its derivative of order k is given by (4.7).

Proposition 80. The function ζ has ameromorphic extension onℂ, with a single pole
in 1 which is simple.

To prove this result, we need to recall that the well-known Bernoulli numbers, de-
noted by Bn, form a sequence of rational numbers. These numbers were first studied
by Jacques Bernoulli in the context of computing summations of the form Sm(n) =∑n−1k=0 km for different integer values m. It holds that these quantities are polynomials
of the variable n with degree m + 1. Hence, we can write them in the form

Sm(n) = 1
m + 1 m∑

k=0
Ckm+1Bkn

m+1−k . (4.8)

Thenumbers Bk are called theBernoulli numbers. These numbersmay also be defined
by means of a generator function as

x
ex − 1 = ∞∑k=0 Bkk! xk . (4.9)

Generally, these numbersmay be extended to polynomials. Thewell-known Bernoulli
polynomials are obtained from the following relation:

zexz
ez − 1 = ∞∑k=0 Bk(x)k! xk . (4.10)

It yields a sequence of polynomials of degree k in x. For more details, refer to [67].
These are applied in numerous fields. We recall here one application that will be used
later. It consists of the well-known Euler–Maclaurin summation rule for functions.



70 | 4 Review of special functions

Proposition 81. Let f be C2k function on [p, q], p, q ∈ ℤ and k ∈ ℕ. It holds that
f (p) + f (q)

2 + q−1∑
i=p+1

f (i) = k∑
j=1

B2j(2j!) (f (2j−1)(q) − f (2j−1)(p))
+ q∫
p

f(x)dx + Rkp,q ,
where Rkp,q is the rest

Rkp,q = − 1(2k)! q∫
p

f (2k)(x)B2k(x − [x])dx
where B2k(.) is the Bernoulli polynomial of degree 2k.
Proof of Proposition 80. By applying Euler–Maclaurin summation to the function
f(x) = 1

(1+x)z on the interval [0, n], we get
1 + (1 + n)−z

2 + n−1∑
i=1
f (i) = n∫

0

f(x)dx + k∑
j=1

b2j(2j)! (f (2j−1)(n) − f (2j−1)(0)) + Rk .
Letting n tend to +∞, we will have

1
2
+ +∞∫

0

(1 + t)−zdt⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
(z−1)−1

− p∑
l=1

b2l
2l!
f (2l−1)(0) − ∞∫

0

B2p(t)(2p)! f (2p)(t)dt ,
where

f (k)(x) = −z(−z − 1) ⋅ ⋅ ⋅ (−z − k + 1)(1 + x)z+k = (−1)k z(z + 1) ⋅ ⋅ ⋅ (z + k − 1)(1 + x)z+k .

So for Re(z) > 1,
ζ(z) = 1

2
+ 1
z − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

meromorphic

+ p∑
l=1

b2l(2l)! z ⋅ ⋅ ⋅ (z + 2l − 2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
holomorphic function

+Ip
with

Ip(z) = − +∞∫
0

z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)z+2p B2p(t)dt .
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Now, the function z 󳨃→ z⋅⋅⋅(z+2p−1)
(1+t)z+2p B2p(t) is holomorphic and we have for all δ > 0 and

all z; Re(z) ≥ 1 − 2p + δ,󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)z+2p B2p(t)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≤ |b2p|z ⋅ ⋅ ⋅ (z + 2p − 1)(1 + t)1+δ .

So, Ip is holomorphic on Re(z) > 1 − 2p.
Proposition 82. The function ζ can be expressed in the integral form as follows.

ζ(z) = 1
Γ(z) 1∫

0

(− ln u)z−1
1 − u du = 1

Γ(z) +∞∫
0

tz−1

et − 1dt, Re(z) > 1 ,
where Γ is the Euler function.

Proof. We have

ζ(z)Γ(z) = ∑
n≥1

Γ(z)
nz = ∑n≥1 +∞∫0 e−u (un)z−1 dun .

By setting u = nt, we obtain
+∞∫
0

e−u (un)z−1 dun = +∞∫
0

e−nttz−1dt .

Hence, using the monotone convergence theorem, we obtain

ζ(z)Γ(z) = ∑
n≥1

+∞∫
0

e−nttz−1dt = +∞∫
0

e−t 1
1 − e−t tz−1dt = +∞∫

0

tz−1

et − 1dt .
Proposition 83. The function ζ satisfies the following quasi-induction rule:

ζ(x) = 2xπx−1 sin (πx2 ) Γ(1 − x)ζ(1 − x); ∀x ∈ ℂ \ {0, 1} .
Proof. Let ε be such that 0 < ε < π and n ∈ ℕ. Consider the path Cnε represented in
Figure 4.2 and the function

fs(z) = (−z)s−1ez − 1
with s being fixed. So, applying the residue theorem and letting R → +∞, ε → 0, and
next n → +∞, we get

2iπ(2π)s−1ζ(1 − s)2 sin (πx2 ) = Γ(s)ζ(s)2i sin(sπ) .
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Next, using Proposition 63, we get(2π)s−1ζ(1 − s)2 sin (πx2 ) = ζ(s) 1
Γ(1 − s) .

Or equivalently
ζ(s) = 2sπs−1 sin (πx2 ) ζ(1 − s)Γ(1 − s) .

R

ε

–R

R

2 inπ

–2 inπ

2 iπ

–2 iπ

inπ

–R Fig. 4.2: The path Cnε .

Finally, Figure 4.3 graphically illustrates the ζ function.

4.2.5 Hypergeometric function

The origin of hypergeometric functions goes back to the early 19th century, when
Gauss studied the second-order ordinary differential equation

x(1 − x)y󸀠󸀠 + [c − (a + b + 1)x]y󸀠 − aby = 0 (4.11)

with some constants a, b, and c in ℝ. Next, by developing a solution of (4.11) on a
series of form ∑n αnxx, we obtain for c, a − b, and c − a − b not integers, a general
solution given by

y = F(a, b, c, x) + Bx1−cF(a − c + 1, b − c + 1, 2 − c, x) (4.12)

where F is the series

F(a, b, c, x) = Γ(c)
Γ(a)Γ(b) ∞∑n=0 Γ(a + n)Γ(b + n)Γ(c + n) xn

n! ,
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0–5 5

1

–1

2

–2

10–10

Fig. 4.3: General shape of the zeta function for (−10) to +10.

which is often denoted by 2F1(a, b, c, x), converges uniformly inside the unit disk and
is known as the hypergeometric function.

When a, b, and c are integers, the hypergeometric function can be reduced to a
transcendental function such as

2F1(1, 1; 2; x) = −x−1 ln(1 − x) .
Theorem 84. F is differentiable with respect to x and

∂F
∂x (a, b, c, x) = abc F(a + 1, b + 1, c + 1, x) .

Proof. Write

F(a, b, c, x) = ∞∑
n=0

αn(a, b, c)xn ,
where

αn = Γ(c)
Γ(a)Γ(b) Γ(a + n)Γ(b + n)Γ(c + n)Γ(n + 1) .
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Inside its convergence domain, we have

∂F
∂x
= ∞∑
n=0
(n + 1)αn+1xn .

Observe next that(n + 1)αn+1(a, b, c) = a(a + 1) ⋅ ⋅ ⋅ (a + n)b(b + 1) ⋅ ⋅ ⋅ (b + n)n!c(c + 1) ⋅ ⋅ ⋅ (c + n)= ab
c
αn(a + 1, b + 1, c + 1) .

Hence,

∂F
∂x = abc ∞∑n=0 αn(a + 1, b + 1, c + 1)xn = abc F(a + 1, b + 1, c + 1, x) .

Theorem 85. For 0 < Re b < Re c, Re a < Re c − Re b, and |x| ≤ 1, it holds that
Γ(b)Γ(c − b)

Γ(c) F(a, b; c; x) = 1∫
0

tb−1(1 − t)c−b−1(1 − tx)−adt .
Proof. Let, for |x| < 1,

I = 1∫
0

tb−1(1 − t)c−b−1(1 − tx)−adt .
It is straightforward that I is a convergent integral. Next, we have

(1 − tx)−a = ∞∑
n=0

(−a)(−a − 1) ⋅ ⋅ ⋅ (−a − n + 1)
n! (−tx)n

= ∞∑
n=0

(a)(a + 1) ⋅ ⋅ ⋅ (a + n − 1)
n! (tx)n

= ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) tnxn .
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Hence,

I = ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) xn 1∫

0

tb+n−1(1 − t)c−b−1dt
= ∞∑
n=0

Γ(a + n)
Γ(a)Γ(n + 1) xn Γ(b + n)Γ(c − b)Γ(c + n)= Γ(c − b)Γ(b)Γ(a) ∞∑

n=0

Γ(b + n)Γ(c − b)
Γ(c + n)Γ(n + 1)Γ(b) xn= Γ(c − b)Γ(b)Γ(a) F(a, b; c; x) .

Theorem 86.
F(a, b, c, 1) = Γ(c)Γ(c − a − b)Γ(c − a)Γ(c − b) .

Proof. Taking x = 1 in the integral expression of the hypergeometric function in The-
orem 85, one obtains

Γ(b)Γ(c − b)
Γ(c) F(a, b; c; 1) = 1∫

0

tb−1(1 − t)c−a−b−1dt = Γ(b)Γ(c − a − b)Γ(c − a) .

Therefore,
F(a, b, c, 1) = Γ(c)Γ(c − a − b)Γ(c − a)Γ(c − b) .

Proposition 87. We have
(1) F(n, 1, 1, x) = (1 − x)−n.
(2) xF(1, 1, 2, x) = − log(1 − x).
(3) limβ↔∞ F(1, β, 1, xβ ) = ex.
(4) limβ→∞ xF(α, β, 32 , −x24αβ ) = sin x.
(5) limβ→∞ xF(α, β, 12 , −x24αβ ) = cos x.
(6) xF(12 , 12 , 32 , x2) = arcsin x.
(7) xF(12 , 1, 32 , −x2) = arccos x.
Proof. (1) Denote y(x) = (1 − x)−n . It is straightforward that y is a solution of (4.11) for
a = n, and b = c = 1, and with y(0) = 1. So, (4.12) says that

y(x) = F(n, 1, 1, x) + Bx1−1F(n − 1 + 1, 1 − 1 + 1, 2 − 1, x) = CF(n, 1, 1, x)
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with B and thus C being constants. Observing next that F(n, 1, 1, 0) = 1, we get C = 1
or equivalently B = 0.
(2) Again the function y(x) = −x−1 log(1 − x) is a solution of (4.11) for a = b = 1, and
c = 2. Hence, it is of the form

y(x) = F(1, 1, 2, x) + Bx1−2F(0, 0, 0, x) ,
or equivalently, − log(1 − x) = xF(1, 1, 2, x) + Bex ,
which by setting x = 0 gives B = 0.
(3) Recall firstly that

F (1, β, 1, xβ) = Γ(1)
Γ(1)Γ(β) ∞∑n=0 Γ(1 + n)Γ(β + n)Γ(1 + n) xn

βnn! ,

which means that
F (1, β, 1, x

β
) = ∞∑

n=0

Γ(β + n)
βnΓ(β) xnn! .

So, let K ∈ ℕ be fixed such that 2|x| ≤ K and denote

un(β) = Γ(β + n)βnΓ(β) xnn! .
It is straightforward that for β ≥ K, we have

|un(β)| ≤ vn = |un(K)| = Γ(K + n)KnΓ(K) |x|nn! .

Next, observe that
lim
n→+∞

vn+1
vn
= |x|
K
< 1 .

Hence, the D’Alembert rule affirms that the series F(1, β, 1, xβ ) converges uniformly in
β in the interval [K, +∞[. Observing now that

lim
β→+∞

un(β) = 1 ,
we get

lim
β→+∞

F (1, β, 1, x
β
) = ∞∑

n=0

xn

n!
= ex .

(4) Recall that

F (α, β, 32 , −x24αβ) = Γ(32 )
Γ(α)Γ(β) ∞∑n=0 Γ(α + n)Γ(β + n)Γ(32 + n) (−1)nx2n

4nαnβnn! .

Denote
σn(α) = Γ(α + n)αnΓ(α) xnn! .
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We get

F (α, β, 32 , −x24αβ) = ∞∑n=0 σn(α)σn(β) Γ(32 )
Γ(32 + n) (−1)nx2n4nn! .

Using similar arguments as for (3) above and the properties of Euler’s Γ function, we
get

lim
α,β→+∞

F (α, β, 32 , −x24αβ) = ∞∑n=0 (−1)nx2n(2n + 1)! = sin x
x .

(5) Follows by quite the same techniques as the previous assertion.
(6) Observe that

F (12 , 12 , 32 , x2) = 1
2Γ(12 ) ∞∑n=0 Γ(12 + n)1

2 + n x2n
n! .

Next, using the well-known relation Γ(x + 1) = xΓ(x), for x > 0, we obtain
F (12 , 12 , 32 , x2) = ∞∑n=0 (2n)!

2n+1(2n + 1)(n!)2 x2n = arcsin xx .

(7) Follows by the same arguments as assertion (6).

Definition 88. The hypergeometric function may be generalized for a =(a1, . . . , ap) and b = (b1, . . . , bq), p, q ∈ ℕ by

pFq(a1, . . . , ap; b1, . . . , bq , x) = ∞∑
n=0

αnxn ,

where
α0 = 1 and αn+1

αn
= (n + a1)(n + a2) ⋅ ⋅ ⋅ (n + ap)(n + b1)(n + b2) ⋅ ⋅ ⋅ (n + bq) 1

n + 1 ,

or differently by

pFq(a1, . . . , ap; b1, . . . , bq; x) = ∞∑
n=0

(a1)n(a2)n ⋅ ⋅ ⋅ (ap)n(b1)k(b2)n ⋅ ⋅ ⋅ (bq)n xnn! ,
where (a)n is the increasing factorial or the Pochhammer symbol given by(a)n = (a + n − 1)!(a − 1)! = Γ(a + n)Γ(a) = a(a + 1)(a + 2) ⋅ ⋅ ⋅ (a + n − 1) .

4.2.6 Legendre function

Legendre functions are fundamental solutions of the Laplace equation on the sphere.
There are two classes of solutions that are related to the parameters λ and μ, whichwill
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be explained later. In the following, we denote the first kind by Pλ and the second kind
by Qλ. The associated Legendre functions corresponding to Pλ and Qλ are denoted by
Pμλ andQ

μ
λ , respectively. These are respective generalizations of Legendre polynomials

Pℓ(x) and associated Legendre polynomials Pmℓ (x), to noninteger values of ℓ and m.
Definition 89. The Legendre functions are solutions of the general Legendre equa-
tion (1 − x2)y󸀠󸀠 − 2xy󸀠 + [λ(λ + 1) − μ2

1 − x2 ] y = 0 ,
where λ and μ are generally complex numbers called, respectively, the degree and
the order of the associated Legendre function.

The case of Legendre functions corresponding to μ = 0 and λ ∈ ℕ reduces to orthogo-
nal Legendre polynomials.

Proposition 90.
(1) For μ = 0, the following integral form is a Legendre function:

Fλ(z) = 1
2πi ∫

C

(t2 − 1)λ
2λ(t − z)λ+1 dt ,

for |z − 1| < 2 where C is a circle surrounding the points 1 and z and not −1.
(2) For λ ∈ ℂ and |x| > 1, x ∈ ℝ, we get

Fλ(x) = 1
2π

π∫
−π
(x + √x2 − 1 cos θ)λ dθ

= 1
π

1∫
0

(x + √x2 − 1(2t − 1))λ dt√t(1 − t) .
Proof. (1) Applying the derivatives of Fλ, we get(1 − z2)F󸀠󸀠λ (z) − 2zF󸀠λ(z) + λ(λ + 1)Fλ(z)= λ + 12πi ∫

C

(t2 − 1)λ
2λ(t − z)λ+3 (λt2 − 2(λ + 1)zt + λ + 2)dt

= λ + 12πi ∫
C

d
dt
(t2 − 1)λ+1
2λ(t − z)λ+2 dt = 0 .



4.2 Classical special functions | 79

So, Fλ satisfies the Legendre equation.
(2) Consider for the integral form the circle C centered at x with radius r = √x2 − 1.
We first obtain

t2 − 1 = √x2 − 1eiθ2(x + √x2 − 1 cos θ), θ ∈ [−π, π] .
Hence, (t2 − 1)λ

2λ(t − z)λ+1 dt = √x2 − 1λeiλθ2λ(x + √x2 − 1 cos θ)λ2λ√x2 − 1λ+1ei(λ+1)θ i√x2 − 1eiθdθ .
As a result,

Fλ(x) = 1
2π

π∫
−π
(x + √x2 − 1 cos θ)λ dθ .

Next, setting t = 1+cos θ
2 , we obtain

Fλ(x) = 1
π

1∫
0

(x + √x2 − 1(2t − 1))λ dt√t(1 − t) .
Proposition 91. The following are Legendre functions:
– The first-kind function Pμλ defined for |1 − z| < 2 by

Pμλ (z) = 1
Γ(1 − μ) [1 + z1 − z ]μ/2 2F1 (−λ, λ + 1; 1 − μ; 1 − z2 ) ,

where Γ is Euler’s Gamma function.
– The second-kind function Qμλ (z) defined for |z| > 1 by

Qμλ (z) = Cλμ (z2 − 1)μ/2zλ+μ+1 2F1 ( λ + μ + 12 , λ + μ + 22 ; λ + 32; 1z2 ) ,

where Cλμ = √πΓ(λ+μ+1)2λ+1Γ(λ+3/2)e
iμπ, and 2F1 is the hypergeometric function.

Proof. It suffices to show that the functions

F(z) = 1
Γ(1 − μ) [1 + z1 − z ]μ/2 2F1 (−λ, λ + 1; 1 − μ; 1 − z2 ) , |1 − z| < 2

and for |z| > 1,
F(z) = Cλμ (z2 − 1)μ/2zλ+μ+1 2F1 ( λ + μ + 12

, λ + μ + 2
2

; λ + 3
2
; 1
z2
)
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are solutions of the general Legendre Definition 89. We will develop the first part. The
second follows by similar techniques. So, for simplicity denote

H(z) = 1
Γ(1 − μ) 2F1 (−λ, λ + 1; 1 − μ; 1 − z2

) ,
A(z) = 1

1 − z2 , B(z) = [1 + z1 − z ]μ/2
and Z = 1−z

2 . Standard calculus yields that(1 − z2)H󸀠󸀠(z) + 2(μz)H󸀠(z) + λ(λ + 1)H(z) = 0 , (4.13)

F󸀠(z) = μA(z)B(z)H(z) + B(z)H󸀠(z) ,
and

F󸀠󸀠(z) = μ(μ + 2z)A2(z)B(z)H(z) + 2μA(z)B(z)H󸀠 (z) + B(z)H󸀠󸀠(z) .
Now, recall the Legendre equation

(1 − z2)y󸀠󸀠 − 2zy󸀠 + [λ(λ + 1) − μ2

1 − z2 ] y = 0 .
Replacing y by F and taking into account equation (4.13), we show that F is a Legendre
function.

Proposition 92. The Legendre function Fλ satisfies the following three-level induc-
tion rule: (λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + λFλ−1(z) = 0 .
Proof. Let C be the contour as above. We have

Fλ(z) = 1
2λ+1πi

∫
C

(t2 − 1)λ(t − z)λ+1 dt .
Classical arguments show that Fλ is holomorphic and

F󸀠λ(z) = (λ + 1)2λ+1πi
∫
C

(t2 − 1)λ(t − z)λ+2 dt .
On the other hand,

d
dt
(t2 − 1)λ+1(t − z)λ+1 = 2(λ + 1)t(t2 − 1)λ(t − z)λ+1 − (λ + 1)(t2 − 1)λ+1(t − z)λ+2 .

Hence,

0 = ∫
C

(2t(t2 − 1)λ(t − z)λ+1 − (t2 − 1)λ+1(t − z)λ+2 ) dt .
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Consequently,

1
2λ+1πi

∫
C

(t2 − 1)λ(t − z)λ = 1
2λ+1πi

∫
C

t(t2 − 1)λ(t − z)λ+1
− 1
2λ+1πi

∫
C

z(t2 − 1)λ(t − z)λ+1= Fλ+1 − zFλ(z) . (4.14)

Differentiating with respect to z, we obtain

F󸀠λ+1(z) − zF󸀠λ(z) = (λ + 1)Fλ(z) .
Thus,

0 = ∫
C

d
dt [ t(t2 − 1)λ(t − z)λ ] dt

= ∫
C

[(t2 − 1)λ(t − z)λ + 2λt2(t2 − 1)λ−1(t − z)λ − λt(t2 − 1)λ(t − z)λ+1 ] dt
= ∫
C

(t2 − 1)λ + 2λ[(t2 − 1) + 1](t2 − 1)λ−1(t − z)λ − λ[(t − z) + z](t2 − 1)λ(t − z)λ+1
= ∫
C

[(λ + 1) (t2 − 1)λ(t − z)λ + 2λ (t2 − 1)λ−1(t − z)λ − λz (t2 − 1)λ(t − z)λ+1 ] dt .
Finally using (4.14), we deduce that

0 = (λ + 1)[Fλ+1(z) − zFλ(z)] + 2λFλ−1(z) − λzFλ(z)= (λ + 1)Fλ+1(z) − (2λ + 1)zFλ(z) + 2λFλ−1(z) .
4.2.7 Bessel function

Bessel functions form an important class of special functions and are applied almost
everywhere inmathematical physics. They are also known as cylindrical functions, or
cylindrical harmonics, because they are part of the solutions of the Laplace equation
in cylindrical coordinates met in heat propagation along a cylinder. In pure mathe-
matics, Bessel functions canbe introduced in three ways: as solutions of second-order
differential equations, through a recurrent procedure as solutions of a three-level re-
current functional equation, and via the Rodrigues derivation formula.
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Definition 93. The Bessel equation is a linear differential equation of second order
written in the form

y󸀠󸀠 + 1
x
y󸀠 + (1 − v2

x2
) y = 0 ,

where v is a positive constant.

Remark 94.
(1) Any solution of Bessel’s equation is called the Bessel function.
(2) Given two linearly independent solutions y1 and y2 of Bessel’s differential

equation, the general solution is expressed as a linear combination

y = C1y1 + C2y2 ,
where C1 and C2 are two constants.

Theorem and Definition 95. Bessel’s differential equation has a solution of the form

Jv(x) = ( x2)v ∑k≥0 (−1)k
k!Γ(v + k + 1) ( x2)2k . (4.15)

The function Jv is called the Bessel function of the first kind of the order v.

Proof of the Theorem. We will search a nontrivial solution of the form

y = xp∑
i≥0
aixi = ∑

i≥0
aixi+p ,

where p is a real parameter. By replacing y and its derivatives in Definition 93, we get∑
i≥0
ai(i + p)(i + p − 1)xi+p + ∑

i≥0
ai(i + p)xi+p + (x2 − v2) ∑

i≥0
aixi+p = 0 .

Or equivalently,∑
i≥0
[(i + p)(i + p − 1) + (i + p) − v2] aixi+p + ∑

i≥0
aixi+p−2 = 0 ,

which means that ∑
i≥0
[(i + p)2 − v2] aixi+p + ∑

j≥2
aj−2xj+p = 0 .

Therefore,
a0(p2 − v2) = a1((p + 1)2 − v2) = 0
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and
ai((i + v)2 − v2) + ai−2 = 0, ∀i ≥ 2 .

For p = v, we get a1 = 0 and
i(i + 2v)ai = −ai−2, ∀i ≥ 2 .

Thus,
ai = − ai−2

i(2v + i) , ∀i ≥ 2 .
Hence, the coefficients a2k+1, and

a2k = (−1)k a0
22kk!(v + k)(v + k − 1) ⋅ ⋅ ⋅ (v + 1) , ∀k ≥ 0 .

Taking a0 = 1
2v Γ(v+1) , and observing that

Γ(v + k + 1) = (v + k)(v + k − 1) ⋅ ⋅ ⋅ (v + 1)Γ(v + 1) ,
we get

a2k = (−1)k 1
22k+vk!Γ(v + k + 1) , k ≥ 0.

As a result, the solution of the equation will be

y = ( x
2
)v ∑

k≥0

(−1)k
k!Γ(v + k + 1) ( x2)2k .

Remark 96.
(1) For p = −v, the solution of Bessel’s equation in Definition 93 is called Bessel’s

function of the first kind with the order −v and is denoted by J−v(x) with
J−v(x) = ( x2)−v ∑k≥0 (−1)k

k!Γ(k − v + 1) ( x2)2k .

(2) For v, noninteger Jv and J−v are linearly independent and therefore the general
solution of the Bessel equation is of the form

y(x) = C1Jv(x) + C2J−v(x) .
(3) The same solution can be obtained by choosing p + 1 = v in the proof of Theo-

rem 95.

Proposition 97. For v = n ∈ ℕ, we have
Jn = (−1)nJ−n .
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Proof. We have

J−n(x) = ∑
k≥0

(−1)k
k!Γ(k − n + 1) ( x2)2k−n= ∑

m≥0

(−1)m+n(m + n)!Γ(m + 1) ( x2)2m+n= (−1)n ∑
m≥0

(−1)m
m!Γ(m + n + 1) ( x2)2m+n= (−1)n Jn(x) .

Example 4.1. For v = 0,
J0(x) = ∑

k≥0

(−1)k
k!Γ(k + 1) ( x2)2k = ∑k≥0 (−1)k(k!)2 ( x2)2k ,

which is an even function. Else, J0(0) = 1. For v = 1, we obtain
J1(x) = ∑

k≥0

(−1)k
k!Γ(k + 2) ( x2)2k+1 = ∑k≥0 (−1)kk!(k + 1)! ( x2)2k+1 ,

which is an odd function and satisfies J1(0) = 0.
Definition 98. The Bessel function of the second kind of the order α denoted usu-
ally by Yα and is given by

Yα(x) = {{{
cos(πα)Jα(x)−J−α(x)

sin(πα) , for α ∉ ℤ
limv→α cos(πv)Jv(x)−J−v(x)

sin(πv) , for α ∈ ℤ .

Proposition 99. For α ∈ ℤ, Yα is a solution of Bessel’s differential equation, singular
at 0 and satisfying precisely limx→0 Y0(x) = ∞.
Proof. For α ∉ ℤ, Yα is a linear combination of Jα and J−α. Hence it is a solution of the
Bessel’s differential equation. We now prove this for α ∈ ℤ. It holds for all v ∉ ℤ and
all x that

x2Y󸀠󸀠v (x) + xY󸀠v(x) + (x2 − v2)Yv(x) = 0 .
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Letting v → α ∈ ℤ, we obtain
x2Y󸀠󸀠α (x) + xY󸀠α(x) + (x2 − α2)Yα(x) = 0 .

Next, we show that limx󳨀→0 Yα(x) = +∞. Indeed, for α ∉ ℤ, Yα is a linear combination
of Jα and J−α. So it is a solution of Bessel’s differential equation. Next, substituting Yv
for v ∉ ℤ in the differential equation and letting v tend to α we get a solution Yα for
α ∈ ℤ. Yα is singular at 0 because of the powers ( x2 )α and ( x2 )−α . We now prove the
remaining part. Recall that

Yα(x) = limv→α cos(πv)Jv(x) − J−v(x)sin(πv) .

We have for v = α, sin(πv) = 0, cos(πv) = (−1)α, (−1)αJα(x) = J−α(x). By applying
L’Hôpital’s rule, we obtain

Yα(x) = lim
v󳨀→α

∂
∂v [cos(πv)Jv(x) − J−v(x)]

∂
∂v sin(πv)= 2

π Jα(x) [ln x2 + C] − 1π α−1∑
k=0

Γ(α − k)
k! ( x2)2k−α

− 1π ∞∑k=0 (−1)k ( x2 )2k−αk!Γ(α + k + 1) [ α+k∑m=1 1
m + k∑

m=1

1
m] ,

where C is Euler’s constant. For α = 0, we obtain
Y0(x) = 2

π
J0(x) [ln x2 + C] − 2π ∞∑k=0 (−1)k(k!)2 k∑

m=1
( 1m) ( x2)2k−α .

Thus limx󳨀→0 Y0(x) = +∞.

Definition 100. The Bessel generating function of the first kind is given by

u(x, t) = +∞∑
n=−∞

Jn(x)tn .
Lemma 101. For all x ∈ ℝ and t ∈ ℝ∗, we have

u(x, t) = e x
2 (t− 1t ) .
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Proof. We have

e
x
2 (t− 1t ) = ∑

k≥0

( xt2 )k
k! ∑m≥0 (− x2t )mm!

= ∑
k≥0
∑
m≥0
(−1)m tk−mm!k! ( x2)k+m .

Setting k = m + n, we get
e
x
2 (t− 1t ) = ∑

m≥0
∑

n+m≥0
(−1)m tn

m!(n + m)! ( x2)2m+n= ∑
m≥0
∑
n≥−m
(−1)m tn

m!Γ(n + m + 1) ( x2)2m+n
= ∑
m≥0

+∞∑
n=−∞
(−1)m ( x2 )2m+n

m!Γ(n + m + 1) tn
= +∞∑
n=−∞

∑
m≥0
(−1)m ( x2 )2m+n

m!Γ(n + m + 1) tn
= +∞∑
n=−∞

Jn(x)tn= u(x, t) .
Theorem 102. The Bessel function Jn satisfies

Jn+1(x) = 2n
x Jn(x) − Jn−1(x), ∀n ∈ ℕ .

Proof. Differentiating the generating function u with respect to the variable t we ob-
tain

∂u
∂t = ∂∂t ( +∞∑n=−∞ Jn(x)tn) = +∞∑n=−∞ nJn(x)tn−1 = +∞∑n=−∞(n + 1)Jn+1(x)tn .
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On the other hand, we have

∂u
∂t
= ∂
∂t
(e x

2 (t− 1t )) = x
2
e
x
2 t − x

2t2
e

x
2t

= x2 e x
2 (t− 1t ) (1 − 1

t2
)= x2u(x, t) (1 − 1

t2
)

= x2 +∞∑n=−∞ Jn(x)tn (1 − 1
t2
)

= x2 +∞∑n=−∞ Jn(x)tn − x2 +∞∑n=−∞ Jn(x)tn−2= x2 +∞∑n=−∞ Jn(x)tn − x2 +∞∑n=−∞ Jn+2(x)tn .
By identification, we obtain

nJn(x) = x2 Jn−1(x) + x2 Jn+1(x), ∀n ≥ 0 .
Therefore

Jn+1(x) = 2nx Jn(x) − Jn−1(x), ∀n ≥ 0 .
Theorem 103. The Bessel function Jn is differentiable and its derivative satisfies

J󸀠n(x) = 1
2 [Jn−1(x) − Jn+1(x)] .

Proof. Differentiating the generating function u with respect to x, we obtain

∂u
∂x = 1

2 (t − 1t ) e x
2 (t− 1t ) = 12 [ +∞∑n=−∞ Jn(x)tn+1 − +∞∑n=−∞ Jn(x)tn−1] .

On the other hand,
∂u
∂x = +∞∑n=−∞ J󸀠n(x)tn , ∀n ≥ 1 .

Consequently
J󸀠n(x) = 1

2 [Jn−1(x) − Jn+1(x)] .
Remark 104. In the particular case n = 0, we obtain

J󸀠0(x) = −J1(x) .
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Theorem 105. The first-kind Bessel function can be expressed by the integral form

Jn(x) = 1
2π

2π∫
0

cos(x sinφ − nφ)dφ . (4.16)

In particular, for n = 0, we have
J0(x) = 2

π

π
2∫
0

cos(x sinφ)dφ .

Proof. Recall that

e
x
2 (t− 1t ) = +∞∑

k=−∞
Jk(x)tk .

Setting t = eiφ, we get
eix sinφ = +∞∑

k=−∞
Jk(x)eikφ , (4.17)

which is the Fourier series of the 2π-periodic function f(φ) = eix sinφ. Therefore,
Jn(x) = 1

2π

2π∫
0

eix sinφe−inφdφ = 1
2π

2π∫
0

cos (x sinφ − nφ) dφ .

In particular, for n = 0, we have
J0(x) = 1

2π

2π∫
0

cos (x sinφ) dφ = 2
π

π
2∫
0

cos (x sinφ) dφ .

Proposition 106. Let λ and μ be two different roots of the Bessel function Jv(x). The
Bessel functions Jv(x) satisfy the following orthogonality property:

1∫
0

xJv(λx)Jv(μx)dx = 0 .
Proof. Denote

yv,λ(x) = Jv(λx) and yv,μ(x) = Jv(μx) .
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Then, yv,λ and yv,μ are solutions of the following Bessel-type differential equations:(xy󸀠v,λ)󸀠(x) + (λ2x − v2x ) yv,λ(x) = 0 (4.18)

(xy󸀠v,μ)󸀠(x) + (μ2x − v2x ) yv,μ(x) = 0 . (4.19)

Multiplying the first one by yv,μ and the second by yv,λ and integrating on (0, 1), we
get (λ2 − μ2) 1∫

0

xJv(λx)Jv(μx)dx = 0 .
Therefore, since λ ̸= μ, we get

1∫
0

xJv(λx)Jv (μx)dx = 0 .
Figures 4.4 and 4.5 illustrate the graphs of the first and second kind Bessel functions.

4.2.8 Hankel function

Hankel functions are applied as physical solutions for incoming or outgoing waves in
cylindrical geometry. These are linearly independent solutions of the complex-param-
eter Bessel equation

x2 d
2y
dx2
+ x dydx + (x2 − α2)y = 0 , (4.20)

where α is an arbitrary complex number.
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Fig. 4.4: Graphs of the first three first-kind Bessel functions.
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Fig. 4.5: Graphs of the first three second-kind Bessel functions.

Definition 107. Hankel functions of the first and second kind are defined, respec-
tively, by

H1
α(x) = Jα(x) + iYα(x) and H2

α(x) = Jα(x) − iYα(x) ,
where Jα and Yα are the Bessel functions of the first and second kind, respectively.

Proposition 108. The following assertions are true.
(1) H1

α(x) = J−α(x)−e−iαπ Jα(x)
i sin(απ) .

(2) H2
α(x) = J−α(x)−eiαπ Jα(x)

−i sin(απ) .
(3) H1

−α(x) = eiαxH1
α(x).

(4) H2−α(x) = e−iαxH2
α(x).

Proof. (1) Recall that the second-kind Bessel function is

Yα(x) = cos(πv)Jv(x) − J−v(x)sin(πv) .
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Therefore,

H1
α(x) = Jα(x) + i cos(πv)Jv(x) − J−v(x)sin(πv)= Jα(x)[sin(πv) + i cos(πv)] − iJ−v(x)sin(πv)= Jα(x)[i sin(πv) − cos(πv)] + J−v(x)i sin(πv)= J−v(x) − Jα(x)[cos(πv) − i sin(πv)]i sin(πv)= J−α(x) − e−iαπJα(x)i sin(απ) .

(2) Similarly to (1), we have

H2
α(x) = Jα(x) − i cos(πv)Jv(x) − J−v(x)sin(πv)= Jα(x)[sin(πv) − i cos(πv)] + iJ−v(x)sin(πv)= Jα(x)[−i sin(πv) − cos(πv)] + J−v(x)i sin(πv)= J−v(x) − Jα(x)[cos(πv) + i sin(πv)]−i sin(πv)= J−α(x) − eiαπJα(x)−i sin(απ) .

(3) It follows from (1) that

H1
−α(x) = Jα(x) − eiαπJ−α(x)−i sin(απ)= −eiαπ e−iαπJα(x) − J−α(x)

i sin(απ)= eiαπ J−α(x) − e−iαπJα(x)
i sin(απ)= eiαπH1

α(x) .
(4) Similarly to (3), we have

H2
−α(x) = Jα(x) − e−iαπJ−α(x)i sin(απ)= e−iαπ eiαπJα(x) − J−α(x)

i sin(απ)= e−iαπ J−α(x) − eiαπJα(x)−i sin(απ)= e−iαπH2
α(x) .
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Proposition 109. The first-kind Hankel function H1
n, n ∈ ℤ can be expressed in the

integral form as

H1
n(x) = 1

iπ

1∫
0

e x
2 (t− 1t )

tn+1
dt . (4.21)

Proof. It follows from Proposition 97 and Definition 93 that

H1
n(z) = 1

iπ J
󸀠
n(t) .

On the other hand, from Theorem 105, equation (4.16), we have that

J󸀠n(x) = − 1
2π

2π∫
0

sin(x sin φ − nφ) sin φdφ .

Now, standard computations as in Theorem 105 yield that

1∫
0

e x
2 (t− 1t )

tn+1
dt = J󸀠n(x) .

Hence,

H1
n(z) = 1

iπ

1∫
0

e x
2 (t− 1t )

tn+1
dt .

Theorem 110. Hankel functions Hiα are differentiable and we have

d
dz H

i
α(z) = 1

2 (Hiα−1(z) − Hiα+1(z)) , i = 1, 2 ,
and

2α
z
Hiα(z) = Hiα−1(z) + Hiα+1(z), i = 1, 2 .

Proof. We have

H1
n(z) = 1

iπ
J󸀠n(t) = 1

2 [ 1iπ Jn−1(x) − 1
iπ
Jn+1(x)] .

Hence,

d
dz H

1
n(z) = 12 [ 1iπ J󸀠n−1(z) − 1

iπ J
󸀠
n+1(z)] = 12 [Hn−1(z) − Hn+1(z)] .
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Wenowprove the next part. To do this, we recall the explicit form of Bessel function Jv
from (4.15), which states that

Jv(x) = ( x2)v ∑k≥0 (−1)k
k!Γ(v + k + 1) ( x2)2k .

Now, for i = 1, we get
H1
α−1(z) + H1

α+1(z) = (J−α+1 − J−α−1) + e−iαπ(Jα−1 + Jα+1)−i sin απ .

Next, it suffices to evaluate the quantities in the numerator. We evaluate one quantity
and leave The others for readers. Using the above expression, we get

Jα−1 + Jα+1 = ( x2)α ∑k≥0 (−1)k
k!Γ(α + k) ( x2)2k−1

+ ( x2)α ∑k≥0 (−1)k
k!Γ(α + k + 2) ( x2)2k−1= α + 1Γ(α) ( x2)α−1 − 2αx Jα(x) .

Using the same techniques and next substituting into the equality above, we get the
desired result.

2.0

1.5

1.0

0.5

H a(
x)

0.0
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–1.0
0 1 2 3

x
4 5 6

Fig. 4.6: Hankel function.
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4.2.9 Mathieu function

Mathieu functions were originally introduced as solutions of the Mathieu differential
equation

d2x
dt2
+ ω2(t)x = 0; or ω2(t) = ω2

0[1 − ξ0 cos(t)] . (4.22)

It is a special case of the general Hill equation given by

d2y
dt2
+ f 2(t)y = 0 ,

where f is a periodic function.
The Mathieu differential equation has in fact many variants. One variant may be

obtained by a scaling modification by setting y(t) = x(2t), which therefore satisfies
the equation

d2y
dt2
+ [a − 2q cos(2t)] y = 0 , (4.23)

where a and q are constant coefficients. By setting u = it in (4.23), we get the Mathieu
modified differential equation

d2y
du2
− [a − 2q cosh(2u)] y = 0 . (4.24)

By setting x = cos(t), we obtain a second Mathieu modified differential equation

(1 − t)2 d2y
dt2
− t dy
dt
+ (a + 2q(1 − 2t2))y = 0 .

As in the theory of the Schrödinger equation, we can guess stationary solutions of the
form

F(a, q, x) = eiμxP(a, q, x) , (4.25)

where μ is a complexnumber called theMathieu exponent and P is a periodic complex
valued function. The following graph is illustrated with a = 1, q = 1

5 , and μ = 1 +
0.0995i.

Definition 111. For fixed a, q we define
– The Mathieu cosine C(a, q, x) by

C(a, q, x) = F(a, q, x) + F(a, q, −x)2F(a, q, 0) .

– The Mathieu sine S(a, q, x) by
S(a, q, x) = F(a, q, x) − F(a, q, −x)2F󸀠(a, q, 0) .
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Fig. 4.7: Mathieu function: Real part and imaginary part, a = μ = 1 and q = 0.2.

Properties 112. The following assertions hold:
(1) C(a, q, 0) = 1 and S(a, q, 0) = 0.
(2) C󸀠(a, q, 0) = 0 and S󸀠(a, q, 0) = 1.
(3) C(a, q, −x) = C(a, q, x): The Mathieu cosine is an even function.
(4) S(a, q, −x) = −S(a, q, x): The Mathieu sine is an odd function.
(5) C(a, 0, x) = cos(√ax) and S(a, 0, x) = sin(√ax)

√a .

Proof. (1) We have

C(a, q, 0) = F(a, q, 0) + F(a, q, 0)
2F(a, q, 0)= 2F(a, q, 0)

2F(a, q, 0)= 1 .
Similarly, for the sine function, we have

S(a, q, 0) = F(a, q, 0) − F(a, q, 0)2F󸀠(a, q, 0)= 0
2F󸀠(a, q, 0)= 0 .
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(2) We have

C󸀠(a, q, 0) = F󸀠(a, q, 0) − F󸀠(a, q, 0)2F(a, q, 0)= 0
2F(a, q, 0)= 0 ,

and similarly,

S󸀠(a, q, 0) = F󸀠(a, q, 0) + F󸀠(a, q, 0)2F󸀠(a, q, 0)= 2F󸀠(a, q, 0)
2F󸀠(a, q, 0)= 1 .

(3) We have

C(a, q, −x) = F(a, q, −x) + F(a, q, x)2F(a, q, 0)= F(a, q, x) + F(a, q, −x)2F(a, q, 0)= C(a, q, x) .
Then, the Mathieu cosine is an even function.
(4) Similarly,

S(a, q, −x) = F(a, q, −x) − F(a, q, x)
2F󸀠(a, q, 0)= −F(a, q, x) − F(a, q, −x)2F󸀠(a, q, 0)= −S(a, q, x) .

Then, the Mathieu sine is an odd function.
(5) Follows from the fact that S(a, 0, .) and C(a, 0, .) are solutions of theMathieu equa-
tion

d2y
dx2
+ ay = 0

and the assertions (1) and (2).
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Remark 113.
– The general solution of theMathieu equation (for fixed a and q) is a linear com-

bination of the Mathieu cosine and sine.
– In general, the Mathieu cosine and sine are not periodic. However, for small

values of q we have

C(a, q, x) ∼ cos(√ax) and S(a, q, x) ∼ sin(√ax)√a .

The Mathieu cosine is illustrated graphically in Figure 4.8.

4.2.10 Airy function

The Airy function was introduced by the astronomer George Biddell Airy in optical
calculations. These are solutions of the second-order differential equation known as
the Airy differential equation

y󸀠󸀠 − xy = 0 . (4.26)

One idea to resolve such an equation is to use the well-known Fourier Transform,
which leads formally to a set of solutions called Airy functions based on the following

30252015
x

1050
0

0.5

1

–0.5

–1

Fig. 4.8: Mathieu cosine: C(0.3;0.1;x) (Grey).
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integral representation:

A(x) = 1
π

+∞∫
0

cos(ξx + ξ33 ) dξ ,
which is in fact a divergent integral. In fact, the integral is a semi-convergent integral.
Indeed, for 0 < a < L < +∞, an integration by parts yields that

L∫
a

cos(ξx + ξ33 ) dξ = 2 L∫
a

sin(ξx + ξ33 ) ξ(x + ξ2)2 dξ + [[sin (ξx +
ξ3
3 )

x + ξ2 ]]
L

a

.

As the integral ∫∞a sin(ξx + ξ3
3 ) ξ
(x+ξ2)2 dξ is absolutely convergent, the desired result

follows.

Definition 114. For η > 0, we define the Airy function Ai by means of the following
integral:

Ai(x) = 1
2π ∫
ℝ+iη

eiξxei
ξ3
3 dξ .

Furthermore, applying classical techniques of parameter-depending integrals, we can
prove that
(1) Ai is continuous on ℝ.
(2) limx→+∞ Ai(x) = 0.
Indeed, note that Ai(x)may be written in the form

Ai(x) = 1
2π ∫
ℝ
eix(ξ+iη)ei

(ξ+iη)3
3 dξ .

Next, as for η > 0, we get
Re(ix(ξ + iη) + i (ξ + iη)33 ) = −xη − ξ2η + η33 ,

the last integral is then absolutely convergent. Furthermore, it is uniformly convergent
on any compact set in ℝ. So, since the function x 󳨃→ eix(ξ+iη)ei

(ξ+iη)3
3 is continuous for

all η and ξ , the function Ai is then continuous on ℝ. In fact, we may prove that Ai is
C∞ and that for all k ∈ ℕ,

Ai(k)(x) = 1
2π ∫
ℝ
(i(ξ + iη))keix(ξ+iη)ei (ξ+iη)33 dξ .
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We prove further that Ai is independent of the parameter η. Indeed,

dAi
dη = d

dη
1
2π ∫
ℝ
(eix(ξ+iη)ei (ξ+iη)33 ) dξ = 1

2π ∫
ℝ

d
dξ {eix(ξ+iη)ei (ξ+iη)33 } dξ = 0 ,

as the function
ξ 󳨃→ eix(ξ+iη)ei

(ξ+iη)3
3

is in the Schwartz class.

Properties 115. The following properties of the Airy function Ai hold:
(1) The function Ai satisfies the Airy differential equation (4.26).
(2) Ai(j.) is a solution of the Airy differential equation (4.26), whenever j3 = 1.
(3) The function Ai is an entire function of x.
(4) For all x ∈ ℝ, Ai(x) ∈ ℝ.
(5) Ai(0) = 1

3
2
3 Γ( 23 )

and A󸀠i (0) = −1
3 1
3 Γ( 13 )

.

Proof. (1) As noted above, the Airy function Ai is twice differentiable and

Ai󸀠󸀠(x) = 1
2π ∫
ℝ+iη
(iξ)2eixξ ei ξ33 dξ

= i
2π ∫
ℝ+iη

eixξ d
dξ (ei ξ33 ) dξ

= 1
2π ∫
ℝ+iη

ξeixξ ei
ξ3
3 dξ = xAi(x) .

(2) Let Ãi(x) = Ai(jx). We have

Ãi󸀠󸀠(x) = j2Ai󸀠󸀠(jx) = j2(jxAi(jx)) = j3xÃi(x) = xÃi(x) .
(3) The function fη defined by fη(x, ξ)) = eix(ξ+iη)ei (ξ+iη)33 is analytic as a function of x
for all ξ . Furthermore, for all R > 0 and |x| ≤ R, we have|fη(x, ξ)| ≤ e−Rηe−Rξ e−ηξ2 .
The last function is integrable according to ξ . So, Ai is analytic.
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(4) For x ∈ ℝwe have
Ai(x) = 1

2π ∫
ℝ
e−ix(ξ−iη)e−i

(ξ−iη)3
3 dξ

= 1
2π ∫
ℝ
eix(−ξ+iη)ei

(−ξ+iη)3
3 dξ .

= 1
2π ∫
ℝ
eix(ω+iη)ei

(ω+iη)3
3 dω .

= Ai(x) .
(5) As Ai is independent of η > 0, and Ai(0) is real, we can write

Ai(0) = 1
2π Re(∫

ℝ
ei

(ξ+i)3
3 dξ) .

Denote I as the last integral and J = 1
2 I. Simple computations yield that

I = 2 +∞∫
0

ei
(ξ+i)3

3 dξ ,

which means that

Ai(0) = 1
π Re(+∞∫

0

ei
(ξ+i)3

3 dξ) = 1
π Re(J) .

Next, for R > 0 large enough consider the points O(z0 = 0), A(zA = R), B = (zB =
Rei

π
6 ), C(zC = i + zB), and D = (zD = i) and the contours γR composed of the juxtapo-

sition of the segment [o, A], the arc (AB) and the segment BO in the positive sense,
and δR the parallelogram contour OBCDO countered also in the positive sense. So,
applying the residues theory on the function f(z) = ei (z+i)33 and the contour γR, we get

πAi(0) = Re ( lim
R→+∞

KR) ,
where KR is the integral given by

KR = ∫
[B,O]

f(z)dz = ∫
[C ,D]

ei
z3
3 dz .

Now, applying again the residues theory with the function g(z) = ei z33 on the parallel-
ogram contour OBCDO, we obtain

lim
R→+∞

KR = +∞∫
0

g (tei π6 ) ei π6 dt = ei π6 +∞∫
0

e−
t3
3 dt .



4.2 Classical special functions | 101

Hence,

πAi(0) = √32 +∞∫
0

e−
t3
3 dt = √32 3−2/3

+∞∫
0

x−2/3e−xdx = Γ(13 )
2.31/6

,

which means that

Ai(0) = Γ(13 )
2π31/6

.

Analogous techniques may be applied to obtain Ai󸀠(0).
Now, we introduce the second-kind Airy function ([18]).

Definition 116. The second-kind Airy function is defined by

Bi(x) = eiπ/6Ai(jx) + e−iπ/6Ai(j2x) , (4.27)

where j = ei2π/3.
Proposition 117. The second-kindAiry function Bi is a solution of the Airy differential
equation (4.26) and satisfies

Bi(0) = 1
31

6 Γ (23) and B󸀠i (0) = 31
6

Γ (13) .
Furthermore, Bi is real on the real axis ℝ.
Proof. We have

Bi󸀠󸀠(x) = j2eiπ/6Ai󸀠󸀠(jx) + j4e−iπ/6Ai󸀠󸀠(j2x)= j2eiπ/6jxAi(jx) + j4e−iπ/6j2xAi(j2x)= x(eiπ/6Ai(jx) + e−iπ/6Ai(j2x))= xBi(x) .
Hence, Bi satisfies (4.26). Next,

Bi(0) = eiπ/6Ai(0) + e−iπ/6Ai(0) = √3Ai(0) = √3 Γ(13 )
2π31/6

.

Now, observing that
Γ (13) Γ (23) = 2π√3 ,
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Fig. 4.9: Airy function Ai and Bi.
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Fig. 4.10: The Airy function Bi and its approximation.

we get
Bi(0) = 1

31/6Γ (23) .
The same techniques yield Bi󸀠(0). Finally, for x ∈ ℝ, we have

Bi(x) = e−iπ/6Ai(jx) + eiπ/6Ai(j2x) = e−iπ/6Ai(j2x) + eiπ/6Ai(jx) = Bi(x) .
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Airy functions Ai and Bi are illustrated in Figure 4.9. Furthermore, Figure 4.10 illus-
trates the Airy function Bi and its approximation.

4.3 Hankel–Bessel transform

In this section, we focus on the most known transform associated with the special
functions developed previously. We will review the Hankel–Bessel transform of func-
tions. Readers are referred to [53] for more details. We denote the inner product in
L2(ℝ+ , dx) by ⟨f, g⟩ = ∞∫

0

f(x)g(x)dx
and the associated normby ‖.‖2. Similarly,we denote the inner product in L2(ℝ+ , ξdξ)
by ⟨f, g⟩ξ = ∞∫

0

f(ξ)g(ξ)ξdξ
and the associated norm by ‖.‖ξ,2.
Definition 118. Let f ∈ L2(ℝ+ , dx). The Bessel transform of f is defined by

B(f)(ξ) = +∞∫
0

f(x)√xJv(xξ)dx, ∀ξ > 0 ,
where Jv is the Bessel function of first kind and index v.

We immediately have the following characteristics:

Proposition 119.
(1) For all f ∈ L2(ℝ+ , dx), B(f) ∈ L2(ℝ+ , ξdξ).
(2) The Bessel transform B is invertible and its inverse is

B−1(g)(x) = +∞∫
0

g(ξ)√xJv(xξ)ξdξ, ∀g ∈ L2(ℝ+ , ξdξ) .
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Proof. (1) Let f and g be in L2(ℝ+ , dx). We have

⟨B(f),B(g)⟩ξ = +∞∫
0

B(f)(ξ)B(g)(ξ)ξdξ
= ∫
ℝ3+

√x√yf(x)g(y)Jv (xξ)Jv(yξ)ξdxdydξ
= ∫
ℝ2+

√x√yf(x)g(y)δ(x − y)
x

dxdy

= ∫
ℝ+

√x√xf(x)g(x)1
x
dx

= ⟨f, g⟩ .
So, taking g = f , we get ‖B(f)‖ξ,2 = ‖f‖2
which means thatB is an isometry.
(2) Denote B̃(f) the right-hand quantity. We will prove that B(B̃(f)) = f . Indeed,

B(B̃(f))(ξ) = +∞∫
0

B̃(f)(x)√xJv(xξ)dx
= +∞∫

0

+∞∫
0

f(η)√xJv(xη)η√xJv(xξ)dηdx
= +∞∫

0

f(η)η δ(η − ξ)η dη

= f(ξ) .
Definition 120. The Hankel transform, also called Fourier–Bessel transform of the
order v, is defined by

H(f)(ξ) = ∞∫
0

f(x)Jv(xξ)xdx; ∀f . (4.28)

Remark 121. Hankel transformH and Bessel one B are related via the equality

H(f)(ξ) = B(√.f)(ξ) .


