Contents

D		Fa		1/
ч	rei	га	ce	 v

List of contributing	authors — X	
----------------------	-------------	--

LIST OF	Contributing authors — XI		
R.O. Oc	aya and J.J. Terblans		
1	Addressing the challenges of standalone multi-core simulations		
	in molecular dynamics — 1		
1.1	Introduction — 2		
1.2	Standalone architectures — 7		
1.2.1	Classifications of parallelization paradigms — 7		
1.3	Getting started with standalone computation —— 8		
1.3.1	To code or not to code —— 8		
1.3.2	General tools — 9		
1.3.3	Parallelizable tools —— 9		
1.4	Parallel processing paradigms in the C-language —— 10		
1.4.1	Threads and message passing —— 10		
1.4.2	Open multiprocessing programming —— 11		
1.4.3	Message passing interface programming —— 13		
1.4.4	The GPU approach —— 14		
1.4.5	Cloud virtualization —— 15		
1.5	Summary of results —— 17		
1.6	Conclusions —— 17		
	References —— 18		
Suman	Chowdhury, Arka Bandyopadhyay, Namrata Dhar and Debnarayan Jana		
2	Optical and magnetic properties of free-standing silicene, germanene		
	and T-graphene system —— 23		
2.1	Introduction — 23		
2.2	DFT study of the optical properties —— 27		
2.2.1	Methodology — 27		
2.3	FS silicene monolayer — 30		
2.3.1	Optical properties — 30		
2.3.2	Magnetic properties of doped FS silicene monolayer — 36		
2.4	Elemental structure and synthesis of FS germanene — 44		
2.4.1	Electronic and magnetic properties of FS germanene —— 45		
2.4.2	Optical properties of FS germanene —— 50		
2.5	Structural properties of TG sheet —— 51		
2.5.1	Electronic properties of pristine and functionalized TG sheet —— 53		
2.5.2	TG nanoribbons (NRs) and clusters —— 54		
2.5.3	Other allotropes beyond TG —— 57		

2.6 Conclusions and future directions — 59 References — 61 Toufik Khairat, Mohammed Salah, Khadija Marakchi and Najia Komiha Theoretical study of the electronic states of newly detected dications. 3 Case of MgS²⁺ AND SiN²⁺ — 71 Introduction — 71 3.1 3.2 Computational details — 72 3.3 Results and discussion — 76 3.3.1 Neutral MgS — 76 3.3.2 MgS^{2+} dication — 79 SiN²⁺ dication study — 83 3.3.3 Conclusion — 88 3.4 References — 90 Jayvant Patade and Sachin Bhalekar 4 Analytical Solution of Pantograph Equation with Incommensurate Delay — 93 4.1 Introduction — 93 4.2 Preliminaries — 94 4.2.1 Basic definitions and results - 94 4.2.2 Daftardar-Gejji and Jafari method — 96 4.2.3 Existence, uniqueness and convergence — 98 4.3 Stability analysis — 101 The pantograph equation and its solution — 102 4.4 4.5 Analysis — 103 4.5.1 The relation between R(a, b, c, p, q, x) and Kummer's confluent hypergeometric function — 108 4.6 Generalizations to fractional-order DDE — 113 4.7 Conclusions — 114 References — 114 M. Alcolea Palafox 5 Computational chemistry applied to vibrational spectroscopy: A tool for characterization of nucleic acid bases and some of their 5-substituted derivatives — 117 5.1 Introduction — 117 Molecules under study — 118 5.2 5.3 Computational methods — 120 5.4 Scaling — 122 5.5 Applications of computational chemistry to vibrational spectroscopy — 123

5.5.1	Characterization of all the normal modes of a molecule —— 123
5.5.2	Accurate assignment of all the bands of a spectrum —— 123
5.5.3	Identification of the tautomers present in the isolated state —— 135
5.5.4	Simulation of the crystal unit cell of a compound and the
	interpretation of its vibrational spectra —— 136
5.6	Summary and conclusions — 147
	References —— 149
K. Gba	yo, C. Isanbor, K. Lobb and O. Oloba-Whenu
6	Mechanism of nucleophilic substitution reactions of 4-(4'-nitro)
	phenylnitrobenzofurazan ether with aniline in acetonitrile —— 153
6.1	Introduction —— 153
6.2	Results and discussion —— 154
6.3	Conclusion — 158
6.4	Experimental section —— 159
	References —— 160
Sutapa	a Biswas Majee and Gopa Roy Biswas
7	Computational methods in preformulation study for pharmaceutical
	solid dosage forms of therapeutic proteins —— 163
7.1	Introduction —— 163
7.2	Challenges to formulation development of therapeutic
	proteins — 164
7.3	Aggregation of therapeutic proteins —— 165
7.3.1	Instrumental methods of analysis —— 166
7.3.2	Computational approaches in study of aggregation — 169
7.4	Computational tools in assessment of immunogenicity of
	therapeutic proteins —— 170
7.5	Conclusion — 170
	References — 171
Prabha	at Ranjan, Tanmoy Chakraborty and Ajay Kumar
8	Computational Investigation of Cationic, Anionic and Neutral Ag ₂ Au _N
	(N = 1–7) Nanoalloy Clusters —— 173
8.1	Introduction —— 173
8.2	Computational details —— 175
8.3	Results and discussion —— 176
8.3.1	Equilibrium geometries —— 176
8.3.2	Electronic properties and DFT-based descriptors —— 180
8.4	Conclusion —— 185
	References —— 185

N Choo	ramun, P. J. Lawrence and E. R. Galea
9	Evacuation simulation using Hybrid Space Discretisation and
	Application to Large Underground Rail Tunnel Station —— 191
9.1	Introduction —— 191
9.2	Software architecture for Hybrid Spatial Discretisation —— 193
9.2.1	Continuous region component —— 193
9.2.2	Coarse region component —— 195
9.2.3	Choice of discretisation strategies for using HSD —— 196
9.3	Large tunnel station complex case —— 196
9.4	Results and discussion —— 199
9.5	Conclusion —— 202
	References —— 203
Emildo	Marcano
10	DFT study of anthocyanidin and anthocyanin pigments for
	Dye-Sensitized Solar Cells: Electron injecting from the excited states
	and adsorption onto TiO ₂ (anatase) surface — 205
10.1	Introduction —— 205
10.2	Theory and computational details —— 206
10.3	Results and discussion —— 208
10.3.1	Geometric optimization and intramolecular charge transferences
	of anthocyanin dyes —— 208
10.3.2	Frontier molecular orbitals, absorption spectra and LHE —— 208
10.3.3	Free Energy Change of Electron Injection —— 211
10.3.4	Chemisorption on TiO_2 -anatase — 213
	Conclusions —— 215
	References —— 215
Udo Sc	hwingenschlögl, Jiajie Zhu, Tetsuya Morishita, Michelle J.S. Spencer,
Paola D	e Padova, Amanda Generosi, Barbara Paci, Carlo Ottaviani, Claudio
	ima, Bruno Olivieri, Eric Salomon, Thierry Angot, Guy Le Lay, Harold J.W.
	et and L. C. Lew Yan Voon
11	Elemental Two-Dimensional Materials Beyond Graphene —— 219
11.1	Silicene on substrates — 219
11.2	Microscopic mechanism of the oxidation of silicene on Ag(111) — 221
11.3	Multilayer silicene —— 222
11.4	Germanene —— 223
11.5	Summary —— 225
	References — 226