Contents

Preface — V

Part I:	Convex analysis	
1	Convex sets and their properties — 3	
2	The convex hull of a set. The interior of convex sets —— 7	
3	The affine hull of sets. The relative interior of convex sets —— 13	
4	Separation theorems for convex sets —— 21	
5	Convex functions —— 29	
6	Closedness, boundedness, continuity, and Lipschitz property of convex functions —— 37	
7	Conjugate functions —— 45	
3	Support functions —— 51	
9	Differentiability of convex functions and the subdifferential —— 59	
10	Convex cones —— 69	
11	A little more about convex cones in infinite-dimensional spaces —— 75	
12	A problem of linear programming —— 79	
13	More about convex sets and convex hulls —— 83	
Part II: Set-valued analysis		
14	Introduction to the theory of topological and metric spaces —— 91	
15	The Hausdorff metric and the distance between sets — 95	

16	Some fine properties of the Hausdorff metric —— 103
16.1	Hausdorff distance between sets satisfying the Bolzano-Weierstrass condition —— 103
16.2	Hausdorff distance between subsets of normed spaces —— 105
17	Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps —— 109
18	A base of topology of the space $\mathcal{H}_c(X)$ —— 121
19	Measurable set-valued maps. Measurable selections and measurable choice theorems —— 123
20	The superposition set-valued operator —— 129
21	The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations —— 135
22	Special selections of set-valued maps —— 141
23	Differential inclusions —— 149
24 24.1 24.2	Fixed points and coincidences of maps in metric spaces —— 155 The case of single-valued maps —— 155 The case of set-valued maps —— 160
25	Stability of coincidence points and properties of covering maps —— 165
26	Topological degree and fixed points of set-valued maps in Banach spaces —— 171
26.1	Topological degree of single-valued maps —— 171
26.2	Topological degree of set-valued maps —— 180
27	Existence results for differential inclusions via the fixed point method —— 187
Notati	on —— 191
Biblio	graphy —— 195
Index	—— 199