Contents

1	Introdu	uction —— 1		
2	Theory	Theory on separable approximation of multivariate functions —— 9		
2.1	Repres	enting multivariate functions via separation of variables —— 9		
	2.1.1	Schmidt decomposition of bivariate functions — 10		
	2.1.2	Tensor product of Hilbert spaces —— 11		
	2.1.3	Additive representation in the canonical and Tucker type form —— 14		
	2.1.4	Functional matrix product states decomposition —— 16		
	2.1.5	Examples on the explicit canonical, Tucker, and MPF design —— 18		
	2.1.6	Nonlinear approximation of functions in separable form —— 20		
	2.1.7	On canonical decomposition by greedy algorithm —— 22		
	2.1.8	Tensor structured representation of operators —— 24		
2.2	Analyti	ic methods of separable approximation —— 26		
	2.2.1	The problem setting —— 26		
	2.2.2	Best polynomial approximation —— 26		
	2.2.3	Chebyshev interpolation —— 28		
	2.2.4	Tensor product polynomial interpolation —— 30		
	2.2.5	Separable approximation of the Helmholtz kernel — 32		
	2.2.6	Separation by exponential fitting — 36		
2.3	Introdu	uction to sinc approximation methods —— 39		
	2.3.1	Fourier transform in $L^1(\mathbb{R})$ and in $L^2(\mathbb{R})$ — 40		
	2.3.2	Sampling theorem. Sinc interpolation —— 42		
	2.3.3	Sinc approximation of analytic functions —— 45		
	2.3.4	Improved error bound in the case of double exponential		
		decay —— 47		
	2.3.5	Sinc interpolation on an interval (a, b) — 49		
	2.3.6	Numerics for the sinc interpolation on (a,b) and \mathbb{R}_+ — 50		
2.4	Low ra	nk sinc approximation to the Green kernels —— 52		
	2.4.1	Sinc interpolation of multivariate functions —— 53		
	2.4.2	Error bound for tensor product sinc interpolant —— 53		
	2.4.3	Application to the function $\frac{1}{x_1^2+\cdots+x_d^2}$ — 55		
	2.4.4	Application to the generalized Newton kernel $\frac{1}{\sqrt{x_1^2 + \dots + x_d^2}}$ — 58		
	2.4.5	Sinc approximation of the Slater function —— 60		
	2.4.6	Tucker and canonical approximation of integral operators —— 62		
	2.4.7	Sinc method for the Yukawa potential by projection collocation — 65		
	2.4.8	Helmholtz kernel revisited —— 68		

3	Multili	near algebra and nonlinear tensor approximation —— 70	
3.1	Traditional numerics meets higher dimensions — 70		
	3.1.1	Multidimensional PDEs in modern applications — 70	
	3.1.2	Numerical methods for low dimensions as the building block — 72	
	3.1.3	Matrix SVD and rank-r matrices — 73	
	3.1.4	Reduced truncated SVD —— 75	
	3.1.5	Cholesky factorization and adaptive cross approximation — 76	
	3.1.6	\mathcal{H} matrix format in low dimensions $d \leq 3$: a short excursus — 77	
	3.1.7	Fast Fourier transform —— 80	
	3.1.8	Discrete convolution via FFT —— 81	
	3.1.9	A new paradigm: tensor methods beat supercomputers —— 82	
3.2	Introduction to canonical and Tucker tensor formats —— 83		
	3.2.1	Preliminary discussion —— 83	
	3.2.2	Tensor product of finite dimensional Hilbert spaces —— 84	
	3.2.3	Matrix unfolding and contracted product of tensors — 85	
	3.2.4	Canonical representation as a sum of rank-1 tensors —— 87	
	3.2.5	Little analogy between the cases $d = 2$ and $d \ge 3$ — 90	
	3.2.6	Strassen algorithm via rank decomposition —— 92	
	3.2.7	Tucker format: orthogonal subspace representation —— 93	
	3.2.8	Tucker orthogonality meets the canonical sparsity —— 95	
	3.2.9	Bilinear operations on formatted tensors —— 96	
3.3	Direct	methods of low rank approximation —— 98	
	3.3.1	On nonlinear approximation by rank structured tensors —— 99	
	3.3.2	Higher order SVD (HOSVD) —— 101	
	3.3.3	Reduced HOSVD and the canonical-to-Tucker transform —— 103	
	3.3.4	Other direct methods of approximation and general	
		overview —— 107	
3.4	Tensor	approximation by nonlinear ALS iteration —— 110	
	3.4.1	Approximation on Tucker manifold by dual maximization —— 111	
	3.4.2	Best rank-1 approximation —— 112	
	3.4.3	Best rank- r Tucker approximation of full format target —— 113	
	3.4.4	Remarks on rank-R canonical approximation by ALS iteration —— 114	
	3.4.5	Two-level Tucker-to-canonical approximation to the CP input —— 116	
	3.4.6	Multigrid Tucker approximation of function related tensors —— 119	
3.5	Matrices in canonical and Tucker tensor formats —— 124		
	3.5.1	Canonical and Tucker matrix (operator) formats —— 124	
	3.5.2	The Kronecker product of matrices revisited —— 125	
	3.5.3	General properties of the Kronecker product of matrices —— 126	
	3.5.4	Matrix operations with Kronecker products and sums —— 127	
	3.5.5	Functions of the Kronecker products —— 128	
	3.5.6	Eigenvalue problem for Kronecker sums —— 129	
	3.5.7	Application to matrix Lyapunov/Sylvester equations —— 130	

	3.5.8	Kronecker–Hadamard scalar product —— 131
	3.5.9	Remarks on rank structured operators (matrices) —— 131
	3.5.10	Comments on Kronecker matrix rank if $d = 2 - 132$
	3.5.11	Complexity of the Kronecker matrix arithmetics —— 133
3.6	From a	dditive to multiplicative dimension splitting —— 133
	3.6.1	Making high dimensional functions and operators tractable — 133
	3.6.2	Matrix product states and tensor train formats —— 134
	3.6.3	Specific features of the TT factorization —— 136
	3.6.4	Asymptotically optimal rank-r TT approximation —— 140
	3.6.5	Comments on approximation by TT tensors —— 143
	3.6.6	Canonical, Tucker, and MPO operators (matrices) —— 145
	3.6.7	Higher order SVD and SVD based TT rank truncation —— 147
	3.6.8	Analytic and algebraic approximation methods in tensor formats
		revisited —— 149
4	Superfa	ast computations via quantized tensor approximation —— 153
4.1	Quanti	zed TT approximation: TT tour of highest dimensions —— 153
	4.1.1	Main motivation for the QTT approach —— 154
	4.1.2	Quantics folding to higher dimension: general scheme —— 155
	4.1.3	QTT type tensor format and its hybrid versions —— 157
	4.1.4	Why QTT approximation does a job —— 159
	4.1.5	QTT approximation on classes of functional vectors —— 160
	4.1.6	QTT approximation in analytic form —— 165
	4.1.7	Examples of QTT supercompression in high dimensions —— 167
	4.1.8	Numerics on QTT and QCP approximation —— 167
	4.1.9	TT/QTT based tensor numerical methods: main ingredients —— 168
4.2	Explicit	TT/QTT representation of functional tensors —— 169
	4.2.1	Functional TT decomposition revisited —— 170
	4.2.2	Trigonometric functions of a sum of univariate functions —— 170
	4.2.3	QTT decomposition of rank- <i>r</i> separable functions —— 174
	4.2.4	QTT decomposition of rational polynomials and other
		examples — 175
	4.2.5	TT ranks of multivariate polynomials —— 177
	4.2.6	QTT ranks of multivariate polynomials —— 179
	4.2.7	QTT ranks of special multivariate polynomials —— 180
4.3	•	QTT representation of multivariate matrices —— 182
	4.3.1	Operator TT (OTT) decomposition —— 182
	4.3.2	Vector TT and QTT ranks of a multiway matrix —— 183
	4.3.3	Operator TT and QTT ranks of a matrix —— 184
	4.3.4	Notations to explicit QTT decomposition of matrices —— 185
	4.3.5	'One dimensional' shift and gradient matrices in QTT format — 187
	4.3.6	QTT representation of the one dimensional Laplacian —— 188

	4.3.7	TT and QTT decomposition of the D dimensional Laplacian —— 189		
	4.3.8	Laplace operator inverse for $d = 1$ — 191		
	4.3.9	Laplace operator inverse for $d \ge 2$ — 194		
	4.3.10	Stiffness matrix for elliptic operators with separable		
		coefficients — 197		
	4.3.11	Multidimensional bilinear forms —— 200		
	4.3.12	Toward numerical issues —— 204		
4.4	QTT-FF1	and convolution transform in logarithmic time —— 205		
	4.4.1	Diagonalizing circulant matrix revisited —— 205		
	4.4.2	Discrete circulant/Toeplitz convolution —— 207		
	4.4.3	QTT decomposition of 1D shift matrices of size $2^d \times 2^d - 207$		
	4.4.4	QTT based circulant/Toeplitz convolution in $O(\log N)$ cost — 208		
	4.4.5	QTT decomposition of FFT matrix has irreducible $arepsilon$ rank — 209		
	4.4.6	Fast QTT-FFT based on Cooley–Tuckey recursion —— 211		
	4.4.7	QTT-FFT versus sparse FFT: numerical comparison —— 213		
5	Tensor	approach to multidimensional integrodifferential equations —— 216		
5.1	Tensor	approximation of multivariate convolution —— 216		
	5.1.1	Problem setting —— 216		
	5.1.2	Discretization of translation invariant integral operators —— 217		
	5.1.3	$O(h^2)$ and $O(h^3)$ error bounds — 219		
	5.1.4	Rank structured tensor approximation to discrete		
		convolution —— 223		
	5.1.5	Tensor product convolution on generic nonuniform grids in \mathbb{R}^d — 226		
	5.1.6	$O(n \log n)$ convolution on 1D composite grid — 227		
	5.1.7	Low rank sinc approximation of convolving tensors,		
		algebraic rank reduction —— 230		
	5.1.8	Numerical verification on quantum chemistry data —— 233		
5.2	Tensor	Tensor numerical methods in Hartree–Fock calculations —— 235		
	5.2.1	Nonlinear eigenvalue problem —— 236		
	5.2.2	Grid based rank structured approximation		
		in Hartree–Fock calculus —— 238		
	5.2.3	Rank structured representation of the two-electron integrals		
		tensor —— 239		
	5.2.4	Calculating multidimensional integrals by using tensor		
		formats —— 241		
	5.2.5	Core Hamiltonian on tensor grid —— 243		
	5.2.6	Numerical illustrations to the Hartree–Fock solver —— 244		
	5.2.7	MP2 correction scheme by low rank tensor decompositions of		
		two-electron integrals — 248		

	5.2.8	rank approximation to the Bethe–Salpeter Hamiltonian —— 250	
	5.2.9	Sketch on the Green function iteration for the	
	3.2.7	Kohn-Sham equation — 252	
	5.2.10	On separable approximation to the convolving functions — 257	
		Linearized Hartree-Fock equation for finite lattice and	
		quasiperiodic systems: tensor approach —— 261	
5.3	Real tin	ne dynamics by parabolic equations: tensor approach —— 273	
	5.3.1	General introduction — 273	
	5.3.2	Basic approaches to time integration: approximating	
		$e^{-t\mathcal{H}}\psi_0$ —— 275	
	5.3.3	Rank bounds for space-time tensor approximation based on	
		Cayley transform —— 275	
	5.3.4	The TT/QTT based solver for the Fokker–Planck equation —— 279	
	5.3.5	Numerics for QTT based solver: heat equation —— 282	
	5.3.6	Numerics for the Fokker-Planck problem: the dumbbell model	
		discretized on large grids —— 283	
	5.3.7	Chemical master equation in the QTT-Tucker format —— 286	
	5.3.8	Discretization of CME. Analysis of the rank structure in	
		Hamiltonian —— 290	
	5.3.9	Towards application to spin models —— 292	
5.4		ructured approximation to stochastic and parametric PDEs —— 293	
	5.4.1	Problem setting — 293	
	5.4.2	Stochastic collocation: canonical tensor discretization in the	
		additive case — 295	
	5.4.3	Preconditioned rank truncated iteration — 298	
	5.4.4	Stochastic collocation in log additive case: using TT tensor format — 300	
	5.4.5	Numerics to rank structured solution of sPDEs: additive and log	
	3. 1.3	additive cases — 303	
5.5	Range	separated tensor format: breaking through the complexity of	
	many-particle modeling —— 306		
	5.5.1	Main motivations —— 306	
	5.5.2	Rank structured lattice sum of interaction potentials —— 308	
	5.5.3	Basic idea and general definition of range separated formats —— 311	
	5.5.4	Rank and complexity estimates for long range part: sketching the proof —— 314	
	5.5.5	Sketch of initial applications: electrostatic potential of large	
	F F /	biomolecules — 318	
	5.5.6	Scattered data modeling and tensor approximation of large covariance matrices — 319	
		COVATIANCE MIGHNICES —— 313	

Index — 367

5.6	Tensor methods for quasiperiodic systems versus geometric		
	homog	enization —— 321	
	5.6.1	Fast integration of highly oscillating functions —— 321	
	5.6.2	Elliptic PDEs with oscillating features: analysis in 1D —— 324	
	5.6.3	QTT matrix representation and numerics for the QTT tensor	
		solver —— 327	
	5.6.4	Multidimensional problems —— 328	
5.7	A numerical scheme for stochastic homogenization problems —— 333		
	5.7.1	Elliptic problem in periodic supercells —— 333	
	5.7.2	Generation of stiffness matrix by using Kronecker products of	
		univariate operators —— 334	
	5.7.3	Fast matrix assembling for the stochastic part —— 338	
	5.7.4	Computational scheme for the homogenized coefficient via	
		stochastic average — 340	
	5.7.5	Empirical variance versus the size of representative volume	
		elements —— 342	
	5.7.6	Asymptotic empirical average versus the number of stochastic	
		realizations — 344	
5.8	Sketch of other applications — 344		
	5.8.1	Operator dependent RS tensor approximation of the Dirac	
		delta — 344	
	5.8.2	Tensor approach to isogeometric analysis —— 346	
	5.8.3	Quantized-CP approximation of function generated data —— 347	
	5.8.4	Superfast QTT wavelet transform —— 347	
Bibliog	raphy —	— 349	