Contents

List of contributing authors — IX

Mark Benvenuto				
1	Incorporating green chemistry into education — 1			
1.1	Introduction — 1			
1.2	This volume —— 2			
1.2.1	The quadruple bottom line —— 2			
1.2.2	Green chemistry in the Middle East —— 3			
1.2.3	Virtually green chemistry — 3			
1.2.4	Greening the teaching lab —— 3			
1.2.5	Surfactants versus solvents — 3			
1.2.6	Bio-sources and energy production —— 4			
1.2.7	The green chemistry growth mindset —— 4			
1.3	Summary —— 4			
	References — 5			
George	George M. Bodner			
2	The quadruple bottom line: the advantages of incorporating Green			
_	Chemistry into the undergraduate chemistry major — 7			
2.1	Introduction — 7			
2.2	The Green Chemistry movement as a community of practice —— 8			
2.3	Differentiating between Green Chemistry and Sustainable			
	Development — 8			
2.4	Genesis of the Green Chemistry movement —— 9			
2.4.1	12 principles of Green Chemistry — 10			
2.4.2	12 principles of Green Engineering —— 12			
2.4.3	Implications of the use of the term "design" in the guiding			
	principles —— 13			
2.5	The ACS Green Chemistry Institute (ACS GCI®) —— 14			
2.6	Green Chemistry in the classroom —— 16			
2.6.1	Beyond benign —— 16			
2.6.2	The Green Chemistry commitment —— 18			
2.7	The "triple bottom line" in academics —— 19			
2.8	Reflections on the evolution of Green Chemistry in academics —— 21			
2.9	Why there might be a "quadruple bottom line" in academics —— 23			
2.10	A new way of looking at "relevance" —— 23			
	References —— 25			

Larry Kolopajlo

3	Green chemistry education in the Middle East —	29
3.1	Introduction —— 29	
3.2	Background —— 30	
3.2.1	Estidama —— 30	
3.2.2	Geography —— 31	
3.2.3	Population —— 31	
3.2.4	Pollution and waste —— 31	
3.2.5	Water —— 32	
3.2.6	Economics —— 33	
3.2.7	Organizations —— 33	
3.2.8	Education —— 33	
3.2.9	Academia —— 34	
3.3	GCE contributions in the middle east —— 34	
3.3.1	Types of green chemical educators — 34	
3.3.2	Organizations —— 34	
3.3.3	Egypt —— 37	
3.3.4	Malta —— 39	
3.3.5	Israel —— 40	
3.3.6	Iran —— 41	
3.3.7	Saudi Arabia —— 42	
3.3.8	UAE —— 44	
3.3.9	Bahrain —— 45	
3.3.10	Turkey —— 45	
3.3.11	Palestine —— 46	
3.3.12	ChemRAWN —— 46	
3.3.13	ME outreach in GC —— 47	
3.4	Summary —— 47	
	References — 47	

Jonathan Stevens

4 Virtually going green: The role of quantum computational chemistry in reducing pollution and toxicity in chemistry — 53

- 4.1 Introduction 53
 4.2 Greening catalysis enzyme design 54
- 4.3 Greening catalysis "in silico" experiments 55
- 4.4 Toward greener solvents 57
- 4.5 Polymer production from CO₂ emissions **58**
- 4.6 Conclusion 62 References 62

Serenity	y Desmond, Christian Ray and José G. Andino Martínez
5	Educational benefits of green chemistry — 67
5.1	Introduction —— 67
5.2	Safety —— 69
5.2.1	Prevention —— 70
5.2.2	Inherently safer chemistry for accident prevention —— 71
5.2.3	Less hazardous chemical syntheses/use of renewable feedstocks/
	reduce derivatives —— 71
5.3	Economic reasons —— 71
5.3.1	What are the costs that go into our laboratories? — 72
5.3.2	What are the costs that students incur from our laboratories? — 73
5.4	Educational advantages —— 74
5.5	Conclusions and future work — 77
	References — 77
Daniel \	r. Pharr
6	Green analytical chemistry – the use of surfactants as a replacement
	of organic solvents in spectroscopy — 79
6.1	Introduction —— 79
6.2	General aspects of surfactants — 79
6.2.1	Determination of the CMC —— 83
6.2.2	The Krafft and cloud points —— 84
6.2.3	Probing the micelle environment —— 85
6.2.4	Catalysis — 87
6.3	How environmentally safe are they? Concerns and beneficial
	uses — 89
6.3.1	Biodegradation —— 90
6.3.2	Reclamation —— 91
6.3.3	Linear alkylbenzenesulfonates in the environment —— 91
6.3.4	Perfluorooctanesulfonate in the environment —— 93
6.3.5	Cationic surfactants in the environment —— 95
6.4	Surfactants in analytical chemistry —— 96
6.4.1	UV-Visible spectroscopy —— 96
6.4.2	Cationic surfactants — 97
6.4.3	Nonionic surfactants — 98
6.4.4	Anionic surfactants — 99
6.4.5	Fluorescence spectroscopy —— 99
6.4.6	Phosphorescence spectroscopy —— 102
6.4.7	Atomic spectroscopy —— 103
6.4.8	Chromatography —— 104
6.4.9	Micellar electrokinetic chromatography —— 104

6.4.10	Electrochemistry —— 105
6.4.11	Extractions —— 106
6.4.12	Titrations — 107
6.4.13	Flow injection analysis —— 108
6.5	Conclusions —— 111
	References —— 112
David C	onsiglio
7	Biofuels, fossil energy ratio, and the future of energy production — 123
7.1	Introduction — 123
7.1.1	What are biofuels? —— 123
7.1.2	The transition to fossil fuels —— 124
7.1.3	Fossil carbon versus atmospheric carbon —— 125
7.2	Solid biofuels —— 125
7.3	Liquid biofuels —— 126
7.3.1	Gasoline substitutes —— 126
7.3.2	Diesel substitutes —— 127
7.4	Gaseous biofuels —— 127
7.4.1	Biomethane and methane substitutes —— 128
7.5	Fuel energy ratio —— 129
7.5.1	Energy output —— 129
7.5.2	Energy input —— 130
7.5.3	FER values —— 130
7.6	Problems with biofuels —— 131
7.7	Potential for future improvements in biofuels —— 132
	References —— 133
Steven	Kosmas
8	Growing your green chemistry mindset —— 137
8.1	Introduction —— 137
8.2	Principle #5 Safer Solvents & Auxiliaries —— 138
8.3	Principle #4 Designing safer chemicals —— 139
8.4	Principle #12 Safer Chemistry for Accident Prevention —— 141
8.5	Conclusions — 142
	References —— 143

Index —— 145