Contents

List of Contributing Authors — IX

References — 33

М	lo r	レ	R	Δ	n١	۵,	nı	ıtο

Where We Are and Where We Are Going with Green Chemistry — 1

Willia	m F. Carroll, Jr.			
1	Upon Further Review: A Commodity Chemist on Green Chemistry — 7			
1.1	Commodity Chemicals Got That Way Through the Use of Principles			
	Identical to Many of Those of Green Chemistry and Engineering —— 9			
1.1.1	Scale —— 11			
1.1.2	Substitution —— 11			
1.1.3	Life Cycle Considerations —— 12			
1.2	The Benefit of Green Chemistry May Be as Much Economic as It Is			
	Environmental, Although Both Are Important —— 13			
1.3	Green Chemistry Can Have Its Biggest Impact if It Enables			
	Green Energy —— 14			
1.4	For the Future —— 15			
	References —— 15			
Sarah	A. Green			
2	Green Chemistry: Progress and Barriers —— 17			
2.1	Brown versus Green Chemistry: Aligning the Goals of Traditional and			
	Green Chemistry —— 19			
2.2	Outlook: Roadblocks to Progress — 22			
2.3	Summary — 26			
	References —— 26			
Heinz	Plaumann			
3	Switchable Polarity Solvents: Are They Green? —— 29			
3.1	Introduction —— 29			
3.2	Basic Chemistry: What Is an SPS? —— 29			
3.3	Process — 30			
3.4	Application Examples —— 31			
3.5	Extraction of Soybean Oil —— 31			
3.6	Cleaning of Solid Particles — 31			
3.7	Recovery of Residual Motor Oil —— 31			
3.8	SPS as Reaction Medium —— 32			
3.9	Recovery of Polystyrene from Polystyrene Foam —— 32			
3.10	Other Applications —— 32			
3.11	Future Considerations —— 33			

Martin Straka

Stiaka					
Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for Spent					
uclear Fuel Reprocessing and Other Decontamination Processes for					
Contaminated Metal Waste —— 35					
Introduction —— 35					
Radiation Stability of ILs —— 36					
Electrochemical Stability of ILs and Electrochemistry of Actinides and					
Lanthanides — 37					
Solubility of Actinides and Lanthanides in ILs —— 41					
ILs for Spent Fuel Reprocessing —— 42					
Recycling/Decontamination Schemes —— 45					
Summary —— 47					
References —— 47					
Putman, Chris Nyland and Kristine Parson					
Green Disposal of Waste Bisphenol A — 53					
Introduction —— 53					
Materials and Methods —— 55					
Chemicals —— 55					
Degradation/Uptake of BPA by Little Bluestem Seeds —— 55					
Quantification of BPA —— 56					
Degradation of BPA by Seed Exudate —— 56					
Sephadex G-75 — 56					
Bradford Protein Assay —— 56					
Electrophoresis — 57					
Solid-Phase Extraction —— 57					
FT-IR —— 57					
Statistics — 57					
Results and Discussion —— 57					
Degradation of BPA by Little Bluestem Seeds —— 57					
Conclusion — 62					
References —— 63					
Kolopajlo					
Green Chemistry Pedagogy —— 67					
Introduction — 67					
GC Reviews — 69					
Part 1: GC Courses and Lab Pedagogy —— 71					
GC Academic Programs —— 71					
High School GC — 71					
College General Chemistry —— 72					
GC in Other Papers — 75					

6.3.5	Courses and Curricula — 76
6.3.6	GC Courses — 76
6.3.7	Organic GC Pedagogy — 79
6.4	Part 2: Sustainable Chemistry Pedagogy: A Historical Approach —— 80
6.4.1	Courses — 83
6.4.2	Other Papers —— 87
	References —— 89
Matthe	ew J. Mio
7	How the Principles of Green Chemistry Changed the Way Organic Chemistry
	Labs Are Taught at the University of Detroit Mercy —— 95
7.1	Introduction —— 95
7.2	Green Chemistry Principles Affect Course Learning Outcomes —— 96
7.3	Green Chemistry Principles Affect Materials and Equipment —— 97
7.4	Green Chemistry Principles Affect the Transformations Performed —— 99
7.5	Conclusions —— 100
	References —— 100
Meghn	na Dilip and Margaret E. Kerr
8	Greening the Curriculum: Traditional and Online Offerings for Science
	and Nonscience Majors —— 103
8.1	Introduction —— 103
8.2	Green Chemistry – Upper-Level Chemistry Course —— 104
8.2.1	Course Outline —— 105
8.2.2	Course Format and Development —— 105
8.2.3	Modes of Assessment —— 106
8.2.4	Student Survey Results —— 107
8.3	"Paper or Plastic?": Online Approach for Nonmajors —— 108
8.3.1	Course Outline —— 108
8.3.2	Course Format and Development —— 110
8.3.3	Presentation of Material —— 110
8.3.4	Modes of Assessment —— 111
8.3.5	Student Survey Results —— 112
8.4	Conclusion —— 112
	References —— 113

Index —— 115