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Abstract: Imagine you want your computer or any computing device to perform an 
action. But before you have to get up and interact with it, the device is already doing 
it! Because directly from your intention, from your thoughts the control signal for 
the action is identified. Would such a novel interaction technique be of interest for 
us or would it be too scary? How far is the technology already towards the line of 
direct brain-controlled or brain-responsive devices? In this chapter we will introduce 
the field of brain-computer interfaces, which allows the direct control of devices 
without the generation of any active motor output. The control of brain-actuated 
robots, wheelchairs and neuroprosthesis will be presented and the concepts behind, 
like context awareness or hybrid systems are explained. Furthermore, also cognitive 
signals or mental states are possible sources of interaction. Whenever our brain iden-
tified an error performed by the system, we could automatically correct it, or based on 
our attention or other mental states the interaction system could adapt itself towards 
our current needs in speed, support or autonomy. Especially, since human computer 
confluence (HCC) refers to invisible, implicit, embodied or even implanted interac-
tion between humans and system components. Brain-computer interfaces are just 
one possible option to achieve such a goal, but how would we or our brain embody 
such external devices into our body schema?

Keywords: Brain-computer Interface, Neuroprosthesis, Context Awareness, Hybrid 
System, Mental States

10.1  Introduction

A Brain-computer interface (BCI) establishes a direct communication channel 
between the human brain and a computer or an external device, which can be used to 
convey messages directly so that no motor activity is required (Wolpaw et al., 2002). 
The brain activity is acquired and in real-time analyzed to interpret the independent 
thought or action of the user, which can be transformed into a control signal. Par-
ticularly for people suffering from severe physical disabilities or those who are in a 
“locked-in” state, a BCI offers a possible new communication channel, but also aug-
menting or repairing human cognitive or sensory-motor functions.

Different types of BCIs exist and various methods can be used to acquire brain 
activity, but since the electroencephalogram (EEG) is the most practical modality 
(Mason et al., 2007)  – if we want to bring BCI technology to a large population – this 
chapter will focus on EEG based BCIs only. Nevertheless we would like to say, that 
brain activity can be measured through non-electrical means as well, such as through 



176   Brain-Machine Symbiosis

magnetic and metabolic changes, which can be also measured non-invasively. Mag-
netic fields can be recorded with magnetoencephalography (MEG), while brain meta-
bolic activity (reflected in changes in blood flow) can be observed with positron emis-
sion tomography (PET), functional magnetic resonance imaging (fMRI), and optical 
imaging (NIRS). Unfortunately, such alternative techniques require sophisticated 
devices that can be operated only in special facilities (except for NIRS). Moreover, 
techniques for measuring blood flow have long latencies compared to EEG systems 
and thus are less appropriate for interaction, although they may provide good spatial 
resolution. Besides EEG, electrical activity can also be measured through invasive 
means such as Electrocorticogram (ECoG) or intracranial recordings. Both methods 
require surgery to implant electrodes. The relative advantages and disadvantages of 
currently available noninvasive and implanted (i.e., invasive) methodologies are dis-
cussed in (Wolpaw et al., 2006).

Two different neurophysiological phenomena of the EEG can be used as input 
to a BCI. Either event-related potentials (ERPs) or event-related oscillatory changes 
in the ongoing EEG are analyzed. An ERP can be seen as an event- and time-locked 
response of a stationary system to an external/internal event, which is the response 
of the existing neural network. A significant number of reports are focused on the 
analysis of ERPs, including slow cortical potentials (Birbaumer et al., 1999), P300 
component (a positive waveform occurring approximately 300 ms after an infrequent 
task-relevant stimulus) (Allison et al., 2007b, Donchin et al., 2000), steady-state 
visual evoked potentials (SSVEP) while looking at flickering lights (Gao et al., 2003). 
Event-related oscillatory changes on the other hand can be interpreted as result of 
changes in the functional connectivity within the neuronal network which are time- 
but not phase-locked. These internally triggered changes in the rhythmic components 
of the ongoing brain signal results in relative power increase or decrease, which can 
be associated with active information processing within these networks. For example, 
the imagination of different types of movements (MI) results in power changes over 
the motor cortex.

Most of the existing BCI applications are either software oriented, like mentally 
writing text via a virtual keyboard on a screen (Birbaumer et al., 1999), or hardware 
oriented, like controlling a small robot (Millán et al., 2004). These typical applications 
require a very good and precise control channel to achieve performances compara-
ble to healthy users without a BCI. However, current day BCIs offer low information 
throughput and are insufficient for the full dexterous control of such complex appli-
cations, because of the inherent properties of the EEG. Therefore, the requirements 
and the skills don’t match at all. Techniques like context awareness can enhance the 
interaction to a similar level, despite the fact that BCI is not such a perfect control 
channel (Tonin et al., 2011, Galán et al., 2008). In such a control scheme, the respon-
sibilities are then shared between the user, who gives high-level commands, and the 
system, which executes fast and precise low-level interactions.
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The classic user group in BCI research is severely disabled patients: persons who 
are unable to communicate through other means (Birbaumer et al., 1999). However, 
recent progress in the field of BCI technology shows that BCIs could also be helpful 
to less disabled users. New user groups are emerging as new devices and applica-
tions develop and improve. Rehabilitation of disorders has gained a lot of attention 
recently, especially for users with other disabilities such as stroke, addiction, autism, 
ADHD and emotional disorders (Allison et al., 2007b, Birbaumer & Cohen, 2007, Lim 
et al., 2010, Pineda et al., 2008). Furthermore, BCIs could also help healthy users in 
specific situations, such as when conventional interfaces are unavailable, cumber-
some, or do not provide the needed information (Allison et al., 2007a).

Such passive monitoring offers potential benefits for both patients and healthy 
subjects. Furthermore, another area of research, interesting for healthy subjects, are 
BCI controlled or supported games; by augmentation of the operation capabilities or 
by allowing multi-task operations (Menon et al., 2009), or possible space applica-
tions (Millán et al., 2009). Another recent extension of BCI for healthy users is in the 
field of biometrics. Since the brainwave pattern of every person is unique, a person 
authentication based on BCI technology could use EEG measures to help authenticate 
a user’s identity, either by mental tasks (Marcel & Millán, 2007) or reactive frequency 
components (Pfurtscheller & Neuper, 2006).

Many new BCI devices and applications have recently been validated mostly with 
healthy users, such as control of smart home or other virtual environment (Leeb et al., 
2007b, Scherer et al., 2008), games (Lalor et al., 2005, Millán et al., 2008, Nijholt 
et al., 2008), orthosis or prosthesis (Müller-Putz & Pfurtscheller, 2008, Pfurtscheller 
et al., 2008), virtual or real wheelchairs (Leeb et al., 2007a, Cincotti et al., 2008, Galán 
et al., 2008), and other robotic devices (Bell et al., 2008, Graimann et al., 2008). We 
can even turn the BCI shortcomings into challenges (Nijholt et al., 2009, Lotte, 2011), 
by e.g. explicitly requiring a gamer to issue BCI commands to solve a task. Thereby 
far from perfect control ‘solutions’ are more interesting and challenging. These and 
other emerging applications adumbrate dramatic changes in user groups. Instead of 
being devices that only help severely disabled users and the occasional curious tech-
nophile, BCIs could benefit a wide variety of disabled and even healthy users.

Furthermore, when controlling complex devices via a BCI, the brain signals not 
only carry information about the mental task that is executed, but also about other 
cognitive processes that take place simultaneously. These processes reflect the way 
the user perceives the interaction and how much the device behavior truly reflects 
his/her intent. These cognitive processes can be exploited in a human-machine inter-
action, for allowing to recognize erroneous conditions during the interaction via the 
error potential (ErrP), or to detect the preparation or onset of motor actions, as well as 
identification of attentional and perceptual processes.
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10.2  Applied Principles

We will first explain the underlying principles in this chapter, before moving towards 
examples of brain controlled devices and cognitive signals in the next chapters.

10.2.1  Brain-Computer Interface Principle

In the direct control examples presented later on (see section 10.3), a BCI based on 
motor imagery (MI) is used. MI is described as the mental rehearsal of a motor act 
without any overt motor output (Decety, 1996), which involves similar brain regions to 
those which are used in programming and preparing such real movements (Ehrsson 
et al., 2003, Jeannerod & Frak, 1999). The imagination of different types of movements 
(e. g. right hand, left hand or feet), results in an amplitude suppression (known as 
event-related desynchronization, ERD (Pfurtscheller & Lopes da Silva, 1999)) or in an 
amplitude enhancement (event-related synchronization, ERS) of Rolandic mu rhythm 
(7–13 Hz) and the central beta rhythm (13–30 Hz) recorded over the sensorimotor 
cortex of the participant (Pfurtscheller & Neuper, 2001).
Therefore, the brain activity is acquired via 16 active EEG channels over the senso-
rimotor cortex. From the Laplacian filtered EEG, the power spectral density was cal-
culated. Canonical variate analysis was used to select subject-specific features, which 
were classified with a Gaussian classifier (Galán et al., 2008). Decisions with low con-
fidence on the probability distribution were filtered out and evidence was accumu-
lated over time (see the basic principle in Figure 10.1).

Before being able to use a BCI, participants have to go through a number of steps 
to learn to voluntarily modulate the EEG oscillatory rhythms by performing MI tasks. 
Furthermore, the BCI system has to learn what the participant-specific patterns are, 
that can be used for that particular user for online experiments. If participants achieve 
good online control they are allowed to test the application prototypes (see Section 
10.3). More details about the experimental paradigm, signal processing and machine 
learning (feature extraction, feature selection, classification and evidence accumula-
tion) and the feedback are given in (Leeb et al., 2013).

10.2.2  The Context Awareness Principle

For example, let us consider driving a wheelchair in a home or indoor environment 
(scattered with obstacles like chairs, tables, doors …) that requires precise control to 
navigate through rooms. A context aware and smart wheelchair will help the user to 
navigate through. The user issues via the BCI the high level commands such as left, 
right and forward, which are then interpreted by the wheelchair controller based on 
the contextual information from its sensors, also called shared control in robotics. 
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Based on these interpretations, the wheelchair can perform intelligent maneuvers 
(e.g. obstacle avoidance, guided turnings).

Despite the low information transfer rate of a BCI, researchers have demonstrated 
the feasibility of mentally controlling complex robotic devices from EEG (Flemisch 
et al., 2003, Vanhooydonck et al., 2003, Carlson & Demiris, 2008). In the case of neuro-
prosthetics, Millán’s group has pioneered the use of shared control that takes the con-
tinuous estimation of the operator’s mental intent and provides assistance to achieve 
tasks (Millán et al., 2004, Tonin et al., 2010, Galán et al., 2008). Generally, in a context 
awareness framework, the BCI’s outputs are combined with information about the 
environment (obstacles perceived by the robotic sensors) and the robot itself (posi-
tion and velocities) to better estimate the user’s intent (see Figure 10.2). Some broader 
issues in human – machine interaction are discussed in (Flemisch et al., 2003), where 
the H-Metaphor (“horse” metaphor) is introduced, suggesting that interaction should 
be more like riding a horse or controlling a horse carriage, with notions of “loosening 
the reins”, allowing the system more autonomy. Context awareness is a key compo-
nent of any future BCI systems, as it will shape the closed-loop dynamics between the 
user and the brain-actuated device so tasks can be performed as easily as possible and 
effectively. As mentioned above, the idea is to integrate the user’s mental commands 
with the contextual information gathered by the intelligent brain-actuated device, 
so as to help the user to reach the target or override the mental commands in critical 
situations. In other words, the actual commands sent to the device and the feedback 

Figure 10.1: Basic principle of a BCI: The electrical signals from the brain are acquired, before feature 
–characteristic with the given task– are extracted. These are then classified to generate action, 
which are controlling the robotic devices. The participant immediately either sees the output of the 
BCI and/or the generated action
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to the user will adapt to the context and inferred goals. Therefore, context awareness 
can make target-oriented control easier, can inhibit pointless mental commands (e.g. 
driving zig-zag), and can help determine meaningful motion sequences (e.g., for a 
neuroprostheses). Context awareness is helping on a direct interaction with the envi-
ronment but is conveying a different principle than autonomous control. In autono-
mous control high-level commands which are more abstract (e.g. drive to the kitchen 
or the living room) are issued and then executed autonomously by the robotic device 
without interaction of the user, till the selected target is reached (Carlson & Millán, 
2013), which could be suboptimal in cases of interaction with other people.

A critical aspect of context awareness for BCI is coherent feedback —the behavior 
of the robotic device should be intuitive to the user and the robot should unambigu-
ously understand the user’s mental commands. Otherwise, people find it difficult to 
form mental models of the neuroprosthetic device.

Figure 10.2: The context awareness principle: The user issues high-level commands via a brain-com-
puter interface mostly on a lower pace. The system is acquiring fast and precise the environmental 
information (via sonars, webcams…). The context awareness system combines the two information 
to achieve a path planning and obstacle avoidance, so that a control of the robotic device is possible 
(shared control) and e.g. the wheelchair can move forward, turn left or right. Modified from Rupp 
et al. (2014)

10.2.3  Hybrid Principle

Despite the progress in BCI research, the level of control is still very limited compared 
to natural communication or existing assistive technology products. Practical brain-
computer interfaces for disabled people should allow them to use all their remaining 
functionalities as control possibilities. Sometimes these people have residual activity 
of their muscles, most likely in the morning when they are not exhausted. In such a 
hybrid approach, where conventional assistive products (operated using some resid-
ual muscular functionality) are enhanced by BCI technology, leads to what is called 
a hybrid BCI (hBCI).
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As a general definition, a hBCI is a combination of different input signals includ-
ing at least one BCI channel (Millán et al., 2010, Pfurtscheller et al., 2010). Thus, it 
could be a combination of two BCI channels but, more importantly, also a combina-
tion of a BCI and other biosignals (such as EMG, etc.) or special AT input devices (e.g., 
joysticks, switches, etc.). There exist a few examples of hybrid BCIs. Some hBCIs are 
based on multiple brain signals: such as MI for control and ErrP detection for correc-
tion of false commands (Ferrez & Millán, 2008b), or an offline combination of MI and 
SSVEP (Allison et al., 2010, Brunner et al., 2010).

Other hBCIs combine brain and other biosignals: switching an standard SSVEP 
BCI on/off via an heart rate variation (Scherer et al., 2007), or fusing electromyo-
graphic (EMG) with EEG activity (Leeb et al., 2011) so that the subjects could achieve 
a good control of their hBCI independently of their level of muscular fatigue. Finally, 
EEG signals could be combined with eye gaze (Danoczy et al., 2008). Pfurtscheller 
et al. (2010) recently reviewed preliminary attempts, and feasibility studies, to develop 
hBCIs combining multiple brain signals alone or with other biosignals. Millán et al. 
(2010) reviewed the state of the art and challenges in combining BCI and assistive 
technologies and Müller-Putz et al. (2015) presented an hBCI framework, which was 
used in studies with non-impaired as well as end-users with motor impairments.

10.3  Direct Brain-Controlled Devices

In a traditional BCI fashion controlling complex devices such as brain-controlled 
wheelchair or mobile tele-presence platform in natural office environments would be 
a complex and frustrating task, especially since the timing and speed of interaction is 
limited by the BCI. Furthermore, the user has to share his attention between the BCI 
and the device, and also remember the place where he is and where he wants to go. In 
contrary, combing the above mentioned principles of BCI with context awareness and 
hybrid approaches allow subjects to control such complex devices easily.

10.3.1  Brain-Controlled Wheelchair

In case of brain-controlled robots and wheelchairs, Millán’s group has pioneered the 
development of the shared autonomy approach to estimate the appropriate assistance 
which greatly improved BCI driving performance (Vanacker et al., 2007, Galán et al., 
2008, Millán et al., 2009, Tonin et al., 2010). Although asynchronous spontaneous 
BCIs seem to be the most natural and suitable alternative, there are a few examples 
of synchronous evoked P300 BCIs for wheelchair control (Iturrate et al., 2009, Rebsa-
men et al., 2010), whereby the system flashes the possible predefined target desti-
nations several times in a random order. The stimulus that elicits the largest P300 
is chosen as the target. Then, the intelligent wheelchair reaches the selected target 
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autonomously. Once there, it stops and the subject can select another destination – a 
process that takes around 10 seconds.

Here, we describe our recent work (Carlson & Millán, 2013), during which subjects 
controlled the movement of an electric wheelchair (InvaCare Europe) by thought. The 
wheelchair’s turnings to the left and right are controlled via a 2-class BCI (see section 
10.2.1). Whenever the BCI output exceeds the left or right threshold a command was 
delivered to the wheelchair. In addition, the participant can intentionally decide not 
to deliver any mental commands to maintain the default behavior of the wheelchair, 
which consists of moving forward and avoiding obstacles with the help of a shared 
control system using its on-board sensors. More details see (Carlson & Millán, 2013).

For controlling, the user asynchronously sent high-level commands for turning 
to the left or right (with the help of a motor-imagery based BCI) to achieve the desired 
goals, while short-term low-level interaction for obstacle avoidance was done by 
the context awareness (see Figure 10.3.a and section 10.2.2). In the applied context 
awareness paradigm, the wheelchair pro-actively slows down and turns to avoid 
obstacles as it approaches them. For that reason the wheelchair was equipped with 
proximity sensors and two webcams for obstacle detection. Using the computer vision 
algorithm described in (Carlson & Millán, 2013), we constructed a local 10 cm resolu-
tion occupancy grid (Borenstein & Koren, 1991), which was then used by the shared 
control module for local planning. Generally, the vision zone was divided into three 
zones. Obstacles detected in the left or right zone triggered rotation of the wheelchair, 
whereas obstacle in center (in front) slowed it down. We also implemented a docking 
mode, additionally to the obstacle avoidance. Therefore, we considered any obstacle 
to be a potential target, provided it was located directly in front of the wheelchair. 
Consequently, the user was able to dock to any “obstacle”, be it a person, table, or 
even a wall. The choice of using cheap webcams and not using an expensive laser 
range-finder was taken to facilitate the development of affordable and useful assis-
tive devices. If we want to bring the wheelchair to patients, the additional equipment 
should not cost more than the wheelchair itself.

In an experiment four healthy subjects (aged 23–28) participated successfully in 
driving the wheelchair (Carlson & Millán, 2013). The task was to enter an open – plan 
environment, through a narrow doorway, dock to two different desks, whilst navigat-
ing around natural obstacles and finally reach the corridor through a second doorway 
(see Figure 10.3.b). The experiment was performed twice, once with BCI control with 
the help of context awareness and once with the normal manual control, whereby 
the analog joystick was replaced by two discrete buttons. Across subjects, it took an 
average of 160.0 s longer to complete the task under the BCI condition. In terms of 
path efficiency, there was no significant difference among subjects between the dis-
tance traveled in the manual benchmark condition (43.1 ± 8.9 m) and that in the BCI 
condition (44.9 ± 4.1 m) (Carlson & Millán, 2013). The longer time is probably due to a 
combination of subjects issuing manual commands with a higher temporal accuracy 
and a slight increase in the number of turning commands that were issued when using 
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the BCI, which yielded in a lower average translational velocity. Especially, inexperi-
enced users had a bigger difference than experience ones. This is likely to be due to 
the fact that performing an MI task, while navigating and being seated on a moving 
wheelchair, is much more demanding than simply moving a cursor on the screen and 
when the timing of delivering commands becomes very important (Leeb et al., 2013).

We want to highlight that, in this study not only a complex task had to be per-
formed, but also the potential stressfulness of the situation, since the user was co–
located with the robotic device that he or she was controlling and was subject to many 
external factors. This means the user had to put trust in the context awareness system 
and expected that negative consequences (e.g. a crash) could result in the system 
failing (although an experimenter was always in control of a fail-safe emergency stop 
button).

In the future we are planning to add a start/stop or a pausing functionality for the 
movement of the robotic device, in parallel to the frequently-occurring commands of 
turning left or right. In the framework of a hybrid BCI, such rare start/stop commands 
could also be delivered through other channels such as residual muscular activity, 
which can be controlled reliably—but not very often, because of the quick fatigue.

Figure 10.3: (a) Picture of a healthy subject sitting in the BCI controlled wheelchair. The main 
components on our brain-controlled robotic wheelchair are indicated with close-ups on the sides. 
The obstacles identified via the webcams are highlighted in red on the feedback screen and will be 
avoided by the context awareness system. (b) Trajectories of a subject during BCI control reconstruc-
ted from the odometry. The start, end and target positions as well as the BCI triggered turnings are 
indicated. Modified from Carlson & Millán (2013)

10.3.2  Tele-Presence Robot Controlled by Motor-Disable People

Moving on from healthy people to motor-disabled end users as BCI participants, 
we present a study in which a tele-presence robot was remotely navigated within a 
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natural office environment. The space contains natural obstacles (i.e. desks, chairs, 
furniture, people) in the middle of the pathways and some predefined target posi-
tions. Importantly, participants have never been in such an environment. The robot’s 
turnings to the left and right are controlled via a 2-class BCI similar to the aforemen-
tioned study with the wheelchair.

The implementation of context awareness used the dynamical system concept 
(Schöner et al., 1995), to control two independent motion parameters: the angular and 
translation velocities of the robot. The systems can be perturbed by adding attrac-
tors or repellors in order to generate the desired behaviors. The dynamical system 
implements the following navigation modality. The default device behavior is to 
move forward at a constant speed. If repellors or attractors are added to the system, 
the motion of the device changes in order to avoid the obstacles or reach the targets. 
At the same time, the velocity is determined according to the proximity of the repel-
lors surrounding the robot. The robot is based on Robotino™ by FESTO (Esslingen, 
Germany) a small circular mobile platform (diameter 36 cm, height 65 cm), which is 
equipped with nine infrared sensors that can detect obstacles up to ~30 cm distance 
and a webcam that can also be used for obstacle detection. Furthermore, a notebook 
with a camera is added on top of the robot for tele-presence purposes (see Figure 
10.4.a), so that the participant can interact with the remote environment via Skype™.

Nine severely motor-disabled end-users, who had never visited the labora-
tory in person, were able to use such a tele-presence robot to successfully navigate 
around the lab (see Figure 10.4.b), whilst they were located in their own homes or 
clinics at distances of up to 550 km away (Leeb et al., 2015). In some extreme tests, a 
healthy subject was attending a conference in South Korea, where he demonstrated 
that he could use our motor imagery based BCI to reliably control the tele-presence 
robot, which was located in our lab in Switzerland. As before, the same paths were 
followed with BCI control and with manual control (i.e. button presses). Furthermore, 
context awareness was either applied or not. The time and number of commands 
needed were previously reported for healthy users (Tonin et al., 2010) and recently 
for patients (Tonin et al., 2011, Leeb et al., 2015). Remarkably, the patients performed 
similar to the healthy users who were familiar with the environment (91.5 ± 17.5 versus 
102.6 ± 26.3 seconds).

Context awareness also helped all subjects (including novel BCI subjects or 
users with disabilities) to complete a rather complex task in similar time and with 
similar number of commands to those required by manual commands without context 
awareness. More details are given in (Tonin et al., 2010, 2011, Leeb et al., 2013, 2015). 
Thus, we argue that context awareness reduces subjects’ cognitive workload as it: (i) 
assists them in coping with low-level navigation issues (such as obstacle avoidance 
and allows the subject to focus the attention on his final destination) and thereby (ii) 
helps BCI users to maintain attention for longer periods of time (since the amount of 
BCI commands can be reduced and their precise timing is not so critical).
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Figure 10.4: (a) A tetraplegic end-user (C6 complete) demonstrates his acquired motor imagery 
skills, manoeuring the brain-controlled tele-presence robot in front of participants and press at the 
“TOBI Workshop IV”, Sion, Switzerland, 2013. (b) Layout of the experimental environment with the 
four target positions (T1, T2, T3, T4), start position (R)

10.3.3  Grasp Restoration for Spinal Cord Injured Patients

The restoration of grasp functions in spinal cord injured (SCI) patients or patients 
suffering from paralysis of upper extremities typically rely on Functional Electrical 
Stimulation (FES). In this context, the term neuroprosthesis is used for FES systems 
that seek to restore a weak or lost grasp function when controlled by physiological 
signals. Some of these neuroprostheses are based on surface electrodes for external 
stimulation of muscles of the hand and forearm (Ijzermann et al., 1996, Thorsen et al., 
2001, Mangold et al., 2005). Others, like the Freehand system (NeuroControl, Cleve-
land, US), uses implantable neuroprostheses to overcome the limitations of surface 
stimulation electrodes concerning selectivity and reproducibility (Keith & Hoyen, 
2002), but this system is no longer available on the market.

Pioneering work by the groups in Heidelberg and Graz showed that a BCI 
could be combined with an FES-system with surface electrodes (Pfurtscheller et al., 
2003). In this study, the restoration of a lateral grasp was achieved in a spinal cord 
injured subject (see Figure 10.5.b). The subject suffered from a complete motor paraly-
sis with missing hand and finger function. The patient could trigger sequential grasp 
phases by imagining foot movements. After many years of using the BCI, the patient 
can still control the system, even during conversation with other persons. The same 
procedure could be repeated with another tetraplegic patient who was provided with 
a Freehand system (Müller-Putz et al., 2005). All currently available FES systems for 
grasp restoration can only be used by patients with preserved voluntary shoulder and 
elbow function, which is the case in patients with an injury of the spinal cord below 
C5. So neuroprostheses for the restoration of forearm function (like hand, finger and 
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elbow) require the use of residual movements not directly related to the grasping 
process. To overcome this restriction, a new method of controlling grasp and elbow 
function with a BCI was introduced recently via pulse-width coded brain patterns for 
controlling sequentially more degrees of freedom (Müller-Putz et al., 2010).

BCIs have been used to control not only grasping but also other complex 
tasks like writing. Millán’s group used the motor imagery of hand movements to stim-
ulate the same hand for a grasping and writing task (Tavella et al., 2010). Thereby the 
subjects had to split his/her attention to multitask between BCI control, reaching, 
and the primary handwriting task itself. In contrast with the current state of the art, 
an approach in which the subject was imagining a movement of the same hand he 
controls through FES was applied.

Moreover, the same group developed an adaptable passive hand orthosis 
(see Figure 10.5.a), which evenly synchronizes the grasping movements and applied 
forces on all fingers (Leeb et al., 2010). This is necessary due to the very complex hand 
anatomy and current limitations in FES-technology with surface electrodes, because 
of which these grasp patterns cannot be smoothly executed. The orthosis support and 
synchronize the movement of the fingers stimulated by FES for patients with upper 
extremity palsy to improve everyday grasping and to make grasping more ergonomic 
and natural compared to the existing solutions. Furthermore, this orthosis also avoids 
fatigue in long-term stimulation situations, by locking the position of the fingers and 
switching the stimulation off (Leeb et al., 2010).

Figure 10.5: (a) Picture of BCI subject with an adaptable passive hand orthosis. The orthosis is 
capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes 
(by bendable strips on the back) the grasping movements and applied forces on all fingers, allowing 
for naturalistic gestures and functional grasps of everyday objects. (b) Screen shot from the pionee-
ring work showing the first BCI controlled grasp by a tetraplegic patient (Pfurtscheller et al., 2003)
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10.4  Cognitive Signals and Mental States

Previous sections illustrate how it’s possible to control complex devices by the decod-
ing of user’s intention from the execution of specific mental tasks (i.e. motor imagery 
– complemented by contextual information in order to increase the robustness of 
the system. However, when controlling a BCI, brain signals not only carry informa-
tion about the mental task that is executed, but also about other cognitive processes 
that take place simultaneously. These processes reflect the way the user perceives the 
interaction and how much the device behavior truly reflects his/her intent. In this 
section we present several ways to exploit these cognitive processes to overall human-
machine interaction.

In particular, we will review different potentials that convey useful information 
allowing to recognize erroneous conditions during the interaction, preparation of 
motor actions as well as attentional and perceptual processes.

10.4.1  Error-Related Potentials

Error recognition is crucial for efficient behavior in both animals and humans. Wealth 
of studies have identified brain activity patterns that are naturally elicited whenever a 
person commits an error in tasks requiring a rapid response (Falkenstein et al., 2000). 
Interestingly, similar potentials are also observed when the person perceives error 
committed by other person (van Schie et al., 2004) or even machines (Ferrez & Millán, 
2008a). These error-related potentials (ErrPs) provide a mean to obtain information 
about the subject evaluation of the interaction. Allowing to synergistically incorpo-
rate detection of erroneous situations – decoded from the brain activity – into the 
control of the external device. Enabling us to correct these situations or even improve 
performance via error-driven adaptation.

Error-related potentials can be observed in the EEG signals over fronto-central 
areas. In the case of self-generated errors differences between the correct and error 
condition appear at about 120 ms after the action, while differential responses to exter-
nal feedback appear at about 200–500 ms after the erroneous stimuli. Interestingly, 
these signals are naturally elicited during the interaction, therefore no user training 
is required. Moreover, they are rather stable across time (Chavarriaga & Millán, 2010) 
and similar waveforms appear across different tasks (Iturrate et al., 2014) and feed-
back modalities (Chavarriaga et al., 2012).

One of the first attempts to exploit these signals during human-computer inter-
action was proposed by Parra and colleagues (Parra et al., 2003). In their study the 
user performed a two-forced choice task and the EEG was decoded to detect the error-
related pattern after incorrect presses. This automatic correction yielded to a perfor-
mance improvement of around 20%. Later on, it was demonstrated that error-related 
potentials were also elicited in the frame of brain-computer interaction (Ferrez 
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& Millán, 2008a). Importantly, it is possible to decode these potentials at a single 
trial basis, i.e. inferring whether a given trial correspond to the erroneous or correct 
condition. This paved the way for automatic correction of BCI commands Ferrez and 
colleagues demonstrate this in a MI-based BCI by simultaneous decoding of the BCI 
control signal (e.g. motor imagery) and the ErrPs (Ferrez & Millán, 2008b). Similar 
approaches have also been implemented for P300-based BCIs both in healthy and 
motor disabled subjects (Dal Seno et al., 2010, Spüler et al., 2012).

These systems allow for instantaneous response of the previous command. 
However, this does not prevent the same errors to appear in the future. An alternative 
approach is to exploit the ErrPs to drive the adaptation of an intelligent controller so 
as to improve the likelihood of generating correct responses (Chavarriaga & Millán, 
2010, Llera et al., 2011, Förster et al., 2010). Based on the reinforcement learning para-
digm, the ErrPs provide information akin to (negative) rewards that make it possible 
to infer control strategies that the subject considers as correct. In this approach the 
human is placed within a cognitive monitoring loop with the agent, thus making pos-
sible to tune the agent’s behavior to the user’s needs and preferences.

10.4.2  Decoding Movement Intention

The counterpart of interpreting the outcome of a specific action is the possibility of 
detecting the intention to move prior to the execution. This can help in the control of 
neuroprosthetics as early detection can reduce the delay between the motor intention 
and the device activation.

There has been evidence of preparatory and anticipatory activity since several 
decades. This includes seminal works showing slow deflections of cortical activ-
ity between timely separated contingent stimuli (i.e. contingent negative variation) 
(Walter et al., 1964) and lateralized slow cortical potentials preceding movements 
up to 1.5 s (Libet et al., 1982). However, only recently this type of signal has been 
successfully decoded for Non-invasive BCI applications. A key factor for this decod-
ing is the appropriate selection of spatio-spectral features used for the decoding, as 
low-frequency EEG oscillations exhibit a large inter-trial variability (Garipelli et al., 
2013). Regarding arm movements, Lew et al. used a center-out reaching task (see 
Figure 10.6.a) to show that onset of self-paced movement intention could be detected 
more than 460 ms before the movement, based on SCP off-line analysis (Lew et al., 
2012) (see Figure 10.6.b). A similar approach was also used to predict intention both in 
movement execution and imagination (Niazi et al., 2011). In turn, oscillatory activity 
in the alpha and beta bands (8–30 Hz) was also shown to carry information that could 
be used to detect self-paced wrist extension movement (Bai et al., 2011).

However, the previous studies were performed with simplified protocols. So the 
question remains on whether similar signals can be observed and decoded in real-
istic conditions. Experiments in virtual environments and during car driving tasks 
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suggest that this is the case (Chavarriaga et al., 2012, Khaliliardali et al., 2012) (see 
Figure  10.6.c). We have analyzed the EEG activity while drivers (N=6) perform self-
paced lane changes in a simulated highway. Using classifiers trained on segments 
corresponding to straight driving and steering actions, the onset of the steering 
actions was detected on average 811 ms before the action with a 74.6% true positive 
rate (Gheorghe et al., 2013) (see Figure 10.6.d).

Figure 10.6: EEG correlates of movement intention: (a) Decoding of movement related potentials in 
both able-bodied and stroke subjects. (b) Single trial analysis of EEG signals in a center-out tasks 
yield recognition about chance level at about 500 ms before the movement onset (green line), earlier 
than any observable muscle activity (magenta line) (Lew et al., 2012). (c) Car driving scenario. Low-
frequency oscillations (<1 Hz) reflect preparatory activity up to 1 s before steering actions in a car 
simulator. (d) As shown in the topographic representation this activity appears over central midline 
areas, consistent with movement-related potentials reported in simpler tasks (Gheorghe et al., 2013)

10.4.3  Correlates of Visual Recognition and Attention

Human machine interaction implies a closed-loop where information flows to, from 
and between the user and the device she/he is interacting with. For this reason there 
is an increased interest in identifying brain correlates of perceptual and attentional 
processes.

A clear example of combining human and machine capabilities can be found on 
applications of image retrieval. As of today, computer algorithms are quite efficient at 
processing large amounts of data based on their low-level features, but are less suit-
able to handle their semantic content. These applications decode the EEG responses 
to visual stimuli so as to identify those images that are interesting to the subject. They 
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constitute labeled exemplars that can be exploited by computer vision algorithms 
to retrieve similar images from a larger database (Sajda et al., 2010, Bigdely-Shamlo 
et al., 2008, Uscumlic et al., 2013).

Interaction with complex system necessarily implies to attend to different stimuli. 
In the case of vision, attentional deployment can be produced with or without changes 
in the gaze direction (i.e. overt and covert attention). While the first one can be easily 
detected using eye-tracking techniques, the second one requires the analysis of the 
brain patterns, as no observable behavior is produced. Neurophysiological studies 
have shown that modulation of α rhythms signal voluntary changes of covert visual 
attention. Furthermore, there seems to be a specialized topographical representation 
of the attended locations (Rihs et al., 2007). Based on this, the use of covert shifts 
of attention – decoded from the EEG α activity – has been proposed as an alterna-
tive BCI paradigm (Treder et al., 2011, van Gerven & Jensen, 2009). Interestingly, a 
new approach allows for a more detailed spatio-temporal characterization of these 
processes by analyzing narrow sub-bands of the α rhythms, as well as the inherent 
temporal variability of such signals (Tonin et al., 2012). Experiments with able-bodied 
subjects over two days resulted in a mean on-line accuracy across the group of 70.6 
± 1.5% (N=8), and 88.8 ± 5.8% for the best subject (Tonin et al., 2013). Interestingly, 
these subjects that present a drop in performance also exhibited changes in the δ,θ, 
and α over frontal cortices. These changes have been previously reported as putative 
correlates of fatigue, increased workload or drowsiness (Borghini et al., 2012, Brouwer 
et al., 2012). This evidences the possibility of simultaneous monitoring of multiple 
cognitive signals.

10.5  Discussion and Conclusion

In this book chapter we gave a broad overview of the functionality of a brain-com-
puter interface and showed possible scenarios and applications. We put emphasis on 
control of robotic devices (like wheelchair or tele-presence robots), motor substitu-
tion by functional electrical stimulation, decoding of erroneous decisions, intention 
of movements or actions, mental state monitoring of attention and visual recognition.

We presented examples of how healthy and disabled participants can use suc-
cessfully the BCI to control robotic devices. Especially with the help of context aware-
ness some of the BCI limitations can be overcome and the path in developing more 
practical BCIs is opened, especially towards the control of mobility (either a tele-pres-
ence robot or a wheelchair). We showed results from healthy users and end-users with 
disabilities, which were able to perform a rather complex navigation task. Remark-
ably, although the patients had never visited the remote location where the tele-pres-
ence robot was operating, their performances were similar to a group of healthy users 
who were familiar with the environment. Furthermore, the help of context aware-
ness allowed all subjects to complete task in similar time and with similar number 
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of commands to those required by manual commands without context awareness. 
Thus, we argue that context awareness reduces subjects’ cognitive workload as it: 
(i) assists them in coping with low-level navigation issues (such as obstacle avoidance 
and allows the subject to focus the attention on his final destination) and (ii) helps 
BCI users to keep attention for longer periods of time (since the amount of BCI com-
mands can be reduced and their precise timing is not so critical).

First steps are done in establishing the possibility to give the control back to 
patients, not only over robotic devices but directly of simple grasp patterns. Brain-
controlled functional electrical stimulation of the muscles together with orthotic 
devices will allow a self-paced long term use. However, BCIs are not ready yet for an 
independent use at home (Leeb et al., 2013) and some gaps for usability and reliability 
have to be addressed.

The exploitation of cognitive signals, which carry valuable information in paral-
lel to the mental task being performed, is pushing BCIs to the next level. Information 
like how the interaction is perceived or about erroneous decisions, or even about the 
attention to the task, will allow us to modulate the level of support which is needed 
for BCI control, or value the received signals. We can envision that a future car, could 
modify its behavior depending on the state of the user, it could help more or less, or 
even become more proactive in case the attention of a user is going down, or he is 
getting more and more distracted.

We expect even faster progress in the next years, since the BCI field is still gaining 
attention from funding agencies and companies. More practical and powerful tools 
for disabled people will develop. Furthermore, BCIs can benefit from other signals 
and human-computer interaction techniques, and vice-versa. BCIs can be used to 
extract cognitive-relevant information to improve standard interactions, which is 
becoming increasingly interesting for healthy users.

A further future key component for a successful application of BCI devices is the 
availability of dry and wireless electrodes systems with a sufficient data quality. First 
systems are appearing on the market, but long term studies are still missing. Further-
more, more translational studies involving end-users at their homes are needed to 
address the problems which are arising from application control outside laboratory 
environments. Adopting a user-centered iterative approach (for the end-users as well 
as for the healthy population) will allow addressing the specific needs and require-
ments of the different future user groups.
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