4 Review of special functions

4.1 Introduction

The main motivation behind this chapter about special functions is that these func-
tions are applied in the quasi-field of mathematical physics and that there is no liter-
ature dedicated on them and their basic properties with efficient proofs and original
references.

Special functions are, as their name indicates, special in their definitions, appli-
cations, proofs as well as their interactions with other fields. It is thus important to
understand their basic properties.

They appear in the treatment of differential equations, such as heat and Schro-
dinger equations, quantum mechanics, approximation theory, communication sys-
tems, wave propagation, probability theory, and number theory.

Special functions are also related to orthogonal polynomials, as both of them are
generated by second-order ordinary differential equations. We cite mainly Legendre,
Gegenbauer, and Jacobi polynomials. They are also associated with infinite series, im-
proper integrals, and Fourier transforms, yielding special transforms, such as Bessel,
Jakobi, Hankel, and Dunkl transforms of functions.

Historically, special functions differ from elementary ones, such as powers, roots,
trigonometric, and their inverses, mainly with the limitations that these latter classes
have known. Many fundamental problems such as orbital motion, simultaneous os-
cillatory chains, and spherical body gravitational potential were not best described
using elementary functions. This makes it necessary to extend elementary function
classes to more general ones that may describe unresolved problems.

In the present chapter, we aim to recall special functions most frequently applied
in scientific fields, such as Bessel functions, Mathieu functions, the Gamma function,
the Beta function, and Jacobi functions.

4.2 Classical special functions
4.2.1 Euler’s I function

Euler’s Gamma function was introduced by Bernoulli and Christian Goldbach in the
17th century by extending the factorial to nonintegers. But the problem remained un-
solved until the work of Leonhard Euler, who was the first to point out a rigorous for-
mulation based on infinite products. Next, Euler’s Gamma function has been applied
in numerous contexts in both mathematics and physics, such as integration theory,
number theory, probability, group theory, and partial differential equations (PDEs),
and has also been extended to the meromorphic function on the whole complex plane.
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Definition 57. Euler’s I" function is defined by the following integral expression
known sometimes as the second-kind Euler integral, defined for x € R} by

I'(x) = jt""le‘tdt.
0

Proposition 58.
(1) Euler’s I integral converges for all x > 0.
(2) The function I is C* on ]0, +oco[ and we have

+00

') = J e t(nke-1dt, Vx>0,VkeN.
0

(3) Euler’s I function can be extended on the half-plane Re(z) > 0.

Proof. (1) For x > 0, denote f(t,x) = t*Le~!. First note that f(t,x) > Oforall t €
(0, +0c0). When t — 0, f(t, x) ~ t*"! and

‘ 1
th‘ldt ==

X
0

is convergent. So

1
j ft, x)dt
0

is also convergent. Now, note that there exist A, M > 0 constants such that t2f(t, x) <
M whenever t > A and thus

+00 +00

Jf(t,x)dts j tizdt.

A A
The last integral is convergent. So

+00

j fit, x)dt

A

is also convergent. Finally, the integral I'(x) is convergent for all x > 0.
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(2) Leta,b € Rwith 0 < a < b and ¢: [a, b]x]0, +co[— R such that ¢(x, t) =
t*~1e~t It consists of a C* function that satisfies
0 g
oxk
which is also continuous on [a, b]x]0, +oo[. In addition, for k € IN*, we have
— Vx € [a, b], the function t — ‘?:Tgf(x, t) is continuous on ]0, +oo].

(x, t) = In )kt Let,

— VYVt €]0, +oo[, the function x — ‘?:Tgf(x, t) is continuous on [a, b].
- V(x,t) € [a, b]x]0, +oo[, we have
akd)

60| < (In )% max(t271, tP~1)e"

Hence, the function I' is €* on ]0, +co[ and Vk € IN*, Vx > 0,

+00
) (x) = j (In ketetdt |
0

Hence (3.3).
(3) We will prove by recurrence the proposal

P,,: T can be extended on -m + 1 > Re(z) > -m, Vm € N.

Indeed, Py holds because I' is analytic on {Re(z) > 0}. Therefore, it is analytic on
{1 > Re(z) > 0}. Next, for 0 > Re(z) > -1, we have 1 > Re(z + 1) > 0. Hence, I'(z + 1)
is analytic. In addition, I'(z) = @ Thus, I' is holomorphic on {0 > Re(z) > -1}
with 0 being a simple pole corresponding to the residues 1. So, I' can be extended to
a meromorphic function {Re(z) > —1} with a simple pole at 0. Hence, the property P;.
Next, applying the recurrence rule, we obtain

F(z):ﬂ. O

TTizo(

Properties 59. The following assertions are satisfied.
(1) I(x+1)=xI(x); Vx>0.

(2 I'n+1)=n!,VneN.

B I(3) = Vn.

(4) T(n+3) = QUINT v e N,

22npl

Proof. (1) An integration by parts gives
+00 +00
Ix+1)= J e tdt = x j e tdt = xI'(x) .
0 0
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(2) Putting x = n € IN* in assertion (1), we get
I'm+1)=nlI'(n) =n(n-1)I'(n-1)=n!I'(1) =n!.

Hence the appointment of generalized factorial function for I'.
(3) We have

171
F(z)_(!\/?e dt.

1 (o)
F(§> =2 J e dx.
0

A
() -]
00

Now, using the polar coordinates system, x = rcos 8 and y = rsin 0, with r € (0, co)
and 6 € (0, Z) we get

Putting x = Vt, we get

Hence,

(F(%))z = 4J% Te"zrdrdG =7.
00

Therefore, I'(3) = V7.
(4) By recurrence on n. For n = 0, we have I'(0 + %) = F(%) on the left and /7 on the
right. So, the assertion is true for n = 0. Assume next that it is true for n. We shall then

checkit forn + 1.
1 1 1
F(n+1+§>—<n+§)l"<n+§)

1\ @n)!va
(n " 5) 22np]
_ @n+2)Wm
T 221%2(n 4 1)!

_ @+ 1))V -
T 22 (g 1)

The next result shows some asymptotic behaviors of Euler’s I" function.

Theorem 60. Euler’s I function satisfies the so-called Stirling formula,

X
F(x+1)~\/2ﬂx(§) as X — +00.



4.2 Classical special functions = 55

Proof. Recall that

+00
Ix+1)= j e ldt.
0

By setting t = x + v/xu, we obtain

+00
Tx+1)= J e X~ VxugxInGeixu) /gy
B
+00
_ (g)x Np j —vxu+x1n( 1+—)du
R

Now, it suffices to prove that the last integral tends to v2 as x — +oo. Denote I'1 (x)
as this integral and let

e—ﬁu+xln(1+%) ifus—vx
fx,u) = o

ifnot .
We get
+00
Iy (x) = j foe, udu .

For fixed u € R, we have

, u
Xlriloof(x,u) hm exp( \/_u+xln<1+ﬁ>>

= hm exp < \/_u+x(%—%i—2+9(i>>>

On the other hand, if u €] — v/x, 0], as LIPS 1, we obtain

VX

2
flx,u) < exp <_u?) .

Finally, for u €]0, +oo[, f(x, u) is a decreasing function of x on ]0, +oo[. We deduce for
u>0andx € [1, +oo] that

fx,u) <f(,u) =1 +ue™.

So, forallu € R and all x € [1, +oo[, we have 0 < f(x,u) < g(u), where g is the
integrable function defined by

u2

e 7, ifu<o
g(u)=<l

(1+u)e™™, ifnotu=0.
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By the dominated convergence theorem, we obtain

+00
_2
Ii(x) - J e2du=vV2m, asx— +00.
—00

RV

X we get f(x, u) = eh&¥), where

h(t, u) = u*t? (—% +1n(1 + %)) ,

which is decreasing in ¢. O

Now, by setting t =

Proposition 61. Euler’s I function satisfies the so-called Gauss formula for all x > 0,

1 x(x+1)---(x +n)
m_n—»wo nlnx :

Proof. Applying the recurrence relation n times, we obtain
I'Xx(x+1)---(x+n)=I'lx+n+1).

Therefore,
x(x+1)---(x+n) Tx+n+1)
ninx ~ TI'(x)n!nx
\/E(X N+ 1)x+n+%e—(x+n+1)
T()V27r(n + 1) 2 e-n-1nx
1 /x+n+1\"/x+n+1\"1 xX\"
o (Ta) ) e (1+3)
3 1
=T -

Proposition 62.

(1) The infinite product [T, (1 + %)e__kz is normally convergent on every compact of
C and therefore defines an analytic function of z.

(2) Euler’s T function satisfies the so-called Gauss—Weierstrass formula for z ¢ —IN,

1 . zz+1)(z+2)---(z+n)
%_nl—{rpoo n'n#

n

. z -z
=ze'? lim H<1+—)ek,
n—>+ook:1 k
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where y is the Euler—Mascheroni constant given by

Proof. (1) Put ux(z) = (1 + %)e% — 1. A simple Taylor development gives

2

z
(@)l < 2
n

1zl

whenever = is bounded independent of n and z. Hence, the infinite product converges

uniformly on every compact set in C to an analytic function.
(2) Observe that

+00 n
n
I(z) = j e tdt = lim jtz-l(1-f) dt.
n—-+oo n
0 0

This is a consequence of the application of the dominated convergence theorem. So,
next, integrating by parts, we obtain

. nln?
Iz = ,,HIPOO zZ(z+1)(z+2)---(z+n)

whenever z ¢ —IN. So the first part is proved. Next, observe that

1 2 R n k z
z(z + )(z+' Z) (z+n) :Z”_anz zzez(y"—logn)ne—;l_[<1+%>
nn k=1 k=1 k=l

where y, = Y} 1. Next, we obtain

22+D)@E+2) 410 gy, togm) [[e# (1 + E) )
n!n? K1 k

which implies by the limit on n that

n

1 HEDEDE ) ey (1 E)eF .

I'(z) n—+oo n'n? n—+oo

Proposition 63. Forz € C\ Z,

I'z)I(1-z2) =

sin(niz)
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The proof is based on the following lemma, which canbe obtained by simple appli-
cation of Fourier series theory on the function f(t) = cos(st), where s € C. The re-
sult may also be established by direct methods based on the simple relation e =
limy_100(1 + %)" . Thus, the proof of this lemma is left to the reader.

Lemma 64. Vz € C, we have

sin(niz) = nz 1_[ (1 = i) . (4.1)

nx>1

Proof of Proposition 63. Let

z(z+1)(z+2)---(z+n)
n!n? )

Proceeding as in the proof of Proposition 62, we obtain

- n 2
an(2)an(1 - 2) =z(1+ %)H(l- i_z) .

k=1

an(z) =

The limit on n gives

1 B B _ sin(nz)
m Em an(2)an(1 - 2) E(l )- "
Consequently,
I'z)I[(1 -2) = prmp— O

Remark 65. The meromorphic function I" has no roots on C.

Proposition 66.

—  Convexity of I': T is strictly convex on 0, +ool.

—  Asymptotic behavior of I at co: limy_, o, I'(X) = +0o0.
—  Asymptotic behavior of I' at co: limy_, , oo ﬁ = +00.

— Asymptotic behavior of I' at 0% : limy__,o+ F(x) = +00.

Proof. (1) Recall that the function I' is twice differentiable on ]0, +oco[ and ¥x > 0, so

we have
+00

I'"x) = J (nt)’t*tetdt>o0.
0
Hence, it is convex.
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(2) Since the function I' is increasing on )0, +oo[, for x big enough, we have
Ix)=(x-DI'x-1)>x-1DI'AQ)=x-

We deduce that limy__, o, I'(x) = +00.
(3) For x > 1, we have
0 _ -1
=

I'lx-1) — +00 asx — +00.

We deduce that the graph of the function I'" has at +co a vertical asymptotic direction.
(4) Forx > 0, I'(x) = @ - % = +0o when x — 0™,
So limy_,o+ I'(x) = +00. In addition, we have precisely, I'(x) ~ % asx — 0%, O

4.2.2 Euler’s beta function

The origin of Euler’s beta function goes back to differential calculus and integrals. It
was introduced in the Arithmetica Infinitorum published by Wallis. Newton next dis-
covered the binomial formula and introduced Euler’s beta function, which was then
developed for other versions, such as the incomplete and the corrected versions. The
beta function is given by Euler in the following form:

1
B, q) = jtp(l ~9dt
0

and is known as the first-kind Euler integral. But since Legendre’s work, it appears in
a slightly modified form

1
B, q) = pr_l(l -x)%tdx, p>0,g>0.
0

It is apparent that such a function is symmetrical in (p, q), i.e.,

B(p’ q) = :B(q9 P) .

The beta function also has another integral representation. Indeed, by setting t =
a > 0, it becomes

Q<

B

a

1 _ _

B @) = Jy” Ya-ytdy.
0

Again, setting t = sin® 6, we get a trigonometric form

B, q) Zj(sme )P 1(cos 6)%971d80 .
0
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Finally, with the variable change t = (li/-y)’ we get
+00 yp—l d
B, q) = J’ Axypa y.
0

In the following, we will apply one of these representations without mentioning it each
time. The form applied will be understood from the development.

Proposition 67.

(1) The beta integral converges whenever x, y > O.

(2) The beta integral is continuous on 10, +co[x]0, +ool.

(3) The beta integral remains valid on the quarter complex plane Re(x), Re(y) > 0.

Proof. (1) Whenever p, g > 0 we have
PA-1~tP, t—>0" and PA-0DI~1-0)9, t—>1".

Hence, the integral is convergent.

(2) On ]0, +00[x]0, +0oo], the function (p, q) — fi(p, q) = tP(1-1t)? is continuous for all
t € (0, 1). Furthermore, (1 - )7 < 1, Vt, p, q. Thus, the integral is uniformly conver-
gent to a continuous function on ]0, +0o[x]0, +0co[. Next, by recurrence on k € IN, we
can prove that beta is k-times differentiable according to p and g. We can also prove
that

1
k
%(p, q) = J(log HkeP(1 - t)4dt,
0

okB

1
5t = j(log(l —O)ke(1 - tydt
0

andforn+m=k,

okp _ [ n mp q
Sy @0 —J(logt) (log(1 - )™ tP(1 - )%dt .

(3) For p, g € C, we have

[P(1 =) = Re@ (1 - pRe@ vyt e (0,1). O
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Properties 68.

(1) pBp,g+1)=gB(p+1,9),Yp,q=>0.

@ B, 1)=

B BG5.D)

(4) Yne ]Nande >0, B(p,n) = %ﬁ(p+ 1,n-1).
(5) vn e NandVp > 0, B(p, n) = %

(6) Vm,n € N, B(m, n) = w.

m+n 1)1
= q-
@) Vp.q>0,(.q) = |, y1+y+¥+q dy.
i
(8) Yp,0<p<1,B(p,1-p)= Io yp(1+yyd
(9) Vp,0<p<1,pp, 1 p):
)
(10)Vp,q >0, B(p, q) = F(M

sm p°

Proof. (1) Integrating by parts, we get

1

q -1 q
s D=| XA -x)T'dx=2 1, .
B g +1) JPX( 0 ldx=1pp+1,9)

(2) We have
1

B, q) = pr‘l(l -x)%tdx.
0

So,
1

1
, D)= | P ldx ==
Bp, 1) jx x=o

0

(3) Taking g + 1 = n € N, we get
B(p,n) = —,B(p+1 n-1).

(4) Observing that B(p, 1) = -, we get by iteration

2---(n-1)
pp+1)---(p+n-1)"

(5) If we take p = m € N in the previous equation, we obtain

B(ps n) =

(m-1Dl(n-1)!
(m+n-1)!

B(m, n) =
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(6)
11 ;
8(5.3)=[rta-ntax w=w
0
1
_ ZJ' du
1-u?
0
=7.
(7) We have
+00 yp_l
B, q) = J Ty
0
1 yp—l +00 yp_l 1
= J Wdy+ J Wdy (y with y 1nI>
1
I
1
B yp_l +yq_1
- | Tryypra ¥

0

(8) For0 < p < 1, we get

ﬁ(p’l_p) =

Il
Ot —— 1 O —— . O—3
S
kN
Q
<
+
—_—
3
AN
<

(9) Recall that 1—1y = Y% ,(=1)"y" whenever 0 < y < 1. Hence,

Similarly, we have

Therefore,
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(10) By setting t = y? in the I' integral, we obtain

+00
I(p)=2 j yPle dy.
0
Thus,
+00 +00
I'(p)I(q) = 4 J J X24-1y20-16=0C+y") gy

0 0
Next, applying polar coordinates x = r cos 6 and y = r sin 0, this yields that

+00

I(p)I(q) = 4 j
0

(rcos 0)29 1 (rsin 9)PLe " drdd

S Y

+00

%
=4 j r2p+a-e J (cos 0)291(sin 6)2P~1d0
0 0

1
= 4§T(p + Q)Eﬁ(p, q)
=I'lp+ B, q) - O

The following result relates the differentiability of beta to Euler’s I' function. The proof
is an immediate consequence of the last property above.

Proposition 69. The function beta is differentiable and we have

r'p) I'p+q)
) Tw+q)

%ﬂ(p, 9 = B, q)( ) - B, 9) (Y@ - Y@ + 0)) .

where ) is the so-called di-Gamma function defined by (p) = F (”

In the following, we introduce the complete and incomplete beta functions.
Definition 70. The complete Beta function is defined for a, b > 0 by
p
B(p;a, b) = j 1 - P ade. (4.2)
0

The incomplete (regularized) beta function is

B;a,b)

Ip(a, b) = B@b)

a,b>0. (4.3)
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Fig. 4.1: Representations of the beta function.

Figure 4.1illustrates the graph of the beta function.

4.2.3 Theta function

The theta function appears in many areas, such as manifolds, quadratic forms, soliton
theory, and quantum theory.

Definition 71. The function 6 is defined for (z, T) € €? such that Im(t) > 0, by

0(z,T) = Z eirmzrezinnz . (4.4)
nez

Proposition 72. We have

(1) V7 such that Im(t) > 0, (., T) is a holomorphic function on C.
2 6(z+1,71)=06(z, 1), VT such that Im(t) > 0.

(3) 0(z+1, 1) = e i 2iM2Q(z, 7).

N 3 2 3 . .
Proof. (1) For all 7, the function z — e Te2i™Z js holomorphic on C. Moreover, for
all compact K c C, we have
sup |einn2‘rezinnzl < e—rm2 Im(r)letRn
- b
zeK
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with R such that K ¢ D(0, R). Hence, the series ¥, e Im(D R i5 convergent, which
yields that ¥, e!™7 271z js holomorphic.
(2) Vz, T, we have

0(z+1,1) = z einnz‘rezinn(zﬂ)
nez
.y . .
— z elmn ‘reZlnn2(e21n)n
nez
.y .
— z elmn ‘reZlnnz
nez

=0(z,1).
(3) Vz, T, we have

.5 .
9(2 +T, T) — Z elmn Te217m(z+r)
nez
_ z einnzrezinnZ(eZin)n
nez

P .
z eln(n +2n)Te21nnz

nez
. 2 .
_ z em((n+1) 1)Te217mz
nez
s . 2 .
= e inT z em((n+1) )reZIrmz
nez
s i s
—e int z emn Te2m(n 1)z
nez
— e—m‘re—Zmze(Z, T) . n

Proposition 73.
(1) For all T such that Im(t) > 0, we have

(2) Fort > 0,let O(t) = 6(0, it). Then,

\/E@(t)=@(%) .

Proof. Denote for x € R, f(x) = e™7e2i™Z_From the well-known Poisson summation
formula, we obtain

0z, )= Y fim) =) f(n).

nez nez
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On the other hand, note that

—inz? at?
£ = Ga (x + %) e™™ witha = —2inr and Gg(f) = e~ .

Therefore,
—~ — z —inz?
Fw) =Ga .+ Z) @e™
T
_ ezinéwe—br:wz z_ﬂe—izzz
\ a
_ rimtwgnt | Lt
—-iT
_ plinfwp Azt |1
T
Hence,
- 1 —in? Pz —imn? 1 -in? z -1
Y fn)=q=eTr ) Xt = \/—e g 9(—,—) .
nez T nez T T T
Consequently,
i —inz? z —1
9(Z9T): —-e r 9(_9_> ]
T T T
or equivalently,
inz z -1
-0(z,T) =€~ 6(—,—) O
T T

4.2.4 Riemann zeta function

The Riemann zeta function is often known in number theory and in particular in the
study of the distribution of prime numbers.

Definition 74. The Riemann zeta function is defined for x > 1 by

+00

=Y = 46)
n=1

Remark 75. The definition may be extended to complex numbers x = a + ib with
a>1.



4.2 Classical special functions —— 67

Proposition 76. The { Riemann’s function satisfies the so-called Euler’s multiplica-
tion 1
=] ——, vx>1,
¢ [ 1-p™)

peP

where P is the set of prime numbers.

Proof. For x > 1, we have

((x):1+i+i+i+i+
2X 3X 4X SX

Thus,
LV IR SR R S TN
2T X g T oex T g T 0x
Or equivalently,
1 1 1 1 1
(1_?>((X)=1+3_X+§+§+§+
Multiplying again by 4, we get

1(1 1)((X)_1+1+1+1+1+
3x 2x T 3x T 9x ' 15X 21X Q27X

(- 2) (- Fo-e oo

Next, by following the same process we get for p € P,

(1-2) (1) - 21 2) - B - a1 T 2

n>p

Hence,

Next, note that the last summation goes to 0 as p — co. Therefore,
oo [Ja-pH=1.
pe?P
Hence,

1
= ap .

pe?P

Proposition 77.
(1) (is continuous, nonincreasing, and convex on 11, +ool.
(2) ¢ise>on]1, +oo[ and

0 k
(W) = (-1)* Z %; VkeNandx>1.

n=2
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Proof. (1) Let a > 1. For n € N*, the function x nl is continuous on [a, +oo[.
Moreover, Vx € [a, +oo[,

1 1
! = 7 < -

Thus, the series ) , ,,—la is normally convergent. Hence, the sum ({ is continuous on
[a, +oo[. This being true for all real a €]1, +oo[. Henceforth, { is continuous on
11, +oo[.

Next, the monotony of { follows from the fact that for all n € N, the functions
X - is nonincreasing on |1, +ool.

Finally, to prove the convexity of the function {, recall that for all n € IN, the func-
tions x — % is convex on |1, +oo[. So, { is convex on ]1, +oo[ as a sum of convex
functions |1, +ool.

(2) Leta > 1. Forall n € N, the function f,: x — -, is @ on [a, +oo[ and for x > a

nX ’
and k > 1, we have
(In n)k
< .
na

(In n)k

fa 0] = ‘(—1%—

n4

Note that },, (lﬁf)k converges by the Bertrand rule of numerical series. So, we deduce

that for k > 1, the series ), f,(,k) is normally convergent on [a, +col. As a result, { is €
on [a, +oo[ for all k. Hence, it is €* on [a, +oo[ for all a > 1. So, itis C® on ]1, +oo[
and the derivatives are obtained as stated above. O

Proposition 78. The { function satisfies
= limy— 00 §(x) = 1.
- limx_>1+ ((X) = +00.

Proof. (1) Note first that the series Y1 n% converges. Henceforth, the series {(x) is
uniformly convergent on the interval [2, +oo[. Furthermore,

lim — =
x—+o00 nX

1 1, forn=1,
0, forn>1.

So, by applying the limit on {(x) at infinity we get

Xlriloo((x)=1+20=l.

n>=2

(2) holds from the fact that ¢ is nonincreasing on ]1, +co[ and that Y ., % =+o00. O
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Proposition 79. The { function can be extended on the band Q = {z € C; Re(s) > 1}
in a holomorphic function. With higher derivative {©, k € N is given by

+00 k 1.k
((k)(z) — Z M . (4.7)

z
n=1 1

Proof. (1) The function f,,(z) = n—lz, n > 1 is holomorphic, and the series Y, f, is uni-
formly convergent on all sets of the form Q, = {z € C; Re(z) > a} for all a > 1. So the
sum { is holomorphic on Re(z) > 1.

(2) For k € N, we have f (k) (2) = (_1);# On any set Qg, the series ), f,(,k) is uniformly
convergent. Hence, { is C¥ and its derivative of order k is given by (4.7). O

Proposition 80. The function { has a meromorphic extension on C, with a single pole
in 1 which is simple.

To prove this result, we need to recall that the well-known Bernoulli numbers, de-
noted by B,,, form a sequence of rational numbers. These numbers were first studied
by Jacques Bernoulli in the context of computing summations of the form Sy (n) =
ZZ;}) k™ for different integer values m. It holds that these quantities are polynomials
of the variable n with degree m + 1. Hence, we can write them in the form

Sm(n) = —— Z ck  Bgn™ik, (4.8)

The numbers By are called the Bernoulli numbers. These numbers may also be defined
by means of a generator function as

Z Bk— . (4.9)

Generally, these numbers may be extended to polynomials. The well-known Bernoulli
polynomials are obtained from the following relation:

zeX? > Bir(x) i
e =kZO X (4.10)

It yields a sequence of polynomials of degree k in x. For more details, refer to [67].
These are applied in numerous fields. We recall here one application that will be used
later. It consists of the well-known Euler—-Maclaurin summation rule for functions.
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Proposition 81. Let f be G2 function on [p, ql, p, q € Z and k € N. It holds that

—p+1 j=1

q
Jf(x)dx + Rp ’r
p
k .
where R}, . is the rest

q
1
RS0 =~ jf“k (0Bak(x - [x])dx

where B,y(.) is the Bernoulli polynomial of degree 2k.

Proof ofProposition 80. By applying Euler—Maclaurin summation to the function
f) =7 +x)z on the interval [0, n], we get

1+(1+n)*?

_ Z £ = jf(x)dx + Z o (P - D) 4 By

Letting n tend to +co, we will have

+00
1 ) by Bop(t)

— 1+ 8)7%dt- @ J o/

2+J(+) Zzllf © (2)'f ot
where

. —2(~z=1)-+(~z-k+1) (-1 W2z 1) (z+k-1)
000 T N
So for Re(z) > 1,
b2
@=5+77 Z(zl e 2=
meromorphlc holomorphic function
with
+00
z--(z+2p-1)
() = - J’ WBZp(t)dt.
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Now, the function z %sz(t) is holomorphic and we have for all § > 0 and

allz;Re(z) >1-2p+ 4,

z--(z+2p-1) |boplz---(z+2p-1)
————————By,(t)| <
(1 + t)7+2p Zp( ) 1+ t)1+6
So, I, is holomorphic on Re(z) > 1 - 2p. O

Proposition 82. The function { can be expressed in the integral form as follows.

((Z)=Lj1

Chw=t 1 TO =1
@

1-u = % mdt, Re(Z) >1,
0 0

where T is the Euler function.

Proof. We have

CICED) 2. > foe (B
nz nz 0

By setting u = nt, we obtain

+00 1 +00

J e (£>Z_ du _ J’ e gt
n n

0 0

Hence, using the monotone convergence theorem, we obtain

+00 +00

(@I =) j e M lde = j el :

+00
-t de = J
_e_
nzl 5 0 0

Proposition 83. The function ( satisfies the following quasi-induction rule:

¢ = 271 sin (%)m “x0){(1-x); V¥xeC\0,1}.

Proof. Let € be such that O < € < mand n € IN. Consider the path C} represented in
Figure 4.2 and the function
(_Z)s—l

fs(2) = ez _1
with s being fixed. So, applying the residue theorem and letting R — +00, € — 0, and
next n — +oo, we get

2in(2m)* 11 - 5)2 sin (%) = I'(s){(s)2isin(s7) .
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Next, using Proposition 63, we get

Qmsta - s)231n( ) ((s)l_(1 5

Or equivalently
Us) = 257 1sm( )((1-5 r1-s). 0

T 2inm

—+2imn

—+ inm

—+ =2im

-R Fig. 4.2: The path C7.

Finally, Figure 4.3 graphically illustrates the { function.

4.2.5 Hypergeometric function

The origin of hypergeometric functions goes back to the early 19th century, when
Gauss studied the second-order ordinary differential equation

x(1-x)y" +[c-(a+b+1)x]y' —aby =0 (4.11)

with some constants a, b, and c in R. Next, by developing a solution of (4.11) on a
series of form ) , a,x*, we obtain for ¢, a — b, and ¢ — a — b not integers, a general
solution given by

y=F(a,b,c,x)+Bx*“Fla-c+1,b-c+1,2-¢,x) (4.12)

where F is the series

I'(c) ZF(a+n)F(b+n)x“

Fa, b, ¢,) = 5orm Tc+n)  nl

>
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-10 -5 5 10

_1_

-2 -

Fig. 4.3: General shape of the zeta function for (—10) to +10.

which is often denoted by , F1 (a, b, c, x), converges uniformly inside the unit disk and
is known as the hypergeometric function.

When a, b, and c are integers, the hypergeometric function can be reduced to a
transcendental function such as

2F1(1,1;2;%) = —x ' In(1 - x) .

Theorem 84. F is differentiable with respect to x and

oF

—(a,b,c,x):QF(a+1,b+1,c+1,x).
0x c

Proof. Write
F(a9 by Cy X) = z an(a, by C)Xn ’
n=0

where
_ I(c) Ila+n)I(b+n)

"T I(a)I(b) [(c+n)I(n+1) "
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Inside its convergence domain, we have

oF &
P Z(n + Dt x™ .
X n=0

Observe next that

a(@+1)---(a+n)bb+1)---(b +n)
(n+ Dapsa(a, b, c) = nlc(c+1)---(c+n)

= %an(a+1,b+1,c+1).
Hence,
OF ab & ab
—=—) ap(a+1,b+1,c+1)x"= —F(a+1,b+1,c+1,%).
ox ¢ & c
Theorem 85. For O < Reb < Rec, Rea < Rec — Re b, and |x| < 1, it holds that

I'(b)I'(c - b)

1
. _ b-1¢1 _ pCc-b-17q _ -a
T F(a, b; c; x) = E!t 1-1 (1-tx)"“dt.

Proof. Let, for |x| < 1,
1
I= J th 11 - b1 - )%t .
0

It is straightforward that I is a convergent integral. Next, we have

v QEa(-a-1)--(-a-n+1) "
1-tx) 4= n;) — (-tx)
_ i": (a)(a +1) n' (a+n- D(tx)”

: 1

I'a+n) , ,
T@Mn+1)

n
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Hence,
_ \ F(a+n) b+n-1 c-b-1
I= Z < [(a@)['(n + 1) Jt (1-1) dt
S I(a+n) F(b+n)F(c—b)
F(a)F(n+1) I'(c +n)
Z
_ I(c-b)I'(b) & Z I'(b+n)I(c-b) o
- I'(a) ~ I'(c + n)[(n + 1)I'(b)
_I'(c-b)I'(b) .
= —T@ F(a, b; c; x) . O
Theorem 86.
F(a,b,c,1) = I'(c)I'(c-—a-Db)

I'(c-a)(c-b) "

Proof. Taking x = 1 in the integral expression of the hypergeometric function in The-
orem 85, one obtains

1
F(a,b;c;1) = j th=1(1 - e b-1ge =
0

I'(b)I'(c-b)
I'(c)

I'(b)I[(c-a-b)
I'(c-a)

Therefore,
I'(c)I'(c-a-Db)

F(a,b,c,1) = Tc-a)(c-b)"

Proposition 87. We have

(1) F(n) 1) 1)X) = (1 _X)_n'

2) xF(1,1,2,x) =-log(1 - x).

() limgeoo F(1, 5,1, %) = e*.

(4) limg_o xF(a, B, 3, %) = sinx.
(5) limp_m xF(a, B, 3, %) = COS X.
(6) XF(Z, 1,3,x%) = arcsinx.

@ xF(z, , 2,—x2) = arccos X.

Proof. (1) Denote y(x) = (1 — x)™". It is straightforward that y is a solution of (4.11) for
a=n,and b = c = 1, and with y(0) = 1. So, (4.12) says that

y(x)=F(n,1,1,x) + Bx* 'Fn-1+1,1-1+1,2-1,x) = CF(n, 1, 1, x)
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with B and thus C being constants. Observing next that F(n, 1,1,0) = 1,wegetC =1
or equivalently B = 0.

(2) Again the function y(x) = -x~1log(1 - x) is a solution of (4.11) fora = b = 1, and
¢ = 2. Hence, it is of the form

y(x) = F(1,1, 2,x) + Bx'"2F(0, 0,0, x) ,

or equivalently,
—log(1 - x) = xF(1,1, 2, x) + Be*,

which by setting x = 0 gives B = 0.
(3) Recall firstly that

{) rl) J{ra+nrB+n) x"

F 1, ,1, = ’
( g B) TWIP & T(1+n)  pnl

which means that
v (B +n)xt

X
F (1, 1, _) _ .
BL5)= 2 B
So, let K € N be fixed such that 2|x| < K and denote

_I(B+n)x"

un(f) = BT(B) nl .

It is straightforward that for § > K, we have
I'(K + n) |x|"
[un(B) < v = lun(K)| = T
Next, observe that
: Vsl [x]
nglzloo Vn - f <1.

Hence, the D’Alembert rule affirms that the series F(1, 8, 1, %) converges uniformly in
B in the interval [K, +oo[. Observing now that

lim un(B) =1,
B—+00

we get
X D xn
lim F<1, ,1,_>= Lo X
—+00 B B an 1
(4) Recall that
3 —x? I3) & I(a+n)I(p+n) (-1)"x"
Fla.p. 2, 2= i .
2" 4ap I(aIrp) = I +n) 4ngnprn]
Denote

I'(a + n) x"

on(®) = 25T m
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We get
(_ 1)nX2n

- @on(f)—2
ﬁz 4ap za"ag”ﬁr@ n) 4mn!

Using similar arguments as for (3) above and the properties of Euler’s I function, we

get
(=1)"x2n sinx
li F .
afoico <“ﬁ2 4aﬁ> Z(2n+1 X
(5) Follows by quite the same techniques as the previous assertion.
(6) Observe that

F(l 13 XZ)_ 1 EF(%M);{Z"
27272 ard)y s i+n o0t

Next, using the well-known relation I'(x + 1) = xI'(x), for x > 0, we obtain

11 S 2n)! i
(—,—,2,x2>= z (2n) Xz,,:arcsmx.
2°2°2 = 2n+1(2n + 1)(n!)2 X
(7) Follows by the same arguments as assertion (6). O

Definition 88. The hypergeometric function may be generalized for a =
(ai,...,ap)and b = (by,...,by), p,q € Nby

qu(al,...,ap;bl,...,bq,x):Zanx",
where (n+a)(n+a) - (n+ay) 1
B Ay (M+a))(n+ax)---(n+ap
= e & B & B s
or differently by

. _ (ay)n(ax)n - (ap)n X_n
qu(ala-.-,ap,bls-- bq, ) Z (bl)k(bz)n“.(bq)n n! s

where (a), is the increasing factorial or the Pochhammer symbol given by

_(a+n-1!' T(a+n) 5
(@)n = @D - @ =ala+1)a+2)---(a+n-1).

4.2.6 Legendre function

Legendre functions are fundamental solutions of the Laplace equation on the sphere.
There are two classes of solutions that are related to the parameters A and u, which will



78 —— 4 Review of special functions

be explained later. In the following, we denote the first kind by P, and the second kind
by Qj. The associated Legendre functions corresponding to P, and Q; are denoted by
PK and Q, respectively. These are respective generalizations of Legendre polynomials
Pe(x) and associated Legendre polynomials P} (x), to noninteger values of £ and m.

Definition 89. The Legendre functions are solutions of the general Legendre equa-

tion
2

1-x2)y" —2xy’' + [AA +1) -
(1-x%y xy+[(+) T2

Js-o

where A and y are generally complex numbers called, respectively, the degree and
the order of the associated Legendre function.

The case of Legendre functions corresponding to 4 = 0 and A € IN reduces to orthogo-
nal Legendre polynomials.

Proposition 90.
(1) For pu = 0, the following integral form is a Legendre function:

1 I 2 -1)*

Fi(z) = — W s
C

for |z — 1| < 2 where C is a circle surrounding the points 1 and z and not —1.
(2) ForA e Cand |x| > 1, x € R, we get

n
1 A
Falx) = 5 J (x+ Vx2 - 1c059) do

1
1 S A dt
:;6"()(-'- X2—1(2t—1)) m.

Proof. (1) Applying the derivatives of F;, we get

(1-z%)F}(2) - 2zF)(2) + AA + 1)FA(2)

_/1+1J (> - 1!

2
i | oo At" =2A+ 1)zt + A + 2)dt

A+l d (-1t

= - t=
2mi Jdt 2A(t — 7)M+2
C
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So, F, satisfies the Legendre equation.
(2) Consider for the integral form the circle C centered at x with radius r = Vx2 - 1.
We first obtain

t2-1=Vx2-1e%2(x + Vx2 - 1cos®), 0 ¢ [-m, 7] .

Hence,
(2 - 1) VIZT e”wZA(x +Vx2 - 1cos 6)" " 0
22t — 21 dt = . oAt VX2~ 1edo .
2 «/ A+1)6
As a result,

n
A
Fa(x) = % j (x+ Vx2 - 1c036) deé.
-

Next, setting ¢ = 1+<56 we obtain
1] rdt
FA(x)z—j(x+ V12t -1)) e O
7t t(1-t)
0

Proposition 91. The following are Legendre functions:
—  The first-kind function Pﬁ defined for |1 — z| < 2 by

1 1+2z742 1-z

P = 2 (L2 p (e v 1)
A(Z) F(l—}l) 1-2z 201 + 2 2

where I is Euler’s Gamma function.
—  The second-kind function Qf{ (2) defined for |z| > 1 by

. (22 = 1)H2 A+p+1 A+p+2 31
QA (Z) C A+)'H'1 2F1 2 ) 2 A z _2 )
where C" %el’“, and ,F is the hypergeometric function.

Proof. It suffices to show that the functions

F(z) =

1 [1+z]"/2

1-z
F()l)l+11 ; ), 1-2z|<2
a-p 2Fy 5 11—z

and for |z| > 1,

Fiz) = e} &L

1)H/2 A+pu+1 A+p+2 3.1
ZA+p+l 241 2

, sA+
2 2 2 z2
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are solutions of the general Legendre Definition 89. We will develop the first part. The
second follows by similar techniques. So, for simplicity denote

1 1-z
H(z) = 1"(1——;1)21:1 <—A,A+1,1—H,T> ,

1+zH/?
1- 1- ]

and Z = % Standard calculus yields that

Az) = ;zz B(z) = [

(1-2>)H"(2) + 2(u)H' () + AA + 1)H(z) = 0, (4.13)

F'(z) = pA(2)B(2)H(z) + B(2)H'(2)
and
F"(z) = u(u + 22)A%(2)B(2)H(2) + 2uA(z)B(z)H' (2) + B(z)H" (z) . O
Now, recall the Legendre equation
2

U
)

(1—zz)y"—22y'+[/\(/\+1)—1 ]y:O.

Replacing y by F and taking into account equation (4.13), we show that F is a Legendre
function.

Proposition 92. The Legendre function F, satisfies the following three-level induc-
tion rule:
A+ 1)Fp1(2) = QA+ 1)zF)(2) + AFj_1(2) = 0.

Proof. Let C be the contour as above. We have

1 j (2 -1

Fi(z) = .
1(2) 2M+1 7 (t—Z)Ml

c
Classical arguments show that F, is holomorphic and

(A+1)J (t2 - 1) dt

Fi(z) = .
/1( ) 2A+1 i J (t — z)M2

On the other hand,
d@-D" 20+ DK - DY A+ (2 - D!

dt (t _ Z)A+1 (t _ Z)A+1 (t _ Z)A+2

~ 2[-([-2 _ 1)/\ (t2 _ 1)A+1
0_£< (t — 21 - (t — z)A+2 )dt

Hence,
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Consequently,

1 J’(tz—l)}l_ 1 J’t(tz—l)"

A ) (e - 2 - At ) (£ -2t

1 J z(t2 - 1)

T Mg ) (t — M1
=Fi1 -2zF(2) . (4.14)
Differentiating with respect to z, we obtain
Fi,,(2) - zF}(2) = A+ DF(2) .

Thus,
2 _
d [t(t 1) ] dt

d
[ 1)’l 2AE2(t2 - DM A - 1)"]
= - dt
(t- Z)’l (-2 (t - z)M1

(t-2)A (t -zt

l
l
_ J (2 = D+ 2202 - 1) + 1](¢2 - DM B Al(t - 2) + 2](£2 - 1)
C
K

_1\A 2 _ 1\A-1 2 1\
[(A 1 1) (t?-1) (t2-1) ] ]

s A T TR T

Finally using (4.14), we deduce that

= (A + D[Fr1(2) — 2zFp(2)] + 2AF)_1(2) — AzF)(2)
= A+ 1)Fp1(2) — QA + 1)zFp(2) + 2AF_1(2) . O

4.2.7 Bessel function

Bessel functions form an important class of special functions and are applied almost
everywhere in mathematical physics. They are also known as cylindrical functions, or
cylindrical harmonics, because they are part of the solutions of the Laplace equation
in cylindrical coordinates met in heat propagation along a cylinder. In pure mathe-
matics, Bessel functions can be introduced in three ways: as solutions of second-order
differential equations, through a recurrent procedure as solutions of a three-level re-
current functional equation, and via the Rodrigues derivation formula.
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Definition 93. The Bessel equation is a linear differential equation of second order
written in the form
n, 1, VZ
y o+ ;y +|1-—=]y=0,

where v is a positive constant.

Remark 94.

(1) Any solution of Bessel’s equation is called the Bessel function.

(2) Given two linearly independent solutions y; and y, of Bessel’s differential
equation, the general solution is expressed as a linear combination

y=Ciy1+Caya,

where C; and C, are two constants.

Theorem and Definition 95. Bessel’s differential equation has a solution of the form

(-1)k 2k
1w =(5) Zk|r(v+k+1)( ). (4.15)

The function J, is called the Bessel function of the first kind of the order v.

Proof of the Theorem. We will search a nontrivial solution of the form
y=xY aix'=Y ax'*?
i=0 i=0
where p is a real parameter. By replacing y and its derivatives in Definition 93, we get
Z ai(i +p)(i+p - 1)x"*P + z ai(i + p)x™*P + (x? =v?) z aix'*? =0.
i>0 i>0 i>0
Or equivalently,
z [(i +p)i+p-1)+(i+p)- vz] aix'*P + z aix*P2 =0,
i>0 i>0
which means that
Y [+p)? -v?]ax™? + ) aj X =0.
i=0 j=2
Therefore,
ao(p® -v?) = ai((p + 1)* -v*) = 0
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and
ai(i+v)? —=v¥) +a;_>=0, Vi=2.

Forp =v,wegeta; =0and

i(i +2v)a; = -aj—, Vix=2.

Thus, a
i-2 .
i=- , Vix2.

vy

Hence, the coefficients a,y,1, and
Ao
aze = (-1)k , Vk=0.
2= (=1) 22kl v+ k(v +k-1)---(v+ 1)
Taking ag = m, and observing that
I'v+k+1)=Ww+k(v+k-1)---(v+1)I(v+1),
we get
ax = (-1)k 1 , k=>0.

22kVEIT(v + k+ 1)
As a result, the solution of the equation will be

( ) Zk‘l"(v+k+1)(x)2k' -

Remark 96.
(1) For p = —v, the solution of Bessel’s equation in Definition 93 is called Bessel’s
function of the first kind with the order —v and is denoted by J_, (x) with

(DK 2%
)= (5)" D 1v+1)() :

(2) For v, noninteger J, and J_, are linearly independent and therefore the general
solution of the Bessel equation is of the form

y(x) = C1Jy(x¥) + C2J (%) .

(3) The same solution can be obtained by choosing p + 1 = v in the proof of Theo-
rem 95.

Proposition 97. Forv = n € N, we have

]n = (_1)n]—n .
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Proof. We have

2k-n
J-n0 = ) Fra—nsD k'T(k—n+ 1 (X)

k=0
( 1)m+n X \2m+n
= Y G miren s D (2)

B n (_1) X \2m+n
=0 Y e (2)

m>0

= (-1D)"a(x) . O

Example 4.1. Forv =0,
CDFxy2k g (CDF xy 2k
Jox) = Z k'F(k+1)( ) -kZO (kN2 (2) ’
which is an even function. Else, J(0) = 1. For v = 1, we obtain

(- 1) 2k+1 (- 1)k 2k+1
J100 = Zkur(k+z)( ) _zk'(k+1)'( )

which is an odd function and satisfies J; (0) =

Definition 98. The Bessel function of the second kind of the order a denoted usu-
ally by Y, and is given by

Ya(x) = sin(7a) ) fora ¢z
lim,_, 4 % o 512 7.

Proposition 99. Fora € Z, Y, is a solution of Bessel’s differential equation, singular
at 0 and satisfying precisely limy_,o Yo(x) =

Proof. Fora ¢ Z, Y, is alinear combination of J, and J_,. Hence it is a solution of the
Bessel’s differential equation. We now prove this for @ € Z. It holds for all v ¢ Z and
all x that

X2YV () + XY, (%) + (x* = v2) Y, (x) =
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Letting v — a € Z, we obtain
X2V (%) + xYh(X) + (X2 — a?) Ya(x) =

Next, we show that lim,__,q Y,(x) = +c0. Indeed, for a ¢ Z, Y, is alinear combination
of Jo and J_,. So it is a solution of Bessel’s differential equation. Next, substituting Y,
for v ¢ Z in the differential equation and letting v tend to a we get a solution Y, for
a € Z. Y, is singular at 0 because of the powers (5)* and (5)~%. We now prove the
remaining part. Recall that

cos(mv)]y(x) = J_v(x)
sin(rmtv)

Yq(x) = lim

We have for v = a, sin(rv) = 0, cos(nv) = (-1)%, (-1)*4(x) = J_a(x). By applying
L’Hopital’s rule, we obtain

2 [cos(mv)]y(x) = J—y(x)]

Y (x) = lim

v—a %sin(rrv)

2 x 1% Ia-k) /x\2k«

= e[y ec]-23 T (3)
()2"“ atk 4 koq

__Zk‘l"(a+k+1) ZE-FMZZIE ’

where C is Euler’s constant. For a = 0, we obtain

Yo(x) = %]O(X) [lnz + C] - Z (k‘)2 Z ( )( )Zk ' ’

Thus limy_,¢ Yo(x) = +0o0. O

Definition 100. The Bessel generating function of the first kind is given by

uGo )= Y Jalot".

Lemma 101. For all x € R and t € R*, we have

u(x, t) = ex(t-1) |
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Proof. We have

| |
k>0 k m=0 m:
mtk—m k+m
= (-1) (5)
1!
k>0 m>0 m!k!

Setting k = m + n, we get

Yl

x(r 1 m X \2m+n
et - 2 z 1) m'(n+m)'( )

5 e @

- Zoomz>0(_ )’"%t"

= _Z Jn(x)t"

a1, .

Theorem 102. The Bessel function ], satisfies

2
Jne1 (%) = 7”1n(x) ~Jna(X), VneN.

Proof. Differentiating the generating function u with respect to the variable ¢t we ob-

tain N
at ( Z Jn(0t ) Y ot = Z (n+ D (O™

n=-o0o
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On the other hand, we have

a a x(¢_1 X X

a_l; = E(ez(t z)) = %e t_ zx?ezz
_ ge%(r—%)(l_tiz)
Suco(1- 1)

X +00 n 1
-3 X It (1-5)
~ { +00 n_{ +00 o2
=3 n;m]n(x)l‘ > H:Zm]n(x)t

X +00 X +00
=5 2 a0t =2 Y Jan(ot".
n=-0o n=-0o
By identification, we obtain

nJp(x) = %]n—l(x) + glnﬂ(x), Yn=0.

Therefore on
Jne1(x) = 7]n(x) —Jn-1(x), Vn=z=0. (|

Theorem 103. The Bessel function ], is differentiable and its derivative satisfies

1400 = 3 Una(6) = Jasa 0] -

Proof. Differentiating the generating function u with respect to x, we obtain

g—z = %(l’— %)e%(t—%) = % [ Z ]n(X)tn+1 _ Z ]n(x)tn—l .

On the other hand,
— = J oot", vn>1.
ox ="

Consequently

1
Jn(0 = 5 Un-100 = Jnsa (0] 0

Remark 104. In the particular case n = 0, we obtain

Jo(x) = ~J1(x) .
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Theorem 105. The first-kind Bessel function can be expressed by the integral form

2n
Ja(x) = % j cos(xsin @ — np)de . (4.16)
0
In particular, for n = 0, we have
5 5
Jo(x) = p j cos(x sin @)de .
0

Proof. Recall that
+00
es(t-1) = Y Ttk .
k=—00

Setting t = el?, we get

+00
e™sin? = N (e, (4.17)
k=—00

which is the Fourier series of the 277-periodic function f(¢) = eixsin¢ Therefore,

2n 2n
_ i ixsing ,-ing _ i j : _
Jn(x) = 5 J e e "dep = 5 J cos (xsin@ —np)de .

In particular, for n = 0, we have

2 3
Jo(x) = L J cos (xsin @) do = 2 Jcos (xsingp)de . O
2n 4
0 0

Proposition 106. Let A and u be two different roots of the Bessel function J,(x). The
Bessel functions ], (x) satisfy the following orthogonality property:

1

IXIV(/\X)IV(MX)dx =0.
0

Proof. Denote
ya)=Jy(Ax)  and  yyu(x) = Jy(px) .
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Then, y,, and y,,, are solutions of the following Bessel-type differential equations:

2
(x)’,',,;l)'(x) + (/12)( - V;) yya(x) =0 (4.18)
2
Oy, () + (HZX - V;) Yru(x)=0. (4.19)

Multiplying the first one by y,,,, and the second by y, 1 and integrating on (0, 1), we
get

1
(0 =) [ X1, Guidx 0.
0

Therefore, since A + u, we get
1
jvamx)fv (u0dx =0. 0
0

Figures 4.4 and 4.5 illustrate the graphs of the first and second kind Bessel functions.

4.2.8 Hankel function

Hankel functions are applied as physical solutions for incoming or outgoing waves in
cylindrical geometry. These are linearly independent solutions of the complex-param-
eter Bessel equation
,d%y dy 22
XS x (¢ —a’)y =0, (4.20)

where a is an arbitrary complex number.

J 0 (x)

B - - -~

0.8

0.6

0.4+ /

Jp ()

Fig. 4.4: Graphs of the first three first-kind Bessel functions.
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0.25

0.00

-0.25

-0.50

Y,

-0.75

-1.00

-1.25

-1.50

0 5 10 15 20
X

Fig. 4.5: Graphs of the first three second-kind Bessel functions.

Definition 107. Hankel functions of the first and second kind are defined, respec-
tively, by
Hy(X) = Jo(X) +iY(0) and  Hg(x) = Ja(x) = iYa(x) ,

where J, and Y, are the Bessel functions of the first and second kind, respectively.

Proposition 108. The following assertions are true.
(1) Hix) = Joa(0)—e" o (x)

isin(am)

24y _ Jeal0—€ ()
(@ Hz(0) = =Z g

(3) Hl(x) = e™H}(x).
(4) H?,(x) = e H2(x).

Proof. (1) Recall that the second-kind Bessel function is

cos(mtv)], (x) = J_,(x)
sin(rmrv)

Ya(x) =



Therefore,

HY(x) = Ja(x) +1

(2) Similarly to (1), we have

H2(x) = Jo(x) — 1

(3) It follows from (1) that

4.2 Classical special functions = 91

.cos(rtv)]y(x) = J_y(x)

sin(rmtv)

_ Ja()[sin(mv) + i cos(nv)] - iJ_y(x)
- sin(mrv)
_ Ja()lisin(mv) - cos(nv)] + ] (x)
B i sin(rv)
_Jv(X) = Ja(x)[cos(mv) — isin(mv)]
- isin(mv)
_J-al0) - e a(x)

isin(arm)

cos(rmv)]y (x) = ]y (x)

sin(rmv)
_ JaX)[sin(7tv) - icos(nv)] +iJ_y(x)
- sin(rtv)
_JaX)[=isin(nv) - cos(rv)] + ]y (x)
- isin(mv)
_Jv(x) = Ja(X)[cos(mtv) + isin(nv)]
- —isin(mv)
J_a(x) — €M7 4(x)

—isin(am)

H}a(X) _ Ja(X) _ .ezan]_a(x)

—isin(am)
i@ (%) = J_a(x)
=-e —

isin(arm)
e —a(X) — €79 (x)
=e !

isin(am)

= e *"HL(x).

(4) Similarly to (3), we have

Ja(X) — €797 _4(x)
isin(arm)
—ian €T a(X) = J_a(%)
isin(arm)
e —a(0) — €94 (%)
=e - . ./~
—isin(am)
= e 1TH2(x) , O

H?,(x) =

=e
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Proposition 109. The first-kind Hankel function H}, n € Z can be expressed in the
integral form as

1 e%(t_%)
0

Proof. It follows from Proposition 97 and Definition 93 that
HY2) = =40
n u_[ n M

On the other hand, from Theorem 105, equation (4.16), we have that

2

]{l(x) = —% J sin(x sin ¢ — ng) sin pdep .
0

Now, standard computations as in Theorem 105 yield that

tn+1

z(t_T
j & -1,
0

Hence,
1
e3(t=1)

1
1 —
Hn(Z)—EJ’tant. O

Theorem 110. Hankel functions Hi, are differentiable and we have

d . 1., . . .
SH@ =5 (Hp 1 () -Hpy @), i=1,2,

and 20
—H’(z) H _(2)+H, (2, i=1,2.

Proof. We have
1 1
Hiz) = —J\(t) = —[Lum——hmm
in 2

Hence,

L Hyr (@) - Hon2)]

d . 1
Em®=§[11U 544=2
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We now prove the next part. To do this, we recall the explicit form of Bessel function J,
from (4.15), which states that

(- 1)k 2k
],,(x):( ) Zk'l"(v+k+1)(x) )

Now, fori = 1, we get

U-as1 —J-a-1) + €7 zan(]a 1 +]tx+1)
—isinam

;—1(2) + H;+1(Z) =

Next, it suffices to evaluate the quantities in the numerator. We evaluate one quantity
and leave The others for readers. Using the above expression, we get

( 1)k 2k-1
]a—1+]a+1:( ) Zklr(a+k)( )

(-1)k 2k-1
( ) Zk'F(a+k+2)( )

a-1
={;(—-:1)1<5) —?]a(x)-

Using the same techniques and next substituting into the equality above, we get the
desired result. O

2.0

1.5 [{

Fig. 4.6: Hankel function.
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4.2.9 Mathieu function

Mathieu functions were originally introduced as solutions of the Mathieu differential

equation
2

Ccil_t;( +@(Ox=0; or W) = wg[1 - §ocos(t)] . 4.22)

It is a special case of the general Hill equation given by

Ly

Tz Wy =0,

where f is a periodic function.

The Mathieu differential equation has in fact many variants. One variant may be
obtained by a scaling modification by setting y(t) = x(2t), which therefore satisfies
the equation

d%y
¥ +[a-2qcos(2t)]y =0, (4.23)
where a and g are constant coefficients. By setting u = it in (4.23), we get the Mathieu

modified differential equation
4y
du?

By setting x = cos(t), we obtain a second Mathieu modified differential equation

—[a-2qcoshQQu)]y =0. (4.24)

2 4%

1-0 an

d
2 L@+291 -2y =0.
dt
As in the theory of the Schrédinger equation, we can guess stationary solutions of the
form
F(a, q, x) = e*P(a, q, x) , (4.25)

where u is a complex number called the Mathieu exponent and P is a periodic complex
valued function. The following graph is illustrated with a = 1, g = %, anduy =1+
0.0995i.

Definition 111. For fixed a, g we define
— The Mathieu cosine C(a, g, x) by

F(a, q, X) + F(a, q, _X)

C(a’ q, X) = 2F(a, q, O)

— The Mathieu sine S(a, g, x) by

F(a’ q, X) - F(a’ q, _X)
S(a, q, X) = 2F’(a,q, 0) .
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0.5+

F(a, q,x)
o
1

-0.5 1

-1.0

-1.5 1

Fig. 4.7: Mathieu function: Real part and imaginary part,a =y =1and g =0.2.

Properties 112. The following assertions hold:

(1) C(a,q,0) =1and S(a, g, 0) = 0.

@ C'(a,q,0)=0andS'(a, g,0) = 1.

(3) C(a, q,-x) = C(a, q, x): The Mathieu cosine is an even function.
(4) S(a, q,-x) =-S(a, q, x): The Mathieu sine is an odd function.
(5) C(a, 0, x) = cos(+/ax) and S(a, 0, x) = %\/;")

Proof. (1) We have
_ F(a, q,0) + F(a, g,0)
C(a,q,0) = 2F(a, 2,0)

_ 2F(a, q,0)

~ 2F(a, q,0)

=1.

Similarly, for the sine function, we have

F(a, q’ 0) - F(a’ q; 0)
2F'(a, q,0)

~ 0

~ 2F'(a, q, 0)

=0.

S(a’ q, O) =



96 —— 4 Review of special functions

(2) We have

F,(a, CI’ 0) - F,(a, CI’ 0)
2F(a, g, 0)

_ 0

- 2F(a, q,0)

= 0’

C’(a’ q, O) =

and similarly,

F'(a,q,0) + F'(a, q,0
§'(a,4,0) = : gF’()a,q,(O) =
2F'(a, q,0)

" 2F'(a, 4,0)

1.

(3) We have

_ F(a9 q, _X) + F(a’ q, X)
Cla, g, -x) = 2F(a,4,0)

_ F(a9 q, X) +F(a7 q, _X)
- 2F(a, q,0)

= C(a’ q, X) .

Then, the Mathieu cosine is an even function.
(4) Similarly,

F(a, q,-x) - F(a, q, x)
2F'(a, q, 0)

_ F(a,q,x)-F(a, g, —x)

T 2F'(a, g, 0)

=-S(a,q,x).

S(a, q,—x) =

Then, the Mathieu sine is an odd function.
(5) Follows from the fact that S(a, 0, .) and C(a, 0, .) are solutions of the Mathieu equa-
tion 5

dvy

m +ay = 0

and the assertions (1) and (2). O
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Remark 113.

The

4.2.1

The general solution of the Mathieu equation (for fixed a and g) is a linear com-
bination of the Mathieu cosine and sine.

In general, the Mathieu cosine and sine are not periodic. However, for small
values of g we have

sin(~v/ax)

C(a, q,x) ~cos(+/ax) and S(a,q,x) ~ NG

Mathieu cosine is illustrated graphically in Figure 4.8.

0 Airy function

The Airy function was introduced by the astronomer George Biddell Airy in optical

calcu
the A

lations. These are solutions of the second-order differential equation known as

iry differential equation
"

y'—-xy=0. (4.26)

One idea to resolve such an equation is to use the well-known Fourier Transform,
which leads formally to a set of solutions called Airy functions based on the following

0.5 +

-0.5

Fig. 4.

8: Mathieu cosine: C(0.3;0.1;x) (Grey).
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integral representation:

+00 3
Ax) = % j cos<§x+ ?>d¢’,

0

which is in fact a divergent integral. In fact, the integral is a semi-convergent integral.
Indeed, for 0 < a < L < +00, an integration by parts yields that

L o3 L ) 3 £ sin(§x+ 53—3) t
Jros (o0 5 a5 =2 (50 5 s+ | = |

As the integral j;o sin(éx + i—s)ﬁdé’ is absolutely convergent, the desired result
follows.

Definition 114. For n > 0, we define the Airy function Ai by means of the following
integral:
1 ity 18
Ai(x) = — ixels g |
i(x) o J e'“*e'3d¢

R+in

Furthermore, applying classical techniques of parameter-depending integrals, we can
prove that

(1) Aiis continuous on R.

(2) limy_ .o Ai(x) = 0.

Indeed, note that Ai(x) may be written in the form
A = = J eix(Erin i €51
2
R

Next, as for n > 0, we get

. ,
Re(ix(§+in)+i(€+Tm)> = —xn-&n+ %

the last integral is then absolutely convergent. Furthermore, it is uniformly convergent
. . L (£+in)3

on any compact set in R. So, since the function x - eX(¢*inel 5% is continuous for

all n and ¢, the function Ai is then continuous on R. In fact, we may prove that Ai is

©* and that for all k € N,

@i’
d

AP (x) = % j(i({ + in))k e+l =5
R
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We prove further that Ai is independent of the parameter 7. Indeed,

dAi d 1 (£+"1) d (£+1r1)
- x(§+in) ol 25— ) _ j { X(E+in) pi } _
dn dn2n J’ ( d§ = dé e d¢=0,
R

as the function
é, — e f*’”l) 1(5*‘"1)

is in the Schwartz class.

Properties 115. The following properties of the Airy function Ai hold:

(1) The function Ai satisfies the Airy differential equation (4.26).

(2) Ai(j.) is a solution of the Airy differential equation (4.26), whenever j3 = 1.
(3) The function Ai is an entire function of x.

(4) Forallx e ]R Ai(x) € R.
(5) A;i(0) = Tr2 5 and A/ :(0) =

% (%)'

Proof. (1) As noted above, the Airy function Ai is twice differentiable and

. . 3
Ai"(x) = % j (i{)ze”“‘{el%d{

R+in
_ 4 ixsi( i£>
> J e az e's ) dé
R+in
_ 1 J .{e’xfe’Td{ xAi(x) .
21
R+in

(2) Let Ai(x) = Ai(jx). We have

A () = 2Ai" (jx) = j2(jxAi(x)) = P xAi(x) = xAi(x) .

. . . (&+in)3
(3) The function f; defined by f, (x, &) = e*¢*Mei“S™= is analytic as a function of x
for all . Furthermore, for all R > 0 and |x| < R, we have

fy(x, O < e Rne=Reens

The last function is integrable according to &. So, Ai is analytic.
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(4) For x € R we have

Ai(x)

Sl-

J’ omix(in) i 4 £
R

L[ ix(-gin i &
=— e Ve =5 d
od| ¢
R
_1 J'eix(min)ei% w.
2
R

Ai(x) .
(5) As Ai is independent of n > 0, and Ai(0) is real, we can write

. B i l-(:+3i)3
A1(O)—2ﬂRe<Je dé’) .

R

Denote I as the last integral and J = %I . Simple computations yield that

+00 .
I=2 j oS az,
0

which means that

Ai(0) = %Re( j e"@df) = %Re(l) .

0

Next, for R > 0 large enough consider the points O(zo = 0), A(z4 = R), B = (zg =
Rei%), C(z¢ =i+ 2zg),and D = (zp = i) and the contours yr composed of the juxtapo-
sition of the segment [0, A], the arc (AB) and the segment BO in the positive sense,

and 6 the parallelogram contour OBCDO countered also in the positive sense. So,
 (z+i)3

applying the residues theory on the function f(z) = ¢' 5 ~ and the contour yg, we get

7Ai(0) =Re< fim KR) ,

R—+00

where Ky is the integral given by

.3
Ky = J’ fz)dz = J e'sdz.
(B,0] (C,D]

.3
Now, applying again the residues theory with the function g(z) = e'5 on the parallel-
ogram contour OBCDO, we obtain

+00 +00

;I ;T ST 3
lim Kg = jg(te’E)elﬁdt=e13 j e 3dt.

R—+00
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Hence,
. V3T e NERE i -2/3 ,—x I(3)
ﬂAl(O):TJ’e3dt273 JX e dX=2.3—1/6,

0 0

which means that
Ai(0) = L%)
- 27316 "
Analogous techniques may be applied to obtain Ai’ (0). O
Now, we introduce the second-kind Airy function ([18]).
Definition 116. The second-kind Airy function is defined by
Bi(x) = e™/°Ai(jx) + e /0 Ai(j?x) , (4.27)

where j = ei27/3,

Proposition 117. The second-kind Airy function Biis a solution of the Airy differential
equation (4.26) and satisfies

o=

3

r(s)

Bi(0) = ——

(D)

Furthermore, Bi is real on the real axis R.

and B}(0) =

Proof. We have
Bi”(X) — jZeiﬂ/GAiH(jX) + j4e—iﬂ/6AiII(jZX)
= j2el™6jxAi(jx) + j* e~ /62X Ai(j2x)
= x(e™° Ai(jx) + e /0 Ai(j%x))
= xBi(x) .
Hence, Bi satisfies (4.26). Next,

F(%)
2m31/6 °

Bi(0) = e™°Ai(0) + e~ /¢ Ai(0) = V3Ai(0) = V3

Now, observing that
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Airy functions

1.2+ | Aix)
Bi(x)
1__
0.8+

Fig. 4.9: Airy function Ai and Bi.

3.0

254 |~ Bi
approximation

2.0

1.5+

1.0+

0.5+

0.0

Fig. 4.10: The Airy function Bi and its approximation.

we get

_r
T (3)

Bi(0) =

The same techniques yield Bi’(0). Finally, for x € R, we have

Bi(0) = e 0 Ai(ix) + O A x) = e /O Ai(j2x) + e™/SAi(jx) = Bi(x) . O
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Airy functions Ai and Bi are illustrated in Figure 4.9. Furthermore, Figure 4.10 illus-
trates the Airy function Bi and its approximation.

4.3 Hankel-Bessel transform

In this section, we focus on the most known transform associated with the special
functions developed previously. We will review the Hankel-Bessel transform of func-
tions. Readers are referred to [53] for more details. We denote the inner product in
L%(R*, dx) by

fig) = jf(x)§<x>dx
0

and the associated norm by ||.||,. Similarly, we denote the inner productin L2(R*, £d¢)
by

(o]

.8 = jﬂag(aeds

0
and the associated norm by |.[¢,>.

Definition 118. Let f € L>(R*, dx). The Bessel transform of f is defined by

BEE) = j FOOVRT, (x®)dx, VE> O,
(0]

where J, is the Bessel function of first kind and index v.

We immediately have the following characteristics:

Proposition 119.
(1) Forallf € L2(R*, dx), B(f) € L2(R*, &d¥).
(2) The Bessel transform B is invertible and its inverse is

+00

B1(g)(x) = Jg(Q\/YIV(Xf)fdi, Vg € LA(R*, £d9) .

0
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Proof. (1) Let f and g be in L2(R*, dx). We have
+00

(B, B(g))e = j B OB(g)(O)EdE

0

. j VRNTFOOSOTy (T (O Edxdyds

]R3
- [ vxvarosm) 2 809 gy
]RZ
= [ VR vRRog00 L dx
R,
=g .

So, taking g = f, we get
IBHle,2 = 1A

which means that B is an isometry.
(2) Denote B(f) the right-hand quantity. We will prove that B(B(f)) = f. Indeed,
+00
BER)E = | OOV )dx

0
+

j jﬂn)ﬁh(xn)nﬁh(xadndx
0 O

j fon™ n

0

=f(¢) . O

ad
n

Definition 120. The Hankel transform, also called Fourier—Bessel transform of the
order v, is defined by

TP = jf(x)fv(xaxdx; vf . (4.28)
0

Remark 121. Hankel transform H and Bessel one B are related via the equality

HAE) =B(NE) -



