Contents

1	Introduction — 1					
1.1	Rise and Development of Green Chemistry —— 1					
1.1.1	The Crisis of the Ecological Environment Calling for Green					
	Chemistry — 1					
1.1.2	Promotion of Green Chemistry by Propagation of Environment Protection					
	and Regulations —— 2					
1.1.3	The Development of Chemical Industry Declaring					
	Green Chemistry —— 3					
1.1.4	Sustainable Development Promoting the Green Chemistry — 3					
1.1.5 Green Chemistry and Technology is Becoming the Hotspot of						
	Governments and Academia —— 6					
1.2	The Contents and Characteristics of Green Chemistry — 7					
1.2.1	The Meaning of Green Chemistry — 7					
1.2.2	Research Contents of Green Chemistry — 9					
1.2.3	The Characteristics of Green Chemistry —— 9					
1.3 The Developments of Green Chemistry in Domestic						
	and at Abroad —— 10					
1.3.1	The Developments of Green Chemistry at Abroad —— 10					
1.3.2	Green Chemistry Research Receiving Much Attention in China —— 19					
1.4	Green Chemistry is the Only Way for the Sustainable					
	Development of Chemical Industry in China —— 20					
1.4.1	Industrial Revolution Originated from Green Chemistry —— 20					
1.4.2	Green Chemistry is the Preferential Mode for the Sustainable					
	Development of Chinese Chemical Industry — 24					
1.4.3	Corresponding Solutions —— 25					
	Questions — 29					
	References —— 29					
2	Basic principles of green chemistry —— 31					
2.1	Waste Prevention Instead of Remediation —— 32					
2.2	Atom Economy —— 33					
2.3	Less Hazardous Chemical Synthesis —— 34					
2.4	Designing Safer Chemicals — 35					
2.5	Safer Solvents and Auxiliaries — 35					
2.6	Design for Energy Efficiency — 36					
2.7	Use of Renewable Feedstocks — 37					
2.8	Reduce Derivatives —— 37					
2.9	Catalysis — 38					
2.10	Design for Degradation — 39					

2.11	Real-time Analysis for Pollution Prevention —— 39				
2.12	Inherently Safer Chemistry for Accident Prevention —— 40				
	References —— 40				
3	Green technologies in inorganic synthesis —— 41				
3.1	Hydrothermal Synthesis —— 41				
3.1.1	Introduction —— 41				
3.1.2	Principle —— 41				
3.1.3	Application Examples of Hydrothermal Synthesis —— 41				
3.2	Sol-gel Method —— 43				
3.2.1	Introduction —— 43				
3.2.2	Principle —— 43				
3.2.3	Application of Sol-gel Method —— 44				
3.3	Local Chemical Reaction Method —— 44				
3.3.1	Dehydration —— 45				
3.3.2	Intercalation —— 45				
3.3.3	Ion Exchange Reaction —— 46				
3.3.4	Isomorphous Substitution —— 47				
3.3.5	Decomposition —— 47				
3.3.6	Redox Reaction —— 47				
3.4	Low-temperature Solid-phase Reaction —— 48				
3.4.1	Introduction —— 48				
3.4.2	Mechanism of Solid-phase Reaction —— 48				
3.4.3	Applications of Low-temperature Solid-phase				
	Reaction —— 50				
3.5	Rheological Phase Reaction —— 51				
3.5.1	Introduction —— 51				
3.5.2	The Principle of Rheological Phase Reaction —— 52				
3.5.3	Applications of Rheological Phase Reaction ——52				
3.6	The Precursor Method —— 53				
3.6.1	Summary —— 53				
3.6.2	Application of Precursor Method —— 53				
3.7	Melting Method —— 54				
3.8	Chemical Vapor Deposition —— 54				
3.8.1	Introduction —— 54				
3.8.2	The Principle of CVD —— 55				
3.8.3	The Application of CVD Method —— 56				
3.9	Polymer Template Method —— 56				
3.9.1	Introduction —— 56				
3.9.2	Applications of the Template Method —— 57				
	Questions — 58				
	References — 58				

4	Green organic synthesis —— 60					
4.1	Efficient Chemical Catalytic Organic Synthesis — 60					
4.1.1	Organic Synthesis with Solid Acid Catalysts — 60					
4.1.2	Solid Base-catalyzed Organic Synthesis — 79					
4.1.3	Ionic Liquid Catalyst —— 83					
4.2	Biocatalysis in Organic Synthesis — 87					
4.2.1	Introduction — 87					
4.2.2	Basic Principle of Enzyme Catalysis —— 89					
4.2.3	Types of Biocatalysts —— 92					
4.2.4	Typical Process of Biocatalysts Utilization —— 93					
4.3	Asymmetric Catalytic Synthesis — 94					
4.3.1	Overview —— 94					
4.3.2	Principle and Process Analysis of Asymmetric Catalytic Synthesis —— 95					
4.3.3	Catalyst Systems in Asymmetric Catalytic Reactions —— 98					
4.4	Organic Synthesis in Fluorine Biphase System — 101					
4.4.1	Working Principle of Fluorine Two-Phase System — 101					
4.4.2	Applications of Fluorine Two-Phase System —— 101					
4.5	Organic Synthesis by Phase Transfer Catalysis — 102					
4.5.1	Overview —— 102					
4.5.2	Principle of PTC —— 103					
4.5.3	Applications of PTC — 103					
4.6	Combinatorial Chemistry Synthesis — 104					
4.6.1	Overview — 104					
4.6.2	Principles of Combination of Chemical Synthesis — 105					
4.6.3	Applications of Combinatorial Chemical Synthesis —— 106					
	Questions — 107					
	References —— 108					
5	Green synthesis chemistry for polymer materials —— 110					
5.1	Introduction —— 110					
5.2	Polymerization Technology Employing Water as Reaction Medium —— 111					
5.2.1	The Advantages and Disadvantages —— 111					
5.2.2	Compositions of Aqueous Polymerization System and Their					
	Function —— 113					
5.2.3	Principle of Aqueous Polymerization —— 116					
5.2.4	Application of Green Polymer Latex —— 120					
5.3	Polymerization Technology in Ionic Liquids —— 121					
5.3.1	Radical Polymerization — 122					
5.3.2	Ionic Polymerization —— 124					
5.3.3	Polycondensation and Addition Polymerization —— 125					
5.3.4	Coordination Polymerization —— 126					
5.3.5	Electrochemical Polymerization —— 126					

5.4	Polymerization Technology in SCFs —— 127					
5.4.1	Polymerization in Supercritical Carbon Dioxide —— 127					
5.4.2	Depolymerization of Polymer in Supercritical Water —— 128					
5.4.3	Supercritical Enzyme Catalytic Reaction —— 129					
5.5	Synthesis of Waterborne Polyurethane with Low Residual VOC —— 1					
5.5.1	Classifications of Waterborne Polyurethanes —— 131					
5.5.2	Raw Materials of Waterborne Polyurethane —— 133					
5.5.3	Preparation of Waterborne Polyurethane Resin —— 134					
5.5.4	Preparation of Anionic Waterborne Polyurethane Resin —— 135					
5.5.5	Preparation of Cationic Waterborne Polyurethane Resin — 137					
5.5.6	Performance of Waterborne Polyurethane — 137					
5.5.7	Applications of Waterborne Polyurethane —— 137					
5.6	Radiation Cross-linking Polymerization Technology —— 139					
5.6.1	The Basic Principles of Radiation Cross-linking and Pyrolysis —— 140					
5.6.2	The Main Features of Radiation Polymerization —— 142					
5.6.3	Effect of Radiation Cross-linking on the Properties of Polymer —— 143					
5.6.4	Industrial Application of Radiation Cross-linking Technology —— 144					
5.7	Plasma Polymerization Technology —— 144					
5.7.1	Types and Characteristics of Plasma —— 145					
5.7.2	Mechanism of Plasma Polymerization —— 146					
5.8	Enzyme-catalyzed Polymerization —— 147					
5.8.1	Enzyme-catalyzed Formerization —— 147 Enzyme-catalyzed Ring-opening Polymerization —— 147					
5.8.2	Enzyme-catalyzed Stepwise Polymerization —— 150					
	Questions — 152					
	References —— 152					
6	Green technology in fine chemical industry —— 155					
6.1	Greenization of Pharmaceutical Industry —— 155					
6.1.1	Introduction —— 155					
6.1.2	Green Chemical Pharmacy —— 156					
6.1.3	,					
6.1.4	•					
6.2	Greenization of Pesticide Industry — 169					
6.2.1	·					
6.2.2						
6.2.3						
6.2.4	Green Pesticide Preparations —— 182					
6.3	Green Functional Materials —— 184					
6.3.1	Polyaniline Materials —— 184					
6.3.2	Graphene —— 185					
6.4	Green Electronic Chemicals —— 188					
6.4.1	Photoresist —— 188					

6.4.2	Polyimide Materials —— 189					
6.4.3	Epoxy Molding Compound —— 190					
6.4.3	Green Battery Materials —— 191					
	Questions — 198					
	References —— 199					
7	Green technologies for intermediate product synthesis —— 202					
7.1	Introduction —— 202					
7.2	Green Technologies in Intermediate Product Synthesis —— 202					
7.2.1	Application of PDO —— 202					
7.3	Green Technologies in Typical Product Synthesis —— 212					
7.4	Green Chemical Process —— 217					
	Questions —— 218					
	References —— 218					
8	Green processes for carbon dioxide resource utilization —— 220					
8.1	Overview of Global Carbon Dioxide Emissions —— 220					
8.1.1	The Source of Carbon Dioxide —— 220					
8.1.2 The Present Situation and the Trend of Global Carbon Dioxi						
	Emissions —— 220					
8.2	The Separation and Fixing of CO ₂ — 221					
8.2.1	The Properties of Carbon Dioxide —— 221					
8.2.2	Separation Technologies of CO ₂ — 221					
8.3	Chemical Conversion Principles of Carbon Dioxide —— 225					
8.3.1	The Structure of Carbon Dioxide —— 225					
8.3.2	CO ₂ Activation Methods — 225					
8.4	Utilization Examples of Carbon Dioxide Resources — 227					
8.4.1	Application of Carbon Dioxide in Inorganic Synthesis — 228					
8.4.2	Applications of Carbon Dioxide in Organic Synthesis — 232					
	Questions — 235					
	References —— 235					
9	Green chemistry and chemical processes for biomass utilization —— 237					
9.1	Introduction —— 237					
9.1.1	Natural Conditions of Biomass —— 237					
9.1.2	Biomass Concept —— 237					
9.1.3	Classification of Biomass —— 237					
9.1.4	Use of Biomass —— 238					
9.1.5	Biomass Distribution —— 239					
9.1.6	Comprehensive Utilization of Biomass —— 240					
9.2	Properties and Analysis Methods of Main Components					
	in Biomass —— 243					

9.2.1	Physical and Chemical Properties of Cellulose —— 243
9.2.2	Physical and Chemical Properties of Hemicellulose —— 248
9.2.3	Physical and Chemical Properties of Lignin —— 250
9.2.4	Biomass Solvent System and Law —— 253
9.2.5	Biomass Structure Analysis Method —— 255
9.2.6	Biomass Composition Analysis Method —— 261
9.3	Chemical Conversion Principle of the Key Components of
	Biomass —— 263
9.3.1	Chemical Conversion of Cellulose Components —— 263
9.3.2	Chemical Conversion of Hemicellulose Components —— 265
9.3.3	Chemical Conversion of Lignocellulosic Components —— 267
9.4	Principle and Technology of Clean Separation of Biomass
	Components —— 269
9.4.1	Basic Principles of Separation of Components —— 269
9.4.2	Component Separation Based on Steam Explosion —— 270
9.4.3	Component Separation Process Based on Alkali Peroxide
	System —— 272
9.5	Green Process for Chemical Utilization of Biomass —— 273
9.5.1	Ethanol Produced from Biomass —— 274
9.5.2	Butanol and Acetone Production from Biomass —— 275
9.5.3	Polyols Production from Biomass —— 276
9.5.4	Levulinic Acid Produced from Biomass —— 277
9.5.5	Adipic Acid Production from Biomass —— 278
9.5.6	Hydrogen Produced from Biomass —— 279
9.6	Green Chemical Conversion of Natural Oils and Fats —— 282
9.6.1	Profile —— 282
9.6.2	The Principle of Natural Fatty Acids and of Chemical Conversion —— 283
9.6.3	Typical Products and Processes of Green Conversion of Natural Fatty
	Acids —— 286
	Questions —— 289
	References — 289
10	Green chemistry in exploiting marine resources —— 293
10.1	The Reserves and Application of Marine Resources — 293
10.1.1	Marine Resources —— 293
10.1.2	The Application of the Marine Resources —— 295
10.2	Extraction and Preparation of Food Additives
	from Marine Resources —— 297
10.2.1	Algal Polysaccharide —— 297
10.2.2	Cod Liver Oil —— 302
10.3	Extraction and Synthesis of Drugs from Marine Resources —— 305
10.3.1	Extraction and Degradation of Chitin/Chitosan — 305

10.3.2	Total Synthesis of Marine Drugs —— 310					
10.3.3	Extraction of Active Substances from Microbial Secondary					
	Metabolites —— 311					
10.4	Extraction Rare Elements from Ocean —— 313					
10.4.1	Potassium (K) —— 314					
10.4.2	Extraction of Bromine —— 315					
10.4.3	Extraction of Lithium —— 317					
10.4.4	Extraction of Uranium — 320					
10.5	Desalination —— 322					
	Questions —— 327					
	References — 327					
11	The greening of the energy industry —— 330					
11.1	Clean Utilization Technology of fossil fuel —— 330					
11.1.1	Impact of Energy Consumption on the Environment —— 330					
11.1.2	Clean Combustion and Efficient Utilization Technology of Coal —— 331					
11.2	Research and Development of Biomass Energy —— 343					
11.2.1	Utilization Status of Biomass Energy at Home and Abroad —— 344					
11.2.2	Biomass Energy Utilization Technology —— 346					
11.2.3	Biodiesel — 351					
11.3	Development and Utilization of Clean Energy —— 358					
11.3.1	G,					
11.3.2	Wind Energy —— 362					
11.3.3	Geothermal Energy —— 363					
11.3.4	Ocean Energy —— 365					
11.4	Renewable Energy and Sustainable Development —— 370					
11.4.1	Renewable Energy —— 370					
11.4.2	Research of Sustainable Energy Strategy —— 371					
	Questions —— 375					
	References —— 375					
12	Circular economy and eco-industrial parks —— 377					
12.1	The Theoretical Basis of Eco-industry —— 377					
12.1.1	Concept and Connotation of Eco-industry —— 377					
12.1.2						
12.1.3	•					
12.1.4						
12.2	Circular Economy — 380					
12.2.1	Background of Circular Economy —— 380					
12.2.2	Basic Principles of Circular Economy —— 384					
12.2.3	Typical Examples of Circular Economy —— 386					
12.2.4	Implementing Measures for Circular Economy —— 391					

12.3	Eco-industrial parks —— 394
12.3.1	Development at Home and Abroad —— 395
12.3.2	Principles and Contents of Eco-industrial Park Planning —— 396
12.3.3	Construction of Eco-industrial parks —— 400
12.3.4	Examples of Eco-industrial parks —— 402
	Questions —— 412
	References —— 413
13	Intensification technology and practice in chemical processes —— 415
13.1	Overview —— 415
13.1.1	The Concept of Chemical Process Intensification —— 415
13.1.2	Origin and Development of Chemical Process Intensification —— 417
13.2	The Coupling Technology of Reaction Process —— 418
13.2.1	Membrane Catalytic Reaction —— 419
13.2.2	Catalytic Distillation/Suspension Catalytic Distillation —— 425
13.2.3	Suspension Catalytic Distillation Technology —— 427
13.2.3	Alternating Flow Reaction —— 431
13.2.4	Stable Magnetic Field Fluidized Bed —— 433
13.3	The Coupling Technology of Separation Process —— 435
13.3.1	Reaction Separation Coupling —— 436
13.3.2	The Coupling of Membrane Separation — 436
13.3.3	Adsorptive Distillation —— 438
13.4	Microchemical Technology —— 439
13.4.1	Introduction —— 440
13.4.2	The Principle of Microreactor —— 440
13.4.3	The Application and Prospect of Microchemical Technology —— 443
13.5	Intensification Technology Based on Energy Field —— 445
13.5.1	Microwave Technology —— 445
13.5.2	Ultrasonic Technology —— 450
13.5.3	Radiation Technology —— 454
13.5.4	Plasma Technology —— 457
13.6	Other Intensification Techniques —— 459
13.6.1	Hydrodynamic Cavitation Technology —— 459
13.6.2	Supercritical Fluid Technology —— 463
13.6.3	Pulse Combustion Drying Technology —— 465
13.6.4	Supergravity Intensification Technology —— 468
13.6.5	Mechanochemical Process —— 470
13.7	Chemical Process Intensification Equipment —— 473
13.7.1	Static Mixing Reactor —— 474
13.7.2	Monolithic Reactor —— 476
13.7.3	Rotating Disk Reactor —— 478
13.7.4	Oscillating Flow Reactor —— 480

13.7.5	Impinging Stream Reactor —— 481
13.7.6	Supergravity Reactor —— 484
	Questions —— 485
	References — 486
14	Green chemistry assessment and practice —— 491
14.1	Basic Principles of Green Chemistry Assessment —— 491
14.1.1	Twelve Well-known Principles of Green Chemistry —— 491
14.1.2	Twelve Additional Principles of Green Chemistry —— 491
14.1.3	Twelve Principles of Green Chemical Engineering — 492
14.2	Life Cycle Assessment —— 493
14.2.1	Meaning of Life Cycle Assessment —— 493
14.2.2	Steps of LCA —— 494
14.2.3	Purposes of LCA —— 495
14.3	Assessment of Green Chemistry and Chemical Process — 496
14.3.1	Greenization of Chemical Reaction Process — 496
14.3.2	Measures of Greenization Chemistry and Chemical Process —— 498
14.3.3	Assessment of Green Chemistry and Chemical Process — 502
14.4	Building Green Chemical Industry and Promoting Green
	Development —— 509
	Questions —— 510
	References —— 510

Index — 513